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Abstract

Background: The amyloid b-protein (Ab) is believed to be the key mediator of Alzheimer’s disease (AD) pathology. Ab is
most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Ab has been
shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking
pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities.

Methodology/Principal Findings: Here, we provide data supporting an in vivo function for Ab as an antimicrobial peptide
(AMP). Experiments used established in vitro assays to compare antimicrobial activities of Ab and LL-37, an archetypical
human AMP. Findings reveal that Ab exerts antimicrobial activity against eight common and clinically relevant
microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole
brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP
action correlates with tissue Ab levels. Consistent with Ab-mediated activity, the increased antimicrobial action was ablated
by immunodepletion of AD brain homogenates with anti-Ab antibodies.

Conclusions/Significance: Our findings suggest Ab is a hitherto unrecognized AMP that may normally function in the
innate immune system. This finding stands in stark contrast to current models of Ab-mediated pathology and has important
implications for ongoing and future AD treatment strategies.
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Introduction

The past 25 years has witnessed the accrual of a large body of

data concerning the physiochemistry and biological activities of

the amyloid b-peptide (Ab), the main component of b-amyloid

deposits in the brains of Alzheimer’s disease (AD) patients [1]. Ab,

which is generated in the brain and peripheral tissues, is widely

believed an incidental catabolic byproduct of the amyloid b
protein precursor (APP) with no normal physiological function.

However, Ab has been shown to be a ligand for a number of

different receptors and other molecules [2,3,4], transported by

complex trafficking pathways between tissues and across the blood

brain barrier [1,5], modulated in response to a variety of

environmental stressors, and able to induce pro-inflammatory

activities [6,7]. Despite these clues, the normal physiological role

of Ab remains unknown. We have observed that many of the

physiochemical and biological properties previously reported for

Ab are similar to those of a group of biomolecules collectively

known as ‘‘antimicrobial peptides’’ (AMPs) which function in the

innate immune system. AMPs (also called ‘‘host defense peptides’’)

are potent, broad-spectrum antibiotics that target Gram-negative

and Gram-positive bacteria, mycobacteria, enveloped viruses,

fungi, protozoans and in some cases, transformed or cancerous

host cells. AMPs are also potent immunomodulators that mediate

cytokine release and adaptive immune responses (see review by

Zaiou, 2007 [8]).

The three main families of mammalian AMPs are the defensins,

the histatins, and the cathelicidins. Only one member of the

cathelicidin family has been identified in humans, the LL-37

peptide [9]. The pleiotropic LL-37 peptide is a widely expressed

archetypal AMP [10]. The rodent LL-37 homologue (CRAMP)

has been shown to play a central role in combating bacterial

infections in a range of tissues, including the CNS [11]. Patients

that express low levels of LL-37 are at increased risk for serious
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infections [12]. Conversely, high levels of LL-37 are associated

with the pathology of several presumably non-infectious diseases

[13], including plaques in atherosclerosis [14]. We have observed

that LL-37 exhibits striking similarities to Ab, including a

propensity to form cytotoxic soluble oligomers [15,16,17,18] and

insoluble fibrils that demonstrate congophilia and birefringence

[19], two classical histochemical properties of tinctorial amyloid.

While the microbiocidal activity of LL-37 has been well

characterized [20], the activity of Ab against microbial organisms

has not been tested.

Here we show that Ab is active against at least eight common

and clinically relevant microorganisms. The in vitro antimicrobial

activity of Ab matched, and in some cases, exceeded, that of LL-

37, an archetypical human AMP. Furthermore, anti-Ab immu-

noreactive material in AD whole brain homogenates is active

against Candida albicans, the pathogen we identified as most

sensitive to synthetic Ab. Most strikingly, temporal lobe samples

from AD brain contained significantly higher antimicrobial

activity than material from the same brain area of aged-matched,

non-AD subjects. Consistent with an Ab-mediated action,

cerebellum samples with low b-amyloid loads from the same set

of affected and unaffected subjects were not significantly different

with regards to antimicrobial activity. Our findings show Ab
possesses antimicrobial activity and may function in vivo as an

AMP and, thus, play a role as an effector molecule of innate

immunity.

Results

Antimicrobial activity against a particular microorganism is

measured in vitro by a peptide’s minimal inhibitory concentration

(MIC), which is defined as the lowest concentration able to visibly

inhibit growth overnight. We compared the MICs of synthetic LL-

37, Ab40, and Ab42, against a panel of clinically relevant

organisms (Table 1). The antimicrobial activity of Ab peptides

was equivalent to or greater than LL-37 for seven of the pathogens

tested. These data indicate that Ab is a bona fide AMP with

potencies similar to, or, in some cases surpassing those of LL-37.

The synthetic Ab peptides demonstrated antibiotic activity against

Gram-negative and Gram-positive bacteria and the yeast C.

albicans. Activity was isoform-specific for six organisms with Ab42

showing greater potency compared to Ab40. Equivalent findings

were observed for recombinant Ab42, material that is free of the

potentially toxic contaminants associated with conventional solid-

phase peptide synthesis (data not shown). Rodent Ab42 also

demonstrated antimicrobial activity. However, microbial growth

was not inhibited by reverse (rAb42) or scrambled (scAb42)

negative control peptides, thus confirming the antimicrobial action

is peptide-specific.

AMPs, including LL-37 [21], can be bacteriostatic or

bactericidal depending on peptide concentration, ionic strength,

and the type of stressor a colony has previously encountered. The

growth curves for E. faecalis in the presence of Ab42 suggest a

predominantly bacteriostatic action for the peptide against this

organism under our incubation conditions (Figure 1A). Consis-

tent with previous studies, LL-37 showed potent bactericidal

activity against E. faecalis. Microbial growth resumed at later time

points, most likely due to degradation of LL-37 and Ab by

protective bacterial proteases (Figure 1B).

The capacity to associate with microbial lipid bilayers is

considered a definitive feature of AMPs [22]. Most antimicrobial

peptides are cationic to facilitate binding to anionic bacterial

membranes. However, Ab peptides are anionic under physiolog-

ical conditions [23]. Nonetheless, data from light microscopic

examination of immunostained bacteria pre-incubated with Ab
confirm that the peptide binds to the surface of bacterial cells

(Figure 2). Binding of Ab to bacterial membranes is consistent

with previous studies showing that Ab readily binds and disrupts

negatively charged synthetic lipid bilayers [24,25] and anionic

mitochondria membranes [26,27,28], believed to have been

originally derived from bacterial membranes.

In the next experiments we tested if the antimicrobial activity

observed for synthetic peptides in vitro could be identified in

temporal lobe and cerebellum from human brain. Typically b-

amyloid load is high in AD temporal lobe and low in cerebellum.

Tissue taken from AD (n = 32) or age matched control subjects

(n = 13) were homogenized and normalized for protein. Ab40 and

Ab42 levels in brain homogenates were determined by ELISA.

Homogenates were then diluted into culture broth and inoculated

with Candida albicans. Growth of C. albicans was determined using a

fluorescence-based alamar blue microplate assay previously

described for following cell viability with this organism [29]. AD

temporal lobe homogenates inhibited the growth of C. albicans

significantly more (p = 0.0048) than non-demented control sam-

ples (Figure 3A). Consistent with an Ab-mediated antimicrobial

activity in AD temporal lobe homogenates, a significant difference

in C. albicans growth was not observed with cerebellum samples,

which carry a considerably lower Ab load. Also consistent with

Ab-mediated antimicrobial activity, C. albicans growth significantly

correlated with Ab concentration in temporal lobe homogenates

(Figure 3B) but not in cerebellum samples with Pearson’s

correlation coefficients (r) of 20.484, p = 0.0012 and 20.091,

p = 0.56, respectively. In addition, the increased antimicrobial

activity of AD temporal lobe samples could be significantly

attenuated (p = 0.0007) by immunodepletion of homogenates with

anti-Ab antibodies (Figure 4A), consistent with an Ab-mediated

antimicrobial activity in AD brain. Analysis of immunodepleted

Table 1. Ab peptides possess antimicrobial activity.

MIC (mg/ml)

Organism Ab42 Ab40 roAb42 LL-37 reAb42 scAb42

Candida albicans 0.78 0.78 0.78 6.25 .25 .50

Escherichia coli 1.56 1.56 3.13 1.56 .50 .50

Staphylococcus epidermidis 3.13 50 3.13 25 .50 .50

Streptococcus pneumoniae 6.25 12.5 6.25 1.56 50 .50

Staphylococcus aureus 6.25 25 12.5 6.25 .50 .50

Listeria monocytogenes 6.25 25 6.25 25 .50 50

Enterococcus faecalis 6.25 50 3.13 6.25 50 .50

Streptococcus agalactiae 12.5 50 .50 12.5 .50 .50

Pseudomonas aeruginosa .50 .50 .50 6.25 .50 .50

Streptococcus pyogenes .50 .50 .50 6.25 .50 .50

Streptococcus mitis .50 50 .50 6.25 .50 .50

Streptococcus salivarius .50 .50 .50 50 .50 .50

The antimicrobial activity of synthetic Ab1-42 (Ab42), Ab1-40 (Ab40), LL-37 (LL-
37), reverse Ab42-1 (rAb42), or scrambled Ab42 (scAb42) peptides were
determined as minimal inhibitory concentrations (MIC) against 12
microorganisms. Antimicrobial activity was assayed by broth microdilution
susceptibility test on 96-well plates with microbial growth in wells determined
by visual inspection following an overnight incubation. Inhibition of growth in
plate wells was confirmed by alamar blue cell viability assay and by surface
plating of incubants on agar and counting CFU. Inoculums contained mid-
logarithmic phase cells. Consistent with antimicrobial activity specific to the Ab
sequence, inhibition was not observed for reverse and scrambled peptides.
doi:10.1371/journal.pone.0009505.t001

Ab Is an Antimicrobial Peptide
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homogenates confirmed Ab levels were attenuated in samples

incubated with rabbit anti-Ab antibody (Figure 4B). Additional

experiments confirmed that antimicrobial activity in AD temporal

lobe homogenates is also attenuated following immunodepletion

with the anti-Ab mouse monoclonal antibody 6E10 (Figure S1).

Discussion

Ab peptides inhibited the growth of eight of 12 clinically

important pathogens screened (Table 1), including the bacteria S.

pneumoniae, which is a leading cause of bacterial meningitis [30],

and C. albicans, the most common cause of neurocandidiasis [31].

If the normal function of Ab is to function as an AMP, then an

absence of the peptide may result in increased vulnerability to

infection. Such an association has been shown for LL-37 and the

disorder morbus Kostmann in which patients deficient in this

AMP cannot mount an effective defense against pathogens [32].

To our knowledge a relationship between human immunodefi-

ciency and low Ab levels has not been investigated. However,

knockout mice that lack the proteases that generate endogenous

rodent Ab appear to have increased susceptibility to pathogens

[33]. BACE1 knockout (KO) mice that generate low levels of Ab
and BACE1- and BACE2-deficient double KO mice, which do

not express Ab, have mortality rates of 40 and 60 percent,

respectively. Housing the animals in a pathogen-free environment

restores survival rates to that of wild-type mice (.95 percent). The

etiology of the immunodeficiency has been investigated but not

identified. Adaptive immune responses to vesicular stomatitis virus

are the same for BACE-KO and wild-type mice. In addition,

markers for adaptive immune system function are normal in

BACE-KO mice, including leukocytes migration into the peri-

toeum following thioglycolateacute-induced acute peritonitis and

T-cell cytotoxiocity towards non-host cells. More recently, in a

clinical trial of the Ab42- lowering agent tarenflurbil patients

receiving the drug have significantly increased rates of infection

[34]. Increased pathogen susceptibility of apparently adaptive

immunocompetent BACE-KO mice and AD patients with

suppressed Ab expression is consistent with our finding that Ab
may have a normal protective function as an antimicrobial peptide

of the innate immune system.

The immunostatus of APP knockout (APP-KO) mice has yet to

be characterized. APP is a member of a larger protein family that

includes the amyloid protein precursor-like proteins 1 and 2

(APLP1 and APLP2) [35,36]. APP and APLP proteins appear to

have overlapping and partially redundant functions [37,38,39] and

share processing pathways, including BACE-mediated generation

Figure 1. Growth of E. faecalis is inhibited by Ab42. E. faecalis were cultured alone (circle) with 25 mg/ml of Ab42 (triangle) or LL-37
(diamond). Panel A; Bacterial growth with time was monitored by inoculation of agar with diluted incubants and counting CFU. Representative
data from six experiments is shown as mean signal of four replicates 6 s.e.m. Panel B Incubants were monitored for Ab42 and LL-37 by Western blot
with mAb 6E10 or anti-LL-37. The figure shows representative signal for Ab42 (odd lanes) or LL-37 (even lanes) incubants from six replicate
experiments.
doi:10.1371/journal.pone.0009505.g001

Ab Is an Antimicrobial Peptide
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of APLP-derived peptides analogous to Ab [37,38,39,40]. It is

unclear to what degree APLP-derived proteins may compensate

for deficiencies associated with low APP expression. Mice lacking

both APP and APLP proteins (triple APP/APLP KO-mice) show

early postnatal mortality with severe developmental abnormalities

[41,42,43,44,45]. Interestingly, local cortical dysplasias can be

infection-mediated and are observed in 68% of triple APP/APLP

KO-mice [45]. Partial penetrance is also suggestive of an

environmental component in this ectopia.

Recent studies have shown that while the adaptive immune

system has limited access to the brain, the CNS can still mount a

robust response to invading pathogens via antimicrobial peptides

and the innate immune system. Numerous innate immune

molecules with potent antimicrobial activity are found in brain,

including the recently identified chromogranins [46], neuropep-

tides neurokinin-1, enkelytin and peptide B, neuropeptide Y,

polypeptide tyrosine-tyrosine, and the peptide hormones a-

melanocyte stimulating hormone, adenoregulin, adrenomedullin

Figure 2. E. faecalis pre-incubated with Ab42 are mAb 6E10 immunoreactive. Bacteria were incubated (1 hr at 37uC) with (panel A) or
without (panel B) Ab42 (25 mg/ml). Following repeated washes, the bacteria were fixed onto glass slides and immunostained with the HRP
conjugated anti-Ab antibody (mAb 6E10-HRP).
doi:10.1371/journal.pone.0009505.g002

Figure 3. AD brain homogenates have increased antimicrobial activity against C. albicans. AD and non-AD brain samples were tested for
Ab-mediated inhibition of C. albicans. Samples of temporal lobe (Temp. L.) and cerebellum (Cereb.) from AD (n = 32) and age-matched control
subjects (n = 13) were homogenized in culture broth. Panel A; Homogenates were inoculated with log-phase C. albicans and microbial growth
determined by alamar blue viability assay. Data is shown as percentage of signal for C. albicans alone (average of four replicates) 6 s.e.m. Panel B;
Homogenates were assayed for Ab40 and Ab42 by commercially available ELISA. Graph shows Ab signal (sum of Ab40 and Ab42) against C. albicans
growth for temporal lobe homogenates from combined AD and non-demented cohorts (n = 42). Probability analysis used unpaired two-tailed t-tests
(p). Correlation was determined by calculating the Pearson r correlation coefficient (r).
doi:10.1371/journal.pone.0009505.g003

Ab Is an Antimicrobial Peptide
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and proadrenomudullin, corticostatin RK-1, neurotensin, and

bradykinin [47]. Consistent with an antimicrobial role for brain

generated Ab, we found AD temporal lobe homogenates contain

an average of 24% greater activity against C. albicans than samples

from non-AD subjects (Figure 3A). Furthermore, higher Ab levels

in temporal lobe samples correlated with increased inhibition of C.

albicans (Figure 3B) while immunodepletion of Ab from AD brain

homogenates restored antimicrobial activity to levels equivalent to

those of control homogenates (Figures 4A and S1). Immunoblot

analysis confirmed attenuated Ab levels in anti-Ab antibody

immunodepleted samples and low b-amyloid load in cerebellum

tissue (Figure 4B). These data support a protective role for Ab
under the conditions found in the brain milieu even though in vivo

concentrations of soluble peptide are substantially lower than

levels in experiments using synthetic peptide [48]. Several factors

may contribute to this apparent discrepancy. First, synergistic

AMP interactions in vivo potentiate antimicrobial activity [49].

This effect has been demonstrated for CRAMP (rodent LL-37), for

which peptide levels in rodent CNS do not approach concentra-

tions that are needed to obtain positive signals in in vitro assays.

However, rat brain extracts depleted of CRAMP have substan-

tially attenuated antimicrobial activity [50]. Moreover, mutant

mice lacking CRAMP are more susceptible to CNS infection by

meningococcal meningitis [11]. Second, AD brain contains a large pool

of neurotoxic oligomeric Ab species [51,52]. Oligomerization

plays a key role in the targeting and permeabilization of bacterial

membranes by AMPs [19,53,54]. Neurotoxic oligomeric Ab
species present in AD brain may enhance the antimicrobial

activity of homogenates beyond that predicted from in vitro

experiments, which add synthetic monomeric peptides to micro-

bial cultures.

A large body of data supports a central role for neuroinflamma-

tion in AD neuropathology [55]. A number of studies have

proposed Ab as the source of AD-associated inflammation [56].

However, a re-evaluation of the role of Ab in inflammation may

now be warranted in view of these data suggesting that the peptide

functions as an AMP in tissues. Inflammatory response in the

immunologically privileged CNS is mediated by the innate

immune system. Rather than Ab acting as a sole independent

initiator of neuroinflammation, our data raise the possibility that

the peptide may be part of a response mounted by the innate

immune system. Thus, Ab may be one of a family of AMPs known

to contribute pro-inflammatory activities under disease conditions.

At least one other disease has been shown to involve deposition of

an AMP as amyloid, corneal amyloidosis. In corneal amyloidosis

the widespread and well-characterized antimicrobial protein

lactoferrin accumulates in the subepithelium as insoluble amyloid

[57,58]. Semenogelin-derived antimicrobial peptides [59] are also

deposited as seminal vesicle amyloid [60] in a common sub-clinical

pathology found in elderly men [61]. Based on our current

findings, we postulate that stimulation of the innate immune

system may initially trigger Ab generation and the b-amyloid

cascade that leads to b-amyloid deposition. Along these lines at

least three pathogenic mechanisms could conceivably lead to Ab
generation and accumulation in the CNS via stimulation of an

innate immune response. First, persistent sub-acute CNS infection

may drive chronic activation of the innate immune system. A

number of studies have reported that the CNS of AD patients is

Figure 4. Immunodepletion of Ab from AD brain homogenates attenuates C. albicans inhibition. Homogenates of temporal lobe (Temp.
L.) and cerebellum (Cereb.) were prepared from AD (n = 32) or non-demented (n = 13) subjects. AD (AD) or non-demented (non-AD) homogenates
were pooled and then incubated with Magno-beads pre-loaded with rabbit IgG (IgG) or a polyconal rabbit anti-Ab antibody (a-Ab). Following bead
removal samples were analyzed for Ab signal by Western blot and assayed for C. albicans growth by alamar blue viability assay. Panel A shows C.
albicans growth in treated homogenates as a percentage of signal in culture broth alone. Immunodepletion of AD temporal lobe homogenates with
a-Ab restored microbial growth to levels equivalent to non-demented control samples. Graph shows average of five replicates 6 s.e.m. Panel B;
Untreated and immunodepleted homogenates (1:16 dilution) were Western blotted and probed with the Ab-specific mAb 4G8 antibody. Analysis
confirmed Ab signal was reduced in temporal lobe homogenate incubated with anti-amyloid b-peptide antibody (Lane 1) compared to sample
incubate alone (Lane 2) or with rabbit IgG (Lane 3). Ab in dilutions of cerebellum homogenate is below the level of detection for our experimental
conditions (Lanes 4–6). Blots included synthetic Ab42 (Ab42) standard (Lane 7). Statistical probability analysis (p) of data used unpaired two-tailed
t-test.
doi:10.1371/journal.pone.0009505.g004

Ab Is an Antimicrobial Peptide
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infected with pathogens including Chlamydia pneumoniae [62],

Borrelia spirochetes [63], Helicobacter pylori [64], and HSV [65].

Deposition of b-amyloid has also been reported for acquired

immunodeficiency syndrome patients with brain HIV infection

[66]. Given the known genetic influence on Ab accumulation,

genetic factors may contribute to activation of the innate immune

system by regulating Ab production and clearance. At one of the

end of the spectrum of known AD genes, highly penetrant

mutations such as those in the early-onset familial AD genes, APP,

PSEN1, and PSEN2, would constitutively trigger cerebral Ab
accumulation with no need for activation of the innate immune

system [67]. At the other end of the spectrum, consistent with the

increase risk of AD associated with the e4 variant of the

apolipoprotein E gene [68], carriers of the e4 allele are reported

to have higher rates of CNS infection for several of these

pathogens [69]. Finally, in a recent family-based genome-wide

association scan for late-onset AD, one of four genes achieving

genome-wide significance for association with AD was a

homologue of CD33, a lectin involved in the innate immune

system [70].

In a second potential pathogenic mechanism, a transient

infection may lead to a self-perpetuating innate immune response.

Transient triggers may include pathogens reported to be present in

AD brain. And in a third mechanism, an inappropriate

inflammatory response by the innate immune system to transient

or persistent non-infectious insults could also trigger a self-

perpetuating innate immune response. While dozens of diseases

have been suggested to involve immune abnormalities, for most,

the underlying cause of the aberrant immunoresponse remains

unclear. For AD, traumatic brain injury [71], stroke [72] and

certain forms of inhalant anesthetics [73] have been linked to

increased cerebral Ab levels. Thus, while an infection-mediated

pathological mechanism for AD is certainly one possibility for

triggering an innate immune response in the CNS and subsequent

production of antimicrobially active Ab, other non-microbial

factors may also be involved. Interestingly, peptides containing the

microtubule binding sites on tau proteins have also been shown to

harbor antimicrobial properties [74].

The capacity to associate with lipid bilayers is considered a

definitive feature of AMPs, and the peptides usually affect their

antimicrobial activity by membrane permeabilization [75].

Membrane disruption is also thought to be a mechanism for Ab-

mediated cytotoxicity [24,26]. Our finding that bacterial mem-

branes stain positive for Ab following incubation with the peptide

(Figure 2) is consistent with a mechanism that involves association

with microbial lipid bilayers. While most AMPs are cationic, Ab
peptides are anionic. Repulsive electrostatic forces between

anionic peptides and electronegative phospholipids in bacterial

membranes potentially limit antimicrobial activity of this class of

AMP. However, in addition to our data, previous studies have

conclusively shown that Ab readily binds and disrupts both

synthetic anionic lipid bilayers [24] as well as mitochondrial

membranes [26]. Interestingly, mitochondria are thought to be of

endosymbiont origin and have anionic membranes that resemble

the lipid bilayers of bacteria. A number of AMPs, including LL-37,

appear to target and disrupt the mitochondrial membranes of

parasitic protozoans [8]. Recent studies have also identified a

number of anionic mammalian peptides with antimicrobial

activity, including CNS neuropeptides [76] and peptide hormones

[47]. Structural studies on the important epithelial anionic AMP

dermicidin have shown that an overall positive charge is not a

prerequisite for binding of bacterial membranes [77]. Rather, the

key modulators of lipid bilayers/peptide association are the

peptides charge distribution and secondary conformation. Collec-

tively, these data indicate that AMP activity is not limited to

cationic species and that anionic peptides such as Ab can readily

bind bacterial membranes and act as potent antimicrobial agents.

In E. faecalis cultures, Ab was more resistant to bacterial-

mediated degradation than LL-37 (Figure 1B). Bacterial defense

mechanisms secrete proteases that target positively charged

peptides. Anionic AMPs are believed to be, at least in part, a

host counter measure to bacterial resistance mechanisms [78].

Oligomerization is also thought to protect AMPs from microbially-

mediated degradation, and Ab oligomers have been shown to be

highly protease resistant. An anionic charge and propensity to

oligomerize may therefore help render Ab resistant to bacterial

attack.

AMPs cytotoxicity is usually highly specific for microbes.

However, AMPs can also be cytotoxic to select host cells under

physiological conditions. Host cell cytotoxicity has been shown for

LL-37 [14] which, like Ab [79], is cytotoxic towards vascular

smooth muscle cells. AMP host cell cytoxicity often involves

disruption of mitochondrial function, an activity reported for both

LL-37 [80,81] and Ab [27]. Thus, neurotoxicity that has been

shown for Ab is consistent with AMP behavior. The role of AMP

host cell cytoxicity in disease and defense is unclear. LL-37

cytotoxicity has been implicated in disease pathology [14] but may

also have a normal function in antibody-dependent cell cytotox-

icity, a host mechanism for the clearance of virus-infected and

transformed cells [81]. At present Ab’s host cell cytotoxicity is only

associated with disease. Identification of Ab as an AMP raises the

possibility that host cell cytotoxicity, or at least a component of this

activity, may also have a role in innate immunity.

In summary, our finding that Ab is an antimicrobial peptide is

the first evidence that the species responsible for amyloidosis may

have a normal function. This stands in stark contrast to current

models, which assume b-amyloid deposition to be an accidental

process resulting from the abnormal behavior of an incidental

product of catabolism. Our data suggest increased Ab generation,

and resulting AD pathology, may be a mediated by a response of

the innate immune system to a perceived infection. This model has

important implications for current and future AD treatment

strategies. First, it raises the possibility of preventing amyloidosis

from initiating by pre-emptive targeting of pathogens/insults that

stimulate the brain’s innate immune system. Second, our model

identifies the inflammatory pathways of the innate immune system

as targets for modulating Ab generation/accumulation. The target

pathways implicated here are downstream of the inflammatory

trigger. Thus, this approach would likely be useful independently

of the involvement of infectious agents in AD pathology.

Materials and Methods

Synthetic Peptides
Experiments used Ab1-40 (Ab40), Ab1-42 (Ab42), scrambled

Ab (scAb42), Ab42-1 (rAb42), LL-37, and scrambled LL-37 (scLL-

37) peptides. Ab and LL-37 peptides were prepared and purified

by Dr. James I. Elliott at Yale University (New Haven, CT) using

solid-phase peptide synthesis. Scrambled LL-37 peptide was from

AnaSpec (San Jose, CA). Recombinant human Ab42 (recAb42)

and rodent Ab42 (roAb42) were purchased from rPeptide (Bogart,

GA) and Calbiochem (Gibbstown, NJ) respectively. Findings for

recombinant and SPPS prepared peptides were equivalent in all

experiments.

Brain Samples
Human brains were obtained 12–24 hrs postmortem. At the

time of autopsy, one cerebral hemisphere was sectioned and frozen
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at 270uC and the other hemisphere was fixed in formalin for

histological examination. The clinical diagnosis of AD was

confirmed by subsequent histological evidence of amyloid plaques

and neurofibrillary tangles. Samples were provided by the

Neurobiology Tissue Bank at the Mass General Institute for

Neurodegenerative Disease and Massachusetts General Hospital

and included temporal lobe and cerebellum from 32 AD patients

and 13 non-demented age-matched control subjects.

Cell Cultures
Bacteria were from the American Type Culture Collection

(ATCC, Manassas, VA) and included Candida albicans ATCC

10231, Escherichia coli ATCC 25922, Staphylococcus epidermidis ATCC

12228, Streptococcus pneumoniae ATCC 49619, Staphylococcus aureus

ATCC 25923, Listeria monocytogenes ATCC 19112, Enterococcus

faecalis ATCC 29212, Streptococcus agalactiae ATCC 12386,

Pseudomonas aeruginosa ATCC 27853, Streptococcus pyogenes ATCC

19615, Streptococcus mitis ATCC 6249, and Streptococcus salivarius

ATCC 13419. Bacteria were cultured aerobically in Mueller-

Hinton broth (MHB), Brain and Heart Infusion broth (BHIB), or

BHIB supplemented with 1% lysed horse blood and plated on

Tryptone Soy Agar (TSA) plates containing 5% defibrinated sheep

blood. C. albicans was grown in RPMI-1640 medium (Hyclone,

Logan, UT) with 2% glucose buffered (pH 7.0) and 0.165 M

MOPS and surface plated on sabouraud dextrose agar plates.

Culture conditions for each organism are included in Table S1.

Organisms were subcultured for 2 hrs to generate mid-logarithmic

growth cultures for use as inoculates in experiments. Media

reagents were obtained from Becton, Dickinson and Company

(Sparks, MD).

Preparation of Inoculum Containing Mid-Logarithmic
Phase Cells

Colonies from agar were transferred by sterile loop to growth

media and incubated for 2 hrs at 37uC to achieve a McFarland

density of 0.5. Bacteria inoculum cell densities were normalized to

56105 cells/ml immediately before use photometrically and

subsequently confirmed by colony count. Inoculum of C. albicans

contained a cell density of 2.56103 CFU/ml.

Peptide Pre-Treatment and Preparation of Stock
Solutions

Bulk powdered peptides were first dissolved in 30% trifluor-

oethanol (TFE) at 1 mg/ml. Five hundred microliter aliquots of

the stock solutions were lyophilized and stored under nitrogen at

220uC. Stock solutions at 2 mg/ml were prepared the day of

experimentation from the peptide films by solubilizing a second

time in either water or 20% TFE. Ab stocks prepared in water

were sonicated and insoluble peptide aggregates pelleted by

centrifugation (10 min616,000 g). Peptide concentrations in stock

solutions were determined immediately before use by bicincho-

ninic acid (BCA) protein assay. The validity of BCA for assaying

Ab peptides has been established previously [82]. For MIC

experiments, peptides were serially diluted into growth media. For

other experiments stocks were diluted into required working

buffers. Experiments included controls for peptide buffer vehicle

alone.

MIC Determination
Peptide antimicrobial activity was determined as minimal

inhibitory concentration (MIC) [83]. Experiments identified

peptide MIC by broth microdilution susceptibility test in

conjunction with CFU and alamar blue assays. Inoculum

containing mid-logarithmic phase cells was dispensed into the

wells of polypropylene 96-well plates (Fisher, Pittsburgh, PA)

containing seven two-fold dilutions of test peptide in growth

media. Plates were then incubated aerobically overnight (12 to

18 hrs) at 37uC. Peptide MIC was taken as the lowest

concentration able reduce cell growth by CFU and alamar blue

assays by at least two-fold and which correlated with the visible

loss of a growth button on the bottom of microtiter wells.

Experiments were repeated a minimum of three times for each

organism, and tests included at least three replicates for each assay

condition. Experiments included control serial dilutions of buffer

vehicle alone.

Note on radial diffusion assays (RDAs). RDAs have been

widely used in previous studies to assess AMP antimicrobial

activity. However, in our experiments RDAs proved unreliable for

testing Ab antimicrobial activity because the peptide failed to

diffuse away from the point of application (data not shown). Ab
solutions are prone to aggregation, particularly in the presence of

even trace amounts of metal, and interaction with contaminates or

the media matrix may lead to rapid precipitation of the peptide

within the agar. Ab peptides also appear to irreversibly absorb to

the cellulose disks often used as sample reservoirs in RDAs.

CFU Assay
Serial dilutions of incubants were prepared and streaked onto

the surface of agar. The agar plates were then incubated overnight

at 37uC and colonies forming units counted.

Alamar Blue Cell Viability Assay
Microbial growth was determined by following the reduction of

the synthetic metabolic substrate resazurin (alamar blue) to a

fluorescent product by respiratory enzymes in living cells [84].

Alamar blue assay is used in high throughput screens for

antimicrobial agents [85] and is available commercially in kit

form from Invitrogen. Microbial growth in experiments was

assayed with alamar blue kits according to the manufacturer’s

instructions. Briefly, resazurin reagent was added to microbial

cultures (1:10) and samples incubated for 30 or 60 minutes.

Fluorescence signal was measured at excitation of 530 nm and

emission at 590 nm. Signal was blanked on sterile media. For

experiments with brain homogenates, blank wells contained all

components as tests but were not inoculated with C. albicans.

Anti-Ab Imunostaining of Bacteria
E. faecalis smears were air-dried on Superfrost/Plus microscope

slides (Fisher Scientific, Pittsburgh, PA) and then heated to kill and

fix bacterial cells. Fixed cells were incubated with 3% methanolic

hydrogen peroxide for 30 minutes at room temperature to inhibit

endogenous peroxidase activity, passed through graded alcohol,

and rinsed three times in deionized water and phosphate-buffered

saline (PBS). Slides were then incubated with a 1:2,000 dilution of

the anti-Ab monoclonal antibody (mAb) 6E10 (Covance, Prince-

ton, NJ) in TBST. Following washing, slides were incubated with

goat anti-mouse IgG-coupled to HRP (1:200). Detection and

localization steps were performed using Vectastain ABC kit and

DAB Substrate Kit (Vector Laboratories, Burlingame, CA).

Assaying Antimicrobial Activity in Brain Homogenate
Samples of AD (n = 32) or non-demented control (n = 13)

temporal lobe and cerebellum were homogenized in three volumes

of 10 mM phosphate buffer, pH 7.4 by 12 passes in a glass-on-

Teflon homogenizer. Homogenates were diluted into RPMI-1640

media to inhibit C. albicans growth by approximately 50 percent
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(Figure S1). Samples were then inoculated (2.56103 CFU/ml)

with mid-logarithmic growth culture of C. albicans and incubated

aerobically for 3 hrs at 37uC in 96-well microplates (100 ml/well).

Alamar blue reagent was added to wells (10 ml) and fluorescence

measured after 30 and 60 minutes incubation. Signal from test

wells was blanked on samples incubanted without C. albicans.

Signal from homogenate blanks was equivalent to uninoculated

media alone (data not shown). Samples were assayed in

quadruplicate.

Assaying Ab in Tissue Homogenates
Ab40 and Ab42 in samples were determined using commer-

cially available ELISA kits (Covance, Princeton, NJ). Brain

homogenates were assayed according to the manufacturer’s

instructions.

Immunodepletion of Brain Homogenates
MagnaBind goat anti-rabbit IgG beads (Pierce, IL) were pre-

incubated overnight with the Ab specific rabbit anti-amyloid b-

peptide antibody (Invitrogen, CA) or rabbit IgG then washed

repeatedly. Pooled samples were prepared from temporal lobe (30

AD and 12 non-AD) or cerebellum (32 AD and 13 non-AD)

homogenates. The pooled brain homogenates were incubated

alone or with the antibody loaded beads at 4uC for 2 hrs. Final

incubation conditions were 5 mg of antibody per mg of original

tissue (w/w). Beads were pelleted and soluble fraction removed.

Fractions were immunoblotted and probed with the Ab specific

mAb 4G8 (Covance, Princeton, NJ). Analysis confirmed anti-Ab
antibody treated homogenates were depleted of Ab (Figure 4B).

Soluble fractions were then tested for antimicrobial activity against

C. albicans by alamar blue assay.

Immunoblotting (Western Blotting)
Samples were first resolved by electrophoresis on SDS-PAGE

(4–12% Bis-Tris gels) and then transferred to polyvinylidene

fluoride membrane. Membranes were blocked with bovine serum

albumin (10%) then probed with mAb 4G8 (1:200), mAb 6E10

(1:2,000), or mAb anti-LL-37 (1:200) (Hycult Biotechnology,

Uden, The Netherlands). Following washing, membranes were

incubated with goat anti-mouse IgG-coupled to HRP. Blots were

developed with chemiluminescence reagent (Pierce, Rockford IL)

and signal captured using a VersDoc digital imaging system

(BioRad, Hercules, CA). Blot incubations used Tris buffered

saline, pH 8 containing 0.1% Tween (TBST).

Statistical Analysis
Association coefficients between Ab levels in brain homogenate

and C. albicans growth were calculated using Pearson correlation

test and linear regression. Experimental groups were compared by

unpaired two-tailed t-test with a nominal alpha criterion level of

0.05. Antimicrobial signal in AD and non-AD cohorts passed a

D’Agostino-Pearson test for normality (alpha = 0.05) with p values

of 0.077 and 0.24, respectively. Variances of signal from AD and

non-AD cohorts were not significantly different (p = 0.18).

Alternative non-parametric statistical analysis of antimicrobial

activity in temporal lobe homogenates by two-tailed Mann-

Whitney U test also returned a significant difference between AD

and non-AD cohorts (p = 0.018). Statistical analysis used Graph-

Pad Prism software package (La Jolla, CA).

Supporting Information

Figure S1 Ab-mediated inhibition of C. albicans in AD brain

homogenates is dose dependant. AD temporal lobe (Temp. L.) or

cerebellum (Cereb.) were homogenized in phosphate buffer.

Temporal lobe (n = 30.) or cerebellum (n = 32) homogenates were

pooled and 1:16, 1:32, and 1:64 serial dilutions prepared in culture

broth. Homogenate dilutions were incubated with mouse IgG

(IgG) or anti-Ab mAb 6E10 (6E10) antibody immobilized on

MagnaBind beads. Following pelleting of the beads incubants were

inoculated with mid-logarithmic phase C. albicans in 96-well plates.

Microbial growth was determined by alamar blue cell viability

assay. Graphs shows percentage signal of C. albicans alone (average

of five replicates) 6 s.e.m. Consistent with Ab-mediated

antimicrobial activity, C. albicans growth is highest for samples

with low Ab levels and increases with homogenate dilution.

Found at: doi:10.1371/journal.pone.0009505.s001 (0.10 MB TIF)

Table S1 Experimental culture conditions for test organisms.

The table shows test organisms used for peptide MIC determina-

tion with Gram staining (Gram Stain) properties, American Type

Culture Collection designation (ATCC No.), culture media

(Growth Media), and growth period (Incub. hrs) used for broth

microdilution susceptibility testing. Organisms were grown

aerobically at 37uC in Mueller-Hinton broth (MHB), Brain and

Heart Infusion broth alone (BHIB) or supplemented with 1% lysed

horse blood (BHIB/LHB), or RPMI-1640 medium with 2%

glucose (RPMI-1640).

Found at: doi:10.1371/journal.pone.0009505.s002 (0.05 MB

PDF)
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