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Abstract—Spectrum sensing is of fundamental importance to
many wireless applications including cognitive radio channel
assignment and radiolocation. However, conventional spectrum
sensing can be prohibitively expensive in computation and
network bandwidth when the bands under scanning are wide and
highly contested. In this paper we propose distributed spectrum
sensing with multiple sensing nodes in a UAV environment. The
ground nodes in our scheme sense the spectrum in parallel using
compressive sensing. Each sensor node transmits compressive
measurements to a nearby UAV in the air. The UAV performs
decoding on the received measurements; it decodes information
with increasing resolution as it receives more measurements.
Furthermore, by a property of compressive sensing decoding,
frequencies of large magnitude responses are recovered first. In
the proposed scheme, as soon as the UAV detects the presence
of such high-power frequencies from a sensor, this information
is used to aid decoding for other sensors. We argue that such
collaboration enabled by UAV will greatly enhance the decoding
accuracy of compressive sensing. We use packet-loss traces
acquired in UAV flight experiments in the field, as well as field
experiments involving software-defined radios, to validate the
effectiveness of this distributed compressive sensing approach.

I. INTRODUCTION

Spectrum sensing is a widely used radio systems technique

where certain portions of the spectrum are measured in order

to discover RF emissions. There are numerous applications

of spectrum sensing, of which we describe the following two

prominent examples: cognitive radio and radiolocation.

In cognitive radio, devices attempt to find unused frequency

bands to use for their own transmissions. It is expected that

bands could be unused in spite of being licensed, or otherwise

occupied in an official spectrum map. This can occur, e.g.,

if a license holder does not fully deploy across the licensed

territory, or if licensing authorities or primary users insert

guard bands into their spectrum (so called ”white space”).

Cognitive radios rely heavily on spectrum sensing to find the

unused spectrum.

Radiolocation is a general problem where RF waves are

used to determine the locations of certain objects of interest.

Spectrum sensing is a particular way to perform radiolocation,

where multiple sensors measure the spectrum at different

points in a certain area; such readings can then lead to

identification and trilateration of the detected transmitters.

In spite of the fact that most of the RF spectrum is licensed,

studies [1] show that actual spectrum utilization is quite low.

Furthermore, in target detection applications, the bandwidth

occupied by targets of interest is often only a small fraction

of the spectrum under measurement. As a result, a growing

body of work focuses on performing the spectrum sensing

using a technique called compressive sensing, notable for its

ability to efficiently sample signals which are sparse in some

basis. Using compressive sensing, it is possible to measure

a frequency band of interest using many fewer samples than

when sampling at Nyquist rate.

It is possible to distribute spectrum sensing, which is

attractive for two main reasons. First, in applications such

as radiolocation, spectrum measurements are needed from

multiple vantage points to allow, e.g., triangulation based

on time-difference-of-arrival (TDOA). Such measurements are

naturally performed through multiple distributed sensors. Sec-

ondly, in cases where the spectrum bands of interest are

wide, such as a GHz or more, speed of sensing can be

much improved if the work is parallelized, so that multiple

distributed sensors measure separate sub-bands concurrently.

In this paper, we combine distributed and compressive

spectrum sensing, and enhance it by introducing collaboration.

Specifically, we examine how we can improve the decoding

of compressive measurements from one sensor by utilizing

the decoded results from another. As we will see, the benefit

of collaborative decoding can be substantial. We will refer to

the resulting scheme as collaborative compressive spectrum

sensing (CCSS).

We sketch the UAV environment of this paper in Figure 1.

The UAV receives compressed measurements from ground

sensors, and performs decoding for all of them. By leveraging

its center role of knowing the decoded results for all ground

sensors, the UAV implements collaborative decoding.

II. BACKGROUND

A. Compressive sensing

Compressive sensing has emerged as a major research

area due to, among others, the surprising property that sub-

Nyquist sampling can capture the information present in a

sparse signal. In general, this is made possible by having each

measurement be some incoherent linear combination of the

signal, thus ensuring that sparse signal components contribute

to the sample with high probability.

A conventional compressive sensing encoding is formulated

as follows:

y = Φx (1)
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Fig. 1. The envisioned distributed spectrum sensing scenario. There are NS

sensors measuring the spectrum in some area, potentially containing emitters,
called targets, of interest, and send the measurements up to a UAV. The UAV
performs further processing, such as weighted decoding on the data.

where x is an N -dimensional vector representing the sparse

signal being sampled, Φ is an M×N measurement matrix con-

taining random entries, and y is a vector of M measurements

which are random linear combinations of components of x.

Typically, M ≪ N , so this is an underconstrained system that

does not have a unique solution for general x. Nevertheless,

suppose that x is K-sparse in the sense that it can be expressed

as a linear combination Ψs of K basis vectors in some basis

Ψ, using a vector s of up to K non-zero coefficients, and

with K being a fraction of M . Then it is possible to decode

x with high probability using a random Φ. A rich volume of

literature examines this topic starting with the seminal work

of Candès and Tao [2].

We adopt the conventional compressive sensing decoding

method via ℓ1-minimization, by computing an approximation

to the sparse vector s as follows:

ŝ = argmin
y=ΦΨv

‖v‖ℓ1 (2)

where Ψ is the transform basis that lets us express x as

a linear combination of its columns weighted by the sparse

vector s. Once we obtain ŝ, it is straightforward to obtain an

approximate x:

x̂ = Ψŝ (3)

It has been shown that the ℓ1-reconstruction of sparse

signals is exact with high probability if

M > CK log
N

K
(4)

for some small positive constant C [3]. For example, in

practice, C = 1.7 with log
2

gives a probability of decoding

failure of less than 0.1%.

B. Weighted Decoding for Compressive Sensing

It is possible to assist the process of decoding for com-

pressive sensing by introducing weights into Equation (2) as

follows:

ŝ = argmin
y=ΦΨv

(w1|v1|+ w2|v2|+ ...+ wN |vN |) (5)

Intuitively, weights wi > 1 increase the effect of a variable

on the objective function, and so the minimization tends to

avoid selecting those variables as one of the nonzero values in

the solution. In the extreme case, suppose that with knowledge

of the nonzero variables in the sparse input, we set wi = ∞ for

all the other variables; then the minimization will effectively

operate on a subset of variables in an overconstrained linear

system, making it trivial to solve. Weighting has been shown

to be highly effective [4].

C. Compressive Spectrum Sensing

Compressive sensing is a natural way to sample wide

spectrum bands, because usages of such bands are often

sparse in the frequency domain. On the encoding side, we use

Equation (1) with a fixed random matrix Φ whose elements

are independent random variables drawn from the normal

distribution N (0, 1), and the signal x is a sequence of N time

domain samples of some spectrum band. On the decoding side,

we use Equation (2) to obtain the sparse frequency domain

coefficients by using an inverse discrete Fourier transform

matrix for Ψ.

III. PROBLEM AND APPROACH

Consider a scenario where NS sensors are distributed in a

certain area, performing compressive spectrum sensing. Sup-

pose we obtain NS sets of compressive measurements with one

set from each sensor; we will refer to these measurements as

measurement sets. As a baseline, we can decode the measure-

ment sets individually. In collaborative decoding, however, we

ask the question, how can we improve the baseline decoding

results by collaborating on the decoded results from different

measurement sets?

We will consider two main areas in which collaborative

decoding can help:

• Sensor-diversity. Suppose signal strength of a particular

emitter is weak at some sensor. The decoding for the

signal from that emitter will be inaccurate. However, if

the same emitter is received strongly at another sensor, the

decoding results there could help improve the decoding

accuracy for the weak reception.

• Measurement-delivery-variation. Consider a wireless

transmission protocol for sensor measurements where

the sensors transmit at a constant rate. It is likely that

a mobile collection point, such as a nearby UAV, will

receive varying numbers of measurements from the differ-

ent sensors, depending on the link characteristics. In this

case, we can improve the decoding accuracy for smaller

measurement sets by decoding the larger measurement

sets first, and using the results to guide the decoding of

the smaller sets next.

Our overall approach consists of using the decoding results

of one set of sensors to guide the decoding of another set.



Specifically, we will use weighting, described in Section II-B,

to modify the decoding process. In our two problem scenarios

described above, we can use the initial decoding results to

obtain weights to apply in weighted compressive decoding for

subsequent results.

There are a number of challenges in using weighting for

collaborative decoding, primarily related to parameter choice.

First, the order in which we decode-and-weigh sensors could

affect the outcomes, and needs to be evaluated. Secondly,

having more than one iteration of collaboration may further

improve the results; how many iterations is enough? Lastly, in

order to actually perform the weighting, how do we compute

the weights from the decoded results? We will address these

questions in the following sections.

IV. DESCRIPTION OF THE COLLABORATIVE DECODING

SCHEME

In this section we describe our collaborative compressive

spectrum sensing scheme. We start by describing the sampling

process. Then, we present a basic scheme, called Fixed-

CCSS, which processes the measurements with a fixed amount

of collaboration. Lastly, we describe an enhanced scheme,

Adaptive-CCSS, which processes the measurements according

to the number of measurements received.

A. Sampling process

The sampling is performed by NS sensors shown in Fig-

ure 1. Each sensor obtains N spectrum samples of the same

band of interest centered at frequency fC , and with bandwidth

B. Let us write xi to denote the raw samples from sensor i.
The sensors then compress the samples to M compressive

measurements by using a random M × N sampling matrix

Φ, as described in Section II-A. Finally, each sensor transmits

the M samples to a collection point (i.e., the UAV in the

application scenario of this paper) when prompted.

We assume that the wireless transmissions from the sensors

are unreliable, so that fewer than M measurements could

arrive at the collection point from any given sensor. Let yi
denote the vector of received measurements from sensor i, Mi

the size of vector yi, with Mi ≤ M , and Φi the appropriate

submatrix of Φ whose rows are used to compute elements of

yi. When no transmissions are lost from sensor i, we have

Mi = M and Φ = Φi.

B. Fixed-CCSS

The basic scheme provides a way to decode measurement

set, {yi}, with a single round of collaborative correction. The

scheme does not take into account the numbers of received

equations, {Mi}, in the sense that the method for sensor i
does not adapt to the value of Mi. The scheme consists of

five steps:

1) Decode each measurement set yi using standard com-

pressive sensing decoding, obtaining solutions x̂i. Use

an inverse discrete Fourier transform (IDFT) Ψ matrix,

so that the solutions x̂i are in the frequency domain.

2) Sort elements of each vector x̂i by magnitude, in de-

creasing order, obtaining a sorting order vector ui. That

is, the k-th element of vector ui is the index of the k-th

largest-magnitude element in vector x̂i.

3) Truncate the sorting order vectors ui to the largest α
entries, calling them ūi, giving us the indices of the

top magnitude elements of x̂i. Compute a union of all

indices ūi, denoting it as set L. Note that the indices

in L correspond to frequencies. For example, when

α = 1, we take just the largest-magnitude frequency

value from each sensor. Such values likely correspond

to the strongest frequencies of the nearest targets to each

sensor. Furthermore, when α = 0, no collaboration takes

place and the results do not improve. The α value is

fixed for all measurement sets, so we call the decoding

scheme “Fixed.” Furthermore, we will call the α value

the collaboration gain for clarity.

4) For every index j ∈ L set weight w(j) := 1/10. For all

other indices k /∈ L, w(k) := 1.

5) Finally, decode the measurements yi again, but this time

using the weights w(j) from Step 4.

C. Adaptive-CCSS

We extend Fixed-CCSS to take into account the amounts

of the measurements received, as well as the magnitudes of

the solutions, and term the resulting scheme Adaptive-CCSS.

The main goal of the scheme is to lessen the influence of

low-magnitude solutions or solutions computed from too few

measurements. Specifically, the scheme determines a separate

α value denoted αi for each measurement set before Step 3,

and then proceeds with weighted decoding in Steps 3–5 same

as Fixed-CCSS. The method for determining the αi for each

measurement set works in the following two steps:

1) Denote the sorted elements of x̂i as u. The sorting is

by magnitude, in ascending order. Compute differences

v(j) := u(j + 1)− u(j) for j < N .

2) Find smallest index j such that v(j) > C · stdev(yi),
where C is a tunable parameter. Set αi := j if there

exists such an index, or αi := 0 otherwise.

Intuitively, the method finds the distinguishing elements

of x̂i by looking for the sudden rise of magnitudes in the

sorting of x̂i. To avoid finding such a rise in the noise floor

we use the condition vj > C · stdev(yi); note that yi are

random projections of the input, and their statistics give us an

indication of the noise level.

V. SIMULATION RESULTS

In this section we evaluate the efficacy of the Fixed-

CCSS and Adaptive-CCSS schemes in a spectrum sensing

application using a simulated RF environment, and two types

of measurement delivery: 1) over ideal links, with all sensors

delivering the same number of measurements, and 2) over

lossy links, where the loss rates were determined from traces

of UAV links measured in the field.
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Fig. 2. Locations of sensors and targets (i.e., transmitters) in one example
scenario.

A. Experiment Setup

We created a set of synthetic spectrum measurements by

simulating signal propagation from NT transmitters to NS

sensors, all located on a unit square region. Figure 2 depicts

one instance of such a scenario with NT = 3 and NS = 10.

In the experiments, we used NT = 5 and NS = 5.

We assumed that transmitter TXi output a continuous

narrow-band signal at a distinct frequency fi with unit power.

Thus, for the compressive sensing decoding process, we have

the sparsity K = NT = 5. To compute propagation path loss,

we used the free-space model. We drew the set of transmission

frequencies fi at random without replacement from among

N/2 evenly spaced frequencies in the 200MHz band starting

at 800 MHz, where we used N = 256.

Each of the NS sensors samples the same 200MHz band. By

taking N real samples, the sensors obtain enough resolution

to discern the N/2 possible subchannels used by the targets.

Complex samples can be handled by treating the real and

imaginary parts as twice as many real samples. In addition,

the spectrum samples are corrupted by noise; thus, the final

time domain form of samples obtained at sensor j is

x(t) =

NT∑

i=1

TXi(t)

D(i, j)2
+ z(t) (6)

where TXi(t) is the transmitted signal, D(i, j) is the distance

between target i and sensor j, z(t) is white Gaussian noise

with zero mean and standard deviation 1/ SNR, and SNR is a

parameter. In our simulations, we used SNR = 10dB. Finally,

we will write xi to denote the discrete sampled values of x(t)
for sensor i. The compressive measurements from each sensor

are then

yi = Φxi (7)

where Φ is an M ×N measurement matrix whose entries are

drawn independently from the standard normal distribution.
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gain, α.

B. Results for Fixed-CCSS

We present the performance of the Fixed-CCSS scheme over

ideal links first. Figure 3 shows the effects of collaboration on

decoding error of just the target frequencies. To control the

“amount” of collaboration, we increase the collaboration gain

α from 0 (no collaboration) to 10 (maximum collaboration).

We perform the same decoding experiments for a range of

values for the number of measurements M .

We can see that collaboration produces consistent improve-

ments in decoding for small α, regardless of the number of

measurements. This confirms our expectation that weighting

based on strong decoding results can help improve the weak

ones. However, as α increases further, performance degrades;

we can explain this by noting that the additional frequencies

we weigh up are actually not target frequencies, but incorrectly

identified ones, and thus increasingly dilute the solution.

In Figure 4 we present a different cross section of the same

data, this time plotting error vs. number of measurements

M . We plot two sets of results; one for a case without

collaboration, and one for a case with α = 2, which seemed to

be the best setting for α according to Figure 3. The main result

evident in the plots is the dramatic reduction in the number

of measurements needed to achieve the same error level; for

example, the error without collaboration at M = 50 is same as

error with collaboration at roughly M = 30, a 40% reduction

in number of measurements.

C. Simulation results for real-world UAV links

In the previous section we performed the evaluation by

assuming ideal sensor-to-data-collector links, that is, a fixed

M for all sensors. In this section, we consider a more realistic

case when sensors have different Ms dictated by the quality of

their link to the data collector. Specifically, we determine the

M values from field-measured traces of ground node-to-UAV

packet transmissions.

In a previous publication [5] we reported in detail on a set of

UAV field experiments where we measured the ground-to-UAV

link qualities; we briefly summarize the experiments here.
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Figure 5 shows the cyclic UAV trajectory traversed during

one 16 minute flight. Also shown are the locations of 4 ground

transmitter nodes. In terms of our spectrum sensing simulation,

these 4 ground transmitters will be 4 sensors, which send data

to the UAV. For the purpose of simulating the spectrum sensing

targets, we will use a square region highlighted in the Figure,

instead of a unit square of the previous section.

Figure 6 shows the link behavior of the 4 transmitters over

time, for the entire 16 minute flight. We chose a time interval

T = 2s, long enough to send M = 35 measurements on a

loss-free link; then, we divided the packet reception traces

into blocks of duration T , and counted the number of packets

successfully transmitted during each block. The results are

shown in the Figure; furthermore, for clarity we show a small

section of the flight in Figure 7, containing one flyover cycle.

We can see that the receptions exhibit a periodic pattern,

explained by the periodic nature of the flight path. Moreover,

we can see that often all 4 transmitters have nonzero delivery

rates to the UAV, such as in the right half of Figure 7; however,

these delivery rates are generally not the same.

We present the UAV collaboration performance results in

Figure 8, obtained using the Adaptive-CCSS scheme. As we

can see from the data, collaboration brings about a consistent

ℓ2 error improvement. Over the course of the 16 minute flight,

the mean improvement was 65%.
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Fig. 9. GNURadio USRP2 sensor deployed in the field, along with the host
PC used to record the measurements.
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Fig. 10. Numbered circles indicate the locations of the 5 sensors deployed
in the field. The arrows indicate the walking trajectory undertaken by the
walkie-talkie operator.

VI. FIELD EXPERIMENT RESULTS

We conducted a spectrum sensing field experiment with

5 software radio sensors and one target. The sensors were

GNUradio USRP2 devices with WBX daughterboards capable

of sensing 25MHz bands within the 50MHz-2.2GHz range.

One of the sensors is shown at its deployed location in

Figure 9. Our target was a handheld walkie-talkie device

transmitting at 5W on the 370MHz carrier frequency, with

most of the power concentrated in a band approximately

250KHz around the carrier.

The placement of the sensors is shown in Figure 10. The

same Figure shows the path traveled by the transmitter, held

by an operator while carrying on a conversation and walking

at up to 200m away from the sensors. The duration of the walk

was roughly 10 minutes. Note that the operator’s path created

several cases where one sensor was particularly close to the

transmitter; we have seen that such cases could be helped by

collaborative decoding.

The GNURadio sensors recorded blocks of 256 complex
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Fig. 11. Reconstruction accuracy of the signal strength of a walkie-talkie
transmitter, achieved by 5 GNURadio sensors with and without collaboration,
for an increasing number of compressive sensing measurements M .

samples at a time, sampled at the rate of 50MHz at the

center frequency of 373 MHz. One such block was recorded

every 100ms, giving a total of about 6,000 blocks in our 10

minute experiment. Each block was used as the input for one

instance of compressive sensing, so that after expanding each

complex sample as a pair of real numbers, N = 512. With

one transmitter active, its transmit power was observed in 5

adjacent FFT coefficients, so the sparsity K was approximately

5. However, there were other active transmissions in our band

of interest, so the sparsity turned out to be somewhat higher–

mainly from 5 to approximately 15.

A. Reconstruction accuracy vs. number of measurements M

We examine the reconstruction accuracy as a function of the

number of compressive measurements M . We varied M from

10 to 100; at the upper limit, the number of measurements

represents approximately 1/5 of the original samples. We

decoded each compressive sensing instance with and without

collaboration. In both cases, for each M , we computed the

reconstruction error of the magnitude of FFT coefficients at

the target frequencies as a percentage difference relative to

the ground truth magnitude. Each data point is a median

of 100 runs. Figure 11 shows the resulting reconstruction

accuracy over increasing M . We can see that the effect of

collaboration is significant for any M value; on average, the

median reconstruction error was reduced by 69%.

VII. RELATED WORK

Researchers have considered the problem of collaborative

compressive sensing before. In Meng et al. [6] the authors con-

sider a similar spectrum sensing problem as ours; to solve it,

they adapt an existing matrix completion algorithm to perform

joint-sparsity reconstruction. This work differs from our paper

in that we do not use matrix completion, but instead modify

the conventional compressive sensing decoding process to

incorporate information from external nodes. Furthermore, the



authors only evaluated a noiseless case, whereas our evaluation

considers noise.

Finally, we note that in [7], a weighted decoding scheme

similar to ours is used to mitigate blocking artifacts resulting

from partitioned compressive sensing. In [8], compressive

sensing for distributed sensor systems is studied for a different

set of issues, that is, in-network measurement combining

and progressive decoding to reduce both measurement and

decoding costs.

VIII. CONCLUSION

In this paper, we presented simple collaborative decoding

schemes for compressive spectrum sensing. Specifically, our

scheme improves the decoding of compressive measurements

from one sensor by utilizing the decoded results from another.

We have shown that the benefits of such collaborative decoding

can be substantial.

We applied the collaborative compressive spectrum sensing

in a UAV scenario, where the UAV serves as a natural

collection point for the distributed measurements. We have

shown that our decoding scheme is well adapted for this sce-

nario because it easily tolerates wireless transmission losses;

thanks to the properties of compressive measurements, only

the amount of measurements is important, not their precise

identity.

In terms of applications, results of this paper mean faster

and more accurate sensing of ground targets by UAV. As future

work, we plan to explore use of collaborative compressive

sensing in localization of ground targets and other applications.
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