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Abstract

While CD8+ T cells are clearly important in controlling virus replication during HIV and SIV infections, the mechanisms
underlying this antiviral effect remain poorly understood. In this study, we assessed the in vivo effect of CD8+ lymphocyte
depletion on the lifespan of productively infected cells during chronic SIVmac239 infection of rhesus macaques. We treated
two groups of animals that were either CD8+ lymphocyte-depleted or controls with antiretroviral therapy, and used
mathematical modeling to assess the lifespan of infected cells either in the presence or absence of CD8+ lymphocytes. We
found that, in both early (day 57 post-SIV) and late (day 177 post-SIV) chronic SIV infection, depletion of CD8+ lymphocytes
did not result in a measurable increase in the lifespan of either short- or long-lived productively infected cells in vivo. This
result indicates that the presence of CD8+ lymphocytes does not result in a noticeably shorter lifespan of productively SIV-
infected cells, and thus that direct cell killing is unlikely to be the main mechanism underlying the antiviral effect of CD8+ T
cells in SIV-infected macaques with high virus replication.
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Introduction

The global spread of the HIV pandemic, currently affecting over

30 million individuals worldwide, emphasizes the urgency to develop

a safe and effective vaccine. While many challenges face the AIDS

vaccine development effort, the most fundamental obstacles are still

at the level of the basic biology of the interaction between HIV and

the human immune system [1–3]. These obstacles are: (i) the

extreme heterogeneity of the virus; (ii) the lack of known correlates of

immune protection against transmission or disease progression; (iii)

the ability of the virus to become immunologically silent when the

infection is latent; and (iv) the fact that any adaptive immune

response to HIV or its non-human primate counterpart simian

immunodeficiency virus (SIV) results in the generation of virus-

specific, activated CD4+ T cells that are preferential targets for HIV

and SIV. This latter effect may favor virus transmission and/or

disease progression [1–3]. In this context, the disappointing results of

the Merck STEP phase IIb clinical trial of a human adenovirus type

5 (AdHu5)-based candidate vaccine are just another indication of the

tremendous challenge presented by these biological obstacles [4].

Due to the current absence of immunogens that can elicit HIV-

specific neutralizing antibodies [5–7], numerous vaccine strategies

have been proposed that are based on antiviral cellular immunity

[8]. Virus-specific T cell responses, and, in particular, those

mediated by CD8+ cytotoxic T lymphocytes (CTL) confer

protection against many viral infections by favoring both viral

clearance and resistance to re-infection [9,10]. Several lines of

evidence indicate that CD8+ T cells play an important role in anti-

lentiviral immunity. First, CD8+ T cells can inhibit HIV and SIV

replication in vitro [11,12]. Second, there is a strong association

between specific major histocompatibility alleles and rates of

disease progression during HIV and SIV infection (reviewed in

[13]). Third, CD8+ T cell escape mutants consistently arise during

both acute and chronic HIV/SIV infections, indicating selective

immune pressure on the virus population (reviewed in [14]).

Fourth, there is a temporal association between post-peak decline

of acute viremia and emergence of CD8+ T cell responses [15,16].

While very informative, all these studies are correlative in nature

and fail to establish a direct cause-effect relationship. The most

convincing evidence for a direct antiviral effect of CD8+ T cells
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comes from a series of elegant studies demonstrating that

antibody-mediated in vivo depletion of CD8+ lymphocytes is

consistently associated with increased virus replication in SIV-

infected rhesus macaques (RMs) [17–20]. Although this observa-

tion is very clear, the mechanisms by which CD8+ T cells exert

anti-viral effects in vivo are still poorly understood. Conceivably,

these mechanisms can be summarized into three major, non-

mutually exclusive categories: CD8+ T cells may reduce pro-

duction of virions by (i) direct killing of productively infected cells

(thus decreasing their average lifespan); (ii) direct killing of infected

cells before they begin producing virus, (iii) inhibition of the rate of

virus production by non-cytolytic mechanisms; and (iv) reduction

of the number of available target cells (i.e., activated CD4+ T cells)

and hence the number of cells that become productively infected.

Elucidating the basis for the in vivo antiviral effect of CD8+ T

cells will be important in designing of an effective, CD8+ T cell-

based AIDS vaccine. In this study, our goal was to assess the

relative contribution of cytotoxic T lymphocyte (CTL) activity to

the antiviral effect of CD8+ lymphocytes. As previously proposed

in [21], we reasoned that CD8+ T cell-mediated CTL activity will

result in reduced production of virions per infected cell due to a

significant shortening of the average in vivo lifespan of productively

SIV-infected cells. In order to directly measure the impact of

CD8+ lymphocytes on the lifespan of productively infected cells,

we treated two groups of chronically SIVmac239-infected RMs

with antiretroviral therapy (PMPA and FTC) in the absence or

presence of CD8+ lymphocytes. We next calculated the lifespan of

productively infected cells based on the slope of the decline of SIV

plasma viremia after initiation of ART using a mathematical

model [22]. We found that, during chronic SIVmac239 infection

of RMs, depletion of CD8+ lymphocytes did not result in a

significantly prolonged lifespan of infected cells in vivo. This result

suggests that the CD8+ lymphocyte-mediated, direct killing of cells

producing virus that results in shorter lifespan of these cells is

unlikely to be the main mechanism underlying the antiviral effect

of CD8+ T cells in SIV-infected macaques.

Results

Experimental design
In this study, we sought to better understand the mechanisms

underlying the in vivo antiviral role of CD8+ lymphocytes during

SIVmac239 infection of rhesus macaques (RM) by measuring the

lifespan of productively infected cells in the presence or absence of

CD8+ cells. To this end, we first infected ten RMs with 3,000

TCID50 of SIVmac239 and observed them throughout the acute

phase of infection (peak and post-peak decline of viral load). We

subsequently divided these ten SIVmac239-infected animals in

two groups of five and treated them with potent antiretroviral

therapy (ART) either alone (control animals) or after depletion of

CD8+ lymphocytes with the OKT8F mAb (Figure 1). Several

previous studies have demonstrated that analysis of changes in

viral load after initiation of ART provides substantial insight into

the dynamics of HIV and SIV infection [22–30]. Since reverse

transcriptase inhibitors efficiently block de novo infections while

not affecting productively infected cells, essentially all measurable

virus originates from cells that were infected prior to treatment.

As these cells die, measurable plasma viral loads decrease, and

mathematical modeling can be used to determine the lifespan

(or death-rate) of productively infected cells in vivo based on the

rate of viral decay [22]. We applied this experimental/modeling

approach and used two potent reverse transcriptase inhibitors,

9-R-(2-phosphono-methoxypropyl)adenine (PMPA) and beta-29,

39-dideoxy-39-thia-5-fluorocytidine (FTC) immediately after

Author Summary

Despite overwhelming evidence that CD8+ T cells are
important in controlling virus replication during HIV and
simian immunodeficiency virus (SIV) infections, the mech-
anisms responsible for this antiviral effect in vivo remain
poorly understood. This lack of knowledge represents a
key obstacle to our efforts to develop a CD8+ T cell-based
AIDS vaccine. In this study, we implemented a new
experimental system in which we determined the lifespan
of productively SIV-infected cells in vivo, either in the
presence or absence of CD8+ lymphocytes. The lifespan of
productively infected cells was calculated based on the
slope of the decline of SIV plasma viremia after initiation of
ART using a widely accepted mathematical model. Using
this novel approach, we determined that CD8+ lympho-
cytes control virus replication without noticeably decreas-
ing the lifespan of productively infected cells, thus
suggesting that the major mechanism of antiviral activity
by CD8+ lymphocytes during pathogenic SIV infection may
not be direct cell killing of productively SIV-infected cells.

Figure 1. Experimental model to assess the lifespan of productively infected cells in the presence or absence of CD8+ T cells. Top
panel, group A; CD8+ lymphocyte depletion and ART during early chronic phase, ART alone during late chronic phase. Bottom panel, group B; ART
alone during early chronic phase, CD8+ lymphocyte depletion and ART during late chronic phase. Animals were given OKT8F (CD8-depleting mAb)
for 3 consecutive days (Group A, days 58–60; Group B, days 177–179). Antiretretroviral therapy (PMPA and FTC) was given for 28 consecutive days.
doi:10.1371/journal.ppat.1000747.g001

Non-Cytolytic Inhibition of SIV by CD8+ T Cells
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CD8+ lymphocyte depletion (or alone in the control animals). All

RMs were given a cycle of ART for 28 days in two occasions:

during early and late chronic infection. In the early chronic phase

of infection (day 57) group A RMs (n = 5) were depleted of CD8+
lymphocytes immediately prior to treatment with ART, while

group B animals (control, n = 5) were treated with ART alone.

Conversely, during the late chronic phase of infection (day 177),

group B animals (n = 4) were CD8+ lymphocyte depleted prior to

ART, while group A animals (control, n = 3) was treated with

ART alone. Note that the reduction in the number of animals per

group during the late phase of our experiment was due to the fact

that two RMs in group A and one in group B were sacrificed after

the first cycle of ART because of severe weight loss and possible

signs of simian AIDS. In all cases, the lifespan of productively

infected cells in vivo (in the presence and absence of CD8+ T cells)

was estimated using a mathematical model that allows the

calculation of the lifespan of short and long-lived productively

infected cells [22]. In addition, we analyzed the viral load decline

data with a linear mixed effects model, where only the slope of the

first phase of viral decline was estimated directly by a linear

regression procedure.

Treatment with OKT8F results in increased plasma
viremia

As expected based on our previous experience with the use

of the OKT8F monoclonal antibody [31] (Engram, J. C. and

Silvestri G., unpublished observations), all RMs treated with this

antibody showed a very rapid and near complete depletion of

CD8+ lymphocytes from both peripheral and mucosal tissues.

During the first phase of this experiment (early chronic infection,

i.e., day 57 post-inoculation), in group A animals, CD8+ T cells

were depleted by an average of 99.97% (60.01 s.d.) in peripheral

blood (Figure 2A, 2B), 99.29% (60.50 s.d.) in rectal biopsies

(Figure 2C, 2D), and 99.23% (61.07 s.d.) in bronchoalveolar

lavage (data not shown) as measured by flow cytometry. During

the second phase of this experiment (late chronic infection, i.e.,

day 177 post inoculation), in group B animals, CD8+ T cells were

depleted by an average of 99.95% (60.03 s.d.) in peripheral blood

(Figure 2B) and 98.07% (61.54 s.d.) in rectal biopsies (Figure 2D)

as measured by flow cytometry. Extent of depletion in mucosal

tissues was corrected for non-CD8+ T cell fluctuations (as

described in [32]). In all cases, and consistent with previous

studies [18], CD8+ T cells were depleted very rapidly (.98%

depletion after 24 hours) and CD8+ T cell depletion was sustained

for 8–13 days with nadir depletion occurring between 5-6 days

after the first infusion. Of note, the OKT8F Ab induced a loss

of both CD3+CD8+ cells as well as CD32CD8+ cells, thus

indicating that not only CD8+ T cells, but also NK cells, NKT

cells, and TCRcd T cells that express CD8 are also efficiently

depleted in this experimental setting. Similar to previous studies

in which CD8+ T cells were depleted during pathogenic SIV

infection [17,18,19,20], we observed an increase in viremia

between 0.7–2.2 logs (Figure 3).

Suppression of virus replication after treatment with
PMPA and FTC

In this study, antiretroviral therapy with PMPA and FTC

(30mg/kg/day i.m. for each drug, for a total of 28 days of

treatment) was conducted during both early and late phases of the

study (i.e., starting at days 63 and 182 post-SIV infection,

respectively). In the CD8+ lymphocyte-depleted animals, this

timing corresponded to initiation of ART three days after the last

OKT8F infusion. As expected, during both phases of the study,

ART effectively suppressed virus replication in all RMs by at least

0.5 log10 (and in 16 out of 17 instances of treatment by at least 1.5

log10) within a week after initiation of therapy (Figure 4). The

observation that ART induced a rapid and dramatic suppression

of SIV replication allowed us to proceed to the next phase of the

study in which the kinetics of decline of plasma viremia were used

to calculate the lifespan of cells producing virions in vivo.

CD8+ lymphocyte depletion does not prolong the
lifespan of SIV-infected cells in vivo

Previous studies [22–24,26] demonstrated that there are two

phases of viral decay; an initial rapid, exponential decline of 1–2

logs, in which productively infected short-lived cells are lost,

followed by the second phase, which is characterized by a slower

decline, where long-lived infected cells are lost. In order to

quantify the contribution of CD8+ T cells to the lifespan of

productively infected cells in vivo, we quantified this parameter in

the presence or absence of CD8+ T cells by analyzing the viral

decline after initiation of ART using the equation:

V tð Þ~V0 A exp {dtð ÞzC exp {mtð Þz 1{A{Cð Þexp {ctð Þð Þ ð1Þ

where A = (NkTo)/(c2d), C = (c2NkTo)/(c2m) and V0 is the initial

viral load, k is the infection rate, N is the viral burst size, d is the

death rate of short-lived productively infected cells, m is the death

rate of long-lived productively infected cells, and c is the rate of

virion clearance [22] (Figure 4). By fitting the natural logarithm of

V(t) given by equation (1) to the natural logarithm of the measured

SIV RNA between initiation and termination of therapy, we were

able to estimate d and m, the death-rate of short-lived and long-

lived productively infected cells, for each animal either in the

presence or absence of CD8+ T cells (Table S1). However, for

macaques RAj7, RMm6 and RPp6 in early infection, we could

not fit a second phase decline due to too few data points or a flat

second phase. Thus for these animals we used a monophasic decline

model [22,24], appropriate for reverse transcription inhibitor

therapy, by making C = 0 in (Eq. 1), i.e., setting NKT0 = c, and

estimated d but not m.

During both the early and late phases of this study, we found

that the lifespan of short-lived productively infected cells (1/d) is

similar regardless of the presence or absence of CD8+ T cells.

Specifically, during the early phase, the mean lifespan for group A

(CD8+ lymphocyte depleted RMs) was 1.11 (60.39 s.d.) days

(median = 0.87), while the mean lifespan for group B (control non-

CD8+ lymphocyte depleted animals) was 1.05 (60.35 s.d.) days

(median = 0.93) (p = 0.83) (Figure 5A, Table S1). During the late

phase, the mean lifespan for group A (control non-CD8+
lymphocyte depleted) was 0.87 (60.21 s.d.) days (median = 0.86),

while the mean lifespan for group B (CD8+ lymphocyte depleted)

was 0.89 (60.28 s.d.) days (median = 0.98) (p = 0.85) (Figure 5B,

Table S1). These data indicate that the depletion of CD8+
lymphocytes does not prolong the lifespan of short-lived

productively infected cells in vivo during pathogenic SIV infection

of RMs. Similarly, the estimated lifespans of long-lived infected

cells (1/m) were also not different between CD8+ lymphocyte

depleted and not depleted animals (9.7610.7 vs. 8.565.6 days,

respectively, p = 0.71). A notable observation, however, is that of

the seven RMs that participated in both the early and late phase

studies, five had a shorter lifespan of short-lived infected cells (by

an average of 36%) later in infection. This finding, together with

the slightly higher increase in viremia that we observed after

CD8+ lymphocyte depletion in the late phase as compared to the

early phase (Figure 3) is somewhat unexpected as CD8+ T cells are

Non-Cytolytic Inhibition of SIV by CD8+ T Cells
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thought to undergo progressive exhaustion during chronic HIV

and SIV infections [33,34,35,36,37,38,39], and suggests further

how the mechanisms by which CD8+ T cells control virus

replication is likely more complex than previously appreciated.

To further confirm these results, and avoid any potential bias

from the modeling approach used, we also analyzed the observed

first-phase decays of the logarithm of the viral load during

treatment with a linear mixed-effects model. In this approach, we

tested directly whether the slopes of the first-phase decay in the

data are different in the two groups, with each animal as a random

sample from treated or untreated macaque. Again, we did not find

any differences in the slopes in either the acute or chronic groups

(p = 0.58, and p = 0.81, respectively), thus lending support to our

conclusions that depletion of CD8+ lymphocytes does not affect

the dynamics of viral decay. We note that this approach with

linear mixed effects models makes optimal use of the data by fitting

a simple line to the decay and taking into consideration all the

available data at the same time (all animals from both treatment

groups).

A caveat to this analysis is that the mathematical model (Eq. 1)

used to determine the death-rate of infected cells is based on the

assumption that the virus and the target cells are at their set-point

or steady state levels upon the initiation of therapy and that

therapy is 100% effective in blocking new infections [22].

However, CD8+ lymphocyte depletion causes two perturbations

to the steady state: (i) an increase in viremia prior to ART

treatment (Figure 3), and (ii) a potential increase in the level of

activated CD4+ T cells, thus expanding the target cell population

Figure 2. Administration of OKT8F results in near complete depletion of CD8+ lymphocytes. (A) Representative flow cytometry plots (x-
axis, CD8; y-axis, CD3) demonstrating CD8+ lymphocyte levels in blood (left, 7 days before depletion; right, 6 days after depletion). (B) Longitudinal
assessment of the absolute number of CD8+ T cells in peripheral blood for each animal during early chronic phase (left) or late chronic phase (right).
Each colored line indicates an individual animal (CD8+ lymphocyte-depleted). Gray lines indicate the average CD8+ T cell number in non-depleted
(ART alone) RMs. Dotted vertical line indicates the first day of depleting Ab treatment, solid vertical line indicates the first day of ART. (C)
Representative flow cytometry plots (x-axis, CD8; y-axis, CD3) demonstrating CD8+ lymphocyte depletion in rectal biopsies (left, 10 days before
depletion; right, 6 days after depletion). (D) Longitudinal assessment of the percent of CD8+ T cells (compared to baseline) in rectal biopsies during
early chronic phase (left) or late chronic phase (right). Bars represent average of treated animals. CD8+ T cells previously gated on live lymphocytes.
doi:10.1371/journal.ppat.1000747.g002

Non-Cytolytic Inhibition of SIV by CD8+ T Cells
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for virus replication. First, to determine the effect of changes in

viremia after CD8+ lymphocyte depletion, surrogate data for

SIV kinetics with virus not in steady state were created by

equation (2) (in Text S1) with a known value of d and then fit

using equation (1) to assess if, and to what extent, viral load

increases before the start of therapy altered estimated d values

(Text S1, Figure S1). Second, to take into account the possibility

that significant changes in the activation state of CD4+ T cells

occurs after CD8+ lymphocyte depletion, we created surrogate

data that include changes in target cells (Text S2, Figure S2).

Third, the above analyses were repeated with various drug

effectiveness less than 100% to study the influence of this factor

on our estimate of d (Text S2). All three analyses demonstrated

that errors due to lack of steady-state viremia, to changes in target

cell pools after CD8+ lymphocyte depletion as well as to drug

effectiveness ,100% lead to a potential underestimation of both

d and m (Text S1 and S2). Further, when the drug effectiveness

was high, i.e. 99%, the maximum error in estimating d and m was

,3.5%. This analysis shows that the actual values of d and m in

systems with CD8+ lymphocyte depletion may be even higher

than we estimate, thus supporting our conclusion that lack of

CD8+ T cells does not increase the lifespan of productively

infected cells.

A conceivable conceptual limitation of our experimental system

is that antiretroviral treatment might have an immediate impact

on the number and/or function of SIV-specific CD8+ T cells, thus

introducing a potential bias in our effort to assess the impact of

CTL activity on the lifespan of infected cells based on the decline

of viremia after ART. To directly address this issue, we measured

the magnitude and functionality of SIV-specific CD8+ T cells

before and after ART in non-CD8+ lymphocyte depleted animals

and found that ART did not cause any significant changes in SIV-

specific CD8+ T cell responses during either the early or late phase

of the study (data not shown), therefore not supporting the

possibility that the use of ART generated an intrinsic bias in our

assessment of the impact of CD8+ lymphocytes on the lifespan of

SIV-infected cells.

Figure 3. CD8+ lymphocyte depletion results in a 0.7–2.2 log10

rise in viral load. Change of viral load from baseline for each
individual animal after CD8 depletion, during early chronic phase (white
bars, left) or late chronic phase (black bars, right).
doi:10.1371/journal.ppat.1000747.g003

Figure 4. Treatment with PMPA and FTC effectively suppresses virus replication in SIVmac239-infected RMs. (A, B) Plasma viral load
(log10) measured longitudinally for each individual animal (black lines, CD8+ lymphocyte-depleted, red lines, control) during (A) early chronic phase
or (B) late chronic phase. (C,D) Average plasma viral load (log10) for each group (black, CD8+ lymphocyte-depleted; red, control) during (C) early
chronic phase or (D) late chronic phase. Error bars represent standard deviation. Dotted vertical line indicates the first day of depleting Ab treatment,
solid vertical line indicates the first day of ART.
doi:10.1371/journal.ppat.1000747.g004

Non-Cytolytic Inhibition of SIV by CD8+ T Cells
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CD8+ lymphocyte depletion is associated with decreased
plasma levels of chemokines and cytokines

As discussed above, the results of this study support the

hypothesis that the strong antiviral effect of CD8+ lymphocytes

during chronic SIVmac239 infection of RMs is due to mechanisms

that do not affect the lifespan of productively infected cells.

Potential non-cytolytic mechanisms of SIV suppression by CD8+
T cells include the block of virus spread and entry via production

of chemokines such as CCL3/MIP-1a, CCL4/MIP-1b, and

CCL5/RANTES). To address this possibility we measured the

plasma levels of these chemokines and numerous other cytokines,

including those with potential antiviral activity such as TNFa,

IFN-a, and IFN-c, in the plasma of the SIV-infected RMs

included in this study at multiple time points after CD8+

lymphocyte depletion. In most instances, cytokine plasma levels

were either unchanged or showed only irregular fluctuations after

CD8 depletion, thus possibly reflecting the very local nature of

many of these factors. As such, this result does not necessary rule

out that changes in the concentration of certain cytokines may

occur in vivo in specific anatomic microenvironments. However, as

shown in Figure 6, we found that, in several animals, CD8+
lymphocytes depletion is followed by a dramatic decline in the

plasma levels of MIP-1a, IFN-c, IL-7 and TNFa. MIP-1a is a

CCR5-binding chemokine which may directly compete with SIV

in vivo, and whose plasma concentration was decreased after CD8+
lymphocyte depletion to an average of 50% (651%) of baseline

levels. Plasma levels of the pro-inflammatory and potentially

antiviral cytokines IFN-cand TNFa were also, on average,

Figure 5. CD8+ lymphocyte depletion does not affect the lifespan of infected cells during SIV infection. The estimated lifespan of
productively infected cells, 1/d, for each animal; CD8+ lymphocyte-depleted (black) and control (red) during (A) early chronic phase or (B) late chronic
phase. P = n.s.
doi:10.1371/journal.ppat.1000747.g005

Figure 6. Changes in chemokines and cytokines after CD8+ lymphocyte depletion. Levels of plasma MIP1a (top left), IFNc (top right), IL-7
(bottom left) and TNFa (bottom right) were measured in all animals after CD8+ lymphocyte depletion, early phase shown here. Dotted line indicates
first day of depleting treatment.
doi:10.1371/journal.ppat.1000747.g006

Non-Cytolytic Inhibition of SIV by CD8+ T Cells
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reduced to 49% (640%) and to 76% (610%) of baseline levels,

respectively, after CD8+ lymphocyte depletion. Plasma concen-

trations of the lympho-tropic cytokine IL-7 were also decreased to

51% (648%) of baseline levels after CD8+ lymphocyte depletion.

As all of these cytokines may have an important antiviral effect

during SIV infection, lower levels of these molecules after CD8+
lymphocyte depletion may contribute to the observed rise in

viremia. While these data are not conclusive, they suggest that

soluble factors produced by CD8+ lymphocytes may play a key

role in the suppression of virus replication mediated by these cells

in SIV-infected RMs.

Effects of CD8+ lymphocyte depletion on CD4+ T cell
activation

The finding that CD8+ lymphocyte depletion does not result in

a prolonged lifespan of productively infected cells is also consistent

with the possibility that the observed increase in virus replication is

caused, at least in part, by increased CD4+ T cell activation, which

would result in an increased availability of target cells for SIV

infection. Several factors may be involved in this CD4+ T cell

activation, including homeostatic responses to lymphopenia,

increased availability of CD4+ T cell tropic and/or pro-inflam-

matory cytokines, reactivation of latent virus infections, and other

potential changes in the lymphoid microenvironment(s). To

address this possibility, we measured the expression of activation

and proliferation markers in CD4+ T cells before and after CD8+
lymphocyte depletion. As shown in Figure 7, we found that

CD8+ lymphocyte depletion was followed by a marked increase in

CD4+ T cell activation that occurred in all examined tissues. In

peripheral blood, the peak of CD4+ T cell activation occurred at

day 15 post-depletion, and most activation did not increase at

all until day 8. On average at peak activation, the fraction of

CD4+Ki67+ T cells was 6.7 fold higher than baseline levels, the

fraction of CD4+CCR5+ T cells was 6.2 fold higher than baseline,

the fraction of CD4+HLA-DR+ T cells was 19.2 fold higher than

baseline, and the fraction of CD4+CD69+ T cells was 10.6 fold

higher than baseline levels (Figure 7A). The kinetics of CD4+ T

cell activation was also delayed in mucosal tissues, although it

should be noted that the relative infrequent sampling schedule

raises the possibility that we missed the peak of CD4+ T cell

Figure 7. CD8+ lymphocyte depletion results in a rise in activated CD4+ T cells. (A) Longitudinal assessment (individual animals from CD8-
depleted group and mean and s.d. from control group) of the percent of CD4+CCR5+ (top left), CD4+Ki67+ (top right), CD4+HLA-DR+ (bottom left),
and CD4+CD69+ (bottom right) T cells during early chronic infection. (B) Longitudinal assessment of the mean (and s.d.) percent of CD4+Ki67+ T cells
in rectal biopsies (left) and bronchoalveolar lavage (right).
doi:10.1371/journal.ppat.1000747.g007
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activation in these tissues. In rectal biopsies, during early chronic

infection, the fraction of CD4+Ki67+ T cells was 1.4 fold higher

than baseline levels at day 6 post-depletion and 1.8 fold higher

than baseline levels at day 13 post-depletion (Figure 7B, left).

Similarly, during late chronic infection, CD4+Ki67+ T cells were

0.9 fold higher than baseline at day 5 post-depletion, and 1.2 fold

higher than baseline levels at day 12 post-depletion (data not

shown). The same trend was observed in bronchoalveolar lavage,

where CD4+Ki67+ T cells were 0.7 fold higher than baseline at

day 6 post-depletion, and 1.5 fold higher at day 13 post-depletion

(Figure 7B, right). Importantly, the observed changes in CD4+ T

cell activation followed, rather than preceded, the increase in

plasma viral load, thus suggesting that the activation of CD4+ T

cells that occurs after CD8+ lymphocyte depletion is unlikely to be

the predominant source of the increased viremia. As such, these

data support a model in which CD8+ T cells play a key, direct role

in maintaining the steady state of viral load during chronic SIV

infection.

Discussion

Numerous studies indicate that CD8+ lymphocytes play an

important role in suppressing virus replication in vivo during

pathogenic HIV and SIV infections [11,13–17]. However, the

mechanisms underlying this activity are still poorly understood and

may involve several non-mutually exclusive factors, whose relative

contribution to the net in vivo antiviral effect of CD8+ lymphocytes

is unknown. Direct killing of productively HIV- or SIV-infected

cells by CD8+ T cells (i.e., CTL activity) has been shown in many

in vitro settings and is very likely to occur in vivo as well [40]. In

addition, suppression of HIV replication by CD8+ T cells via

non-cytolytic mechanisms that inhibit virus transcription was first

observed by Levy and colleagues in 1986 [11,41,42], although the

nature of this antiviral activity has not been fully elucidated [43].

Furthermore, CD8+ T cells may block HIV/SIV spread from cell-

to-cell by releasing factors such as CCR5-binding chemokines (i.e.,

MIP-1a/CCL3, MIP-1b/CCL4, and RANTES/CCL5) that act

as competitive inhibitors of CCR5-mediated virus entry [44,45].

Finally, it is conceivable that the increased HIV/SIV replication

observed after CD8+ lymphocyte depletion is caused, at least in

part, by changes in the activation state of CD4+ T cells that render

these cells more intrinsically ‘‘permissive’’ to virus replication [31].

In this study, we set to address the relative contribution of

cytolytic vs. non-cytolytic mechanisms of CD8+ lymphocyte-

mediated control of virus replication by measuring the in vivo

lifespan of productively infected cells during chronic SIVmac239

infection of RMs in the presence or absence of CD8+
lymphocytes. The assessment of the turnover of infected cells

was conducted using a well-characterized mathematical model

that is based on the analysis of the decline of viral load after

initiation of antiretroviral therapy [22]. Of note, the experimental

design of this study (Figure 1) is based on the premise that SIV-

specific CTL activity will ostensibly reduce virus replication by

shortening the average in vivo lifespan of productively infected cells

[21]. To the best of our knowledge, this is the first direct

assessment of the impact of CD8+ T cells on the longevity of

productively SIV-infected cells in vivo.

Perhaps surprisingly, the results of this experiment indicate that

CD8+ T cells do not affect the lifespan of productively infected

cells during SIVmac239 infection of rhesus macaques. Our

experiments further confirmed the important role of CD8+ T

cells in antiviral immunity since, in all circumstances, the in vivo

depletion of CD8+ lymphocytes is associated with a marked

and consistent increase in viral load (Figure 3). However, our

experiments do challenge the common assumption that the main

antiviral effect of CD8+ T cells is related to the direct killing of

productively infected CD4+ T cells (i.e., CTL activity) that

suppresses virus replication by reducing the amount of time in

which infected cells are able to produce virions (Figure 5). Instead,

these results indicate that non-cytolytic mechanisms of SIV

inhibition are potentially involved, or that CD8+ T cells have

cytolytic affects prior to productive virus replication.

While CD8+ T cell-mediated CTL activity may play a key role

in killing infected cells before they start producing virus and/or

in ‘‘elite controller’’ SIV-infected RMs with very low viremia, this

study is consistent with a model wherein, during chronic

SIVmac239 infection of RMs with high viremia, the main

antiviral effect of CD8+ lymphocytes may be due to non-cytolytic

mechanisms that do not impact the average lifespan of infected

cells. These non-cytolytic mechanisms may include the inhibition

of SIV production by factors acting at the level of virus

transcriptions and/or the block of virus spread and entry via

production of chemokines and cytokines. This latter possibility is

supported by our observation that, in several animals, CD8+
lymphocyte depletion is followed by a dramatic decline of the

plasma levels of molecules such as the CCR5-binding chemokine

MIP-1a, the antiviral cytokine IFN-c, the pro-inflammatory

cytokine TNFa and the homeostatic cytokine IL-7 (Figure 6).

The finding that the absence of CD8+ T cells does not noticeably

increase the lifespan of productively infected cells is also consistent

with the possibility that the increase in viral load after CD8+
lymphocyte depletion is caused by increased availability of

activated CD4+ T cells as targets for virus replication. In this

experiment, CD8+ lymphocyte depletion was indeed followed by a

marked increase in CD4+ T cell activation that occurred in all

examined tissues (Figure 7). However, the observed changes in

CD4+ T cell activation followed, rather than preceded, the

increase in viremia, thus suggesting that activation of CD4+ T cells

after CD8+ lymphocyte depletion is unlikely to be the main

mechanism for the increase in viremia. Further studies in which

the level of CD4+ T cell activation following CD8+ lymphocyte

depletion is examined at earlier time points and in more tissues

may be needed to better assess how changes in CD4+ T cell

activation may contribute to the increase in virus replication in

SIV-infected, CD8+ lymphocyte depleted RMs.

One caveat of this study is that the OKT8F depleting Ab also

depletes NK cells, NKT cells, and TCRcd T cells that express the

CD8 molecule. NK cells and NKT cells are known to have an

antiviral role during HIV infection, including the production of

proinflammatory cytokines and chemokines which drive a Th1

antiviral immune response [46–49]. TCRcd T cells also may play a

role in antiviral immunity during SIV/HIV infection, as these cells

have a specific role in the recognition of microbial pathogens and

produce both Th1 and Th2 cytokines that can influence the adaptive

immune response after infection [50]. Therefore, loss of any of these

cell types may influence viremia after CD8+ lymphocyte depletion.

However, these considerations do not change the conclusion that

removal of CD8+ lymphocytes does not affect the lifespan of cells

productively infected with SIV. As mentioned above, an additional

caveat to this study is that, while it is clear that CD8+ lymphocyte

depletion does not prolong the lifespan of productively SIV-infected

cells in vivo, it remains possible that CD8+ lymphocytes exert their

antiviral effect by killing infected cells before they start producing

new virions. In this case, this cytolytic antiviral effect would not

translate into a net change of the average lifespan of productively

infected cells. Further investigation will be required to quantify the in

vivo impact of this putative antiviral effect, and to compare it with the

impact of non-cytolytic mechanisms of SIV suppression.

Non-Cytolytic Inhibition of SIV by CD8+ T Cells

PLoS Pathogens | www.plospathogens.org 8 January 2010 | Volume 6 | Issue 1 | e1000747



Modeling has also suggested two other scenarios in which viral

load perturbation by drug therapy might not be able to detect and

quantify a cytolytic effect of CD8+ T cells [51]. The first possibility

is that a fraction of SIV-infected cells that were not exposed to

CTL-mediated killing become the major virus producers, thus

making the viral decay slope independent of CD8+ lymphocyte-

mediated killing. In other words, if the virus has escaped the CTL

response, or is hidden from it, then CD8+ lymphocyte depletion

will have little effect on the lifespan of productively infected cells.

This scenario, however, does not explain why CD8+ lymphocyte

depletion is consistently followed by a major increase in viral load.

The second possibility is that the rate at which an infected cell

becomes a target of CD8+ T cell-mediated killing is slow and

represents the rate-limiting step in viral kinetics. In this case, the

first-phase decay slope will reflect this rate and not the rate of

killing of productively infected cells. [51]. However, this is a highly

unlikely scenario as presentation of incoming, Gag-derived

epitopes occurs as early as 2 hours post-infection [52], and the

step of becoming a target should therefore not be rate-limiting.

The possibility that non-cytolytic mechanisms are central to the

antiviral activity of CD8+ T cells in vivo is consistent with several

previous observations. First, a prominent role for CD8+ lymphocyte-

derived factors that can block virus entry is reflected by the known

antiviral activity of CCR5-binding chemokines [44], as well as the

protective effect of increased gene copies of CCL3L1 [53]. Second, a

non-cytolytic antiviral effect of CD8+ T cells would be consistent

with the classical observations that CD8+ T cells produce a soluble

antiviral factor that suppresses HIV transcription (reviewed in [43]).

Third, our results are in agreement with theoretical predictions on

the in vivo role of CD8+ T cells that were made several years ago

based on the kinetics of viral increase observed post CD8+ T cell

depletion [18]. Of note, the notion of a predominance of non-

cytolytic mechanisms of CD8+ T cell-mediated suppression of SIV

replication does not necessarily conflict with the known observation

that CTL escape variants are selected for in vivo during both HIV and

SIV infections [14]. Indeed, it is possible that the presence of escape

mutants results in a decreased or absent stimulation of SIV-specific

CD8+ T cells which, in turn, creates a micro-environment more

favorable to the production of virions. In this scenario, escaped

mutants of SIV will be positively selected even in absence of an

antiviral effect due to direct cytolytic activity.

In conclusion, this study demonstrated, for the first time, that

during chronic SIV infection of RMs with high virus replication,

the antiviral effect of CD8+ T cells is due to mechanisms that do

not affect the in vivo longevity of productively infected cells. In our

view, this result provides an important advance in our under-

standing of the correlates of CD8+ T cell-mediated protection

from SIV replication, which may inform the rational design of

AIDS vaccines whose efficacy relies on the antiviral effect of CD8+
lymphocytes.

Materials and Methods

Animals
Ten rhesus macaques of Indian origin (of which 6 were

MamuA*01, equally distributed 3/group) were infected with 3000

TCID50 of SIVmac239 i.v. for this study. All animals were housed

at the Yerkes National Primate Research Center and maintained

in accordance with NIH guidelines. The number of RMs used for

this study were determined based on power analysis (Text S3).

RMs belonging to the two groups were age and weight matched.

These studies were approved by the Emory University and

University of Pennsylvania Institutional Animal Care and Use

Committees.

CD8+ lymphocyte depletion
RMs were treated with 4mg/kg/day i.v. of OKT8F mAb for

three consecutive days. Depletion efficiency in blood was

calculated based on flow cytometric analysis and complete blood

cell counts; depletion efficiency in tissues other than blood (where

absolute number calculations were not available) was calculated

based on flow cytometry, as fraction of the baseline percent of

CD8+ T cells.

Antiretroviral therapy
Reverse transcriptase inhibitors 9-R-(2-phosphonomethoxypro-

pyl)adenine (PMPA; tenofovir) and beta-2,3-dideoxy-3-thia-5-

fluorocytidine (FTC; emtricitabine) were provided by Gilead

Sciences and administered to each animal i.m. (30mg/kg/animal/

day each) for 28 days during both early and late phases of the

study (treatment began at days 63 and 182 post-SIV infection,

respectively).

Sample collection and processing
Peripheral blood mononuclear cells were isolated by gradient

centrifugation (ficoll). Procedures for lymph node biopsies, rectal

biopsies, and bronochoalveolar lavage as well as isolation of

lymphocytes form the obtained samples were performed as

previously described [32].

Immunophenotyping and flow cytometry
Multicolor flow cytometric analysis was performed on whole

blood or isolated cells according to standard procedures using

human mAbs that crossreact with RMs. Predetermined optimal

concentrations were used of the following antibodies: anti-CD3-

Alexa700 (clone SP34-2, BDPharmigen), anti-CD8-PacOrange

(clone RPA-T8, BDPharmigen), anti-CD8-PE-TR (clone RPA-

T8, Caltag/Invitrogen), anti-CD4-PE-Cy5.5 (clone OKT4,

eBioscience), anti-CD4-PerCP-Cy5.5 (clone L200, BDPharmigen),

anti-CD4-PacBlue (clone OKT4, eBioscience), anti-Ki67-FITC

(clone B26, BDPharmigen), anti-CCR5-PE (clone 3A9, BDPhar-

migen), anti-CD69-PE-Cy7 (clone FN50, BDPharmigen), anti-

HLA-DR-PE-Cy5 (clone L243, BDPharmigen), Aqua Live/Dead

amine dye-AmCyan (Invitrogen). All samples were permeabilized

and fixed using CytoFix/Perm Kit (BDPharmigen) and intracel-

lularly stained to detect Ki67. Flow cytometric acquisition

was performed on at least 100,000 lymphocytes on an LSRII

cytometer driven by the FACS DiVa software (version 5.2; BD).

Analysis of the acquired data was performed using FlowJo software

(version 8.7.1; TreeStar). For all analysis of specific cell subsets, we

used a threshold of 200 collected events.

Plasma viral loads
Quantitative real-time reverse-transcriptase (RT)-PCR assay to

determine SIVmac239 plasma viremia was performed as previ-

ously described [54].

SIV-specific T cell responses
SIV-specific T cell responses were measured by intracellular

cytokine staining for interferon-c (IFN-c), tumor necrosis factor-a
(TNF-a), and Interleukin-2 (IL-2), as well as the degranulation

marker CD107a, in response to pools of 15-mer peptides

overlapping by 11 amino acids and spanning the entire sequence

of three major antigenic proteins of SIVmac239 (gag, pol, env) as

detailed in [55] and using the following antibodies: anti-human

IFN-c-APC (clone B27), anti-human TNF-a -PE (clone MAB11),

anti-IL-2 (clone MQI- 17H12, all from Becton Dickinson), and

anti-CD107a-PE (clone H4A3, Pharmingen). Complete peptide
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sets for SIVmac239 were obtained from the NIH AIDS Research

& Reference Reagent Program. In all experiments at least 200,000

T cells were acquired and analyzed.

Plasma levels of chemokines and cytokines
Plasma levels of the beta-chemokines CCL3/MIP-1a, CCL4/

MIP-1b, and CCL5/RANTES in conjunction with other

cytokines and chemokines were measured using a sandwich

immunoassay-based protein array system, the human cytokine 25-

Plex (BioSource International), as instructed by the manufacturer

and then read by the Bio-Plex array reader (Bio-Rad Laborato-

ries), which uses fluorescent bead-based technology from Luminex.

Supporting Information

Text S1 Supplementary figure legends, text, and references.

Found at: doi:10.1371/journal.ppat.1000747.s001 (0.05 MB

DOC)

Table S1 Values for d and m for each animal, including lower

and upper 95% confidence intervals. Values for d (half-life of

short-lived cells) and m (half-life of long-lived cells) were estimated

based on Eq. 1. 95% confidence intervals were calculated from

500 bootstrap replicates.

Found at: doi:10.1371/journal.ppat.1000747.s002 (0.02 MB XLS)

Figure S1 Effects of fitting the viral load data with a model that

assumes the viral load is in steady state, when in reality viral load is

increasing. Surrogate data for SIV kinetics with virus not in steady

state (black dots) was created using Eq. 2 (Text S1) with the rate

of virion production p allowed to increase as CD8 levels decline

in order to account for changes in viremia caused by CD8+
lymphocyte depletion. This data was generated to agree with the

change in viremia observed for animal Rsq8. At t = 0, the model

assumes combination drug therapy begins with an effectiveness of

99%. The surrogate data was then fit with Eq. 1 and parameters

estimated. The best fitting solution is shown by the orange line.

The parameters estimated in this way were ,3.5% different than

the ‘‘true’’ parameters used to generate the data.

Found at: doi:10.1371/journal.ppat.1000747.s003 (1.69 MB TIF)

Figure S2 CD4+ T cell data used to estimate the change in

target cells after CD8+ lymphocyte depletion. Measured CD4+ T

cell values for Rsq8 in late chronic infection, (black line) and data

smoothed by using a 3 point moving average (purple line). The 3-

point moving average was then fit using linear regression to obtain

the parameters a and T0 used in the supplemental text to define

the T cell increase during CD8+ lymphocyte depletion. Analysis of

the surrogate SIV RNA data indicates that the effect of changes in

CD4+ T-cells and SIV RNA due to CD8+ lymphocyte depletion

has a negligible (,3.5%) effect on the estimates of d and m when

the drug effectiveness is high (,99%).

Found at: doi:10.1371/journal.ppat.1000747.s004 (1.97 MB TIF)
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