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Abstract

Background: Microarray data have a high dimension of variables and a small sample size. In microarray data
analyses, two important issues are how to choose genes, which provide reliable and good prediction for disease
status, and how to determine the final gene set that is best for classification. Associations among genetic markers
mean one can exploit information redundancy to potentially reduce classification cost in terms of time and money.

Results: To deal with redundant information and improve classification, we propose a gene selection method,
Recursive Feature Addition, which combines supervised learning and statistical similarity measures. To determine
the final optimal gene set for prediction and classification, we propose an algorithm, Lagging Prediction Peephole
Optimization. By using six benchmark microarray gene expression data sets, we compared Recursive Feature
Addition with recently developed gene selection methods: Support Vector Machine Recursive Feature Elimination,
Leave-One-Out Calculation Sequential Forward Selection and several others.

Conclusions: On average, with the use of popular learning machines including Nearest Mean Scaled Classifier,
Support Vector Machine, Naive Bayes Classifier and Random Forest, Recursive Feature Addition outperformed other
methods. Our studies also showed that Lagging Prediction Peephole Optimization is superior to random strategy;
Recursive Feature Addition with Lagging Prediction Peephole Optimization obtained better testing accuracies than
the gene selection method varSelRF.

Background
Using microarrays techniques, researchers can measure
the expression levels for tens of thousands of genes in a
single experiment to provide scientists functional rela-
tionship information between the cellular and physiolo-
gical processes of biological organisms and genes at a
genome-wide level. The preprocessing procedure for the
raw microarray data consists of back-ground correction,
normalization, and summarization. After preprocessing,

high level analyses, such as gene selection, classification,
or clustering, are executed for profiling gene expression
patterns [1]. In the past decade, two main tracks of ana-
lyses of microarray data have been to partition genes
into closely related groups across time using clustering
techniques and to classify patients with different health
statuses based on selected gene signatures [2-6]. Various
standards related to systems biology are discussed by
Brazma et al. [7]. When sample sizes are substantially
smaller than the number of features/genes, statistical
modeling and inference issues are challenging, which is
known as the “large p small n problem”. Two important
questions and challenges for the high dimensional data
analyses are how to choose features that provide reliable
and good prediction and how to determine the final
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optimal feature set that is best for prediction and
classification.
To address the “curse of dimensionality” problem,

three strategies have been proposed: filtering, wrapper
and embedded methods. Filtering methods select subset
features independently from the learning classifiers and
do not incorporate learning [8-11]. One of the weak-
nesses of filtering methods is that they only consider the
individual features in isolation and ignore their possible
interactions. Yet, the combination of these features may
have a combined effect that does not necessarily follow
from the individual performance of features in that
group [12]. One of the consequences of filtering meth-
ods is that we may end up with many highly correlated
features/genes; this highly redundant information will
worsen classification and prediction performance.
Furthermore, if there is a limit on the number of fea-
tures to be chosen, we may not be able to include all
informative features.
To avoid weakness in filtering methods, wrapper

methods wrap around a particular learning algorithm
that can assess the selected feature subsets in terms of
estimated classification errors to build the final classifier
[13]. Wrapper methods use a learning machine to mea-
sure the quality of subsets of features. One recent well-
known wrapper method for feature/gene selection is
Support Vector Machine Recursive Feature Elimination
(SVMRFE), proposed by Guyon et al. [14], which refines
the optimum feature set by using Support Vector
Machine (SVM). The idea of SVMRFE is that the orien-
tation of the separating hyper-plane found by the SVM
can be used to select informative features: if the plane is
orthogonal to a particular feature dimension, then that
feature is informative, and vice versa. In addition to
gene selection, SVMRFE has been successfully used in
other feature selection and pattern classification situa-
tions [15,16].
Wrapper methods can noticeably reduce the number

of features and significantly improve classification accu-
racy [17,18]. However, wrapper methods have the draw-
back of high computational load. With better
computational efficiency and similar performance to
wrapper methods, embedded methods process feature
selection simultaneously with a learning classifier. Exam-
ples of embedded methods are LASSO [19,20] and logis-
tic regression with the regularized Laplacian prior [21].
Combining the sequential forward selection (SFS) and

sequential floating forward selection (SFFS) with LS
(Least Squares) Bound measure, Zhou and Mao proposed
SFS-LS bound and SFFS-LS bound algorithms for opti-
mal gene selection [22]. Tang et al. also proposed two
gene selection methods, leave-one-out calculation
sequential forward selection (LOOCSFS) and the gradient
based leave-one-out gene selection (GLGS) [23]. Diaz-

Uriarte and De Andres [24] presented a new method for
gene selection that uses random forest [25]. The main
advantage of this method is that it returns very small sets
of genes that retain high predictive accuracy. The algo-
rithms are publicized in the R package of varSelRF. Addi-
tionally, Guyon and Elisseeff elaborated a wide range of
aspects in feature selection including a better definition
of the objective function, feature construction, feature
ranking, multivariate feature selection, efficient search
methods and feature validity assessment methods [26].
In human genetic research, exploiting information

redundancy from highly correlated genes may poten-
tially reduce the cost of classification in terms of time
and money. To deal with redundancy issues and to
improve classification for microarray data, we designed
a gene selection method recursive feature addition
(RFA) in our previous work [27], however, the optimal
feature set associated with the best training was not
solved. In this paper, we compare this method to
SVMRFE, LOOCSFS, GLGS, SFS-LSbound, SFFS-
LSbound and T-test by using six benchmark microarray
data sets; meanwhile, we propose an algorithm, Lagging
Prediction Peephole Optimization (LPPO), to choose the
final optimal feature/gene set. We evaluate LPPO by
comparing it with random strategy under the best train-
ing condition and valSelRF [24].

Results
Under feature dimension j, the training accuracy of the
ith experiment is r(i, j), and the testing accuracy of the
ith experiment is s(i, j), i = 1, 2,..., I; j = 1, 2,..., J; where I
is the number of experiments and J is the number of
chosen features. The average testing accuracy of the
experiments under the feature dimension j, s(j), j = 1,
2,..., J, is calculated as follows:

s(j) =
1
I

∑I

i=1
s(i, j) (1)

The average testing accuracy, ms_hr(i), of the ith

experiment under the condition that the associated/cor-
responding training accuracy is the highest, which is
defined as follows:

ms hr(i) = mean (s (i, m)) |r (i, m) = max(r(i, j)), ∀m, j ∈ {1, 2, ..J} (2)

The average testing accuracy ms_hr(i) is the expected
value of the random strategy under the best training
classification of the ith experiment.
The highest testing accuracy, hs_hr(i), of the ith

experiment under the condition that the associated/cor-
responding training accuracy is the highest, which is
defined as follows:

hs hr(i) = max(s(i, m))|r(i, m) = max(r(i, j)), ∀m, j ∈ {1, 2, ..J} (3)
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Average testing accuracy
Figure 1 lists the average testing accuracies of the gene
selection methods with classifiers NMSC, SVM, NBC,
and RF. Again, the performances of NBC-MMC,
NMSC-MMC, NBC-MSC, and NMSC-MSC are close to
one another; therefore, the average testing accuracies of
the gene selection methods NBC-MMC, NMSC-MMC,
and NBC-MSC are not listed in the figures. It indicates
that the average testing accuracy of NMSC-MSC is the
best, followed by GLGS, LOOCSFS, and SVM-RFE. SFS-
LS bound, SFFS-LS bound, and T-TEST did not per-
form well. Figure 1 also demonstrates that, spanning
several data sets and learning classifiers, the perfor-
mance and stabilization of the gene selection method of
NMSC-MSC is the best.

Testing results under the best training
Table 1 provides the mean values and standard errors of
the testing accuracies ms_hr(i), (i = 1, 2,..., 20) and the
highest testing accuracies hs_hr(i), (i = 1, 2, ..., 20)
under the highest training classification, respectively.
After applying each classifier to each data set, the high-
est mean value of the ten gene selection methods is
shaded. In each data set, the highest mean value in the
shade is in bold. With the use of the four learning clas-
sifiers, under the best training, RFA, GLGS, LOOCSFS,
SVMRFE, SFS-LSBOUND, SFFS-LSBOUND, and T-test
respectively achieve the highest testing accuracies
(HS_HR), 99.9%, 99.6%, 99.3%, 98.0%, 97.4%, 97.3%, and
96.8% for the leukemia data set; 99.5%, 98.6%, 93.0%,
99.2%, 95.1%, 96.1%, and 94.4% for lymphoma; 96.9%,
96.1%, 95.2%, 95.7%, 93.4%, 92.7%, and 94.0% for pros-
tate; 91.1%, 90.5%, 86.8%, 86.8%, 87.1%, 86.0%, and
85.5% for colon; 94.0%, 91.1%, 85.0%, 85.1%, 76.2%,
76.2%, and 77.4% for CNS; and 85.9%, 83.7%, 80.3%,
80.4%, 81.5%, 81.3%, and 77.6% for the breast cancer
data set. In applying the ten gene selection methods to
the six benchmark data sets, all the highest testing
accuracies are obtained from the gene set chosen by
RFA.
Table 2 lists the number of occurrences for each gene

selection method that achieved the best testing accuracy.
Table 2 shows that 61 out of 67 highest mean values
were obtained by MMC- or MSC-based methods;
GLGS, LOOCSFS, and SVMRFE obtained the best
twice, three times, and once, respectively; LSBOUND
and T-TEST never got the best value. Results indicate
that RFA outperforms other gene selection methods.
On the other side, to see whether the new methods

are superior to others, regression models were built
based on average testing accuracy (ms_hr) and highest
testing accuracy (hs_hr), respectively, with data set (six
benchmark microarray data set), gene selection method
(four new methods and six other methods) and classifier

(four classification methods) as independent variables.
After adjusting data set effect and classifier effect, the
main effects for the new feature selection methods
(NBC-MMC, NMSC-MMC, NBC-MSC, and NMSC-
MSC) and others (GLGS, LOOCSFS, SVMRFE, SFS-
LSBOUND, SFFS-LSBOUND, and T-test) are 91.86%,
91.67%, 92.47%, 92.27%, 90.65%, 86.96%, 88.89%, 84.70%,
85.38%, and 83.93% for the highest testing accuracy, and
86.38%, 86.15%, 87.30%, 86.97%, 85.48%, 82.76%, 83.96%,
79.45%, 80.58%, and 79.36% for the average testing accu-
racy, respectively. Table 3 gives the p-values of testing
superiority of each new method to other six methods,
which are calculated based on one-tailed t-test from the
output of the regression models. From the p-values, the
performances of our new methods are statistically signif-
icantly better than all other methods (most p-values are
<0.0001) except for GLGS. From Table 3 MSC-based
methods (NBC-MSC, NMSC-MSC) are significantly bet-
ter than GLGS based on both highest testing accuracy
and average testing accuracy at a significance level of
0.05. Although the p-values for NBC-MMC and NMSC-
MMC to GLGS are not small enough due to the small
sample size (only six testing data sets) and therefore
lower power, we would expect that the differences will
be detected at lower significance levels if more data sets
are used. To see whether the four new gene methods
perform differently, we also test each pair of the four
methods and calculate the p-values based on two-tailed
t-test from the output of the regression models. All the
p-values are bigger than 0.2, so the four new methods
perform equally well.

Comparison of LPPO and random strategy
Table 4 lists the mean values of the differences between
the testing values (denoted as S_LPPO) by applying
NMSC, SVM, NBC, and RF to LPPO and ms_hr. This
table shows that, on average, LPPO is superior to the
random strategy under the best training accuracies. In
summary, spanning the six benchmark data sets, in
comparison with ms_hr, LPPO improves the testing
accuracy by 0.8% for NMSC, 0.7% for SVM, 0.4% for
NBC, and 0.9% for RF on average.

Comparison of LPPO and varSelRF
Figure 2 gives the boxplots of the testing values with the
use of learning classifier random forest for the feature
sets from LPPO with RFA and varSelRF. The gene selec-
tion methods are NBC-MMC, NMSC-MMC, NBC-
MSC, NMSC-MSC, and varSelRF from left to right in
each subfigure. Figure 2 indicates that the testing
accuracies by applying random forest to the feature sets
of LPPO with RFA are better than those of varSelRF. In
comparison with varSelRF, LPPO with RFA increases
the average testing accuracy by about 5% for the
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Figure 1 The average testing accuracies of different gene selection methods for six benchmark data sets by using the classifiers (NBC,
NMSC, SVM, RF). X-axis and y-axis give the feature dimension and testing accuracy values, respectively.
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Table 1 Mean values and standard errors of hs_hr and ms_hr.

DATA SET GENE SELECTION METHOD MEAN(HS_HR) ± STD(HS_HR), % MEAN(MS_HR) ± STD(MS_HR), %

NMSC SVM NBC RF NMSC SVM NBC RF

Leukemia NBC-MMC 99.9 ± 0.6 99.4 ± 1.2 98.3 ± 2.3 98.4 ± 1.4 98.1 ± 1.4 93.4 ± 2.8 94.3 ± 2.8 95.6 ± 2.3

NMSC-MMC 99.9 ± 0.6 99.1 ± 1.3 98.4 ± 1.9 98.6 ± 1.9 97.9 ± 1.2 93.3 ± 2.8 95.2 ± 2.8 95.7 ± 3.4

NBC-MSC 99.4 ± 1.1 99.1 ± 1.3 98.9 ± 1.4 98.4 ± 1.7 98.5 ± 1.6 94.9 ± 2.7 94.6 ± 2.7 96.0 ± 2.5

NMSC-MSC 99.7 ± 0.9 99.6 ± 1.0 98.6 ± 1.7 98.7 ± 1.7 97.7 ± 1.4 94.8 ± 2.5 94.6 ± 3.4 95.7 ± 3.1

GLGS 99.6 ± 1.0 98.9 ± 1.7 98.6 ± 1.7 98.6 ± 1.7 97.8 ± 1.7 92.5 ± 3.8 95.3 ± 1.8 95.0 ± 2.5

LOOCSFS 97.1 ± 3.3 98.0 ± 1.5 97.7 ± 1.9 99.3 ± 1.2 93.9 ± 3.5 94.8 ± 3.1 94.5 ± 2.7 96.7 ± 1.6

SVMRFE 98.0 ± 2.0 95.4 ± 3.9 97.3 ± 2.1 98.0 ± 2.0 95.7 ± 2.8 92.5 ± 5.2 92.5 ± 3.0 93.4 ± 1.9

SFFS-LSBOUND 97.1 ± 2.5 97.4 ± 3.8 96.3 ± 4.1 97.1 ± 2.8 93.8 ± 4.3 92.9 ± 3.8 90.2 ± 5.8 92.6 ± 4.1

SFS-LSBOUND 97.1 ± 2.8 97.0 ± 3.0 96.4 ± 3.6 97.3 ± 3.0 94.6 ± 3.5 93.6 ± 3.8 91.2 ± 5.0 93.0 ± 5.1

T-TEST 94.8 ± 3.5 95.4 ± 4.5 93.3 ± 6.9 96.8 ± 2.9 92.2 ± 3.9 90.7 ± 4.8 90.1 ± 6.5 93.5 ± 3.6

Lymphoma NBC-MMC 98.1 ± 2.6 99.0 ± 1.3 97.3 ± 2.6 96.4 ± 2.8 96.2 ± 4.3 93.8 ± 2.8 91.7 ± 3.9 91.6 ± 3.7

NMSC-MMC 99.2 ± 1.2 98.8 ± 1.6 97.9 ± 2.6 96.5 ± 3.7 96.9 ± 1.9 93.0 ± 2.8 93.1 ± 3.3 92.3 ± 4.0

NBC-MSC 99.4 ± 1.1 98.4 ± 1.8 97.9 ± 2.6 96.8 ± 3.3 97.5 ± 1.9 93.1 ± 3.5 92.7 ± 3.5 92.6 ± 4.1

NMSC-MSC 99.5 ± 1.1 98.8 ± 1.6 98.1 ± 2.0 97.0 ± 3.6 97.2 ± 1.9 93.9 ± 3.0 93.9 ± 3.1 93.4 ± 3.9

GLGS 98.6 ± 1.8 98.2 ± 1.9 97.0 ± 2.6 96.9 ± 2.3 96.5 ± 2.1 92.5 ± 3.8 92.3 ± 3.6 91.7 ± 2.9

LOOCSFS 87.0 ± 7.2 93.0 ± 5.3 87.3 ± 5.1 92.9 ± 4.8 85.8 ± 6.8 87.8 ± 5.4 85.1 ± 4.5 88.2 ± 4.3

SVMRFE 99.2 ± 1.5 96.5 ± 3.9 97.2 ± 3.4 96.6 ± 3.1 96.5 ± 2.0 91.8 ± 4.3 93.1 ± 4.0 93.3 ± 4.0

SFFS-LSBOUND 88.7 ± 6.1 95.1 ± 3.3 84.0 ± 4.9 92.2 ± 4.7 87.0 ± 5.7 88.2 ± 4.9 80.6 ± 3.9 86.8 ± 4.8

SFS-LSBOUND 87.7 ± 6.1 96.1 ± 3.5 86.1 ± 3.5 91.8 ± 4.2 86.4 ± 5.6 91.1 ± 3.7 82.7 ± 3.4 86.1 ± 4.8

T-TEST 86.0 ± 5.7 94.4 ± 3.0 86.5 ± 7.0 91.7 ± 5.2 84.3 ± 5.8 87.7 ± 3.3 83.9 ± 6.1 87.2 ± 4.5

Prostate NBC-MMC 96.3 ± 2.4 95.8 ± 2.5 94.8 ± 2.6 96.5 ± 2.0 94.2 ± 2.8 91.6 ± 2.3 90.4 ± 2.7 92.1 ± 2.2

NMSC-MMC 95.6 ± 2.3 95.9 ± 2.5 93.7 ± 2.8 95.3 ± 2.3 92.7 ± 2.3 91.4 ± 2.8 90.7 ± 3.1 91.3 ± 2.3

NBC-MSC 96.4 ± 2.0 96.6 ± 1.9 95.2 ± 2.1 96.5 ± 1.9 94.6 ± 2.3 92.5 ± 2.3 91.0 ± 2.3 92.5 ± 2.2

NMSC-MSC 96.9 ± 2.3 96.7 ± 1.7 94.5 ± 2.0 95.8 ± 1.8 94.5 ± 2.4 92.8 ± 1.9 91.8 ± 2.5 92.0 ± 1.9

GLGS 93.6 ± 3.0 96.1 ± 2.2 90.4 ± 3.9 94.7 ± 2.0 91.5 ± 2.7 91.7 ± 2.6 87.5 ± 3.4 90.0 ± 2.5

LOOCSFS 88.4 ± 5.2 94.9 ± 2.9 90.7 ± 5.3 95.2 ± 2.6 87.0 ± 4.7 91.1 ± 3.4 88.0 ± 4.5 92.3 ± 2.3

SVMRFE 94.1 ± 3.4 92.3 ± 2.7 92.8 ± 4.3 95.7 ± 2.6 92.4 ± 3.3 86.7 ± 3.5 90.0 ± 4.0 92.5 ± 2.8

SFFS-LSBOUND 90.4 ± 3.2 93.4 ± 2.8 86.2 ± 5.8 90.2 ± 3.2 88.9 ± 3.1 86.0 ± 3.2 84.4 ± 5.1 86.1 ± 4.0

SFS-LSBOUND 89.7 ± 4.9 92.7 ± 4.0 87.3 ± 5.4 92.4 ± 3.5 88.3 ± 5.1 87.2 ± 5.0 85.1 ± 5.4 89.0 ± 3.9

T-TEST 91.4 ± 4.1 92.5 ± 2.1 91.7 ± 2.8 94.0 ± 3.0 89.7 ± 3.7 87.1 ± 3.2 89.0 ± 4.3 91.0 ± 3.1

Colon NBC-MMC 88.7 ± 5.5 87.7 ± 5.2 86.5 ± 4.0 89.7 ± 4.9 84.5 ± 5.2 80.9 ± 6.0 78.2 ± 4.9 82.5 ± 5.5

NMSC-MMC 91.1 ± 5.0 87.7 ± 3.9 87.4 ± 5.3 90.0 ± 4.0 84.9 ± 7.1 81.3 ± 5.5 80.8 ± 5.9 83.3 ± 5.4

NBC-MSC 89.4 ± 4.3 86.9 ± 4.6 88.7 ± 6.0 90.0 ± 4.0 86.0 ± 5.2 80.3 ± 5.6 82.1 ± 4.8 84.4 ± 4.7

NMSC-MSC 91.0 ± 5.3 87.6 ± 4.7 88.1 ± 3.3 90.0 ± 4.4 86.0 ± 5.4 80.9 ± 5.5 82.6 ± 4.0 83.9 ± 4.5

GLGS 87.3 ± 6.2 87.3 ± 4.6 85.2 ± 4.8 90.5 ± 4.3 83.7 ± 6.6 81.2 ± 5.5 77.6 ± 5.8 83.0 ± 4.5

LOOCSFS 85.0 ± 5.3 86.3 ± 3.9 81.6 ± 5.8 86.8 ± 5.3 82.2 ± 4.6 79.3 ± 5.2 76.7 ± 6.9 80.3 ± 5.3

SVMRFE 86.0 ± 6.7 86.8 ± 4.8 82.1 ± 7.4 86.3 ± 5.5 81.8 ± 7.2 80.7 ± 4.7 77.7 ± 7.5 80.3 ± 6.0

SFFS-LSBOUND 85.0 ± 4.8 87.1 ± 4.4 72.7 ± 7.0 82.6 ± 6.0 82.4 ± 4.4 76.2 ± 6.3 69.5 ± 8.3 74.6 ± 6.8

SFS-LSBOUND 85.3 ± 4.6 85.8 ± 5.3 76.8 ± 7.1 86.0 ± 4.1 83.3 ± 4.7 77.7 ± 6.4 72.5 ± 6.2 77.6 ± 4.5

T-TEST 77.4 ± 10.4 85.5 ± 4.0 76.3 ± 8.3 81.5 ± 7.2 74.9 ± 10.8 75.3 ± 5.7 72.8 ± 8.2 75.1 ± 7.8

CNS NBC-MMC 91.8 ± 6.1 92.9 ± 3.6 77.8 ± 5.2 85.7 ± 4.0 86.7 ± 6.0 82.4 ± 4.7 67.3 ± 4.1 76.3 ± 4.0

NMSC-MMC 90.0 ± 6.4 92.2 ± 5.7 78.0 ± 5.3 82.7 ± 5.2 82.8 ± 6.8 82.1 ± 5.6 67.5 ± 5.5 73.5 ± 4.9

NBC-MSC 94.0 ± 4.6 92.0 ± 4.4 81.1 ± 4.1 85.5 ± 4.9 88.4 ± 5.2 82.6 ± 5.5 70.2 ± 3.7 75.9 ± 5.3

NMSC-MSC 92.8 ± 4.0 91.6 ± 4.9 81.3 ± 6.1 84.9 ± 4.1 85.6 ± 4.3 81.4 ± 6.2 70.0 ± 4.5 74.4 ± 4.2

GLGS 84.7 ± 3.3 91.1 ± 5.4 78.8 ± 5.5 84.2 ± 5.0 82.4 ± 3.6 81.3 ± 4.8 67.9 ± 4.5 75.3 ± 4.3

LOOCSFS 71.3 ± 9.8 85.0 ± 5.9 79.1 ± 7.7 83.2 ± 4.4 69.3 ± 8.0 77.6 ± 4.5 71.8 ± 6.2 75.3 ± 5.1

SVMRFE 83.2 ± 8.9 85.1 ± 8.4 77.1 ± 6.8 83.5 ± 4.3 77.0 ± 8.0 75.0 ± 8.8 65.7 ± 7.2 73.3 ± 4.9

SFFS-LSBOUND 68.1 ± 6.7 71.9 ± 7.1 67.6 ± 7.7 76.2 ± 4.5 65.3 ± 6.3 59.4 ± 7.5 61.3 ± 6.1 66.9 ± 4.8

SFS-LSBOUND 67.8 ± 6.2 72.4 ± 4.9 69.8 ± 8.2 76.2 ± 5.0 65.7 ± 5.4 60.7 ± 5.1 63.7 ± 7.2 68.4 ± 4.5

T-TEST 67.5 ± 8.8 77.4 ± 6.4 67.0 ± 7.1 75.5 ± 5.9 63.4 ± 7.6 67.3 ± 5.8 60.9 ± 6.8 67.8 ± 4.9

Liu et al. BMC Genomics 2011, 12(Suppl 5):S1
http://www.biomedcentral.com/1471-2164/12/S5/S1

Page 5 of 12



leukemia data set, 9% for lymphoma, 3% for colon and
prostate, 10% for CNS, and 14% for the breast cancer
data set.

Computational efficiency
In microarray data analysis, generally, the number of
features in the final feature set is far smaller than the
total variables. Suppose the number of total variables is
n, the number of features of the final feature set is m
(m <<n). In forward feature selection, with the use of
some learning classifier, the computational time is F(s,
d) for a s×d feature matrix, here s is the number of data
samples (s << n) and d is the feature dimensionality at
each sample. Without losing the generality, if d1<d2, F(s,
d1) <F(s, d2). The computational cost of our feature
selection algorithm is analyzed as follows.
Let T1 denote the total computational time for super-

vised learning

T1 = n ∗ F (s, 1) + (n − 1) ∗ F (s, 2) + . . . + (n − m + 1) ∗ F (s, m)

≤ [
n + (n − 1) + ... + (n − m + 1)

] ∗ F(s, m)

=
m ∗ (2 ∗ n − m + 1)

2
∗ F(s, m)

(4)

Let T2 denote the computational time for similarity
calculation among the candidates and chosen genes, the
calculation time between two single- variant vectors
with s samples is C(s), then

T2 ≤ (n − 1) ∗ C(s) + 2 ∗ (n − 2) ∗ C(s) + ... + m ∗ (n − m) ∗ C(s)

= C(s) ∗
{

1
2

nm(m + 1) −
m∑

i=1

i2
}

(5)

Due to the fact of m << n and s << n with microarray
data, the computational cost of our feature selection is
obtained by

T = T1 + T2 ∼ O(n) (6)

Conclusions
Our study shows that our gene selection method Recur-
sive Feature Addition (RFA) obtained the best classifica-
tion performance in the comparison. RFA utilizes
supervised learning to obtain the best classification, and
indentifies the subsequent gene recursively based on the
similarity measures between the chosen gene set and
the candidates to minimize the redundancy of the genes

Table 2 The number of occurrences of the best testing in Table 1

Gene
Selection

# Best testing accumulated with each classifier # Best testing among the four classifiers

HS_HR MS_HR HS_HR MS_HR

NBC-MMC 6 1 1 0

NMSC-MMC 4 1 2 0

NBC-MSC 8 12 2 6

NMSC-MSC 7 8 2 1

GLGS 1 1 0 0

LOOCSFS 1 2 0 0

SVMRFE 0 1 0 0

SFFS-LSBOUND 0 0 0 0

SFS-LSBOUND 0 0 0 0

T-TEST 0 0 0 0

Total 27 26 7 7

Table 1 Mean values and standard errors of hs_hr and ms_hr. (Continued)

Breast NBC-MMC 82.5 ± 6.0 82.9 ± 3.5 84.1 ± 3.0 84.1 ± 3.6 81.3 ± 5.7 73.2 ± 3.8 78.4 ± 3.4 78.4 ± 3.8

NMSC-MMC 83.9 ± 4.6 82.0 ± 3.3 82.4 ± 4.3 83.7 ± 4.7 80.4 ± 4.0 72.0 ± 3.8 78.4 ± 4.3 77.0 ± 4.3

NBC-MSC 83.4 ± 5.8 83.5 ± 3.8 85.8 ± 3.1 85.9 ± 4.7 81.5 ± 5.3 74.9 ± 3.3 79.1 ± 3.0 79.4 ± 4.1

NMSC-MSC 82.8 ± 4.4 82.4 ± 3.8 84.1 ± 4.0 83.9 ± 4.0 79.6 ± 4.0 73.7 ± 3.9 79.2 ± 3.8 77.7 ± 4.0

GLGS 80.8 ± 3.7 79.3 ± 4.5 81.4 ± 4.1 83.7 ± 4.6 79.2 ± 3.9 70.7 ± 4.6 77.8 ± 3.7 77.0 ± 4.2

LOOCSFS 71.7 ± 6.5 77.3 ± 5.2 78.0 ± 5.8 80.3 ± 3.8 70.4 ± 6.5 69.2 ± 4.7 74.7 ± 5.1 74.3 ± 4.2

SVMRFE 74.3 ± 7.1 78.3 ± 5.2 77.2 ± 5.3 80.4 ± 4.1 73.2 ± 6.6 72.1 ± 5.8 73.9 ± 4.5 73.9 ± 3.7

SFFS-LSBOUND 76.2 ± 5.2 78.9 ± 2.8 76.9 ± 7.3 81.5 ± 5.3 75.0 ± 5.3 67.8 ± 3.3 75.2 ± 6.8 75.6 ± 4.9

SFS-LSBOUND 77.5 ± 5.6 78.9 ± 4.2 79.8 ± 5.2 81.3 ± 5.2 75.8 ± 5.5 68.0 ± 4.7 76.9 ± 6.3 75.4 ± 5.2

T-TEST 71.1 ± 5.3 77.6 ± 5.2 72.6 ± 6.3 76.3 ± 5.7 69.3 ± 5.3 69.9 ± 3.6 70.5 ± 5.8 71.1 ± 5.8

In each data set, the highest mean value is highlighted in bold
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within the selected subset; hence it obtains more infor-
mative and differently expressed genes. Based on RFA,
we also propose an algorithm, Lagging Prediction Peep-
hole Optimization (LPPO), to determine the optimal
feature set. Using six popular benchmark data sets, we
compared RFA with other gene selection methods. Our
studies showed that RFA outperformed other methods
with the use of the four popular classifiers: NMSC,
NBC, SVM, and random forest. Results also showed
that, on average, LPPO is superior to a random strategy

under the best training and that it outperformed the
random forest based gene selection method varSelRF.

Methods
Supervised recursive learning
Our method of RFA uses supervised learning to achieve
the highest level of training accuracy and statistical simi-
larity measures to choose the next variable with the least
dependence on or correlation to the already identified
variables as follows:
1. Insignificant genes are removed according to their

statistical insignificance. Specifically, a gene with a high
p-value is usually not differently expressed and therefore
has little contribution in distinguishing normal tissues
from tumor tissues or in classifying different types of
tissues. To reduce the computational load, those genes
should be removed. The filtered gene data is then nor-
malized. Here we use the standard normalization
method, MANORM, which is available from MATLAB
bioinformatics toolbox.
2. Each individual gene is selected by supervised learn-

ing. A gene with highest classification accuracy is cho-
sen as the most important feature and the first element
of the feature set. If multiple genes achieve the same
highest classification accuracy, the one with the lowest
p-value measured by test-statistics (e.g., score test), is
the target of the first element. At this point the chosen
feature set, G1, contains just one element, g1, corre-
sponding to the feature dimension one.
3. The (N+1)st dimension feature set, GN+1 = {g1, g2, ...,

gN, gN+1} is obtained by adding gN+1 to the Nth dimen-
sion feature set, GN = {g1, g2, ..., gN}. The choice of gN+1
is described as follows:
Add each gene gi (gi ∉ GN) into GN and obtain the

classification accuracy of the feature set GN ∪{gi}. The gi
(gi ∉ GN) associated with the group, GN ∪{gi} that
obtains the highest classification accuracy, is the candi-
date for gN+1 (not yet gN+1). Considering the large num-
ber of variables, it is highly possible that multiple
features correspond to the same highest classification
accuracy. These multiple candidates are placed into the
set C, but only one candidate from C will be identified
as gN+1. How to make the selection is described next.

Table 4 Comparison of LPPO and Random Strategy

Data
Set

Gene
Selection

MEAN(S_LPPO - MS_HR), %

NMSC SVM NBC RF

Leukemia NBC-MMC 0.8 -0.1 2.3 1.4

NMSC-MMC 1.0 0.9 1.8 1.6

NBC-MSC -0.2 0.3 1.9 1.1

NMSC-MSC 1.6 0.7 2.5 1.3

Lymphoma NBC-MMC 0.6 0.1 -1.0 0.4

NMSC-MMC 1.3 -0.4 1.4 1.2

NBC-MSC 0.4 1.2 1.5 1.4

NMSC-MSC 0.9 0.1 1.6 0.6

Prostate NBC-MMC 0.2 0.1 0.0 0.5

NMSC-MMC 0.9 0.4 0.9 1.1

NBC-MSC 0.3 0.7 0.6 1.8

NMSC-MSC 0.4 0.8 0.2 1.0

Colon NBC-MMC 0.3 0.2 -1.1 0.4

NMSC-MMC 0.6 0.0 0.1 0.3

NBC-MSC -0.2 -0.5 -2.6 -1.3

NMSC-MSC 0.9 0.3 -2.2 -0.5

CNS NBC-MMC 2.1 1.8 2.2 3.1

NMSC-MMC 0.8 1.0 0.4 1.6

NBC-MSC 1.2 0.0 0.6 0.6

NMSC-MSC 1.9 2.2 2.4 1.3

Breast
Cancer

NBC-MMC 0.2 1.3 0.5 1.5

NMSC-MMC 0.6 3.2 -1.2 0.9

NBC-MSC 0.0 1.7 -1.6 -0.6

NMSC-MSC 1.7 1.3 -1.1 1.0

Average 0.8 0.7 0.4 0.9

Table 3 P-values from testing superiority of new methods to others

Method NBC-MMC NMSC-MMC NBC-MSC NMSC-MSC

HS_HR MS_HR HS_HR MS_HR HS_HR MS_HR HS_HR MS_HR

GLGS 0.092 0.15 0.13 0.22 0.023 0.0212 0.038 0.048

LOOCSFS <0.0001 <0.0001 <0.0001 0.0001 <0.0001 <0.0001 <0.0001 <0.0001

SVMRFE <0.0001 <0.0001 <0.0001 0.0077 <0.0001 0.0001 <0.0001 0.0004

SFFS-LSBOUND <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

SFS-LSBOUND <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

T-TEST <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Liu et al. BMC Genomics 2011, 12(Suppl 5):S1
http://www.biomedcentral.com/1471-2164/12/S5/S1

Page 7 of 12



Figure 2 Boxplots of testing accuracies of the LPPO with four gene selection methods using two different classifiers (NBC, NMSC)
compared to varSelRF for six data sets. RF is the final classifier. All six data sets demonstrate that varSelRF accuracies are lower than our
proposed feature selection and optimization algorithm with the same RF classifier.
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Candidate feature addition
To find the most informative (or least redundant) next
feature gN+1, two formulas may be designed by measur-
ing the statistical similarity between the chosen feature
set and each candidate. Here we use, say, Pearson’s cor-
relation coefficient [28] between chosen features gn (gn
Î GN , n = 1, 2, ..., N) and candidate gc (gc Î C) to mea-
sure the similarity.
In the first formula, the sum of the square of the cor-

relation, SC, is calculated to measure the similarity and
is defined as follows:

SC
(
gc

)
=

N∑
n=1

cor2 (
gc, gn

)
n = 1, 2 ...N (7)

Where, gc Î C, gn Î GN.
Then selection of gN+1 can be based on the Minimum

Sum of the square of the Correlation (MSC), that is,

gN+1 ← {gc|SC(gc) = min(SC).gc ∈ C} (8)

In the second formula, the maximum value of the
square of the correlation, MC, is calculated:

MC(gc) = max(cor2(gc, gn)), n = 1, 2, ..., N (9)

Where, gc Î C, gn Î GN.
The selection of gN+1 follows the criterion that the

MC value is the minimum, which we call Minimum of
Maximum value of the square of the Correlation
(MMC).

gN+1 ← {gc|MC(gc) = min(MC).gc ∈ C} (10)

In the methods mentioned above, a feature is recur-
sively added to the chosen feature set based on super-
vised learning and the similarity measures. With the use
of a classifier XXX, we call the first gene selection
method XXX-MSC and the second one XXX-MMC. For
example, if the classifier is Naive Bayes Classifier (NBC),
we call the two strategies NBC-MSC and NBC-MMC,
respectively.

Lagging Prediction Peephole Optimization (LPPO)
We want to find a combination of features (genes) that
yields the best performance on breaking down solvents.
Normally, with the recursive addition for the next fea-
ture, the training accuracy will increase and reach a
peak classification performance at some point, and then
may maintain it with subsequent feature additions; but
after that the training accuracy may decrease. Generally
speaking, all strategies for determining the final feature
set should be based on the best training classification. In
high-volume data analysis, it is common that the best
training accuracy corresponds to different feature sets;
that is, multiple feature sets achieve the same highest

training accuracy. However, although all these feature
sets are associated with the same highest training accu-
racy, the testing accuracy of these feature sets may be
different. Among these highest training feature sets, the
one having the best testing accuracy is called the opti-
mal feature set, which is highly complicated to charac-
terize when a sample size is small. Either applying
different gene methods to the same training samples, or
applying the same gene selection method to different
training samples, or applying different learning classifiers
to the same training samples, will produce a different
optimization of the feature set. Pochet et al. [29] pre-
sented a method of determining the optimal number of
genes by means of a cross-validation procedure; the
drawback of this method is that it actually utilizes whole
data information, including training samples and testing
samples.
How do we choose the optimal feature set? If there

are multiple best training classifications, a random
choice, called random strategy, works for best training
classification. In the recursive addition of the features,
for training samples, a classification model is one of the
best methods. But for testing samples, at this point, the
classification model may not be optimal because of the
difference between the training samples and the testing
samples; the optimal classification model will lag in
appearance (see Figure 1). Based on this observation, we
propose the following algorithm for optimization.
Under feature dimension j, the training accuracy of

the ith experiment is r(i, j). If the feature set Gk, corre-
sponding to feature dimension k, has the best training
accuracy in the trainings from the feature set G1 to GD,
corresponding to the feature dimensions from 1 to D,
let HR denote the set that contains all the combinations
of Gk, corresponding to all the feature set having the
highest classification accuracy under feature dimension
1 to D.

HR = {Gk|r(i, k) = max(r(i, •)), 1 ≤ k ≤ D} (11)

In general, the best classification model for testing
samples will lag in appearance behind the initial best
training model. We will exclude the elements of HR
that correspond to the initial best training. The remain-
ing elements in HR constitute the candidate set HRC
for optimization.
Each element in HRC is associated with the best

training accuracy. We set a peephole for each element
and choose the element associated with the optimal
peephole. The details are described as follows:
a. For each element Gk Î HRC, the peephole over Gk

with length of 2l+1 covers the feature sets Gk-l, Gk-l+1,
..., Gk , ..., Gk+l-1, Gk+l, corresponding to the training
accuracy r(i, k-l), r(i, k-l+1), ..., r(i, k), ..., r(i, k+l-1), r(i, k
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+l). The mean training value of the peephole is denoted
by mp_r(i, k).

mp r(i, k) = (1/(2l + 1))
∑m=k+l

m=k−l
r(i, m) (12)

The peephole with the best classification of mp_r is
then chosen as the optimal one.
b. If there are multiple optimal peepholes, then we

apply random forest to these peepholes and check the
mean values of the Out-of-Bag (OOB) error rates
[24,25,30]. The feature sets Gk-l, Gk-l+1, ..., Gk,, ..., Gk+l-1,

Gk+l correspond to the OOB errors, oob_e(i, k-l), oob_e
(i, k-l+1), ..., oob_e(i, k), ..., oob_e(i, k+l-1), oob_e(i, k+l).
The mean value of the OOB errors is denoted by
mp_oob_e(i, k)

mp oob e(i, k) = (1/(2l + 1))
∑m=k+l

m=k−l
oob e(i, m) (13)

The peephole with minimum mp_oob_e is the optimal
one.
c. If there are multiple peepholes corresponding to the

best mp_r and minimum mp_oob_e, then set l +1 ® l,
and repeat ‘a’ to ‘c’, until a unique optimal peephole is
determined.
d. The feature set located at the center of the final

optimal peephole is chosen as the final optimal feature
set.

This optimization of RFA is called Lagging Prediction
Peephole Optimization (LPPO). Figure 3 briefly outlines
the LPPO on the prostate data set, which was studied
by Singh et al. [31].

Data sets
The following six benchmark microarray data sets have
been extensively studied and used in our experiments to
compare the performances of our methods with others.
Data sources that are not specified are available at:
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.
1) The LEUKEMIA data set consists of two types of

acute leukemia: 48 acute lymphoblastic leukemia (ALL)
samples and 25 acute myeloblastic leukemia (AML)
samples with over 7129 probes from 6817 human genes.
It was studied by Golub et al. [32].
2) The LYMPHOMA data set consists of 58 diffuse

large B-cell lymphoma (DLBCL) samples and 19 follicu-
lar lymphoma (FL) samples. It was studied by Shipp et
al. [33]. The data file, lymphoma_8_lbc_fscc2_rn.res,
and the class label file, lymphoma_8_lbc_fscc2.cls were
used in our experiments for identifying DLBCL and FL.
3) The PROSTATE data set used by Singh et al. [31]

contains 52 prostate tumor samples and 50 non-tumor
prostate samples.
4) The COLON cancer data set used by Alon et al.

[34] contains 62 samples collected from colon-cancer

Figure 3 A sketch description of the Lagging Prediction Peephole Optimization on Prostate data set.
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patients. Among them, 40 tumor biopsies are from
tumors, and 22 normal biopsies are from healthy parts
of the colons of the same patients. Based on the confi-
dence in the measured expression levels, 2000 genes
were selected. The data source is available at: http://
microarray.princeton.edu/oncology/affydata/index.html.
5) The Central Nervous System (CNS) embryonal

tumor data set that was originally studied by Pomeroy
et al. [35] contains 60 patient samples. Among them, 21
are survivors who are alive after treatment, and 39 are
failures who succumbed to their diseases. There are
7129 genes.
6) The Breast cancer data set studied by Van et al.

[36] contains 97 patient samples, 46 of which are relapse
patients who had developed distance metastases within 5
years, and 51 patients who are non-relapsed who
remained healthy for at least 5 years from the distance
after their initial diagnosis. This data source is available
at: http://www.rii.com/publications/2002/vantveer.htm.

Experiments
Our experiments are designed as follows:
1. The data sets are first divided randomly into train-

ing samples and testing samples. The ratio of training
samples to testing samples is approximately 1:1 in each
class.
2. Recursive feature additions with Naive Bayes Classi-

fier (NBC) and Nearest Mean Scaled Classifier (NMSC)
for gene selection (NBC-MSC, NBC-MMC, NMSC-
MSC, and NMSC-MMC) were applied to the training
samples for gene selection. Different feature sets of the
gene expression data are produced under feature dimen-
sions 1 to 100. We compared the above proposed meth-
ods to several recently developed and published gene
selection methods: LOOCSFS, GLGS, SVMRFE, SFFS-
LS bound, SFS-LS bound, and also T-TEST.
3. To compare different gene selection methods, the

learning classifiers including NBC, NMSC, SVM [37,38],
and Random Forest are applied to the testing samples.
4. The experiments were performed in 20 runs, and

the average testing accuracies were compared to evalu-
ate performance.
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