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Abstract

A biased usage of immunoglobulin (Ig) genes is observed in human anti-HIV-1 monoclonal antibodies (mAbs) resulting
probably from compensation to reduced usage of the VH3 family genes, while the other alternative suggests that this bias
usage is due to antigen requirements. If the antigen structure is responsible for the preferential usage of particular Ig genes,
it may have certain implications for HIV vaccine development by the targeting of particular Ig gene-encoded B cell receptors
to induce neutralizing anti-HIV-1 antibodies. To address this issue, we have produced HIV-1 specific and non-HIV-1 mAbs
from an infected individual and analyzed the Ig gene usage. Green-fluorescence labeled virus-like particles (VLP) expressing
HIV-1 envelope (Env) proteins of JRFL and BaL and control VLPs (without Env) were used to select single B cells for the
production of 68 recombinant mAbs. Ten of these mAbs were HIV-1 Env specific with neutralizing activity against V3 and
the CD4 binding site, as well as non-neutralizing mAbs to gp41. The remaining 58 mAbs were non-HIV-1 Env mAbs with
undefined specificities. Analysis revealed that biased usage of Ig genes was restricted only to anti-HIV-1 but not to non-HIV-
1 mAbs. The VH1 family genes were dominantly used, followed by VH3, VH4, and VH5 among anti-HIV-1 mAbs, while non-
HIV-1 specific mAbs preferentially used VH3 family genes, followed by VH4, VH1 and VH5 families in a pattern identical to
Abs derived from healthy individuals. This observation suggests that the biased usage of Ig genes by anti-HIV-1 mAbs is
driven by structural requirements of the virus antigens rather than by compensation to any depletion of VH3 B cells due to
autoreactive mechanisms, according to the gp120 superantigen hypothesis.
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Introduction

Neutralizing antibodies (Abs) are critical elements in vaccine

development as they form the first line of defense against

pathogens and are associated with protection against virus

infection [1]. The role of Abs in preventing infection with HIV

[2,3,4], simian immunodeficiency virus (SIV) [5], and simian/

human immunodeficiency virus (SHIV) [6,7] has been firmly

established by several passive immunization experiments in

various animal models. However, generating protective Ab

responses has proven to be an enormous challenge because the

available vaccine immunogens elicit Abs that neutralize only

a minority of HIV-1 isolates [8].

Searching for the cause of the relatively ineffective neutralizing

activity of anti-HIV-1 Abs, attention was turned towards the

immunoglobulin (Ig) genes coding for these Abs. Immunogenetics

studies revealed biased Ig gene usage by anti-HIV-1 mAbs,

including neutralizing mAbs [9,10]. Ig variable genes coding for

heavy chains are used by human anti-HIV-1 mAbs with different

frequencies compared to Abs from healthy individuals. The

canonical VH3 family genes are used significantly less frequently

by anti-HIV-1 mAbs, while VH1 family genes are preferentially

used by mAbs against CD4i, gp41 and some other anti-HIV-1

envelope (Env) mAbs [10,11,12,13,14]. Furthermore, we have

shown that anti-V3 mAbs preferentially use the VH5-51 gene

segment [9,15]. This suggests that biased usage of Ig genes may

depend on antigen requirements and that only certain Ig gene-

encoded Abs fit well and with high initial affinity to Env antigens.

If this hypothesis is correct, then targeting such Ig genes may

trigger Abs with enhanced affinity maturation to the HIV-1

epitopes.

It was also hypothesized that the selective depletion of the

canonical VH3 family genes due to autoreactivity towards B cells

may result in the preferential usage of other VH families for anti-

HIV-1 Abs by way of compensation. It has been shown that gp120

behaves as a superantigen which binds to B cell receptors encoded
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by VH3 genes and such cells can be recognized as HIV-1 infected

and eliminated by the immune effector cells [16].

To test these hypotheses, we generated mAbs from single B cells

derived from an HIV-1 infected individual using for selection

green-fluorescent protein-labeled (GFP) virus-like particles (VLPs)

expressing Env antigens. The VLPs have been previously utilized

in the production of human mAbs against rotavirus [17]. A similar

method using VLPs expressing HIV-1BaL Env proteins has also

been used to produce a human anti-CD4 induced antigen (CD4i)

mAb [18].

In total, 68 mAbs were produced, including 10 HIV-1 Env

specific mAbs against V3, CD4-binding site (CD4bs) and gp41, as

well as 58 non-HIV-1 mAbs selected by Env- and non-Env

expressing GFP-VLPs, respectively. Analysis of Ig genes used by

HIV-1 specific mAbs compared to non-HIV-1 mAbs with

undefined specificities revealed that the biased usage of Ig genes

is restricted to anti-HIV-1 Env mAbs only, whereas non-HIV-1

mAbs present Ig gene utilization patterns identical to that of

healthy individuals. This suggests that the biased usage of Ig genes

by anti-HIV-1 mAbs results from structural requirements of the

virus antigens, not from other mechanisms.

Results

Single Memory B Cell Sorting
VLPs expressing the Env proteins of JRFL and Bal, as well as

Gag-VLP (without Env) negative controls, were used to singly sort

out the Env-specific and non-HIV-1 Env specific IgG+ memory B

cells, respectively, for production of human mAbs. PBMCs were

purified from the blood sample of one NYU IRB-approved HIV-1

infected volunteer. The B cells were enriched by using CD19

magnetic beads, and incubated with VLPs tagged with green

fluorescent protein (GFP) followed by staining with PE-anti-IgG

and APC-anti-CD27. The B cells were stained separately for Gag-

VLPs (without Env proteins) (Fig. 1A, B and C) and for VLPs

expressing JRFL Env (Fig. 1D, E and F) and were then singly

sorted into 96-well plates. The Gag-VLPs stained 0.6% (Fig. 1C) of

total cells as background, while JRFL-VLPs stained 1.8% (Fig. 1F)

and BaL-VLPs stained 1.2% (data not shown) of total cells.

Engineered mAbs from Single Memory B Cells
Amplified PCR products of the heavy and light chain variable

regions from single cells selected by JRFL-VLPs, BaL-VLPs and

control Gag-VLPs were sequenced and compared with germline

sequences in the IMGT database. Functional heavy and light

chain variable gene sequences were separately cloned into

expression vectors containing the constant regions of c1, k and

l [19]. Heavy and light chain constructs from the same single B

cell were then cotransfected into 293T cells to produce mAbs.

In total, 68 culture supernatants from day three transfected

293T cells contained IgG, as determined by a quantitative ELISA,

in the range of 0.5 mg/ml to 50 mg/ml with the majority of

samples between 10–20 mg/ml (data not shown). The super-

natants were adjusted to 10 mg/ml, excepting those which were

,10 mg/ml, and screened by ELISA against recombinant

gp120MN and recombinant gp41MN. Ten mAbs selected by

JRFL-VLPs were reactive with HIV-1 Env proteins while 58

recombinant mAbs did not display any reactivity to viral Env

proteins, and their specificity was not determined (Table 1 and 2).

Using BaL-VLPs no HIV-1 specific mAbs were selected possibly

due to low density of cleaved gp120 on the surface of VLPs which

was observed by Western blot analysis [18]. These 58 non-HIV-1

mAbs included 24 selected with JRFL-VLPs, 19 with BaL-VLPs

and 15 mAbs with Gag-VLPs which were used as negative controls

(Table 2).

Anti-HIV-1 Env mAbs
Ten HIV-1 Env specific mAbs were further tested in a quality

control assay (QC) against seven HIV-1 antigens: recombinant

gp120MN, V3B-cholera toxin B (CTB) fusion protein, V3C-CTB,

C5 peptide (aa 495–516), recombinant gp41MN, recombinant p24

and bovine serum albumin (BSA) (data not shown). Three mAbs,

3b5, 3b38 and 3b96, were specific to the V3 region and bound to

both gp120 (Table 1) and V3-CTBs. Another three mAbs, 3c25,

3c50, and 3c81, were reactive only with gp120 (Table 1) in the QC

assay. In an additional assay they were reactive with wild type

gp120HXB2 but not (3c25 and 3c81) or partially (3c50) with the

D368R + N448Q mutant of gp120HXB2, confirming their

specificity to CD4bs (data not shown). This was also consistent

with the significant reduction of the binding of 3c25 and 3c81, but

not 3c50, to gp120 by 2 mg/mL sCD4 (Fig. S1). It suggested that

3c25 and 3c81 mAbs recognize the epitope in the CD4bs while the

epitope of 3c50 overlaps with CD4bs. Both, anti-V3 and anti-

CD4bs mAbs were reactive with 293T cells transfected with Env

proteins of JRFL and SF162.

The remaining four mAbs, 3c16, 3c53, 3c91 and 3b95, were

specific to gp41 based on binding to recombinant gp41MN only

(Table 1). The epitope of all four mAbs has a conformational

character, as they were only reactive with the native recombinant

gp41, but not with denatured gp41 which was treated with

dithiothreitol and boiled at 95uC (data not shown). Binding of

gp41 mAbs to 293T cells transfected with the Env JRFL and

SF162 showed their mixed reactivity: in particular, mAbs 3c16

and 3c91 were weakly reactive or nonreactive, possibly due to

limited exposure of the epitope in the context of the trimer

(Table 1).

The epitope location in gp41 was tested in a competition assay

using biotinylated mAbs 50–69 (specific to cluster I a.a. 579–604)

and 167 (specific to cluster II a.a.644–663) [20]. One mAb, 3c16,

inhibited binding of both biotinylated 167 and 50–69 to gp41,

suggesting that it might bind to one of the epitope clusters, either I

or II, which are very close to each other due to the lysine finger

interaction between heptad repeat 1 and 2 of gp41. A similar

phenomenon was recently reported with two recombinant anti-

gp41 mAbs which were found to compete with anti-cluster I and

IV biotinylated mAbs [10]. The remaining three anti-gp41 mAbs,

3c53, 3b95, and 3c91, displayed no inhibitory activity to the two

biotinylated mAbs, suggesting that their antigenic determinants

are located outside of the cluster I and II epitopes in gp41 (data not

shown).

Autoreactivity of Anti-HIV-1 mAbs
Testing of mAb binding to Env-transfected 293T cells includes

some possibility of false positive reactivity dependant on the

binding to cell components, but not to Env proteins. It was shown

that 3 of 10 mAbs, 3b96, 3c53, and 3b95, had some binding

activity toward untransfected 293T cells, in the range of 3% to

12.1%. However this level of binding activity is 2 to 7.5 fold lower

than binding to Env-transfected cells (Table 1). One of the control

mAbs, 447-52D (anti-V3), also exhibited some non-specific

reactivity with untransfected 293T cells, with 3.1 and 4.9 fold

lower binding than to JRFL- and SF162-Env transfected cells,

respectively (Table 1).

In addition, all mAbs were tested against cardiolipin. Two gp41

mAbs, 3c53 and 3b95, displayed reactivity to both cardiolipin and

293T cells, which suggests that they may bind to phospholipids

Different Ig Gene Usage for HIV and Non-HIV mAbs
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present in the cell membrane. Two other mAbs, 3c25 and 3c91,

exhibited borderline binding activity with cardiolipin (Table 1).

Non-HIV-1 Env mAbs
Fifty-eight mAbs selected with JRFL-VLPs, BaL-VLPs and

control Gag-VLPs were non-binding to gp120MN, gp41MN and

to JRFL Env transfected 293T and they were named the non-

HIV-1 Env mAbs (data not shown). Three mAbs, 3c11, 3c13 and

3d89, were exceptional as they did not bind to gp120MN and

gp41MN but reacted with both JRFL Env transfected and native

293T cells exhibiting some autoreactive characteristics (data not

shown).

Neutralizing Activity of gp120-specific mAbs
All 10 mAbs specific to the V3, CD4bs and gp41 epitopes were

screened for neutralizing activity in the TZM-bl cell assay against

SF162 and 6535 pseudoviruses. Six mAbs against V3 and CD4bs

(3b38, 3b96, 3b5, 3c50, 3c81 and 3c25) neutralized both viruses

(data not shown) and were further tested against a panel of 41

pseudoviruses, with the exception of mAb 3b96 which was tested

with 23 pseudoviruses (Table 3). Generally, one or more mAbs

neutralized the majority of tier 1 viruses (10 of 15) while tier 2

viruses were more resistant, probably due to virus-mediated

masking mechanisms, as only four of 26 were neutralized (Table 3).

All three anti-V3 mAbs and one anti-CD4bs mAb, 3c50, cross-

neutralized a comparable number of pseudoviruses, between six

and nine of 41 tested, while the two remaining anti-CD4bs mAbs,

Figure 1. Cell sorting of B cells stained with VLPs, anti-CD27, and anti-IgG. The top panel (Gag-VLP) and bottom panel (JRFL-VLP) indicate
the gating of non-HIV-1 and anti-HIV-1 Env Abs expressing B cells, respectively. (1A and 1D) FSC and SSC show forward scatter and side scatter,
measures of cell size and granularity. The selected area shows the gated single live cells from CD19 magnetic beads enriched B cells. (1B and 1E) The
dot plots show the percentages of CD27+ memory B cells. Numbers indicate the percentage of gated cells stained with anti-CD27-APC. The
percentages of CD27+ memory B cells are similar prior to VLPs+ selection in both non-HIV-1 and anti-HIV Env Abs expressing cells. (1C and 1F) The dot
plots show the gating of IgG+ and Gag-VLP+ cells (1C) or IgG+ and JRFL-VLP+ cells (1F) on the CD27+ memory B cells. The selected area shows percent
of total B cells stained for Gag-VLP (1C) and JRFL-VLP (1F).
doi:10.1371/journal.pone.0039534.g001
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3c25 and 3c81, neutralized only three and two viruses, respectively

(Table 3). These two anti-CD4bs mAbs displayed possibly lower

affinity binding as they reacted with gp120 relatively weakly

(Table 1, Fig. S1).

Biased Usage of Immunoglobulin Genes by Anti-HIV-1
mAbs Compared to Other mAbs

Production of 68 mAbs from one infected individual, with

different specificities to HIV-1 and non-HIV-1 Env antigens,

allowed for the comparison of the Ig variable genes usage by these

two different panels of mAbs. Anti-HIV-1 Env mAbs selected by

the JRFL-VLPs predominantly used VH1 family genes (four of ten

mAbs used VH1 gene, 40%) over VH3 family genes (three of 10

mAbs used VH3 gene, 30%), while VH4 and VH5 family genes

were used by 20% and 10% of mAbs, respectively (Fig. 2, Table 4,

Table 2).

The non-HIV-1 mAbs with undefined specificity selected by

JRFL-VLPs (N = 24), Bal-VLPs (N = 19) and Gag-VLPs (N = 15)

(Table 2) predominantly used the VH3 family genes (mean 54%)

followed by VH4 genes (25%), while VH1 and VH5 family genes

were used by 15% and 5% of produced mAbs, respectively (Fig. 2;

Table S1, S2 and S3). The pattern of Ig gene usage by non-HIV-1

mAbs was very similar to Abs produced from single B cells derived

from four healthy individuals as reported by a separate published

study [21] (Fig. 2).

There is partial statistical evidence that the two groups of mAbs

might differ specifically in their usage of VH3 and VH1 genes. In

the non-HIV-1 group of mAbs the usage of VH3 is dominant over

the VH1 gene (p = 0.0003, N = 58) and similarly in control mAbs.

In contrast, there is no such dominance in the anti-HIV-1 mAbs

which preferentially use VH1 over VH3 genes (p = 0.50, N = 10).

The VH1 genes in anti-HIV-1 are more frequently used than in

non-HIV-1 mAbs as tested by binomial tests (p = 0.055) (Fig. 2).

The reduction of VH3 and/or dominance of VH1 family gene

usage by anti-HIV-1 Env mAbs was observed previously

[9,10,11,12,15], but the normal pattern of Ig genes used by non-

HIV-1 Env mAbs derived from the same HIV-1 infected donor is

a new observation.

Discussion

Virus-like particles have previously been utilized to isolate HIV-

specific B cells for analysis of production of mAbs [18]. Although

the comparative utility of VLPs as B cell probes compared with

Table 1. Anti-HIV-1 envelope mAbs produced from single IgG+ memory B cells selected using JRFL expressing virus-like particles.

# mAb Site

ELISA
gp120MN

O.D.1

ELISA
gp41MN

O.D.1

JRFL/
293T
%2

SF162/
293T
%2

(-)/
293T
%2

ELISA
cardiolipin;
O.D.1

1 3b5 V3 3.6 0.1 5.3 44.6 0.8 0.1

2 3b38 V3 3.7 0.1 8.4 46.9 2.0 0.2

3 3b96 V3 3.7 0.1 25.2 49.9 6.6 0.2

4 3c50 CD4bs 3.5 0.1 3.6 47.8 1.6 0.2

5 3c25 CD4bs 2.3 0.1 3.4 35.3 1.7 0.3

6 3c81 CD4bs 2.1 0.1 4.4 46.6 2.1 0.1

7 3c53 gp41 0.1 3.7 24.2 27.1 12.1 2.2

8 3b95 gp41 0.1 1.9 7.1 16.8 3.0 2.0

9 3c16 gp41 0.1 3.0 1.2 14.2 1.2 0.2

10 3c91 gp41 0.1 1.0 1.9 2.5 2.0 0.3

C (+) 447 V3 3.5 0.1 35.7 56.1 11.3 0.1

C (+) 654 CD4bs 1.9 0.1 nt nt 1.6 nt

C (+) 167 gp41 0.1 3.3 nt nt 2.2 2.3

C (+) serum – nt nt nt nt nt 1.2

C (2) 1418 B19 0.1 0.1 1.2 1.3 1.2 0.1

C (2) serum – nt nt nt nt nt 0.1

1A standard ELISA was used to determine the binding activity of mAbs to antigens. Monoclonal Abs were tested at a concentration of 10 mg/ml against gp120 and gp41
coated onto ELISA plate at 1 mg/ml; cardiolipin at a concentration of 45 mg/ml in ethanol was coated by evaporation at 4uC overnight. The numbers are O.D. values;
bold numbers indicate specific reactivity based on value above cutoff which was defined as the mean binding of mAb 1418 (specific to parvovirus B19) +3 standard
deviations. 2Flow cytometry was used to measure the mAb binding to JRFL, SF162 Env-transfected 293T cells and native 293T cells as control. The bold numbers
indicate percent of cells specifically reactive with mAbs based on values above cutoff determined with irrelevant mAb 1418 as described above. C(+) – positive control;
C(-) – negative control; nt – not tested.
doi:10.1371/journal.pone.0039534.t001

Table 2. Biased usage of VH family genes by anti-HIV-1 mAbs
produced from one infected individual.

VH family1
JRFL-VLPs
anti-HIV-1

JRFL-VLPs
non-HIV-1 env

BaL-VLPs
non-HIV-1 env

(-)Gag-VLPs
non-HIV-1

1 4 (40%) 5 (21%) – 4 (27%)

3 3 (30%) 12 (50%) 12 (63%) 7 (47%)

4 2 (20%) 6 (25%) 6 (32%) 3 (20%)

5 1 (10%) 1 (4%) 1 (5%) 1 (6%)

Total No. 10 24 19 15

of mAbs 68

1VH family 2, 6 and 7 were not detected; predominantly used VH family genes
by mAbs are in bold type.
doi:10.1371/journal.pone.0039534.t002
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rationally-designed epitope scaffolds [22], gp140-based reagents

[10], or neutralization screens [23] has not been fully evaluated,

the potential for VLPs to correctly present the native trimer is

attractive for this purpose. VLPs may be particularly well-suited to

identify reactivity against quaternary epitopes [24,25]. The current

report extends previous findings employing VLPs for B cell

isolation from HIV-infected individuals, and establishes that

neutralizing antibodies can be identified with this technique.

Table 3. Neutralization of pseudoviruses by anti-V3 and anti-CD4bs mAbs.

V3 CD4b B19

Virus Tier Clade 3b38 3b96 3b5 3c50 3c81 3c25 1418

Bx08.16 1B B ,0.4 ,0.4 0.8 2.1 5.2 10.6 .50

SF162.LS 1A B ,0.4 ,0.4 ,0.4 0.5 1.2 .50 .50

BaL.26 1B B 0.6 ,0.4 1.2 2.3 .50 6.3 .50

SS1196.1 1B B 1.6 0.5 3.3 11 .50 .50 .50

MW965.26 1A C 0.4 15 3.1 .50 .50 .50 .50

271-11 1B AG .50 0.6 25.9 .50 .50 .50 .50

HXB2.DG 1B B .50 nt .50 ,0.4 0.6 nt .50

6535.3 1B B .50 2.1 .50 3.4 .50 .50 .50

DJ263.8 1B A 0.7 .50 .50 .50 .50 .50 .50

BZ167.12 1B B 1.3 .50 .50 .50 .50 .50 .50

HO31.7 2 B 14.6 nt .50 .50 .50 .50 .50

JRFL.JB 2 B 49.9 nt .50 .50 .50 nt .50

WITO4160.33 2 B .50 38.3 .50 .50 .50 .50 .50

QH0692.42 2 B .50 nt 43.7 .50 .50 .50 .50

25710-2.43 1B C .50 .50 .50 .50 .50 .50 .50

ZM109F.PB4 1B C .50 nt .50 .50 .50 .50 .50

ZM197M.PB7 1B C .50 .50 .50 .50 .50 .50 .50

242-14 1B AG .50 .50 .50 .50 .50 .50 .50

HO29.12 1B B .50 nt .50 .50 .50 .50 .50

HO30.7 2 B .50 nt .50 .50 .50 .50 .50

AC10.0.29 2 B .50 .50 .50 .50 .50 .50 .50

CAAN5342.A2 2 B .50 .50 .50 .50 .50 .50 .50

REJO4541.67 2 B .50 .50 .50 .50 .50 .50 .50

RHPA4259.7 2 B .50 .50 .50 .50 .50 .50 .50

SC422661.8 2 B .50 .50 .50 .50 .50 .50 .50

TRO.11 2 B .50 .50 .50 .50 .50 .50 .50

THRO4156.18 2 B .50 .50 .50 .50 .50 .50 .50

CAP45.2.00.G3 2 C .50 nt .50 .50 .50 .50 .50

CAP210.2.00.E8 2 C .50 nt .50 .50 .50 .50 .50

Du156.12 2 C .50 nt .50 .50 .50 .50 .50

Du172.17 2 C .50 nt .50 .50 .50 .50 .50

Du422.1 2 C .50 nt .50 .50 .50 .50 .50

ZM53M.PB12 2 C .50 nt .50 .50 .50 .50 .50

ZM135M.PL10 2 C .50 nt .50 .50 .50 .50 .50

ZM214M.PL15 2 C .50 nt .50 .50 .50 .50 .50

ZM233M.PB6 2 C .50 .50 .50 .50 .50 .50 .50

ZM249M.PL1 2 C .50 nt .50 .50 .50 .50 .50

HO35.18 3 B .50 nt .50 .50 .50 .50 .50

HO61.14 3 B .50 nt .50 .50 .50 nt .50

PVO.4 3 B .50 .50 .50 .50 .50 .50 .50

TRJO4551.58 3 B .50 .50 .50 .50 .50 .50 .50

1Neutralization of pseudoviruses was performed using the TZM-bl cell assay. All mAbs were titrated by 2-fold serial dilutions from maximum concentration of 50 mg/ml.
The number above represent the concentration of mAb needed for 50% neutralization (IC50); the bold number indicates mAb with neutralizing activity above 50%.
Monoclonal antibody 1418 (against parvovirus B19) was used as negative control. nt – not tested.
doi:10.1371/journal.pone.0039534.t003
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The finding that reactivity against gp41 epitopes was selected by

a VLP-based immunogen also raises the possibility that antibodies

that recognize both the MPER and the lipid bilayer of the VLP,

similar to the activity of 2F5 [26] might be detected by VLPs in

future screening.

For this reason we have used the VLPs to study the antibody

repertoire and Ig gene usage by anti-HIV-1 Env mAbs produced

from selected single B cells using molecular methods. We have

developed 10 anti-HIV-1 mAbs with neutralizing activity to

CD4bs and V3 and non-neutralizing gp41 mAbs. It confirms that

VLPs expose the Env regions, for example CD4bs and V3, which

are immunogenic and can induce neutralizing Abs upon

vaccination.

Production of anti-V3 mAbs came with some surprise as the V3

region is supposed to be cryptic on the JRFL virus according to

a previously published study [27]. It indicates however that the V3

loop is expressed to some extent on the JRFL virus surface, which

is adequate for binding both the B cells and antibodies, but the

affinity of binding is not sufficient for neutralization, possibly due

to steric hindrance. Of the two anti-V3 mAbs tested, only one,

3b38, neutralized the JRFL.JB pseudovirus but just barely below

50 mg/ml for IC50 (Table 3). A similar pattern was observed for

the anti-CD4bs mAbs as none of three such mAbs, selected by

JRFL-VLPs, neutralized the corresponding pseudovirus.

Sorting of the stained IgG+ B cells with JRFL-VLP resulted in

the production of 34 mAbs in which 10 mAbs (29%) were specific

to HIV-1 Env while the remaining 24 mAbs had undefined

specificities, but not to HIV-1 Env antigens. The high percentage

of non-HIV-1 mAbs could be related to various factors which

determine the non-specific binding of VLPs to B cells but which

were not tested in this study with the exception of polyreactivity.

The percentage of polyreactive mAbs among those which were

non-specific was quite low as only three out of 58 (5%) mAbs

bound to native 293T cells (data not shown) while among anti-

HIV-1 mAbs this percentage was higher, three of 10 (30%) bound

to native 293T cells and four of 10 (40%) bound to cardiolipin

(Table 1). Interestingly, three out of four gp41 mAbs bound to

cardiolipin and, as shown in another study, the mAbs to gp41

cluster II epitopes located close to the cell membrane are

particularly prone to polyreactivity [28]. The frequency of

polyreactivity in our anti-HIV-1 mAbs is comparable but not

the same as by another study where 75% of 134 human anti-HIV-

gp140 mAbs cloned from single B cells derived from six patients

bound to various autoantigens, including cardiolipin [29].

Immunoglobulin gene usage analysis usually requires a large

panel of antibodies to determine any predominance, but even in

the small group of 10 anti-HIV-1 Env mAbs developed in this

study, we have noticed preferential usage of VH1 over VH3 family

genes which confirmed the biased usage observed in several other

studies. For instance, the VH1 gene family was exclusively used by

human mAbs against CD4i and preferentially by anti-gp41 mAbs,

as well as by other anti-HIV-1 mAbs [9,10,15]. The reduced usage

of VH3 family genes was observed among human mAbs against

CD4bs, CD4i, gp41 and V3 developed by cellular methods (based

on EBV transformation and fusion of reactive B cells with

myeloma cells), while the VH5-51 gene was dominant among anti-

V3 mAbs [9,10,12,13,14]. It is noted that the biased usage of Ig

genes is observed in mAbs directed to the neutralizing face of

gp120 as such mAbs were preferentially selected by the screening

methods using V3 fusion proteins, trimerized gp140 and VLPs. It

Figure 2. The usage of VH family genes by human anti-HIV-1
and non-HIV-1 mAbs. These mAbs were produced from single B cells
derived from one HIV infected individual and are compared to
antibodies with undefined specificities produced from single B cells
of four healthy control subjects [21]. The preferential usage of the VH3
versus VH1 family genes by non-HIV-1 mAbs compared controls and
significantly increased usage of VH1 family genes of anti-HIV-1 versus
non-HIV-1 mAbs was determined by the Chi-Squared test. NS – not
significant.
doi:10.1371/journal.pone.0039534.g002

Table 4. Anti-HIV-1 envelope mAbs produced from single IgG+ memory B cells selected using JRFL expressing virus-like particles.

# mAb Site IGHV CDR H3 IGLV CDR L3

1 3b5 V3 3–30 AAHYDSYGLNV L1–51 GSWDGGPNLGWV

2 3b38 V3 5–51 ARQGDRSGYDF L6–57 QSYDDTSYV

3 3b96 V3 1–69 VRDGDVGDH L2–14 NSYTSSKSVI

4 3c81 CD4bs 1–18 ARRRAGYGWGSDYSDGFYFDY K1–5 QQYNSYPT

5 3c50 CD4bs 1–69 ARERLHARGPLGTRYYGLDV K3–15 QHYNSWPRT

6 3c25 CD4bs 4–59 TRDSPKRYSYDRRHYYYFGLDV L2–14 NSHTSSGTLV

7 3c16 gp41 1–69 ARARRDGLLFTFDN K1–16 QQYNSYPPT

8 3c53 gp41 3–30 AKDRSSSNWYEYYYGMDV L1–44 AAWDDILNGWV

9 3c91 gp41 3–23 AKDARPKTRYYDILTGYYSPEGDYYAMDV L3–1 QAWDSSTACV

10 3b95 gp41 4–31 ARGRPHNRYSTRAYFDY K3–20 QQYGSSPPIT

The sequences have been submitted to GenBank (accession numbers: JQ301900– JQ301919).
doi:10.1371/journal.pone.0039534.t004
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is possible that the non-neutralizing mAbs may have different Ig

gene usage but they were not yet analyzed.

However, in 58 non-HIV-1 mAbs developed using the Gag-

VLPs and an additional two other VLPs, the usage of Ig genes was

not biased but, rather, identical to the pattern observed in Abs

derived from single B cells of healthy subjects. As both panels of

mAbs, anti-HIV-1 and non-HIV-1 specific, were produced from

single B cells derived from one infected individual, this suggests

that biased usage of Ig genes by HIV-1 antibodies is related to

antigen selection of naı̈ve B cells with receptors encoded by

particular VH1 family genes which provided a more optimal fit.

Apparently the VH3 family genes are not preferentially used by

anti-HIV-1 Abs compared to non-HIV-1 Abs.

The reduced usage of VH3 family genes by anti-HIV-1 Abs was

thought to be the result of the depletion of B cells with Ig receptors

encoded by VH3 genes, which are a natural ligand for HIV gp120

[16]. It was found that gp120 as a superantigen has the ability to

bind to a conserved surface on the VH3 region of Ig molecule

mAbs [10,12,13]. It was hypothesized that the VH3 B cells

bearing HIV gp120 can become a target for cytotoxic T cells

which would eliminate these B cells, as being HIV-1 infected. If

this is what occurs, then we would observe that B cells producing

non-HIV-1 Abs encoded by the VH3 family genes will be also

eliminated. Our study showed, however, that this was not the case

in this HIV-1 infected donor, as the non-HIV-1 Abs were

preferentially using VH3 genes, indicating that the corresponding

B cells were not eliminated. It is possible that gp120 shed from

virions can bind as superantigens to VH3 B cells but, most likely,

the amount of bound gp120 is not sufficient for the B cells

depletion mediated by effector T cells. Eventually this may occur

in patients in the advanced stages of disease because, in one of the

first papers which reported this phenomenon, the B cells

expressing the VH3 gene segment were more reduced in patients

with AIDS symptoms than in asymptomatic HIV-1 infection

[10,12,13,14].

Our observation is supported by an experimental study in

rhesus macaques infected with chimeric viruses expressing HIV-1

Env proteins on a simian immunodeficiency virus (SIVmac)

backbone (SHIV) [30]. During the primary infection with SHIV,

the average representation of VH3 bearing B lymphocytes did not

change suggesting that gp120 did not deplete the VH3 repertoire

of B cells [30]. Furthermore, we analyzed the data from the study

by Scheid et al [10,12,13] who developed gp140 non-binding

mAbs along with anti-HIV-1 Env Abs and 45 of 92 (49%) of these

non-HIV-1 Abs preferentially used VH3 family genes, supporting

our similar observation.

We thus postulated that biased Ig gene usage by anti-HIV-1

mAbs is related to preferential selection of some VH-encoded Abs

by the particular antigen and is not the result of compensation to

depletion of VH3 B cells, as the gp120 superantigen hypothesis

would suggest.

Materials and Methods

Ethics Statement
The study was approved by the New York University School of

Medicine Institutional Review Board. A volunteer signed written

approved informed consent forms prior to participating in the

study.

Study participant. The HIV-1 infected individual had been

seropositive and asymptomatic for at least 15 years and had CD4

T-cell counts of 378 per ml and viral load 22,000 RNA copies/ml.

Patient was presumably infected with clade B virus based on the

residences in the New York City area.

Human anti-HIV-1 and Control Monoclonal Antibodies
Sixty-eight human recombinant mAbs, including 10 anti-HIV-1

and 58 non-HIV-1 envelope (Env) mAbs, were produced from

single B cells derived from a volunteer. The mAbs were produced

using the molecular techniques (see below) according to the

described method [19]. In addition, human mAbs: 447-52D (anti-

V3) [31], 654 (anti-CD4bs) [32], 167-7 (anti-gp41) [20] and 4.8D

(anti-CD4i) [33] were used as positive controls while human mAb

1418 (anti-parvovirus B19) [34] served as a negative control.

Recombinant Proteins
Recombinant gp120MN and gp41MN were purchased from

Immunodiagnostics, Inc. (Woburn, MA). The recombinant

gp120HXB2 mutant was kindly provided by Dr. Catarina Hioe,

NYU School of Medicine. It contains two site mutations, D368R

which abrogate binding of anti-CD4bs mAbs [35] and N448Q

which eliminates the glycosylation site flanking the CD4 T cell

epitope cluster in the C4 region [36].

Green-fluorescent Protein-labeled Virus-like Particles
(GFP-VLPs)

GFP-tagged VLPs were used for staining and single-cell sorting

of Env-specific and non-specific B cells. The engineered GFP-

tagged Vpr VLPs containing the Env proteins from JRFL or BaL

and also one without Env were produced by 293 cells that have

been stably transfected with multiple inducible promoter-driven

constructs: Gag, Vpr-GFP, and JRFL or BaL env genes. The clonal

cell line was selected based on production of VLPs with completely

processed gp120/gp41 (cleaved gp160) as recently described [18].

Western blot analysis and blue native gel electrophoresis assays

revealed the presence of cleaved gp120 and native trimers on the

BaL-VLPs and JRFL-VLPs, respectively [18]. Induction with

doxycycline allows efficient production of VLPs, which are

purified using either iodixanol gradients or sedimenting through

sucrose gradients as described [25].

Sorting VLP-reactive B Cells
VLPs were used for selection of single IgG+ memory B cells

specific to HIV-1 Env proteins as well as non-specific negative

controls. PBMCs were isolated from the heparinized blood of an

asymptomatic HIV-infected individual by Ficoll Hypaque density

gradient centrifugation. The B cells were enriched using anti-

CD19 magnetic beads (Milteyni Biotec, Auburn, CA) and then

were stained on ice for 30 minutes with GFP-VLPs expressing

either JRFL or BaL Env proteins. The enriched B cells contain

usually .90% of B cells according to manufacturer’s protocol.

The Gag-GFP-VLP (without Env) was used as a control for non-

specific binding of VLPs to B cells. The VLPs with or without Env

proteins were normalized by p24 and the VLPs with same

concentration of p24 were used for staining the enriched B cells.

After washing with PBS +1%BSA, the VLP stained cells were

incubated again on ice for 30 minutes with anti-human IgG (Fc)-

Phycoerythrin (PE) and a memory B cell marker anti-CD27-

Allophycocyanin (APC). During single cell sorting, the first gate

was set to select for viable B cells and the next gate was set to select

for memory B cells (APC-CD27+). Then gating was done on the

CD27+ memory B cells to select for those that were IgG+ and also

bound to VLPs. Single cell sorting of a CD27+/IgG+/GFP+

population was performed using the FACSAria (BD Biosciences,

San Jose, CA) in the CFAR Flow Cytometry Core at Bellevue

Hospital (part of NYULSoM). The single IgG memory B cells that

bound to VLPs were sorted into 96-well PCR plates (Thermo

Scientific, Pittsburgh, PA) containing reverse transcriptase buffer,
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DTT, and RNAsin (Promega Corporation, Madison, WI), frozen

on dry ice and stored at 280uC.

RT-PCR Amplification of VH and VL Regions from Single B
Cells

This method was performed according to the technique

described by Tiller et al. [19]. Briefly, total RNA from single

cells was reverse transcribed in the original 96-well sorting plate in

nuclease-free water (Qiagen Inc, Valencia, CA) using a random

hexamer primer (Invitrogen, Carlsbad, CA), dNTP mix (Invitro-

gen), DTT (Invitrogen), Igepal CA-630 (Sigma-Aldrich, St. Louis,

MO), RNAsin (Promega), Prime RNAse Inhibitor (Eppendorf)

and Superscript III reverse transcriptase (Invitrogen). IgH, Igk and

Igl variable gene transcripts were amplified independently by

nested PCR.

All PCR reactions were performed in 96-well plates containing

the external primers mix for first round PCR or internal primers

mix for second round PCR, dNTP mix (Invitrogen), and HotStar

Taq DNA polymerase (Qiagen). The primers used in these assays

were described [19]. Aliquots of the VH, Vk and Vl chain from

the second PCR products were purified with ExoSAP-IT (USB,

Santa Clara, CA) and sequenced with the reverse primer. The

sequence data were analyzed using Pregap4 and BioEdit soft-

waresalong with the International ImMunoGene Tics (IMGT)

information system (http://imgt.cines.fr).

Cloning VH and VL into Expression Vectors
The human Igc1, Igk or Igl expression vectors were kindly

provided by Dr. Michel Nussenzweig (Rockefeller University, New

York, NY). Ligations were performed with T4 DNA-Ligase

(Invitrogen), PCR product and a linearized vector. Competent

E.coli DH10B bacteria (Invitrogen) were transformed at 42uC with

5 ml of the ligation product. Colonies were screened by PCR.

Plasmid DNA was isolated from bacterial cultures grown in

Terrific Broth (Invitrogen) containing ampicillin using QIAprep

Spin columns (Qiagen).

Cotransfection of Ig Vectors into 293T Cells for
Production of Recombinant mAbs

The 293T human embryonic kidney cells (ATCC) were

transfected using FuGENE HD (Roche) with equal amounts of

0.5 mg/ml of IgH and corresponding IgL chain expression

plasmids. The cells were then cultured for 3 days in DMEM

supplemented with 10% fetal bovine serum. The culture super-

natants were harvested and IgG Abs were purified by Protein A

chromatography using Hi-Trap IgG columns (GE Healthcare).

The IgG concentrations were determined by quantitative ELISA

[37].

TZM-bl Neutralization Assay
Six recombinant mAbs specific to the V3 region and CD4

binding site (CD4bs) were tested for neutralizing activities against

41 pseudoviruses using the TZM-bl cell line as described [38,39].

Briefly, 2-fold serial dilutions of mAbs, starting from 50 mg/ml,

were preincubated with the virion-containing culture supernatants

and incubated 48 hrs with TZM-bl cells expressing CD4, CXCR4

and CCR5. The virus infectivity was determined by measuring the

luciferase activity in the cell lysates. The reduction of infectivity

was expressed as percent neutralization by comparing the enzyme

activity, as relative light units, in the presence of mAbs versus

absence of mAbs [39,40].

Binding Assays
A standard ELISA was used to determine binding of mAbs to

gp120MN and gp41MN as described [41]. Briefly, ELISA plates

were coated overnight at 4uC with antigen, blocked with 2% BSA

in PBS, and then incubated for 1.5 h at 37uC with human mAbs at

10 mg/ml; the bound mAbs were detected by incubation with

alkaline phosphatase (AP)-conjugated goat anti-human IgG (Fc)

followed by incubation with substrate and the plates were read at

405 nm.

IgG quantitation was also performed by ELISA as described

[37]. Briefly, ELISA plates were coated with goat anti-human IgG

(Fc) and incubated with culture supernatants. Bound IgG was

detected with alkaline phosphatase-conjugated goat anti-human

IgG (Fc). Affinity-purified human IgG (Sigma) was used to

produce standard curves.

Binding of mAbs to cardiolipin was tested by ELISA. Briefly,

60 ml cardiolipin at a concentration of 45 mg/ml in ethanol was

coated onto ELISA plates by evaporation at 4uC overnight. Plates

were then blocked to prevent non-specific binding of immunoglo-

bulins with 100 ul 2% BSA for 2 hrs at room temperature then the

procedure was followed according to the standard ELISA as

described above.

The effect of soluble CD4 (sCD4) on mAbs binding to gp120

was tested by standard ELISA; sCD4 at concentration of 2 mg/ml

was incubated with gp120 prior to mAbs binding to gp120.

Binding of human mAbs was detected using alkaline phosphates

conjugated goat anti-human IgG (Fc).

Flow Cytometric Analysis
Binding of mAbs to Env-transfected cells. 293T cells were

transfected either with the JRFL or SF162 env expression vector

and pSV-rev vector using FuGENE HD. The cells were harvested

36 hrs post-transfection and incubated with 10 mg/ml of human

mAb for 30 minutes at 4uC followed by staining with goat F(ab)2

anti-human IgG (c) conjugated with PE (Caltag Laboratories,

Burlingame, CA). The cells were then fixed with 2% para-

formaldehyde and analyzed by flow cytometry using a FACSCa-

libur (Becton Dickinson, San Jose, CA) as described [42].

Statistical Analysis
Binomial and Chi-Squared tests were used to compare the Ig

gene usage by human mAbs.

Supporting Information

Figure S1 Binding of mAbs selected by JRF-VLPs and
control anti-HIV-1 mAbs to gp120MN alone and preincu-
bated with soluble CD4. The study was performed by standard

ELISA using 96-well plates coated with gp120MN at a concentra-

tion of 1 mg/ml and incubated with sCD4 at a concentration of

2 mg/ml prior to incubation with mAbs at 10 mg/ml. Binding of

human mAbs was detected using alkaline phosphates conjugated

goat anti-human IgG (Fc).

(DOCX)

Table S1 Human non-HIV-1 mAbs produced from
single IgG+ B cells selected using JRFL-VLPs. This table

depicts a list of 24 human mAbs produced from single B cells

derived from an HIV-1 infected individual (the same as in Table

S2 and S3) and stained with JRFL-VLPs but which did not show

any binding activity to HIV-1 Env proteins. Each mAb is unique

as determined by the usage of IGHV and IGLV genes, length and

sequence of the CDR H3 domain.

(DOCX)
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Table S2 Human non-HIV-1 mAbs produced from
single IgG+ B cells selected using BaL-VLPs. The listed

19 mAbs were produced from B cells selected with VLPs

expressing HIV-1BaL Env proteins and did not show any binding

activity to Env proteins.

(DOCX)

Table S3 Human non-HIV-1 mAbs selected from single
IgG+ B cells using Gag-VLPs. This table shows a list of 15

mAbs, selected by VLPs without HIV-1 Env proteins, which did

not react with Env proteins.

(DOCX)
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