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Summary 

 
We use a parallel single molecule assay that utilizes magnetic tweezers to demonstrate 

homologous pairing of two double-stranded (ds) DNA molecules in the absence of 

proteins, divalent metal ions, crowding agents or free DNA ends. Under physiological 

conditions of temperature and monovalent salt, pairing is quite accurate and rapid, even 

at DNA molecule concentrations that are orders of magnitude below those found in vivo 

and in the presence of a large excess of nonspecific competitor DNA. Crowding agents 

further increase the reaction rate. Pairing is readily detected between regions of 

homology of 2kb or more. The detected pairs, of all lengths, are stable not only against 

thermal forces but to shear forces up to 10pN.  The rate of pairing increases 

monotonically with the square of the DNA concentration, the length of homology, and 

the concentration of either K+ or Na+.  Pairing increases with temperature up to 40°C and 

then decreases. Several lines of evidence exclude Watson-Crick base pairing as the basis 

for pairing. These results strongly suggest that direct recognition of homology between 

chemically intact B-DNA molecules should be possible in vivo.  Indeed, the robustness of 

the observed signal raises the possibility that pairing might be the “default” option such 

that, in general, specific features must be present to limit pairing to particular desired 

situations. The possibility of protein-independent homologous pairing of intact dsDNA 

has been predicted theoretically, with more than one pairing mechanism proposed.   

Further studies will be required to determine whether existing theories fit the sequence 

length, temperature and salt dependencies described in this work.    
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  Introduction 
 
 Pairing of homologous DNA/chromosome regions is a central feature of many 

biologically important processes. Recombinational double-strand break repair and 

programmed homologous recombination during meiosis all involve complex series of 

biochemical reactions in which single-stranded (ss) DNA plays a prominent role.   

Homology recognition and pairing reactions mediated by bacterial RecA protein and its 

archael and eukaryotic relatives are initiated by loading of multiple protein molecules 

onto a ssDNA segment; the resulting protein/ssDNA filament then searches for a 

homologous region of duplex DNA (1). In another type of reaction, “single-strand 

annealing” (SSA), two complementary ssDNA regions directly anneal to one another as 

mediated by other types of proteins (2). The basic natures of homology recognition for 

these reactions are largely understood. 

 There also exist homologous pairing reactions that, as far as can be discerned, 

involve interactions between chromosomal regions whose DNAs are chemically intact 

double-stranded (ds) DNA. In contrast to recombination-related processes, the basis for 

homology recognition in these “recombination-independent” pairing processes remains 

essentially unknown. 

 The original and best-studied case of such “recombination-independent pairing” 

occurs in the fruit fly Drosophila melanogaster (3). In this organism, the maternal and 

paternal versions of each chromosome (i.e. “homologs”) are juxtaposed all along their 

lengths from the 12th-13th divisions of the developing embryo onward. This “somatic 

pairing” is then further reinforced during the specialized program of meiosis.  

Recombination-independent pairing is the rule for Drosophila male meiosis and is also 

present during female meiosis, in addition to a meiosis-specific recombination-dependent 
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mechanism. Several lines of evidence suggest that, in all of these situations, pairing 

involves interactions that occur independently at many different positions along the 

chromosomes, a mode that has been called “egalitarian” pairing.  Evidence for analogous 

recombination-independent pairing via multiple interstitial interactions has also been 

presented for Sordaria (4) and budding and fission yeast (5-12), with hints of such effects 

in humans (13). Additionally, in the filamentous fungi Neurospora and Ascobolus, certain 

repeat-recognition phenomena are proposed to involve direct pairing of the involved 

sequences (14, 15). 

 In other situations, recombination-independent pairing is found to occur at a 

certain specific locus.  Examples include pairing between: (i) the X and Y chromosomes 

during male meiosis in Drosophila (3); (ii) “pairing centers” present near, but not at, the 

end of each chromosome during meiosis in the nematode C.elegans (16) and (iii) the two 

X chromosomes in cells of placental mammals, prior and prerequisite to inactivation of 

one of the two partners (17-20).  In the first two cases, the involved DNA regions carry 

multiple non-tandem repeats; and in all three cases, specific proteins are implicated in 

either establishment and/or maintenance of pairing.  More generally, there is a tendency 

for heterochromatic regions (characterized by a paucity of genes and a less “open” 

chromatin structure) to cluster independent of sequence homology and, in that context, to 

engage in sequence specific interactions that either establish or maintain a pairing contact 

(3, 16).   

The central question for recombination-independent pairing is determining the 

basis for homology recognition. The most obvious possibility is direct DNA/DNA 

interaction between homologous sequences. Theoretical models have been proposed in 

which homology recognition arises from non-Watson-Crick hydrogen bond interactions 
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between bases in the major or minor grooves (21, 22). Local melting could also occur, 

permitting recognition via standard Watson-Crick base pairing. Other theories suggest 

that homology recognition can occur due to interactions between sequence-dependent 

charge distributions associated with neighboring DNA helices, where the charge 

distributions include not only the phosphates in the DNA but also other monovalent 

and/or divalent ions that are bound to or very near the neighboring DNA molecules (23-

32). Interaction-induced correlations between the spatial distribution of charges can result 

in energy minimization when sequence-matched helices are in close proximity (24-26, 

31-36, SI text). Despite its a priori attractiveness, acceptance of the possibility of pairing 

via direct DNA/DNA interactions has been impeded by the lack of conclusive 

experimental evidence that such a process is possible in biologically-relevant conditions. 

Encouragement is provided, however, by recent experiments showing evidence for 

preferential interactions between DNA molecules with like sequences (37, 38). 

Two other general scenarios for homology recognition have also been envisioned.  

In one scenario, information comes from local sequence information that is read out 

indirectly into other determinants that mediate the actual pairing process, e.g. site-specific 

binding proteins which then “dimerize” in trans or interaction of transcription complexes 

and/or RNAs that then carry out the inter-chromosomal interaction (39). In the other 

scenario, homology is recognized along the length of a chromosome only via the spatial 

pattern of particular inter-chromosomal snaps which, in the most extreme case, could be 

identical at every position in the array (31). 

 The present study further investigates the possibility of direct, homology-directed 

protein-independent dsDNA / dsDNA pairing. We provide multiple lines of evidence for 

homology-dependent pairwise interactions between chemically intact DNAs. We show 
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that such pairing can occur under biologically sensible conditions, at positions far from 

the ends of the interacting molecules, in the presence or absence of non-specific 

competitors. Conditions known to promote nonspecific aggregation of DNA are avoided.  

We also begin to explore parameters of sequence length, temperature and monovalent salt 

concentration to provide a good basis for comparison with proposed theoretical models 

for pairing. This analysis was carried out with a parallel single molecule approach that 

uses magnetic tweezers and permits simultaneous and specific detection of hundreds of 

paired molecules.  

 The presented results should encourage further research into the nature of 

biologically significant cases of recombination-independent pairing and will provide an 

opportunity to advance the many theoretical studies that have made predictions about the 

functional dependence of the pairing whose differentiation and validation require 

experimental data. 
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Results 

Pairing of homologous DNAs was determined using the parallel single molecule, 

magnetic tweezers-based, assay system described in Fig. 1 and Materials and Methods.   

The homology-dependent DNA/DNA pairing was investigated using a technique similar 

to a sandwich assay (Fig. 1). Pairing of two DNAs is monitored by measuring the number 

of bound beads attached to a capillary surface, where the beads are connected to the 

surface by the paired DNA. The two DNAs of interest are differentially labeled at 

“opposite” termini, one with biotin and the other with digoxigenin (Dig)  (above; Fig. 2, 

green circles and red diamonds, respectively). The Dig-labeled DNA can attach 

specifically to the anti-Dig labeled capillary, and the biotin labeled DNA can attach 

specifically to the magnetic bead. No single DNA molecule can specifically bind a 

magnetic bead to the capillary surface, but if a DNA molecule labeled with Dig pairs with 

a DNA molecule labeled with biotin, then a paired molecule can specifically bind to both 

a bead and the capillary.   Thus, only paired molecules can specifically bind magnetic 

beads to the capillary, so the number of paired molecules can be determined by counting 

the number of magnetic beads bound to the capillary.   

  The presence of homologous pairing is further documented by quantification of 

the distance of the tethered beads away from the surface of the slide (Fig. 1). In all 

experiments, pairing was examined between a Dig-labeled full-length lambda (λ)  DNA 

and one of a variety of biotin-tailed partners (above), either full-length λ or a smaller 

molecule carrying a subregion of λ. If pairing detected by bead tethering is homologous, 

the distance of the bead to the surface should correspond to sequence matched position of 

the biotinylated end along the complete λ molecule.  Thus, the position of beads 

corresponding to the pairing of two complete λ molecules is approximately the same as 
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the ~12 micron length of λ when extended by a force of 2 pN, whereas partners with ends 

that are sequence matched to regions inside λ will have shorter bead/capillary 

separations.  In this system, paired molecules are tethered to a glass slide at one end of 

one partner and extended by 2 pN of force imposed on a magnetic bead tethered to the 

opposite end of the other partner.  Pairing is detected as tethering of a bead attached to 

the end of one of the two molecules, with homologous pairing revealed by signals present 

at the appropriate diagnostic distance from the slide.  Standard conditions for analysis of 

pairing were 150 mM NaCl phosphate buffer (PBS) at 25°C with equal volumes of the 

two differently labeled molecules, always at equal concentrations, which ranged from ~3-

10 nM (in molecules) and 30-100 ug/ml. 

A signal diagnostic of homologous λ  x λ  pairing emerges with time of incubation. Co-

incubation of differentially-labeled λ DNAs under standard conditions results in the 

appearance of an appropriate diagnostic signal (Fig. 2A). The level of this signal initially 

increases with time and then plateaus. Further, at very short (10 min) incubation times, no 

pairing signal is observed above the non-specific background, confirming that no pairing 

is occurring during the tethering steps and thus that the signal observed after longer 

incubation times does not involve artifactual co-localization of DNAs on the beads or 

other features of the detection system. In most experiments, the level of DNA-DNA pairs 

formed as a function of incubation time approaches an asymptotic value (e.g. Fig. 2A). 

For full λ pairing with full λ the plateau probably occurs because most of the molecules 

in the reaction have already become paired, as discussed further below. 

The λ  x λ  pairing signal results from pairwise association.  

To test that the bead binding in the singly labeled samples is indeed due to two-by-two 

interactions between molecules, and not to a higher order interaction, we measured the 
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rate of bead tethering as a function of the DNA(s) concentration. In a pairwise 

interaction, the rate of formation of beads bound at the appropriate diagnostic distance 

should increase with the square of the (equal) concentrations of the two differentially 

labeled DNAs. For this analysis, we measured the number of bound beads formed after a 

1 h pairing incubation. For this 1 h incubation time, the level of pairing increases linearly 

with time, implying that the number of bound beads corresponds to the pairing rate rather 

than the equilibrium value as can be seen in Fig. 2A.  Fig. 2B shows that the number of 

beads bound after 1 h incubation increases with the square of the concentration of 

molecules in the pairing mixture for DNA(s) concentrations of 30 to 100 µg / ml (1- 3 

nM in molecules. There is a possible slight deviation from this relationship at the highest 

concentration where, even at a short incubation time, the number of bound beads may 

have begun to saturate due to almost complete pairing in the sample (below). At 

concentrations below 30 µg / ml (1 nM in molecules) the number of tethered beads is of 

the order of the non specific binding signal. These data confirm that the observed bead-

tethering signal represents a pair-wise DNA/DNA interaction.   

Homologous λ  x λ  pairing is very efficient.  

To assess the efficiency of homologous pairing we compared the number of tethered 

beads observed in a standard  λ x λ pairing reaction experiment with that observed for a 

single λ with biotin attached at one end and Dig attached at the other.  For this construct 

tethering does not require interaction with another molecule. The two samples contained 

the same total amounts of DNA (100 µg / ml (3 nM)), and were incubated in parallel in 

150 mM NaCl at 37°C for 1 h. A typical result was 820 bound beads for the doubly 

labeled control DNA sample and 42 bound beads for the pairing DNA sample.  Perfect 

pairing would correspond to a bound bead number that is 25% of that seen for the doubly 
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labeled DNA* implying that the pairing efficiency under these conditions is slightly over 

20 %. An even higher level of pairing can be achieved at modestly higher DNA and salt 

concentrations and longer incubation times (Fig. 2A). Thus: homologous pairing of two 

48 kb λ DNAs is an extremely efficient process, with essentially complete pairing readily 

achievable. 

 [*Footnote:  (i) if all molecules were present in homologous pairs, half of all pairs 

would contain either two biotin-labeled molecules or two Dig-labeled molecules and 

would not be detected; and (ii) each tethered bead represents two λ DNAs rather than a 

single DNA as in the control sample.]   

 

5 kb DNAs pair with the homologous regions of full length λ  DNA.    

 To further explore the requirements of homologous pairing we examined the 

interaction between λ DNA labeled with Dig and a series of biotinylated DNAs carrying 

1-to-5 kb subregions of λ  corresponding to selected positions along the length of the full 

λ molecule.   

  As discussed above, an important signature of homologous pairing is the 

separation of the magnetic bead from the capillary, which should match the position of 

the λ sequence that matches to the biotinylated end of the 5 kb fragment. Histograms of 

the fraction of the detected beads that were located at a particular distance from the 

capillary are shown in Fig. 3 for three different homologous subregions of λ. In each 

case, pairing occurs at exactly the appropriate specific position as shown by the 

distribution of length for tethered beads after a 1 h pairing incubation period (Fig. 3, blue, 

green and purple histograms). For comparison, the distribution of bead positions is also 

shown for the standard λ x λ pairing reaction and for the control sample in which biotin 
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and Dig-labels are present at the two ends of each individual DNA (Fig. 3, yellow and 

gray-outlined histograms, respectively).   

 The 5 kb DNAs used for the above analysis comprised only the sequences of 

interest, leaving open the possibility that pairing might require separation of Watson-

Crick base pairs at the ends of the molecule. To exclude this possibility we also examined 

pairing of Dig-labeled full-length λ with a molecule in which the 5 kb of λ  sequence was 

embedded in non-homologous sequences of 400 bp and 2 kb present at bead-proximal 

and bead-distal ends, respectively. Pairing still occurs at the appropriate position (Fig. 3, 

compare magenta outline histogram with underlying blue histogram in top panel) at 

comparable efficiency.  Pairing at the homologous position is also observed between full-

length λ and homologous 5 kb DNAs with much longer tails (prepared as in Fig. S1AB; 

data in Fig. S1C, second row; further discussion below). 

 Importantly, and in contrast to the above findings, no pairing signal is observed 

between full-length λ and a 5 kb DNA from pcDNA3.1. As shown in Fig. S2A, there is 

no increase in the number of bound beads as a function of the incubation time, with the 

number of beads bound (per unit length of capillary) similar to that seen in control 

samples containing either of the two types of DNA alone (not shown).  Further, the 

distribution of bead positions peaks at the length of λ (~14 µm) which is also the 

dominant bead position for non-specific binding of the control sample containing only the 

λ DNA end-labeled with Dig (Fig S2BC). 

 

Pairing can be mediated by regions of homology shorter than 5 kb.  Experiments 

analogous to those described above examined pairing between full-length λ DNA and 
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DNAs sharing regions of homology of 1 kb, with and without long flanking DNA tails on 

either side.    

  -  In PBS, in the absence of tails, the pairing of a 1 kb λ DNA by full 

length λ does not result in bead binding that significantly exceeds the controls (see Fig 

S3). 

  -  Molecules with long non-homologous tails flanking 2 kb and 1 kb of 

homology exhibit both high levels of tethered beads, comparable to those for long tailed 

molecules with 5 kb of homology (Fig. S1C, 2nd to 4th rows).  Further, in all three cases, 

the pairing signal is absolutely dependent on the presence of homology: the number of 

bound beads present with a homologous regions sandwiched between long tails 

significantly exceeded those seen in the standard control samples as well in analogous 

pairing reactions containing Dig-labeled λ DNA and a biotin-labeled molecule containing 

only the non-homologous tail regions and no λ DNA (data not shown).  Interestingly, 

however, all long-tailed molecules with central regions containing λ homology give 

broad distributions of bead positions, even when the homology region was 5kb.  Further, 

the breadth of the distribution tends to increase as the length of the homologous region 

decreases, where some distributions do not even peak at the position of the homology. 

This spreading of the distribution appears to be related to the presence of long non-

homologous tails, as it was not observed for 1 kb or 5 kb fragments lacking tails  (e.g. 

compare first and second rows of Fig. S1C), and is not a prominent feature of a 5 kb 

region with shorter tails, although there may be some spreading towards shorter distances 

in that case (Fig. 3, top panel). 

 All of these data can be united by a model in which (i) formed pairs are 

significantly unstable; (ii) in the presence of long non-homologous tails, loss of 
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homology-dependent contacts leads to “sliding” of the smaller duplex, which preserves 

the interaction at non-homologous positions; while (iii) in the absence of adjacent non-

homologous tails, loss of homologous contact results in unbinding (see also above).  This 

model requires the existence of a short-range non-sequence specific attractive interaction 

which becomes important only after homologous interactions have brought the non-

homologous portions into sufficient proximity for the short range non-specific interaction 

to become important. The existence of a short range non-sequence dependent interaction 

is consistent with experimental observations that have shown that dsDNA will form 

tightly coiled toroids; further, toroid formation can be initiated by kinks that bring parts 

of the dsDNA molecule close to itself (40), analogous to the proposed effect of 

homologous pairing in the present experiments.   

Homologous pairing is increased by crowding agents and is not affected by the 

presence of competitor DNA or BSA.   We were interested to know whether pairing 

would be altered by inclusion of additional factors that bring the reaction conditions 

closer to those present in vivo. 

 Molecular crowding.   Our standard pairing reactions contain ~ 0.003 pmol of 

each type of DNA in a 2 µl volume, for an overall total molar concentration of 

homologous molecules of 3nM. This is roughly commensurate to the molar 

concentrations of two homologous DNAs in a single yeast cell nucleus (two molecules in 

nucleus of 1µm diameter and thus a volume of 10-15 l). It might be expected that the 

excluded volume effects associated with the molecular crowding in vivo might increase 

the pairing level. We therefore tested the effects of polyethylene glycol (PEG), average 

molecular weight 8000 daltons, which is often used as a crowding again in DNA 

experiments.  The presence of PEG produces a 4-fold increase in the formation of DNA-
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DNA pairs during short incubation times (1-5 h), implying an increase in the initial 

pairing rate (Fig. 4A).  It is in good agreement with previous results pointing to 

homology-dependent dsDNA associations under conditions of crowding created by 

osmotic stress (37,38).   

 Non homologous competitor DNA.  We find that pairing between a λ molecule 

and a 5 kb fragment (lacking tails) is unaffected by the presence of unrelated DNAs of 

several types, except at high concentrations of competitor where pairing is actually 

increased.  (1) Pairing is unaffected by the presence of a 5 kb fragment of pcDNA3.1 at 

three times the concentration of the 5 kb λ fragment (in molecules and base pairs) (Fig. 

4B).  (2)  Similarly, human genomic DNA containing fragments of sizes between 40 and 

300 kb, with an average at 200 kb at a concentration ratio of 1:4-fold in molecules and 

10:1-fold in base pairs does not affect pairing (Fig S4).  (3) Finally, in the presence of 

fish sperm DNA, average length of about 400 bp, at a concentration ratio in molecules of 

250:1 (20:1 in base pairs) relative to the 5 kb λ fragment, both the rate and final level of 

pairing are increased. We attribute this increase to molecular crowding at the high 

competitor DNA concentrations used in this experiment. We also note that the total DNA 

concentration (in base pairs) present in the latter experiment ~ 2 mg/ml, approaches the 

range DNA concentrations found in a eukaryotic nucleus in vivo (10-50 mg/ml). Thus: 

homologous pairing is not decreased by the presence of competitive non-homologous 

dsDNA at concentrations substantially exceeding those of the homologous dsDNA, for 

competitors having lengths longer, shorter, or equal to the length of the 5 kb homologous 

DNA partner.  
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Protein.  We probed the effect of proteins on the pairing reaction by including 0.1 

% bovine serum albumin (~15µM).  Again, no evident effect on pairing is observed (Fig. 

S4).  

Taken together these results show that non homologous sequences do not compete 

for the homologous sites, that homologous pairing is not suppressed in complex 

environments; and that molecular crowding increases the rate and efficiency of pairing.   

Thus, although we cannot fully reproduce the complex cellular environment found in 

vivo, these observations suggest that homology-dependent DNA/DNA pairing is not 

impeded by the presence of non-homologous DNAs and will be favored by the crowded 

conditions characteristic of the cell nucleus.   

Comparison with Watson-Crick pairing. The observations presented above demonstrate 

that pairing can occur in regions far from the ends of either interacting molecule, and 

therefore imply that (a) pairing is not attributable to melting/fraying that gives rise to 

open ends and thus (b) is not attributable to simple Watson-Crick reannealing at such 

ends. We have further probed the possible involvement of ssDNA in the observed pairing 

reaction in four ways. 

 First, we asked whether λ x λ pairing is affected by the presence of T4 gene32 

ssDNA binding protein, which can bind to as few as 8 nt of ssDNA. If ssDNA were to 

play a significant role, occlusion by gene 32 protein should inhibit the reaction. We 

observe, however, that pairing is the same in the presence and absence of this molecule 

(data not shown), implying that ssDNA interactions are not involved in the initial 

formation of pairs.     

 Second, we measured the ability of base pairing interactions to mediate pairing.  

We examined the formation of dimers between two λ phage DNAs, one labeled with 
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biotin and the other with Dig at its “opposite” end, and carrying complementary 12 bp 

ssDNA overhangs at their respective unlabeled ends.  After a 2 h incubation under 

standard pairing conditions (60 µg / ml (~ 2 nM) of each DNA) the number of dimers 

was only 20% of the number of DNA-DNA pairs measured in parallel in our standard λ x 

λ reaction under the same conditions, again suggesting Watson-Crick binding does not 

play a significant role.   

Third, to test whether pairing might involve Watson-Crick binding within bubbles 

of ssDNA along the dsDNA, we heated a λ x λ  pairing mixture to 50°C, and then 

quickly quenched it, prior to incubation for pairing. This procedure should create ssDNA 

bubbles, preferentially in AT-rich regions, that could pair with other open bubbles in such 

regions. However, no increase in the rate or level of pairing was observed, further 

arguing that ssDNA bubbles are unlikely to be involved.   

Fourth, regions of Watson-Crick duplex even as short as 12 bp are resistant to 

shear forces up to 25 pN (41). In contrast, molecules linked by homologous pairing over 

regions of 5 kb or 48.5 kb shear at forces of 10-20 pN. Thus, homologous associations 

are not maintained by single or multiple Watson-Crick base-pairing interactions of 12 bp 

or longer, although involvement of even shorter regions of base-pairing is not excluded.  

We also note that the involved pairing likely does not involve interactions 

between matching sites of deformed structure along the two DNAs. The long-tailed DNA 

segments that pair efficiently with full-length λ DNA were generated from in vivo 

amplified plasmid DNA, and terminally biotinylated subfragments were prepared without 

the use of ethanol or any chemical (e.g. phenol) that is known to generate such 

deformations (Fig. S1A).    
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Pairing as a function of temperature and monovalent and divalent salts. We have also 

used the λ x λ pairing reaction to begin to probe the effects of temperature and of salt on 

the observed pairing process. 

 Temperature. The level of pairing increases significantly as the temperature is 

raised from 5ºC to 40ºC, and then decreases strongly at higher temperatures, with the 

same relationship observed both before and after the reaction has plateaued (Fig. 5A).  

Preliminary experiments further suggest that the width of the bead location distribution 

does not increase for temperatures between 40ºC and 60ºC, even though the number of 

paired molecules decreases dramatically. Thus the decreased signal at higher 

temperatures still corresponds to regular homologous pairing rather than replacement of a 

homologous interaction by a non-homologous one. More generally, higher temperature 

does not promote non-homologous pairing.   

 Monovalent and divalent salt.  The rate of pairing, defined by pairing levels after 

a 1 h incubation, increases monotonically with the level of either NaCl or KCl over a 

range of concentrations from 50 mM to 1 M, with slight differences for Na+ versus K+ 

(Fig. 5B). Below 50 mM (15 mM), pairing is of the order of the non-specific signal. 

Divalent salts are well-known to promote aggregation of DNA; however, it has not been 

clear whether such aggregation could be homology-dependent or not (42). We therefore 

also examined homologous pairing in reaction mixtures where MgCl2 is present instead 

of a monovalent salt. We find significant pairing in 10 mM MgCl2 during a 10 min 

incubation time, whereas pairing is almost absent in 10 mM NaCl even after an hour of 

incubation. Finally, no pairing was observed when pcDNA3.1 was paired with full λ in 

10 mM MgCl2, further demonstrating that even in MgCl2 the pairing is sequence 

dependent.  
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 Implications. These findings are compatible with occurrences of homologous 

DNA/DNA pairing in vivo.  Pairing occurs robustly throughout the range of temperatures 

encountered by most living organisms and at salt concentrations corresponding to those 

generally thought to occur in vivo: 150 mM monovalent salt, with K+ predominant over 

Na+; and ~10 mM total Mg2+, with the concentration of free Mg2+ being considerably 

lower (43). The patterns of effects of temperature and salt are also of interest in relation 

to physical mechanisms of pairing (below). 

 

  

Discussion 

The results presented reveal that two homologous DNA segments can efficiently and 

rapidly identify one another and interact to form complexes stable against thermal 

motion, in the absence of proteins.  These findings confirm and extend the results of two 

other studies pointing to such a possibility (37, 38). Both of these experimental studies 

include extensive discussions of theories that predict sequence dependent pairing.  A 

detailed review of those proposals is not possible in this work, but we recommend them 

as an excellent source of information on possible mechanisms for sequence dependent 

pairing. The most important conclusion from the current work is that direct DNA/DNA 

interactions occur under physiologically sensible conditions; therefore such DNA/DNA 

interactions may underlie recombination-independent pairing in vivo.   

 

The Mechanism of Homology-dependent dsDNA/dsDNA Pairing. 
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 General Aspects.  Any process that leads to persistent homology-dependent 

association of two DNA duplexes will be characterized by certain features.  A further 

discussion of theoretical studies can be found in SI text. 

 First, bringing two dsDNA molecules together in solution must include one or 

more attractive interactions that overcome strong inter-molecular repulsion due to the 

negative charges on the phosphodiester backbones; therefore, the effectiveness of 

attractive interactions will be increased if the repulsion is reduced.  Increased salt 

concentrations would be expected to reduce the repulsion, but of course, changing the salt 

concentration may alter other interactions as well so further theoretical work is required 

in order to predict the salt dependence of the attractive interaction.  We show that the 

pairing rate increases with salt and that at low concentrations of salt, the pairing rate in 

Na+ significantly exceeds the pairing rate in K+. We note that earlier work that showed 

that at low concentrations Na+ screens the intra-molecule backbone repulsion better than 

K+ (44). Similarly, Mg2+ at 10 mM concentrations promotes pairing more effectively than 

either monovalent cation at 150 mM.  We note that earlier work has shown that that 

melting temperature and unzipping force in 10 mM Mg2+ are comparable to those in 150 

mM NaCl, where the melting temperature and unzipping force also depend on the intra 

molecular backbone repulsion. (45,46) These findings show that the pairing is not simply 

dependent on the ionic strength of the solution, and suggest that the pairing may be 

correlated with the measured values that are related to the screening of the intra 

molecular backbone repulsion.  

Second, the attractive interaction that brings pairs together must be dominated by 

homology-dependent forces, since we do not observe pairing between sequences without 

homology and the pairing of homologous DNA is not suppressed by the presence of non-
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homologous competitors with lengths that are longer, shorter, or equal to that of the 

homolog. Having the long range attractive interaction dominated by homology is 

important in avoiding unwanted non-homologous interactions. 

Third, interactions between homologous regions must be must be strong enough 

to allow correctly bound sequences to remain together but weak enough that unmatched 

sequences with small regions of accidental homology unbind rapidly, thereby avoiding 

kinetic trapping in non-homologous interactions.   

Specific mechanisms for homology recognition. Two types of recognition 

mechanisms have been proposed: direct mechanisms in which attractive interactions 

involve the bases themselves (21) and indirect mechanisms where recognition and 

attraction occur through interactions involving the helical structures of the molecules that 

vary in correlation with base pair sequence (24-26, 31, 32, 34).   

While extensive further theoretical and experimental work is required before firm 

conclusions can be formed about the processes underlying the pairing demonstrated in 

this work, one observation does help to discriminate among models proposed thus far.  

We observe that the rate and extent of pairing increases progressively with temperature 

up to 40°C and then decreases.  In general, indirect pairing models depend on the 

matching of the conformations of two neighboring dsDNA molecules, and it has been 

predicted that conformation-based models should exhibit exactly the pattern of 

temperature dependence that we observe. At low temperatures, homologous molecules 

may get frozen in non-matching conformations that do not result in a strong attraction; 

however, higher temperatures may allow molecules to readjust conformations in response 

to their neighbors, permitting the two molecules to minimize their energy by pairing.  

(31). At still higher temperatures, the conformational fluctuations may be too large to 
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allow the molecules to adjust and pair.  We note that the sequence specificity of the 

pairing does not decrease with temperature.  We also note that hydration has been 

proposed as a possible pairing mechanism, where homologous pairing results in the 

displacement of specifically bound water into the disordered solvent in an entropy-driven 

process (31). Such sequence dependent hydration effects are already known to play a role 

in sequence dependent DNA-protein interactions (47) and RNA folding (48), so it would 

be reasonable to assume that hydration effects also play a role sequence dependent 

dsDNA/dsDNA interaction.   

Implications for recombination-independent pairing in vivo.  The conditions under 

which pairing is observed in the present study are fully compatible with occurrence of 

analogous interactions in vivo.  Pairing occurs efficiently between relatively short regions 

of homology; independent of DNA ends, under physiological conditions of monovalent 

salt; in the presence of complex nonhomologous competitor DNA and nonspecific 

protein; and over reasonable time scales at concentrations of the two DNA segments that 

are comparable to the concentrations for two homologous segments in a yeast nucleus, 

with higher rates (or comparable rates at lower DNA concentrations) achievable by 

inclusion of crowding agents and by optimization of temperature.   

 Further, the DNA concentrations involved in the observed pairing are orders of 

magnitude lower than those required for collapse of DNA into toroids in NaCl via 

nonspecific attractive interactions (40).  Additionally, pairing is observed for full-length 

λ  DNAs and for shorter DNAs prepared in such a way as to avoid potential artifacts that 

could result from use of PCR-generated fragments. 
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 Taken together the presented findings suggest that direct homologous DNA/DNA 

interactions could be responsible for guiding recombination-independent pairing of 

homologous DNAs in vivo. 

 Furthermore, the robustness of the observed pairing process raises the strong 

suspicion that intrinsic homology-based pairing interactions may be the “default option” 

in vivo.  By this view, evolution has specifically ensured that pairing between 

homologous chromosomes is precluded genome-wide, with restrictions then lifted 

specifically in specialized cases where pairing is useful or, in a few organisms, left in 

place and accommodated as somatic pairing.  In this scenario, specific genetically-

encoded “pairing determinants” would, at least in part, be features that counteract 

negative, inhibitory constraints present more typically through the genome.  This notion 

is diametrically opposed to the common view that homologous pairing is a rare and 

unfavorable condition that must be specifically promoted by appropriate biological 

features. However, specific proteins could be required to stably maintain DNA/DNA 

pairing once it has occurred (below). 

 The possibility of robust DNA/DNA interactions is also interesting in the context 

of the overall process of homology searching.  It has been argued that the most significant 

problem for such a process is not the need to find the correct partner but rather the need 

to avoid getting kinetically trapped in stable non-specific interactions, which in turn 

requires any general homology searching process must involve weak, transient “kissing” 

interactions (49). Recent theoretical work and modeling on macroscopic systems supports 

the usefulness of a pairing process that occurs in stages, where the first stage requires 

weak transient interactions to avoid trapping in incorrect pairs.  The initial weak binding 

of short matching regions should be strong enough to allow neighboring regions to bind if 
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they are matched, but weak enough that the two short matching regions will unbind if the 

neighboring regions do not match. Under these conditions, correctly aligned homologs 

will rapidly form strong bonds, but short regions of accidental homology will not trap 

pairs in false minima. Additional recognition stages can promote sequence stringency 

over longer and longer lengths (50). Modulation of the strength of DNA/DNA 

interactions could conveniently achieve such an outcome.  In accord with this possibility, 

in two of the most robust cases of “site-specific” pairing, for the XY chromosomes of 

Drosophila and for “pairing centers” in C. elegans, specificity is conferred by clusters 

containing multiple non-tandem repeats of short sequences (3,16). Further, for 

Drosophila, where 50 copies of a <250bp repeat are normally involved in pairing, it has 

been shown that eight copies are largely sufficient to confer detectable pairing but two 

copies are not (3).   

 Conversely, sticky sequence-specific protein factors would seem unsuitable as 

primary mediators of homology recognition and thus might be envisioned either as 

factors that enhance the susceptibility of underlying sequences to DNA/DNA interaction 

and/or as factors that further stabilize contacts made at the DNA level.  Correspondingly, 

for Drosophila somatic pairing, on the scale of an entire chromosome, an effective 

pairing contact, once formed, is quite stable (51).   

 It is also interesting to consider the possibility of direct DNA/DNA pairing 

interactions as a factor in interactions between sister chromatids, acting prior to or in 

concert with the known factors of protein-mediated cohesion and topological linkages.  

Sister chromatids will automatically tend to emerge from a replication complex into a 

confined joint space, and at least transiently, lack a full complement of nucleosomes, 

features that could favor DNA/DNA interactions between sisters.   
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Conclusion 

The current observations show that homologous dsDNAs can specifically recognize one 

another and pair stably enough for detection on a time scale of minutes/hours.  These 

findings encourage future studies to assess the physical basis for such homology-

dependent recognition and the relevance to, and rules for, DNA/DNA-mediate 

homlogous pairing in vivo. 
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Materials and Methods 

Sample preparation. Lambda phage DNA (NEB, Beverly, MA) (48502 base pairs) as 

well as DNA molecules that contain subregions of λ DNA with or without dsDNA tails 

of non-λ sequences were used in this study.  To assay pairing between two full-length λ 

DNAs, two types of samples were prepared.  In one case, λ DNA was hybridized and 

ligated to an oligonucleotide complementary to the ssDNA tail at the left end of λ that 

contained a Dig-label (5’Dig TTT TCC AGC GGC GGG 3’) and to another 

oligonucleotide without label at the right end (5’ AGG TCG CCG CCC 3’). In the other 

case, λ DNA was hybridized and ligated to a biotinylated oligonucleotide (AGG TCG 

CCG CCC TTT Biotin 3’) at right end and to an oligonucleotide without label at the left 

end (5’ TCC AGC GGC GGG 3’).  For assessing pairing of λ with specific subregions, 

smaller DNA molecules containing the subregion of interest carried a terminal biotin 

label at their “right-proximal” end interacted with the Dig-labeled full-length λ DNA 

described above.  To examine pairing with DNAs comprising entirely homologous DNA, 

three different 5 kb fragments, corresponding to different segments of the λ genome, 

were prepared using high fidelity PCR by amplification starting at positions 116, 11302, 

and 21613.  To examine DNAs containing one of these 5 kb subregions, but carrying 

(long or short) tails of non-λ sequences, a different preparation procedure was used 

which, concomitantly, minimizes the possible introduction of aberrancies in the dsDNA 

duplex structure (details in SI Materials and Methods and Fig. S1). 

 Assay.  

 This assay system has the potential to detect up to ~1000 tethered beads in 

parallel in a single assay (52).  Under standard conditions, the initial imposed force is 2 

pN.  As this may be sufficient to dissociate some weakly bound pairs, the assay should be 
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viewed as a measure of the number of pairs that are bound sufficiently strongly to 

withstand 2 pN of shear force. 

Pairing reaction protocol.  Initially equal volumes of each sample are mixed and 

incubated for a chosen period of time, varying from 10 min to 7 days, where most 

experiments had incubation times of a few hours.  At the end of the incubation time, an 

aliquot of the incubation mixture is then incubated for 2 min at 37ºC with 

superparamagnetic (Dynal 2.8 µm diameter) streptavidin-coated magnetic beads.  

Subsequently this solution is placed for 10 min in a microchannel with square cross-

section 0.8 mm, containing a round capillary, 0.55 mm diameter, previously coated with 

anti-Dig antibody (53) During this last step, Dig-labeled molecules become tethered to 

the surface of the capillary while biotinylated molecules remain associated with magnetic 

beads. Importantly, the 12 min tethering step is much shorter than the incubation time 

that is required for a pairing signal to appear (1 – 24 h; below); consequently, pairing 

during tethering makes little or no contribution to the total level of observed pairing.  

Finally, a force is applied to the beads by bringing a permanent magnet close to the 

capillary to apply a constant force of 2 pN.  Free beads move toward the magnet and are 

lost from the field of view (Fig. 1A) Beads that are bound by the pairing between one 

molecule with a Dig-labeled end and another molecule with a biotin labeled end are 

detected (Figs. 1AB), and the number of tethered beads separated from the edge of the 

inner capillary by a DNA-DNA pair is counted. 

To maximize reproducibility in our measurements, the mixture of labeled dsDNA 

samples is separated in several tubes prior to incubation and every sample assayed for 

pairing level is taken as an aliquot from a different tube.  This procedure avoids 

variations due to shear forces created by pipetting from the same tube several times.  
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Further, to minimize variation in the efficiencies of association of terminal tags with the 

bead and/or the antibody-coated slide, comparisons of pairing efficiencies 

between/among different situations were always carried out in parallel, on the same day, 

with the same preparations of all non-DNA reagents. 
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Figure Legends 

 

Fig. 1. Pairing of homologous DNAs using the parallel single molecule, magnetic 

tweezers-based assay. (A) Experimental approach. The black lines represent dsDNA 

molecules and the two samples are distinguished by red diamonds or green circles 

attached to their ends corresponding to Dig- and biotin labels, respectively. The dsDNA 

samples after incubation are mixed with superparamagnetic beads (gray circles) and 

incubated inside a capillary. (B) Image showing a black region that corresponds to the 

capillary. The beads separate from the inner capillary at a distance of about 15 µm. The 

asterisks show beads that are out of focus because their corresponding molecules are 

tethered to positions other than the edge of the (round) capillary that is in focus.  Out of 

focus beads are not counted in the assay.  

 

Fig. 2. Pairing of Dig-labeled λ DNA and biotin labeled λ DNA. (A). Number of tethered 

beads vs. time at 2 pN, 87 µg / ml λ DNA in PBS and incubated at 37ºC. (B). Number of 

tethered beads vs. square of the DNA concentration, at 2 pN.  

 

Fig. 3 Effect of sequence on DNA pairing. Distribution of extensions for about 100 beads 

at 2 pN for Dig-labeled λ phage dsDNA incubated with biotinylated molecules 

subregions from λ phage: 5 kb fragment bp # 21613 (blue) and 5 kb fragment presenting 

tails (magenta outline); 5 kb fragment bp # 11302 (green); 5 kb fragment bp # 116 

(purple); biotinylated λ phage (yellow). λ phage molecules with both labels are shown for 

comparison (gray outline). The schematic representations are shown to the right of each 

panel. 

 

Fig. 4 Intermolecular pairing between 6 µg/ml biotinylated 5 kb fragments and 60 µg/ml 

Dig-labeled λ phage in the presence of crowding agent and non-specific competitors. (A) 

Pairing of Dig-labeled λ DNA with 5 kb subregion bp # 21613 with and without 15 % 

p/v PEG 8000. (B) Pairing of Dig-labeled λ DNA with 5 kb subregion bp # 21613 in the 

presence of high concentration of fish sperm DNA (orange), pcDNA3.1 (purple) and 

control without competitor (blue). 
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Fig. 5 Effect of temperature and salt on the DNA-DNA interaction. (A). Number of 

tethered beads vs. temperature for biotinylated λ phage and Dig-labeled λ phage, 83 µg / 

ml in PBS incubated during several time intervals at 37ºC. (B). Number of tethered beads 

vs. salt concentration for 60 µg / ml biotinylated λ phage and 60 µg / ml Dig-labeled 

λ phage incubated for 1 hour at 37ºC in phosphate buffer 10 mM: NaCl (blue) and KCl 

(red). 
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Supporting Information 

Review of Theoretical Studies of dsDNA/dsDNA Interactions  
 

To discuss possible mechanisms of DNA/DNA pairing, it is first necessary to 

consider (i) the attractive interactions that brings two DNA segments together in solution 

given that these molecules are strongly negatively charged and so would be expected to 

repel each other; (ii) whether the attractive interaction is present for any two molecules or 

only two molecules with sequence homology; (iii) whether additional interactions occur 

once the molecules are brought sufficiently close together; (iv) whether the additional 

interactions are sequence dependent. Finally, to interpret the results of our assay it is 

important to understand that we only measure the pairing between molecules that are 

bound sufficiently tightly to remain stable under 2 pN of shear stress, so the assay may 

miss paired molecules that were more weakly bound. 

In a vacuum, two identical objects with fixed homogeneous charge distributions 

will always repel each other due to electrostatics; however, if the objects have a spatially 

varying charge distribution that includes regions of positive charge separated by regions 

of negative charge, the objects can attract each other when the separation between them is 

of the order of the characteristic size of the spatial variation in the charge distribution, 

though at larger separations the objects will still repel each other. The spatial variation 

can be static or dynamic. The attractive interaction between identical salt crystals is a 

case where the charge distributions are static.  For such crystals, the attractive force is 

only significant when the spacing between the crystals is of the order of the lattice 

spacing, and the attractive force depends strongly on the exact alignment of the two 

crystal lattices to form one single larger crystal.  Misaligned or mismatched lattices will 
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not result in an attractive force. The van der Waals attractive force associated with 

London dispersion is a case where the spatial variation in the charge distribution is 

dynamic and due to correlated fluctuations in the charge distributions of neighboring 

objects.  

If two identical objects are immersed in a liquid containing counterions the 

interactions are much richer. Hydration forces (1) and the pressure exerted by crowding 

agents (2,3) can provide significant effective attractive forces that do not occur for 

objects in a vacuum.   In addition, even if the objects have a fixed homogeneous charge 

distribution, the charge distribution of the mobile counterions in solution can create a 

spatially dependent charge distribution on or around the object (4-6), so that the net force 

can be either attractive of repulsive (7). The spontaneous organization of point-like, 

multivalent counterions into and orderly Wigner-crystal-like lattice can provide an 

attraction. (7,8). A recent review has suggested that such models are not relevant for 

attractions between DNA molecules in monovalent or divalent ions in water at room 

temperature (4). Double stranded DNA in solution is a very highly charged helical 

molecule with a linear charge density of approximately -0.6 e/A or equivalently one 

negative charge every 0.17 nm where the charge is distributed along the two backbones 

of a helix containing a major and a minor groove with widths of approximately 2 nm and 

1.4 nm, respectively; therefore, dsDNA will have a spatially varying charge distribution 

even without Wigner crystallization.  It is also known that the exact helical structure of 

dsDNA (9,10) and the location of counterions in the helix can depend on sequence (11-

13) Thus, homologous sequences would have matching charge distributions, but 

mismatched sequences would require significant DNA deformation to match the charge 
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distributions (4-6); consequently, the sequence dependent structure of dsDNA may 

provide an attractive electrostatic interaction that will be much stronger when sequences 

are matched.   Fluctuations in the spatial distribution of bound counterions and DNA 

backbone may result in both sequence-dependent and sequence independent attractive 

interactions that initially increase with temperature and then subsequently decrease with 

temperature, but the attraction between homologous ones should be stronger since it does 

not require deformation to match the charge distribution. The low temperature increase is 

due to an increase in the variation in the spatial distributions of charges that allows the 

two structures to readjust in response to each other, and the high temperature decrease is 

due to excessive deviations between the spatial structures of the two molecules. (4,14,15). 

In what follows, we will review the results of some previous experiments that 

have observed attractive interactions between dsDNA molecules. Many experiments have 

shown that despite the large average negative charge on dsDNA, the spatial variations in 

the charge density that result from interactions with multivalent and polyvalent 

couterions, can condense a dsDNA molecule so it collapses on itself, often forming an 

orderly toroid; therefore, there must be a net attractive interaction between different parts 

of the same highly charged dsDNA molecule (16,17). In divalent salts, there is an 

attractive force where some divalent ions such as Mn2+ and Cd2+ can condense individual 

dsDNA molecules, whereas others such as Ca2+ and Mg2+ do not result in condensation; 

however, divalent ions that do not result in condensation can still result in aggregation 

(16). Some studies that appear to consider ions with a higher valency may be misleading: 

for example, spermine has 4 charged groups with one positive charge each, but it is not a 

4+ point-like ion. At low concentrations multivalent counterions totally neutralize the 
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surface charge whereas at larger concentrations they invert the sign the net macroion 

charge (18). 

Previous experiments have not observed the aggregation of dsDNA molecules in 

monovalent salts even at 1 M salt concentrations unless crowding agents, such as PEG, 

were present to provide an attractive interaction (19,20); however, though some theory 

has predicted that an attractive interaction could occur in monovalent salts in the absence 

of crowding agents if temperature is sufficiently low, the temperatures involved so far 

were below the freezing point of water so the results are not relevant to in vivo conditions 

or in vitro experiments done in liquid water (21).  

Of course sequence dependent pairing requires more than an attractive interaction. 

It requires that there be a sequence specific recognition step, which may or may not be 

incorporated in the initial attractive interaction that is required to overcome the Coulomb 

repulsion that is present at long distances. The possibility that the sequence recognition is 

included in the initial long range attractive interaction is supported by calculations 

(15,22) that show that the sequence dependence of the structure of the DNA backbone 

results in the charge distribution forming a sequence dependent bar code, where 

Coulombic forces and hydration forces may play a role in a sequence dependent 

attractive interaction (4,6,15,22). Counterion binding to DNA is also sequence-specific, 

potentially enhancing this barcode (13). In contrast, it is possible that an initial weak long 

range attraction is not sequence dependent, but that there is a subsequent step in which 

there is an interaction between the bases that is stable if and only if the bases match.  

Possible mechanisms include both Watson and Crick pairing and non-Watson Crick 

pairing (23-25). Thus, for the model in which the initial attraction is sequence 
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independent but the second interaction is sequence dependent it is assumed that the initial 

weak interaction will not hold molecules together in the absence of the second sequence 

dependent interaction.  

Simple theories that do not consider water and assume that pairing depends on the 

static matching of Wigner crystalline structures, predict that the pairing should either 

increase or decrease monotonically with temperature as the ratio of the Coulombic 

potential to the thermal energy either increases or decreases with temperature (7); 

however, the interactions with water make predictions of the temperature dependence of 

the pairing more challenging, so more theoretical work would be required to provide a 

prediction of the temperature dependence of a Wigner-crystal based interaction in the 

presence of water.  In contrast, theories that suggest that the sequence dependent pairing 

is a function of correlations between the dynamic charge distributions of the two helices 

do make clear predictions about the temperature dependence of pairing.  These theories 

predict that the pairing will show an initial increase with temperature followed by a 

decrease with temperature at higher temperatures (4). Our experimental results suggest 

that correlations between dynamic charge distributions do enhance pairing. 

 

 

Supporting Materials and Methods 

 

Apparatus. In our apparatus, the magnetic field gradient is produced by 1 stack of 

five permanent magnets each of 6.4 x 6.4 x 2.5 mm3 dimensions (26). The total magnetic 

field is approximately that of a solenoid with its long axis in the z direction thus the 

resulting force on a given bead in the sample is almost exclusively in the z direction, and 
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varies by less than 1% over the region of the liquid sample monitored in the experiment. 

The magnets were held in a lateral position with respect to the micro-channel on a 3-axis 

translation stage in order to exert a force perpendicular to the glass surface to which the 

DNA was bound. The magnitude of the force applied on the beads was determined by the 

distance between the magnet and the glass surface.  

Control Experiments Control experiments are performed for every pairing 

experiment. In the controls, each of the two types of labeled DNA is incubated separately 

with the beads and inside the capillary.  In such reactions, no molecule contains both Dig- 

and biotin labels and thus no bead can be specifically bound to both a bead and the 

surface; however, a low level non-specific binding does result in some tethered beads. In 

experiments that measured the comparing of two complete λ molecules, the background 

arises from the non-specific binding, with the non-specific binding of the biotin labeled 

DNA giving a higher background than the non-specific binding of the Dig-labeled DNA.  

In experiments that considered the pairing of shorter sequences with λ, the background 

arises primarily from nonspecific binding of the bead to the unlabeled end of the λ-Dig 

molecule, with the resulting signals found at a distance corresponding to fully-extended λ 

DNA (e.g. Fig. S2). Though the shorter DNA may also non-specifically bind at one end, 

their fully extended lengths are so short that they were not easily distinguished from 

beads that adhere directly to the surface of the capillary, which are not counted in the 

assay.  In all of the presented experiments, the number of tethered beads in the pairing 

signal was more than five times the number in either control sample, with one exception 

as noted below. 
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Preparation of 5 kb fragments. Briefly, the fragments were amplified using Pfu 

Ultra II fusion (Stratagene, Carlsbad, Ca) in a thermocycler. Typical conditions were as 

follows: 1 ng λ DNA, 1 X buffer, 1 mM MgCl2, 0.5 uM dNTPs, 1 Unit Pfu Ultra II 

fusion. The cycling protocol was 5 min at 95°C, 30 cycles of 30 sec at 95°C, 30 sec at 

55°C, 3 minutes at 72°C, and 15 min at 72°C. The oligonucleotides had the following 

sequences: fragment 5 kb comprising bp 21613 to 26598 on λ DNA, 5’-

XUUUTGCTCATGCCCACACAAGTG-3’ where X is biotin and the U’s are 2’Ome 

RNA bases and reverse 5’-GAAAGCGTCCTTAACACCTC-3’. Fragment 5 kb  

comprising bp 1302 to 16322 on λ DNA, 5’-

GGGCGGCGACCUCGTATGTTGCTCAGTTGCAG-3’, where the first 12 bp are 

identical to a λ end and complementary to a biotinylated oligo (AGG TCG CCG CCC 

TTT Biotin 3’) and the U is a 2’Ome RNA base, and reverse 5’-

GCCATGTTGTTGCTGTATGC-3’. Fragment 5 kb comprising bp 116 to 5525 on λ 

DNA, 5’-XUUUAAACGACAGGTGCT GAAAGC-3’ where X is biotin and the Us are 

2’Ome RNA bases and reverse 5’-CCTCCTCACAGTTGAGGATC-3’. Pfu and many 

other proof reading enzymes do not copy 2’Ome RNA base pairs and thus an overhang is 

created during PCR where the sequence as well as the length of the sequence are 

predetermined by the designed oligonucleotide sequence. Following PCR, the fragments 

were separated via gel electrophoresis on a 1X TBE 1% agarose gel. The fragments were 

gel purified using a Nucleospin kit (Machery and Nagel, Bethlehem, PA).   
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Supporting Figure Legends 
 

Fig. S1. Pairing of Dig-labeled λ DNA incubated with biotin-labeled fragments in which 

regions of homology are flanked by long non-homologous tails. (A) Gentle preparation of 

biotinylated DNA fragments comprising λ DNA plus flanking non-lambda sequences at 

each end (for details see SI Materials and Methods).  In brief: the desired λ DNA 
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segment was inserted into pRS305. The series of λ segments used is shown in (B).  For 

each segment, plasmid DNA was prepared in the absence of phenol extraction, digested 

with the indicated restriction enzymes and a biotinylated linker ligated onto one end. 

Between the digestion and ligation steps, and after ligation, DNAs were purified and 

concentrated through spin columns.  DNA species were then separated on an agarose gel 

and extracted from the gel by electroelution (see Supplemental procedures). Note that the 

non-biotinylated end of the substrate fragment is blunt end (SfoI) to prevent Watson-

Crick base pairing with another such molecule during the pairing reaction.  Also, the bead 

is separated from its adjacent dsDNA terminus by a 3’ ssDNA link that permits freer 

bead rotation.  Lambda DNA segments ranged in size from 1-5 kb; flanking non-λ 

regions were the same 400 and 4,500 bp segments in all cases. 

 (B) DNA substrates containing λ DNA segments of various lengths from different 

positions of the λ sequence. Schematic diagrams are shown for constructs of 5 kb, 2 kb, 1 

kb λ DNA containing flanking regions from pRS305 plasmid as described in (A).  

 (C) Distribution of extensions for pairing between Dig-labeled λ DNA incubated 

with biotinylated fragments without flanking tails (first row) and with long flanking non-

homologous tails attached to homolog subregions of decreasing length: 5 kb (second 

row), 2 kb (third row), and 1 kb (fourth row). Positions of each subregions are detailed on 

each plot and correspond to # 21613, 11302, and 116, blue, green, and red/orange, 

respectively. The lavender outlines show the histogram for a sequence where the non-

homologous tails are directly joined without any homolog subregion.  The number of 

bound beads in the controls was more than an order of magnitude lower than the number 

bound for the homologs, but the control distribution does not peak at the length 

characteristic of λ.  Experiments were performed under standard pairing reaction 

conditions analogous to those in Figure 4 (text).  Distances were measured for about 50-

100 tethered beads in each experiment. 

 

Fig. S2. Pairing of 6µg/ml biotinylated 5 kb fragments and 60 µg/ml Dig-labeled λ phage 

molecules. (A) Biotinylated fragments were copied from λ phage subregion at position 

21613 (blue) and pcDNA3.1 vector as template (light blue). (B). Histograms for the 

measurements after 1 h incubation period from the curves shown in (A). (C) The 
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pcDNA3.1 histogram shown in light blue in (B) is shown on a larger scale so that the 

position distribution is clear.  The distribution is dominated by the length characteristic of 

a λ molecule and they probably correspond to λ molecules non-specifically bound to the 

beads. 

 

Fig. S3. Pairing of Dig-labeled DNA samples 60 µg/ml in PBS buffer with biotinylated 

DNA molecules of different length: 60 µg/ml full λ DNA (red), 6 µg/ml 5 kb subregion 

of λ DNA position 21613 (blue), 1.2 µg/ml 1 kb subregion of λ DNA position 21613 

(light blue), 6 µg/ml ~5 kb copied from pcDNA3.1 vector (brown). 

 

Fig. S4. Pairing of 6 µg/ml biotinylated 5 kb fragments and 60 µg/ml Dig-labeled λ 

phage molecules in the absence (blue) and presence of non specific competitors: 50 

µg/ml human genomic dsDNA (red), and 0.1 % m/v bovine serum albumin (BSA) 

(green). 

 

 
















