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Omega-3 polyunsaturated fatty acids (n-3 PUFAs) block apoptotic neuronal cell death and are strongly neuroprotective in acute
and chronic neurodegeneration. Theoretical considerations, indirect data, and consideration of parsimony lead to the hypothesis
that modulation of mitochondrial pathway(s) underlies at least some of the neuroprotective effects of n-3 PUFAs. We therefore
systematically tested this hypothesis on healthy male FBFN1 rats fed for four weeks with isocaloric, 10% fat-containing diets
supplemented with 1, 3, or 10% fish oil (FO). High resolution mass spectrometric analysis confirmed expected diet-driven
increases in docosahexaenoic acid (DHA, 22:6, n-3) and eicosapentaenoic acid (EPA, 20:5, n-3) in sera, liver and nonsynaptosomal
brain mitochondria. We further evaluated the resistance of brain and liver mitochondria to Ca2+ overload and prooxidants. Under
these conditions, neither mitochondrial resistance to Ca2+ overload and prooxidants nor mitochondrial physiology is altered
by diet, despite the expected incorporation of DHA and EPA in mitochondrial membranes and plasma. Collectively, the data
eliminate one of the previously proposed mechanism(s) that n-3 PUFA induced augmentation of mitochondrial resistance to the
oxidant/calcium-driven dysfunction. These data furthermore allow us to define a specific series of follow-up experiments to test
related hypotheses about the effect of n-3 PUFAs on brain mitochondria.

1. Introduction

In mammals, the central nervous system (CNS) has the
second highest concentration of lipids after adipose tissue.
Lipids play a critical role in neuronal membrane function as
well as in enzyme, receptor, and ion channel activities [1, 2].
One of the main constituents of brain phospholipids is the
omega-3 group of polyunsaturated fatty acids (n-3 PUFAs).
There are three major n-3 PUFAs: alpha-linolenic (ALA),
eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids.
DHA (22:6, n-3), the longest and most unsaturated fatty
acid, is an essential n-3 PUFA for brain—it is highly enriched
in neural membranes, constituting 30–40% of phospholipids
in the cerebral cortex and retina [3, 4]. Because brain tissue
is unable to make n-3 PUFAs, it is remarkably sensitive

to adequate diet supplementation during all stages of CNS
development—from embryonic differentiation to adulthood
and aging [2, 4–7]. Neural trauma and neurodegeneration
are associated with significant disturbances in neuronal
membrane phospholipid metabolism [8–10], suggesting that
supplementation with n-3 PUFAs may be beneficial for
recovery.

Omega-3 deficiency induces structural and functional
abnormalities in the hippocampus, hypothalamus, and
cortex-brain areas that mediate spatial and serial learning
[7]. Omega-3 deficiency significantly reduces the level of
cerebral catecholamines, brain glucose transport capacity
and glucose utilization, cyclic AMP level, and the capacity
for phospholipid synthesis. Such a deficiency also markedly
affects activity of membrane-bound enzymes, receptors and
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ion channels (e.g., Na+, K+-ATPase), production of neuro-
transmitters and brain peptides, gene expression, intensity
of inflammation, and synaptic plasticity [1, 7, 11, 12].
Conversely, diet supplementation with DHA modulates
gene expression, neurotransmitter release, restores synaptic
activity reduced by age or trauma, and improves memory
and learning abilities [10, 13–19], while the effect of n-3
PUFAs on membrane fluidity remains to be a controversial
[20].

Numerous studies conducted over the past decade
suggest that n-3 PUFA has a significant neuroprotective
and proregenerative potential [21–30]. Particularly, acute
intervention or dietary supplementation with n-3 PUFAs
have been found to be protective in animal models of acute
neurologic injury such as cerebral stroke, traumatic brain
and spinal cord injuries [23–26, 28–30], and some case
studies [21]. Recent study has demonstrated the improved
outcome after peripheral nerve injury in transgenic mice
with elevated level of endogenous n-3 PUFA [22].

The neuroprotective properties of n-3 PUFAs are in
part attributed to their strong anti-inflammatory action,
mediated partially by DHA’s inhibition of AA catabolism and
modulation of cytokine levels, and antioxidant potential [11,
12]. It has been recently demonstrated that after the onset
of brain injury, DHA could be released from membrane
phospholipids by Ca2+-dependent phospholipase A2 and
generates neuroprotective D1—a compound that differen-
tially regulates the expression of pro- and antiapoptotic
proteins from Bcl-2 family, known as a critical players in cell
fate [31]. Despite the wide range of targets and proposed
mechanisms of n-3 PUFA beneficial action, the remaining
question is how they (e.g., targets and mechanisms) are
activated in order to execute these effects.

Within the cell, the mitochondrial membrane is one
of the primary sites for n-3 PUFA incorporation along
with endoplasmatic reticulum and plasma membrane [14,
32–35]. Brain, cardiac and liver mitochondria fatty acids
turnover requires 3-4 weeks and is highly regulated by
diet [34–36]. A growing body of evidence has established
that mitochondria are a key component in the signaling
pathway(s) underlying cell death [16, 36–41]. To some
extent, mitochondria serve to integrate different apoptosis-
inducing stimuli (Ca2+, proapoptotic Bcl-2 family pro-
teins, reactive oxygen species, etc.) and direct them into
a common downstream pathway [36, 37, 39, 41]. Mito-
chondria are enlisted to initiate the downstream stages of
cell death through mitochondria-permeability-transition-
(MPT) dependent and -independent mechanisms. The MPT
is a multiprotein pore complex of as yet unidentified struc-
ture that is presumably localized at the contact sites between
the inner and outer mitochondrial membranes. The MPT
begins as a permeabilization of the inner membrane, which
prevents buildup of a mitochondrial membrane potential
and leads to loss of the ability to sequester calcium from
the medium, progressive osmotic swelling, disruption of
the outer membrane, loss of matrix and intermembrane
proteins, and initiation of caspase-dependent and caspase-
independent cell death pathways [36, 39]. Mitochondrial
damage, occurring via the MPT, has been identified as a

critical event in stroke and stroke-related injuries, secondary
injury following brain trauma (TBI), and chronic neurode-
generation [16, 21, 23–27, 36, 38, 39, 41–43].

In light of the aforementioned links between mito-
chondria and cell death, mitochondria and n-3 PUFAs,
and n-3 PUFAs and neuronal function, it is noteworthy
that recent evidence shows that n-3 PUFAs can modulate
processes that contribute to the secondary degeneration of
the CNS [10, 17–19, 44, 45]. Particularly, administration
of n-3 PUFAs after spinal cord compression injury in
rats significantly increased neuronal survival and improved
locomotive performance for up to 6 weeks after injury.
Furthermore, preinjury diet supplementation with omega-3
PUFAs prevented some TBI-induced effects—a reduction in
synaptic plasticity and impaired learning ability and reduced
oxidative damage. Recent data suggest that eight weeks of
dietary supplementation with DHA delays induction of MPT
mediated swelling and increases ability to retain exogenously
added calcium in cardiac mitochondria [46]. These data,
coupled with the above background, suggests that diets
enriched in n-3 PUFAs might affect mitochondria in a way
that makes them more resistant to the oxidant- and calcium-
mediated injury associated with both acute neurological
injury and induction of the MPT.

The goal of present study was, therefore, to test directly
the involvement of the MPT pathway in n-3 PUFA-mediated
protection in brain and liver mitochondria isolated from
healthy rodents. Specifically, we determined whether 4 weeks
dietary supplementation in rats with 1, 3, or 10% FO,
containing essential n-3 PUFAs—EPA and DHA, changes
the resistance of isolated nonsynaptosomal brain and liver
mitochondria to proapoptotic signals such as Ca2+ and
prooxidants.

2. Material and Methods

2.1. Chemicals. Tetramethylrhodamine methyl ester
(TMRM) and Ca-Green-5N were purchased from Invitro-
gen, Inc. (Carlsbad, CA). All other chemicals were purchased
from Sigma-Aldrich Company (St. Louis, MO). IsoKs were
synthesized as described previously [47]. LC-MS grade
acetonitrile (ACN), methanol (MeOH), and isopropanol
(IPA), as well as high-performance liquid chromatography
(HPLC) grade dichloromethane (DCM) and dimethyl
sulfoxide were purchased from Fisher Scientific (Pittsburg,
PA) and ammonium formate was purchased from Sigma-
Aldrich (St. Louis, MO). Lipid standards purchased for
LC-MS as well as their abbreviations and sources are in the
supplemental information (Tables S1 and S2) from [48, 49].

2.2. Dietary Supplementation. This study was carried out in
strict accordance with the recommendations of the guide for
the Care and Use of Laboratory Animals of the National
Institutes of Health. The protocol was approved by the
Harvard Medical School Standing Committee on Animals
(Protocol no. 04381).

Ninety-six male Fisher 344 x Brown Norway F1 (FBFN1)
rats (four groups, 24 animals in each), three weeks of age
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were housed in cages (two rats per cage) and maintained in
an environmentally controlled room. All animal procedures
were performed in accordance with the Guide for the Care
and Use of Laboratory Animals and were approved by the
Animal Studies Committee at Harvard University. After
acclimatization for 1 week on standard rat chow, the rats
were randomly assigned to diets supplemented with fish oil
(FO) containing n-3 PUFAs—DHA and EPA (final FO 1,
3, or 10% of total fat in a fixed 10% fat diet, i.e., the 10%
FO diet is 1% omega-3 PUFAs by weight) for 4 weeks. In
all diets, including in the control diet, the total fat content
made up 10% of the diet by weight; of that fat component,
total saturated fats made up 30%, total monounsaturated fats
made up 26%, and total polyunsaturated fats made up 44%
(Table S1). The diets, fed ad libitum, were provided as pellets
(Research Diets, Inc.) and contained a standard vitamin and
mineral mix with all essential nutrients. Diet also contained
antioxidants to preserve FO from the oxidation. After 4 weeks
on these diets, rats were decapitated. Brain and liver tissues
were rapidly dissected and placed into ice-cold buffer for
isolation of mitochondria.

Greater details of the husbandry and diets are presented
in the supplementary material following the ARRIVE criteria
for reporting animal studies [50].

2.3. Mitochondrial Isolation. Nonsynaptosomal brain mito-
chondria were isolated from ∼2-3-month-old rats using a
discontinuous Ficoll gradient according to the commonly
used method of Lai and Clark [51], with slight modifications
as previously described [52].

Liver mitochondria were isolated from ∼2-3-month-old
rats by the standard differential centrifugation method in
sucrose-based buffers as described and as used previously in
our lab [40]. Liver isolation buffer contained 0.3 M sucrose,
10 mM HEPES, 1 mM EGTA, and 0.5% bovine serum
albumin (BSA). Mitochondrial protein concentration was
determined by the Lowry method using BSA as a standard
[53].

Mitochondrial yield was identical in all samples from all
tested dietary groups for both tissues.

2.4. Plasma and Isolated Mitochondria Lipid Extraction,
LC-MS Conditions, Data Analysis, and Lipid Identification.
Immediately before extraction, brain and liver mitochondria
isolated from each animal had their membranes disrupted
by sonication. Both a brain and a liver mitochondrial pool
sample were created by combining 10 μL from the sonicated
mitochondria of each rat in addition to a serum pool. These
samples were processed for quality control (QC) and lipid
identification studies at the same time as the dietary samples.

Lipids were extracted according to the method of Bligh
and Dyer [54], substituting DCM for chloroform [42].
First, 10 μL of an internal standard mixture containing 5
lipids as outlined in detail previously [48, 49] was added to
each 30 μL sample (either mitochondria or serum), followed
by 190 μL of MeOH, 20 seconds of vortexing, 380 μL of
DCM, and 120 μL of water was added to induce phase
separation. The samples were then vortexed for 10 seconds

and allowed to equilibrate at room temperature for 10
minutes before centrifugation at 8000 g for 10 minutes at
10◦C. A total of 320 μL of the lower lipid-rich DCM layer
was then collected and the solvent evaporated to dryness
under vacuum. Samples were reconstituted in 300 μL of
ACN/IPA/H2O (65 : 30 : 5 v/v/v) containing PG (17 : 0/17 : 0)
at a concentration of 1 μg/mL before LC-MS analysis. Ten μL
of sample was injected onto the LC-MS system.

Lipids were extracted from 30 μL serum and mitochon-
dria aliquots of all individual rat samples and total study
pool samples, created by taking aliquots from each sample as
described previously [48, 49]. Ten μL of sample was injected
onto the LC-MS system. Details of the LC-MS method have
been described previously [48, 49]. Briefly, lipid extracts were
separated on an Ascentis Express C18 2.1 × 150 mm 2.7 μm
column (Sigma-Aldrich, St. Louis, MO) connected to a
Thermo Fisher Scientific autosampler and Accela quaternary
HPLC pump (Thermo Fisher, San Jose, CA). A binary
solvent system was used, in which mobile phase A consisted
of ACN : H2O (60 : 40), 10 mM ammonium formate, 0.1%
formic acid and mobile phase B of IPA : ACN (90 : 10),
10 mM ammonium formate, 0.1% formic acid. Separations
were done over a 30-minute-period following the conditions
set by Hu and colleagues [55]. The HPLC system was
coupled to an Exactive benchtop orbitrap mass spectrometer
(Thermo Fisher, San Jose, CA) equipped with a heated
electrospray ionization (HESI) probe. For full scan only
experiments, the MS was operated between m/z 120–2000
in high resolution mode, corresponding to a resolution of
60 k and a 2 Hz scan speed. The instrument was tuned by
direct infusion of PG (17 : 0/17 : 0) in both positive and
negative mode, and external mass calibration was performed
according to the manufacturer’s protocol. HCD experiments
were performed by alternating between full scan acquisitions
and HCD scan acquisitions, both run at 2 Hz. Three different
HCD energies, 30, 60, and 100 eV, were used in separate
experiment as previously described. For lipid identification
studies, HCD experiments were run on the pool samples
only. Results from all LC-MS profiling experiments were
analyzed using the MS label free differential analysis software
package SIEVE v 1.3 (Thermo Fisher Scientific and Vast
Scientific, Cambridge, MA) (for details see [48, 49]).

2.5. Mitochondrial Respiratory Assay. Mitochondrial respira-
tion was measured with the Oxygraph 2 k electrode system
from Oroboros Instruments (http://www.oroboros.at). Brain
mitochondria (0.25 mg/mL) were incubated in buffer con-
taining 100 mM sucrose, 65 mM KCl, 10 mM HEPES, pH 7.4,
2 mM KH2PO4, 3 μM EDTA, and 5 mM glutamate/malate.
Liver mitochondria (0.25 mg/mL) were incubated in buffer
containing 250 mM sucrose, 10 mM HEPES, pH 7.4, 1 mM
KH2PO4, and 5 mM succinate + 1 μM rotenone.

Isolated brain or liver mitochondria were added after
the addition of 5 mM glutamate/malate (complex I sub-
strate) or 5 mM succinate + rotenone (complex II sub-
strate) into media. Respiration in the presence of sub-
strates corresponds only to state 2 respiration (V2). Addi-
tion of 200 μM ADP initiates ATP synthesis coupled to

http://www.oroboros.at
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proton reentry across the membrane, which corresponds
to state 3 (V3). ADP exhaustion leads to a reduction
in the respiratory rate and corresponds to state 4 (V4).
Addition of 0.5 μM of the ionophore carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone (FCCP) induced uncou-
pled respiration (Vunc). The respiratory control ratio (RCR)
was calculated as the ratio between the rates of respiration
in states 3 and 2 (by Lardy, RCR3/2); states 3 and 4 (by
Chance, RCR3/4); FCCP-stimulated respiration and state 3
(Vunc/VADP).

2.6. Measurement of Mitochondrial Ca2+ Uptake Capacity,
Membrane Potential, and NAD(P)H/NADH Oxidation and
Swelling. The measurement of these parameters was per-
formed simultaneously on a multichannel dye fluorime-
ter (C&L Instruments, Inc., http://www.fluorescence.com/).
Liver mitochondria were incubated in buffer containing
250 mM sucrose, 10 mM HEPES, pH 7.4, 1 mM KH2PO4,
and 5 mM glutamate/malate or succinate and were used
at a concentration of 0.25 mg/mL mitochondria [43, 52].
Brain mitochondria were incubated in buffer containing
100 mM sucrose, 65 mM KCl, 10 mM HEPES, pH 7.4, 2 mM
KH2PO4, 150 μM ATP, 150 μM MgCl2, 3 μM EDTA, and
5 mM glutamate/malate at a concentration of 0.10 mg/mL
mitochondria [52].

The mitochondrial membrane potential changes (ΔΨ)
were estimated by measuring changes in the fluorescence
intensity of TMRM (60 nM) (molecular probes) at excitation
and emission wavelengths of 543 and 590 nm, respectively.

Mitochondrial Ca2+ fluxes were measured as changes of
extramitochondrial [Ca2+], which were followed by moni-
toring the fluorescence intensity of Ca-Green-5N (125 nM)
(Invitrogen) at excitation and emission wavelengths of 482
and 535 nm, respectively. Mitochondria were challenged to
single or multiple Ca2+ additions. For liver mitochondria,
each addition was 20–40 nmol Ca2+/mg mitochondrial pro-
tein; for brain mitochondria, each addition was 200 nmol/mg
protein. Mitochondrial calcium retention capacity (CRC)
was determined as amount of Ca2+ sequestered by mitochon-
dria without incurring structural damage and expressed in
nmol/mg protein. The redox state of pyridine nucleotides in
the mitochondrial suspension was followed by monitoring
NADH autofluorescence at excitation and emission wave-
lengths of 350 and 450 nm, respectively.

Mitochondrial swelling was measured as a function of
light scattering at excitation and emission wavelengths of
587 nm or by a standard spectroscopic assay on a plate reader
at 540 nm.

Original respiration and fluorimeter-based data were
analyzed using Origin v.8.0 (OriginLab) software. Data
were normalized to protein concentration and expressed in
corresponding units.

2.7. Kinetic Analysis of the Ca2+-Induced MPT in Liver
Mitochondria. We used a recently developed kinetic model
of Ca2+-induced MPT [56] to analyze the effects of the
supplemented diets on liver mitochondrial function. The
model describes MPT induction as a series of 2 sequential

steps defined as Ca2+-uptake (k1) and formation of an
intermediate step (k2) followed by mitochondrial membrane
permeabilization accompanied with a putative MPT pore
opening (kp), Scheme 1. In the framework of the model
at least 3 possible mechanisms of action for different
modulators of mitochondrial dysfunction could be resolved.
Numerical analysis of the kinetics of simultaneously mea-
sured Ca2+ fluxes and swelling provides information on the
contribution of each of the steps into the process of MPT
induction.

The rate k1 is easily assigned to the Ca2+ uptake by
active mitochondria [MH-(Ca2+)i]A via Ca2+ uniporter. The
formation of an intermediate state [MH]I , on the other
hand, is a complex function of the number of Ca2+ ions
absorbed by the mitochondrion and expressed as k2 = k′

2
×

([Ca2+]M/[MH]A)n. Here, [Ca2+]M is the concentration of
Ca2+ that has been absorbed by mitochondria; thus, the ratio
[Ca2+]M/[MH]A is essentially an average number of Ca2+

ions absorbed per active mitochondrion. Parameter n is an
apparent order of the k2 step with respect to Ca2+, and k′

2

is the reaction constant of this step. Kinetic parameter k2 is
related to the ability of the Ca2+ sequestered by mitochon-
dria to facilitate the formation/assembly of the MPT pore
intermediate. Functionally, the intermediate represents MPT
pore assembled but still closed. In our model, parameter
n interpreted as an order of reaction reflects quantitative
characteristics of MPT intermediate formation in respect
to Ca2+. Therefore, any change in n would be expected to
correlate with an ability of mitochondria to resist Ca2+-
induced MPT.

2.8. Statistical Analysis. Data were presented as the mean
+/− the standard error of the median (SEM). Group com-
parisons of the effects of diet modulation on mitochondrial
parameters were determined by a two-sample t-test (Origin
8.0). The significance of data was considered at P value 0.05.
Experiments were performed 5-6 times.

3. Results

Rats consumed 14.1 ± 3.1 g of food a day and gained 4.85 ±
1.55 g of body weight a day for 28 days. Food intake and
body weight gain of all the groups were not significantly
different.

3.1. Plasma and Mitochondria Fatty Acid Composition. By
using LC-MS profiling, we were able to monitor the n-
3 and n-6 free fatty acids—EPA, DHA, AA and the AA,
synthesis intermediate DGLA (20:3, n-6) in both the serum
and mitochondrial samples. This method did not provide
absolute quantitative amounts of the fatty acids in each
sample; however, it provided a means to quantitatively
monitor these species across the biological samples. The
study gives information regarding relative amounts of species
present and allows for direct comparisons across samples
to be performed [48, 49]. The FO diets increased the level
of the free fatty acid EPA in serum of tested animals in
a dose-dependent manner (note that in a control diet it

http://www.fluorescence.com/
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[MH-(Ca2+)i]A + [Ca2+]out −→[MH-(Ca2+)i+1]A −→ −→[MH]N + [Ca2+]out
k1 k2 kp[MH]I

Scheme 1
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Figure 1: Effect of dietary FO on plasma level of EPA, DHA, AA, and DGLA. Data are expressed as means of group of n = 6, ±SEM .
Statistical significance between tested samples was determined by a two-sample t-test, level of significance was set at P < 0.05.

was almost absent) (Figure 1(a)). The sera level of DHA,
in contrast, reached a plateau in the 1% FO dietary group
(Figure 1(b)). Conversely, the level of n-6 fatty acids—AA
and DGLA were both reduced with an increase in n-3 PUFAs
supplementation. The dose dependency of this reduction
was more pronounced for AA than for DGLA. Diet-driven
fatty acid changes in mitochondria (Figure 2) were similar
to those seen in sera. These changes were monitored by

comparing the ratios of the n-3 to n-6 species. The LC-
MS profiling method assumes uniform starting material
concentration. For lipid extraction, the mitochondria were
not uniformly concentrated based on amount of protein;
therefore, the signal was standardized by comparing the
ratio of n-3 to n-6 which should be consistent regardless
of starting amounts. The ratio of DHA to AA in brain
mitochondria was particularly elevated with a maximum
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Figure 2: Effect of dietary FO on mitochondrial ratio of EPA, DHA, AA, and DGLA. (a) Changes in nonsynaptosomal brain mitochondria
fatty acids; (b–e) Changes in liver mitochondria. Data are expressed as means of group of n = 3–5, ±SEM. Statistical significance between
tested samples was determined by a two-sample t-test, level of significance was set at P < 0.05.
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Figure 3: Omega-3 PUFA enriched diet does not affect brain mitochondria respiratory parameters. (a and c) Respiration rates measured
in different metabolic states state 2 (V2), state 3 (V3), state 4 (V4), FCCP-stimulated respiration (Vunc). (b and d) RCRs. In (a and b),
glutamate/malate was used to stimulate respiration initiated at complex I; in (c and d), succinate and rotenone were used to stimulate
respiration initiated at complex II. The data are expressed in μmol O2/min/mg protein and are the mean± SEM, n = 6. Statistical significance
in oxygen consumption between tested samples was determined by a two-sample t-test.
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Figure 4: Omega-3 PUFA enriched diet does not affect the sensitivity of brain mitochondria respiratory parameters to IsoKs. (a)
Respiratory parameters measured in different metabolic states state 2 (V2), state 3 (V3), state 4 (V4), FCCP-stimulated respiration (Vunc).
Glutamate/malate was used as the substrate. IsoKs were added to mitochondria after the addition of substrate. (b) The dependence of the
RCRs on omega-3 dietary content. The data are expressed in μmol O2/min/mg protein and are the mean± SEM, n = 6. Statistical significance
in oxygen consumption between tested samples was determined by a two-sample t-test.
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Figure 5: Omega-3 PUFA enriched diet does not affect liver mitochondria respiratory parameters. Respiratory parameters were measured
in different metabolic states state 2 (V2), state 3 (V3), state 4 (V4), FCCP-stimulated respiration (Vunc). (a) 5 mM succinate +1 μM rotenone
(1 μM) was used to stimulate respiration initiated at complex II; (b) The effect of diets on RCRs measured on succinate + rotenone. The data
are expressed in μmol O2/min/mg protein and are the mean ± SEM, n = 6. Statistical significance in oxygen consumption between tested
samples was determined by a two-sample t-test.

in 3% FO dietary group (Figure 2(a)). Brain mitochondria
level of EPA was very low and dietary-driven changes were
undetectable. FO dietary supplementation induced a dose-
dependent elevation of the ratios of EPA to AA, DHA to AA,
EPA to DGLA, and DHA to DGLA (Figures 2(b)–2(e)).

3.2. Brain and Liver Mitochondria Respiratory Parameters.
Respiratory parameters of brain and liver mitochondria iso-
lated from tested animal groups were measured in different
metabolic states: (state 2 (V2), state 3 (V3), state 4 (V4),
FCCP-stimulated, or uncoupled respiration (Vunc)). The
substrate glutamate/malate was used to stimulate respiration
initiated at complex I and the substrate succinate + rotenone
was used to stimulate respiration initiated at complex II.

Brain mitochondria isolated from rats fed FO diet had
higher rates of ADP- and FCCP-stimulated respiration (VADP

and Vunc, resp.), with succinate as a substrate (Figure 3(c)),
but not with glutamate as a substrate (Figure 3(a)). RCR3/2,
RCR3/4, and RCRVunc/VADP , calculated as the ratios of res-
piration rates between state 3/state 2, state 3/state 4, and
uncoupled state/state 3, respectively, were also unchanged by
FO diet (Figures 3(b) and 3(d)).

Challenging brain mitochondria with isoketals (IsoKs,
2 μM), which are prooxidative ketoaldehydes [47, 52], caused
no statistically significant differences in the rates of respira-
tion between mitochondria from the different dietary groups
(Figure 4(a)). However, brain mitochondria isolated from
animals fed 10% FO diet had lower rate of FCCP-stimulated
respiration compared to mitochondria isolated from brain
tissue of another dietary group. The RCR3/4, RCR3/2, and
Vunc/ADP also were lower in the presence of IsoKs in all tested
animal groups, but this observation was similar for all diets
(Figure 4(b)).

Respiratory parameters of liver mitochondria were mea-
sured similarly to those of brain mitochondria (Figure 5).
As shown, FO 1–10% dietary supplementation did not

induce statistically significant changes in liver mitochondria
respiration.

3.3. Nonsynaptosomal Brain Mitochondria Δμ, Ca2+

Uptake/Release, and Redox State of Pyridine Nucleotides
and Swelling. Figure 6(a) shows a representative record of
basic parameters (e.g., Δμ, Ca2+ uptake/release, redox state
of pyridine nucleotides and swelling) of nonsynaptosomal
brain mitochondria isolated from control group of animals.
Further assessment of brain mitochondria function
suggested no statistically significant difference between
tested groups. However, mitochondria isolated from animals
fed FO 1% or 3% diets showed a weak tendency to be more
resistant to a Ca2+ challenge (Figure 6(b)). Resistance was
defined as an increase in Ca2+ retention capacity (CRC),
that is, the ability to sequester Ca2+ without incurring
structural damage. Cyclosporine (Cs A), the prototypical
MPT pore inhibitor, increased the CRC in all tested groups,
with potentially enhanced protection in the groups fed
FO 1% and 3% diets (Figure 6(c)). Promethazine (PT)
and nortriptyline (NT)—drugs that possess potent MPT
inhibitory properties [40]—confer less protection to brain
mitochondria than Cs A, but similar to all tested dietary
groups (Figure 6(c)). Incubation of mitochondria with a
low concentration of prooxidants (0.5 μM IsoKs) resulted
in a significant reduction of the CRC in all tested groups
(Figure 6(b)), as we have shown previously [52]. Animals
in the FO 10% group demonstrated a tendency to be more
susceptible to IsoKs. IsoKs (2 μM) also significantly reduced
the CRC in all groups; the effect was again more pronounced
in mitochondria isolated from 10% FO group. Mitochondria
showed no diet-dependent difference in susceptibility to the
prooxidative agent tBH.

3.4. Kinetic Parameters of Ca2+-Induced MPT in Liver Mito-
chondria. The kinetic analysis of the Ca2+ induced MPT
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Figure 7: Dependence of kinetic parameter n (order of reaction) on dietary omega-3 PUFA content. (A) An ability of isolated from control
animals liver mitochondria to uptake/release Ca2+ (section (a)) and swell (section (b)) in the presence of Ca2+ (10 μM), succinate + rotenone
used as a substrate. (B) The order of reaction n was calculated from our kinetic model of Ca2+-induced mitochondrial dysfunction for each
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MPT induction. Therefore, any change in n would be expected to correlate with an ability of mitochondria to resist to the Ca2+-induced
swelling. The data are expressed as mean± SEM, n = 3. Statistical significance of the differences in n between tested samples was determined
by a two-sample t-test.

(Figure 7) revealed that in all tested groups of animals, net
Ca2+-uptake rate was not changed; that is, dietary intake
did not affect Ca2+-uniporter activity nor modulated the
factors that affect electrogenic Ca2+ uptake, such as ΔΨ,
activity of Pi carrier, and activity of Ca2+ release pathways
other than MPT (data not shown). The analysis of the
rate of the formation of an MPT intermediate (k2-step)
revealed that FO diets had no statistically significant changes
in the resistance of mitochondria to Ca2+ (e.g., parameter
n) (Figure 7), demonstrating only the tendency to be more
protective (e.g., 1% or 3% FO diets) or harmful (e.g., 10%
FO diet).

4. Discussion

The results from our pilot study demonstrate that four weeks
of dietary supplementation with 1, 3, or 10% FO enriched
with an essential n-3 fatty acids EPA and DHA induced the
expected significant changes in plasma and mitochondrial
membrane fatty acid composition. The observed changes
in brain and liver mitochondrial membrane phospholipid

composition did not, however, significantly influence their
resistance to Ca2+ and prooxidative agents (tBH and IsoKs).
Only slight trend towards protective effects, insufficient
to underlie the reported neuroprotective effects of n-3
PUFA supplementation, were ever seen with lower levels of
supplementation (e.g., Figure 6(b)), and, higher levels of
n-3 PUFAs supplementation were, if anything, detrimental.
While these trends could be more systematically studied with
very large experimental protocols, this would not advance
our understanding of protection, and many spurious and
nonrobust statistical observations would be mathematically
expected to result from multiple comparison-related trends.
Therefore, we do not believe that higher N studies are
scientifically warranted.

Detailed evaluation of brain and liver mitochondrial
function demonstrated almost no diet-associated changes in
respiration, membrane potential, Ca2+ transport, redox state
of pyridine nucleotides, or swelling, despite the elevation of
EPA and DHA and the reduction of AA content in mito-
chondrial membrane. We also did not find differences in the
sensitivity of mitochondria to the recently discovered MPT
inhibitors promethazine and nortriptyline [40, 41] or the
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prototypical MPT inhibitor Cs A. The most parsimonious
explanation is that n-3 PUFAs do not exert neuroprotection
by augmenting mitochondrial resistance to calcium and
oxidants. This explanation contradicts the hypothesis we
initially proposed.

4.1. Reconsidering the Data: What Possibilities Remain? The
data presented contradict our proposed hypothesis, suggest-
ing another explanation must link dietary omega-3 fatty
acids with the inhibition of cell death cascades that involve
mitochondria. One possibility is that other mitochondrial
pathways (e.g., involving Bcl-2 family members—bcl-2, bax,
bid, bak, etc.) are involved. Although this explanation is
feasible, the injury used in experiments discussed earlier [17,
44, 45] is most consistent with the involvement of oxidant-
and calcium-mediated damage, rendering the possibility
of other mitochondrial pathways being involved somewhat
unlikely. Alternatively, differences in the dietary protocols
used in different experiments/laboratories as well as the
animals’ health status (e.g., the presence of pathology or
injury) might underlie the different results. A review of
the literature revealed at least two critical parameters that
might influence the outcome: (i) the dosage of n-3 fatty
acids dietary supplementation and (ii) the total fat content
in the diet. These parameters vary substantially across the
studies. The dosage of FO used in dietary studies varies up
to 60% of total fats. The suggested n-3 PUFA therapeutic
dose for humans is 1 to 3 g/day, which is equivalent to 1%
FO diet for animals in the present study. The 10% FO diet
in our study corresponds to an abnormally high dose for
humans (approx. 30 g of n-3 PUFA/day), which is never used.
Our data suggest that this dosage does not induce dramatic
beneficial changes in mitochondrial functions; in fact, it
tended to worsen them (e.g., it caused brain mitochondria
to become more sensitive to Ca2+ and prooxidants and
accelerated some respiratory parameters in liver). The lowest
dose used in the present study, that is, the 1% FO diet that
corresponds to an acceptable intake in humans showed no
effect on the mitochondrial parameters tested. Recent study
[43] suggests that a supplementation of healthy humans with
DHA has dose-dependent effect: 200–400 mg/day of DHA
had antioxidant effect on low-density lipoproteins, whereas
800–1600 mg/day of DHA was associated with elevated level
of reactive aldehydes (e.g., 4-hydrohyhexenal) in plasma.
These data are broadly consistent with our own and previous
evidence showing aldehyde-induced mitochondrial dysfunc-
tion [41, 52].

With respect to total dietary fat content, we noted that
brain and liver mitochondria isolated from control animals
in this study exhibited less sensitivity to Ca2+ than we usually
observed in our routine experiments with identical rats
fed diets that have a lower percentage of total fat (4.5%
versus 10% in the present study). Specifically, CRC for
brain mitochondria isolated from animals fed with 4.5% is
equal to 250–300 nmol of Ca2+/mg protein, whereas CRC
for tested in the present study animal groups vary from
360 to 460 nmol of Ca2+/mg protein. Kinetic analysis done
on the Ca2+ induced MPT in liver mitochondria isolated

from animals fed with 4.5% of fat revealed Ca2+ requirement
(kinetic parameter n) to be about 2.27 ± 0.05 [56], while
the present study demonstrated considerably elevated n (up
to 3.1). Such an increase was found upon application of
promethazine [56] or in the medium depleted of inorganic
phosphate (unpublished data). We demonstrated previously
[56] that well-characterized MPT protecting agents such as
Mg2+ or promethazine increased n, thereby increasing the
resistance of mitochondria to Ca2+-induced MPT. On the
other hand, addition of very low (0.5 nM) concentration of
FCCP decreased n (not shown) facilitating MPT induction
via a decrease of the ΔΨ, which is in line with data published
earlier [36]. These data are consistent with an argument
that an increase in dietary percent fat is associated with
increased resistance of isolated mitochondria to calcium-
overload injury. Unfortunately, many of the critical papers
in this area fail to report the percentage of total dietary
fat, and/or their control and experimental FO-enriched diets
have different total fat contents. Also, in some studies, the
diet enrichment with n-3 PUFAs is conducted in such a way
as to increase total fat content. These observations suggest the
need to investigate the effects of total dietary fat content, as
well as the effects of prolonged n-3 PUFAs supplementation,
on mitochondrial function.

In conclusion, we tested and rejected one of the possible
mechanisms linking n-3 PUFA dietary supplementation
and brain mitochondria functional parameters and injury
mechanisms. The absence of a protective effect of diet
in an in vitro model of ischemic injury (Ca2+overloading
and prooxidant exposure), despite the observed changes
in plasma and mitochondrial fatty acid content, suggests
that increased resistance to Ca2+- and oxidant-mediated
mitochondrial damage is not central to the well-documented
neuroprotection induced byn-3 PUFAs. Investigation of
other potential mechanisms, such as extramitochondrial
targets and a potential role of total fat, will require further
study.
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