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Evolutionary rewiring of regulatory networks is an important source of diversity among species.
Previous evidence suggested substantial divergence of regulatory networks across species.
However, systematically assessing the extent of this plasticity and its functional implications has
been challenging due to limited experimental data and the noisy nature of computational
predictions. Here, we introduce a novel approach to study cis-regulatory evolution, and use it to
trace the regulatory history of 88 DNA motifs of transcription factors across 23 Ascomycota fungi.
While motifs are conserved, we find a pervasive gain and loss in the regulation of their target genes.
Despite this turnover, the biological processes associated with a motif are generally conserved. We
explain these trends using a model with a strong selection to conserve the overall function of a
transcription factor, and a much weaker selection over the specific genes it targets. The model also
accounts for the turnover of bound targets measured experimentally across species in yeasts and
mammals. Thus, selective pressures on regulatory networks mostly tolerate local rewiring, and may
allow for subtle fine-tuning of gene regulation during evolution.
Molecular Systems Biology 8:619; published online 23 October 2012; doi:10.1038/msb.2012.50
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Introduction

Changes in gene regulation have been postulated to play a key
role in generating the vast phenotypic diversity observed
across species (King and Wilson, 1975; Wittkopp et al, 2004;
Prud’homme et al, 2007). Evolutionary rewiring of regulatory
networks is often driven by the gain or loss of cis-regulatory
elements in gene promoters bound by sequence-specific
transcription factors or chromatin remodelers (Khaitovich
et al, 2006; Wilson et al, 2008; Wittkopp et al, 2008; Tirosh
et al, 2009), as observed for specific factors in yeasts
(Borneman et al, 2007; Doniger and Fay, 2007; Tuch et al,
2008), flies (Moses et al, 2006; Bradley et al, 2010), and
mammals (Odom et al, 2007; Schmidt et al, 2010). Changes in
cis-regulatory elements in genes’ promoters are associated
with fine-grained regulatory ‘tinkering’ of individual genes
(Borneman et al, 2007; Lavoie et al, 2010). For example, the
individual target genes of the yeast regulatory factor Mcm1
have diverged significantly between three related species
(Tuch et al, 2008), while maintaining its regulation of the cell
cycle and mating in all three species. On the other hand, there
are cases where changes in cis-regulatory elements lead to

dramatic rewiring of the regulation of entire gene modules
(Hogues et al, 2008; Tuch et al, 2008). For example, the
transcription of ribosomal protein encoding genes in yeasts is
regulated by distinct transcription factors in Candida albicans
(Tbf1 and Cbf1) and Saccharomyces cerevisiae (Rap1),
primarily through changes in cis-regulatory elements in
promoter regions (Tanay et al, 2005; Hogues et al, 2008).
Although such individual examples are instructive, they
represent only anecdotal evidence of the role that cis-
regulatory divergence plays across evolution. It is thus of
great interest to quantitatively and qualitatively assess the
extent of cis-regulatory plasticity of different regulatory DNA
motifs and their associated target genes and its functional
implications.

For example, consider the yeast transcription factor Gcn4.
According to the occurrences of its predicted binding sites
in gene promoters (motif targets), we estimate that Gcn4
potentially regulates an average of 470 target genes in each of
the 20 Ascomycota fungi in which we can identify it (see below;
Materials and methods). In each of these species, the
set of predicted Gcn4 target genes is enriched for genes
encoding enzymes involved in amino-acid metabolism,
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consistent with Gcn4’s known role in the model organisms
S. cerevisiae and C. albicans (Martchenko et al, 2007). Naively,
this observation suggests that Gcn4 would mostly target
orthologous genes across the different species. To our surprise,
however, the orthologs of only 8% of all the Gcn4 targets in
S. cerevisiae are also targeted by Gcn4 in all five closest
relatives of S. cerevisiae in this study. Furthermore, for only 8
of the 307 genes targeted by Gcn4 in S. cerevisiae are the
orthologs across 16 or more species also targeted by Gcn4.

Such an analysis is interesting but suffers from several
potential caveats. First, computational predictions of regula-
tory targets based on occurrences of DNA motifs in gene
promoters are noisy (MacIsaac et al, 2006; Hannenhalli, 2008;
Zhu et al, 2009) and have only limited reliability, as compared
with experimentally measured binding (Capaldi et al, 2008).
However, directly measuring the binding of a host of
transcription factors across dozens of species and in all
relevant conditions is still very challenging. Second, there is
a lack of known regulatory DNA motifs in non-model
organisms, and determining targets in one species with motifs
from another (possibly distant) species can lead to both false
positive and negative predictions.

To address these challenges, we developed CladeoScope
(Figure 1; Materials and methods)—an unbiased phylogenetic
approach to reconstruct cis-regulatory evolution. CladeoScope
reconstructs regulatory networks, associating DNA motifs
with putative target genes across species in a phylogeny. It
starts with experimentally determined DNA motifs from a
model organism, and computationally adapts them to each
species. To control for noisy predictions in individual species,
CladeoScope predicts reliable targets in ancestral genomes
based on phylogenetic support from multiple extant species.
We used CladeoScope to trace the evolutionary history of
regulatory interactions of 88 regulatory DNA motifs associated
with transcription factors (or groups of paralogous factors)
across 23 Ascomycota fungi, spanning 4300 million years of
evolution, showing that most have conserved their cognate
motifs over large evolutionary distances. While most motifs
show widespread gain and loss of individual target genes, the
biological processes associated with them are typically highly
conserved. We reconcile these trends by a model that assumes
a strong selection to conserve the overall function of a motif,
and a much weaker selection for its specific target genes. The
model is consistent with the number of highly conserved target
genes and with observed turnover of bound target genes as
determined by protein–DNA binding experiments across
species, thus revealing a unifying principle of cis-regulatory
evolution.

Results

CladeoScope: a framework for reconstructing
cis-regulatory evolution

We developed CladeoScope (Figure 1), a computational
framework for reconstructing cis-regulatory networks and
their evolution across a phylogeny of species. CladeoScope
relies on two assumptions. First, we assume that the binding
specificities of transcription factors, represented as DNA
motifs, are largely conserved, even when their specific target

genes and functional roles may have substantially diverged
(Wapinski et al, 2007; Tuch et al, 2008; Schmidt et al, 2010). We
therefore initiate our reconstruction with DNA motifs of
known transcription factors that have been experimentally
determined, but without any further assumptions about
conservation of their individual targets or their global
functional roles. We do allow for relatively small changes in
binding affinities across evolution, and thus refine those
motifs in a species-specific manner (see below). Second,
although predicting the target genes for a motif (motif targets)
across the genome is prone to errors (Hannenhalli, 2008), we
assume that targets that are conserved across several related
species within a monophyletic clade provide a reliable and
conservative estimate for the targets in the ancestor of the
clade. Thus, for each motif associated with a known
transcription factor in S. cerevisiae (e.g., Gcn4), CladeoScope
finds its ancestral target genes in various ancestors in the
phylogeny. A gene is considered to be targeted by a motif in the
ancestor of a clade of species only if evolutionary analysis of
the orthologous targets across the species in the clade
indicated that the ancestral gene (Wapinski et al, 2007) of that
clade was a target of the motif (see Materials and methods).
CladeoScope then compares between the ancestral targets of
different clades, allowing us to reliably track evolutionary
changes across the phylum by considering the evolutionary
changes between clades while filtering out spurious targets
within a clade.

CladeoScope consists of four steps (Figure 1B): In step
1—Initialization—CladeoScope is initialized with known DNA
motifs (position weight matrices (PWM)) from one or more
model organisms in the phylogeny. It uses these initial motifs
to find a set of provisional target genes for each initial motif in
each species, according to the motif’s occurrences in a gene’s
promoter. We do not require these provisional target sets to be
evolutionarily conserved. In step 2—Species-Specific Motifs—
CladeoScope takes each initial motif and its provisional
target sets, and learns species-specific motifs and targets in
an iterative manner. In step 3—Network Refinement—
CladeoScope uses a parsimony-based algorithm to reconstruct
the set of each motif’s ancestral targets for the last common
ancestor (LCA) of each clade in the phylogeny (Figure 2).
These inferred ancestral targets within a clade are considered
reliable (Figure 2; Supplementary Figure 1). In step 4—
Filtration—CladeoScope filters motifs and target genes based
on their phylogenetic conservation. In particular, we define a
motif as detectable in an ancestor and in each of its descendant
extant species if the number of the targets in the ancestor and
in each extant species is statistically significant (see details
below). The algorithm iterates between steps 3 and 4 until it
converges. CladeoScope’s output includes for each motif, its
weight matrix in each species, the ancestors and extant species
in which it is detectable, and the targets in each ancestor.

Parsimonious phylogenetic filtering of motifs and
targets

To infer the ancestral motif targets in step 3, CladeoScope
traces motif-target relations across orthologous loci. This is
done separately for each ancestral gene at each ancestral
position in the tree (Figure 2). To determine if an ancestral
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gene is a motif target, CladeoScope uses a parsimonious
phylogenetic reconstruction approach to minimize the number
of target gain and loss events (Fitch, 1971). This reconstruction
explicitly considers each gene paralog derived from the same
ancestor by duplication, and distinguishes a lost gene from a
present gene that is not a target (see Materials and methods).

Phylogenetic filtering addresses both noisy predictions of
target genes as well as DNA motifs that are ‘non-functional’
in a species or a clade (i.e., no longer act as a functional
regulatory element bound by a cognate transcription factor).
CladeoScope tests each motif in each species independently,
based on the overlap between the motif’s putative target genes
in that species and the motif’s ancestral targets in any relevant
ancestor. Only motifs where the overlap is statistically
significant (hypergeometric P-value o0.001, see Materials
and methods) are termed ‘detectable’ in the species. Since
filtering the motifs and the reconstruction of ancestral targets
are dependent, our algorithm iterates between both steps.
If any insignificant motifs are found in the clade (step 4), the
most insignificant one is removed, and CladeoScope returns to

step 3. After convergence, CladeoScope filters the motifs at the
clade level, requiring that the number of inferred targets for a
motif in the clade’s ancestor is statistically significant
(empirical P-value computed by 1000 reconstructions of
ancestral targets for random sets of motif targets of the same
size for each species, see Materials and methods).

CladeoScope is robust to noise in target
prediction and to different parameters

Using simulated data we confirmed that CladeoScope is highly
robust to noise in target prediction for individual species and
to other input variations. To assess robustness, we used
hundreds of simulated evolved motif-target sets, where each
simulation varied the extent and type of noise in target
prediction, the size of the ancestral target set, the degree of
target turnover and the topology of the species tree (960
different combinations of parameters, see Materials and
methods, Supplementary Note 1). For example, when 30%
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of the true targets were removed from the set of target genes
provided to CladeoScope, CladeoScope has 485% sensitivity
(percent predicted targets among true targets), and when 80%
false targets were added in each species, CladeoScope has
480% specificity (percent true targets among predicted
targets) (Supplementary Figure 1; Supplementary Note 1).

CladeoScope’s predictions are also highly robust to variation
in its various parameters (Supplementary Note 1). For
example, varying the threshold for the significance of a motif
in a species between 10� 5 to 5�10� 2 had little or no effect on

the number of ancestral targets reconstructed per clade.
Similarly, varying the threshold for conservation of a motif
in a clade between 0.05 and 0.001 had little impact on the
number of significant motifs per clade. Thus, evolutionary
conservation within a clade—rather than parameter fine-
tuning—is the main determinant of CladeoScope’s results and
performance.

To examine the possibility that our relatively strict motif-
target detection threshold excludes weak, yet functional,
binding sites, we compared the score distribution of functional
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black—not a target) for each motif (sequence logo, columns) in each species, we reconstruct all the ancestral targets for each gene as in (A). The resulting set of
ancestral targets for each clade (right matrix, ancestral species A, B, C in columns, ancestral targets genes in rows, light blue—ancestral target gene; black—not an
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but weak binding sites to non-functional sites. We identify
potential candidates for weak functional sites as ones with
conserved target genes in the sister species within the same
clade, which are classified as non-target (‘lost’) in the
reference species. Indeed, in 85% of the cases we tested, such
‘lost’ targets have a distribution of scores similar to genes that
are not targets throughout the clade. Hence, lowering the
threshold would not have increased our sensitivity to such
weak sites (Supplementary Note 2). Nonetheless, as an
additional validation, we tested the main findings using a
lower threshold for motif-targets detection and found our
results to be robust (Supplementary Notes 1 and 3).

Finally, as a negative control, we provided CladeoScope an
input set of randomly generated motifs. Although in each
species we do find targets for such motifs, CladeoScope’s
phylogenetic filtering found that these motifs are not
conserved (Supplementary Note 1). The only exception is
in the closely related sensu-stricto Saccharomyces, where

intergenic sequences have not yet had enough time to acquire
sufficient mutations. We therefore do not report motifs found
to be conserved only in this clade.

Systematic reconstruction of the regulatory
history of 23 Ascomycota species

We applied CladeoScope to 88 DNA motifs associated with
known transcription factors or groups of paralogous factors
from S. cerevisiae (MacIsaac et al, 2006; Matys et al, 2006; Zhu
et al, 2009) across 23 Ascomycota species, defining motif-target
genes in 12 clades (A–L, Figure 3A; Supplementary website).
As points for reconstruction of ancestral targets we chose
clades with a large evolutionary distance between them and
relatively small distances within each (Figure 3A). These
clades include: the sensu-stricto Saccharomyces (four species,
clade A), the Kluyveromyces (four species, clade C), the

Detectable TF only

Detectable motif only

Detectable motif and TF

40%

60%
80%

MSN2/4
RGT1
ACE2
FKH1/2
SWI6/MBP1
SFP1
HSF1
TBF1
HAP4
FHL1
FKH1
YAP7/CAD1
SWI4/STB1
GZF3
MIG1
YAP1
ADR1
GZF3/GAT1
RTG3
YNR063W
STP1
RCS1
STUAP
PBF1
MatAlpha2
RepCar1
YPR196W
UME6
OAF1
RDR1
PDR3
SKO1
PHO4
BAS1
GCN4
MET28
MET28
RTG3
LEU3
TYE7
ASH1
DDE1
MET4
STB3
RPN4
CHA4
UGA3
MET32
PUT3
INO4/INO2
REB1,/STB2
MCM1
SUT2
GSM1
ABAA
CAT8
HAP1
SIP4
STB5
STE12
HAC1
SKN7
YDR026C
FHL1/SFP1
RPH1
CBF1
NRG1
YER130C
SUM1
PACC
IME1
ARO80
ROX1
LYS14
SIP4
RAP1
RLM1
NDT80
YML081W
GCR1
AFT1
ABF1
GLN3
HAP1
THI2
ZAP1
TEC1
RPH1

LCA

A B

DNA
motifs

A

B
CD

E F
G

H
I

J

K

L

Post-WGD

Sensu stricto

Hemisascomycota

Schizos

Filamentous

Kluyveromyces

Kluyveromyces and post-WGD

Candida

S. cerevisiae

S. paradoxus

S. mikatae
S. bayanus

C. glabrata

S. castellii

K. waltii
A. gossypii

K. lactis

S. kluyveri
C. lusitaniea

D. hansenii

C. guillermondii
C. albicans

C. tropicalis

C. parapsilosis

C. elongosporus
Y. lipolytica

N. crassa

A. nidulans
S. japonicus

S. octosporus

S. pombe

Ascomycota

K

L

J

I

H

F

G

E

C

D

B

A

0.3

Figure 3 Motif detectability corresponds to the phylogenetic profile of the cognate transcription factor. (A) The phylogenetic tree for species in this study. Shown is the
phylogenetic tree of the 23 Ascomycota species in this study (see Materials and methods). A–L: clades in which ancestral target sets are defined; clade names are
denoted next to their letter in dark blue. (B) Motif detection and transcription factor presence across the species. Shown are 88 motifs (rows) across 23 species (columns)
along with a phylogenetic tree (as in a, but not shown to scale). Yellow—motif is detectable and transcription factor is conserved; yellow–gray—the motif is detectable but
the transcription factor is not conserved; blue—the motif is not detectable but the transcription factor is conserved, black—the motif is not detectable and the transcription
factor is absent. The fraction of the motifs inferred to be detectable up to clades D, H, and L is marked on top of the respective clades. Red line denotes the most ancestral
clade in the species tree where a motif is detectable. Motif names in red denote motifs that are further discussed in the text.

Evolutionary robustness in regulatory networks
N Habib et al

& 2012 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2012 5



Candida (seven species, clade G), the Hemiascomycota
(Kluyveromyces, Saccharomyces, Candida clades, and
Yarrowia lipolytica, 18 species, clade I), and the full
Ascomycota clade (23 species, clade L). The resulting ancestral
network contains 190 689 reliable motif-target connections
(conserved in at least one clade), compared with 996 476
connections prior to phylogenetic filtering. For example, of the
307 predicted Gcn4 targets in S. cerevisiae, 195 pass our
phylogenetic filter.

To assess CladeoScope’s performance in this phylogeny, we
compared its predicted targets to those measured in vivo
by chromatin immunoprecipitation (ChIP) in S. cerevisiae
(MacIsaac et al, 2006) and four other species (Borneman et al,
2007; Tuch et al, 2008) (Supplementary Note 1). In most cases,
using CladeoScope’s in-clade conservation increases the
precision of the predicted motif targets. For instance, for the
Cbf1 motif, CladeoScope reaches 80% precision rate and
50% sensitivity using the ancestral motif targets in clade A,
compared with 55% and 10%, respectively, in the predicted
motif targets in S. cerevisiae that are not conserved
(Supplementary Note 1). These improved predictions are
consistent for different thresholds for motif-targets detection in
each species (Supplementary Note 1).

Regulatory motifs are detectable across large
evolutionary distances

For most regulatory DNA motifs we could detect ancestral
target genes within clades across the phylogeny (Figure 3B;
Supplementary Table 1). This is consistent with our assump-
tions that transcription factors retain their binding specificities
and that many of their target genes are conserved in closely
related species. For example, B83% of the motifs were
detectable in clade D (Kluyveromyces and post-whole genome
duplication (post-WGD) clades) and B68% were detectable in
clade H, including in species as remote from each other as
S. cerevisiae and C. albicans. The latter include motifs involved
in central metabolic and cellular processes (Figure 3B, red
highlights), such as Gcn4 (amino-acid biosynthesis), Rpn4
(proteasome), and Mig1 (glucose repression). In all, 39% of
motifs were detectable up to the LCA of the entire Ascomycota
phylum (clade L), including those involved in cell-cycle
regulation (Fkh1, Swi6-MBP1, Figure 3B) and stress response
factors (Hsf1, STRE, Figure 3B, red highlights). The number of
motifs detectable across the phylogeny is particularly remark-
able given the substantial evolutionary distances, the large
intra-species divergence within the Schizosaccharomyces
(Rhind et al, 2011), and the fact that as many as 25% (102 of
392) of the transcription factors in S. cerevisiae do not have a
clearly identifiable ortholog in Schizosaccharomyces pombe
(Wapinski et al, 2007).

The phylogenetic profiles of transcription factors largely
correspond to the detectability of their cognate motifs,
supporting our reconstruction. In most cases (73%), detect-
able motifs and factors are co-conserved (Figure 3B): when a
motif is detectable in a species, the ortholog of its known
cognate factor is present in the same species, and vice versa.
The few cases where there is discrepancy are due to either
evolutionary innovations or limitations in ortholog mapping
or motif detection (Supplementary Note 2).

Rapid target turnover for conserved motifs during
evolution

To assess changes during the evolution of regulatory networks,
we first calculated the amount of turnover events for each of
the 88 regulatory motifs as the number of target genes gained
or lost at each clade since its direct ancestral clade. Overall,

there is an extensive and rapid turnover of motif-target genes.
This high turnover of targets is apparent even for broadly

conserved motifs with ancient ancestral targets, such as Gcn4
and Fkh1 (Figure 4A and B). For example, less than half of the

targets of Gcn4 in clade D (the LCA of pre- and post-WGD
species) remained as Gcn4 targets in its two daughter clades B
(post-WGD species) and C (pre-WGD, Kluyveromyces species).

This plasticity at the clade level is consistent with our initial
analysis of Gcn4’s target turnover at the species level.

For many of the regulatory motifs (72%), the targets are
substantially changed at a specific point in the phylogeny. For

example, the Mig1 motif, involved in glucose repression in
S. cerevisiae (Nehlin and Ronne, 1990), is detectable in species

across the phylum (up to the LCA, clade L), including a set of
ancestral targets in clade D (Kluyveromyces and post-WGD,

spanning S. cerevisiae and Kluyveromyces lactis) and in clade G
(Candida), but with no statistically significant set of shared

ancestral targets between these two clades (Figure 4C). Thus,
although the motif likely existed in their shared ancestor
(clade H), its targets have diverged significantly between the

two descendant clades, precluding reconstruction of the
ancestral state. This suggests substantial plasticity in the

targets associated with many regulatory DNA motifs.
To quantify the extent of plasticity of motif targets, we

developed a model of motif-targets turnover, which handles
the gains and losses of a target gene as a stochastic continuous-

time Markov process (see Materials and methods). This model
is akin to standard models of sequence character evolution

(Felsenstein, 1981). We found that motif targets are globally
gained and lost at fast rates (Supplementary Figure 2), with a
median loss rate per target of 5.2 losses/tU (time unit) and a

median gain rate per target of 0.24 gains/tU (Supplementary
Table 2; Supplementary Figure 2, see Materials and methods).

This discrepancy in the rates is due to differences in the pool of
targets versus non-targets in the genome. The typical gain rate

is ‘lower’ than the loss rate since it is calculated as a fraction of
a larger number of non-target genes (B4000), whereas the loss
rate is calculated out of B100 ancestral target genes.

An instructive measure for the target turnover rates is the
number of targets we expect to be retained at different branch
lengths, computed by averaging simulations over the expected
gain and loss rates of all regulatory motifs (Figure 5A, see

Materials and methods). Turnover rates vary substantially
among individual motifs. For example, the Hsf1 (heat shock

factor) motif exhibits low rates of target gain and loss
(Figure 5B), while variants of the CACGTG motif (bound by

Pho4, Tye7, and Met28) have very high turnover rates
(Figure 5C). On average we found that only 7% of a given
motif’s targets in the sensu-stricto clade (clade A, Figure 3A) are

expected to be conserved in the LCA of the phylogeny (clade L,
Figure 3A), and only 16% of the targets were conserved since

the LCA with the Candida clade (clade H, Figure 3A).
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Associating DNA motifs with regulatory functions

To assess the functional implications of target turnover, we
next associated each motif in each clade with a regulatory

function, based on the functional categories to which its

targets in the clade belong. The substantial redundancy

between functional annotations can lead to many overlapping

‘functions’, which are hard to compare across clades

(Supplementary Note 3). We therefore developed a method

to create functional modules that contain genes that share

functional annotations and are all ancestral targets of the same

regulatory motif (see Materials and methods, Supplementary

Figure 3a). For example, consistent with our initial analysis,

Gcn4 targets in each clade are associated only with the amino-
acid metabolism module (Figure 6A). This module includes
several overlapping gene sets, such as amino-acid biosynthetic
process (Ashburner et al, 2000), amino-acid metabolism
(Segal et al, 2003), amino-acid nitrogen metabolism (Segal
et al, 2003), or pyridoxal phosphate binding (Ashburner et al,
2000). Notably, each motif can be associated with one or more
such modules in each clade, and possibly with different
modules in different clades (Supplementary Tables 2 and 3;
Supplementary website).

Compared with direct enrichment of individual gene sets,
functional modules are a more concise and non-redundant
representation that can be easily compared across the
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phylogeny. In addition, they are more robust to the choices of
detection threshold, to the threshold over enrichment of
functional categories with motif targets, and to the threshold
for merging functional categories (Supplementary Note 3;
Supplementary Table 7). Furthermore, supporting our proce-
dure and CladeoScope’s predictions, our functional assign-
ments are consistent with known functions of the associated
transcription factors in S.cerevisaie, C. albicans, and S. pombe,
for most motifs with a known function (75%) (with another
12% of the motifs with a partial match; Supplementary Note 3;
Supplementary Table 8).

Extensive functional conservation of regulatory
DNA motifs

We observed functional conservation for a large fraction of the
regulatory DNA motifs. In all, 48% of motifs are associated
only with the same functions in all clades in which the motif is
detectable, even across large phylogenetic distances. Examples

include the Gcn4 motif (Figure 6A), the Hsf1 motif with a heat
shock module (Supplementary Figure 3b), and the Mbp1 motif
with cell-cycle and DNA replication modules (Supplementary
Figure 3b). Furthermore, although in other cases the motif
might gain or lose an association to functional modules during
evolution, 82% of all the motifs have at least one conserved
function across all clades (Figure 6B).

Innovations through expansion and switch of
functions

In some cases, turnover of target genes does contribute to
evolutionary innovation, by either expanding or switching the
scope of functions ascribed to a regulatory DNA motif
(Figure 6A). For 34% of the motifs, we observed clade-specific
expansion: a motif gains a new function in a specific clade in
addition to maintaining its ancestral function. In such cases, the
motif is identified in genes from the same functional module(s)
in all clades where it was detected, and is also associated with
an additional module unique to a specific clade.
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We find various innovations in different clades (Figure 6A;
Supplementary Figure 4). For example, the Rpn4 motif is asso-
ciated with the proteasomal module in all clades (Mannhaupt
and Feldmann, 2007), while in clade C (the Kluyvermyces
species) it is also identified in genes of a cytoskeletal module
(Figure 6A). There are several cases of highly conserved motifs
exhibiting innovations in the remote Schizosaccharomyces
clade (K). For example, the cell-cycle motif Fkh1 regulates
genes involved in meiosis specifically in this clade, and the
Hap4 motif associated with oxidative phosphorylation in all
clades also regulates extracellular matrix and GTP binding
genes in the Schizosaccharomyces species (Supplementary
Figure 4a). This latter example involves a regulatory switch, as
the regulation of GTP binding genes in all other clades is
regulated by the Sfp1 motif (Supplementary Figure 4b).

For 18% of the regulatory motifs we observed a functional
switch between clades: the same motif has target genes from
distinct functional modules in different clades, thus losing one
function while gaining another. For example, the Mig1 motif is
associated in the Candida (G) clade with modules such
as peroxisome and fatty acid metabolism, whereas in
the Kluyveromyces (C), the ‘post-WGD’ (B), and the
Schizosaccharomyces (K) clades it is associated with other
carbon metabolism modules (Figure 6A). An additional
example is the motif bound by the factor Ynr063w (Zhu
et al, 2009). This motif is associated with general metabolic
processes in all clades where it is detected, but switches its
specific function: it is associated with the TCA cycle in the
Candida clades (E–G), glycolysis in Schizosaccharomyces clade
(K), but with the peroxisome and aerobic metabolism in the
‘post-WGD’ clade (A–B) (Supplementary Figure 4a).

Conservation of regulatory function despite high
turnover rate of targets

The observations of substantial target turnover and extensive
functional conservation are seemingly contradictory. One possi-
ble way to reconcile this contradiction would be if the rapid
turnover of motif targets is mainly restricted to motifs that exhibit
functional changes, but not to those with conserved functions.
However, we find rapid target turnover for most regulatory DNA
motifs, including those associated with conserved functional
modules (Supplementary Tables 2 and 4), such as Gcn4.

Moreover, we observed extensive turnover of motif targets
within the functional modules themselves. Specifically, in
80% of modules associated with the same motif in more than
one clade, we observed substantial turnover of the motif
targets between those clades (Figure 7A). On average, 62% of a
module’s genes are associated with the regulatory motif in
only a minority of the relevant clades. For example, the Fkh1
motif is consistently associated with a cell-cycle regulation
module across the entire phylum (12 clades), but its individual
targets substantially turnover, with B90% of genes detected
as Fkh1 targets in only one or two clades (Figure 7B).

A functional selection turnover model

The observed conservation of regulatory function despite high
target turnover suggests that the global functional roles

associated with a regulatory motif are under stronger selection
than the individual regulatory interactions. To formalize this
notion we propose the Functional Selection Turnover Model,
where selective pressure acts differentially to conserve motif-
target relations within the same biological process (compared
with outside of the process), but not particular target genes
within that process (Figure 7C).

To test this hypothesis, we used a likelihood ratio test (LRT)
to compare two alternative evolutionary models (see Materials
and methods): (1) a ‘neutral’ turnover model, where targets
are gained and lost at the same rates regardless of the
functional module to which they belong and (2) a ‘module-
specific’ turnover model (described above), where turnover
rates—both gain and loss—are different for targets in the
functional module compared with those outside. We applied
this test to all functional modules in all associated clades
(a total of 745 tests).

In nearly all cases (96%, 715 tests), target turnover is
significantly constrained by the genes’ function (P-value
o0.05 after Bonferroni correction, Figure 7D). Most notably,
the probability to gain an additional target gene within the
same functional module is typically at least two orders of
magnitude higher than the probability to gain a new target
from genes outside of the module (Supplementary Table 4).
Thus, gain and loss of target genes are highly constrained by
their function, resulting in conservation of the motif’s
functional role despite turnover at individual sites. These
results are not sensitive to the choice of parameters used in the
process of target prediction or in defining functional modules,
and hence are not an artifact of specific threshold choices
made in our computational analysis (Supplementary Note 3).

The functional selection turnover model explains
the number of highly conserved targets

Against the backdrop of rapid turnover, some motif targets
remain highly conserved. For example, 25 of the Gcn4 targets
have Gcn4 binding motifs in their promoters in every clade
(out of an average of 130 Gcn4 targets per clade). Such
conservation may reflect an important specific function of
these particular genes; alternatively, a few conserved genes
may be expected by chance, given the functionally constrained
turnover rate of the motif and the size of the functional
module. To distinguish between these possibilities, we
performed simulations to estimate the probability of the
observed number of highly conserved targets under our
functional selection model (see Materials and methods),
assuming a differential turnover rate for the targets, based
on their function but not based on their individual identity. We
examined 20 regulatory DNA motifs that have ancestral targets
broadly conserved across clades, such as Gcn4 (Figure 7E),
Mbp1, and Rpn4 (Supplementary Table 5).

For all motifs tested, we could not reject the null hypothesis
that the observed number of highly conserved targets is
consistent with the overall turnover rates according to the
Functional Selection Turnover Model (PX0.5). Thus, even the
number of highly conserved targets is consistent with selection
at the module level rather than selection towards the
individual function of each gene within the module.
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Figure 7 Target turnover and the functional selection turnover model. (A) Extent of target turnover within functional modules. The distribution of the percent of
conserved targets (x-axis, defined as targets of a motif in the majority of the clades associated with the functional module), for all functional modules with targets in at
least two clades. The bin pertaining to the Fkh1 cell-cycle module is marked with a red arrow. (B) Fkh1 target turnover within the cell-cycle module. Target genes (rows)
for the Fkh1 motif within the cell-cycle module across the clades (columns). Blue: target in a clade; black: non-ancestral target in the clade. (C) Functional Selection
Turnover Model. Cartoon illustration of the model (white: gene in functional module; gray: gene not in module; blue border: target gene of motif; blue node: motif/
transcription factor) with two alternative scenarios for target genes turnover from the ancestral Network 1 (top). Both scenarios (bottom) show extensive turnover of target
genes. The functional selection scenario (Network 2, bottom right) has selection on the genes’ function, as reflected by the module to which they belong, but not on
individual targets, and leads to enrichment of targets within the module along with turnover of individual targets. The module-neutral scenario (Network 3, bottom left) has
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Bonferoni multiple hypothesis correction for rejecting the H0 model. (E) The number of highly conserved Gcn4 target genes is as expected given the functional selection
turnover model. The distribution of the number of expected highly conserved Gcn4 targets from 1000 simulations, according to the functional selection turnover model.
The observed number of Gcn4 targets conserved up to clade H is 35 (red line), with an empirical P-value X0.5. Thus, we cannot reject the null hypothesis that the
number of highly conserved genes is as expected by the functional selection turnover model.
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The functional selection turnover model is
consistent with transcription factor binding data
measured across yeast and mammalian species

To examine the generality of our results, we tested whether
they hold at the level of individual species as well as clades,
when targets are determined experimentally rather than
computationally. We thus examined published in vivo
transcription factor binding data (from ChIP-chip or ChIP-
seq experiments) (Borneman et al, 2007; Tuch et al, 2008;
Schmidt et al, 2010). Recent functional studies of transcription
factor binding to DNA reported substantial divergence in the
bound targets of conserved transcription factors in Ascomycota
yeast species (Borneman et al, 2007; Tuch et al, 2008) and
between mammalian species (Schmidt et al, 2010). These
include Mcm1 binding measured across three relatively distant
species (S. cerevisiae, K. lactis, and C. albicans) (Tuch et al,
2008), Ste12 and Tec1 binding in three closely related
Saccharomyces species (S. cerevisiae, Saccharomyces mikatae,
and Saccharomyces bayanus) (Borneman et al, 2007), and
HNF4a measured across three mammalian species (human,
mouse, and dog) (Schmidt et al, 2010).

Consistent with our cis-regulatory analysis, the binding
profiles of all four factors demonstrate high turnover of targets
within conserved functional modules (see Materials and

methods, Supplementary Table 6; Figure 8), in addition to
some species-specific innovations. Applying the two tests
described above, we find that the Functional Selection
Turnover Model fits the binding data of these four factors in
all species (Po10�12), and that the number of highly
conserved targets of these factors is as expected by the
model (P40.2). Notably, in mammals the results are not
sensitive to the specific threshold for associating an upstream
binding site with a target gene (see Materials and methods).
Overall, this analysis demonstrates the generality of our
findings at different evolutionary distances, measurement
methods (sequence analysis and ChIP assays), phylogenetic
resolution (species and clades), and group (yeast and
mammals).

Discussion

We applied a novel approach for reconstructing cis-regulation
to 23 Ascomycota species to study the evolution of their
cis-regulatory networks. Using this approach, we system-
atically identified cis-regulatory interactions for 88 known
regulatory DNA motifs across the 23 species, their conserved
target genes in each clade and their functional annotations.
We exploited this resource to study the regulatory history of

G
en

es

Ste12

G
en

es

Tec1

G
en

es

Mcm1

Non-target gene
Target gene

S
ce

r

S
m

ik

S
ba

y

S
ce

r

S
m

ik

S
ba

y

S
ce

r

K
la

c

C
al

b

Cell wall, mating, 
and pseudohyphal

growth module

Cell cyle,
replicative

complex module

Cell wall, mating,
and pseudohyphal

growth module

A B C

G
en

es

Hnf4a

hu
m

an

m
ou

se

do
g

Liver,
lipid metabolism

D

Figure 8 Turnover of target genes within functional modules from experimentally measured binding profiles in yeasts and mammals. The target genes (rows) for each
species (columns), associated with a conserved functional module of different transcription factors: (A) Ste12 (Borneman et al, 2007) in yeasts, (B) Tec1 (Borneman
et al, 2007) in yeasts, and (C) Mcm1 (Tuch et al, 2008) in yeasts (D) HNF4a (Schmidt et al, 2010) in mammals. Blue: target in a species; black: non-target in the species.

Evolutionary robustness in regulatory networks
N Habib et al

& 2012 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2012 11



specific transcription factors and to reach general principles of
regulatory evolution. In addition, this constitutes a rich public
resource (http://www.compbio.cs.huji.ac.il/OrthoMotifs/)
that will facilitate future studies of regulatory evolution of
individual clades or species, including human and plant
pathogens.

We find and quantify a pervasive gain and loss of motif
targets at high evolutionary rates. The high turnover rates that
we estimate from data for all motifs (average B7% expected
conserved targets from the LCA of the phylum, Figure 5A) are
reflected by the small number of highly conserved targets, and
by the complete switch of targets for 72% of motifs in at
least one point in the phylogeny. These high turnover rates
generalize previous binding studies of few individual tran-
scription factors across three yeast species (Borneman et al,
2007; Tuch et al, 2008), four flies (Moses et al, 2006; Bradley
et al, 2010) and five mammals (Schmidt et al, 2010).

The seemingly contradictory trends of a broad conservation
of the functions associated with a motif, and the pervasive gain
and loss of the motif in individual targets within the module,
are reconciled by our proposed Functional Selection Turnover
Model, implying that it is a general principle of regulatory
evolution. Such conservation of a transcription factor’s
cellular function but high turnover of its individual targets
had been previously indirectly implicated in the comparison of
cell-cycle genes between two yeast species (S. cerevisiae and
S. pombe) (de Lichtenberg et al, 2007) and for liver-specific
transcription factors across five vertebrates (Schmidt et al,
2010). Our analysis suggests that it is a broad and general
phenomenon and our model shows that it can be explained by
a strong selection to conserve the function of the motif, but a
weaker selection over the specific target genes within this
function. This evolutionary model accounts for patterns of
turnover from direct measurements of transcription factors
across individual species in yeast and mammals, suggesting
that the same principle applies at different evolutionary
distances, measurement methods, phylogenetic resolution
(clades and species), and remote phyla.

There are several alternative potential explanations for the
observed conservation of regulatory function despite high
target turnover. First, determination of transcription factor
targets based on cis-regulatory elements (rather than on
limited experimental ChIP data) is challenging and noisy
(Gasch et al, 2004; Tanay et al, 2005; Wohlbach et al, 2009),
resulting in many false positives and false negatives, which
may lead to low overlap in target genes between species.
To exclude this option, we compared evolutionary conserved
target genes at the clade level instead of target genes for
individual species. Second, the transcription factor may target
additional genes in some species, thus expanding the scope of
functions it regulates, as has been previously shown in yeasts
for various factors, such as Mcm1 (Tuch et al, 2008). Although
we detect such expansions in several cases (Figure 5;
Supplementary Figure 4), we detect high turnover within the
large majority of functional modules (Figure 7), including
highly conserved modules.

Finally, the high degree of target turnover within a module
may be facilitated by the fact that many target genes are co-
regulated within dense overlapping regulons (Alon, 2007),
where multiple factors have overlapping roles. In ‘single input

modules’ (Alon, 2007) (e.g., the galactose utilization pathway
in yeast), all the genes in a module are co-regulated by one
factor, and we expect strong target conservation. Conversely,
in a Dense Overlapping Regulon (e.g., Ribosomal Protein
genes), multiple transcription factors regulate the module’s
genes, and are partly redundant, such that loss of one regulator
might be compensated for by another. For example, amino-
acid metabolism genes are commonly regulated by Gcn4 and
Leu3, with loss of the regulation by one transcription factor
compensated for through gain of regulation by the other
(Tanay et al, 2005; Tsong et al, 2006; Hogues et al, 2008; Tuch
et al, 2008; Wohlbach et al, 2009; Weirauch and Hughes, 2010)
(Supplementary Figure 5b and c). This would be consistent
with the conserved co-expression of many functional modules
in yeast (Tanay et al, 2005; Hogues et al, 2008) and mammals
(Odom et al, 2007). More broadly, transcriptional regulation is
only one of many regulatory layers, and control of one or a few
members of a complex or pathway may determine the activity
level of the whole complex (de Lichtenberg et al, 2007). Thus,
a transcription factor may influence the activity of a cellular
process by targeting a few genes, and loss of regulation of one
target can be compensated by gain of regulation by another
transcription factor.

Overall, the function-centered model of targets turnover
provides an important insight into the use of conservation as a
filter for functional elements in comparative genomics studies
(such as ChIP experiments that rely on evolutionary conserva-
tion to filter out noise in transcription factor target genes
(Harbison et al, 2004)). Moreover, by taking a function rather
than a gene-centered view of cis-regulatory evolution, our
findings suggest that selection forces are more permissive than
has been previously assumed. At the module and transcription
factor levels, although turnover within a module may not
affect the overall regulatory role of a factor, it may allow for
more subtle fine-tuning of gene regulation, facilitating
adaptation while controlling against dramatic changes in
phenotype.

Materials and methods

CladeoScope algorithm: phylogenetic
reconstruction of cis-regulatory networks

The CladeoScope algorithm reconstructs cis-regulatory networks
across species: It learns species-specific DNA motifs (including in
species lacking any functional annotations and known motifs), using
prior knowledge about known PWMs in a model organism, and
computationally adapting them to each species (see species-specific
motifs). For each motif it then assigns a set of ancestral target genes in
the LCA of each clade of species across the phylogeny (Figure 1),
inferred using a maximal parsimonious phylogenetic reconstruction
(see Phylogenetic reconstruction of ancestral targets).

Initially, a gene is predicted to be targeted by a regulatory DNA motif
in a species if it contains a binding site of the motif in its promoter (see
Motif scanning for putative targets). These predicted targets are used in
the reconstruction to find the ancestral set of target genes. In addition,
after the reconstruction of ancestral targets, we use them as an input to
the motif refinement per species, and choose the optimal motif (see
species-specific motifs). The DNA motifs in each species and the
ancestral targets in each clade are filtered based on evolutionary
conservation within clades of species by their statistical significance
(see Phylogenetic filter for noisy motifs and statistical significance).
The resulting resource of species-specific motifs, ancestral target sets
and functional modules per clade of species are available for download
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at our Supplementary website: http://www.compbio.cs.huji.ac.il/
OrthoMotifs.

Pseudocode:
Caldesosope (PWM, promoter sequences, gene trees):

1. Find provisional motif targets in each species by scanning
promoters.

2. Learn species-specific motifs:

a Apply motif discovery algorithm on the provisional target set
initialized by the PWM.

b Rescan for putative targets using new motif.
c Repeat steps a–b using the provisional targets defined in b.

3. Reconstruct ancestral motif targets for each clade in the phylogeny
from the provisional species sets using maximum parsimonious
dynamic programming algorithm.

4. Repeat step 2 starting with the ancestral targets in each clade, and
choose the motif conforming to the higher enrichment threshold.

5. Filter motifs:

d Filter motifs in each species by enrichment of motif targets with
ancestral targets.

e If any motifs are removed go back to step (3).
f Filter motifs in the clade level based on statistical significance of

the number of ancestral targets.

We now describe the procedure involved in each step of this
psuedocode.

Motif scanning for putative targets (steps 1 and 2b)

To identify the putative targets of a motif in the genome, we score each
gene’s promoter by summing over all possible positions of the
promoter on both strands (as in Tanay, 2006), taking into account
the nucleotide background distribution in the promoters of the
relevant genome:

score¼ log
XN �Mþ 1

i¼ 0

YM
j¼ 1

PPWMj ðniþ jÞ
PBGðniþ jÞ

YM
j¼ 1

Pr� PWMj ðniþ jÞ
PBGðniþ jÞ

 !

Where N is the length of the promoter; M is the length of the motif;
ni is the nucleotide at the i’th position of the promoter; PBG is the
background distribution of nucleotides in all promoters of the genome;
PPWM

j is the probability vector for nucleotides in position j of the motif
and similarly P r-PWM

j for the reverse motif (equivalent to searching the
reverse strand of the DNA). We considered the 600 base region
upstream of each gene’s ATG as its promoter, truncating this region
whenever it overlapped a neighboring gene.

We define the target set of the motif as those genes whose promoters
have a score above a threshold T¼ 0.8* (mean of 20 highest scoring
promoters in the genome). The threshold and scanning method where
determined by optimizing the precision rate and sensitivity of
predictions of in vivo transcription factor target genes from ChIP-chip
(Harbison et al, 2004) assays in S. cerevisiae of two different
transcription factors: Hsf1 and Rpn4 (Supplementary Note 4).
Arguably, this might bias our choices to levels of binding that are
significantly detectable by these assays. However, perturbation
analysis of this threshold show that our result are mostly robust to
this choice (Supplementary Notes 1–3). Since this score is relative to
each genome and to each motif, we exclude motifs that do not have any
occurrences in the genome by filtering out motifs whose highest score
in the genome is o50% of the maximum possible score of this motif in
a single location. Additionally, we removed motifs from the collection
if the number of inferred targets was 41500 (the upper bound was
chosen to exceed the maximal number of promoters bound by any
transcription factor in S. cerevisiae, as measured by ChIP-chip
(Harbison et al, 2004)).

Species-specific motifs (step 2)

Our underlying assumption in this step is that the binding specificities
of transcription factors, represented as DNA motifs, are largely

conserved, even when their specific target genes and functional roles
may have substantially diverged (Wapinski et al, 2007; Tuch et al,
2008; Schmidt et al, 2010). We therefore initiate our reconstruction
with DNA motifs for known transcription factors that have been
experimentally determined in model organisms. CladeoScope uses the
MEME motif discovery algorithm (Bailey and Elkan, 1994) on the
promoters of the putative targets of each initial motif in each species,
with the initial motif’s consensus sequence as the initialization point to
the algorithm. MEME is parameterized to identify motifs on either
strand, of length within two bases from the input consensus, and it is
given the species-specific nucleotide distributions as background
models for learning. Of the top two motifs reported by MEME, the
highest scoring motif in this species is then used to rescan the species’
genome and to identify a revised set of targets. CladeoScope repeats
this process of motif discovery and rescanning to refine the motif and
its target set once; typically the motif is not altered after the first
iteration. To allow more variation in the motifs, we repeat the process,
initializing the refinement with the conserved ancestral targets. This
allows us to find motifs in species where the first iteration did not
succeed. CladeoScope chooses the motif with the highest enrichment
score between these iterations.

Phylogenetic reconstruction of ancestral targets
(step 3)

To infer the ancestral motif targets we trace regulatory events across
orthologous loci. CladeoScope handles genes derived from a common
ancestor gene in the root of the phylogeny as related (‘orthogroup’ in the
terminology of Wapinski et al, 2007), and defines an orthogroup as a
target of a motif if it is predicted as a target in at least one of the ancestors
in the phylogeny. The reconstruction is done using maximum parsimony
(Fitch, 1971) to minimize the number of target gain and loss events along
the branches of the tree. This is done separately for any potential
ancestral target gene by a dynamic programming algorithm. The inputs
to the algorithm are (1) the phylogenetic gene trees for each set of
orthologous genes (Wapinski et al, 2007) and (2) a binary classification
denoting whether each gene in the tree is a predicted target of the motif in
each species. This reconstruction accounts for gene duplications and
losses, distinguishing a lost gene from a present gene that is not a target,
and operates independently on each paralogous lineage following gene
duplication events, by utilizing gene trees when reconstructing ancestral
targets. Given that most of these species have diverged sufficiently to lose
sequence similarity at the promoters, paralogs will not necessarily be co-
targets of a motif due to spurious conservation of their promoters. Thus,
paralogs can be in different motif-target sets in the CladeoScope output.

Phylogenetic filter for noisy motifs and statistical
significance (step 4)

We use phylogenetic conservation within a clade of species as a filter
for noisy predictions of target genes (described above) as well as the
DNA motifs themselves. CladeoScope filters the motifs for each species
independently by enrichment of their putative target genes in that
species with ancestral targets in any relevant clade (hypergeometric
P-value o0.001). Since filtering the motifs (step 4) and the
reconstruction of ancestral targets (step 3) are dependent, we solve
this problem by iterating between the two steps. If any insignificant
motifs are found in the clade, the most insignificant one is removed,
and CladeoScope returns to step 3 of reconstructing the ancestral
targets. This filtration per species allows for a motif to be detected in a
clade of species, although it is not functional in a single species but is
functional in all other species in the clade. We then filter the motifs at
each clade, requiring that the number of inferred targets for a motif in
the clade’s ancestor be statistically significant (P-value p0.005)
against the null hypothesis that the targets predicted in the individual
species are independent. We compute an empirical P-value by
simulating target sets of the relevant size for each species in the clade,
and reconstructing ancestral targets from these random sets. This
process is repeated 1000 times to estimate the probability of getting a
set of ancestral targets of a certain size or larger by chance. A motif is
detectable in a clade if it has a statistically significant (P-valueo0.005)
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set of ancestral targets in the clade. Finally, we exclude motifs that are
found to be significant only in clade A (sensu-stricto), since in this
clade promoter sequences have not evolved enough for random
occurrences of a motif have a non-trivial chance to be conserved.

Validating CladeoScope’s performance using
synthetic data

We generated simulated target sets in extant species for evaluating
CladeoScope’s robustness (Supplementary Figure 1) by evolving targets
from an ancestral set of targets using turnover (gain and loss) rates of
target genes, with several variations. First, we used two types of noise
factors: (1) the proportion of erroneous target genes relative to the
species true motif targets (false positives, ranging between and 0% and
200% of erroneous targets within each species set) and (2) the
proportion of missing (true) targets not included in the species motif
target set (false negatives, ranging between 0% and 60% of removed
targets from each original species set). Second, we varied the size of the
ancestral target set. Using ancestral motif targets in clade A (Figure 3A):
22 targets of Hsf1, 198 targets of Mbp1, 297 targets of Fkh1. Third, we
varied the degree of targets turnover (the fast turnover is the average
frequency measured in clade E (Figure 3A) over all motifs: Fast
Fgain¼ 0.002 Floss¼ 0.3, Medium Fgain¼ 0.0002 Floss¼ 0.03, Slow
Fgain¼ 0.00002 Floss¼ 0.003). Fourth, we estimated the gain and loss
frequencies for each of the three motifs in each relevant species directly
from the data (as in the LRT described below) (Supplementary Note 1).
Fifth, we used two topologies of the species tree: the topology in the
sensu-stricto clade (clade A, Figure 3A), and the asymmetrical topology
in the Candida clade (clade E, Figure 3A). Overall, we considered 960
combinations of these parameters. For each set of parameters, we
executed CladeoScope and calculated sensitivity and specificity mea-
sures averaged over 100 independent simulations.

Assessing performance on random motifs

We created random motifs by concatenating randomly sampled
positions from all known motifs from the literature (using all motifs
from S. cerevisiae, as described below). We confirmed that the random
motifs we constructed were not similar to any known motifs,
comparing the random motifs to all known motifs using BLiC (Habib
et al, 2008). For each random motif, we scanned for targets in each
species (as described above), and ran CladeoScope to reconstruct the
ancestral sets. We then computed an empirical P-value for each motif
in all clades using random targets (as described above).

Assessing CladeoScope’s robustness to
parameters and comparison to the literature

We tested CladeoScope’s robustness to variations in different parameters
including (as described in Supplementary Note 1): (1) The P-value
threshold for detection of a motif in a species—We ran the algorithm on
nine different motifs across all clades, using seven different thresholds,
ranging between 5e� 2 and 1e� 5, and compared the number of
ancestral targets reconstructed per clade. (2) The P-value threshold for
conservation of a motif in a clade—We tested different P-value thresholds
ranging between 0.05 and 0.001, and compared the number of
statistically significant ancestral motifs predicted per clade. (3) The
motif-targets detection threshold—We tested three different thresholds
(80, 75, or 70% out of the best score per motif and species). In each case,
we compared the ancestral and species targets determined by Cladeo-
Scope to those from in vivo ChIP-chip data in S. cerevisiae and four other
species (Supplementary Note 1).

Targets turnover rates and expected number of
changes in target genes

For each motif we computed the turnover rate of its target genes based
on the following model. The model treats each pair (motif, gene) as a
binary character denoting whether the gene is a target of the motif or

not. We model changes in this character (gain or loss events) as a
stochastic continuous-time Markov process parameterized by motif-
specific rates, one for gain, and another for loss. This model is akin to
standard models of character evolution (Felsenstein, 1981). The rates
are expressed in terms of expected number of events per time unit (tU),
where a time unit corresponds to the time in which one amino-acid
substitution per site is expected on average. The model assumes a
constant turnover rate of targets along the phylogeny, which is
reflected by two parameters for each motif: its gain rate (a) and its loss
rate (b), given by the following rate matrix R:

R¼ �a a
b 1b

� �

Given this rate matrix we can compute the probabilities for target gain
and loss for a given evolutionary distance t using the following
equations:

PðGain j tÞ¼ a

aþ b
ð1� e�ðaþ bÞtÞ

PðLoss j tÞ¼ b

aþ b
ð1� e�ðaþ bÞtÞ

We use a maximum-likelihood estimator to infer the parameters in R
for each motif. The likelihood is computed based on sufficient statistics
for each clade relative to its immediate ancestral clade, including the
branch length (t), the observed number of gained (Ngain), lost (Nloss)
and conserved (Ncons) target genes, and the probabilities described
above, as:

In Likelihood ðMotifÞ¼
X

b2branches

Nb
gain In PðGain j tbÞþNb

loss In PðLoss j tbÞ
þNb

cons In ð1� PðLoss j tbÞÞþNb
notTarget In ð1� PðGain j tbÞÞ

$ %

The maximum-likelihood estimator is found by a gradient descent
algorithm using Matlab’s fminunc function. We assume the tree
topology and branch length are known (see Species phylogeny).

Annotating motifs with functional modules

To associate motifs with regulatory functions, we cluster functional
gene sets together by the fraction of associated motif targets shared
between them, creating sets of functional modules containing genes
that share functional annotations and are all ancestral targets of the
same regulatory motif in at least one clade (Supplementary Figure 3A).

The method is applied to each motif separately. As input we provide
the ancestral target genes of the motif in each clade, and gene sets of
functional annotations from various sources. In step 1 (Initialization),
we identify all functional annotations enriched in each set of ancestral
targets in each clade using Fisher’s exact test (Po0.01 after correction;
however, the results presented here are robust to various thresholds),
and define a functional module as genes from each enriched category
that are ancestral targets in any clade. In step 2 (Merge functional
modules), we merge modules according to the fraction of associated
motif targets shared between them. In this greedy procedure, we start
from the most enriched module, choose another one that is most
highly overlapping with it (at least 60% gene membership overlap;
however, the results presented here are robust to various thresholds)
and unite them into a new functional module, eliminating the two
daughter modules from the collection. In step 3 (Recalculate
enrichments), we recalculate the enrichment of the ancestral targets
in each clade with this new functional module. We repeat steps 2 and 3
until no further functional modules are merged. Following the
automatic assignment of modules, we manually annotated each
functional module with a biologically meaningful label based on its
underlying annotations.

The functional modules assigned to each motif, and the target genes
assigned to each module can be found in Supplementary Table 3.
Modules and genes created by different sets of parameters can be
found in Supplementary Table 9.
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Note that the assignment to functional modules is based on
phylogenetic projection from S. cerevisiae, C. albicans, and S. pombe
annotations. As a consequence, the function assignment often cannot
distinguish between paralogs. Moreover, in a previous study of
functional evolution (Wapinski et al, 2007), we show that when we
can evaluate such divergence, most paralogs maintain the same
functional category. Thus, we expect some functional modules to be
enriched for paralogs (e.g., the Ribosome, due to the massive
duplications of genes encoding ribosomal proteins). This, however,
reflects a real phenomenon.

The classification of motifs to three functional
categories

The classification of motifs to three functional categories is based on
the explicit definition of each category: For conserved motifs, all
associated modules are enriched across (the relevant) clades.
Expanded motifs have at least one module conserved across clades,
and an additional module specific for a subset of these clades. Switched
motifs have modules enriched in different subsets of clades. We
applied these definitions with one exception, in which we excluded
small modules (with o5 genes uniquely classified to the module).
To increase confidence in these results, we subsequently examined
each classification individually, and compared the module enrichment
pattern to the conservation pattern of target genes across species.
We marked in Supplementary Table 2 cases where this examination
raised doubts in the classification. To further ensure that these
classifications are not an artifact of specific thresholds in module
construction, we selected three representative parameter sets and
applied this processes separately to each one of them (Supplementary
Table 2). For 18 motifs (including all the ones mentioned in the text and
figures), we performed a more extensive comparison of module-
construction parameters (Supplementary Table 7). Notably, the
examples throughout the text and figures include only robust examples
across all parameters. For the analysis presented in the manuscript and
in Figure 6B, we constructed a consensus classification for each motif.
We examined the three classifications described above and defined the
consensus/majority classification for each motif (Supplementary
Table 2). In virtually all cases there was a clear-cut consensus
classification.

Functional annotation resources

We used functional annotations from several sources. GO annotations
(Ashburner et al, 2000) were assembled from the genome databases of
S. cerevisiae (SGD), C. albicans (CGD), and S. pombe (GeneDB). Other
S. cerevisiae-based annotations include transcription modules (Segal
et al, 2003), MIPS (Mewes et al, 2011), KEGG (Kanehisa and Goto,
2000; Kanehisa et al, 2006), and mutant phenotypes (Hughes et al,
2000). Other S. pombe-based annotations include expression clusters
(Chen et al, 2003). We projected each set of annotations from genes to
their orthologs (Wapinski et al, 2007) to test gene set enrichments
across all clade core-sets, as previously described (Wapinski et al,
2007).

Assessing robustness of functional modules and
their comparison to the literature

To test the robustness of the functional modules, we applied the
algorithm with different parameters and inputs, including (see
Supplementary Note 3): (1) Enrichment thresholds for functional
modules with motif targets (HyperGeometric P-value threshold
ranging between: 1e� 3 and 1e� 6). (2) Threshold for merging gene
sets (overlap threshold ranging between 40% and 75%). (3) Threshold
for initial predictions of target genes (80% or 75% out of the bests
score per motif and species).

For each set of parameters we tested several characteristics: (1) the
number of modules; (2) the fit of our functional selection turnover
model; (3) the classification of motifs to functional classes (functional
conservation, Clade-specific innovation or Functional switch), where

we examined in detail 18 motifs including those discussed specifically
in the manuscript; and (4) robustness of the functional annotations of
motifs by the functional modules, where we examined in detail 18
motifs including those discussed in the manuscript.

In addition, we compared the resulting functional modules to
known motif and transcription factor annotations from the literature in
SGD, CGD , and GeneDB.

The functional selection turnover model

We used an LRT to determine if the observed functional conservation
with widespread turnover occurs by chance or according to our
functional selection model. We defined two alternative hypotheses:

H0: Module-Neutral turnover: Targets turnover at the same (‘neu-
tral’) rate regardless of the functional module to which they belong
(implying that the functional conservation may be a byproduct of the
insufficient evolutionary distance between species).

H1: Functional selection: There is selective pressure on the targets to
be gained or lost within modules of genes sharing the same function.
Turnover rates—both gain and loss—are different for targets in the
functional module compared to those outside.

We applied the LRT to each functional module testing separately
each associated clade (total of 745 tests), by computing the likelihood
of the observations under each hypothesis and calculating a P-value
(w2 distribution with one degree of freedom). The likelihood
computations were based on maximum-likelihood estimates of gain
and loss probabilities in the clade relative to its immediate ancestral
clade. The required sufficient statistics are the observed number of
gained (Ngain), lost (Nloss), and conserved (Ncons) target genes. In the
functional selection model (H1 hypothesis), we computed the gain and
loss probabilities separately for genes within the module and genes
outside of the module.

Description of the equations:

LRTðMotifÞ¼ llðMotif j H0Þ� llðMotif j H1Þ
llðMotif j Hi¼

X
b2branches

llðb j HiÞ

llðb j H0Þ¼Ngain ln PðGain j H0ÞþNloss ln PðLoss j H0Þ j þNcons

ln½1� PðLoss j H0Þ� þNnonTarget ln½1�PðGain j H0Þ�

llðb j H1Þ¼N IN
gain ln PðGainin j H1ÞþN IN

loss j lnðPðLossin j H1Þ
þN IN

cons ln½1�PðLossin j H1Þ�þN IN
nontarget ln½1� PðGainin j H1Þ�

þNOUT
gain ln PðGainout j H1ÞþNOUT

loss ln PðLossout j H1ÞþNOUT
cons

ln½1� PðLossout j H1Þ�þNOUT
nontarget ln½1�PðGainout j H1Þ�

The maximum-likelihood estimation for the probability of gain and
loss of each motif’s target genes in the current clade C1, compared with
the immediate ancestral clade Cp:

PðGain j H0Þ¼
Ngain

Ntotal�TCp

PðLoss j H0Þ¼
Nloss

TCp

PðGainIN j H1Þ¼
N IN

gain

N IN
total �TIN

Cp

PðLossIN j H1Þ¼
N IN

loss

TIN
Cp

Where Ntotal¼ total number of genes in the genome, TCp
¼ total

number of targets in clade Cp, IN¼ genes belonging to the functional
module, OUT¼ genes not belonging to the functional module, N IN

total¼
total number of genes in the functional module, TIN

Cp
¼ total number of

genes in the functional module that are targets in clade Cp.
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Simulating the number of highly conserved targets

To test whether the number of highly conserved targets is explained by
the functional selection model, we computed the probability of
observing the inferred number of these targets under the functional
selection model (the H1 hypothesis defined in the LRT, above). We then
simulated targets in the two subclades that share the same direct
ancestral clade, and computed the overlaps between these simulated
target sets. The simulations were initialized with the target set of the
ancestral clade, and we simulated the targets in each subclade
according to its probability of gain or loss of target genes, within and
outside of the functional module (computed as described above for the
LRT, using a maximum-likelihood estimator). We repeated this process
1000 times, counting the number of times in which the number of
simulated ancestral targets was equal to or greater than the number
observed in our data. We ran the test on motifs conserved at least up to
clade H (29 motifs), and computed these empirical probabilities of the
intersection between the target sets at clade D and clade G. In general,
for two target sets C1 and C2 of clades that share an immediate
ancestral clade, we computed the empirical probability for the number
of genes in the intersection between the two target sets, denoted as Ip:

PðIXIpÞ¼
# ðIsimulatedXIpÞ
# simulations

Where #(IsimulatedXIp) is the number of simulations where C1-C2XIp
and #simulations is the total number of simulations (1000).

Experimental transcription factor binding data

We used Ste12 and Tec1 binding in three closely related Saccharomyces
species by ChIP-chip (Borneman et al, 2007); Mcm1 binding measured
across three more distant yeast species by ChIP-chip (Tuch et al, 2008);
and HNF4a binding measured across three mammalian species
(human, mouse, and dog) by ChIP-seq (Schmidt et al, 2010). For the
yeast studies, we used target genes defined in the original manuscripts.
For the mammals, where regulatory elements can reside far from their
target genes, we had to assign each bound regulatory element with the
gene(s) it controls. We focused on binding events in the proximity of
the gene, and used five alternative definitions of promoters, ranging
between 1 and 5 kp upstream of the transcription start site (sequences
taken from UCSC genome Browser versions hg19 (Lander et al, 2001),
canFam2 (Lindblad-Toh et al, 2011), mm10 (Waterston et al, 2002)).
The specific list of target genes changes when we modify this
parameter, but the fit to the functional turnover model does not.

To find functional modules we conducted the same analysis as
described above, using the target gene enrichments from the
individual species instead of the targets at the clades. For the LRT
and simulation tests, we conducted the same analysis as described
above, but comparing targets of each individual species to the
ancestral target set of all three species, defining the highly conserved
targets as targets conserved in all three species. For mammals, we used
gene functional annotations from MsigDB (Liberzon et al, 2011)
(Release 3.0).

Gene, promoter annotations, and DNA motifs

We acquired the genome sequences and annotations of the 23
Ascomycota species from the online Fungal Orthogroups (Cherry
et al, 1997; Wood et al, 2002; Cliften et al, 2003; Kellis et al, 2003, 2004;
Dietrich et al, 2004; Dujon et al, 2004; Galagan et al, 2005; Arnaud et al,
2007; Butler et al, 2009; Rhind et al, 2011). Promoters were defined as
the 600 bases upstream from the first codon, truncated at the
neighboring coding sequence. To avoid bias in the motif discovery
stage, we filter out stretches of poly-A or poly-Tsequences of five bases
or longer and poly-A/Tsequences longer than nine bases and replaced
them with poly-N of the same length.

Motifs were assembled from TRANSFAC (Matys et al, 2006), protein
microarrays (Zhu et al, 2009), and previous analysis of ChIP-chip data
(MacIsaac et al, 2006). All motifs were transformed to a PWM format
(a n� 4 matrix, where each i,j cell contains the count of nucleotide j in
position i of the motif), and clustered (using BLiC Habib et al, 2008) to
unite highly identical motifs.

Species phylogeny

The CladeoScope algorithm as well as the maximum-likelihood
estimators described above, assume the species phylogeny is known.
Thus, to reconstruct the phylogenetic relationship between the
species, we first identified all the orthologous genes with exactly one
copy in each of the species (Wapinski et al, 2007) and aligned their
orthologous protein sequences. We concatenated all of these align-
ments to produce a meta-alignment of over 300 000 positions.
We sampled 10 000 residues from this alignment, giving us an artificial
protein from which we reconstructed the phylogeny using the PhyML
(Guindon et al, 2010) software package with its default parameter
settings. We repeated this process 10 times, rendering the same
phylogeny at all branches except for the post-WGD clade of species, in
which Candida glabrata and S. castellii were sometimes found to be
inverted. Recent work (Scannell et al, 2006) has shown that it requires
fewer genomic rearrangements to place S. castellii as the outgroup of
this clade and that the longer branch length leading to C. glabrata may
be due to increased selective pressure as it became a pathogenic
species. Thus, we fixed the branches at this location of the tree.
In order to re-estimate the branch lengths with this fixed tree topology,
we repeated the same process to construct an artificial protein and ran
the SEMPHY software package (Friedman et al, 2002) to optimize
branch lengths with default parameters. We repeated this process 10
times and found branch length correlations of over 0.99 between
replicates. We then averaged the branch lengths among the 10 replicates
to obtain branch length estimates for the given species phylogeny.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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