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Current theories of the pathophysiology of schizophrenia have focused on abnormal
temporal coordination of neural activity. Oscillations in the gamma-band range (>25 Hz)
are of particular interest as they establish synchronization with great precision in
local cortical networks. However, the contribution of high gamma (>60 Hz) oscillations
toward the pathophysiology is less established. To address this issue, we recorded
magnetoencephalographic (MEG) data from 16 medicated patients with chronic
schizophrenia and 16 controls during the perception of Mooney faces. MEG data were
analysed in the 25–150 Hz frequency range. Patients showed elevated reaction times and
reduced detection rates during the perception of upright Mooney faces while responses
to inverted stimuli were intact. Impaired processing of Mooney faces in schizophrenia
patients was accompanied by a pronounced reduction in spectral power between
60–120 Hz (effect size: d = 1.26) which was correlated with disorganized symptoms
(r = −0.72). Our findings demonstrate that deficits in high gamma-band oscillations as
measured by MEG are a sensitive marker for aberrant cortical functioning in schizophrenia,
suggesting an important aspect of the pathophysiology of the disorder.
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INTRODUCTION
Abnormal changes in neural oscillations have received widespread
attention in recent years as an important mechanism for under-
standing the pathophysiology of schizophrenia (Uhlhaas and
Singer, 2010). This is due to their fundamental role in establishing
precise temporal relationships between neural responses at differ-
ent spatial scales within and across cortical regions. Oscillations in
the beta/gamma range establish synchronization with great pre-
cision in local cortical networks (Gray et al., 1989; Womelsdorf
et al., 2007). Neural oscillations are a functionally relevant phe-
nomenon as they enhance signal transmission (Fries et al., 2007),
modulate synaptic plasticity (Wespatat et al., 2004), and correlate
with a range of cognitive functions, including basic sensory pro-
cesses (Gray et al., 1989), executive functions (Roux et al., 2012),
and consciousness (Melloni et al., 2007) [for a recent review see
Uhlhaas et al. (2009)].

Schizophrenia is associated with impairments in all these
domains as well as psychotic symptoms that involve disturbance
in conscious experience. These deficits may involve a disconnec-
tion syndrome within and between brain regions (Andreasen,
1999; Phillips and Silverstein, 2003; Stephan et al., 2009) that
underlies dysfunctional coordination in local and extended cor-
tical circuits. Accordingly, abnormal oscillations may parsimo-
niously explain core features of schizophrenia. In addition, they

can be mapped onto distinct neural processes as much is known
about the physiological and anatomical mechanisms underlying
the generation of synchronized neural oscillations. The network
of GABAergic interneurons has pace-maker functions for the gen-
eration of gamma-rhythms in local cortical circuits (Sohal et al.,
2009; Oke et al., 2010), while the excitatory cortico-cortical con-
nections are essential for long-range synchronization in the beta-
and gamma-band (Engel et al., 1991).

So far most studies focused on abnormal oscillations in the 40–
70 Hz frequency range as a putative cause for the cognitive deficits
in schizophrenia (Kwon et al., 1999; Spencer et al., 2003; Cho
et al., 2006) because oscillations around ∼40 Hz were initially
proposed to serve as a mechanism for the binding of spatially
distributed responses in vision (Gray et al., 1989). These studies
revealed robust abnormalities in auditory steady state potentials
to 40 Hz stimulation (Kwon et al., 1999) and consistent evidence
for deficits in phase-synchrony of evoked and induced oscillations
in the gamma frequency range (Spencer et al., 2003; Uhlhaas et al.,
2006a). In contrast, reductions in the amplitude of induced and
evoked gamma-band oscillations during sensory processing and
higher cognitive functions have been conflicting, with some stud-
ies showing circumscribed impairments (Cho et al., 2006) while
other studies could not confirm these findings (Uhlhaas et al.,
2006a).
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Reasons for the inconsistent findings in regards to reductions
in gamma-band spectral power could be the focus on oscilla-
tory activity in the low (25–60 Hz) gamma frequency range. More
recent evidence from magnetoencephalographic (MEG) studies
(Guggisberg et al., 2007; Siegel et al., 2007; Chaumon et al., 2009;
Grutzner et al., 2010), invasive recordings in monkeys (Jutras
et al., 2009), and intracranial electroencephalographic (iEEG)
recordings in humans (Lachaux et al., 2005; Crone et al., 2006)
suggest, however, that gamma-band oscillations extend to activity
up to 200 Hz.

This so-called “high” gamma-band activity (60–200 Hz) may
be important for cortical computations and can be measured with
a high signal-to-noise ratio (Hoogenboom et al., 2006). Indeed,
there is a good agreement between the high gamma-band activ-
ity disclosed by MEG and oscillatory activity measured by iEEG
(Dalal et al., 2009), suggesting a close correspondence between
non-invasively recorded high gamma-band oscillations through
MEG and directly recorded neural activity.

The contribution of high gamma-band activity toward the
pathophysiology of schizophrenia is, however, unclear. A recent
EEG study provided preliminary evidence for a circumscribed
deficit in high gamma-band activity during the delay period of
a working memory task in schizophrenia patients (Haenschel
et al., 2009). Similarly, Hamm et al. (2011) showed that deficits
in auditory steady-state responses (ASSRs) also involve deficits to
entrainment at 80 Hz.

In the current experiment, we employed MEG to examine
comprehensively the role of low and high gamma-band activ-
ity. Moreover, there is an important advantage of MEG over
EEG in the measurement of high-frequency oscillations in that
the magnetic field can be measured undisturbed by tissue inho-
mogeneities. This results in a superior signal-to-noise (SNR) in
MEG- relative to surface EEG-recordings (Muthukumaraswamy
and Singh, 2013) as well as improved localization accuracy for
the generators of cortical high frequency oscillations (Kaiser and
Lutzenberger, 2005).

As in our previous study with EEG (Uhlhaas et al., 2006a),
Mooney faces as a test of perceptual organization were used. A
large body of research suggests that in addition to dysfunctions in
higher cognitive functions, such as executive processes and work-
ing memory, schizophrenia is also associated with deficits in per-
ceptual processing (Uhlhaas and Silverstein, 2005; Uhlhaas and
Mishara, 2007). This is supported by psychophysical (Uhlhaas
et al., 2006b; Javitt, 2009), anatomical (Selemon et al., 1995), and
physiological data (Krishnan et al., 2005) that indicate abnormal-
ities in sensory functions.

MATERIALS AND METHODS
PARTICIPANTS
Sixteen patients with schizophrenia were recruited from in-
and out-patient units from the Frankfurt University Psychiatry
Department. Sixteen healthy controls were recruited from the
local community and screened for psychopathology with the
German version of Structured Clinical Interview for DSM-
IV-R Non-Patient Edition (SCID) (Saß et al., 2003). Written
informed consent was obtained from all participants following
a description of the study procedures. The study was carried

out according to the Declaration of Helsinki and approved by
the ethical committee of the Johann Wolfgang Goethe-University
Frankfurt. DSM-IV diagnosis of schizophrenia was established
with the SCID-Interview, by thorough chart review and in con-
sultation with the treating psychiatrists. Patients and controls
were excluded if they had any neurological or ophthalmologic
disorders that might have affected performance or if they met
criteria for alcohol or substance dependence within the last
month.

All patients were on medication at the time of testing with 15
out of 16 receiving atypical antipsychotic medication. Six patients
with schizophrenia were treated with a combinatory therapy of
different antipsychotics. Moreover, two patients received a mood
stabilizer.

Current psychopathology was assessed with the Positive and
Negative Syndrome Scale (PANSS) (Kay et al., 1987) and symp-
toms were grouped into five factors according to the model of
Lindenmayer et al. (1995), including the factors “positive,” “nega-
tive,” “depression,” “excitement,” and “cognitive.” In addition, we
rated schizophrenia patients on the item “inappropriate affect”
(Cuesta and Peralta, 1995) to allow for an assessment of the
factor “disorganization” which comprises the items conceptual
disorganization, poor attention, and inappropriate affect.

Demographic information for patients and controls is given
in Table 1. Patients with schizophrenia and healthy controls were
of similar age and education. No differences between groups
were found for premorbid verbal IQ and handedness. Cognitive
function in patients and controls was measured with the Brief
Assessment of Cognition in Schizophrenia (Keefe et al., 2004).
Compared to healthy controls, schizophrenia patients had lower
scores on all scales of the BACS (verbal memory, digit sequenc-
ing, motor speed, verbal fluency, and symbol coding) except for
the tower of London test (Table 1).

STIMULI AND TASK
Mooney and Ferguson (1951) developed a visual closure task con-
sisting of degraded pictures of human faces where all shades of
gray are removed, thereby leaving the shadows rendered in black
and the highlights in white. Perception of Mooney faces involves
the grouping of the fragmentary parts into coherent images based
on the Gestalt principle of closure. We used a set of 160 different
stimuli, consisting of the 40 original Mooney stimuli presented in
the upright orientation, mirrored at the vertical axis and in cor-
responding versions mirrored at the horizontal axis (Figure 1).
To decrease the likelihood of perceiving a face in inverted stimuli,
images were distorted through either slightly rearranging the con-
figuration of white or black patches or changing the contours of
black or white background areas. This distortion ensured that no
faces were perceived in the inverted condition while minimally
affecting low-level stimulus properties, such as luminance and
spatial frequencies.

Participants were presented with a random sequence of
upright and inverted-scrambled stimuli which were shown for
200 ms. The inter-stimulus interval ranged between 3500 and
4500 ms. Participants responded with a button press to both
face and no-face stimuli and the hand assignment was counter-
balanced across participants. A fixation cross was presented in
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Table 1 | Means, standard deviations, and mean differences for demographic, neurocognitive, and clinical characteristics of controls and

schizophrenia patients.

Healthy controls (N = 16) Chronic patients (N = 16) Statistics

Mean SD Mean SD X ²-/t-value p-value

Gender (m/f) 8/8 8/8 X ²(1) = 0.52 0.47
Age (years) 34.19 10.56 38.25 9.38 t(30) = −1.15 0.26
Education (years) 15.33 3.11 14.43 2.95 t(27) = 0.80 0.43
Handedness 69.22 31.45 71.80 25.35 t(29) = −0.25 0.80
MWT 30.67 2.85 28.47 3.16 t(28) = 2.00 0.05

BACS

Verbal memory 52.00 7.51 36.13 13.22 t(28) = 4.04 0.0004
Digit 25.13 3.96 20.13 4.12 t(28) = 3.39 0.0021
Motor 88.80 9.28 75.73 11.44 t(28) = 3.43 0.0019
Fluency 58.67 14.05 40.47 9.93 t(28) = 4.10 0.0003
Symbol cod. 57.21 10.24 45.93 16.38 t(27) = 2.20 0.036
ToL 19.73 2.28 18.33 2.82 t(28) = 1.49 0.15
Total score 298.47 31.58 236.73 41.95 t(28) = 4.55 0.0001

PANSS

Negative – – 18.13 5.60
Excitement – – 6.31 1.82
Cognitive – – 10.25 3.45
Positive – – 9.25 3.59
Depression – – 12.75 3.47
Disorganization – – 5.69 2.44
Total score 69 17.04

FIGURE 1 | Examples of upright (A) and inverted-scrambled (B)

Mooney face stimuli.

the center of the screen between trials. Prior to data collection,
participants performed a practice block to become familiar with
the task and the response buttons. All participants completed four
experimental runs, each of which was composed of 60 upright
and 30 inverted-scrambled stimuli.

The stimuli were displayed in the center of a translucent screen
at a viewing distance of 53 cm and subtended 19◦ of visual angle.
An LCD projector located outside the magnetically shielded room
of the MEG was used to project the stimuli onto the screen
via two front-silvered mirrors. Stimulus presentation was con-
trolled using the Presentation software package (Neurobehavioral
Systems, Inc.).

MEG DATA ACQUISITION
MEG data were recorded continuously using a 275-channel
whole-head system (Omega 2005, VSM MedTech Ltd., BC,
Canada) at a rate of 600 Hz in a synthetic third order axial gra-
diometer configuration (Data Acquisition Software Version 5.4.0,
VSM MedTech Ltd., BC, Canada). The data were filtered with
4th order butterworth filters with 0.5 Hz high-pass and 150 Hz
low-pass. Behavioral responses were recorded using a fiberop-
tic response pad (Lumitouch, Photon Control Inc., Burnaby, BC,
Canada) on the stimulus PC and fed through to the MEG acqui-
sition system as an additional channel. Before and after each run,
the subject’s head position relative to the gradiometer array was
measured using coils placed at the subject’s nasion, and 1 cm ante-
rior to the tragus of the left and right ear. Runs with a head
movement exceeding 5 mm were discarded.
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MEG DATA PROCESSING
MEG data were analyzed using the Fieldtrip open source Matlab
toolbox (http://www.ru.nl/fcdonders/fieldtrip/). Trials were
defined from the continuously recorded MEG from −1000 ms
to 1000 ms with respect to the onset of the visual stimulus and
classified according to the two experimental conditions, the
face condition, containing trials with upright stimuli, and the
non-face condition, containing trials with inverted-scrambled
stimuli. Only data with correct responses were considered for all
further analyses.

Data epochs contaminated by eye blinks, muscle activity, or
jump artifacts in the SQUIDs were discarded using automatic
artifact detection and rejection routines provided by the Fieldtrip
software. Non-artifact trials were baseline-corrected by subtract-
ing the mean amplitude during an epoch ranging from −500
to −100 ms before stimulus onset.

ANALYSIS OF SPECTRAL POWER CHANGES
Time-frequency representations (TFRs) were computed by means
of Morlet wavelets with a width of 5 cycles per wavelet at center
frequencies between 25 and 140 Hz, in 1 Hz steps.

Task-related differences in spectral-power were analyzed in
two steps. Firstly, we compared spectral power within each group
in the face condition (50–350 ms post-stimulus) to the baseline
raw power. In addition to estimating power-values, we also com-
puted inter-trial phase-coherence (ITPC) (Delorme and Makeig,
2004) across all sensor-groups. This analysis approach was used to
distinguish transient oscillatory activity associated with the on-
and off-responses from induced, non-phase locked oscillations
based on the gradient of ITPC-values. Statistical results were cor-
rected for multiple comparisons in space, time, and frequency
with false discovery rate (FDR) (Genovese et al., 2002) with a
criterion of q < 0.05.

In a second step, we calculated the contrasts (t-tests) of a
non-parametric 2 × 2 ANOVA based on a permutation of resid-
uals approach (Anderson and Ter Braak, 2003), with factors
group (controls vs. ScZ) and condition (face vs. no-face) for
the evoked and induced time windows. We ran 1500 permu-
tations for each test aimed at investigating the main effects
and the interaction of the ANOVA design. Statistical results
were corrected for multiple comparisons in space, time, and
frequency means of a cluster-based correction (Maris et al.,
2007).

PSYCHOPHATHOLOGY AND GAMMA-BAND POWER
In order to compute correlations between gamma-band power,
clinical symptoms, and performance, we averaged absolute task-
related power in the low and high gamma-band ranges in the face
condition for each patient and control participant over the signif-
icant channels of the respective group. To determine significant
channels, the permutation t-values given by the statistical analy-
sis were first multiplied with the significance mask that contained
zeros for all non-significant time-frequency-channel samples, and
ones for all significant samples; this way we obtained a matrix
where all t-values unequal 0 were statistically significant. This
matrix was then averaged across the time and frequency range
used in the statistical analysis (50–350 ms and 25–140 Hz). To
determine the channels showing on average a significant increase
(further on denoted as “positive” channels) or decrease (“neg-
ative” channels) in power, we set a threshold of t > 0 (positive
channels) and t < 0 (negative channels).

EFFECT-SIZES FOR SENSOR-LEVEL SPECTRAL POWER CHANGES
We computed effect sizes for differences between the control and
patient groups for both positive and negative clusters between 50
and 350 ms in the 25–140 Hz frequency range in the face condi-
tion. We averaged absolute power values between the respective
frequency bands over positive and negative cluster channels sep-
arately for controls and schizophrenia patients. Effect sizes were
then calculated by dividing the difference between the aver-
age gamma-band power in patients and controls by the pooled
variance.

RESULTS
BEHAVIORAL PERFORMANCE
We analysed the percentage of correct responses as well as reac-
tion times for the face and the non-face condition (Table 2).
Furthermore, we computed the discrimination index A′ = 0.5 +
[(H-FA) × (1 + H-FA)]/[4 × H × (1-FA)] (H: Hits; FA: False
Alarms) (Grier, 1971). A′ is a non-parametric measure of signal
detection sensitivity that is based on both hits and false alarms
(FA, inverted-scrambled stimuli classified as faces). Chronic
schizophrenia patients detected significantly fewer faces than con-
trols [t(30) = 2.07, p = 0.047] and had longer reaction times
[t(30) = −2.07, p = 0.01]. No differences were found for behav-
ioral performance in the non-face condition [correct responses:
t(30) = −1.06, p = 0.3; reaction times: t(30) = 0.48, p = 0.64].

Table 2 | Means, standard deviations and mean differences for behavioral performance in controls and patients.

Healthy controls Chronic patients Mean difference

(N = 16) (N = 16)

Mean SD Mean SD t-value p-value

Hits (%) 80.59 6.67 74.03 10.78 t(30) = 2.07 0.047

Correct rejections (CR) (%) 86.59 11.09 84.87 9.33 t(30) = 0.48 0.64

Discrimination index A′ 0.91 0.04 0.88 0.03 t(30) = 2.09 0.046

Reaction time (hits) (ms) 610.04 78.30 688.19 85.45 t(30) = −2.70 0.01

Reaction time (CR) (ms) 754.38 86.40 792.08 112.23 t(30) = −1.06 0.30
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The significant difference between groups in A′ [t(30) = 2.09,
p = 0.046] confirmed that controls had a better discrimination
performance compared to patients.

ITPC-ANALYSIS
The analysis of ITPC-values revealed prominent increases in
the low gamma-band range during an early (5–120 ms) and a
later time window (220–320 ms) (Figure 2), which likely reflected
transient activity related to the on and offset response of the
stimulus. Accordingly, we defined three time windows: (1) an
early evoked time window (onset-response: 5–105 ms); (2) an
induced period (105–220 ms); and (3) a second evoked window
(offset-response: 220–320 ms).

GAMMA-BAND POWER AT SENSOR LEVEL
Controls showed a task-related increase between 50 and 350 ms
after stimulus onset with two prominent gamma-band peaks
around 50 and 250 ms in the 25–140 Hz frequency (Figure 3).
We observed sustained gamma-band activity between 100 and
300 ms, mainly between 60 and 120 Hz.

In the face condition, post-stimulus activity in controls
revealed a significant increase in low- and high-frequency
gamma-band power over parieto-occipital channels between 50
and 350 ms. In schizophrenia patients, relative gamma-band
power averaged across all channels was characterized by strongly
reduced low and high gamma-band power compared to con-
trols for both evoked and induced time-windows (Figure 4).
The reduction of gamma-band power was especially pronounced
in the high gamma-band range (60–140 Hz) (effect size: d =
1.26) while the deficit in the lower gamma-band was consid-
erably smaller (effect size: d = 0.71). In addition, there was a
significantly stronger gamma-band activity in the 25–60 Hz range
over fronto-central channels in schizophrenia patients relative to
controls. This relative increase was due to a reduced downreg-
ulation of gamma-band power over fronto-central channels in
patients since gamma-band power was decreased over fronto-
central channels in controls (d = −0.31).

Confirming these results, the 2 × 2 ANOVA revealed a main
effect of group (Figure 5) at both high and low gamma-band fre-
quencies and a main effect of condition in the high gamma-band

FIGURE 2 | Inter-trial phase-coherence (ITPC) across all sensor-groups in both controls (A) and patients with schizophrenia (B). The colored scale (0–2)
indicates change in ITPC relative to baseline.
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FIGURE 3 | Time-frequency representations and topographies of

gamma-band spectral power in the face condition for controls (A) and

schizophrenia patients (B). The gamma-band signal is expressed as relative

power change in the post-stimulus time window compared to baseline,
averaged across all channels. The topographies are averaged across the
post-stimulus interval (0–400 ms) and between 25 and 150 Hz.

FIGURE 4 | Statistical analysis of power changes in response to

upright Mooney faces for controls (left panel), schizophrenia

patients (middle panel), and for the difference between controls

and patients (right panel) for three time windows (onset-response,

induced period, offset-response). The topographies for controls and
schizophrenia patients show significant differences between the face
condition and the 0.5 s pre-stimulus baseline, separately for the lower
(25–60 Hz) and the higher (60–140 Hz) gamma-band. Red denotes higher

activation during stimulus presentation compared to baseline, whereas
blue denotes less activation during stimulus presentation compared to
baseline. Right panels show the difference for the face condition
between controls and patients. Here, red denotes stronger activation for
controls compared to patients, whereas blue represents stronger
activation in patients relative to controls. The effects are masked by the
significance map derived from false-discovery rate (FDR, q < 0.05)
statistical testing.

over parieto-occipital sensors, suggesting an upregulation of
60–140 Hz activity during perceptual organization of Mooney
faces which is consistent with prior findings from our group
(Grutzner et al., 2010). There was, however, no statistically sig-
nificant effect for the interaction between group and condition.

Further examination of condition and group × interaction
effects in induced vs. evoked time windows showed that the effect
of condition was only found in the 105–220 ms window. Finally,
we did find an interaction between group × condition for the
offset response over frontal sensors (Figure 6).
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BASELINE-ANALYSIS
To exclude that effects were solely driven by differences in
baseline-activity, we also examined differences in baseline activity
in the face condition prior to stimulus onset which could poten-
tially bias differences task-related activity. Comparisons between
schizophrenia patients and controls showed no differences in
baseline power-values between groups.

FIGURE 5 | Post-hoc contrasts for the non-Parametric ANOVA

indicating the main effects of group (left) and condition (right) for both

low (top) and high (bottom) gamma-band oscillations at the sensor

level. For the main effect of group (left column), red colors indicate
increased activity in controls while blue color suggests increased
gamma-band power in schizophrenia patients relative to controls. For the
main effect of condition (right column), red colors indicate higher
gamma-band activity to faces while increased spectral power to no-face
stimuli is represented in blue. The topographies depict corrected t-values
and the channels that form a statistically significant cluster are indicated
(∗ , p < 0.001; x, p < 0.05).

FIGURE 6 | Topography for the effect of condition (left) and group ×
condition (right) interaction for low and high gamma-band oscillations

for three time windows (onset-response, induced period,

offset-response). Red clusters indicate higher gamma-band power in the
face vs. the no-face condition. The topographies depict corrected t-values
and the sensors that form a statistically significant cluster are indicated
(∗, p < 0.001; x, p < 0.05).

CORRELATIONS BETWEEN CLINICAL SYMPTOMS, BEHAVIOR AND
GAMMA-BAND POWER
Correlations between clinical symptoms, behavior and gamma-
band power in the face condition were computed separately with
task-related absolute difference power on positive channels in the
high gamma-band, with task-related absolute difference power
on positive channels in the lower gamma-band, and finally with
task-related absolute difference power on negative channels in the
lower gamma-band.

After correcting for multiple comparisons for each change in
gamma-band power with the six factors of the PANSS (alpha-
level: p = 0.01), we found a significant correlation between
reductions in high gamma-band power over positive channels
and increased scores on the disorganization factor (r = −0.723,
p = 0.002) (Figure 7). This relationship was also found for the
reduction in low gamma-band activity over parietal channels
(disorganization: r = −0.68, p = 0.006), while no other corre-
lations reached the alpha-level of p = 0.01 (Table 3). The corre-
lation between high gamma-band power and the discrimination
index A′ reached the p = 0.05 level in schizophrenia patients
but was not statistically significant after correcting for multiple
comparisons (Table 4).

CORRELATIONS BETWEEN GAMMA-BAND OSCILLATIONS AND
MEDICATION DOSAGE
To examine the relationship between gamma-band deficits and
antipsychotic-medication, antipsychotic dose was converted to
chlorpromazine equivalent levels (Woods, 2003) and correlated
with gamma-band sensor power during the face condition. We
found that there were no significant correlations at a corrected
alpha-level of p = 0.016 between medication dose and high
gamma-band activity over parietal channels (r = 0.03, p = 0.91).
Similar results were obtained for low gamma-band activity (pari-
etal channels: r = 0.48, p = 0.06; frontal channels: r = 0.29,
p = 0.27).

FIGURE 7 | Correlation between high gamma-band power and

disorganization. The scatter-plot shows the relationship between high
(60–120 Hz) gamma-band power in the 50–350 ms time window over
positive channels and the disorganization component of the PANSS.
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Table 3 | Correlations between gamma-band power and clinical

symptoms.

PANSS Healthy controls Chronic patients

rho p-value rho p-value

High gamma, Positive cluster

Disorganization – – −0.729 0.002

Depression – – −0.133 0.635

Positive – – −0.207 0.460

Cognitive – – −0.555 0.032

Excitement – – −0.435 0.105

Negative – – −0.317 0.249

Low gamma, positive cluster

Disorganization – – −0.677 0.006

Depression – – −0.509 0.053

Positive – – −0.394 0.146

Cognitive – – −0.505 0.055

Excitement – – −0.380 0.162

Negative – – −0.373 0.171

Low gamma, negative cluster

Disorganization – – −0.049 0.862

Depression – – −0.177 0.529

Positive – – −0.314 0.253

Cognitive – – 0.106 0.706

Excitement – – −0.047 0.867

Negative – – −0.194 0.489

Table 4 | Correlations between gamma-band power and performance.

Performance Healthy controls Chronic patients

r p-value r p-value

High gamma, positive cluster

Hits (%) 0.042 −0.056 0.836

Discrimination index A′ 0.022 0.936 0.512 0.042

Reaction time (hits) (ms) −0.125 0.646 −0.176 0.515

Low gamma, positive cluster

Hits (%) 0.360 0.171 −0.346 0.189

Discrimination index A′ 0.454 0.077 0.404 0.120

Reaction time (hits) (ms) 0.044 0.872 −0.286 0.282

Low gamma, negative cluster

Hits (%) 0.300 0.260 −0.078 0.774

Discrimination index A′ 0.392 0.133 −0.440 0.088

Reaction time (hits) (ms) 0.034 0.901 −0.258 0.335

DISCUSSION
The present study investigated the role of low and high
gamma-band oscillations and the contribution of transient vs.
induced activity with MEG during visual processing in chronic

schizophrenia. Previous studies had reported conflicting evidence
regarding the presence of deficits in gamma-band activity (Cho
et al., 2006; Uhlhaas et al., 2006a; Haenschel et al., 2009). Here,
we provide novel evidence for a pronounced dysfunction in high
gamma-band oscillations in schizophrenia.

GAMMA-BAND OSCILLATIONS AND VISUAL PROCESSING IN
SCHIZOPHRENIA PATIENTS
In EEG-data with the same paradigm (Uhlhaas et al., 2006a),
we had reported that the amplitude of induced gamma-band
oscillations in the 40–70 Hz frequency range was in the normal
range while beta/gamma long-range synchronization was strongly
reduced in schizophrenia. The current study gave a strikingly
different result when we extended the analysis to oscillations
>60 Hz. In this frequency range, we found a highly significant
deficit that was extended over a large frequency range, time
interval, and sensor space that has not been reported previ-
ously. This reduction in high gamma-band activity involved the
transient activity related to the onset and offset of the stim-
ulus as well as the sustained, induced response. Furthermore,
the effect size of the high gamma-band impairment was pro-
nounced (d = 1.23) compared to the moderate effect obtained
for the lower gamma-band (d = 0.72). This suggests that high
gamma-band oscillations may provide a more sensitive marker
of impaired neural oscillations in schizophrenia that is in the
range and above of effect sizes for event-related potentials that
have been frequently investigated in schizophrenia, such as the
P50 (de Wilde et al., 2007), P300 (Jeon and Polich, 2003),
and Mismatch Match Negativity (MMN) (Umbricht and Krljes,
2005).

The deficit in high gamma-band activity showed a very
robust and specific relationship with a core aspect of psy-
chopathology in schizophrenia, namely clinical disorganization.
This finding is consistent with previous psychophysical studies
that demonstrated close relations between the disorganization
factor and impaired perceptual organization (Uhlhaas et al.,
2006b; Silverstein et al., 2000), indicating that gamma-band
activity may be involved in the fragmentation of coordinated
cognitive and perceptual processes as hypothesized by several
theories (Phillips and Silverstein, 2003; Uhlhaas and Singer,
2010).

One reason for the difference to previous EEG-data in
schizophrenia may be the difference in recording techniques.
MEG provides an improved detectability of low-amplitude
high-frequency oscillations with a higher SNR relative to EEG
(Muthukumaraswamy and Singh, 2013). This is also reflected in
the increased contribution of oscillations >60 Hz to the spec-
tral profile that was present in the current study and has been
repeatedly observed in MEG-experiments (Guggisberg et al.,
2007; Chaumon et al., 2009; Grutzner et al., 2010), suggesting
that MEG may be particularly suited for the investigation of
high gamma-band activity during normal and abnormal brain
functioning.

Interestingly, schizophrenia patients showed also stronger
power over frontal and central channels in the lower gamma-
band relative to controls. This change actually represented a
failure to downregulate oscillatory activity in this frequency
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range and may be consistent with the view that frontal
circuits in schizophrenia are characterized by impaired phase-
resetting of stimulus related oscillatory activity (Winterer et al.,
2004). From this perspective, increased low gamma-band
oscillations in the current study in schizophrenia patients
compared to controls could represent aberrant ongoing
oscillatory activity that is normally suppressed during stimulus
processing.

PHARMACOLOGY OF GAMMA-BAND OSCILLATIONS
One possible mechanism for the pronounced deficits in high-
frequency oscillations in schizophrenia could be impaired
GABAergic neurotransmission. This hypothesis is supported by
findings showing decreased functioning of parvalbumin-positive
(PV) interneurons in patients with schizophrenia (Benes et al.,
1997; Benes and Berretta, 2001; Lewis et al., 2012). PV-cells are of
particular interest as they have been shown to underlie the gen-
eration of gamma-band activity during normal brain functioning
(Sohal et al., 2009). Moreover, studies with transcranial magnetic
stimulation (TMS) have demonstrated impaired cortical inhibi-
tion in schizophrenia (Daskalakis et al., 2002) which presumably
reflects the integrity of inhibitory circuits because during normal
brain functioning TMS-parameters of inhibition are mediated by
GABAA and GABAB receptors (Florian et al., 2008).

More recently, in vitro approaches have examined the link
between specific GABAergic receptor-subtypes and the genera-
tion of both high and low gamma-band activity. Oke et al. (2010)
showed that GABAA antagonists block the occurrence of high
gamma-band activity, suggesting a close link between 60–120 Hz
spectral power and GABAA receptor-mediated inhibition.

In addition to GABAergic neurotransmission, glutamater-
gic excitatory drive has been shown to alter the generation
of gamma-band oscillations. Hypofunctioning of the NDMA-
receptor has been shown to dysregulate coherently organized
gamma-band oscillations in distributed networks (Pinault, 2008).
Moreover, selective blockade of AMPA-(alpha-amino-3-hydroxy-
5-methylisoxazole-4-propionic acid-) receptors suppresses high
gamma-band activity in vitro (Oke et al., 2010), suggesting
further potential pharmacological targets for intervention in
schizophrenia.

IMPLICATIONS FOR VISUAL DYSFUNCTIONS IN SCHIZOPHRENIA
The current findings have also implications for understand-
ing visual dysfunctions in schizophrenia. Previous research has
emphasized dorsal stream dysfunctions in visual processing in
schizophrenia (Butler and Javitt, 2005). The present data pro-
vide evidence that processing in the ventral stream may also be
impaired. This is supported by the behavioral deficit in detect-
ing high contrast stimuli and recent fMRI study that demon-
strated reduced activation in schizophrenia patients in higher
visual cortex areas related to shape perception (Silverstein et al.,
2009).

Non-specific task- and medication-effects on gamma-band
oscillations
Overall, our results suggest that both the transient as well as the
induced gamma-band response are impaired in schizophrenia,

supporting the notion that perceptual dysfunctions in the
present study involve impaired bottom-up as well as dysfunc-
tions in top-down mediated activity. Possible alternative expla-
nations for the reductions in gamma-band oscillations could
involve reduced attention and abnormal eye-movements. While
we cannot completely rule out these alternatives, we con-
sider them unlikely because only correct behavioral trials were
included in the analysis which minimized the contribution of
reduced attention and motivation. Secondly, abnormalities in
gamma-band activity have been observed under experimen-
tal conditions which do not require cognitive responses nor
eye-movements, such as during ASS-paradigms (Kwon et al.,
1999), suggesting that the alterations in gamma-band activ-
ity in schizophrenia represent an intrinsic feature of circuit
abnormalities.

Finally, one important issue in the interpretation of deficits
in gamma-band oscillations constitutes the confounding
influence of anti-psychotic medication. Correlations between
medication dosage and gamma-band oscillations in the
current study showed no significant effect of antipsychotics on
deficits in high gamma-band power. In addition, data from
medication-naïve, first-episode patients with schizophrenia
during the same task have revealed similar deficits (Tillmann
et al., 2008), suggesting that the observed impairments in
gamma-band oscillations are independent of medication
status.

CONCLUSION AND OUTLOOK
The present study provides novel evidence for a pronounced
impairment in MEG-recorded high gamma-band oscillations in
schizophrenia that is accompanied by deficits in visual processing.
These findings indicate impairments in local cortical networks
that may underlie deficits in long-range synchronization between
cortical regions as reported in previous studies (Uhlhaas et al.,
2006a). Further research has to clarify to what extent deficits in
local cortical circuits are directly related to functional dyscon-
nectivity observed between brain regions or to what extent these
dysfunctions may reflect independent phenomena.

In addition, links to the underlying generating mecha-
nisms are crucial for establishing abnormalities in the gamma-
band oscillations as a biomarker for translational research.
Muthukumaraswamy et al. (Muthukumaraswamy et al., 2009)
demonstrated that the frequency of gamma-band oscillations
in MEG-recordings reflects GABA concentration. Accordingly,
future research could examine the relationship between aber-
rant gamma-band activity and altered concentration of GABA
in schizophrenia patients to establish direct links between altered
physiology and brain functioning. Such research can then be fur-
ther used for the identification of therapeutic strategies aimed at
correcting altered neural oscillations in the disorder.
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