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Abstract

Epstein-Barr virus (EBV) is a gammaherpesvirus that causes infectious mononucleosis, B cell lymphomas, and
nasopharyngeal carcinoma. Many of the genes required for EBV virion morphogenesis are found in all herpesviruses, but
some are specific to gammaherpesviruses. One of these gamma-specific genes, BLRF2, encodes a tegument protein that has
been shown to be essential for replication in other gammaherpesviruses. In this study, we identify BLRF2 interacting
proteins using binary and co-complex protein assays. Serine/Arginine-rich Protein Kinase 2 (SRPK2) was identified by both
assays and was further shown to phosphorylate an RS motif in the BLRF2 C-terminus. Mutation of this RS motif
(S148A+S150A) abrogated the ability of BLRF2 to support replication of a murine gammaherpesvirus 68 genome lacking the
BLRF2 homolog (ORF52). We conclude that the BLRF2 RS motif is phosphorylated by SRPK2 and is important for viral
replication.
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Introduction

Epstein-Barr virus (EBV), the prototypical gammaherpesvirus,

can cause infectious mononucleosis in healthy individuals, B-cell

lymphoproliferative disease in immunosuppressed individuals, and

rarely, B-cell lymphomas, Hodgkin lymphoma, and nasopharyn-

geal carcinoma in otherwise healthy people [1,2]. Gammaherpes-

viruses, including EBV and Kaposi Sarcoma associated herpesvi-

rus (KSHV), establish latent infections in cells and their associated

malignancies are a by-product of the growth and survival signals

triggered by limited viral gene expression during latency [3].

Because human gammaherpesviruses replicate poorly in cultured

cells, our knowledge of this essential part of their lifecycle is

limited. As with other herpesviruses, EBV replication begins in the

nucleus where a set of highly conserved herpesvirus genes mediates

genome replication and packaging into capsids. Egress from the

nucleus is accomplished through primary envelopment at the

nuclear membrane and subsequent de-envelopment in the

cytoplasm. In the cytoplasm, capsids undergo secondary envelop-

ment at the plasma membrane and simultaneously incorporate a

proteinaceous layer beneath this envelope called the tegument.

Although some of the genes responsible for EBV virion

morphogenesis have been studied in detail, the role of most is

inferred from studies of their homologs in alpha and beta

herpesviruses [4]. Thus, gamma-specific genes, which have no

homologs in the alpha and beta subfamilies, are the least well

understood. In EBV, seven of the twelve gamma-specific genes,

encode virion proteins: three glycoproteins (BMRF2, BDLF2,

BDLF3 [gp150]) and four tegument proteins (BKRF4, BRRF2,

BLRF2, BNRF1) [5,6]. The BMRF2-BDLF2 glycoproteins have

been shown to form a heterodimeric complex that facilitates direct

cell to cell spread of EBV [7]. Whether the gamma-specific

tegument proteins form similar complexes that adapt the virion

morphogenesis program to the gammaherpesvirus niche is

unclear. In an earlier study we identified a protein-protein

interaction between the gamma-specific BLRF2 and BNRF1

tegument proteins [8] and sought to further characterize the

composition of the BLRF2 complex.

The BLRF2 ORF encodes a 162 amino acid phosphoprotein

with an apparent molecular weight of 23 kDa. Although not a

capsid protein [6], it is a tightly capsid associated tegument protein

and referred to in immunologic studies as viral capsid antigen
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(VCA)-p23. ELISA positivity for VCA-p23 is a sensitive and

specific tool for diagnosing EBV infection [9]. Structural studies of

ORF52, the BLRF2 homolog in murine herpesvirus 68 (MHV68),

have revealed the protein to be comprised of a central

dimerization domain from which the N and C terminal domains

project, potentially to mediate protein-protein interactions [10].

ORF52 is essential for MHV68 morphogenesis, with the null

mutant exhibiting a defect in virion egress from the infected cell

[11]. The biochemical basis for BLRF2/ORF52’s role in virion

assembly is unknown. Our prior identification of an interaction

between BLRF2 and BNRF1, suggests that BLRF2 may recruit

other gamma-specific proteins into the tegument. In an effort to

better understand the basis for BLRF2’s role in virion assembly we

sought to identify additional proteins that associate with BLRF2

and to characterize BLRF2 complexes from cells undergoing EBV

replication.

To permit the purification of authentic BLRF2 replication

complexes, we developed a system in which FLAG-HA-tagged

BLRF2 could be stably expressed in a cell line capable of being

synchronously induced for EBV replication (P3HR1-ZHT). Using

this system we demonstrated that BLRF2 is relocalized from the

nucleus to the cytoplasm during the course of EBV replication. We

identified the Serine/Arginine-rich protein kinase 2 (SRPK2) as a

component of BLRF2 complexes and mapped this interaction to

the BLRF2 C-terminus. We show that an RS motif within the

BLRF2 C-terminus is a substrate for SRPK2, affects BLRF2

subcellular location, and is required for viral replication in an

MHV68 complementation assay. Furthermore, our approach is

amenable to the characterization of other EBV replication

complexes particularly as it does not require the construction of

a recombinant EBV genome.

Materials and Methods

Cell Culture
293T is a human embryonic kidney cell line and HeLa is a

cervical cancer cell line. P3HR1-ZHT FLAG-HA-GFP and

FLAG-HA-BLRF2 cells were derived from P3HR1-ZHT cells

[12] transfected with pMSCV-FLAG-HA-GFP or pMSCV-

FLAG-HA-BLRF2, followed by continuous puromycin selection.

All cell lines were cultured in Dulbecco’s modified Eagle’s (Gibco,

Grand Island, NY) or RPMI 1640 (Gibco) medium supplemented

with L-glutamine (Gibco), penicillin-streptomycin (Gibco) and

7.5% or 10% fetalplex (Gemini Bio-Products, West Sacramento,

CA). FLAG-HA-BLRF2, FLAG-HA-GFP and P3HR1-ZHT wild-

type cells were induced with 400 nM 4-Hydroxytamoxifen (4HT)

(Sigma, St. Louis, MO) for 72 h and harvested for experiments

and analysis.

Plasmids
BLRF2 and BNRF1 entry clones, lacking stop codons to allow

C-terminal fusions, have been described previously [8]. GFP entry

clone was produced by amplifying the coding region from pEGFP-

C1 (Clontech, Mountain View, CA) using the primers (gggga-

caactttgtacaaaaaagttggcatggtgagcaagggcgaggagctg and gggga-

caactttgtacaagaaagttggcttgtacagctcgtccatgccgag). BLRF2 (1–162)

was amplified using the primers N1 (ggggacaactttgtacaaaaaagttgg-

catgtcagctccacgcaaagtcag) and C162stop (ggggacaactttgtacaa-

gaaagttggtcaatcagaaatttgcactttctttgc). BLRF2 (1–130) was ampli-

fied using the reverse C130stop primer

(ggggacaactttgtacaagaaagttggtcactcaccagggctgggttggcc) and

BLRF2 (42–162) with forward N42 primer (ggggacaactttgta-

caaaaaagttggcagagggggtgcctgtgcctcg), each paired with appropri-

ate forward or reverse primers annealing in the vector backbone.

The BLRF2 (SRS-ARA) point mutant was constructed by PCR

mutagenesis using forward and reverse primers in the vector and

internal primers (cgacgtgcccgcGcccgcGcccggggacgtgaagcaag and

cacgtccccgggCgcgggCgcgggcacgtcgggtggc) containing the desired

substitution (codon underlined, mutation in capital letters). Final

PCR products were cloned into the pDONR223 gateway vector

by BP recombinase reaction (Invitrogen, Carlsbad, CA) to

generate Gateway compatible entry clones. Gateway entry clones

for SRPK2, RTDR1, ZBED1, SNX-14b, PNRC2, MAGEA2B,

DVL2, ZNF529, SRPRB, CASP1 and SNX-14a were provided by

M. Vidal (Center for Cancer Systems Biology (CCSB), Dana

Farber Cancer Institute, Boston, MA). Expression clones were

subsequently generated using LR recombinase into the destination

vectors pDEST27 (Invitrogen), Gateway converted pSG5-FLAG

[13], pDEST-myc-eGFP [8] and/or MSCV-N-FLAG-HA-IRES-

PURO [14] following the manufacturer’s instructions.

Antibodies
The following antibodies were used for western blotting and

immunofluorescence: Mouse monoclonal antibodies against GST

(B14; Santa Cruz Biotechnology, Santa Cruz, CA), FLAG (M2;

Sigma), alpha-Tubulin (B-5-1-2; Sigma), Phospho-SR (Ab104

collected from CRL-2067 hybridoma mouse cells; ATCC), EBV

Rta (8C12; Argene, Varilhes, France), EBV Zta (AZ-69; Argene);

rabbit polyclonal antibodies against EBV BNRF1 (a kind gift of

Henri-Jacques Delecluse, German Cancer Research Centre,

Heidelberg, Germany), EBV BLRF2 (SLO25-1, generous gift

from George Miller, Yale University School of Medicine, New

Haven, CT); goat polyclonal anti-GFP (T-19; Santa Cruz

Biotechnology) and anti-lamin B (C-20; Santa Cruz).

Western Blot Analysis
Protein samples were separated by sodium dodecyl sulfate

(SDS)-polyacrylamide gel electrophoresis, blotted onto nitrocellu-

lose membrane, and probed with appropriate antibodies. After

extensive washing, membranes were incubated for 1 h with

appropriate horseradish peroxidase conjugated secondary anti-

bodies (Jackson Immuno Research, West Grove, PA) before being

washed again, developed with chemiluminescence reagent (Perkin

Elmer, Waltham, MA) and visualized on a KODAK Image

Station 4000R (Kodak Molecular Imaging Systems, Rochester,

NY) or Gel Logic 4000pro (Carestream Molecular Imaging,

Rochester, NY).

Yeast Two-hybrid
Protein-protein interactions were assessed using a bait/prey

yeast mating strategy as described previously [15]. Briefly, BLRF2-

AD transformed MATa haploid yeast were mated with MATa
haploid yeast carrying DB-human hybrid proteins from the

human ORFeome v 5.1 collection (,15,000 full-length human

ORFs; http://horfdb.dfci.harvard.edu/hv5/). Primary screens

were completed twice and interacting clones were identified by

growth on selective media. Interacting proteins were identified by

sequencing and verified by retesting.

GST Pull-down Assay
Transfected 293T cells were lysed in 1% NP-40 lysis buffer

[50 mM Tris pH 7.5, 150 mM NaCl, 1.5 mM EDTA, 1% NP-

40, 3% glycerol, 10 mM NaF, 0.5 mM PMSF, 1% Aprotinin

(Sigma), 2 mM Na4P2O7] and cleared by centrifugation at

16,000 g for 10 min. Supernatants were incubated with anti-

Glutathione Sepharose 4B agarose (GE Healthcare Biosciences,

Pittsburgh, PA) for 2 hours at 4uC. The agarose was washed

SRPK2 Phosphorylates EBV BLRF2
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extensively with 1% NP-40 lysis buffer and the precipitated

proteins analyzed by western blotting.

Cellular Fractionation
Cells were fractionated with a five-step subcellular protein

fractionation kit (Thermo Scientific, Rockford, IL) according to

the manufacturer’s recommendations. Alternatively cells were

fractionated using either a one or two-step digitonin based

protocol. Approximately 750,000 cells were lysed in 750 ml of

Digitonin Extraction Buffer pH6.8 [0.015% Digitonin, 300 mM

sucrose, 100 mM NaCl, 10 mM PIPES, 3 mM MgCl2, 1 mM

PMSF, 3 mM EDTA, 10 mM 2-Mercaptoethanol] supplemented

with one tablet of complete protease inhibitor cocktail (Roche,

Mannheim, Germany) per 50 ml and 1 ml RNAse Out recombi-

nant ribonuclease inhibitor (Invitrogen) per 10 ml and centrifuged

at 480 g for 3 minutes and the soluble fraction was removed

(Fraction-C). In the two step procedure, pellets were then lysed in

Triton X-100 and centrifuged at 5,000 g for 20 minutes and the

supernatant removed (Fraction-M1) and the pellet lysed again in

Cell Lysis Buffer [50 mM Tris pH 7.5, 140 mM KCl, 10 mM

NaF, 1.5 mM EDTA, 0.5% NP-40, 5% glycerol, supplemented

with protease inhibitors as above], clarified by centrifugation twice

at 11,000 g for 10 minutes and once at 16,000 g for 20 minutes at

4uC. Again the supernatant was removed (Fraction-S1) and the

pellet resuspended in SDS loading buffer (Fraction-P1). In the one

step procedure, the Digitonin pellets were lysed with Cell Lysis

Buffer, the supernatant removed (Faction-S2), and the pellet

resuspended in SDS loading buffer (Fraction-P2).

Tandem Affinity Purification
Approximately 300 million cells were fractionated using the

one-step Digitonin fractionation procedure described above to

remove the cytosol and the remaining fraction incubated with

washed anti-FLAG M2 agarose (Sigma) for 4 hours at 4uC.

Following the incubation the beads were extensively washed in

0.5% NP-40 lysis buffer containing inhibitors and eluted with

0.8 mg/ml FLAG peptide (Sigma) in 0.5% NP-40 lysis buffer

twice at 4uC for 45 minutes and once at 37uC for 45 minutes. The

pooled FLAG elutions were then incubated overnight at 4uC with

anti-HA agarose (Santa Cruz Biotechnology) followed by extensive

washing and two elutions with 1.0 mg/ml HA peptide diluted in

0.05% NP-40 buffer for 45 minutes at 37uC. 10% of the pooled

eluted proteins were separated by SDS-PAGE and analyzed by

Silver Quest silver stain kit (Invitrogen) and the rest was analyzed

by LC-MS/MS.

LC-MS/MS
Purified protein complexes were denatured with 0.1% RapiGest

(Waters, Milford, MA) and reduced with 10 mM DTT at 56uC for

30 minutes. Reduced cysteines were alkylated with 20 mM

iodoacetamide at room temperature for 20 minutes in the dark.

The samples were digested at 37uC overnight using 1 mg of

trypsin. Following digestion, RapiGest was removed by acid

cleavage and centrifugation according to manufacturer’s recom-

mendations. Tryptic peptides were sequentially purified by batch-

mode reverse-phase C18 and strong cation exchange SCX

chromatography (using Poros 10R2 and Poros 20HS chromatog-

raphy media respectively, Applied Biosystems, Carlsbad, CA).

Purified peptide samples were loaded onto a pre-column (100 mm

I.D.; packed with 4 cm POROS 10R2, Applied Biosystems) using

a NanoAcquity Sample Manager and UPLC pump [16]. After

loading, the peptides were gradient eluted (1–30% B in 45

minutes; buffer A: 0.2 M acetic acid, buffer B: 0.2 M acetic acid in

acetonitrile) at a flow rate of ,50 nl/minute to an analytical

column (30 mm I.D. packed with 12 cm Monitor 5 mm C18 from

Column Engineering, Ontario, CA), and introduced into an LTQ-

Orbitrap XL mass spectrometer (ThermoFisher Scientific, Wal-

tham, MA) by electrospray ionization (spray voltage = 2200 V).

The mass spectrometer was programmed to operate in data

dependent mode, such that the top 8 most abundant precursors in

each MS scan (detected in the Orbitrap mass analyzer, resolu-

tion = 60,000) were subjected to MS/MS (CAD, linear ion trap

detection, collision energy = 35%, precursor isolation

width = 2.8 Da, threshold = 20,000). Dynamic exclusion was

enabled with a repeat count of 1 and a repeat duration of

30 sec. Orbitrap raw data files were processed within the

multiplierz software environment [17]. MS spectra were recali-

brated using the background ion (Si(CH3)2O)6 at m/z 445.12+/

20.03 and converted into a generic Mascot file format (.mgf).

Spectra were searched using Mascot version 2.3 against 4

appended databases of: i) human protein sequences (downloaded

from RefSeq on July 11 2011); ii) a database of EBV proteins; iii) a

database of common lab contaminants and iv) a decoy database

generated by reversing the sequences from the human database.

Search parameters specified a precursor ion mass tolerance of

1 Da, a product ion mass tolerance of 0.6 Da, oxidation of

methionine (M, +16 Da) and cysteine alkylation (C, +57 Da). The

lists of peptide hits from the Mascot searches were filtered to

exclude precursors with a mass error greater than 5 ppm.

Sequence matches to the decoy database were used to enable a

1% false discovery rate (FDR) filtering of the resulting peptide

identifications.

Pathway Enrichment Analysis
Enrichment of KEGG pathways was calculated for all proteins

identified by TAP-MS using DAVID (http://david.abcc.ncifcrf.

gov/) [18].

Immunofluorescence Analysis
Suspension cells were harvested at 200 g for 3 minutes, stained

with Draq5 (Biostatus Limited, Shepshed, UK) at 37uC for 15

minutes and streaked onto coverslips. Adherent cells were seeded

and transfected on Poly-D-lysine (BD Biosciences, San Jose, CA)

coated coverslips. All cells were fixed with 1% (w/v) paraformal-

dehyde in PBS and permeabilized with 0.1% (v/v) TritonX-100 in

PBS containing 1 mM glycine. Cells were blocked with 5% bovine

serum in PBS and incubated with primary antibodies diluted in

PBS plus 1% (w/v) bovine serum albumin (BSA) according to the

manufacturers’ instructions. Secondary antibodies, mouse and

rabbit Alexa Fluor 488 (Molecular Probes, Eugene, OR) diluted in

PBS plus 1% (w/v) BSA. The slides were mounted with ProLong

Gold antifade reagent (Molecular Probes) and imaged with a laser

scanning Zeiss Axioskop PCM 2000 (Zeiss, Oberkochen, Ger-

many).

MHV68 Complementation Assay
Complementation of the replication defective MHV68 52S

mutant was performed as previously described [19]. Briefly,

MHV-68 52S BAC DNA (1500 ng/well) plus empty vector

(500 ng/well) or plasmid DNA (500 ng/well) expressing BLRF2

or BLRF2-ARA mutant was transfected into subconfluent 293T

cells in 12 well plates with PEI solution, in serum free DMEM

medium (Gibco) without antibiotics with medium changed after 12

hours. Four days after transfection, supernatant was collected and

cleared of any debris by centrifugation at 1500 g. Released viral

DNA was quantified by qPCR. Using primers that amplify a

67 bp fragment of the MHV-68 ORF65 coding region

SRPK2 Phosphorylates EBV BLRF2
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(GTCAGGGCCCAGTCCGTA and

TGGCCCTCTACCTTCTGTTGA).

Results

Identification of BLRF2 Interacting Proteins by Yeast Two-
hybrid Assay

Our earlier interactome study found that BLRF2 interacted

with the EBV tegument protein BNRF1, but did not identify any

BLRF2 interacting cell proteins [8]. However, that yeast two-

hybrid assay only screened a limited number of transformants

(,106) from a cDNA library. To more comprehensively identify

BLRF2 interacting proteins, we searched the human ORFeome

v5.1 collection consisting of ,15,000 full length human ORFs

[20,21] using BLRF2 in both the bait and prey configuration. Two

cell proteins (DVL2 and ZBED1) were found to interact with gal4-

DB-BLRF2 and were recently published as part of a larger dataset

[22]. Eleven (MAGEA2B, SRPK2, SRPRB, ZNF529, CASP1,

CCL3L3, NLE1, PNRC2, RTDR1, SLC6A13 and SNX14)

proteins interacting with gal4-AD-BLRF2 are reported here

(Table 1).

To test these potential interactions in mammalian cells, co-

affinity precipitation experiments were performed. We obtained

full-length entry clones for eleven of the putative BLRF2

interacting proteins, identified in this or prior screens, seven of

which could be expressed as GFP fusions in human embryonic

kidney 293T cells. GST-tagged BLRF2 was co-expressed in 293T

cells with each of the putative interacting proteins and five of

them, BNRF1, ZBED1, DVL2, SRPRB and SRPK2, co-

precipitated with gst-BLRF2 (Fig. 1A and Table 1).

In order to map the interacting domain within BLRF2,

overlapping N (aa 1–130) and C (aa 42–162) terminal fragments

of BLRF2 were generated and tested by co-expression in 293T

cells and GST co-precipitation assays for the five interacting

proteins. ORF52 is known to homo-dimerize via its central

domain corresponding to BLRF2 aa 66–122 [10], therefore as a

control, GFP-BLRF2 was co-expressed and tested for self-

association with both the N and C-terminal fragments. The N-

terminal fragment (aa 1–130) precipitated GFP-BLRF2 but none

of the other proteins were found to interact robustly with the

BLRF2 N-terminus (Fig. 1Bi). The C-terminal fragment (aa 42–

162) co-precipitated GFP-BLRF2 and also interacted with

ZBED1, SRPRB and SRPK2 (Fig. 1Bii and Table 1). Thus, the

BLRF2 C-terminus can mediate interactions with a number of cell

proteins.

Characterization of BLRF2 during EBV Replication
To characterize endogenous BLRF2 complexes during EBV

replication, FLAG-HA-BLRF2 was stably expressed in EBV

positive P3HR1-ZHT Burkitt Lymphoma cells [12]. These cells

express Zta fused to the 4-hydroxy-tamoxifen (4HT)-dependent

mutant estrogen receptor hormone binding domain (ZHT) [6] and

can be synchronously induced for EBV replication by the addition

of 4HT ligand. To ensure that the constitutive expression of

BLRF2 did not affect the ability of the P3HR1 EBV episomes to

replicate, cells were induced with 4HT for 0, 24, 48 or 72 hours

and whole cell lysates blotted for EBV protein expression. As

expected, the immediate early gene products Rta and Zta were

detectable within 24 hours of 4HT addition (Fig. 2A). BLRF2 and

BNRF1 were expressed after 24 hours of induction and increased

over the time course. Notably, in these cells FLAG-HA-BLRF2

was expressed at levels comparable to endogenous BLRF2.

To further investigate whether tagged BLRF2 mirrored the

endogenous protein, BLRF2 localization was observed over time

by immunofluorescence (IF) microscopy. Endogenous BLRF2

appears predominantly nuclear when first expressed at 24 hours

(not shown) and 48 hours post induction of P3HR1-ZHT cells

(Fig. 2B) and began to accumulate in the cytoplasm as replication

progressed (72 hours). Constitutively expressed tagged BLRF2

demonstrated a similar pattern, localizing primarily to the nucleus

in the absence of EBV replication and redistributing to the

cytoplasm following the induction of replication.

Potential differences between tagged and endogenous BLRF2

were further investigated by performing subcellular fractionation

on FLAG-HA-BLRF2 P3HR1-ZHT cells induced for EBV

replication for 0, 24, 48 or 72 hours. Tagged BLRF2 was found

predominately in the nuclear and cytoplasmic fractions before

induction and at 24 hours post induction. During replication,

BLRF2 accumulated in the chromatin fraction and small amounts

were also observed in the cytoskeletal fraction. The BNRF1

tegument protein was detected 24 hours post induction, but

remained mostly in the cytosol with smaller amounts fractionating

with the membrane/organelle and nucleoplasmic fractions.

BFRF3, a capsid protein, was also initially found in the cytosol

and nuclear fractions at 24 hours post induction, but by 72 hours

post induction was found predominantly in the insoluble

(cytoskeletal) fraction (Fig. 2C). The appearance of the BLRF2,

BNRF1, and BFRF3 virion proteins in distinct fractions argues

that no single fraction corresponds to intracellular virions. Rather,

the extraction procedure was simultaneously dissembling nacient

virions and cellular compartments. Since it is highly improbable

that BLRF2, a known virion component, does not leave the

nucleus, we suspect that virion associated BLRF2 may co-

fractionate with nuclear BLRF2 in this assay. In any event,

observed changes in localization throughout replication are the

same for FLAG-HA-BLRF2 and endogenous BLRF2.

Table 1. BLRF2 interacting proteins.

Y2H GST-BLRF2

Prey P/B Tested 1–162 1–130 42–162

BNRF1 P + + 2 +

DVL2 B + + 2 +

ZBED1 B + + 2 +

SRPK2 P + + 2 +

SRPRB P + + 2 +

MAGEA2B P + 2

CASP1 P + 2

ZNF529 P 2

SSL3L3 P 2

NLE1 P 2

PNRC2 P 2

RTDR1 P 2

SLC6A13 P 2

SNX14 P 2

P Prey; B Bait.
+ Positive;
2 Negative.
doi:10.1371/journal.pone.0053512.t001
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Identification of BLRF2 Protein Complexes in Cells
Undergoing EBV Replication

To detect BLRF2 interactions that occur in cells during EBV

replication we chose to purify BLRF2 complexes from cells at 72

hours post induction. Because preliminary attempts (not shown) to

purify BLRF2 were limited by contamination with highly

abundant cytoplasmic proteins, we removed the cytosol using

digitonin, and then tested two different extraction procedures

(Fig. 3A). For the first procedure, the membrane and organelles

were removed by an ice-cold Triton X-100 (TX-100) extraction

and the pellet subsequently lysed in a NP40 buffer. The second

procedure is similar but lacks the TX-100 extraction step.

Surprisingly, although little to no BLRF2 was extracted by TX-

100 (Fig 3B, M1), the addition of this step resulted in almost all of

the BLRF2 being lost in the insoluble pellet (Fig 3B, compare P1

and S1). The second procedure solubilized approximately 50

percent of the FLAG-HA-BLRF2 and about 10 percent of

endogenous BLRF2 (Fig. 3B, compare P2 and S2). Therefore,

BLRF2 associated protein complexes were purified from the S2

fraction in subsequent biochemical analysis.

Tandem Affinity Purification (TAP), first by FLAG IP and

FLAG peptide elution followed by HA IP and elution, was

performed on S2 lysates from FLAG-HA-BLRF2 and FLAG-HA-

GFP P3HR1-ZHT cells that had been induced with 4HT for 72

hours. Ten percent of the final elutions were separated by SDS-

PAGE and visualized by silver stain and indicate that BLRF2

precipitated specific protein complexes compared to the GFP

background control (Fig. 3C). To identify the interacting proteins,

the remainder of the purified complexes were analyzed by LC-

MS/MS and a total of 166 putative interacting proteins were

unambiguously identified. The final dataset of protein associations

identified by the TAP, along with the previously identified Y2H

interactions were analyzed using Pathway Palette [23]. Published

protein interactions were retrieved from the BioGrid database [24]

and used to highlight putative complexes among proteins

associated with BLRF2 (Fig. 3D). To identify pathways that are

targeted by BLRF2 we investigated the enrichment of KEGG

pathways among the BLRF2 interacting proteins. BLRF2 showed

a significant enrichment for proteins annotated in the Ribosome

(36 proteins, P,0.001) and the Splicesome (20 proteins, P,0.001).

Despite the fundamental differences between Y2H and TAP-MS,

and the limitations in both assays’ sensitivity, one interacting

protein, SRPK2 was found by both screening approaches and had

been confirmed by the GST pull-down assays (Fig. 1), therefore we

decided to explore this interaction further.

BLRF2 is a Substrate for SRPK2
SRPK2 is a member of the serine/arginine-rich protein kinase

family that phosphorylates arginine/serine (RS) rich motifs found

predominantly in non-snRNP splicing factors called ‘‘SR pro-

teins.’’ [25]. In addition to a role in regulating pre-mRNA splicing

by phosphorylating SR proteins, SRPKs also play an important

role in cell proliferation and apoptosis [26,27]. SRPK2 has been

shown to induce apoptosis via an upregulation of nuclear cyclin

Figure 1. BLRF2 C-terminus mediates interaction with host and EBV proteins. (A) GST pull-down assay to confirm binding of putative BLRF2
interacting proteins identified in a yeast two-hybrid assay. Lysates from 293T cells transfected with GST-BLRF2 and the indicated GFP tagged proteins
were captured with GST-agarose, washed, resolved by SDS page and proteins detected by western blotting with anti-GFP (upper panels) and anti-
GST antibodies (lower panels). Input lysates (2%) are shown in the left panels. (B) Mapping of BLRF2 binding partners confirmed in (A) to the BLRF2 N-
terminus (GST-BLRF2 aa1–130 (i)) or C-terminus (GST-BLRF2 aa42–162 (ii)).
doi:10.1371/journal.pone.0053512.g001
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D1 and to trigger cell cycle progression in post-mitotic neurons

[28]. SRPK2 bound to the C-terminus (aa 42–162) but not the N-

terminus (aa 1–130) of BLRF2, suggesting that the residues after

the dimerization domain may be important in regulating the

interaction. ClustalW [29] alignment of BLRF2 with its homologs

from the closely related rhesus and marmoset lymphocryptoviruses

and ORF52 from the more distantly related murine gammaher-

pesvirus 68 [30,31,32] revealed a conserved C-terminal basic

domain. In BLRF2, this domain contained two arginine-serine

(RS) repeats that could be SRPK2 substrates. (Fig. 4A). In order to

investigate the significance of these conserved RS motifs in

BLRF2, serine 148 and 150 were mutated to alanines (ARA

mutant). GST pull-down experiments with BLRF2 wild-type and

ARA point mutant, revealed that the interaction with SRPK2 was

not affected by the mutation (Fig. 4B).

To investigate whether the BLRF2 RS motif is a target for

SRPK2 phosphorylation, wild-type or ARA mutant BLRF2 was

expressed in 293T cells and whole cell lysates were then probed

with a phospho-SR specific antibody. Because of the large number

of SR splicing factors recognized by this antibody, it was difficult

Figure 2. Characterization of BLRF2 during EBV replication. (A) Time course of EBV protein expression using whole cell lysates from P3HR1-
ZHT cells (parental) or P3HR1-ZHT cells stably expressing FLAG-HA-BLRF2 induced with 4HT for 0, 24, 48 or 72 hours. Detection of tubulin serves as
loading control. Endogenous BLRF2 is indicated with a solid arrowhead and FLAG-HA-BLRF2 with an open arrowhead. (B) Immunofluorescence
microscopy to determine BLRF2 localization during EBV replication in P3HR1-ZHT cells (parental, top panel) or P3HR1-ZHT cells stably expressing
FLAG-HA-BLRF2 (FLAG-HA-BLRF2, bottom panels), either uninduced (left) or induced with 4-Hydroxytamoxifen (4HT) for 48 hours (middle) or 72
hours (right). Anti-BLRF2 and anti-FLAG staining are shown in green and DNA staining is shown in blue. (C) Subcellular fractionation of EBV proteins
and control cell proteins from P3HR1-ZHT cells stably expressing FLAG-HA-BLRF2 induced for replication with 4HT for 0, 24, 48 or 72 hours. Equal
relative amounts of the cytosol (C), membrane and organelles (M), nucleus (N), chromatin bound (Ch) and cytoskeletal (Cs) fractions were probed for
the indicated proteins. Tubulin served as a control for the cytosol fraction and Lamin B for the cytoskeleton fraction. As for panel A, endogenous and
FLAG-HA tagged BLRF2 are indicated with filled and open arrowheads, respectively.
doi:10.1371/journal.pone.0053512.g002
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Figure 3. BLRF2 forms protein complex with SRPK2 and host RNA splice factors. (A) Schematic of two fractionation procedures tested to
extract BLRF2 complexes. The cytosol (C) was removed by Digitonin extraction and split between two procedures. Procedure 1 was a three step
process in which the membrane and organelles (M1) were collected after Triton X-100 (TX-100) lysis, the soluble fraction after NP40 lysis (S1) and the
remaining insoluble pellet (P1). Procedure 2 was only two steps in which the soluble fraction (S2) was collected after NP40 lysis and the remaining
insoluble pellet (P2). (B) Western blot analysis of the fractions obtained using procedure described in (A). BLRF2 extraction was monitored using
rabbit polyclonal anti-BLRF2 antibody. Endogenous BLRF2 is indicted with a filled arrowhead and FLAG-HA-BLRF2 with an open arrowhead. Fraction
composition was also assessed by western blotting for control cell proteins BRG1 (nuclear and chromatin bound), lamin B (cytoskeleton) and tubulin
(cytoplasmic). (C) Silver stain gel of 10% of the final elutions from a tandem affinity purification of FLAG-HA-GFP and FLAG-HA-BLRF2 stable P3HR1-
ZHT cell lines. Molecular weights of size markers are shown (left). (D) Network representation of interacting proteins identified in TAP-MS and Y2H
generated by Pathway Palette and the BioGrid database. EBV proteins are shown as stars and host proteins as circles. The bait (BLRF2) is shown in
pink. Interacting proteins are colored based on the technology that identified them (TAP – green; Y2H – yellow; Both – blue). Edges are colored based
on the type of evidence used to infer the interaction (Co-complex - blue edges; Binary – red). EBV protein interactions are all binary as described in
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to unambiguously establish that the BLRF2 RS motif was

phosphorylated by probing whole cell lysates (Fig. 4C). To

circumvent this and enrich for BLRF2, GST pull-downs were

performed on lysates from cells expressing GST-BLRF2 wild-type

or GST-BLRF2 ARA mutant and probed with the same antibody.

A GST blot shows strong expression and pull-down of both wild-

type and ARA mutant, but only the wild-type protein was detected

by the anti-phosphoSR antibody (Fig. 4D). Because the ARA

mutant still interacts with SRPK2, this data suggests that BLRF2

serines 148 and/or 150 are phosphorylated by SRPK2.

the text and host-host interaction data is derived from the Biogrid database. Only the connected components are shown. The table shows
enrichment of KEGG Pathways for proteins identified by TAP-MS.
doi:10.1371/journal.pone.0053512.g003

Figure 4. SRPK2 phosphorylates BLRF2. (A) Schematic of BLRF2 indicating the central dimerization domain (aa 66–122) and the C-terminal RS
motif. ClustalW alignment of the C-termini of BLRF2 (aa 123 to 162) and its homologs from the rhesus and marmoset lymphocryptoviruses and
murine gammaherpesvirus 68. Degree of conservation is shown at the bottom (* - identical, : - high,. - moderate). A conserved basic domain
containing the putative RS motif is highlighted by the box. (B) GST pull-down of 293T cells transfected with GST-BLRF2 wild-type (WT) or GST-BLRF2
SRS-ARA mutant (ARA) in the presence or absence of GFP-SRPK2. Western blot analysis using anti-GFP (top panels) and anti-GST (lower panels)
antibodies. Input lysates (1%) are shown in the left panels. (C) Western blots of transfected 293T whole cell lysates probed with anti-Phospho-SR
antibody (left) and anti-GST antibody (right). (D) Western blots of GST pull-downs from 293T cells transfected with GST-BLRF2 wild-type or ARA
mutant. Phosphorylated GST-BLRF2 is shown in the left panel with anti-Phospho-SR antibody and total GST-BLRF2 level is shown by anti-GST
antibody (right panel). (E) Western blot of GST pull-downs of 293T cells transfected with GST-BLRF2 wild-type and ARA mutant along with increasing
amounts of SRPK2-GFP. Phosphorylated protein is detected by anti-Phosho-SR antibody (top panels), anti-GFP antibody showed SRPK2-GFP (middle
panels) and anti-GST antibody showed total BLRF2 (bottom panels). Input lysates (1%) are shown in the left panels.
doi:10.1371/journal.pone.0053512.g004
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To further confirm the role of SRPK2 in BLRF2 phosphory-

lation, increasing amounts of SRPK2-GFP were expressed in

293T cells co-transfected with BLRF2 wild-type or ARA mutant.

Total BLRF2 protein levels did not change but phospho-SR

BLRF2 levels increased by as much as two-fold with SRPK2-GFP

co-expression (Fig. 4E).

A BLRF2 Mutant Lacking SRPK2 Phosphorylation Sites
cannot Complement ORF52 Null MHV68 Replication

An MHV68 ORF52 null mutant is defective in virion egress but

this defect can be overcome by complementation with wild-type

ORF52 [11] The function of BLRF2 and its ORF52 homologs in

other gammaherpesviruses is sufficiently conserved that EBV

BLRF2 can also complement the replication defect of an ORF52

null MHV68 genome [19]. We exploited this observation to test

the relevance of the RS motif for BLRF2 function. In the absence

of ORF52 expression, MHV68 DNA replication and encapsida-

tion is normal, but virions accumulate in the cytoplasm and release

of extracellular virions is extremely impaired [11]. When ORF52

null MHV68 is co-transfected with BLRF2 expression plasmid,

virion release increased almost 40-fold (P,0.0001) as determined

by measurement of viral DNA copies in the supernatant (Fig. 5).

However, when the BLRF2 ARA mutant was cotransfected,

MHV68 DNA was at nearly the same level as that seen with vector

control. This is consistent with the RS motif, and likely its

phosphorylation, playing an important role in BLRF2 function.

Figure 5. BLRF2 rescues ORF52 null MHV68 replication, but the
BLRF2-ARA mutant cannot. (A) Complementation assay measuring
MHV68 virion release by quantitative PCR into supernatants of 293T
cells co-transfected with replication defective MVH68 ORF52 null BAC
and empty vector, wild-type FLAG-BLRF2, or FLAG-BLRF2-ARA mutant.
Viral DNA was quantified four days post-transfection and the results
shown are representative of two independent experiments performed
in triplicate. Western blot with anti-flag antibody shows BLRF2-WT and
–ARA expression levels.
doi:10.1371/journal.pone.0053512.g005

Figure 6. The BLRF2 ARA mutant exhibits increased cytoplasmic localization compared to wild-type BLRF2. (A) Immunofluorescence
microcopy showing BLRF2 localization in HeLa cells transfected with BLRF2 wild-type or ARA mutant. Cells were stained with anti-BLRF2 antibody
(green) and Draq5 DNA staining (blue). Examples of predominantly nuclear (left panels), mixed nuclear and cytoplamsic (middle panels), and
predominantly cytoplasmic staining (right panels) are shown. (B) Summary of immunofluorescence analysis described in (A). The percentage of cells
observed with predominantly nuclear (N) (blue), cytoplasmic (C) (red) or mixed (N and C) (gray) BLRF2 staining are shown.
doi:10.1371/journal.pone.0053512.g006

Table 2. Gammaherpesvirus proteins reported to interact
with ORF52/BLRF2.

EBV KSHV MHV68 Conservation

ORF6/BALF2 + a, b, c

ORF26/BDLF1 + a, b, c

ORF31/BDLF4 + b, c

ORF33/BGLF2 + a, b, c

ORF34/BGLF3 + + b, c

ORF39/BBRF3 + a, b, c

ORF45/BKRF4 + + c

ORF47/BKRF2* + a, b, c

ORF49/BRRF1 + c

ORF52/BLRF2 + + + c

ORF53/BLRF1 + a, b, c

ORF57/SM + a, b, c

ORF59/BMRF1 + a, b, c

ORF60/BaRF1 + a, b

ORF64/BPLF1* + a, b, c

ORF69/BFLF2 + a, b, c

ORF75/BNRF1 + + c

*Interaction with detected with ORF fragment.
doi:10.1371/journal.pone.0053512.t002

SRPK2 Phosphorylates EBV BLRF2

PLOS ONE | www.plosone.org 9 January 2013 | Volume 8 | Issue 1 | e53512



Mutation of the BLRF2 SR Motif Decreases BLRF2 Nuclear
Localization

Because SRPK2 phosphorylation of SR proteins enhances their

entry into the nucleus [33], we investigated the possibility that

SRPK2 regulates BLRF2 subcellular localization. Initially, pull-

down experiments were preformed on cytoplasmic and nuclear

fractions from FLAG-HA-BLRF2 P3HR1-ZHT cells induced for

replication. SRPK2 was observed to efficiently co-precipitate with

BLRF2 in both fractions (Fig. S1). Next, we examined the effect of

the ARA mutation on BLRF2 subcellular distribution in

transfected HeLa cells. At least 100 cells were observed and

classified as showing exclusively nuclear, exclusively cytoplasmic,

or mixed nuclear and cytoplamic BLRF2 staining. As observed

before, wild-type BLRF2 was predominantly nuclear (60% of cells)

or mixed nuclear and cytoplasmic (29%) with only 11% of cells

having exclusively cytoplasmic staining (Fig. 6A & 6B). In contrast,

the ARA mutant was exclusively nuclear in 39%, mixed nuclear

and cytoplasmic in 40%, and exclusively cytoplasmic in 21% of

cells. Thus, the ARA mutation resulted in a modest, but

statistically significant shift of BLRF2 from the nucleus to the

cytoplasm (chi-squared 9.3, P,0.009). Thus, SRPK2 mediated

phosphorylation of BLRF2 has a modest effect BLRF2 nuclear

localization that is unlikely to explain the dramatic effect of the

ARA mutation on viral replication.

Discussion

EBV replication and virion morphogenesis involves the

coordinated action of highly conserved replication gene

products with those found only in gammaherpesviruses. The

roles played by these genes are only beginning to be explored,

but studies of the murine gammaherpesvirus MHV68 suggest

they are essential. Tegument proteins in particular appear to

play a critical role as disruption of any one of the four (the

homologs of EBV BNRF1, BLRF2, BKRF4, and BRRF2)

abrogates replication [32]. By contrast, homologs of genes that

encode EBV glycoproteins (BDLF2, BDLF3, BMRF2) were all

dispensable. We have previously searched for binary protein-

protein interactions among all the EBV proteins using a yeast

two-hybrid assay [8]. In this report, we describe a system in

which EBV replication protein complexes can be studied during

EBV replication. This system offers two clear advantages over

the alternative of generating recombinant EBV genomes. First,

it is less labor intensive and hence, more amenable to scaling up

to a high throughput analysis. Second, use of the P3HR1-ZHT

cell line as a background, allows efficient and synchronous

induction of EBV replication. Using the BLRF2 tegument

protein as a prototype, we demonstrated that the epitope tagged

protein could be expressed at levels comparable to that seen in

EBV replication. In the course of EBV replication, FLAG-HA-

BLRF2 moved from the nucleus to the cytoplasm in a manner

indistinguishable from endogenous BLRF2. However, the

solubility of the BLRF2 complexes proved a major obstacle to

their characterization. Even with optimized extraction proce-

dures, we were only able to solubilize about 50% of the FLAG-

HA-BLRF2. Our inability to detect BNRF1 or other virion

components in the purified complexes suggests that capsid

associated BLRF2 complexes were either not extracted,

disrupted, or both. Nevertheless, characterization of solubilized

BLRF2 complexes revealed that SRPK2, which had been

identified as a binary interacting partner of BLRF2 by yeast

two-hybrid assay, interacted with BLRF2 during EBV replica-

tion in B lymphocytes.

SR proteins are highly conserved splicing factors comprised of

N-terminal RNA-binding domains and arginine-serine rich C-

termini (RS motifs) which are substrates for the SR protein kinases

SRPK1 and SRPK2. RS motif phosphorylation by SRPKs has

been shown to regulate SR protein subcellular localization,

protein-protein interactions, protein-RNA interactions, and splic-

ing catalysis [26,27]. Our data demonstrates that the RS motif in

the C-terminus of BLRF2 is a substrate for SRPK2 and that

mutation of this motif alters BLRF2 nuclear/cytoplasmic parti-

tioning. Further, mutation of this RS motif abrogates the ability of

BLRF2 to complement the inactivation of its homolog (ORF52) in

an MHV68 replication assay. SRPKs appear to be frequently

targeted by replicating viruses [34,35,36,37]. During herpes

simplex virus (HSV) replication, SR protein phophorylation is

decreased and splicing inhibited, potentially due to relocalization

of SRPK1 to the nucleus by the HSV ICP27 protein [37]. The

EBV ICP27 homolog, SM, has been shown to interact with the SR

protein SRp20 to direct specific alternative splice-site selection

[38]. Viral targeting of SRPK also has effects that are independent

of splicing. For example, SRPK1 and SRPK2 phosphorylation of

the hepatitis B core protein is required for its stable association

with viral genomic RNA [34]. Although we cannot exclude a role

for BLRF2 in regulation of splicing, this seems an unlikely role for

a gene expressed late during viral replication. The ability of RS

motif phosphorylation to alter protein-protein interactions could

play an important role in regulating BLRF2’s association with

capsids or other tegument proteins. This reversible modification

would allow regulation of BLRF2 protein binding to promote

assembly of virions in a productively infected cell and facilitate

virion disassembly during initial infection.

Although the precise function of BLRF2/ORF52 in gamma-

herpesvirus replication remains to be defined, current evidence

suggests it plays a role in tegument acquisition and organization.

The strong association of BLRF2 with EBV capsids may allow it

to serve as an anchor for recruitment of other tegument

proteins. This view is supported by ultrastructural studies during

the abortive replication of MHV68 ORF52 null cells, in which

the electron-dense proteinaceous structures normally found at

the capsid-vesicle interface were absent during secondary

envelopment [19]. When isolated, these immature viral particles

lacked specific viral proteins, such as the gammaspecific

tegument protein encoded by ORF45. Interactome studies of

EBV, KSHV, and MHV68 have identified a total of thirteen

viral proteins that interact with ORF52/BLRF2 in binary assays

(Table 2) [8,39,40,41]. Interestingly, interactions with divergent

proteins (e.g., those encoded by gammaspecific genes) have been

more consistently detected across multiple gammaherpesviruses

than ORF52/BLRF2 interactions with conserved proteins. This

may indicate a role for ORF52/BLRF2 in tethering gammas-

pecific tegument proteins to the capsid. Such tethering could

fulfill at least two potential functions. First, it would bridge

interactions with cellular machinery and the viral capsid as has

been demonstrated for KSHV ORF45 which promotes KSHV

egress by interacting with the kinesin motor protein KIF3A

[42]. Second, ORF52/BLRF2 tethering could ensure delivery

of tegument proteins to newly infected cells. For example,

delivery of the BNRF1 has been shown to promote the

establishment of EBV infection by binding to Daxx, displacing

ATRX and disrupting PML nuclear bodies [43]. It will be

important to determine whether and how each of these protein-

protein interactions depends on phosphorylation of the BLRF2

RS motif. Inhibition of SRPK1 and SRPK2 has been explored

as a potential therapy for HIV infection with limited success;
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however, these compounds may also prove useful for further

exploring the BLRF2’s role in EBV replication [35].

Supporting Information

Figure S1 BLRF2 and SRPK2 associate in both the
nucleus and cytoplasmic fractions of cells during EBV
replication. P3HR1 ZHT cells stably expressing flag-HA-

BLRF2 were induced for replication by addition of 4-hydro-

xytamoxifen. After 48 hours, cells were harvested and either

directly lysed in IP lysis buffer (T) or fractionated by hypotonic

lysis followed by centrifugation into cytoplasmic (C) and nuclear

fractions (N). Each fraction was immunoprecipitated for BLRF2

using flag beads (M2, Sigma) and after extensive washing, resolved

by SDS page and blotted for BLRF2 (HA antibody) and SRPK2.

Input lysates (2%) are shown for comparison and were probed for

alpha tubulin and histone H2B to assess fraction purity.

(PPT)
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