
CS50 Sandbox: Secure Execution of Untrusted Code

Citation
Malan, David J. 2013. CS50 Sandbox: Secure execution of untrusted code. In Proceedings of the
44th SIGCSE Technical Symposium on Computer Science Education (SIGCSE '13). Denver, CO,
March 2013, 141-146. New York: Association for Computing Machinery.

Published Version
10.1145/2445196.2445242

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10745001

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:10745001
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=CS50%20Sandbox:%20Secure%20Execution%20of%20Untrusted%20Code&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=90d981cc9dbd733aa54348f89bcbca42&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

CS50 Sandbox

Secure Execution of Untrusted Code

David J. Malan
School of Engineering and Applied Sciences

Harvard University
Cambridge, Massachusetts, USA

malan@harvard.edu

ABSTRACT
We introduce CS50 Sandbox, an environment for secure ex-
ecution of untrusted code. Implemented as an asynchronous
HTTP server, CS50 Sandbox offers clients the ability to exe-
cute programs (both interactive and non-interactive) written
in any compiled or interpreted language in a tightly con-
trolled, resource-constrained environment. CS50 Sandbox’s
HTTP-based API takes files, command lines, and standard
input as inputs and returns standard output and error plus
exit codes as outputs.

Atop CS50 Sandbox, we have built CS50 Run, a web-
based code editor that enables students to write code in a
browser in any language, whether compiled or interpreted,
that’s executed server-side within a sandboxed environment.
And we have built CS50 Check, an autograding framework
that supports black- and white-box testing of students’ code,
leveraging CS50 Sandbox to run series of checks against stu-
dents’ programs, no matter the language of implementation.

We present in this work the pedagogical motivations for
each of these tools, along with the underlying designs thereof.
Each is available as open source.

Categories and Subject Descriptors
K.3.1 [COMPUTERS AND EDUCATION]: Computer
Uses in Education—Collaborative learning, Computer-assisted
instruction; K.3.2 [COMPUTERS AND EDUCATION]:
Computer and Information Science Education—Computer
science education, Self-assessment

General Terms
Design, Security, Verification

1. INTRODUCTION
Computer Science 50 (CS50) is Harvard University’s “in-

troduction to the intellectual enterprises of computer science
and the art of programming” for majors and non-majors
alike, a one-semester amalgam of courses generally known

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’13, March 6–9, 2013, Denver, Colorado, USA.
Copyright 2013 ACM 978-1-4503-1775-7/13/03 ...$15.00.

as CS1 and CS2. The course is required of majors, but most
of the course’s students are non-majors. In Fall 2011, en-
rollment was 607, 76% of whom had no prior CS experience,
18% of whom had taken one prior course, and 6% of whom
had taken two or more. The course is taught mostly in C
in a command-line environment, with PHP and JavaScript
introduced toward term’s end in the context of web program-
ming. Weekly problem sets (i.e., programming assignments)
demand upwards of 15 hours per week of most students.

In years past, students wrote most of their code on a load-
balanced cluster of Linux servers on which they had shells
and home directories, primarily using gcc and gdb to compile
and debug. In Fall 2011, students instead used a virtual
machine (VM) running on their own Mac or PC. As a result,
Internet connectivity was no longer requisite, and students
could more easily use graphical editors like gedit. Moreover,
server load (particularly on nights before deadlines) was no
longer an issue, since programs were executed on students’
own CPUs. But for the very same reason could technical
difficulties no longer be resolved server-side for students by
staff. And some netbooks struggled under the weight of a
VM.

For Fall 2012, then, we wanted to craft an alternative,
not to replace the VM but to supplement it. Our objective
was to provide students with a lighter-weight, web-based
mechanism for trying out code, particularly in lectures and
sections (i.e., recitations), where it’s much faster to open a
browser than boot a VM. The VM, meanwhile, would still
be used by students for larger-scale projects that warrant a
full-fledged command-line environment or GUI.

We did not wish to sacrifice C, though, for the sake of
browser-based coding. Whereas languages like JavaScript
and Python can be interpreted client-side using JavaScript
itself [13,16], compilers for languages like C are not so easily
ported. Server-side execution of code would therefore be
necessary.

Meanwhile, we faced an orthogonal problem. Over the
years, the course has written a variety of scripts (e.g., in Perl
and Python) with which the course’s teaching fellows (TFs)
could test the correctness of students’ submissions. But
those scripts were generally quite fragile, with unanticipated
corner cases sometimes causing all tests to fail. Moreover,
because the scripts were custom-written for specific assign-
ments without any unifying framework, both writing and
running them was rather laborious. The TFs, too, would
generally run students’ code under the TFs’ own UIDs, and
so there was always a risk of buggy or malicious code wreak-
ing havoc in TFs’ accounts. We’ve long wanted some form

of sandboxing for students’ code, then, simple enough that
TFs aren’t disinclined to use it.

We thus set out to tackle both problems at once. In the
sections that follow, we present our solution. CS50 Sandbox
is our environment for secure execution of untrusted code.
In Section 2, we present the design goals therefor. In Sec-
tion 3, we present CS50 Sandbox’s implementation details,
including its front end (an HTTP-based API) and back end
(a Linux-based cluster). In Section 4, meanwhile, we intro-
duce CS50 Run, a web-based code editor built atop CS50
Sandbox that enables students to write code in a browser
that’s compiled and executed server-side. In Section 5, we
introduce CS50 Check, an autograding framework built into
CS50 Sandbox that enables students and instructors alike
to assess the correctness of code. In Section 6, we present
future work and conclude.

2. DESIGN GOALS
Even though CS50 happens to introduce students to C,

along with PHP and JavaScript, we wanted our sandboxed
environment to be language-agnostic so that courses besides
ours could leverage the platform. Moreover, we needed it
to withstand execution of buggy (if not adversarial) code,
lest infinite loops or fork bombs throttle the system. And
we wanted the environment to accommodate the course’s
style of homework, fairly complex programs that can often
be designed in any number of ways, rather than have to alter
the course’s workload to accommodate technology. And so
we set out with these design goals in mind:

• support interactive and non-interactive execution of
programs written in any language, particularly those
commonly used in introductory courses (e.g., C, C++,
Java, JavaScript, OCaml, Perl, PHP, Python, Ruby,
Scheme, et al.);

• support build tools like ant and make;

• support standard error, input, and output;

• limit consumption of CPU cycles, disk space, file de-
scriptors, and RAM;

• restrict network access, both inbound and outbound;

• prevent reading and writing of unsandboxed files; and

• prevent denial-of-service attacks.

Before proceeding to implement, we vetted existing solu-
tions. In the web-based space are ideone [14], codepad [15],
CodeEval [2], and compilr [3], all of which support browser-
based compilation and interpretation of code. But only the
last supports interactive execution of programs, though it
lacks an API. Even so, we would want more control over our
environment than a third party would likely allow. In par-
ticular, we would want it to behave identically to our VM,
with the same OS, binaries, and libraries installed on both,
so that students’ programs behave the same, no matter the
context.

In the autograding space, related works abound [7–9], al-
though many are now dated and don’t support many lan-
guages. Most closely related is Web-CAT [1], perhaps the
best known, but Web-CAT doesn’t sandbox code to the
degree that we sought. Nor does it support interactivity
or clustering. Unit-testing frameworks also abound for C
(and other languages), but none offer the simplicity that

we wanted for the course’s earliest projects especially. Au-
tolab [5], meanwhile, is the closest incarnation of our own
vision for sandboxing but isn’t yet available as open source.
It also spawns entire virtual machines for sandboxing tests,
overhead that we wished to avoid.

3. IMPLEMENTATION DETAILS
At a high level, CS50 Sandbox is a web-based black box

that allows for secure execution of untrusted code. Its in-
puts include files (e.g., hello.c), commands (e.g., ./a.out),
signals (e.g., SIGINT), and standard input. And its outputs
include exit codes plus standard output and error.

CS50 Sandbox is not meant to be used by humans di-
rectly, as via a GUI. Rather, it accepts inputs via HTTP
through API calls, and it returns outputs via HTTP as
JSON objects [4]. Clients (e.g., CS50 Run, per Section 4)
can issue those calls via Ajax (if sandboxing non-interactive
programs) or via WebSocket [17] (if sandboxing interactive
programs).

CS50 Sandbox is currently packaged for Red Hat-based
systems (among them CentOS, Fedora, RHEL, and Scien-
tific Linux) but could be ported to Debian-based systems as
well. It is available as open source at
http://cs.harvard.edu/malan/.

3.1 Front End
CS50 Sandbox’s front end is an HTTP-based API, among

whose endpoints are /upload and /run.

3.1.1 /upload
To upload one or more files to the environment, a client

need only POST them to /upload (as multipart/form-

data). CS50 Sandbox’s response will be a JSON object with
two keys: files, whose value is an array of the filenames
POSTed, and id, whose value is a unique identifier for the
collection of files, per the below.

{

"files": [String, ...]

"id": String

}

3.1.2 /run
To execute a non-interactive command (e.g., clang hello.c)

inside of CS50 Sandbox, a client need only POST to /run

a JSON object with two keys: cmd, whose value is the com-
mand line to execute, and sandbox, whose value is a JSON
object with one key, homedir, whose value is the unique
identifier for a previously uploaded collection of files, per
the below.

{

"cmd": String,

"sandbox": { homedir: String }

}

CS50 Sandbox will then copy those files into a temporary
$HOME, in which cmd will be executed. Upon successful ex-
ecution, the server will respond with a JSON object of the
form

{

"code": Number,

"sandbox": String,

"script": String,

"stderr": String,

"stdout": String

}

where code is the command’s exit code, sandbox is a unique
identifier for the temporary $HOME so that the client may
execute subsequent commands (e.g., ./a.out) in the same
sandboxed environment, script is the command’s terminal
output (with standard error and standard output interwo-
ven), stderr is the command’s standard error, and stdout

is the command’s standard output
To execute an interactive command that expects standard

input (e.g., ./a.out) inside of CS50 Sandbox, a client can
instead establish (or emulate, as with socket.io [12]) a Web-
Socket with CS50 Sandbox and emit a run event, whose pay-
load is also a JSON object whose keys are, as before, cmd
and sandbox. CS50 Sandbox will then execute cmd, emit-
ting stdout and stderr events over the socket as standard
output and error, respectively, are generated. CS50 Sand-
box will also emit a stdin event when it detects that cmd is
blocking for input so that the client knows to provide. Once
cmd exits, CS50 Sandbox will emit an exit event, whose pay-
load is an exit code plus standard output and error, along
with a unique identifier for the $HOME used. A client can also
interrupt cmd prematurely by emitting a SIGINT event.

3.2 Back End
Underneath the hood, CS50 Sandbox is an HTTP server

written in JavaScript for Node.js [11], an open-source run-
time built atop V8 [6] whose event-driven architecture is
well-suited for handling asynchronous events (e.g., interac-
tive standard I/O). Moreover, Node.js supports non-blocking
I/O, which means that execution of one (slow-running) cmd

won’t block that of another. The architecture supports clus-
tering, whereby CS50 Sandbox can be run on any number
of load-balanced servers.

Upon receiving an HTTP request whose endpoint is /upload,
CS50 Sandbox saves each file POSTed asynchronously to
disk in a directory whose name serves as the unique identi-
fier for that collection of files, which is then returned to the
client.

Upon receiving an HTTP request whose endpoint is /run
or a run event over a socket, CS50 Sandbox sets up a “sand-
box,” a temporary $HOME in which a cmd will be executed.
It copies a collection of files (identified by an id) into that
sandbox, creates a new user (whose username is also id and
whose password is locked), and then assigns $HOME to that
user. It then executes cmd on behalf of that user, via sudo.
But it first wraps cmd with a call to nice, so as to prioritize
its execution below the HTTP server itself. It also wraps
cmd with a call to seunshare, which further confines cmd to
the temporary $HOME (and its own /tmp) within an alternate
“context,” a feature of SELinux [10] that restricts processes’
behavior, blocking access to /etc/passwd, /proc, and more.
Finally, cmd is wrapped further with a call to strace, which
allows CS50 Sandbox to detect writes on standard output
and error (as well as reads on standard input).

So that cmd can only consume its fair share of resources,
CS50 Sandbox imposes constraints using pam_limits, which
caps processes’ consumption of CPU cycles, disk space, file

descriptors, RAM, and more on a per-user basis, ergo the
creation of a user per sandbox. Meanwhile, iptables re-
stricts network access. CS50 Sandbox’s own HTTP server
additionally monitors wall time, killing long-running pro-
cesses (in addition to fork bombs).

Once cmd exits, CS50 Sandbox responds to the client and
tears down the sandbox after waiting a few minutes for any
subsequent cmd.

We happen to run CS50 Sandbox on Amazon EC2, using
Amazon ELB for load-balancing and Amazon S3 for shared
storage, but the environment can just as easily be run locally
on one or more servers, using DNS or layer-3 alternatives
for load-balancing and NFS or SMB for shared storage as
needed. Indeed, the environment can be installed with a
single command (yum).

4. CS50 Run
CS50 Run is a web-based code editor that lives at

https://run.cs50.net/. Built atop CS50 Sandbox, CS50
Run enables students to write, within a browser, code in
any language, execution of which happens server-side. Im-
plemented in JavaScript, HTML, and CSS, CS50 Run lever-
ages CS50 Sandbox’s API to create an illusion that execution
is local, even providing students with a terminal window in
which they can not only see standard output and error but
provide standard input as well. Via a drop-down can stu-
dents select the language in which they wish to write code,
each of which maps to a particular cmd (e.g., clang for C).
Each cmd is executed automatically for students, based on
that drop-down’s selection, but each cmd is displayed in the
illusory terminal window so that students can see exactly
what’s happening under the hood. Lines of code, mean-
while, are automatically numbered and syntax-highlighted.
And via a button can students save revisions of their code,
so that they can roll back in time and recover from crashes.
Figure 1 depicts.

Not only does CS50 Run enable students to work on small
programs in lectures and sections without booting a VM,
it also empowers students to check their code’s correctness
instantly via integration with CS50 Check.

5. CS50 Check
CS50 Check is an autograding framework built into CS50

Sandbox that enables black- and white-box testing of stu-
dents’ code. Like CS50 Sandbox itself, its front end is an
HTTP-based API. Its back end, meanwhile, comprises series
of checks (i.e., tests) that are written in JavaScript (but can
check the correctness of programs written in any compiled
or interpreted language).

5.1 Front End
To run some program (i.e., cmd) through a series of checks,

a client (e.g., CS50 Run, which itself uses CS50 Check to
provide students with browser-based feedback) need only
POST the program’s file(s) to CS50 Sandbox via /upload,
at which point it can then contact /check, CS50 Check’s
sole endpoint, to initiate testing.

5.1.1 /check
To run a series of (instructor-defined) checks against a pre-

viously uploaded collection files, a client need only POST to
/check a JSON object of the following form, where checks

Figure 1: This is CS50 Run, a web-based code editor built atop CS50 Sandbox that enables students to write
programs in any language within a browser.

is a unique identifier for the series of checks, and sandbox

defines (as it also does for /run) a sandbox to use for the
checks’ execution, where homedir is the unique identifier for
a previously uploaded directory of files, a copy of which will
be mounted as $HOME for each of the checks in the series.

{

"checks": String,

"sandbox": { homedir: String }

}

Upon execution of checks, the server will return a JSON
object of the form

{

"results": Object

}

where results is an object, each of whose keys is the unique
identifier for a check in the series, the value of which is an
object of the form

{

"dependencies": [String, ...],

"description": String,

"result": Boolean,

"script": [Object, ...]

}

where dependencies is an array, each of whose elements is
the unique identifier for another check on which the check
depends, description is a human-friendly description of the
check, result is either

• true, which signifies that the check passed,

• null, which signifies that the check was not executed
because of a failed or erred dependency, or

• false, which signifies that the check failed,

and script is an array of objects, each of the form

{

"actual": { type: String, value: String },

"expected": { type: String, value: String }

}

where expected describes what was expected, and actual

describes what actually occurred, if anything, up until the
point when the check passed or failed. For instance, this
response indicates that two checks (compiles and runs)
passed:

{

"results": {

"compiles": {

"dependencies": [],

"description": "Does hello.c compile?",

"result": true,

"script": [Object, ...]

},

"runs": {

"dependencies": [

"compiles"

],

"description": "Does a.out run?",

"result": true,

"script": [Object, ...]

}

}

}

By contrast, this response indicates that one check passed
whereas another check failed (because of an unexpected exit
code):

{

"results": {

"compiles": {

"dependencies": [],

"description": "Does hello.c compile?",

"result": true,

"script": [Object, ...]

},

"runs": {

"dependencies": [

"compiles"

],

"description": "Does a.out exit with 0?",

"result": false,

"script": [

...,

{

"actual": {

"type": "exit",

"value": 1

},

"expected": {

"type": "exit",

"value": 0

}

}

]

}

}

}

Similarly does this response indicate that one check passed
whereas another check failed (because of unexpected stan-
dard output):

{

"results": {

"compiles": {

"dependencies": [],

"description": "Does hello.c compile?",

"result": true

},

"runs": {

"dependencies": [

"compiles"

],

"description": "Does a.out print \"hello, world\"?",

"result": false,

"script": [

...,

{

"actual": {

"type": "stdout",

"value": "goodbye, world"

},

"expected": {

"type": "stdout",

"value": "hello, world"

}

}

]

}

}

}

And this response indicates that two checks failed, one of
which wasn’t even executed because of its dependency on
the other:

{

"results": {

"compiles": {

"dependencies": [],

"description": "Does hello.c compile?",

"result": false,

"script": [

...,

{

"actual": {

"type": "exit",

"value": 1

},

"expected": {

"type": "exit",

"value": 0

}

}

]

},

"runs": {

"dependencies": [

"compiles"

],

"description": "Does a.out run?",

"result": null,

"script": []

}

}

}

5.1.2 Back End
On the back end, series of checks are implemented in

JavaScript as Node.js “modules,” objects whose keys are
checks’ names, whose values are anonymous functions that
return functional tests. Checks themselves are implemented
as “chains,” sequences of asynchronous methods, each of
whose execution is delayed until its preceding sibling invokes
a callback. These chains hide from instructors the underly-
ing implementation details of asynchronous code, which is
not always easy to write. After all, the objective of CS50
Check is to challenge students to pass checks, not instruc-
tors to write them! Below is a representative series of two
checks, the first of which checks, by running clang (with
.run, which runs a cmd in a sandbox), whether hello.c

compiles with an exit code of 0, the second of which checks
whether the resulting a.out says hello, as per the RegExp

(which could alternatively be a String specifying a file on
disk against which to compare standard output).

module.exports = {

"compiles": function(check) {

return check("Does hello.c compile?")

.run("clang hello.c")

.exit(0);

},

"runs": ["compiles", function(check) {

return check("Does a.out print \"hello, world\"?")

.run("./a.out")

.stdout(/^hello, world$/)

.exit(0);

}

};

CS50 Check includes support for other “links” in checks’
chains as well, including .diff (which compares two files for
differences), .exists (which checks whether a file exists),
.stderr (which checks students’ standard error against a
RegExp or file), and stdin (which checks whether a program
is blocking for standard input).

CS50 Check also supports specification of dependencies.
Indeed, in the above, the value of runs is actually an array,
the first of whose values is "compiles", which prescribes
that the second check should be executed only if the first of
the two passes.

6. FUTURE WORK, CONCLUSION
CS50 Sandbox is an environment for secure execution of

untrusted code that we designed underneath both CS50 Run,
a web-based code editor that enables students to write code
in any compiled or interpreted language, and CS50 Check,
an autograding framework that enables students and in-
structors alike to assess the correctness of code.

In Fall 2012, we will deploy CS50 Sandbox not only to
our own undergraduates but to as many as 120,000 edX stu-
dents as well. Coupled with CS50 Run and CS50 Check,
CS50 Sandbox will ultimately enable students to work on
problems within browsers during lectures and sections, with-
out the need for client-side VMs. Moreover, it will enable
us to embed alongside curricular materials real-time coding
exercises on which students will receive instant feedback.

So that the infrastructure scales dynamically with load,
we may eventually utilize Amazon Auto Scaling, which will
allow us to define thresholds for load, beyond which addi-
tional servers will be spawned automatically. We anticipate
adversarial attacks on the system, and so we plan to harden
the system over time as we detect weaknesses. In particular,
we expect to write our own SELinux policy with which to
confine each cmd all the more. We plan, too, to augment
CS50 Check’s pool of methods to support measurement of
resources consumed during runtime (e.g., CPU cycles and
RAM).

Meanwhile, we expect that the thousands of submissions
that CS50 Sandbox will collect over time will yield insights
into the process by which students write code and respond
to continual feedback.

7. ACKNOWLEDGMENTS
Many thanks to Dan Walsh of RedHat and to Glenn Hol-

loway, Joseph Ong, Mike Tucker, Nate Hardison, Rob Bow-
den, and Tommy MacWilliam of Harvard for their assistance
with this work.

8. REFERENCES
[1] Anuj R. Shah. Web-CAT: A Web-based Center for

Automated Testing. Master’s thesis, Virginia
Polytechnic Institute and State University, 2003.

[2] CodeEval Inc. CodeEval. http://www.codeeval.com/.

[3] Compilr Inc. compilr. https://compilr.com/.

[4] D. Crockford. The application/json Media Type for
JavaScript Object Notation (JSON).
http://www.ietf.org/rfc/rfc4627.txt?number=4627.

[5] Dave O’Hallaron et al. Autolab.
http://autolab.cs.cmu.edu/.

[6] Google Inc. V8 JavaScript Engine.
http://code.google.com/p/v8/.

[7] J. A. Harris, E. S. Adams, and N. L. Harris. Making
program grading easier: but not totally automatic. J.
Comput. Sci. Coll., 20(1):248–261, Oct. 2004.

[8] D. Jackson. A semi-automated approach to online
assessment. In Proceedings of the 5th annual
SIGCSE/SIGCUE ITiCSE conference on Innovation
and technology in computer science education, ITiCSE
’00, pages 164–167, New York, NY, USA, 2000. ACM.

[9] D. Jackson and M. Usher. Grading student programs
using assyst. In Proceedings of the twenty-eighth
SIGCSE technical symposium on Computer science
education, SIGCSE ’97, pages 335–339, New York,
NY, USA, 1997. ACM.

[10] James Morris. SELinux Project Wiki.
http://selinuxproject.org/.

[11] Joyent, Inc. Node.js. http://nodejs.org/.

[12] LearnBoost, Inc. Socket.IO. http://socket.io/.

[13] Scott Graham. Skulpt. http://www.skulpt.org/.

[14] Sphere Research Labs. ideone. http://ideone.com/.

[15] Steven Hazel. codepad. http://codepad.org/.

[16] Syntensity. Python on the Web.
http://syntensity.com/static/python.html.

[17] World Wide Web Consortium. The WebSocket API.
http://dev.w3.org/html5/websockets/.

