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ABSTRACT
An important class of tasks that are underexplored in current
human computation systems are complex tasks with global
constraints. One example of such a task is itinerary plan-
ning, where solutions consist of a sequence of activities that
meet requirements specified by the requester. In this paper,
we focus on the crowdsourcing of such plans as a case study
of constraint-based human computation tasks and introduce
a collaborative planning system called Mobi that illustrates
a novel crowdware paradigm. Mobi presents a single inter-
face that enables crowd participants to view the current so-
lution context and make appropriate contributions based on
current needs. We conduct experiments that explain how
Mobi enables a crowd to effectively and collaboratively re-
solve global constraints, and discuss how the design princi-
ples behind Mobi can more generally facilitate a crowd to
tackle problems involving global constraints.
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INTRODUCTION
Human computation [16, 9] is an evolving paradigm with nu-
merous studies and applications over the last decade. Most
human computation tasks explored to date are simple and
easy to parallelize. However, several recent studies (e.g., Soy-
lent [1], CrowdForge [7], PlateMate [13]) have tackled more
complex tasks by using workflows that link together inde-
pendent modules that harness different types of human effort.
These workflows serve as algorithms that coordinate among
the inputs and outputs of different task modules, allowing
complex tasks to be decomposed into manageable subtasks
⇤The first two authors have equal contribution in this work.
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Figure 1. Planning mission (left) and itinerary (right)

that the crowd can contribute to independently without hav-
ing to reason about other modules or the task at large.

Within studies of human computation, an important class of
underexplored tasks are those in which the solution must sat-
isfy a set of global requirements. For example, in leveraging
the crowd to write an essay, a requester may want to spec-
ify requirements on the desired tone, tense, length, structure
of arguments, and style of exposition that must hold consis-
tently throughout a piece of writing. Some requirements, e.g.,
presenting a balanced perspective on a situation, touch upon
different components of the essay and depend on its com-
position. Similar considerations arise in creative tasks such
as graphic design, and more mundane tasks such as meeting
scheduling. As good solutions rely on the composition as
a whole and are marked by interdependence among solution
components, such tasks are not amenable to the divide and
conquer approach used in most crowdsourcing systems.

As a focal example, consider the problem of crowdsourcing
itinerary planning. Planning events such as vacations, out-
ings, and dates often involve an itinerary (Figure 1), which
contains an ordered list of activities that are meant to be ex-
ecuted in sequence over the course of an event. People go-
ing on a trip have preferences and constraints over the types
of activities of interest (e.g., “I want a coffee break right af-
ter lunch”), how long to spend on different activities (e.g., “I
want to spend at least 2 hours in parks”), the composition of
activities (e.g., “I want to focus on art galleries and museums
for the day”), the budget, and the time available, which define
a set of global requirements that an itinerary should satisfy.

Decisions on any particular activity in the itinerary may natu-
rally influence other decisions. As simple examples, spending



time on one activity leaves less time for another, and moving
to one location introduces distances to other locations.

To handle tasks with global requirements, we introduce a
novel crowdware paradigm that provides a single workspace
in which a crowd of individuals contribute opportunistically
based on their knowledge and expertise and the current so-
lution context, and in which the system (indirectly) coordi-
nates the crowd problem solving effort to resolve global con-
straints. Crowdware takes inspiration from groupware [3],
which suggest principles and ideas on communication and
collaboration within a shared context, that help a group to
accomplish a joint task. We consider how to apply such prin-
ciples and ideas to crowd workers, who differ from groups
in that individuals are only briefly involved, are less will-
ing to spend time grasping the solution context or take meta-
level actions, and may not consider the desires of other crowd
workers when making decisions.

We focus on itinerary planning as a case study of coordinating
a crowd to tackle tasks with global constraints. We introduce
a collaborative itinerary planning system called Mobi, which
takes as input a planning mission containing a set of quali-
tative and quantitative constraints as articulated by the user
and produces as output an itinerary that satisfies the mission.
The crowd participates via a single interface—displaying the
current itinerary and a stream of ideas generated thus far—
that allows individuals to contribute opportunistically given
the current context and to see their contributions incorporated
into the solution in real-time. Mobi focuses the crowd’s at-
tention on aspects of the evolving plan that needs work by
prominently displaying a list of automatically generated todo
items, which point out violated constraints, provide sugges-
tions on how to address them, and promote activities directed
at the refinement of the itinerary.

Mobi allows users to specify their desires and needs in natu-
ral language, thereby enabling complex constraints and pref-
erences to be expressed and used in the planning process. We
present two studies, which show that Mobi’s design promotes
a collaborative planning environment in which the crowd can
effectively produce custom-tailored itineraries that satisfy the
stated global constraints in user missions. In the first study,
we test the effect of displaying the automatically generated
todo items on the rate at which quantitative constraints are
resolved by the crowd, and measure the contribution patterns
of the crowd workers. We find that the use of todo items pro-
motes satisfaction of constraints at a significantly faster rate
than when the items are not displayed, and that the crowd’s
editing patterns show evidence of both collaboration and op-
portunistic planning.

The second study seeks to understand whether the end users
believe that crowd-generated itineraries satisfy their stated re-
quirements. We find that users feel that the itineraries contain
many activities of interest, mostly or fully satisfy their mis-
sion requirements, and are useful for their actual trips. After
presenting these results, we revisit and summarize the design
principles behind Mobi and discuss how they can in general
facilitate a crowd to tackle problems involving global con-
straints.

RELATED WORK
Planning can be viewed as an iterative task in which workers
make successive edits to improve the solution. There has been
some attention on iterative tasks in human computation [11],
and an interesting recent example is work by Kittur [6] that re-
cruits workers to collaborate in Etherpad to translate a poem.
Workers were able to see their edits reflected in real time (as
in Mobi), and could communicate to explain their edits via
chat. One difference in Mobi is that the system uses its sense
of the progress made so far, e.g., how full the itinerary is,
which constraints are violated, etc., to prompt users on what
needs work so as to guide the problem-solving process. Other
recent systems recruit a crowd to plan (e.g., Turkomatic [8]
and CrowdPlan [10]); our work differs in that we consider
planning tasks with global requirements.

Wikipedia can be viewed as an example of a system in which
(mostly expert and highly dedicated) contributors write and
edit articles to resolve a set of global constraints as defined by
Wikipedia’s standards. Much like the way todo items are used
in Mobi to drive progress, template messages and cleanup
tags are used in Wikipedia [17] to alert editors of changes
that need to be made to improve an article. Such messages are
typically managed by human contributors, whereas in Mobi
todo items are managed in an automated manner whenever
possible.

Several models have been proposed to describe how peo-
ple generate plans to achieve goals. The successive refine-
ment model advocates a top-down approach, where a high-
level goal is decomposed into subgoals iteratively, down
to a sequence of elementary actions [14]. In contrast, the
planning of many everyday activities (e.g., errands) is often
opportunistic—i.e., planning decisions happen whenever op-
portunities arise [4, 5], so that a decision or observation in
one part of the plan may suggest new ideas or illuminate
problems in a different part of the plan, causing the planner
to refocus his attention. Opportunistic planning may involve
both top-down and bottom-up processing. For example, in
an errand planning experiment [4], it was found that subjects
would start making detailed plans (e.g., sequencing individ-
ual errands), and then switch to planning on a more abstract
level (e.g., by discovering clusters of errands), and back and
forth as they refined the plan. Mobi is designed with the op-
portunistic planning model in mind, where individuals in the
crowd are allowed to contribute freely as they see fit based
on their observations of what needs work given the current
solution context.

Real-life planning is a difficult problem for computers; de-
spite advances in automated planning [12], a major challenge
is in making sense of people’s goals, preferences and other
‘soft’ considerations [2]. Currently, the automated planner in
Mobi supports workers by automatically checking constraints
and computing trip times and routes. In the future, automa-
tion may play a more active role in the planning process by
learning about different requirements, suggesting activities
and their composition in the itinerary, or even detecting and
adding important constraints that may have been missed by
the requester.



Figure 2. The Mobi planning interface consists of the information panel (top), the brainstream (left), and the itinerary viewer (right).

There are several existing commercial systems that either al-
low groups to plan trips for themselves or to ask friends and
other members for suggestions. Examples include Gogobot,
triporama, Kukunu, and FriendTripper. Mobi differs from
these systems in that it seeks to produce not only sugges-
tions for activities but an itinerary satisfying a set of global
requirements, and can focus the crowd on making contribu-
tions where they are most needed.

MOBI: A SYSTEM FOR CROWD ITINERARY PLANNING
Mobi takes as input a planning mission consisting of prefer-
ences and constraints, and generates an itinerary by having a
crowd plan asynchronously using a shared interface. Workers
invited to contribute can view the current plan and all ideas
proposed thus far, and make contributions as they see fit. Ed-
its can be made at any time and without restrictions, and the
itinerary is automatically saved after each change. We now
describe Mobi’s interfaces for specifying the planning mis-
sion and for assembling the itinerary, and discuss how these
two interfaces support the process of generating itineraries
and resolving constraints. Mobi’s planning interface is shown
in Figure 2.

Specifying the Planning Mission
Our target users, also referred to as requesters, are people
who are interested in planning a trip. To start planning, the
requester enters a planning mission using a simple web in-
terface, which specifies the title and description of the trip,
start/end locations and times, and whether they will use pub-
lic transit or drive between locations in addition to walking.

Requesters can express two kinds of constraints: qualitative
and quantitative. Figure 1 shows an example of a planning
mission that includes both types of constraints. Qualitative
constraints are specified in natural language (e.g., in a para-
graph), and describe the nature of the trip, what the user hopes
to accomplish, who they are traveling with, etc. Quantitative
constraints are specified by creating categories using arbi-
trary natural language phrases (e.g., “cool artsy things,” “by
the ocean”), and assigning preferences and limitations over

those categories. One can specify constraints on the number
of activities in each category (e.g., “I want to have up to two
museum visits”), as well as on the amount of time to spend
on activities in each category (e.g., “I want to spend at least
two hours on cool artsy things”). Such constraints can also
be used to express the preferred combination of activities in
the plan (e.g., “I want to spend half of my time on activities
by the ocean, and the other half on activities in the city”). In
our prototype, the domain-specific language for quantitative
constraints allows for constraints encoded in the form of “I
want {at most, at least, exactly} [number] {activities, hours}
of {cat1, cat2, . . . , catn},” where cati refers to the i-th cate-
gory.

Both qualitative and quantitative constraints contain natural
language, and can express ‘soft’ considerations that the com-
puter cannot tackle alone. In addition to these constraints, the
system maintains a pair of time constraints, which state that
the cumulative duration of the activities in the itinerary should
not be significantly less than, or greater than, the duration of
the trip specified by the user.

Assembling the Itinerary
Once a requester specifies a planning mission, workers can
use Mobi’s planning interface to view the mission by clicking
on the reveal mission details button in the information panel
(see Figure 2, on top). The planning interface consists of two
key components – the brainstream and the itinerary viewer.

Brainstream

The brainstream (see Figure 2, on left) is a collection of ev-
eryone’s ideas. An idea can be an activity (“something to do
or see”) or a note (“a thought about the plan”).

To view ideas in the brainstream, one can either scroll down
the list, click on a hashtag to display ideas belonging to a
particular category, or use the auto-completing search box.
Clicking on an idea reveals additional details via a dialog box,
and presents the option to edit the idea, or in the case of an
activity, an option to add it to or remove it from the current



Figure 3. Adding a new activity to the brainstream via a dialog box

Figure 4. The brainstream displays system-generated todo items, alert-
ing workers about what needs work.

itinerary. A blue badge next to an activity indicates that it is
already in the current itinerary.

To add a new idea (an activity or a note), one can type a title
into the search box and click ‘add’. If similar ideas already
exist, a drop down list will appear, which helps to prevent
duplicates and promote editing. For notes, workers can fill in
a description if desired. For activities, the activity editor (see
Figure 3) asks workers to provide the name of the location,
what to do or see, the activity’s duration, and the (requester-
defined) categories that the activity belongs in. In the same
editor, workers can view a map, which allows them to mark
the location of the point of interest. Workers can decide to
add the activity to both the itinerary and the brainstream, or
only to the brainstream for the time being.

The brainstream allows people to brainstorm together and
build upon each other’s ideas. It keeps around all alternative
activities, and allows workers to quickly access them through
the hashtags and the search box. By adding notes, workers
can identify areas that need work or raise questions about the

plan’s feasibility, that other workers or the requester can help
to address or provide further comments on. The brainstream’s
design draws inspirations from social technologies such as
Twitter and Piazza, which aggregate information into a feed
or stream that one can then easily process.

If the current itinerary does not satisfy a stated quantitative
constraint or is over time or under time, the violated con-
straints are automatically turned into todo items that are dis-
played at the top of the brainstream in a different color, alert-
ing workers to what needs work (e.g., see Figure 4). The
todo items suggest specific actions, e.g., “Add more lunch
activities,” or, “The itinerary is over time. Try reordering
itinerary items. You can also edit or remove items.” Todo
items also provide natural language explanations of how the
current itinerary violates particular constraints, e.g., “You
need exactly one lunch activity but there is currently none in
the itinerary,” or “The itinerary is over time because the trip
must end by 9pm.”

We note that the system is able to check arbitrary quantitative
constraints and generate todo items without understanding the
meaning of the natural language categories; this is because
workers associate activities with the categories they belong
in when they are suggested. As we will show in the next
section, todo items are an important design element that helps
to accelerate the speed with which quantitative constraints are
resolved.

Itinerary Viewer

The itinerary viewer (see Figure 2, on right) consists of an
itinerary and a map. The itinerary displays the activities in
order, alongside the times during which they are scheduled
to take place, with travel times between locations automat-
ically computed and accounted for. It is accompanied by a
map showing the activities’ locations and routes between lo-
cations. The map and itinerary allow crowd workers to see
at a glance whether the plan is coherent, that is, if any activi-
ties are out of place (e.g., lunch happening too early, activities
whose order can be swapped to avoid unnecessary back-and-
forth travel), or if too much or too little time is spent on an
activity. The itinerary doubles as an editor—workers can drag
and drop activities to rearrange their order, and click an activ-
ity to see its details, edit it, or remove it from the itinerary.
On any itinerary change (i.e. via adding, removing, edit-
ing, or reordering of activities), the itinerary, activity times,
map display, trip time, and todo items automatically update,
which provides direct feedback to the workers as they refine
the itinerary.

Mobi promotes collaboration by making the plan always vis-
ible and editable by everyone. This follows the WYSIWIS
(‘What You See Is What I See’) principle [15], which ensures
that all participants have equal access to shared information.
Mobi also supports opportunistic planning, by providing sup-
port for both top-down and bottom-up planning, and a fluid
way to move back and forth between the two. For example,
as workers plan at a detailed level (e.g., suggesting activities
in the brainstream), they may become aware of shortcomings
of the current itinerary, which in turn prompts them to start
considering the itinerary as a whole; likewise, when workers



(a) Mother/Daughter NYC (b) Chicago with young children

(c) Vegas with buddies (d) Family in DC

Figure 5. Experiment: planning missions and the corresponding itineraries generated by the crowd in the todo items condition

refine the itinerary, they may think of new activities to add
to the brainstream, or ways to elaborate on the details of a
particular activity in the current itinerary.

EXPERIMENT: TODO OR NOT TODO
We hypothesize that elements of Mobi’s design, namely todo
items and having a shared interface in which the crowd can
work off the current solution context and existing ideas, pro-
motes the crowd to effectively and collaboratively resolve the
users’ stated constraints so as to produce itineraries that sat-
isfy planning missions. Focusing first on quantitative con-
straints, we conducted an experiment using two versions of
Mobi—one that displays todo items and one that does not—
to evaluate the effect of todo items on how quickly the crowd
can reach feasible solutions that satisfy the stated constraints.

Method
We created custom day-trip planning missions for each of
eight major U.S. cities: New York, Chicago, DC, Las Ve-
gas, Los Angeles, San Francisco, Seattle, and San Diego. We
recruited Mechanical Turk workers in the U.S. who have a
95% or higher approval rating to contribute to the planning
missions, by working on human intelligence tasks (HITs) in
which the Mobi interface was fully embedded. The interface

is nearly identical to that shown in Figure 2, with the addi-
tion of a submit button on the bottom, a ‘HIT instructions’
button replacing the ‘what you can do to help’ button in the
information panel, and the addition of a ‘continue to improve
the itinerary’ todo item that displays only when there are no
other todo items (i.e. all quantitative constraints are satis-
fied). Turkers were asked to make ‘micro-contributions’ as
they plan the trip with other Turkers, and were told that they
can submit a HIT as soon as they have made any contribu-
tion. Turkers were paid 15 cents per HIT, and no verification
was used other than requiring Turkers to have made some edit
(however small) to the brainstream or itinerary before sub-
mitting the task. For half of the cities, the version with todo
items was posted prior to that with no todo items, and the
order of posting was reversed for the other cities. Missions
were posted for up to four days. Other than the display of
todo items, the interface, job description, and instructions are
identical in the two conditions.

Results I: The Generated Itineraries
Figure 5 shows a sample of the planning missions and the cor-
responding itineraries generated by Turkers in the todo con-
dition. All eight itineraries satisfy the stated quantitative con-



NYC Chicago Las Vegas DC
# unique workers 17 15 16 21
# workers with winning ideas 6 5 7 8
# activities in brainstream 35 16 18 28
# activities in itinerary 11 10 11 13
# edits in brainstream 50 54 43 57
# edits in itinerary 193 140 75 154
# notes in brainstream 1 0 9 1
# of HITs 64 31 47 50
Total cost $9.60 $4.65 $7.05 $7.50

Table 1. Summary statistics about the final itineraries of the examples
shown in Figure 5, including contributions by and payments to Turkers.
Winning ideas are activity suggestions that are in the final itinerary.

Figure 6. Number of HITs required to satisfy all quantitative and sys-
tem generated time constraints for each city in the todo and no todo
conditions. For cities marked by an asterisk, itineraries in the no todo
condition still have violated constraints; in such cases we reported the
number of HITs thus far.

straints. From the final itineraries, it appears that Turkers not
only pay attention to the quantitative constraints, but also the
mission description, e.g., by filling the itinerary with govern-
ment/history related activities in DC, and by offering low-cost
options in Vegas.

Table 1 summarizes, for each of the examples shown in Fig-
ure 5, statistics about the final itineraries, different types of
edits Turkers made, and the amount of money paid to work-
ers. We see that the final itineraries contain original ideas
from multiple workers. Specifically, Turkers generated just
over twice as many ideas for activities as are in the final
itineraries, and generally used notes sparingly. When notes
were added, they provided commentary on alternative sug-
gestions (“They are a better place then Pasty’s by far, and
have better service, plus that perfect dessert.”), noted errors
in activities (“Barbary Coast isn’t called ‘Barbary Coast’ any-
more”), presented general advice (“You can buy a MealTicket
which will allow you to eat free at many places.”), or pointed
out problems with the plan (“why are we eating so much din-
ner?”).

Results II: Influence of Todo Items
Results show that when prompting users with todo items,
quantitative constraints are satisfied significantly more
quickly than when todo items are not displayed. We measure
the speed of the process in number of HITs performed. One
spammer in the no-todo condition submitted multiple HITs
for a single piece of work (e.g. adding an activity, filling in
its details, and placing it into the itinerary) as three separate
HITs. For this worker, only the itinerary-changing HITs were
counted, but for all other workers, all HITs were counted.

Figure 7. Cumulative distribution of the violation duration of con-
straints in the todo versus no todo conditions, showing the fraction of
constraints satisfied after at most k HITs since the time it was last vio-
lated.

We make three observations. First, we found a significant
difference (t(7) = 3.65, p = 0.0082) in the number of HITs it
took to satisfy (for the first time) all of the stated quantitative
constraints between the todo condition (µ = 16.5, � = 9.65)
and the no todo condition (µ = 39.5, � = 14.8);1 see Figure 6
for a city-by-city breakdown.

Second, there is also a significant difference (t(7) = 4.247,
p = 0.0038) in the number of HITs it took to satisfy all con-
straints for the first time (this includes system generated time
constraints) between the todo condition (µ = 22.5, � = 8.5)
and the no todo condition (µ = 45.38, � = 13.9).

Finally, as constraints can be violated and satisfied repeat-
edly throughout the planning process, we sought to under-
stand how quickly constraints are satisfied on average. We
introduce the notion of the violation duration of a constraint,
which is the number of HITs it takes for a constraint to be sat-
isfied by the itinerary since it was last violated (which could
be when it is first introduced). The average violation duration
of quantitative constraints is shorter for the todo condition
(µ = 5.64, � = 6.34) compared to the no todo condition
(µ = 10.5, � = 10.97); the result is statistically significant
(t(134) = 3.206, p = 0.0017).

Figure 7 shows the cumulative distribution of the violation
durations of constraints in the todo versus no todo condi-
tions. We observe that for any violation duration (in num-
ber of HITs), a larger fraction of the constraints are satisfied
within that duration in the todo condition than the no todo
condition. We also see that more than half of all violated con-
straints become satisfied after three or fewer HITs in the todo
condition.

Figure 8 shows, for the todo versus no todo conditions, the
rate at which each constraint gets satisfied as workers con-
tribute to the planning effort for the Seattle and Chicago plan-
ning missions. We observe that constraints are satisfied much
more quickly in the todo condition. The Chicago case is par-
ticularly interesting; whereas in the todo condition a worker
violated a previously satisfied constraint while editing and
proceeded to make successive edits that led to satisfying all
of the constraints, in the no todo condition a satisfied con-
straint was violated and then left unaddressed for a signifi-
cant amount of time. This example illustrates the power of
immediate feedback—when an edit to the itinerary violates
1In some cases for the no todo condition, no itinerary satisfied all the
stated requirements in the course of the experiment. In such cases
the number of HITs completed thus far was used as a lower bound
for comparison.



0"

1"

2"

3"

4"

5"

6"

7"

8"

0" 5" 10" 15" 20"

#"
of
"u
ns
a)

sfi
ed

"c
on

st
ra
in
ts
"

#"of"HITs"

(a) Seattle with todo items

0"

1"

2"

3"

4"

5"

6"

7"

8"

0" 5" 10" 15" 20"

#"
of
"u
ns
a)

sfi
ed

"c
on

st
ra
in
ts
"

#"of"HITs"

(b) Seattle with no todo items

0"

1"

2"

3"

4"

5"

6"

7"

8"

0" 5" 10" 15" 20" 25" 30"

#"
of
"u
ns
a)

sfi
ed

"c
on

st
ra
in
ts
"

#"of"HITs"

(c) Chicago with todo items

0"

1"

2"

3"

4"

5"

6"

7"

8"

0" 5" 10" 15" 20" 25" 30" 35" 40" 45" 50"

#"
of
"u
ns
a)

sfi
ed

"c
on

st
ra
in
ts
"

#"of"HITs"

(d) Chicago with no todo items

Figure 8. The unsatisfied constraints during the planning process for the Seattle and Chicago missions. The height of each bar indicates the number of
constraints unsatisfied after k HITs. Each colored segment represents a particular quantitative constraint, and its height indicates the extent to which
it is violated. The black segment represents the percent by which the itinerary is over time or under time (when it is greater or less than 5%).

some constraints, the automatically generated todo items are
able to not only alert workers as to what needs fixing, but
also make them aware that their edits have direct effects on
the constraints associated with the planning mission.

Results III: Editing Patterns
Having shown that todo items play an important role in fo-
cusing the crowd’s effort towards satisfying the quantitative
constraints, we turn to investigate the crowd’s work process
while using Mobi in the todo condition. In particular, we look
for evidence of collaborative behavior from the crowd, and at
the way that they plan using the current context of the plan.

We focus first on the process of generating ideas for activities.
We observe that roughly half the edits to the brainstream con-
tain new suggestions (52%) while the other half (48%) are ed-
its of existing ideas in the itinerary. Of the edits, 72% are ed-
its on ideas that originated from someone else (i.e., other than
the person editing), which suggests that workers are working
off others’ contributions as they refine ideas and the itinerary.
When editing an activity, we see that edits are predominantly
on an activity’s duration (80%), but there are also edits to
change title/descriptions (7%) and to correct an item’s loca-
tion coordinates (12%). Although duration edits are often in
the context of resolving some constraints, edits to the title,
description, and location are particularly encouraging to see
as they suggest that the interface is providing (via the brain-
stream, map, and itinerary) means for users to discover and
improve on existing ideas.

Turning to the patterns of itinerary edits, we observe that
most of the contributions come from adding (31%) and re-
ordering activities (32%), but that workers also edit existing
ideas (22%) and remove activities (14%). This is encour-
aging to see because workers are using the different actions

available to them to plan as they see fit as they improve the
itinerary. When tasks are left to run after the quantitative con-
straints are all satisfied, we observe that itineraries continue
to evolve; workers replace activities in the itinerary with other
activities, reorder the itinerary, edit existing items, and so on.
While constraints may be violated during such edits, workers
were reminded of such violations by the todo items and vio-
lated constraints were quickly satisfied again (e.g., see Figure
8(c)). This suggests that new ideas can continue to be gener-
ated and incorporated into the itinerary; in fact, workers are
encouraged to do both because they are paid for such contri-
butions and because we display a todo item that asks workers
to continue to improve the itinerary whenever all quantitative
constraints are met.

Throughout the experiment, we saw very few Turkers who
blatantly tried to game the system. The kinds of gaming be-
havior we did observe generally fell into two categories. In
one, a Turker under-specifies an activity, either by creating
an activity without filling in its description and location, or
by adding a note containing a suggestion for an activity in-
stead of just adding the suggested activity. In the other, a
Turker would fully specify an activity, but use two or even
three HITs to do so, by spending a HIT on creating the ac-
tivity, another to edit its details, and another to add it to the
itinerary – when all this can be accomplished with a single
‘add activity’ action.

While it is certainly useful to consider refinements that would
curb such behaviors (e.g., by requiring activities to contain
descriptions, by not allowing workers to submit HITs in
which they have only edited their own ideas, etc.), we note
that such gaming behaviors from a small set of Turkers did
not seem to have a negative influence on the planning pro-
cesses nor the resulting solutions. In particular, we saw that



(a) Subject 1: Las Vegas (b) Subject 2: Orlando

Figure 9. User study: planning missions and corresponding itineraries generated by the crowd

poorly formed ideas were simply ignored, removed from the
itinerary, or edited by another worker who discovered them
via the auto-complete search box in the brainstream, which
occurred as a natural part of the iterative process through
which workers improved the itinerary.

END-TO-END USER STUDY
Having seen that workers can resolve quantitative constraints
effectively using Mobi, we conducted a user study through
which we seek to evaluate how well the generated itineraries
satisfy not only quantitative constraints, but also the stated
qualitative constraints, from the perspective of requesters.

Method
We recruited 11 subjects to participate in the study via the use
of several university mailing lists. We specified requirements
that participants be actually planning a forthcoming trip to a
major U.S. city. Recruited subjects are a mix of undergrads,
graduate students, and research scientists. We report on the
responses of 10 of the users, as one of the users specified a
trip destination that is not a major U.S. city. Subjects were
instructed to describe their planning mission, which includes
qualitative and quantitative preferences and constraints. Par-
ticipants were given unlimited access to Mobi for over a
week, during which they were free to modify their planning
mission or to participate in the planning process. Missions
were crowdsourced on Mechanical Turk as was done in the
todo versus no todo experiment. At the end of the study, sub-
jects were given a questionnaire, which asked them to evalu-
ate the final itinerary and to describe their experiences using
Mobi. Subjects were each paid $30 for their participation.

The trip destinations specified by the users include Boston,
New York City, San Francisco, Las Vegas, Orlando, and
Washington DC. The planning missions vary in length and
specificity. Figure 9 provides two examples of user missions
and the generated itineraries.

Figure 10. Histogram of activity ratings

Results
To see how well the generated itineraries satisfy the end
users’ requirements, we consider three measures of the qual-
ity of an itinerary, namely the extent to which it (1) contains
activities that the requester likes, (2) satisfies the qualitative
and quantitative constraints specified in the planning mission,
and (3) serves its purpose as a plan that is feasible, useful, and
executable in real life.

1. Do itineraries contain activities that the requesters like?

Users were shown each of the itinerary activities (title, de-
scription, start time, end time, duration) and asked to rate how
much they think they would enjoy each activity on a 5-point
scale (1=“hate it”, 5=“love it”).

Figure 10 shows a histogram of the activity ratings across all
10 participants. The mean rating was 4.03 (� = 0.44). Users
also mentioned that the activities are diverse, interesting, and
often unknown to them prior to using Mobi.

2. Do itineraries satisfy the qualitative and quantitative con-
straints specified in the planning mission?

All of the users answered that their itinerary fulfilled most or
all of the requirements they had specified. Some users noted
specific activities that they do not like (e.g., “I just happen to
be afraid of bungee jumping because it seems so unsafe, but



a similar activity would be fun,” “I am under age so the wine
thing would not be great for me but everything else sounds
great.”) or complained about too many activities (e.g., “There
was far far far too much packed into a single day, but the ideas
were all totally interesting.”) or visiting too many parts of a
city in one day (e.g., “For the most part, it was a good mix
of things to do. I was not expecting to travel so much up-
town/downtown in one day though.”) These problems can be
partially explained by the fact that many constraints (e.g., the
notion that an itinerary shouldn’t be too packed) are assumed
or missed and therefore not explicitly stated by the users.
One potential solution is to have the requesters evaluate the
itineraries as they are being created and add the missing con-
straints to the planning mission. In fact, as a preliminary test,
we took two of the users’ feedback and entered them as todo
items (i.e., “Let’s just stay midtown and remove downtown
activities,” “The harbor island suggestions are great but one
island would be enough. Please adjust time durations accord-
ingly so the day is not so packed.”). After resuming the task,
we observe that after just a few HITs workers have already
addressed the issue by removing offending activities, reorder-
ing activities (so that meals occur at reasonably hours), and
adding additional activities (replacing a concert downtown
with a Broadway show in midtown).

3. Are the itineraries feasible, useful, and executable in real-
life settings?

We asked users if they would or did use the itinerary in real-
life. All users expressed that they would use the itinerary
as is, some version of the itinerary, or selective ideas in the
itinerary. When asked “If Mobi were made available for gen-
eral use, how likely would you want to use such a tool again
for recruiting the crowd to help you plan a trip?”, 7 out of 10
users answered likely or very likely, 2 answered neutral and
only 1 answered unlikely, showing the usefulness of Mobi in
practice.

Three users actually followed the itinerary or used the ideas
in the itinerary in their real-life trips. One subject reported
that “having other people involved in the idea-creation pro-
cess was extremely helpful. It sparked all sorts of ideas that
I kept in the back of my head throughout the weekend.” An-
other subject remarked that his “trip was mostly in the plan,
but all restaurant plans changed due to necessity during the
trip.”

We found a dichotomy of users: those who are interested in
obtaining a fully-specified itinerary and those who are inter-
ested in a loose itinerary that contains an unordered set of
suggested activities that leave room for exploration. An in-
teresting solution is to allow requesters to choose between a
fully specified or loose itinerary, which in turn translate into
constraints that specify the maximum number of activities in
the itinerary, the amount of buffer time between activities, and
whether activities need to be ordered.

One of the most frequently mentioned benefits of Mobi is
that both the idea generation and the planning are fully auto-
mated, thereby “integrating all the factors one would consider
in planning an itinerary,” yet making “the time spent creat-

ing the plan minimal.” Most users (7 out of 10) said that they
are comfortable with an anonymous crowd planning their trip.
Furthermore, results show that requesters mostly left the plan-
ning up to the crowd. In particular, 3 out of 10 users said that
they never or rarely checked on the progress of the itinerary, 5
did so occasionally, and only 2 frequently. Likewise, 7 out of
10 users said that they never went back to modify the mission
details or add notes. As one user puts this succinctly: “the
process seemed to work smoothly without my intervention.”

DISCUSSION
Having demonstrated the effectiveness of Mobi for helping
the crowd to resolve qualitative and quantitative constraints in
the itinerary planning setting, we now revisit the elements of
Mobi’s design and discuss how these elements may in general
inform the design of systems that facilitate a crowd to tackle
problems involving global constraints.

Keeping the crowd, the solution, and the context together

Compared to the design of most other crowdsourcing systems
for tackling complex tasks, Mobi is distinguished in its use of
a single structured interface through which the crowd is ex-
posed to the current solution and the global problem-solving
context. This unified view provides a shared context that al-
lows contributors to coordinate and communicate more effec-
tively with one another than approaches where participants
are forced to work on different subtasks in separate contexts.

Interactions are less controlled, but still structured

Mobi allows workers to choose how they want to contribute
to the task. In our studies, we found that workers generate
a diverse set of ideas, and make various types of contribu-
tions while problem solving. This freedom is particularly im-
portant for resolving global constraints as we do not know a
priori the specific contributions that are needed. Rather, con-
tributions are context dependent. While interactions are less
controlled this way, note that the interaction is still highly
structured; the crowd selects from a well-specified set of ac-
tions, todo items guide the crowd towards useful actions, and
real-time feedback is provided on the effects of actions (e.g.,
via map, trip times, and todo items).

A language for human-computer communication

In the background, Mobi’s automation computes routes and
times, checks for violated constraints, and generates todo
items. Mobi understands, for example, when all of the quan-
titative constraints are satisfied; this ability enables Mobi to
take such actions as prompting the crowd for future revisions
and asking the crowd or requester to check for potential prob-
lems. Mobi can do these things without knowing what the
constraints mean, because the inputs that it seeks from the
crowd include the categories of suggested activities. This in-
formation is sufficient for the system to check for violated
constraints, and therefore assist in the planning process.

A fluid way to refine goals

With complex problems, requirements can change over time
as ideas and partial solutions stream in. In Mobi, a requester
can add or revise requirements, write notes, or even directly
alter the plan throughout the planning process. The crowd can
react to such changes just as they react to the current solution



at any other point in the planning process. The iterative nature
of the task and the ease with which workers can grasp the
current solution and access alternative suggestions make it
easy for the crowd to see and respond to such refinements.

CONCLUSION
To date, many human computation systems have relied on
the assumption that problems can be solved in an algorith-
mic manner, using explicit procedures that outline the oper-
ations that need to be done and how they are ordered. We
argue for an alternative crowdware paradigm, where workers
contribute to solving complex tasks in a less controlled envi-
ronment, allowing them to view and build upon each other’s
ideas and to contribute as they wish, while being steered to-
wards a solution by system-generated advice and alerts.

Using itinerary planning as a case study, we introduce a proto-
type named Mobi, which draws on groupware ideas and uses
explicit processes (e.g., automatic generation of todo items)
to generate itineraries that satisfy complex, interdependent
constraints. Our results show that constraints are resolved
efficiently using this design, and that end users find that the
generated itineraries satisfy their stated quantitative and qual-
itative constraints. The design principles explored in research
on Mobi bring into focus several research opportunities, in-
cluding the formulation of novel combinations of crowdware
and workflow approaches to enhance the ability of partici-
pants to effectively contribute to solving complex problems
that are hard to decompose.

On potential extensions of Mobi, we are interested in study-
ing ways to handle the implied constraints that are assumed
or missed, such as the common sense knowledge that people
may desire a bathroom break every few hours. The challenge
is to make implied constraints visible so they can be tack-
led like other constraints; possible approaches include having
the crowd identify them, using automated procedures to de-
tect and learn about such constraints, and asking requesters to
provide feedback. A related direction is to encapsulate qual-
itative constraints in todo items, which would allow workers
to see everything that needs work in one place.

While we are using Mechanical Turk as an experimentation
platform, we are interested in exploring Mobi as a social sys-
tem, with friends and community members coming to help.
This introduces opportunities for identifying individuals who
can best contribute to (particular aspects of) a mission and
routing tasks appropriately. Finally, we envision rich opportu-
nities to integrate different types of automation into Mobi—to
detect failures, handle uncertainties, incorporate richer forms
of user preferences, and combine automated and human plan-
ners in a synergistic way.
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