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Abstract

Fibrin is a biopolymer that assembles into a network during blood coagulation to

become the structural scaffold of a blood clot. The precise mechanics of this network

are crucial for a blood clot to properly stem the flow of blood at the site of vascular

injury while still remaining pliable enough to avoid dislocation. A hallmark of fibrin’s

mechanical response is strain-stiffening: at small strains, its response is low and linear;

while at high strains, its stiffness increases non-linearly with increasing strain. The

physical origins of strain-stiffening have been studied for other biopolymer systems

but have remained elusive for biopolymer networks composed of stiff filaments, such

as fibrin. To understand the origins of this intriguing behavior, we directly observe

and quantify the motion of all of the fibers in the fibrin networks as they undergo

shear in 3D using confocal microscopy. We show that the strain-stiffening response

of a clot is a result of the full network deformation rather than an intrinsic strain-

stiffening response of the individual fibers. We observe a distinct transition from

a linear, low-strain regime, where all fibers avoid any internal stretching, to a non-

linear, high-strain regime, where an increasing number of fibers become stretched.

This transition is characterized by a high degree of non-affine motion. Moreover, we

are able to precisely calculate the non-linear stress-strain response of the network by

using the strains on each fiber measured directly with confocal microscopy and by

assuming the fibers behave like linearly elastic beams. This result confirms that it

is the network deformation that causes the strain-stiffening behavior of fibrin clots.
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These data are consistent with predictions for low-connectivity networks with soft,

bending, or floppy modes. Moreover, we show that the addition of small contractile

cells, platelets, increases the low-strain stiffness of the network while the high-strain

stiffness is independent of the presence of the platelets; this is also consistent with

expectations for small contractile elements in a network with low connectivity. Our

results elucidate the origins of strain-stiffening in fibrin networks as well as the mech-

anism underlying platelet-induced clot stiffening.
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Chapter 1

Introduction to this thesis

The mechanical properties of fibrin networks are of clear importance: Fibrin is

the structural protein that comprises the scaffold of blood clots, which stop bleeding

at a site of vascular injury; however, blood clots are also implicated in the leading

causes of deaths worldwide due to cardiovascular diseases, such as heart attack and

stroke.

In the first two parts of my thesis, I present my work elucidating the complex

mechanical properties of fibrin networks. Fibrin assembles into a fibrillar meshwork

that is the major structural constituent of blood clots, and its mechanical properties

are essential for its function in the body. Like many other biopolymer networks, fibrin

networks exhibit the intriguing mechanical feature of strain-stiffening: As the network

is sheared to small strains, its response is low and linear while at higher strains,

its stiffness increases non-linearly with increasing strain. However, by contrast to

the well understood intracellular biopolymers, fibrin networks are composed of stiff

biopolymer fibers whose nonlinear mechanics are governed by different underlying
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physical principles that have so far remained elusive (Weisel, 2008).

Here, I develop an experimental approach to directly observe the physical mecha-

nisms underlying the feature of strain-stiffening (for the first time in any biopolymer

network). I quantify the microscopic deformations of fibrin networks as they are be-

ing sheared using confocal microscopy and subsequent image processing. I discuss

these experimental and analytical tools in the first part of my thesis on image pro-

cessing and in the material and methods section. In the second part of my thesis,

I use these tools to quantify the microscopic behavior of the networks: Specifically,

I measure the non-affinity of the motion, the strain across the individual fibers, the

role of fiber alignment, and then I estimate the shear stress one would expect if the

fibers were to behave like linearly elastic beams. From these data, I develop a physical

understanding that elucidates the origin of fibrin network mechanics.

In the third part of my thesis, I utilize this novel understanding of fibrin mechanics

to investigate the mechanical alterations induced by platelets. Platelets are small cells

that circulate in the blood stream. During blood coagulation, these cells adhere to

and contract a fibrin network. It is known that they alter the mechanics of fibrin clots,

and their mechanical role is thought to be essential for blood coagulation. However,

the exact mechanism through which these alterations occur has remained elusive.

Utilizing our knowledge of fibrin mechanics in the absence of platelets, we can now

start to investigate and explain many aspects of this interesting problem.
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Chapter 2

Fibrin

Fibrin is a biopolymer that polymerizes at the site of vascular injury in the body.

It forms an interconnected network of fibers that serves as the major structural com-

ponent of blood clots. The function of a blood clot is in part mechanical: It must

stem the flow of blood to stop bleeding. For this reason, the structure and mechanics

of fibrin clots have been studied extensively for decades by scientists and clinicians

(Weisel, 2004). Abnormal mechanics or structure of fibrin networks have been corre-

lated with disease states, and the mechanical perturbation of fibrin clots is of great

interest to treating thrombus (Weisel, 2004). Moreover, the exact microscopic interac-

tions between the monomers that comprise the fibrin fibers have also been extensively

studied.

In this chapter, I review the history of fibrin, its structure, its basic mechanical

properties, and the current models that describe its mechanics.
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2.1 Formation and structure of fibrin

Fibrinogen, the pre-cursor to the fibrin monomer, circulates in the blood at a

concentration around 2.5mg/ml in healthy individuals (Weisel, 2004). In the body,

the enzyme thrombin is activated as part of the coagulation cascade. This enzyme, a

serine protease, cleaves two fibrinopeptides from fibrinogen converting it from fibrino-

gen to fibrin monomer. When these two areas are cleaved, the fibrin monomers can

associate with one another and start to polymerize. They initially form protofibrils

that lengthen, associate to form the thick fibrin bundles, and branch to create the

final network. During the polymerization process, thrombin also converts the transg-

lutaminase, factor XIII (FXIII), to its active form, factor XIIIa. After the fibrin fibers

have assembled, factor XIIIa catalyzes the formation of covalent bonds between fibrin

monomers. In the lab, we mimic the process of blood coagulation by directly adding

purified, activated human thrombin to a fibrinogen solution in the presence of FXIII

(see the material and methods section for the exact protocol). The final fibrin struc-

ture exhibits a branched and interconnected structure of relatively straight polymer

segments. Furthermore, by adding a small fraction of fluorescently labeled fibrinogen,

we can visualize the final structure of the fibrin network in a confocal microscope (see

fig. 2.1).
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(a) 0.2 mg/ml sample

(b) 1.6 mg/ml sample

Figure 2.1: Maximum projections of networks at two different concentrations

2.2 Mechanical properties of fibrin gels

2.2.1 Basic mechanical properties of fibrin networks

To probe the mechanical properties of fibrin, we polymerize the network between

two plates in a rheometer. We monitor the mechanical response of the network as it

polymerizes by imposing a very small oscillatory strain and measuring the resultant

stress. The amplitude and phase lag between the imposed strain and resultant stress

can be used to find the storage modulus, G′, as well as the loss modulus, G”. The

first value characterizes the elastic portion of the response while the second value

characterizes the dissipative or loss portion of the response. Moreover, by examining

the ratio between these two, we can establish whether the sample is highly elastic,
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highly viscous, or a combination of both.

As the network polymerizes, we monitor both G′ and G”. At small times, G′ and

G” are both low and roughly equal. At around 5− 10 minutes, both values begin to

increase with G′ increasing more rapidly than G”. At long times, these values level

off to constant values. This indicates that the network polymerization is complete.

The long term elastic modulus corresponds to the low strain linear modulus of the

material, G0. This represents the stiffness of the gel when it is sheared to small

strains. In fibrin samples, once polymerization is complete, G′ is much greater than

G” indicating that the sample is very elastic. In highly elastic samples such as this

one, the stress required to deform the network, σ, is directly proportional to the

degree to which the network is deformed, γ.

σ = G0γ (2.1)

For many samples, this value is considered the stiffness of the network. In many

previous studies of fibrin mechanics and most of the characterizations done by physi-

cians, this is the primary value they measure. However, in the studies we present in

this thesis, we are also concerned with the higher strain response of the network. To

measure this, we impose a steadily increasing strain at fixed strain rate while mea-

suring the resultant stress.1 The network exhibits strain-stiffening: At low strains,

the response is low and linear. As the strain on the network is increased, the sample

shows an increased stress that increases with increasing strain. We call the transition

1Most materials show a dependence on the rate at which they are probed. Fibrin that
has been crosslinked by FXIII (such the ones we study in this thesis) does not show a rate
dependence.
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point between these two regimes the characteristic strain, γc (see fig 2.2)2. The ex-

act value of γc varies with fibrin concentration, with higher concentration networks

showing an earlier γc.
3
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Figure 2.2: Stress-strain response of two fibrin networks at different concentrations

The slope of this curve at low strains corresponds to the low-strain stiffness, G0 we

measured during network polymerization. We can similarly determine the stiffness of

the gel at all strains by measuring the differential modulus, K ′(γ). This is just the

derivative of the stress-strain curve at all strain points, K ′ = δσ
δγ

. We calculate this

for the stress strain curve we obtained for fig. 2.2. At low stress, the sample shows a

constant response corresponding to the initial linear modulus, G0 of the sample (see

fig. 2.3 regime 1). As the stress increases, the sample stiffens non-linearly until it

reaches a plateau at very high stresses(see fig. 2.3 regime 2− 3). We denote this high

2There is no strict rule about how γc should be defined. To avoid difficulties with the
exact definition of γc, in this thesis I try to compare any changes I measure to the entire
trace of the stress-strain response of the network.

3See the materials and methods section to find the exact strains, strain rates and protocol
used.
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strain modulus with, K ′high. For higher concentration samples, there may be a final

regime, at very high stress, where the network, again, shows a stiffening response

(see fig. 2.3 regime 4). The differential stiffness K ′ is useful because it more clearly

10 −2 10 0 10 2 10 4
10 0

10 1

10 2

10 3

10 4

σ (Pa)

K’

0.2mg/ml
0.8mg/ml
1.6mg/ml

G0

K’high strain

1

2

3

4

Figure 2.3: Differential modulus of three different concentrations of fibrin networks

highlights how the network response changes. For instance, from this measure, it

becomes clear that the stress response of the network does not stay highly non-linear

in strain but actually slows down and almost becomes linear again at high stress

(resulting in the almost constant high strain modulus, K ′high).
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2.3 Review of individual fiber mechanics

I address the mechanics of the individual fibers in chapter 10 and section 10.2.

In short, studies have measured the force-extension curve of individual fibers to be

linear up to strains beyond 1 with Young’s moduli around ∼ 10MPa using atomic

force microscopy. At strains beyond 1 the individual fibers exhibit strain-stiffening.

2.4 Current models of fibrin mechanics

I will review the most prominent models of fibrin mechanics that currently exist.

Most of these models assume that an individual fiber or unit cell shows a strain-

stiffening response, and the bulk mechanical response is a direct extension of this

behavior.

Lastly, I describe a model which has been prominently applied to fibrin, but is

not so much a model as work based on a simulation.

2.4.1 Strain-stiffening arises from an attenuation of thermal

fluctuations

A prominent model in biopolymer rheology considers networks of semi-flexible

fibers that undergo significant thermal flucuations (MacKintosh et al., 1995). When

these fibers are stretched, this model predicts that their thermal fluctuations are at-

tenuated, and the force required to stretch them increases. The network is modelled

as deforming affinely so the bulk network properties become an extension of the indi-

vidual fiber behavior and also exhibit a stiffness that increases with elongation. This
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model was first applied to fibrin networks in 2005 by Storm et al. (Storm et al.,

2005). More recently, this model was extended by Piechocka et al. to include the

more complex structure of an individual fiber (Piechocka et al., 2010). In this study,

the authors model individual fibrin fibers as loose bundles of thermally fluctuating

protofibrils. Since the protofibrils are loosely coupled, the resulting fibrin fibers have

a low persistence length and, therefore, exhibit significant thermal fluctuations. Like

the original model, this model predicts that the fibers strain-stiffen owing to an at-

tenuation of their thermal fluctuations as they are stretched. By assuming that the

network deforms affinely, the authors of this study attribute the strain-stiffening of

the bulk network to the strain-stiffening of the individual fibers (Piechocka et al.,

2010).

2.4.2 Strain-stiffening arises from forced-unfolding and ex-

posure of hydrophobic domains in the fibrin monomer

Brown et al. stretch a high-concentration fibrin network and measure its me-

chanical response. They discovered that as such a network is stretched, there is a

large degree of associated water expulsion. Brown et al. proposed that as the in-

dividual fibrin fibers that comprise the network become aligned and stretched, their

constituent monomers are forced to unfold and expose hydrophobic regions. These

hydrophobic regions then associate leading to the large degree of water expulsion.

They modeled the network-level mechanics as a direct extension of the mechanics

of an individual unit cell. Their model attributes the mechanics of this unit cell

and, thereby, the resulting bulk network to this process of forced unfolding of the
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monomers and corresponding water expulsion (Brown et al., 2009).

2.4.3 High-strain network mechanics arise from the worm-

like chain extension of the fibrin backbone

In this study, Hudson et al suspended small quasi-2D fibrin networks with ∼ 10s

of fibers over small transparent grooves on glass substrates. They pulled on one of the

fibers to deform the entire network while simultaneously measuring the force using

atomic force microscopy (AFM) and observing the deformation using microscopy.

They were primarily concerned with the high-strain behavior of the network. They

measured the strain in all of the fibers in the network. They found that to match the

high strain behavior of the network, a worm-like chain model of an individual fiber, in

which an individual fiber behaves non-linearly, was necessary (Hudson et al., 2010).

2.4.4 Strain-stiffening arises from a bending to stretching

transition

In this study, Onck et al. simulated 2D networks of athermal fibers that are

sheared. They found that at low strains, the network deforms using largely bending

dominated modes while at high strains, there is stretching dominated behavior. This

model predicts that the excess length in the fibers will set the exact point of strain-

stiffening. Moreover, fiber alignment is considered very important to this transition

(Onck et al., 2005; Kang et al., 2009). In an experimental study, the behavior of

fibrin was compared to the behavior of the simulated network of Onck et al. They

found that the degree of fiber alignment was not significant and did not correspond
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to the expected stiffening of the gels (Kang et al., 2009). However, they were unable

to either confirm or rule out many predictions made from these simulations.
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Chapter 3

Platelets

Platelets are small, disc shaped anuclear cells that circulate in the blood stream

(White, 2007). During the blood coagulation cascade, they become activated. When

this occurs, they undergo a significant shape change and become spiky in appearance

(White, 2007). Once activated, these cells will adhere to a fibrin network and contract

the structure of the gel as well as nucleate more fiber growth at their surface (Hantgan

et al., 1985). Although many of the biochemical interactions that dictate blood

coagulation have been elucidated, in the body this is very complex, and many dynamic

processes are occurring simultaneously: the fibrin network is polymerizing, platelets

are becoming activated and contracting the fibrin gel, other proteins are starting to

dissolve the fibrin structure, and the blood and blood vessel walls are undergoing

continuous pulsatile deformations. Consequently, previous work to understand this

dynamic process has investigated purified platelets, fibrin and other proteins and cells

in-vitro. From these studies, it is known that platelets significantly alter the mechanics

of fibrin gels (both in the presence and absence of other proteins or cells present in
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a blood clot). These changes can lead to stiffness changes as great as ten-fold (Lam

et al., 2010). By comparing the platelet contraction and stiffness change in diseased

versus healthy patients, the mechanical alterations of a blood clot by platelets is

thought to be one of the most crucial functions of platelets physiologically. However,

the exact physical mechanism underlying these alterations has remained unknown.

Elucidating such a mechanism will deepen our understanding of blood clot mechanics

as well as impact our view of many cardiovascular diseases.

3.1 Basic mechanical properties of platelet and fib-

rin composite networks

When platelets are added to a fibrin network, they not only stiffen the network,

they also cause a large degree of contraction (a process termed ‘clot retraction’). There

exists a large range of tests and tools that are used to characterize this process; these

include machines that work analogously to traditional rheometers, tools that examine

the size of clots over time and assays for the time it takes a wound to stop bleeding

(Carr, 2003). These bulk approaches have measured clot retraction times, rates and

forces (Lam et al., 2010; Carr, 2003; Schwarz Henriques et al., 2012).

In addition to bulk measurements, several recent studies have started to investi-

gate the force an individual platelet can exert. These studies have reported forces

that range from ∼ 1nN to 10s of nN using traction force microscopy, atomic force

microscopy or the deflection of micropillars (Schwarz Henriques et al., 2012; Lam

et al., 2010).
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There have been a variety of models developed to explain platelet-induced retrac-

tion of fibrin clots over the past decades. These offer a variety of possible mechanisms

through which platelets can stiffen fibrin gels, speculating that it may arise from their

stiff pseudopodia (Cohen, 1979), a pulling out of slack in the individual fibers (Shah

and Janmey, 1997) or as an effect of platelets on fiber polymerization (Chao et al.,

1970). The more recent, prevailing view is that platelets reinforce fibrin structure

and thus increase its structural integrity (Carr, 2003).1 Very recently, another study

has expanded on this idea (Lam et al., 2010). In this study, Lam et al. measured the

modulus of individual platelets using AFM. They found that the modulus of these

platelets is around around 10kPa. This is substantially greater than the shear mod-

ulus of a fibrin network which shows stiffnesses between 1 − 100Pa. The authors of

this study hypothesized that the platelets act as stiff inclusions in the soft matrix of

a fibrin gel thereby stiffening the composite gel (Lam et al., 2010).

1As far as I can tell, from both literature review and discussions with other people,
this idea is based more on an intuitive understanding of platelet-induced alterations rather
than a physical model. Most people intuit that if you stress or strain something it will
become stiffer. This is actually not the case for linear materials. (Their stiffness will
remain unchanged if pre-strained.)
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Part II

Image Processing



Chapter 4

Tracking the structure of a fibrous

network

Fibrin forms a branched and interconnected network of fibers (see fig. 4.1). To

study the mechanics of these networks, we want to track and quantify the types

of network deformations that occur as the network is sheared. We use a confocal

microscope to image the full three-dimensional structure of the network at increasing

strain points (see fig. 4.1). In this chapter, we describe how we identify the structure

of the fibrin network and track its deformation as the network undergoes shear. We

break up this problem into two parts. First, we find the skeleton or midline through

all the fibers in the initial unsheared stack. This results in the X,Y,Z positions of

all the fibers and their connectivity. Second, we note that the connectivity of the

network is fixed (the fibers at a branch point do not de-associate and re-associate).

So we just track how the initial fibrin structure deforms through the entire shear

experiment (as opposed to re-identifying the structure in each shear step).
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(a) unsheared

(b) sheared to high strain

Figure 4.1: A Y-Z projection of a typical fibrin network both sheared and unsheared.

4.1 Find 3D skeleton of the network structure

We would like to identify the positions of all the fibers in the network. In general,

the fibers do not appear as one pixel thick structures; rather, they are structures with

some degree of thickness. We therefore need a method that can, from this data, find
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(a) gray scale image (b) the thresholded image

(c) 2D skeleton (d) skeleton overlaid on original image

Figure 4.2: The original 2D image is thresholded to create a binarized image. The skeleton

represents the midline through the fibers in the image.

the ’‘midline’or ‘skeleton’through the structure. This may seem like a trivial problem

(and in 2D it is significantly easier), but it is actually rather tricky. The current

method I use is a homotopic thinning method. I have also designed a homebuilt
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method which can only be used for fibrous networks. This may be faster and more

accurate; however, since the commercial solution is not prohibitively slow and has

been de-bugged by professionals, I currently use that for the skeletonization of these

networks.

The homotopic thinning algorithm starts with an image that has been thresholded

so that the fibers have a value of 1 and the background has a value of 0 (see fig. 4.2

for a 2D illustration of this process and fig. 4.3 for a 3D illustration of this process).

From this image, the midline of the fibers is found. For the homotopic thinning

algorithm, the thresholded image is eroded from the border of the white region until

just a one-pixel representation remains. During the erosion, the algorithm checks

that the connectivity of the network has not been changed during each iteration of

erosion. This is basically a brute-force method; however, with current computers and

processers this can be run in a reasonable period of time.

The skeleton of the network is a representation of the X, Y, Z positions of the

network structure. After the network structure has been found, branch points are

defined as the intersections between three or more fibers. Furthermore, we define a

fiber as the line segment connecting two branch points; therefore, we do not account

for fibers that appear to persist through a branch point and treat such fibers as two

fibers.

4.2 Track structure through several shearpoints

In this section, I outline how to track the structure of a deforming network. I

assume that the basic structure and connectedness of the network from the initial
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(a) rendered gray scale images (b) a rendered version of the binarized image

(c) skeleton of the resulting 3D structure (d) skeleton with the branch points identified

in yellow

Figure 4.3: Some rendered versions of the skeletonization process on a small stack in 3D.

image stack are known. One method of tracking the structure would be to find the

skeleton at every shear point and attempt to match the two structures before and

after being deformed. However, we know the network does not rupture or associate

as it is sheared. For that reason, the number of nodes and how they are connected

should remain fixed; however, what will change is the exact positions of the fibers

and the branchpoints. Consequently, we utilize this fact to track how the structure
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Figure 4.4: Since an individual fiber appears very uniform along its length, a cross-

correlation algorithm easily mis-identifies the exact location of its small seg-

ments. In this image, the original network is shown in light blue and the sheared

network is shown in dark blue. The tracked positions are shown at the of the

red arrows. Some of the arrows point to the wrong spot along the length of the

sheared fiber.

deforms without re-skeletonizing the network at every shear position. We use a cross-

correlation method to take features in the initial stack and find the corresponding

point in each subsequent, sheared image stack. Instead of tracking the fibers in the

network, we track the individual branch points. Every fiber segment looks very similar

to every other fiber segment. Therefore, tracking these segments easily leads to fiber

segments being falsely identified (see fig. 4.4. By contrast, the branch points where

many fibers join provide excellent features that are easy to follow. Therefore, we use

a box centered at each branch point position in the original image stack of intensity

values and cross-correlate it with its position in each subsequent stack to find the

total motion of the branch point as the network is deformed. We repeat this method

for all branch points and all shear positions in the network to track the deformation
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of the entire structure.

4.2.1 Cross-correlation

Cross-correlation is a method to find the translational motion between a template

box, T , and a target image box, I. The template box represents the feature that we

are trying to track while the image box represents the region where we expect to find

the feature. In our case, the template box, T , is a box centered at a branch point in

the initial stack of intensity values while the target image box, I is the region in the

sheared stack (see fig. 4.5)1.

(a) template, T in original stack (b) target region, I in sheared

stack

Figure 4.5: The template image is a small image taken within a larger image in the initial

stack. The target image is a larger box size in the subsequent sheared stack.

An image is basically an array of gray-scale values. Keeping this in mind, the

basic concept behind a cross-correlation is simple. You translate the image, T , within

1Template matching using a cross-correlation is a pretty standard image processing tech-
nique. For a more complete review see (Gonzalez et al., 2004)
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the larger image, I. For each shifted position, you multiply the value of each point in

T with its underlying point in I. Then you sum up these products to find a total for

that shifted position. If the original template T is very similar to an area in I, this

product will be very high. The higher the value, the better the fit corresponding to

the best match within the image. When the cross-correlation is normalized, a perfect

fit will have the value of 1. By repeating this procedure for different shifted positions

within the target image, the shifted position of the feature with the best match

(highest value) can be identified. For each shift, the value of the cross-correlation can

be stored in an array where the highest value corresponds to the shift with the best

match (see fig. 4.6).

Figure 4.6: The array of cross-correlation values displayed as an image. High cross-

correlation values are red and values that are low appear blue. Each point

in the image corresponds to a specific shift in x and y between the images I

and T .
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If the cross-correlation is calculated in this way and normalized, it is described by

the following equation for two two-dimensional images,

C(x, y) =

∑
u,v(I(u+ x, v + y)− I(x, y))(T (u, v)− T )√∑

u,v(I(u+ x, v + y)− I(x, y))2
√∑

u,v(I(u+ x, v + y)− I(x, y))2
(4.1)

where T is the mean of T and I is the average in a box the size of T centered at x

and y. (The extension of this into the third dimension is straight forward. I have not

written this out explicitly to keep eq. 4.1 readable.) The denominator corresponds

to the auto-correlation of each function. It normalizes the function so that if the two

functions correlate perfectly the result is 1 and -1 if they are perfectly anti-correlated.

Note, a standard deviation is defined as,

σI =

√
1

N − 1

∑
u,v

(I(u, v)− I)2 (4.2)

where N is the total number of elements, so we can re-write equation 4.1 as,

C(x, y) =
1

N − 1

∑
u,v(I(u+ x, v + y)− I(x, y))(T (u, v)− T )

σIσT
(4.3)

Calculating this sum at every point in an image can be computationally expensive

so, in practice, this is often done using Fourier transformations (Lewis, 1995). To

explain how this works, let us consider just two 1-dimensional functions. The discrete

(unnormalized) cross-correlation of these two functions is defined as,

f ? g[n] =
∑
m

f ?(m)(n+m) (4.4)

while the discrete convolution between these two is given by,

f ∗ g[n] =
∑
m

f(m)g(n−m) (4.5)
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The cross-correlation and the convolution of these two functions is related by,

f ? g = f ∗(−n) ∗ g(n) (4.6)

where ∗ indicates the complex conjugate. Now, if we recall the convolution theorem,

F{f ∗ g} = F{f} · F{g} (4.7)

The un-normalized crosscorrelation is the numerator of eq. 4.1. We can solve for this

by finding the inverse fourier transform. So the cross-correlation is given by

CCunnormalized = F−1{F{f ∗ g}} = F−1{F{f} · F{g}} (4.8)

Using this to calculate the cross-correlation speeds up the calculation significantly.

4.3 Pseudo-code of actual procedure

4.3.1 Initial processing

• We smooth the image stacks with a Gaussian filter.

• To find the total drift that occurs during the experiment, we locate and track

the bottom plate. We determine the total intensity of each plane in the image

stack. The bottom plate is brighter than the rest of the sample from dye adhered

to the surface; therefore, if we examine the total intensity of each plane, we find

a peak in intensity centered at the bottom plane. To find the position of the

bottom plate, we do not simply assume the plane with the highest intensity is

the bottom plate; rather, we use the center of mass of the peak. (This is more

robust than the position of the peak height.) After the bottom planes have been
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found for all of the stacks, the motion between each plane and each subsequent

plane can be found using a cross-correlation.

• If the top plate of the shear cell is within the imaging volume, its motion is

determined in the same manner as the bottom plate’s motion is determined. If

the top plate of the shear cell is not in the imaging volume, an arbitrary slice

through the network is assumed to be the ‘top plane’. By cross correlating this

slice with slices from subsequent stacks, the top plane can be identified and

tracked.

• Lastly, using the motion of the bottom plate, we align the stacks so that the

bottom appears stationary. (The motion of the top plate is used during the

tracking of the network structure as described below.)

4.3.2 Find the 3D skeleton through the network

We find the skeleton of the network using the initial, unsheared image stack.

• We smooth images with a Gaussian filter if necessary.

• We determine a threshold intensity value and threshold the image. The thresh-

old should be set to represent the network structure as closely as possible. If it

is too low, distinct fibers will merge into one region; if it is set too high, fibers

that are one may be broken up into two disjoint units.

• Use a commercially available software to identify the network skeleton (or use

another approach).

28



4.3.3 Track the network structure

• To track the motion of one branch point, we obtain a box, T , of size 32x32x32

pixels from the original image stack centered at the branch point position. We

cross-correlate this box in a larger box, I, of size 64x64x64 pixels in the target

image stack to find the relative motion, urel, of the box, T , within box, I.

Instead of extracting the box, I, centered at the original position, we center

it an amount displaced by its expected motion, uexp, between these two time

points. In the case of a network that is being sheared purely in the y direction,

this corresponds to the affine predicted motion.

uexp,x(ti+1) = uexp,z(ti)

uexp,y(ti+1) = uexp,z(ti) ∗∆γ

uexp,z(ti+1) = uexp,z(ti)

where ∆γ is the shear strain between the first and subsequent positions. The

corresponding absolute shift between the two boxes is then given as the sum of

the relative shifted motion and the predicted motion.

uabsolute = uexp + urel (4.9)

• We repeat this procedure on every branch point to track their positions from

the initial time point, t0 to subsequent time point, t1.

• To track the branch point positions in subsequent time point, t2, we repeat the

basic procedure. However, instead of using small boxes from the previous time

point, t1 we use the boxes from the initial time point, t0. For each branch point,
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we compare the initial image, T , with the target image, I, in each subsequent

time point, t2, t3, t4.... We repeat this until the branch point is considered

‘lost’(defined below). When the branch point is lost, we replace the initial box

with a new small box centered at the previous known, good position. If the

branch point is still found to be ‘lost’after this procedure, it is discarded from

any further tracking.

– A branch point is considered ‘lost’if it has moved more than eight pixels

from its expected location. (i.e., if |urel| > 8)

• Only branch points taken at least 10µm from the bottom of the plate are con-

sidered in this analysis. In addition, branch points within half a box of the

image edge are also discarded.

• Lastly, we assume the mean of I does not change very much in a region the size

of T . So we replace the mean of I, which should be calculated for just a region

the size of T , with the mean for the entire region of I.

4.3.4 Post-processing

• We correct the structure of the network.

– The skeletonization algorithm occasionally breaks up a single fiber into

two fibers. We re-connect these fibers into one fiber.

– We remove any fiber loops (a fiber whose end point and beginning point

correspond to the same node).
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• We fit a line through the X,Y , and Z branch point displacements with respect

to their Z position. The slopes of each of these lines define the strain in the X,

Y and Z directions.
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Part III

Networks undergoing shear



Chapter 5

A quick introduction

In this part of the thesis, I outline quantitative measurements of the structure and

motion of fibrin networks as they are sheared. Since all of these measurements are

based on the same initial experiment, I will describe it briefly. We create a solution

of fibrinogen with a small amount of fluorescent label and factor XIII. We polymerize

part of this solution in the rheometer while polymerizing the rest between two glass

plates on a confocal microscope. After polymerization is complete, we measure the

mechanical response of the network by imposing a steadily increasing strain, γ, on the

rheometer and measuring the resultant stress, σ. Simultaneously, to visualize how the

network deforms during this experiment, we also shear the network on the confocal

microscope by moving the upper glass plate in small strain steps. Between each

movement of the glass plate, we obtain a stack of images representing a 3D volume in

the network. By repeating this until high shear, we obtain a set of image stacks that

represents the 3D structure of the network as it is strained. We use image-processing

tools to extract the structure of the initial network. To track the basic deformation of
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the network, we track the positions of all of the branch points in the network (these

techniques are described in the section on image processing). This results in a list of

node positions at every strain point and their connectivity. Using this, we can now

quantify how the network deforms and compare this to the mechanical response we

measure using rheometry. This is described in the next few chapters. Most of these

quantities have never been measured before in a real system. Consequently, I try

to carefully outline my thinking at each point and relate my measurements back to

previous measurements, if they exist.

In many of the next chapters, I compare my measurements to those from a network

that had deformed affinely. To predict the exact position of an affinely deformed

network, I use the initial, unsheared network structure and predict the position of

each node in the network using an affine transformation with the shear strain on the

network. For example, if a node is initially at the position (x, y, z) and the network is

sheared in the y direction an amount γ, the new node position would be (x, y+γz, z)

(see the section on non-affine motion for a more detailed discussion of affine motion).

Repeating this on all nodes at all strain positions results in a list of affinely deformed

positions (and their connectivity remains the same as in the actually deformed case).

To calculate a quantity that has deformed affinely, I use the exact same code on this

set of data as I did to calculate the quantity on the data that represent the actual

deformation.
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Chapter 6

Static network properties

In this chapter, I examine the distribution of fiber lengths as well as the con-

nectivity of individual nodes in the initial image stack before the network has been

sheared.

6.1 Average fiber length

I define a fiber as the segment that connects two nodes in the network. I define

the length of a fiber in two ways. The first uses the fiber arc length, larc (see fig. 6.1).

This is the original length along the backbone of the fiber as we have identified from

original image stacks using the skeletonization method (see the image- processing

section of this thesis). The resolution of these paths is on a pixel level and may,

therefore, not be the most accurate. 1 For the second definition of fiber length, I use

the Euclidean distance between the two ends of a fiber, l.

1The size of an image voxel is 0.24µms; therefore, if we have a fiber that is 2µms long
the extra length due to the pixelated path may be significant.
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Figure 6.1: The definition of fiber length, larc, based on the arc length of the fiber and, l,

based on the Euclidean distance between its end points.

To find the distribution of fiber lengths, larc, I determine the total fraction of fibers

with a specific arc length, larc. I disregard all fiber lengths that are smaller than 1µm.

Each distribution is initially high at small fiber lengths and decays towards 0 at longer

fiber lengths. For increased fibrin concentration, the distribution decays more rapidly

(see fig. 6.2 a). I repeat this measurement using the end-to-end length, l, of the

fibers. The decay towards 0 becomes slightly more rapid and pronounced for the

higher concentration networks, but the basic trend is very similar (see fig. 6.2 b).
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Figure 6.2: The fraction of fibers of length l and length larc.

A measure which is sometimes more relevant is the total fractional length a given
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fiber length occupies. Essentially, it might not be relevant that 99% of the fibers are

1µm long if this only accounts for 1% of the total length in the network. I therefore

examine the length weighted fractional distributions of both l and larc. (see fig. 6.3).

In comparison to the un-weighted length distributions, these distributions look more

peaked at slightly longer fiber lengths. The lower fibrin concentrations have a peak

which occurs at longer fiber lengths as compared to the higher concentration networks.

This is consistent with basic intuition which tells us that lower concentration networks

should have longer fibers on average.
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Figure 6.3: The fraction of the total length occupied by fibers measured using either their

arc length, larc, or end-to-end length, l.

To determine how curved the fibers are, we compare the ratio of their arc length to

their end-to-end length, l/larc. We find that the fibers are rather straight on average

with ratios around 0.9 (see table 6.1).

Lastly, the line density, λ, is an important parameter in many models. This is
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Table 6.1: Some characteristic values for the average fiber length and connectivity number.

All average lengths are given in µms and the line density is given in 1
µm2

conc. < z > < larc > < l > < l/larc > < λ >

0.2mg/ml 3.07 8.4 7.3 0.91 0.008

0.4mg/ml 3.08 8.2 7.17 0.92 0.009

0.8mg/ml 3.1 5.7 5.15 0.93 0.012

1.6mg/ml 3.20 4.0 3.8 0.95 0.041

defined as the total amount of fiber length in a given volume,V ,

λ =

∑
l

V

where the sum is taken over all fiber lengths in the volume V . This value represents

the total amount of fiber length in a given volume. If the radius of the fibers stays

fixed for samples of different concentrations, we expect this value to scale linearly

with the concentration. If it does not scale with concentration, it indicates that the

radius of the network changes with concentration (see table 6.1).

6.2 Connectivity of the fibers

In this section, I examine the connectivity of the branch points in the network.

A branch point is the junction of several fibers. The connectivity, z, of each branch

point is defined as the number of fibers that associate at that branch point (see fig.

6.4)
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Figure 6.4: Definition of connectivity number of a node.
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Figure 6.5: Distribution of connectivity numbers for four different concentration networks

We consider z = 1 a ’‘dangling end’and do not expect it to contribute to the

mechanical properties of the network and disregard these. Moreover, we assume

connectivities of z = 2 arise as an error in the skeletonization program which has

erroneously divided a single fiber into two (see the image-processing section for more

details on this algorithm). Consequently, we identify all branch points with z = 2

and join together the two fibers that meet at this point (and, therefore, nodes with

z = 2 are also be effectively disregarded).
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Table 6.2: Fraction of nodes with given z

conc. z = 3 z = 4 z = 5 z = 6 z = 7

0.2mg/ml 0.9347 0.0611 0.0042 0

0.4mg/ml 0.9247 0.0719 0.0029 0.0006 0

0.8mg/ml 0.9014 0.0882 0.0100 0.0003 0.0002

1.6mg/ml 0.8355 0.1380 0.0226 0.0032 0.0007

We examine the distribution of connectivity numbers for four different fibrin con-

centrations. Nodes with connectivity numbers around 3 are responsible for the largest

fraction of connectivity numbers (see fig. 6.5). On average, the node connectivity

is slightly above 3 (see table 6.1). There are, however, a small but finite fraction of

nodes with higher connectivity numbers. These seem to follow a trend with higher

concentration networks having a slightly increased fraction of high connectivity nodes

(see table 6.2).

The low average connectivity number of these networks is an important clue to

understanding the mechanism we think underlies the mechanical response of these

networks (see chapter 11 for an explanation of the mechanism)

6.3 Relation to previous work

Similar network properties such as fiber length and branching connectivity have

been characterized using scanning electron microscopy images on unsheared fibrin

networks (see, for example, (Ryan et al., 1999)). Moreover, the relative size and
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branching of fibrin networks taken from both diseased and healthy patients have

been extensively characterized using SEM (see, for example, Weisel (2004)). Our

results are all similar to those previously reported.

A recent paper has used a similar combination of image and image processing to

measure static network characteristics directly from confocal image stacks as we have

done here. Their results are also consistent with those we report here (Kim et al.,

2011).
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Chapter 7

Non-affinity of branch point

motion

An important assumption in many current theories or models of biopolymer net-

work mechanics is that the networks deform affinely. This is particularly important

for previous work on the strain-stiffening response of fibrin networks (Piechocka et al.,

2010; Brown et al., 2009; Hudson et al., 2010; Storm et al., 2005). The basic rea-

son this is important is quite simple: If a network behaves affinely, the position and

strain across all the fibers in the network (or an equivalent unit cell) is known, and the

mechanical response of the bulk is a simple extension of the mechanical response of

the individual fiber or unit cell. In this case, instead of modeling a complex network

of interconnected fibers, one can assume the network response arises from an ‘aver-

age’fiber response. This assumption has proven to be very powerful in understanding

the mechanical response of semi-flexible fibers. However, it has not been shown to

be the case in stiff-biopolymer networks such as those we are concerned with here.
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Moreover, a significant degree of non-affine motion may indicate network motion that

may impact the bulk mechanical response.

In this section, I introduce the concept of affinity and different measures of non-

affinity that have been traditionally used. I apply these, and variations on these, to

measure the non-affinity in fibrin networks as a function of shear.

7.1 Affine and non-affine motion

As a material is sheared, every point within that material moves. If all of the

points move as they would in a continuum, they move affinely. For such motion, the

top plate imposing the shear moves a fixed distance, d, and every point downwards

moves an amount linearly proportional to this amount reaching 0 displacement at

the bottom plate (see fig 7.1). The constant of proportionality is given by the shear

strain on the system, γ = d/h, where h is the distance between the top and bottom

plates (see fig. 7.1). If the shear is in the y direction, then the shear transformation

matrix for this motion is given by,

Figure 7.1: During affine shear, every point moves an amount linearly proportional to the

motion of the top plate.
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Γ =


1 0 0

0 1 γ

0 0 1


A point in the material at the position, (x, y, z) will then move to the point (x′, y′, z′)

given by, 
x′

y′

z′

 = Γ


x

y

z

 ,

Written out explicitly for a material being sheared in the y direction,

x′ = x

y′ = y + γz

z′ = z

For a network of connected fibers, if a network deforms affinely, each node and fiber

in the network will follow this deformation profile as well (fig. 7.2).

Although, on average, the points in a material should behave affinely, every real

system will have a degree of non-affine motion. Typically the ‘average ’motion of

the branch points at each z-height will be affine while the non-affine variation is the

spread about this average (fig. 7.2, red line is affine prediction, blue dots indicate

the spread from non-affine motion). A larger spread indicates a larger amount of

non-affine motion. Different measures of non-affinity can be used to characterize the

degree of this spread.
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Figure 7.2: The displacement of branchpoints in the y direction at various z-positions (blue).

The red line represents the affine motion.

7.2 Different measures of differential non-affinity

To understand the degree of non-affinity in a system, several non-affinity measures

have been devised. I review a few of them below. The basic concept behind each

of these is to characterize the spread in the non-affine motion. These all start by

decomposing the motion, utot, of a point in the sample into its affine, uaff , and

non-affine, uNA, components(see figure 7.3). In this way,

utot = uaff + uNA (7.1)

The total motion is defined in one of two ways (with the affine and non-affine motions

being defined similarly): either the motion represents the total motion that point has

moved since the beginning of the experiment or it is the motion over a small range
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Figure 7.3: The total motion (black) of two branch points is divided up into its affine(blue)

and non-affine (red) components.

in strain, ∆γ. Measures of the latter type of non-affinity are referred to as measures

of the differential non-affinity.

A few different common measures of differential non-affinity are outlined below.

(To distinguish them, I have given each one a different name based on the original

reference or some other feature.) Most of these measures can also be used in squared

format to accentuate any peaks that occur (Fig. 7.5). The exact shape of the peak

varies slightly, but all measures peak around the same strain (Fig. 7.4).

1. Fred’sYou scale the non-affine motion by the change in strain, δγ, over which

you measure the motion of each branch point. This measure can have difficulties

in experimental systems when the change in strain is very, very small.

Γfreds(t) =

√
1

N

∑
i

| uNA,i |2
∆γ2

(7.2)
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Figure 7.4: Comparison of non-affinity measures.

where N is the number of points tracked.

2. Standard Deviation This measure is basically a standard deviation. The defini-

tion of standard deviation for a random sample is,

standarddeviation =

√
1

N

∑
i

(xi − x)2 (7.3)

where xi are the measured values and x is the mean. For the tracked displace-

ments, the mean at each z height for all the displacements should be the affine
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Figure 7.5: Comparison of squared non-affinity measures.

predicted displacement (see fig. 7.2 red line). The non-affine component away

from this line is the non-affine part of the motion; therefore, to characterize the

spread of the non-affine part about this, we just take the non-affine part of the

motion and assume the mean motion is 0. The non-affinity measure is then just

defined as:

Γstd(t) =

√
1

N

∑
i

| uNA,i |2 (7.4)

3. Janmey’s Another definition is very similar to the measure based on standard
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deviation except the non-affine motion is scaled by the expected affine motion.

This definition becomes problematic when the expected motion is very small

(for instance, close to the bottom plate where very little movement is expected).

This definition has the benefit that it has values that start to make intuitive

sense and give a sense of scale. If the non-affine motion is of the same magnitude

as the affine motion on average, the value is 1. Modified from (Wen et al., 2007)

Γjanmeys(t) =

√
1

N

∑
i

| uNA,i |2
| uaff,i |2

(7.5)

Very little is understood about non-affine motion and its impact on network me-

chanics. Moreover, there is a dearth of ‘models of non-affinity’. Therefore, it is even

difficult to estimate whether the values of non-affinity we measure are significant or

not.

7.3 Details of the actual procedure

To accurately calculate this value, I use a few tricks in the actual procedure I

implement.

• The actual change in strain from one confocal stack to the next is very small

( 1%). The motion of each branch point, uti is therefore also very small (see

fig. 7.6 and 7.7). If you use the motion of all of the branchpoints over one

shear step, this results in a very noisy result (fig. 7.8). If you examine the

tracks of branchpoints, you notice that there is some variation along the branch

point tracks, but the general motion is rather persistent. Consequently, to more

accurately measure of the non-affinity of the branch points, it is better to use
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(a) A more affine branch point track (b) A track which is initially non-affine but

then becomes more affine.

Figure 7.6: The tracks of two branch points over several strain steps (blue is early strain

and red is later strains.)

Figure 7.7: The representative motion of one node over several small shear steps.

the motion of each branch point over several shear steps ∆u =
∑

i ui (see fig.

7.7). Moreover, to compare different experiments, where the change in strain

between each confocal stack may vary, we find the total motion of each branch

point over the number of shear steps, ns that most closely corresponds to a

fixed total change in system strain, δγ.

δγ(s) = γs+ns − γs (7.6)
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Figure 7.8 shows that with increasing δγ the data appear smoother.

• Moreover, to find the most accurate affine prediction, we use the total motion of

each branch point over the small window, δγ, to determine the affine, predicted

motion (see fig. 7.7). This will result in the most accurate affine prediction over

the strain window, δγ.
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Figure 7.8: Non-affinity calculated for different strain windows
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7.4 Results: non-affinity peaks at onset of strain-

stiffening
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Figure 7.9: Fred’s non-affinity squared compared to stress-strain response of four different

concentration networks.

We sheared and tracked fibrin networks of four concentrations (0.2mg/ml, 0.4mg/ml,

0.8mg/ml and 1.6mg/ml). From the tracked data, we calculate the non-affinity of the

branchpoint motion for each of these concentrations over a strain window of δγ = 5%
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(different values of this strain window do not significantly alter the results). We find

that the non-affinity peaks around the critical strain, γc for each sample although the

exact critical strain varies for each sample. In addition, the height of the peaks scale

inversely with concentration (see fig. 7.9). 1

7.5 Comparison to previous work

These results are consistent with a previous study that examined the non-affine

motion of beads in a 2.5 mg/ml fibrin network. In this study, Wen et al. found

a high non-affinity at very small strains that decreased towards 0 with increasing

strain (Wen et al., 2007). Considering the trend in our data, we would expect that

with increased fibrin concentration the non-affine peak would move to earlier strains

consistent with the position of the peak measured in the study by Wen et al.

1It is often the case that low concentration fibrin networks are initially more non-affine
then decrease before increasing again around the onset of strain-stiffening. Non-affine peaks
occur in simulations of low-connectivity networks when they transition through different
regimes (see the mechanism chapter for the physics underlying these behaviors). This non-
affine peak may indicate a first regime where the network behaves differently. It probably
occurs at strains that are too small to measure using microscopy but may indicate another
interesting behavior. (Moreover, there is an additional stiffness regime that occasionally
occurs in the differential modulus of these networks at very low strain. This may hint at
the existence of such a regime.)
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Chapter 8

Angular distribution

One factor that may be important to the mechanics of fibrin gels is the degree

of fiber alignment that occurs during strain-stiffening. In fact, two studies have

implicated a high degree of fiber alignment as a crucial cause of the strain-stiffening

response of these networks (Brown et al., 2009; Kang et al., 2009).

In this chapter, we examine the orientations of all of the fibers as the network is

sheared to different strain points. We find that the networks start out isotropic, and

their orientations follow the expectation from an affinely deforming network fairly

well.

We also examine the distributions of angles at branch points as the network is

deformed. This again looks very much like an affine distribution; however, when we

instead determine how these angles change as the network is sheared to increasing

strains, we get a clear dip in all of the data sets around the onset of strain-stiffening

for each network.
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Figure 8.1: For each fiber in the network, we find the vector which connects its end points.

8.1 Orientation of fibers in the network

For every fiber in the network, we find the vector that connects its two end points

(fig. 8.1). We find the angle of this vector away from the y-axis, θ, in the y − z

plane and its angle away from the x axis, φ (see fig. 8.2). This is different from the

traditional way of defining these angles, but it is more relevant since we expect the

alignment of fibers in the y − z plane to most affect the mechanics of the network

(as the primary direction of the imposed shear is in this plane). Although we take

the end-to-end vector that connects the two fiber end points, a fiber does not have

an inherent direction (these vectors simply denote the angle tangent to the fiber

orientation). We therefore chose θ so that it ranges from 0 < θ < π. (Since there is

no direction, a fiber that would have had π < θ < 2π can always be mapped on to the

proper range by taking the equivalent vector with opposite sign.) To determine the

fraction of fibers at a given orientation, we evenly segregate the fibers based on their

orientation. For each angle, we count the total number of fibers at that angle and
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Figure 8.2: The definition of the fiber angles for a fiber. For each fiber in the network we

find the vector which connects its end points.

divide by the total number of fibers in the sample. In this manner, we calculate the

histogram of fiber distributions that we expect. By repeating this for several shear

positions, we can examine how these distributions evolve as the network is sheared.
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Figure 8.3: Orientation of fibers at several shear points for a 0.4mg/ml sample.

The networks exhibit an initially isotropic distribution of fibers which appears as

an almost flat distribution of θ and a rounded distribution in φ (see fig. 8.3). As the

strain on the network increases, a peak develops in θ corresponding to the direction
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which undergoes the highest degree of strain (see fig. 8.3). The distribution of φ is

relatively unchanged. We are interested in understanding whether this fiber alignment
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Figure 8.4: Distribution of fiber orientation, θ, for different concentrations and affine dis-

tributions at low and high system strains.

affects the mechanics of the networks. We therefore compare φ and θ distributions

for datasets that have very different onsets of strain-stiffening, in addition to the

distribution we would expect from networks that had deformed affinely. When we

compare the data from a low-concentration (0.4mg/ml) sample which has a very late

onset of strain-stiffening (∼ 30% strain) to a high-concentration sample (1.6mg/ml)

sample which has a very early onset of strain-stiffening (∼ 3% strain), we find that

the distributions of θ are very similar for both concentrations as well as to the affine

predicted distribution (see fig. 8.4). This the case at both low and high system strains.

Moreover, the distribution of φ remains basically unchanged between samples, over

strain, and in comparison to the affine prediction (see fig. 8.5).

Since datasets with very different mechanical characteristics exhibit orientational
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distributions that are all very similar, most likely fiber alignment has little impact on

the mechanics of the gels.
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Figure 8.5: Distribution of fiber orientation, φ, for different concentrations and affine dis-

tributions.

8.1.1 Relation to previous work

The similarity between the angular distributions of the different networks and an

affine network is consistent with previous work. An experimental study examined the

degree of alignment in fibrin networks using birefringence (Kang et al., 2009). They

determined that the degree of alignment did not directly correspond to the onset

of strain-stiffening in different fibrin networks. In addition, a simulation of semi-

flexible networks compared the angular distributions between networks that deformed

affinely and those that were allowed to deform non-affinely. These authors found

that networks that deformed non-affinely had a slightly higher degree of alignment

in comparison to those that deformed affinely (Huisman et al., 2010). Within the

resolution of our measurements, it is hard for us to discern such a slight change in
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fiber alignment. Regardless, our study demonstrates that there is not a large degree

of alignment due to non-affine fiber motion.

8.2 Distribution of branch point angles

We examine the distributions of angles between fibers at a branch point. For each

branch point, we choose one fiber and find the smallest angle, βi between that fiber

and every other fiber at that branch point (fig. 8.6).

Figure 8.6: Definition of angle, β between fibers at a branch point

We find the distribution of branch point angles, β, at three shear points. We

compare the distribution of β in two different concentrations of fibrin as well as their

affine expected distributions. In the initial distribution, there is a slight peak in fibers

with an angle near π (see fig. 8.7). This is consistent with previous studies that show

fibrin fibers branch with a very acute angle (Weisel, 2004). As the network undergoes

shear, this peak shifts to slightly smaller angles for all of the concentrations probed.

These distributions are very similar to the expected change from an affinely deforming

network (see fig. 8.7).
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Figure 8.7: Distribution of branching angle, β for 2 concentrations and affine distributions.

Instead of examining the distribution of branching angles, we instead focus on the

mean change, < ∆β >, of this angle at all strain points, γ. We determine this value

for four different fibrin concentrations and compare it to the affine expectation. In

all but the highest concentration case, there is a distinct dip that coincides well with

the onset of strain-stiffening for that sample (fig. 8.8). This suggests that there are

a significant number of fibers whose angles change as the network transitions from

linear to non-linear network behavior (see chapter 11 to understand how this fits in
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with the onset of strain-stiffening in these networks).
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Figure 8.8: Mean change in branching angle for four concentrations in comparison to mean

change expected for an affine distribution.

8.3 Relation to previous work

As far as I know, there is no previous work that has characterized the angles

between fibers at branch points as a (real or simulated) biopolymer network is sheared.
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Chapter 9

Strain distribution

As a network is deformed, the individual fibers that comprise the network must

deform in concert to bear the load. The stress required to deform the network arises

from the force required to strain the individual components. In this chapter, I in-

vestigate how strain is distributed in the network. Since the fibers are long and

slender, I examine the elongational strain on the fibers. This ignores strains from

other contributions such as twisting or bending.

The most insightful piece of data from this chapter is how the average individual

fiber strain changes as the network is sheared. By focusing on this relatively simple

measure, we find that fibers are on average compressed in the linear regime. By

examining the average strain as a function of orientation, we find that fibers that are

expected (from an affine prediction) to compress, compress; however, the fibers that

are expected to become stretched are actually not stretched until the network enters

the non-linear regime. This is important for the mechanism that we think underlies

the strain-stiffening response in these networks.
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9.1 Individual fiber strain

We assume a fiber is the segment between two branch points (ie we do not account

for a fiber that persists through a branch point and treat such a fiber as two fibers).

We define the individual strain on a fiber in two ways. In the first method, we

use the original arclength of the fiber, larc, as its rest length (ie. we assume that

when the fiber has this length, there is no strain on the fiber (see fig. 9.1)). In the

second method, we use the Euclidean distance between the fiber end points (a.k.a.

the end-to-end length) of the fiber as the rest length. This overestimates the actual

elongational strain (the first method). However, to avoid errors that arise from the

measurement of the arc length from the original images, we use the second definition

almost entirely throughout this thesis.1

In the first case, we define the strain on an individual fiber as,

εarc =
δlarc
larc

(9.1)

where δlarc = le2e− larc is the change in the current Euclidean distance (or end-to-end

distance) between the nodes, le2e and the original length, larc. With this definition, all

of the fibers must have either a negative or, in the event they are perfectly straight,

a 0 strain initially (when the system strain, γ = 0).

In the second definition, we use the initial Euclidean distance between the two

fiber end points, l, as the rest length of the fiber (fig. 9.2). In this case, we define the

1This is still very useful although it may seem inaccurate. For instance, we find that the
mean strain of the individual fibers is negative at small strains using the second definition.
Since this definition overestimates the strain, we know the actual strain must be even less.

63



Figure 9.1: When a fiber is first pulled, it must first be pulled taut (so that the end-to-end

distance is equal to its original arc length) before there is any actual strain on

the fiber.

individual fiber strain as,

ε =
δl

l
(9.2)

where l is the original fiber length and δl = le2e− l is the change in current end-to-end

length and the original length.

Figure 9.2: The strain is defined as the change in end-to-end length of the fiber scaled by

its original fiber length.
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9.2 Distributions of individual fiber strains

We examine the distribution of individual fiber strains as the overall network is

sheared to different values, γ. We measure the strains for all of the tracked fibers using

both measures. To find the distribution of fiber strains, we divide up the number of

strains into intervals from −0.5 < ε < 0.5 in steps of 0.05 and find the fraction of

fibers at each binned strain. We repeat this calculation for every value of system

strain, γ. For εarc, we find that the distribution is not centered about 0 initially (as

we expect since the initial strain must be non-negative) and spreads out as the overall

network is sheared (see fig. 9.3). By contrast, ε starts with a peak around 0 and shows

a more symmetric broadening as the system strain is increased (see fig. 9.3).
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Figure 9.3: The distribution of individual fiber strains, εarc and ε at different system strains.

This may not be the most informative way to start examining how strains are

distributed in the network. We can also look at the fraction of fibers that are com-

pressed or stretched as a function of system strain. We use a small threshold strain

of εthresh = 0.01 and treat a fiber with strain greater than this as ‘stretched’, a fiber
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which has less than −εthresh as ‘compressed’, and one which is within this threshold

strain as having ‘no strain’. There is a large number of compressed fibers initially for
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Figure 9.4: The fraction of fibers that are stretched or compressed as a function of system

strain, γ.

εarc (again, as it must from its definition (see fig. 9.4). That fraction decreases while

the fraction of stretched fibers increases, and the fraction of fibers with no strain

decreases as well. Similarly, the fraction of fibers for the ε definition has a similar

trend with all of the fibers starting with 0 strain (again, as it must by its definition

(see fig. 9.4)).

If we compare many different samples, we see that with increasing concentration,

the number of stretched fibers increases more quickly with increased system strain

(see fig. 9.5). This is consistent with their earlier onset of strain-stiffening in the

context of the underlying mechanism of strain-stiffening (see chapter 11).
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Figure 9.5: The fraction of fibers that are stretched or compressed using ε as the definition

for many different concentrations.

9.2.1 A note on the role of noise in the strain measurements

The accuracy of the strain measurement depends on the accuracy of the location

and tracking of the two end points of a fiber. This has some degree of noise associated

with it. When we measure the distance between two end points, we measure that

actual distance plus a small noise term, δnoise. We assume this noise is random and
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therefore Gaussian. However, because of this noise, the distributions of strains we

show here represent the actual distribution of strains convolved with the distribution

from the noise in the measurement.

εnoisy =
δl + δnoise

l
= ε+

δnoise
l

.

In general, this is why it is more accurate to use average information such as the

mean fiber strain (below).

9.3 Mean individual fiber strain

We determine the mean strain of the stretched fibers, the compressed fibers, and

the entire population of fibers. We find that the mean positive strain becomes larger

and the mean compressed strain becomes more negative with increasing system strain

(see fig. 9.6). The mean positive strain grows faster than the mean negative strain

decreases.

This measurement may still have problems associated with the noise (as outlined

above). These problems can be avoided if we examine the total mean fiber strain,

< ε >, as a function of system strain, γ. This turns out to be a very interesting

measure that is helpful in understanding how strain is being propagated into the

network.

We determine the mean individual fiber strain for four different network concen-

trations as a function of system strain, γ (see fig. 9.7). For each of these datasets, the

mean strain is negative at low strains but will eventually become positive at higher

strains. This distribution is in stark contrast to what we would expect for an affinely
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Figure 9.6: The mean individual fiber strain < ε > for just the stretched, compressed and

total mean strain.

deforming network. In that case, we find a steadily increasing < ε > that is never

below 0 (see fig. 9.8). The point at which the actual mean strain crosses 0 is corre-

lated to the onset of strain-stiffening in these networks as we describe in section 9.3.2

of this chapter.

9.3.1 Some notes on the actual calculation of the mean strain

Since the motion of the end points still has a small amount of associated noise,

we can look at the mean strain that a fiber undergoes in a small window of system

strain that corresponds to several smaller strain steps. This is useful for cleaning up

measurement noise. This has the drawback that with an increased strain window,
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the mean strain crosses 0 at earlier strains. This makes sense if we assume that the

fibers are actually compressed at small strains but become stretched at higher strains

(see fig. 9.9).
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Figure 9.9: Mean strain averaged over different strain windows.

9.3.2 Relation of mean individual fiber strain to network me-

chanics

If we compare the mean strain, < ε >, to the mechanical responses of these

networks, we can identify some interesting trends. We find that the crossing of < ε >

through 0 follows a similar trend as the onset of strain-stiffening for the four different

concentrations: The higher concentration samples strain stiffen at smaller strains as

well as have a < ε > that crosses 0 at smaller strains (fig. 9.7). Moreover, if we

look in detail at what this involves, we find that the initial compressive strain in the

network corresponds to the linear regime in these networks (see fig. 9.10).

9.4 Strain distribution at a given fiber orientation

We can start to understand why the fibers are compressed in the linear regime by

examining the average amount individual fibers are stretched at various orientations

in the network. We use the same definition of θ from chapter 8. (Basically, if we
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Figure 9.10: The fraction of fibers that are stretched or compressed using ε as the definition

for many different concentrations.

shear in the (−)y direction, θ is the angle away from the y axis.) We segregate fibers

by their angle in the y − z plane. We calculate the average mean strain for all fibers

in a small range of θ, repeating this for every θ.

We compare the mean strain we measure to the expectation from a network that

deformed affinely. We find that at small strains, the measured mean strain is around

0 for fibers that are expected to become stretched (approximately π/2 < θ < π).
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This is significantly less than the affine expected mean strain. By contrast, the mean

strain of fibers perpendicular to this direction, exhibit negative strain values similar

to that of the affine expectation (see fig. 9.11). As the overall network is deformed

further, the mean strain becomes more pronounced at values of θ, where the fibers are

expected to become stretched but remains near or below the affine expected value,

while the fibers expected to become compressed continue to more closely follow the

affine expectation (fig. 9.12).
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Figure 9.11: The mean individual fiber strain for fibers at different values of θ in the network

with small network strain

9.5 Conclusion

As a fibrin network is sheared, we find that, on average, the mean fiber strain is

compressive at small deformations (low system strains), while at large deformations

(high system strains) fibers, on average, begin to become stretched. This is in contrast
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Figure 9.12: The mean individual fiber strain for fibers at different values of θ in the network

with large network strain

to the affine expected strain which should steadily increase from 0. To understand

why the average fiber strain is initially compressive, we segregate the fibers by their

orientation in the network and calculate the mean strain for each angle. We find

that the mean strain of compressed fibers corresponds well to the affine expectation;

however, the mean strain of fibers that are expected to be stretched show a mean

strain around 0. This indicates that the fibers in the direction of strain are not

stretched explaining the mean strain which is initially compressive. To understand

these data in the context of other data in this thesis the chapter 11 on the mechanism.

Note: these mean strain calculations were done using the definition of strain that

assumes the initial end-to-end distance between a fiber’s branch points represents its

initial length, ε. This is always an overestimation of the strain which accounts for the

initial arc length of the fiber, εarc. Since most of our conclusions rely on fibers being

initially compressed, the general arguments should still hold (since the strain defined
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in this manner should be even more compressive).
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Chapter 10

Stress estimation

The stress required to deform a network arises from the stress required to strain

all of the individual fibers and the branch points that comprise the network. Since

we have measured the strains of all of the fibers in the network, it may, therefore, be

possible to estimate the total shear stress required to deform the network.

When we move the top plate during a shear experiment, the network below exerts

a total force, F , on the top plate. We can break this force up into two components:

the component parallel to the motion of the top plate and a component perpendicular.

These correspond to the shear force, Fs, and normal force, FN , respectively (see fig.

10.1). The stress, σ, is the force, F , scaled by the plate area, A. The shear stress, σs,

and normal stress, σN , are the shear and normal forces scaled by area, respectively.

In the first part of this chapter, we are concerned with estimating the shear stress.

We will subsequently use a similar methodology to estimate the normal force. Since

this has previously never been directly measured, I will also go through a detailed

explanation of different approaches and, in particular, how many of these fail owing
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Figure 10.1: An illustration of the force from a network being sheared. The total force can

be divided into the shear force that lies parallel to the top plate while the

normal force lies perpendicular to it.

to noise in the branch point tracking.

10.1 Set-up of shear stress estimation

The total force felt on the top plate is just the force from the fibers directly

connected to the top plate.

F =
∑
i

fi

where fi is the force from one fiber and the sum is over all of the fibers connected to

the top plate. The shear stress, σs, is the magnitude of the force in the direction of

shear scaled by the plate area. We can replace the sum over the force from all fibers

with the sum over just the shear component of all individual forces.

σs = [
1

A

∑
i

fi] · ŝ =
1

A

∑
i

fi · ŝ =
1

A

∑
i

fis (10.1)

where ŝ is the direction of shear, the sum is again over the fibers connected to the

top plate and fis is the magnitude of the force for the fiber, i, in the direction of

shear. Moreover, we can find the shear stress in terms of the density of fibers on
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the top plate, α, and the average force from the fibers connected to the top plate,

< fs >topplate,

σs =
1

A

∑
i

fis =
Ntopplate

A
< fs >topplate= α < fs >topplate (10.2)

using,

< fs >topplate=
1

Ntopplate

∑
i

fis (10.3)

and

α =
Ntopplate

A
(10.4)

where all sums are over the fibers connected to the top plate and Ntopplate is the total

number of fibers connected to the top plate. The formulation in equation 10.2 turns

out to be more useful when we extend the sum from only the fibers connected to the

top plate to all of the fibers in the system as described in the next section.

10.1.1 Extending the sum over fibers connected to the top

plate to all fibers

The imaging volume is very small in comparison to the total sample volume. The

plate area in the field of view is, at most, 250µm2 compared to the actual plate area

of ∼ 1cm2. This does not particularly matter for our shear stress calculation, because

we can always use the total force from the fibers in our field of view that are connected

to the top plate and scale by the area of the plate we image; however, this does have

the limitation that we only have the few fibers connected to the top plate to calculate

the total shear stress. This can lead to noisy results. However, we can achieve better

statistics by noting the following. If we take an arbitrary plane through the network
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Figure 10.2: Force balance on an arbitrary plane through the network

parallel to the top and bottom plates, the force on this plane from the fibers above

and below must balance (fig. 10.2) Since they balance, the force from either the top

or bottom of the plane must be equal to the force on the top and bottom plates (the

magnitudes are equal - so the force vector will have a sign difference depending on

whether it is the force from below or from above). A different way of thinking of this

is that each ‘sub-volume’enclosed by a plane above and below it acts like a spring;

from the top plate to the bottom plate, there are basically many springs in series.

Consequently, the force on the bottom is equal to the force on the top, and the same

holds for every plane in-between. For a more formal treatment, you can see (Doi and

Edwards, 1988) pg. 70.

Assuming the density of fibers is approximately constant throughout the network,

the average force for each arbitrary plane through the network must also be the same.

We therefore extend the sum over just the fibers on the top plate to all of the fibers

in the system. We therefore can rewrite equation 10.2 as:

σs = α < fs > (10.5)

where < fs > is the average over all the fibers in the system.
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10.1.2 Approximating the density of fibers on the top plate

We want to find the density, α, of fibers on the top plate. The density of fibers on

the top plate should be proportional to the characteristic mesh size of the network,

ξ:

α =
1

ξ2

We want to find the α value in terms of the node density, n. This is the total number

of nodes in the system, Nnodes, scaled by the volume, V ,

n = Nnodes/V

This is an easy quantity for us to measure directly from our images (Alternatively,

Figure 10.3: A typical node in a typical unit cell.

we could have used the line density, another quantity that is easy to measure). We

can relate these two quantities by considering a typical unit cell. There is one node

in a typical unit cell and the volume of the unit cell is proportional to ξ3 (fig. 10.3).

The node density for a typical unit cell will then be,

n =
1

ξ3

Therefore, we can rewrite α in terms of the node density:

α = n2/3 (10.6)
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10.2 Force extension relation of an individual fiber

In our confocal experiment, we measure the displacements of the branch points

and, from these, the strain on the individual fibers (see chapter 9). However, we need

to know the force that these fibers exert to calculate the total shear stress on the top

plate from equation 10.51.

Recent studies have measured the force-extension curve of individual fibrin fibers

using atomic force microscopy (Hudson et al., 2010; Liu et al., 2010). These studies

have found that the individual fibers are linear up to strains of 1 with a Young’s

modulus of 10MPa. The low-strain Young’s modulus was also measured using

optical tweezers and found to be about 14MPa(Collet et al., 2005).

Figure 10.4: The force from a linearly elastic beam in extension

From these measurements, we assume the fibers are linear in extension. We also

assume the fibers behave like linearly elastic beams. This is most likely an over-

simplification, but it is a good first approximation. In this case, the force, F , required

to stretch a fiber is (see also figure 10.4),

1Many of the equations in this section can be found in a standard text on mechanics.
See, for example, (Timoshenko and Gere, 2009) for more information
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Fs = EA
δl

l
(10.7)

where,

δl the total amount the fiber is stretched

l the length of the fiber

A the cross-section area of the fiber

E Young’s modulus of the fiber.

To understand the role of fiber bending and buckling, we compare the force re-

quired to stretch the fiber a small amount, δl, to the force required to bend a fiber

the same amount. For this calculation, I will assume the fiber behaves like an Euler-

Bernoulli beam.

Figure 10.5: The force from an Euler beam of length l being bent a deflection of δl

The force required to bend a beam clamped at one end is given by (fig. 10.5) :

FB = κ
δl

l3
= EI

δl

l3
(10.8)

where,
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κ the bending stiffness

δl the amount the fiber is deflected

l length of the fiber

E Young’s modulus of the fiber

I area moment of inertia the fiber

For a uniform beam of circular cross-section, the area moment of inertia is I = π
4
r4.

We can compare the force required to stretch the fiber versus the force required to

bend the fiber,

FB
Fs

= (
r

l
)2 (10.9)

Typical values of the length and radius of the fibers is 5µm and 0.1µm, respectively.

In this case, the force for bending would be 4 · 10−4 that of stretching a fiber an

equivalent amount. For instance, the actual force for deflecting a fiber 0.5µm that

is 5µm long with a Young’s modulus of 14MPa and a radius of 100nm is 0.004nN

compared to 44nN for stretching the fiber an equivalent amount. We therefore con-

sider any transverse bending negligible for the estimation of the total shear stress on

the network.

To understand how these fibers behave in compression, we recall that the fibers

are long and slender. We therefore expect them to buckle. To determine the force

required to buckle the fiber, we calculate the critical force, Fc, required to buckle the

fiber using Euler buckling.

Fc =
π2EI

l2
(10.10)
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For a fiber with the typical dimensions we used for the bending and stretching forces

above, we find that the force required to buckle the fiber is 0.1nN . (Note: the fibers

are rarely perfectly straight and usually have a small but gentle bend. This bend

will also lower the force required to compress the fiber.) We therefore consider the

amount of force required to buckle the fiber to be small and set all compressive forces

on the fiber to zero in our estimation of the shear stress (below).

Finally, the force extension curve that we use for estimations of the shear stress

assumes the fiber is linear in extension with a Young’s Modulus of 14MPa, 0 in com-

pression and all transverse motions are also negligible (see fig. 10.6 for a representative

force extension curve).
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Figure 10.6: The force extension curve we assume for an individual fiber.

Find =


EAε if ε > 0

0 if ε <= 0

(10.11)

where I have used ε = δl
l

for the individual fiber strain.2

2When we try to calculate this quantity using real data-sets, this definition of the force

84



10.3 Shear stress estimation: the most straight-

forward approach

For each fiber, we calculate the total force that the fiber exerts on the top plate

and, subsequently, we average all of the components of all of the forces in the direction

of the shear strain. Basically, we directly calculate what we would expect given our

distribution of fiber strains, using the equation for the total shear stress, eq. 10.5,

and the force extension curve given in eq. 10.11. Explicitly the equation becomes,

Figure 10.7: The angle θ from a fiber is defined as the angle between the force from the

fiber and the primary direction of shear

σstd = α < fs >= α < EAεicosθi >+, (10.12)

where θi is the angle of each fiber, i, away from the primary shear direction (fig.

10.7)3 (−y for most of the experiments). Here, we have introduced the new notation,

from an individual fiber tends to create problems. The reason for this is that positive
noise in the measurement does not cancel the negative noise for fiber strains around 0.
This is discussed in detail in section 10.3.1. In many cases in the rest of the chapter,
to investigate how compressed elements can or cannot cancel the stretched elements, we
recalculate quantities pretending, for the sake of that calculation, that the individual fiber
force in compression is equal and opposite to the force from stretching.

3The definition of θ is the same as the one we used in our discussion of fiber orientations
in chapter 8
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< .. >+, to indicate an average over all fiber strains, except that fiber strains that are

negative contribute to the average with 0 strain. We assume the Young’s modulus

and areas are constants and pull them out of the sum:

σstd = αEA < εcosθ >+, (10.13)

where,

< εcosθ >+= ∑
εicosθi with ε < 0 contributing 0 to the product (10.14)

For the final calculation of this quantity, we assume that E = 14MPa (taken from

literature (Collet et al., 2005)). We use the fiber cross-sectional area, A, as a fit

parameter. This value scales the resultant stress curve by a constant. For convenience,

in most of this chapter, we set this value so that the maximum stress reached for our

estimate matches the stress we actually measure in the rheometer. At the end of the

chapter, when I have presented the final procedure that we use to estimate the shear

stress, I compare the radii we use for the fiber area to reported literature values.

Moreover, we compare these results to the shear stress expected for a network

that had deformed affinely. We use the initial positions of the fibers in the unsheared

network stack to calculate their positions at each shear point in our experiment.

We repeat our shear stress calculation on the affinely deformed network keeping all

the parameters except the fiber area A constant. We leave A as a fit parameter as

described above.

We estimate the shear stress using the real fiber positions for four different con-

centration samples as well as the affinely deformed positions (figure 10.8 and 10.9

light blue curves and red curves, respectively). For all of the samples, the affine pre-

dictions (red curves), exhibit a linearly increasing stress response that overestimates
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the actual shear stress response (dark blue curve)(see fig. 10.8 and 10.9). For the

high concentration, 1.6mg/ml sample, the shear stress estimation using the real de-

formation is similar to the actual shear stress response (fig. 10.9 b) . However, the

shear stress estimation for the lower concentration, 0.4mg/ml sample, overestimates

the actual shear stress (fig. 10.8 b). We can understand this overestimation of the
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Figure 10.8: Comparison of the actual shear stress (dark blue line) to the most straight-

forward estimation of the shear stress (light blue line) for 0.2 mg/ml and 0.4

mg/ml samples. The same calculation is repeated on a network that had

deformed affinely (red line). The calculation is repeated again using the actual

network deformation but modifying the force extension relation of an individual

fiber so that the fiber does not buckle, but rather, compresses (light gray line).

force required to deform the network by considering the noise in our measurements.

10.3.1 The effect of noise in our measurements

When we deform a fibrin network, a portion of the fibers is compressed, a portion

is stretched, and the remaining portion is neither stretched nor compressed. For our
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Figure 10.9: Comparison of the actual shear stress (dark blue line) to the most straight-

forward estimation of the shear stress (light blue line) for 0.8 mg/ml and 1.6

mg/ml samples. The same calculation is repeated on a network that had

deformed affinely (red line). The calculation is repeated again using the actual

network deformation but modifying the force extension relation of an individual

fiber so that the fiber does not buckle, but rather, compresses (light gray line).

calculation of the shear stress, we assume that all compressed fibers exert 0 force.

This is a good approximation for the fibers that are actually compressed. However,

we run into a problem with the fibers that have a strain close to 0. When we measure

the strain of an individual fiber we do not actually measure the strain; rather, we

measure this quantity plus a small degree of (presumably random) noise. In general,

when we take the average force a fiber exerts, < f >, the positive and negative noise

contributions should cancel, and we should get something close to the actual average

force. The problem is, we set all negative contributions to the force to 0. Therefore,

for fibers that have strains close to 0, the positive and negative noise contributions

do not cancel, leading to the overestimation of the force that we find in figures 10.8
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and 10.9.

Note: When we consider the mechanism that we think underlies the strain-

stiffening response in these networks, we expect a significant portion of the fibers

can avoid being stretched when the network is deformed. Assuming this is indeed

the case, the number of fibers that have strains at or near 0 is very large! (See the

discussion of the underlying mechanism in chapter 11 and the direct measurement of

fiber strains in chapter 9.)

Figure 10.10: On average, the population of fibers that are compressed have an orientation

that is perpendicular to the principal axis of strain, while the fibers that

become stretched lie along the principle axis of strain. Moreover, it may be

the case that in our experiments there is a delay before fibers in the stretched

direction actually become stretched. They therefore have 0 strain initially.

Moreover, we may (incorrectly) think that errors in our measurement might still

cancel: since the fibers are distributed isotropically, there will be as many fibers

pointing in one direction with an erroneous positive shear strain contributing an

erroneous positive force to the shear stress, as there are fibers in the other direction

contributing an erroneous negative force to the shear stress. This is not the case

because, on average, the amount a fiber is stretched depends on its orientation in the

network. Fibers perpendicular to the primary direction of strain (roughly fibers with
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π
2
< θ < π) will be compressed while fibers along it (roughly fibers with 0 < θ < π

2
)

will have very little or no strain (see fig. 10.10, see also the distribution of strains as a

function of angle fig. 9.11 and the discussion of the underlying mechanism in chapter

11). Consequently, the fibers with strains around 0, where noise problems arise, tend

to be oriented primarily in the direction of stress and, therefore, contribute positively

to the shear stress (fig. 10.8 and fig. 10.9).

Consistent with this, if we assume for a moment that compressive elements do

not buckle and instead compress, we would have gotten an even smaller shear stress

approximation (fig. 10.8 and 10.9 gray line). (Some of the compressed elements

would cancel the positive elements. However, this approximation still overestimates

the actual shear stress because the compressed fibers, on average, add to the total

shear stress when, in reality, the force required to buckle them should, in fact, be

negligible.)

10.4 Shear stress estimation: average first and then

sum (a seemingly correct but not correct way

to average)

One enticing (yet wrong) way to avoid this problem is by replacing the average

of the two products with the product of the averages in eq. 10.13 : < εcosθ >+=<

ε >< cosθ > where < ε > is the average of ε (including compressive elements). In

that way, positive and negative noise contributions should cancel, and the resulting

average strain, < ε >, should represent the average of the real strain without noise.
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After calculating this average, if the resulting average strain is 0, we assume that most

of the fibers are compressed and set the resulting shear stress to 0. The equation for

the shear stress would then become:

σwrng =


EAα < ε >< cosθ > if < ε >> 0

0 if < ε >≤ 0

(10.15)

This way of averaging (had it been correct) assumes that the average strain, < ε >,

must be roughly equivalent to the average strain of just the positive elements < ε >+.
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Figure 10.11: Comparison of the actual shear stress (dark blue line) to an estimation of the

shear stress for 0.2 mg/ml and 0.4 mg/ml samples (light blue line) averaged

using equation 10.15. For comparison, had we assumed the force to compress

a fiber was equal and opposite to the force required to stretch a fiber, we

would get the estimation in gray.

When we repeat this on the four data-sets that we evaluated before, we find that

the estimated shear stress (fig. 10.11 and 10.12 light blue curve) is 0 initially and

always underestimates the actual shear stress (fig. 10.11 and 10.12 dark blue curve).
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Figure 10.12: Comparison of the actual shear stress (dark blue line) to an estimation of the

shear stress for 0.8 mg/ml and 1.6 mg/ml samples (light blue line) averaged

using equation 10.15. For comparison, had we assumed the force to compress

a fiber was equal and opposite to the force required to stretch a fiber, we

would get the estimation in gray.

We can begin to see the problem with this method if we allow the fibers to bear

compressive load and estimate the shear stress with:

σwrngComp = EAα < ε >< cosθ > for all cases

including contributions from compressed elements. The approximated shear stress

measured like this is strongly negative at low strains (fig. 10.11 and 10.12 gray

curve). We know, on average, most of the fibers are compressed at these strains. In

addition, those fibers are oriented roughly perpendicular to the principal direction

of strain (roughly speaking, these fibers will have π
2
< θ < π). These fibers should

contribute positively to the total shear stress (basically, they would push back against

the plate that is being sheared), yet, here they appear to be contributing negatively.

The reason for this is that although < ε > is negative, the average orientation of
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the fibers is between 0 and π
2
. This leads to < cosθ > being positive. The product,

< ε >< cosθ >, is therefore negative (contrary to what it should be).

10.4.1 Individual fiber strain and orientation are correlated

The reason the shear stress estimation in eq. 10.15 does not hold stems from the

fact that the strain a fiber is exposed to is correlated with its direction in the network.

We saw this was the case in chapter 9. Generally speaking, the average of a product,

< AB >, is only equal to the product of its averages, < A >< B >, when these are

not correlated. This can easily be seen by using the definition of an average,

< AB >=
1

N

N∑
i=1

AiBi

Now, we can always re-write Ai in terms of its deviation from the average, Ai =<

A > +δAi where δAi is the deviation. Doing a similar treatment of Bi, we can expand

the product in the sum:

< AB > =
1

N

N∑
i=1

(< A > +δAi)(< B > +δBi)

=
1

N
[(N < A >< B > +

N∑
i=1

(< A > δBi+ < B > δAi + δAiδBi)

= < A >< B > +
N∑
i=1

δAiδBi

When the variations in A and B are uncorrelated, the product of δAiδBi will go to

zero, on average, when we sum over all contributions (for a large number of elements).

However, in the event they are correlated, this may not be the case (If δAi is more

likely to be positive (or negative for that matter) when δBi is positive, then the sum

of the product will be non-zero.)
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For the shear stress approximation we can not, therefore, replace the product

< εcosθ > with < ε >< cosθ >.

10.5 Shear stress estimation: Bin fibers by orien-

tation, average and find shear stress

We would like to have a method to calculate the shear stress that will overcome

the overestimation that occurs from noise. We can not average over all of the strains

first, as discussed above, to find the average force. However, we can, instead, utilize

the fact that strain and fiber orientation are correlated. Our original equation for the

shear stress is:

σ = α < fs >+= αEA < εicosθi >+

Instead of averaging over all of the fibers to find the average fiber force, we divide

all possible orientation of fiber angles, θ, into nbin bins, θ1,2,3...nbin
(see fig. 10.13).

We segregate all of the fibers based on their orientation and respective binned angle.

Then we can re-write the equation for the shear stress, equivalently, as:

σang = αEA < εicosθi >+= αEA

nbin∑
s=1

φθs < εcosθs >+,θs

where the sum ranges over the all of the binned angles and φθs , is the fraction of fibers

at each binned angle. Here, we have introduced the notation, < .. >+,θs , to denote

the average over just the fibers that have the binned angle, θs, and all negative strains

contribute to the average with 0 strain. If we note that for each s, θs is constant, this
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Figure 10.13: Graphic illustrating the segregation of fiber angles with respect to the top

plate.

equation becomes:

σang = αEA

nbin∑
s=1

φθs < ε >+,θs cosθs

To this point, writing the shear stress in this manner is completely equivalent to the

most standard average, eq. 10.13. However, here we make an assumption. If this

assumption is correct, then the following remains equivalent to eq. 10.13, yet we can

overcome our noise limitation; if the assumption is wrong, then the following is not a

correct expression. The assumption we make is that for each fixed angle, that instead

of averaging over just positive ε at this fixed angle, we can first average over ε for all

of the fibers at this fixed angle, including negative contributions and then, set the

average to 0 if the result is negative. Basically, what this assumes is that for a given

angle, all of the fibers with that angle have an approximately uniform strain. So, the

final equation for the shear stress approximated in this manner becomes:

σang = αEA

nbin∑
s=1

φθs < ε >θs cosθs, (10.16)
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with < ε >< 0 contributing 0 to the product in the sum.
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Figure 10.14: Comparison of the actual shear stress measured in a rheometer (dark blue line)

to an estimation of the shear stress (light blue line) utilizing the orientation of

fibers to calculate their average strain for 0.2mg/ml and 0.4mg/ml samples.

This calculation is repeated for an affinely deformed network (red line).

We calculate σang for the four different data-sets. These show the best correspon-

dence to the actual shear stress (see fig. 10.14 and 10.15). We use an average fiber

radius to fit the shear stress approximation for each data-set. The radii we find are

in good correspondence with what is reported in the literature: Fibrin polymerized

in buffer with 20mM CaCl2 and 0.1 U/ml thrombin (as we have here), should have

radii around 75 + /− 30 (for a 3 mg/ml sample measured using SEM) (Ryan et al.,

1999). The radii we find have a good correspondence with this expectation (see table

10.1).
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Figure 10.15: Comparison of the actual shear stress measured in a rheometer (dark blue line)

to an estimation of the shear stress (light blue line) utilizing the orientation of

fibers to calculate their average strain for 0.8mg/ml and 1.6mg/ml samples.

This calculation is repeated for an affinely deformed network (red line).

10.6 Normal stress estimation

To estimate the normal stress exerted by the network on the top plate, we will

repeat the basic approach we used to estimate the shear stress. Analogous to the

shear stress, we can write the normal stress in terms of the average force from all of

the individual fibers in the normal direction (z-direction in our experiment). We use

coordinates so that a negative normal force corresponds to the network pulling the

plates towards each other while a positive normal force corresponds to the network

pushing the plates apart.

σn = α < fn >+
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Table 10.1: Expected average radii from shear stress estimation

concentration radii(nm)

0.2mg/ml 29

0.4mg/ml 45

0.8mg/ml 105

1.6mg/ml 144

Again, by using the force extension curve from an individual fiber (eq. 10.11), we can

re-write this equation in terms of the average strain on the top plate:

σn = −αEA < εsinθ >+

where, again, E is the Young’s Modulus (for all calculations we take this from liter-

ature to be roughly 14MPa) and A is the average area of an individual fiber (which

we leave as a fit parameter). Again, the notation, < .. >+, indicates an average over

all strains where negative strains contribute 0 in the calculation of the average (since

we have ignored the contribution from buckled fibers).

We calculate this result for three different datasets4 and choose A so that the

minimum normal stress corresponds to the normal stress we measure in the rheometer

at the same strain. We find that this estimation (fig. 10.16 light blue curve) is very

far from the actual normal stress.

4For most of the calculations in this chapter we use four data sets. However, the normal
force from the lowest concentration sample is too low to measure in the rheometer
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Figure 10.16: Comparison of the actual normal stress measured in a rheometer (dark blue

line) to an estimation of the shear stress (light blue line) calculated in the

most straight forward manner. This calculation is repeated for an affinely

deformed network (red line). We also repeat this calculation assuming the

fibers do not buckle but rather, compress (light gray line)

As in the shear stress measurement, we can guess that this overestimation stems

largely from the noise in the measurement (see section 10.3.1 for a full discussion).

To address this, we can try an approach similar to what we tried for the shear stress

estimation and replace the average of the product with the product of the averages.

For the shear stress measurement, this was not acceptable because the individual

fiber strain, ε and the orientation of a fiber, θ are correlated. This is also the case

with the normal stress. However, although cosθ and ε are correlated, I do not expect
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Table 10.2: Expected average radii from normal stress estimation.

concentration radii(nm)

0.4mg/ml 31

0.8mg/ml 28

1.6mg/ml 93

sinθ and ε to be correlated (for every sinθ you can find fibers that have a variety of

strains).

σavg =


EAα < ε >< sinθ > if < ε >> 0

0 if < ε >≤ 0

(10.17)

We perform this calculation for the three data sets (fig. 10.17 light blue line) and

find a much better match to the actual shear stress data (fig. 10.17 dark blue line).

To find the corresponding radii for these fits, see table 10.2.5

5The normal force measured in the rheometer from the 1.6mg/ml sample appears a little
strange compared to the other data-sets that have a curve that varies more smoothly. I
have, in general, run this measurement on a large number of samples (with this and other
concentrations) and think this particular sample looks a little strange. However, I have
added this here for completeness, since this sample is used throughout this thesis.
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Figure 10.17: Comparison of the actual normal stress measured in a rheometer (dark blue

line) to an estimation of the shear stress (light blue line) calculated using

equation 10.17. This calculation is repeated for an affinely deformed network

(red line). We also repeat this calculation assuming the fibers do not buckle

but rather, compress (light gray line).
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Chapter 11

The mechanism underlying

strain-stiffening in fibrin networks

In this chapter, I include some observations from microscopy, review measure-

ments from previous chapters and use these to motivate the underlying origin of the

mechanical response of strain-stiffening in fibrin networks. I then elaborate on the

implications of this mechanism and how it fits into the context of our current under-

standing of network mechanics. Lastly, I speculate on certain interesting limits and

try to give some intuition about some of the behaviors we observe.

Briefly, what I find is that the strain-stiffening response arises when the network

transitions from a linear regime, where fibers can avoid being stretched, to a non-

linear regime in which individual fibers must become stretched.
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11.1 Observations from microscopy

We have a few pieces of data that can be used to understand the general behavior

of the network as it is sheared and, from this hypothesize the general mechanism that

underlies the strain-stiffening. However, it might be easiest to first show the most

compelling piece of data (the microscopy images), explain what I think is going on

and, then, explain the quantitative evidence we have to back up this picture.

shear direction

Figure 11.1: Several maximum projections taken in the Y-Z plane as the network is sheared

to four strain points. Two typical node motions are illustrated. The upper set

has the two nodes marked in blue and red, while the lower set has the fibers

outlined in yellow. Blue arrows indicate bent and buckled areas, while the

straight yellow line illustrates the straightness of the fiber through both nodes.

We take a maximum projection of several Y − Z slices taken from each image

stack as the strain on the network is increased (see fig. 11.1 the direction of strain,

−y, is shown going towards the right-hand side of the page). By examining these

projections, we can see a distinct behavior of two branch points that represents a
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behavior that is often seen as the network is strained. These two nodes are connected

via fibers which form a sort of zig-zag shape through them (see fig. 11.1). As the

network is strained to small strains, the upper node starts to move downwards in

the z direction. This is a highly non-affine motion (had the motion been affine, we

would have seen the nodes simply translate over in the −y direction). As the node

moves downwards in z, the fibers perpendicular to this motion (and somewhat out of

the XY plane), begin to bend and buckle. As the strain on the network is increased

further, the fibers move more non-affinely until the fibers that connect the nodes form

a straight line (see fig. 11.1). Once this line has formed, these nodes move relatively

affinely, and the individual fibers start to become stretched. The point where the

fibers form a straight line coincides well with the onset of strain-stiffening in the

network.

If we examine this motion more closely and compare it to the affine expected

motion, we can intuitively understand why the network undergoes this type of motion

(see fig. 11.2). Basically, the nodes in the network move analogously to strings

connected via nodes that exert little resistance to bending. If we tug on the ends

of these strings (see fig. 11.2 black arrows), the fibers will move to avoid being

stretched, and they do not begin to become stretched until a straight line is formed.

If we compare this to the affine predicted case, we do not see this motion, and the

angle of the fibers stays basically fixed (see fig. 11.2 red prediction).
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shear direction

actual

affine

Figure 11.2: The outlined portion of the fibers taken from figure 11.1. The upper panels

are the actual motion while the lower panels are the motion we would expect

had the network moved affinely.

11.2 The mechanism

If we assume the network as a whole undergoes a similar type of behavior, we

can build a basic understanding of the mechanism that underlies the strain-stiffening

response of the network: As the network is sheared to low strains, the fibers utilize

bending, rotation at branchpoints, and buckling to deform without stretching. Since

the force to bend or buckle a fiber is low, the network is deformed with a small amount

of force, and the stiffness is low. As the strain on the network is increased, some of the

individual fibers must begin to become stretched. This requires more force, and the

stiffness of the network increases. As the strain is increased even further, an increasing

number of fibers starts to become stretched, and the stiffness increases non-linearly

with increasing strain. This behavior is qualitatively similar to the strain-stiffening
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response we measure.

This is already a fine hypothesis to explain strain-stiffening in these networks.

However, we can also predict what we expect will happen at even higher strains

based on this simple explanation (if the network does not break). As the strain on

the network is increased sufficiently past the point where the network mechanics show

non-linear stiffening, all of the fibers that will become stretched are stretched, and no

additional fibers contribute to the stiffness of the network; at this point, the stiffness

of the network should again become constant (the network is essentially behaving like

springs in parallel). Up to this point, the hypothesis we have built depends on fibers

that are behaving linearly and, indeed, the individual fibers have been measured to

be linear to high stress/strain (Hudson et al., 2010). However, the fibers will exhibit

a non-linear stiffening response once they are stretched to very high stress or strain

(beyond strains of 1). Consequently, we conjecture that if the strain on the network

can be increased far enough without the sample breaking, the individual fibers will

stiffen and we will in fact, get a second non-linear stiffening response.

For the first part of this mechanism, I have many quantitative pieces of evidence

that support this hypothesis (see the section below). For the second part of this mech-

anism, we can compare to the rheological response we measure at high stress/strain

(see the section on the differential stiffness below).

This behavior of the network most likely indicates that the network has soft bend-

ing modes. We review what this means and what is already known about these kinds

of systems in section 11.5.
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11.3 Comparison to data from this thesis

I will review different pieces of data I have found that support my hypothesis for

the mechanism that underlies the strain-stiffening response in fibrin networks:

• The non-affinity peaks at the onset of strain-stiffening. For every sample tested,

the differential non-affinity peaked at the onset of strain-stiffening. This indi-

cates some sort of motion on a network level. We think the individual fibers

transition using a very distinct type of motion from primarily bending or ro-

tating at branch points to becoming stretched. The peak in non-affinity may

be a signature of this motion (see the chapter 7 on non-affinity). Furthermore,

simulations of analogous (low-connectivity) networks also show a peak in non-

affinity when the networks transition from bending or rotating to stretching (see

comparison to other work below 11.5).

• The angles between fibers change significantly at the onset of strain-stiffening.

When we examined how the angles between fibers change (the branch point an-

gles) as the network strain-stiffened, we saw the largest change at the onset of

strain-stiffening. Since we think that fibers rotate significantly about the indi-

vidual branch points, this change is consistent with the underlying mechanism.

• The fibers are not stretched in the direction of strain. When we examined

the mean individual fiber strain < ε >, for all of the fibers in the network in

chapter 9, we found that the network exhibits, on average, a negative < ε >

at low system strains γ, before crossing 0. Moreover, we found that the earlier

the γc was for a sample, the earlier the mean strain became positive for the
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network. When we examined the distribution of mean fiber strain at different

fiber orientations in the network, we found that the fibers that are expected

to become stretched are actually not stretched until the network entered the

non-linear regime, while the fibers that are expected to become compressed,

compress (chapter 9). This corresponds well to our mechanism and indicates

that fibers are, indeed, not stretched until the non-linear regime. Moreover, this

explains the mean compressive strain being initially negative: since a portion of

the fibers are buckled or bent (leading to an apparent negative strain1) and the

rest of the fibers are unstretched, the average between these must be negative.

• The shear stress of the network is well-approximated assuming the fibers behave

as linearly elastic elements that require no force to bend. The fact that we

can approximate the shear stress well using an only a linear fiber response not

only qualitatively supports our hypothesis, but also quantitatively supports our

hypothesis that linear fibers can lead to a non-linear network response owing to

the architecture of the network.

• Average connectivity number near 3 The average connectivity number of each

node is quite low (around 3). In the absence of bending or branch point stiffness,

a network needs a connectivity number of at least 6 to form a network that will

begin to stretch immediately. When a network has a lower average connectivity

1To understand why buckling or bending gives a ‘negative’individual fiber strain, recall
our definition of ε = δl./l. This was defined for the end-to-end distance between branch
points. When fibers bend or buckle, the fiber end points get closer together or stay roughly
the same distance apart. Therefore, ε, measured as it is defined, will be 0 or negative. (Also,
recall that fibers are long and slender. Therefore, they will not bear compressive load and
will, instead, buckle)
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number, the network can undergo other types of motions (such as the ones we

observe) and the network mechanics may be non-linear (Wyart et al., 2008). I

explain this in more detail in the section 11.5.

• The mechanical response of platelets in the presence of fibrin. We don’t discuss

the mechanical response of platelets on the fibrin mechanics in this part of

the thesis. However, when we add platelets, which act as small contractile

elements, their effect on the mechanics of fibrin is exactly as expected from

our interpretation of the mechanical response (see the part of this thesis on

platelets).

11.4 The mechanical regimes of fibrin

In this section, we will investigate how the network behaves throughout a range

of stresses and strains. In particular, we will investigate how the network behaves

at very high stress and strain. It is difficult to examine a stress-strain response on a

linear plot and see exactly how the stress changes with respect to strain. In particular,

it is difficult to see if the change is linear or non-linear; therefore, we instead examine

the differential modulus, K ′, of the network on a logarithmic plot (K ′ is just the

derivative of stress with respect to strain. For more details see section 2.2.1)

The network response shows four regimes2: I have numbered these regimes from

low to high stress (see fig 11.3).

2At very, very small stress or strain, you sometimes see another regime; however, tou
cannot see this in the figure shown. I do not know why this sometimes occurs (it is at
very, very small strains (less than 1% usually) so it might have to do with the rheometer.
Although, maybe it is interesting!)
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1. At the lowest stresses, the network has a constant stiffness (corresponding to

the linear modulus of the sample).

2. The response of the network is non-linear.

3. The network becomes less non-linear and almost shows a constant stiffness.

4. At very, very high stress the network will show a final non-linear regime.
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Soft Modes

Increasing number
of �bers becoming 
engaged

Fibers being pulled 
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Nonlinearity of 
individual �bers

Figure 11.3: The differential modulus of fibrin. The response shows four different regimes.

The mechanical response of fibrin is consistent with our understanding of its mi-

croscopic behavior:
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1. The low strain, linear regime, corresponds to the soft bending modes being

‘pulled out’as the strain on the network is increased.

2. The second regime corresponds to an increasing number of fibers becoming

stretched and contributing to the stiffness of the network.

3. The third regime corresponds to the point where no more fibers contribute to

the bulk strain, and the fibers that are being stretched remain stretched, leading

to another almost constant stiffness regime. In this regime, the fibers are just

being pulled in parallel with a slight change in angle from the geometry of the

shear deformation (leading to the non-constant shear modulus).

4. The final regime occurs when the individual fibers do eventually become non-

linear (in many samples, the network does not reach this point before breaking).

As further evidence, we compare the K ′ response of several different concentrations.

The low strain modulus in regime 1 shows a roughly c2 scaling. This is consistent

with a linear regime in which the response is bending dominated (Piechocka et al.,

2010). Moreover, in regime 3, the fibers are behaving like springs in parallel and the

high strain modulus scales with the number of fibers being pulled. Therefore, we

expect it to collapse with concentration. These scalings are consistent with scalings

found in previous rheological studies on fibrin networks (Piechocka et al., 2010).

These mechanical regimes of fibrin have been reported before (Piechocka et al.,

2010). However, their underlying origins were attributed to the thermal motion and

resulting non-linear response of individual fibers.
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11.5 Discussion and relation to other studies

There are three predominant models to explain the strain-stiffening response of

fibrin networks. These all assume a non-linear mechanical response of the individ-

ual fibers arising from backbone stretching (Hudson et al., 2010), an attenuation of

thermal fluctuations (Piechocka et al., 2010), or water expulsion (Brown et al., 2009)

when the bulk network is strained. Our results, however, suggest that a non-linear

fiber response is not necessary to explain the non-linear response of the bulk network.

This is consistent with atomic force microscopy measurements of the stress-strain re-

sponse of individual fibrin fibers that show the fibers have a linear response to strains

of 1 or higher (Hudson et al., 2010; Liu et al., 2010). The average individual fiber

strains we measure are significantly below 1 at the onset of strain-stiffening.

In addition, to the three prominent models that rely on a non-linear response of

individual fibers, another important idea is based on a simulation which shows that

stiff biopolymer networks can transition from a bending-dominated to stretching-

dominated regime (Onck et al., 2005; Kang et al., 2009). This is more consistent with

our findings. This study was based on a simulation without an analytic model. Below,

I will discuss more analytic approaches to understanding these types of networks.

Then, I will reconcile our results to previous simulations of network behavior.

Since a linear fiber model is sufficient to explain the non-linearity of the network,

the non-linearity we find must be a result of the network geometry or how the fibers are

connected. Although never directly applied to fibrin, some recent general theoretical

developments have shown that such a response is possible. These ideas hinge on very

old ideas originally posited by Maxwell. He found that for a structure composed of
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freely hinged springs to be rigid (i.e. exhibit a finite shear modulus), each degree

of freedom for a node must be, on average, constrained by its neighbors. This is

satisfied in large systems when the average node connectivity of a network, z, exceeds

the critical value, zc, of 6 in three dimensions (Wyart et al., 2008; Tang and Thorpe,

1988). When this condition is not satisfied and z < zc, the network will be ‘floppy’and

have a 0 shear modulus at low strains. A significant amount of work has been done to

gain an understanding of how networks transition from having no shear modulus to

having a finite shear modulus in the 0-strain limit. These studies usually fall under

the heading of ‘rigidity percolation’(Tang and Thorpe, 1988). More recently, Wyart

et al. built on this work and investigated the mechanical response of low-connectivity

networks when the strain on the network is increased to finite strains. This study

demonstrated that when a floppy network is strained, it will eventually yield a nonzero

stress response that increases non-linearly with increasing strain. This is reminiscent

of the strain-stiffening response we see in stiff biopolymer networks, such as fibrin. In

their model, they predict that the characteristic strain in these networks should scale

linearly with δz = zc− z (the higher the average connectivity number of the network,

the earlier the stiffening response should occur) (Wyart et al., 2008). Fibrin networks

have a z slightly larger than 3 (see chapter 6). This is much less than the critical

connectivity of 6 in three dimensions. This would suggest that our networks are, in

fact, floppy and the possible origin of our strain-stiffening is from its low connectivity

number. However, although we find a large spread in the onset of strain-stiffening

for the four different concentrations we probe, we do not measure a corresponding

change in the average node connectivity.
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A recent theoretical study, however, has shown that incorporating fiber bending

stiffness to a system with z < zc adds constraints to the system and effectively

lowers the critical constraint number (Broedersz et al., 2011). This may explain

the discrepancy between our results and the predictions of Wyart, et al.: if the

difference in γc between the different data-sets is not due to a change in the average

connectivity number, it may instead arise from a difference in the bending stiffness of

their constituent fibers. To explore this possibility, we consider the bending stiffness,

κ, of individual fibers in different concentration networks. In the simplest case, the

bending stiffness of a fiber with circular cross-section is given by κ = E π
4r4

where E

is the Young’s modulus and r is the radius of the fiber. If the radius of our fibers

remains approximately fixed for the different network concentrations, the bending

stiffness should also remains fixed. However, the bending stiffness may effectively

change as the fibrin concentration is increased. The reason this may be the case is

that with increasing fiber concentration, the average fiber length shortens, making it

effectively more difficult to bend each fiber. (You can also imagine scaling everything

in the network by a characteristic length (such as the mean fiber length). In this case,

the radius would also become effectively larger as the characteristic length became

smaller with higher fibrin concentration). Consequently, the higher concentration

samples may, indeed, be more constrained, leading to their strain-stiffening response

occurring at lower γ. Unfortunately, the study by Broedersz et al. did not extend

their study to finite strains. Therefore, there is no quantitative prediction exactly

how γc should change with κ, and a direct comparison to my measurements is not

possible.
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The type of behavior we find in fibrin is also reminiscent of simulations of some

biopolymer networks. The simulation that is the most prominent, at least in the more

general area of biopolymer mechanics, is the one performed by Onck et al. In this

simulation, they observe a low strain response that is bending-dominated and a high

strain response in which individual fibers must begin to become stretched. Moreover,

they see a peak in non-affinity at low strains consistent with our measurements.

They attribute the change in onset of strain-stiffening to the degree of ‘curviness’of

the individual fibers. Basically, as individual fibers become more curved, they have a

built-in ‘slack length’that delays the onset of strain-stiffening (Onck et al., 2005).

Another interesting simulation investigated low connectivity networks with varied

bending stiffnesses (Broedersz and MacKintosh, 2011). Qualitatively, the simulated

mechanical responses are very similar to mechanical responses we measure. Specifi-

cally, the simulated networks exhibit three stiffness regimes similar to the first three

stiffness regimes of fibrin (recall, we think the fourth regime is from the non-linearity

of the fibers). In addition, with increased bending stiffness, the low-stress, linear

modulus increases in the simulated networks, but the higher stress response remains

unchanged. This is consistent with the behavior of the differential stiffness of fibrin

when scaled by fibrin concentration.

11.6 String theory

In this section, I comment on the interesting limit where fiber compression requires

no force and re-emphasize the role of geometry in understanding the strain-stiffening

response of these networks.
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In many of the theoretical models of networks with a low-connectivity number,

they posit that the network will deform via bending if this is energetically favorable

in comparison to stretching. However, even in the total absence of bending stiffness,

the network must begin to stretch eventually. This is clear from the work of Wyart

et al. which simulated networks of springs with no bending stiffness or branch point

rigidity and found a non-linear network response (Wyart et al., 2008).

In fact, a clever way of examining this limit is geometrical. As a warning - I

never figured out a way to solve this problem except in a brute-force manner, and

you would not expect this simple explanation to hold for large systems. However, it

is an interesting approach to the question so I will examine it here. Basically, this

represents the point at which the network must begin to stretch even in the absence of

bending stiffness. We treat the fibers basically as extensible strings. Therefore, they

can buckle and bend with essentially no force. If we examine an area in the network,

we have nodes on the top and bottom plates, nodes in the middle of the network,

and connections between the nodes. As the top plate of the network is sheared, all

of the nodes on the top plate move with the motion of the plate, and the bottom

nodes remain fixed. This deformation will require no force as long as none of the

fibers within the network are stretched. This can be accomplished by placing all of

the nodes so that none of the distances between two nodes is greater than the length

of the fiber that connects them (note, in this case, it can be closer than the length

and still cost no energy). Once there are no arrangements left that can satisfy this

condition, the network must begin to stretch the individual fibers and show a stiffer

mechanical response. This is a purely geometrical way of examining the problem.
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11.6.1 Strings are an interesting limit

The limit we just used, where fiber bending, buckling, and rotation cost no energy,

is an interesting one.3 It is distinct even from networks simulated by Wyart et al. (In

this study, they used networks of springs, so compression of the elements requires the

same amount of force as extension of the elements). There have been no theoretical

studies on low-connectivity networks that incorporate fiber buckling (as far as I know),

but it is likely to be an interesting limit. It might seem that this should just reduce

the effective connectivity number by two, but I think it will be a bit more complicated

than this. A quick argument why:

Consider an individual node in a random network connected to two other nodes.

Let us start by examining the symmetric force case where the amount of force required

to strain the fiber is the same as the force required to compress a fiber. In this case,

the central node will have the lowest energy state if it neither stretches nor compresses

its connecting fibers. This will constrain it to sit on a circle (or sphere in 3-space)

with a radius of the length of the fiber. If a node is connected to two fibers, each fiber

defines a circle, and the node will sit on the intersection points of these circles (see fig.

11.4). If, instead, we consider the asymmetric force case where the force required to

compress a fiber is effectively 0, then the node can occupy any area (or volume in 3D)

with low energy as long as it is within the length of each fiber that connects the node

3In fact, in its simplest form, the fibers behave almost like the opposite of solutions of
hard spheres. In these systems, it is impossible to push two spheres closer together than
the sum of their two radii while you can pull them as far apart as you want with little or no
energy cost. In the case of a network of strings, it is more costly to pull two nodes further
away from each than the length of the fiber that connects them, but it requires no energy
to push them together. A big difference between the two systems is that, in the case of
connected strings, the connectivity of the network cannot change.
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to its neighbors. The node is therefore significantly less constrained in comparison to

the symmetric force case. Now, if the two neighboring nodes start to move away from

the central node, as would happen in a shear experiment, it is clear that the overlap

area will start to shrink. At high enough strain, it will vanish completely, and the

fibers will have to become stretched; therefore, although the neighboring nodes may

not seem to matter at low strain, these constraints will ‘re-appear’at higher strains.4

11.7 Why does the network move non-affinely?

There is currently no ‘theory of non-affine motion’and understanding under-constrained

networks at finite strains is still being actively investigated. Of course, the reason

a network behaves non-affinely is because this represents a lower energy state. This

is a somewhat vague notion; however, we develop a bit of intuition about the exact

network behavior by considering what happens to a few representative fibers as a

small network is sheared.

We create an over-simplified network composed of a few fibers (see figs. 11.5

and 11.6). When the network is deformed affinely, the nodes and fiber positions are

all determined by the affine transformation (they simply translate over the amount

prescribed by the transformation). We move the nodes and fibers in fig. 11.5 to

mimic this type of motion. With an affine type of deformation, some of the fibers

have become longer/stretched, and some of them have become shorter/compressed.

4You can almost think of the overlap volume that we have just defined as some sort of
free volume or an area the node can explore with little energetic cost
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Two points cost neither 
compressive or tensile energy

This area doesn’t cost 
any tensile energy 

Figure 11.4: Graphic of all of the positions a node connected to two other nodes can occupy

in 2D when compressing a fiber requires the same force as stretching a fiber

or, alternatively, requires no force at all.

This costs a lot of strain energy. Moreover, we examine some of the central nodes

and note that force balance clearly does not hold at these points (unless we added

some torque from the branch point stiffness or something similar to compensate) (see

fig 11.5).

Now, we repeat the deformation but let the nodes move non-affinely. Again, the

upper plate moves, and the nodes connected to the upper plate move with it. However,
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Figure 11.5: When a network moves affinely, every point translates in the direction of strain

a fixed amount. The sheared network (right-hand side) will have strains over

the fibers that depend solely on their original orientation in the network.

now that the individual fibers can move non-affinely, they find a network configuration

that lowers the total number of stretched or compressed fibers. In the example in

fig. 11.6, we see that an arrangement in which none of the fibers are compressed or

stretched is possible. This gives us some intuition about why the nodes might move

non-affinely and exhibit the types of behaviors we observe in the network.

11.8 Conclusion and future directions

We find that fibrin networks have soft-bending modes. As the network is deformed,

it utilizes these soft-bending modes to deform without stretching the individual fibers.

At high enough strain, these modes will be exhausted and the individual fibers will

begin to become stretched. This type of microscopic behavior as well as the resulting

mechanics are consistent with the behavior and mechanics of networks with low-
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Figure 11.6: When a network moves non-affinely, the nodes in the network can move trans-

versely or less/more than the affine expected motion. This enables the network

to relieve the strain on the individual fibers. In the graphic above, the fibers

have all moved to accommodate the strain without stretching or compressing

any of their components.

connectivity number and small bending stiffness.

The current theoretical work done in understanding low-connectivity networks

with bending stiffness have primarily focused on the behavior of these networks in

the 0-strain limit. It will be interesting to quantitatively compare further work on

the finite-strain limit to real networks such as the fibrin networks we have explored

in this thesis.

In previous studies, whether the network deforms via stretching or bending de-

pends in large part on the relative energies required to deform in these manners.

Moreover, although never considered in simulations or models of low-connectivity

networks, networks composed of fibers which can buckle with little or no force may
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be an interesting limit. In particular, this limit may be interesting for fibrin systems

where we observe significant fiber-buckling as well as a regime where most fibers are

highly compressed at low system strains. 5. Beyond accounting for the relative ener-

gies of bending, stretching, rotation etc., there is also a geometric upper limit where

fibers must begin to become stretched. Future theoretical work will undoubtedly

uncover the relative importance of each these different aspects.

Moreover, fibrin is similar to other stiff biopolymer networks such as highly bun-

dled actin or collagen networks. These networks also have nodes with low connectivity

number. Therefore, their mechanics may also be well understood from the context of

networks with soft bending modes. However, this remains to be investigated.

5The stiffness from rotation at individual branch points is also likely to be important.
However, we have not seen any obvious signatures of this in our measurements of fibrin
behavior.
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Part IV

Platelets!



Chapter 12

Effect of platelets on fibrin

mechanics

We measure the mechanics of fibrin networks at different concentrations with in-

creasing platelet concentration. The procedure to measure the mechanics is relatively

straightforward: we initiate the polymerization of a fibrin gel with thrombin, which

also activates the platelets. This causes the platelets to start to adhere to and con-

tract the fibrin gel once it begins to form. The mixture is quickly pipetted in between

two rheometer plates. This mixture is incubated for at least one hour to allow the

fibrin network to form and the platelets to finish contracting. Afterwards, we impose

a steadily increasing strain on the sample and measure the resulting stress.
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12.1 Stress-strain response in the presence of platelets

Consistent with our previous measurements, in the absence of platelets, the stress-

strain response of the network shows strain-stiffening (see fig. 12.1 blue line). As we

increase the platelet concentration, the curve shifts to earlier strains (fig. 12.1 red

and green curves) (Shah and Janmey, 1997).

0 10 20 30 40 50 60 70
0

5

10

15

20

γ (%)

σ
(
P
a
)

 

 

no platelets

1.5% platelets

6% platelets

Figure 12.1: Stress-strain response of a 0.2mg/ml network with increasing platelet concen-

tration

12.2 Differential stiffness

It is easier to interpret these data by examining the differential stiffness of these

networks, K ′. This is simply the derivative of the stress-strain curve at every point,
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K ′ = dσ
dγ

. It is a measure of the stiffness of the sample. At low strains, this value

corresponds to the linear modulus of the sample. We can either plot this value versus

stress, σ (see fig. 12.2), or versus strain, γ (see fig. 12.3). The former is useful in

understanding the stiffness of a sample when a given force is applied. The latter is

useful for understanding the stiffness of a sample at a certain degree of deformation.
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Figure 12.2: The differential stiffness for many samples versus stress. Each color is a dif-

ferent fibrin concentration. The darker the color the higher the amount of

platelets in the sample.

If we examine how the platelets change the mechanical response of the network

versus stress, we find that, with increasing platelet concentration, the linear modulus

of the network increases but eventually intersects the curve without any platelets.

We can understand this change by considering what is going on in the fibrin network

in the absence of platelets. At small stresses, the stiffness of the gel is determined by

the force required to bend or rotate the individual fibers. Adding platelets to the gel
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Figure 12.3: The differential stiffness for many samples versus strain. Each color is a dif-

ferent fibrin concentration. The darker the color the higher the amount of

platelets in the sample.

causes the platelets to ‘pull-out’some of the soft bending modes causing the network

to be more constrained. This leads to a stiffening of the network in this regime.

However, once it reaches the high-stress regime, where all of the fibers that will be

engaged are being stretched, the network again just behaves like springs being pulled

in parallel. This shows that the high-strain response of the gel remains unchanged. It

also indicates that the platelets act solely as contractile elements. In particular, they

do not behave as stiff inclusions in a soft background matrix as previously proposed

(Lam et al., 2010).

We can characterize exactly how the linear modulus, G0, critical stress, σc and

critical strain, γc scale with fibrin concentration for different platelet concentrations.

We find that with higher fibrin concentration, the effect of the platelets is less for
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both σc and G0 (fig. 12.4).
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Figure 12.4: Network structure for 0.2mg/ml fibrin with increasing platelet concentration

12.3 Relation to previous results

A simulation of low-connectivity networks measured the differential stiffness of

the networks with increasing ‘motor concentration’. The ‘motors’acted like small

contractile elements similar to the platelets in the fibrin gels. The linear modulus

in these networks increased with increasing motor force; this is consistent with the
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results we measure here. Moreover, these simulations indicated that an affinely de-

forming network sets un upper limit to the K ′ (Broedersz and MacKintosh, 2011).

The platelet/fibrin composite network response showed less of a mechanical change

with increased fibrin concentration. We expect from the smaller non-affinity and ear-

lier strain-stiffening, that high concentration fibrin networks are more constrained.

Therefore, these data may indicate that the closer a network is to the upper affine

limit, the more difficult it is for platelets to stiffen the gel further.
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Chapter 13

Effect of platelets on clot structure

We can examine how the structure of fibrin networks is altered with the addition of

platelets. We add platelets of three concentrations to fibrin networks of four different

concentrations. We take confocal image stacks of randomly selected areas in each

network. We examine maximum projections corresponding to equal volumes for each

of the networks. The platelets appear as white spots in these images. Examining

the images, we find that platelets cause a significant amount of aster-like formation

around them in the network (see all figures in this chapter, 13.1, 13.2, 13.3, 13.4,

13.5). This is more significant for the low-concentration networks and becomes less

significant for higher concentration fibrin networks.

This is consistent with our measurements of the mechanical effects of platelets.

The lower fibrin concentrations show a more pronounced change in linear modulus

when platelets are added. A similar alteration in the structure is consistent with

our understanding that the primary effect of platelets on gel mechanics is through

contraction of the network structure.
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Figure 13.1: Zoomed in region of platelet contracted area

13.1 Relation to previous work

That platelets cause aster-like formation in fibrin gels is well-known (Carr, 2003).

That this change has a dependence on fibrin concentration has not been reported (to

my knowledge).
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(a) no platelets (b) 2% platelets

(c) 5% platelets (d) 10% platelets

Figure 13.2: Network structure for 0.2mg/ml fibrin with increasing platelet concentration
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(a) no platelets (b) 2% platelets

(c) 10% platelets

Figure 13.3: Network structure for 0.4mg/ml fibrin with increasing platelet concentration
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(a) no platelets (b) 2% platelets

(c) 5% platelets (d) 10% platelets

Figure 13.4: Network structure for 0.8mg/ml fibrin with increasing platelet concentration
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(a) no platelets (b) 2% platelets

(c) 5% platelets (d) 10% platelets

Figure 13.5: Network structure for 1.6 mg/ml fibrin with increasing platelet concentration
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Materials and Methods



Chapter 14

Fibrin

14.1 Basic fibrin polymerization protocol

1. Human alpha-thrombin and fibrinogen (H-T 1002a and FIB3 respectively, En-

zyme Research Labs, South Bend, Indiana) is stored at −80◦C.

2. Thrombin is kept on ice and diluted to twice its final concentration in fibrin

buffer. Thrombin is used quickly after dilution.

3. Fibrinogen is kept between 25◦C and 30◦C on a heat block. It is also diluted to

twice its final concentration in fibrin buffer.

4. For fluorescently labeled samples, a portion of the diluted fibrinogen is fluores-

cently labeled. It is added for a final ratio of 6 : 1 for unlabelled to labeled

fibrinogen.
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5. The 2X thrombin solution is added quickly to the 2X fibrinogen solution in

equal proportions. The solution is pipetted a few times rapidly and added to

the rheometer or shear cell in the appropriate amount.

6. For shear cell samples: the shear cell is ‘pre-blocked’with a fibrinogen solution

at ∼ 0.2mg/ml in fibrin buffer and allowed to incubate for at least 2 minutes.

It is then removed with a Kimwipe before adding the final sample. (On shear

cell samples with a force layer, this step is omitted.)

7. The samples are incubated for at least 6 hours to allow complete polymerization

and cross-linking.

14.2 Fluorescently labelling fibrinogen

This protocol is adapted from the standard invitrogen protocol that comes with

the invitrogen TAMRA-SE (c− 1171 Invitrogen) dye.

1. First day: Dialyze fibrinogen at stock concentration( 15mg/ml) from−80◦C into

reaction buffer. Typically 1ml fibrinogen solution is added to a Slide-A-Lyzer

cassette

• RXN Buffer: 0.25M Sodium Bicarbonate, pH8.5

2. second day:

• 2mg TAMRA-SE (invitrogen c-1171) is dissolved into 100µl DMSO. Aliquot

this into 10µl volumes and store all but one in the −80◦C for future use

• Dilute the 10µl aliquot with 90µl RXN buffer.
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• Vortex to mix.

• Remove the fibrinogen from the Slide-A-Lyzer and put in eppendorf tube.

Add 100µl of the dye mixture to the 1mL of fibrinogen

• Let react for 1 hour while rotating at room temperature while the sample

vial is wrapped in aluminum foil

• Add this solution back into a Slide-A-Lyzer Cassette and dialyze against

fibrin buffer (see above protocol) for > 24 hours.

14.3 Basic rheological protocol

1. Add thrombin to the fibrinogen solution and load quickly into the rheometer

(typically I use the AR−G2 from TA instruments fitted with a 40mm, 4◦ cone

plate geometry).

2. As the network polymerizes, you monitor the polymerization by performing a

time sweep with a 0.5% strain amplitude and a frequency of 1 rad/s. The G′

and G” is recorded during this process. Usually polymerization takes several

hours (typically for the low thrombin concentrations I use, the sample takes ∼ 6

hours to polymerize).

3. Measure the stress-strain relation by imposing a steadily increasing strain on

the network and recording the corresponding stress. I try to match the rate

I use in the rheometer to the average rate I use during the shear experiment.

This depends on the size of the field of view I use in the microscope and the

step size I use. Typically, this results in rates around 5 ·10−5 or so (a long time).
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14.4 Construction of a shear cell without a force

layer

(a) ROS (b) ROS with the up-

per glass plate of the

shear cell

Figure 14.1: A ring of stability with and without the piece of glass that will be the top plate

1. Create a ROS (ring of stability) (see fig. 14.1a)

(a) Take a flat washer

(b) Take a large coverslip 22mmx22mm no. 1

(c) Using Norland Optical 81 adhere the coverslip to the washer.

2. Cut a regular microscope slide down to a ∼ 0.5 cm2

3. Place the ROS on the microscope.

4. Place the cut piece of slide on top of the ROS (see fig. 14.1b)

5. Epoxy the top plate to the end of a rod coming out of the 3D stage that will

eventually do the shearing (see fig. 14.2)
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6. Wait until epoxy is cured.

7. Raise the top plate up ∼ 0.8mm. (Use the 10x objective to find the distance of

the top plate from the bottom)

8. Then pre-block the sample for 2 minutes. Thoroughly wipe and dry the cell.

9. Then load sample

10. Seal the sample using a mineral oil

11. Wait for polymerization

12. Have shear fun!

Figure 14.2: A depiction of the finished shear cell sitting on the confocal microscope
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14.5 Basic shearing protocol on the microscope

1. The shear cell is constructed out a stage that can control motions in X, Y , and

Z. We have replaced the micrometer screw (or whatever it is called) in the Y

direction with a motor we can control with standard RS232 protocols.

2. Using a simple matlab code I wrote to control the motor, I set up a simple

script that moves the stage a fixed amount (in roughly 1% strain steps) at

timed intervals.

3. Then, I setup the confocal microscope to take an image stack at similarly timed

intervals.

4. To perform the shear experiment, you start the imaging on the confocal and

the script on the computer that controls the shear cell concurrently.

14.6 Force layer on a coverslip

(In collaboration with Stefan Muenster (SM) and Tom Kodger (TEK))

1. NuSil preparation a. Mix : i. Half NuSil A (with 1/5th NuSil A with beads

from TEK) ii. Half NuSil B by weight

2. Spin coat at 1000 RPMs onto a coverslip for a final thickness of 30um (done

by TEK)

3. Bake at 90◦C for at least 1 day

4. (Simultaneously: measure the NuSil rheology on the rheometer)
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14.7 Construction of shear cell with force layer

(In collaboration with SM and TK)

1. Create a ROS (ring of stability)

(a) Take a flat washer

(b) Take a large coverslip with a 30um NuSil layer

(c) Using Norland Optical 81 adhere the coverslip (force layer side away from

the washer) to the washer.

(d) Scrap NuSil off the sides of the coverslip using a razor blade. (leaving a

square in the center where your sample will go)

(e) Clean up any NuSil residue using hexane

(f) Cut two spacers with a height 200µm. This serves as a spacer to place

the top plate on while epoxying it. Place these strips on either side of the

square of NuSil

2. Cut a regular microscope slide down to a 0.5cm2

3. Place the ROS on the microscope (force layer side up).

4. Place cut piece of slide on top of the spacers on the ROS

5. Epoxy the top plate to the end of a rod coming out of the 3D stage that will

eventually do the shearing (see pic)

6. Wait till epoxy is cured.
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7. Use the 10x objective to find the distance of the top plate from the bottom

8. Raise the top plate up ∼ 0.8mm

9. Then load sample

10. Seal the sample using a vacuum grease in a syringe that is heated up. (The

grease should be liquid when it cools it seals in the sample without running all

over the place)

11. Wait for polymerization

14.8 Buffers

Fibrin Buffer 150mM NaCl, 20mM HEPES, 20mM CaCl2 pH7.4
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Chapter 15

Platelets

15.1 Polymerization of fibrin with platelets proto-

col

1. Human alpha-thrombin and fibrinogen (H-T 1002a and FIB3 respectively, En-

zyme Research Labs, South Bend, Indiana) is stored at −80◦C.

2. Thrombin is kept on ice and diluted to twice its final concentration in fibrin

buffer. Thrombin is used quickly after dilution.

3. Fibrinogen is kept between 25◦C and 30◦C on a heat block. It is also diluted to

twice its final concentration in fibrin buffer.

4. Immediately before initiating the polymerization of the fibrin and activation of

platelets, the following are mixed with equal volumes resulting in a solution of

fibrinogen and platelets in platelet buffer which have twice the final concentra-

tion for the sample.
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(a) Fibrinogen is diluted to 4 times its final concentration in platelet buffer.

For microscopy samples, a small amount of fluorescently labeled fibrinogen

(at a ratio of 1:6) is added to this solution (see the fibrin materials and

methods for more details on fluorscently labelling fibrinogen).

(b) Platelets are diluted to 4 times their final concentration.

5. To initiate the polymerization reaction, equal portions of the thrombin solution

from step 2 and the platelet-fibrinogen solution from step 4 are mixed together

and quickly pipetted either between two plates on the rheometer or into a flow

cell on the confocal microscope.

(a) Final concentration of thrombin: 0.25 U/ml

(b) Final concentration of platelets is systematically varied between 1% and

10%.

(c) Final concentration of fibrinogen is systematically varied between 0.2 and

1.6 mg/ml.

15.2 Platelet purification

Platelets were purified from human blood obtained from volunteers and subse-

quently gel-filtered as described in (Shah and Janmey, 1997) with the exception that

all experiments were performed within 12 hours of purification and the platelets were

stored at 25◦C. Platelet concentrations in this thesis are all relative to their con-

centration after purification and reported as their diluted volume. For instance, 1%
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platelets indicates that the platelets have been diluted to 1/100th of their their con-

centration after purification in platelet buffer.

15.3 Basic rheological protocol for platelet-fibrin

samples

1. Add thrombin to the fibrinogen-platelet solution and load quickly into the

rheometer

2. As the network polymerizes and the platelets contract the gel, you monitor the

polymerization by performing a time sweep with a 0.5% strain amplitude and

a frequency of 1 rad/s. The G′ and G” is recorded during this process. The

samples are let polymerize for 2 hours.

3. A constant strain rate of 0.01/s is applied while measuring the resultant stress

to determine the full response (both the low- and high-strain response) of the

networks.

Note: the activity of the platelets change over time. Therefore, to compare the

effect of platelets under different conditions, samples are run on four rheometers

concurrently. Each rheometer is fitted with a different tool:

• Anton Paar: fitted with a 50 mm, 1◦ cone plate

• Two AR-G2s: each fitted with a 40 mm, 4◦ cone plate

• Ares G2: fitted with a 40 mm, 0.04rad cone plate
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15.4 Platelet-fibrin samples for confocal microscopy

1. 1. A flow cell with several lanes is constructed on a number 1.5 or number 1

coverslip:

(a) Several strips of mounting tape are placed parallel to each other on the

coverslip to create lanes.

(b) A glass microscope slide is cut to fit over these lanes, and then pressed in

place over these lanes.

(c) Each lane represents a different platelet and fibrinogen concentration sam-

ple.

(d) All the conditions are loaded in succession. (As quickly as possible, to

avoid any differences in platelet activity over time).

2. The samples are allowed to incubate for several hours.

3. An image stack of each lane is taken at random locations 50µms off the surface.

15.5 Buffers

Fibrin Buffer 150mM NaCl, 20mM HEPES, 20mM CaCl2, pH7.4

Platelet Buffer 140mM NaCl, 10mM HEPES, 3mM KCl, 0.5mM MgCl2, 5mM

NahCO3, 10mM Glucose, pH7.4
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