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On the Migratory Behavior of Planetary Systems

Abstract

For centuries, an orderly view of planetary system architectures dominated the discourse

on planetary systems. However, there is growing evidence that many planetary systems

underwent a period of upheaval, during which giant planets “migrated” from where

they formed. This thesis addresses a question key to understanding how planetary

systems evolve: is planetary migration typically a smooth, disk-driven process or a

violent process involving strong multi-body gravitational interactions? First, we analyze

evidence from the dynamical structure of debris disks dynamically sculpted during

planets’ migration. Based on the orbital properties our own solar systems Kuiper belt,

we deduce that Neptune likely underwent both planet-planet scattering and smooth

migration caused by interactions with leftover planetesimals. In another planetary

system, � Pictoris, we find that the giant planet discovered there must be responsible

for the observed warp of the systems debris belt, reconciling observations that suggested

otherwise. Second, we develop two new approaches for characterizing planetary orbits:

one for distinguishing the signal of a planets orbit from aliases, spurious signals caused

by gaps in the time sampling of the data, and another to measure the eccentricity

of a planet’s orbit from transit photometry, ”the photoeccentric e↵ect.” We use the

photoeccentric e↵ect to determine whether any of the giant planets discovered by the

Kepler Mission are currently undergoing planetary migration on highly elliptical orbits.

We find a lack of such “super-eccentric” Jupiters, allowing us to place an upper limit

on the fraction of hot Jupiters created by the stellar binary Kozai mechanism. Finally,
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we find new correlations between the orbital properties of planets and the metallicity of

their host stars. Planets orbiting metal-rich stars show signatures of strong planet-planet

gravitational interactions, while those orbiting metal-poor stars do not. Taken together,

the results of thesis suggest that suggest that both disk migration and planet-planet

interactions likely play a role in setting the architectures of planetary systems.
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Dáith́ı Stone for making available his library of IDL routines. We are very thankful

to Chelsea Huang for provided us with her detrended data for KIC 6805414. I thank

the referee of Chapter 8 for the helpful, timely report. My gratitude to John Johnson

for many illuminating discussions about the three-day pile-up, the period distribution

of giant planets, observational approaches to distinguishing the origins of hot Jupiters,

valuable insights on previous collaborations connected to this investigation, and extensive

comments. I thank Daniel Fabrycky for many helpful comments, Courtney Dressing

for occurrence rate insights, and Subo Dong, Zachory Berta, David Charbonneau, Sean

Andrews, Matthew Holman, Jason Wright, and Kevin Schlaufman for useful discussions.

I thank B. Scott Gaudi and Andrew Gould for helpful comments and corrections,

including alerting me about XO-3-b.

The numerical integrations in this thesis were run on the Odyssey cluster supported

by the FAS Sciences Division Research Computing Group. I thank the Research

Computing Group for their assistance, especially Paul Edmon.

I gratefully acknowledge support during the 2010-2011, 2011-2012, and 2012-2013

academic years by the National Science Foundation Graduate Research Fellowship under

grants DGE 064449, DGE 0946799, and DGE 1144152.

This thesis includes data collected by the Kepler mission. Funding for the Kepler

mission is provided by the NASA Science Mission directorate. I am extremely grateful

to the Kepler Team for their long and extensive e↵orts in producing this rich dataset.

Some of the data presented in this paper were obtained from the Multimission Archive

xix



ACKNOWLEDGMENTS

at the Space Telescope Science Institute (MAST). STScI is operated by the Association

of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

Support for MAST for non-HST data is provided by the NASA O�ce of Space Science

via grant NNX09AF08G and by other grants and contracts.

xx



To Emily, John, William, Elliot, and Margaret Dawson

xxi



Chapter 1

Introduction

1.1 Divine Animals

“The machinery of the heavens is not like a divine animal but like a clock.”

Kepler (1605, quoted by Field 1999).

Planets were once thought to be harmoniously arranged in their orbits, as if by an

architect (Titius 1776), and set in motion to follow these orbits with clockwork regularity

(Kepler 1605) and “harmony in... motion and magnitude” Copernicus (1543, quoted by

Gingerich 1993). In the 18th century, the spacing and co-planarity of planetary orbits

inspired the first modern theories of planet formation by Kant and Laplace: a spinning

cloud of gas and dusk collapses and flattens into a disk, out of which forms an orderly

set of planets on nested orbits. But planetary discoveries over the past few decades

have called this peaceful picture into question. Astronomers have found planets orbiting

other stars (e.g. Latham et al. 1989) and, in our solar system, a belt of planetary
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debris beyond Neptune: the Kuiper belt. Pluto, formerly considered our solar system’s

smallest planet, is now known to be one of thousands of Kuiper belt objects. To our

surprise, the majority of known planetary systems — which are home to 699 extra-solar

planets confirmed to date (see Wright et al. 2011 and references therein) — are wild and

disorderly. Their planets do not appear to have been merely wound up and set on their

orbits like clockwork. Hot Jupiters (Mayor & Queloz 1995; Marcy et al. 1997) orbit at

scorchingly small planet-star separations (e.g. WASP-12-b orbits within three radii of its

host star, Hebb et al. 2009), where they could not have formed (Rafikov 2006). Many

planets have orbits that are highly eccentric and/or misaligned from their host stars’

spin axes. Over the course of its highly elongated orbit, HD-80606-b moves from Earth’s

orbital separation to that of a hot Jupiter Naef et al. 2001). The first planet discovered

to be misaligned from its host star’s spin axis (and thus from the plane it likely formed

in), XO-3-b (Hébrard et al. 2008; Winn et al. 2009b), has a projected obliquity of 37

degrees. Planets have subsequently been discovered on polar and retrograde orbits (see

Albrecht et al. 2012 and references therein). Such planetary systems — rather than

following like clockwork the circular, co-planar obits they formed on — likely underwent

upheaval from their primordial orbits to the orbits we observe today. Even in our solar

system, the highly inclined and eccentric orbits of Pluto (Malhotra 1993, 1995) and

subsequently discovered Kuiper Belt objects (KBOs) (Jewitt & Luu 1993 found the

second, 1992QB1) belie the orderly impression given by our full-fledged planets.

In this thesis, we take the view that planetary systems are more like “divine animals”

than Kepler imagined. Environmental pressures and changing conditions influence their

behavior and evolution; they struggle and adapt and sometimes survive. The collection

of extra-solar planets is frequently described in the literature not as a clock collection
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but as a “menagerie” (e.g. Fortney et al. 2006, Siverd et al. 2012). One of the earliest

uses of the term was in a review by Lunine (2001), who called out hot Jupiters as having

caused a “paradigm shift in our expectations regarding planetary system architectures.”

However, the paradigm shift from clockwork order to wild beasts was not solely driven

by extra-solar discoveries; in fact, some theories of planetary system evolution were first

proposed for the solar system (e.g Fernandez & Ip (1984); Malhotra (1993)) and much of

the theory regarding extra-solar upheaval is inspired by work on small bodies in the solar

system (e.g. Kozai 1962; Goldreich & Tremaine 1980; Goldreich & Rappaport 2003).

To fully capture the behavior of these divine animals, we must conduct our zoological

fieldwork both at home and abroad.

Here we investigate the migratory behavior of planetary systems, focusing primarily

on the giant planet species. Evidently environmental pressures drive many giant planets,

including hot Jupiters, to abandon their original habitats, but it remains debated which

environmental pressures have the biggest influence. Migration has been proposed to

be the result of torques from the gas disks from which planets form (e.g. Goldreich

& Tremaine 1980; Ward 1997), angular momentum exchanged via interactions with

planetary debris (e.g. Fernandez & Ip 1984), and perturbations by other planets or stars

(e.g. Rasio & Ford 1996). (We use “migration” in this thesis as an umbrella term for any

process that alters the circular, co-planar obit on which the planet formed.) Thus we

currently lack an understanding of a) the typical planetary systems migratory behavior,

including whether it was violent or peaceful and b) the diversity of migratory behaviors

and how they connect to the present-day orbital and compositional traits of planets we

observe. Consequently we are missing the context for interpreting the present-today

traits and behaviors of planets we discover (including, for example, how much upheaval a
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given planet likely endured in its planetary system). Characterizing migratory behavior

is therefore an essential component of characterizing planetary systems and eventually

Earth-like planets.

1.2 Evidence of Migratory Behavior from Debris

Disks

The first place we look for evidence of migratory behavior is in debris disks. Planetary

debris disks hold the pebbles, rocks, and boulders leftover from the era of planet

formation. Our own solar system has two debris belts — the asteroid belt, located

between Mars and Jupiter, and the Kuiper belt, located beyond Neptune. The first

known exodebris disk, orbiting Vega Aumann et al. (1984), was discovered even before

the Kuiper belt. Debris disks can play an important role in recording a planetary

system’s evolution. Like a patch of prairie trampled and marked with hooveprints after

a herd of migrating bison has passed through, a planetesimal disk, if present during

a planetary system’s upheaval, can record signatures of migration. Indeed, our solar

system’s Kuiper belt was the first evidence for planetary migration, even before the

discovery of misplaced hot Jupiters. Kuiper belt objects in mean motion resonances, such

as Pluto, are thought to have been captured in these configurations during Neptune’s

migration (Malhotra 1993). Remnant planetesimal disks may reveal the violent history

of planetary systems that appear peaceful in their current configurations or serve as

signposts for inclined or eccentric planets (e.g. Formalhaut b, Quillen 2006; Chiang et al.

2009). Here we consider two such cases.
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Our solar system’s giant planets are thought to have formed packed close together

and then underwent migration, with Neptune and Uranus transversing large distances

(up to 20 AU). However, it remains debated if the planets were propelled by planet-planet

scattering (e.g. Thommes et al. 1999; Levison et al. 2008; Morbidelli et al. 2008; Batygin

& Brown 2010; Batygin et al. 2011) or driven by interactions with planetesimals (e.g.

Fernandez & Ip 1984; Malhotra 1993; Hahn & Malhotra 2005). The dynamical structure

of the Kuiper belt was sculpted the giant planets’ migration, especially by Neptune,

but there several outstanding problems in interpreting this structure. In Chapter 2,

we focus on the ”classical” region (from 40-50 AU), where a population of dynamically

”hot” high-inclination objects overlies a flat ”cold” population with distinct physical

properties. Simulations of the solar systems dynamical history, while reproducing many

properties of the Belt, fail to simultaneously produce both populations. We seek to

account for this dynamical structure based on the solar system’s migratory behavior by

performing a parameter study for a general Kuiper belt assembly model. This type of

model (e.g. Levison & Stern 2001; Gomes 2003; Morbidelli et al. 2008; Batygin et al.

2011) accounts for the di↵erent physical properties by forming the hot classical Kuiper

belt objects (KBOs) interior to Neptune and delivering them to the classical region,

where the cold population forms in situ. We present a new observational constraint that

we use to rule out much of parameter space and pin down Neptune’s migratory behavior.

We demonstrate that planet-planet scattering and smooth migration likely both played a

role in Neptune’s migration behavior.

The extra-solar debris disk, � Pictoris, may also hold signatures of planetary

upheaval. A vertical warp in the diskan inclined inner disk extending into a flat outer

diskwas long interpreted as the signpost of a planet on an inclined orbit (e.g. Mouillet
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et al. 1997; Augereau et al. 2001). The hypothesized planet’s orbit was possibly tilted

during an early upheaval in the system. Subsequently Lagrange et al. (2009, 2010)

discovered, via direct imaging, a planet (� Pictoris b) with a mass and orbital distance

suitable for creating this warp. However, when Currie et al. (2011) measured the planets

orbit via astrometry, they were surprised to find that it is aligned with the flat outer

disk, not the inclined inner disk, and that planet b therefore lacks the inclination to

warp the disk. It appeared that the warp that motivated the search for � Pictoris b

could not have actually been caused by � Pictoris b, calling into question the utility of

disk structure as a signpost of planets. Chatterjee et al. (2011) suggested that another,

undetected planet could be responsible. In Chapter 3, we model the sculpting of a debris

disk by a planet on an inclined orbit and reconcile the directly imaged planets apparent

misalignment with the warped inner disk. We show that � Pictoris b both can and must

be responsible for creating the observed warp.

1.3 Characterizing Planetary Orbits

Further evidence of migratory behavior arises not only from debris disks but from

planetary orbits themselves, particularly planets on inclined, eccentric, and/or close-in

orbits. Here we develop new methods to characterize these planetary orbits, an essential

step toward understanding their past migration. Our methods enhance the dynamical

information that can be extracted from the two most commons types of exoplanet

observations: radial-velocity measurements and transit photometry.

Since the discovery of HD-114762-b by Latham et al. (1989), over 400 exoplanets

have been found through the Doppler, or radial-velocity (RV), method, in which the
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planets orbit is deduced from its host stars radial motion. Identifying the planets true

orbital frequency in the RV data is essential to correctly deriving its properties, including

distance from its host star, temperature, mass, eccentricity, and dynamical relations with

other planets in the system. But gaps in the RV time sampling cause spurious aliases

frequencies that can be confused with the planets orbital frequency, potentially causing

a severe mischaracterization. For example, Udry et al. (2007) announced a super-Earth

orbiting the M star Gl 581 with an orbital period 83 days, beyond the cold edge of the

habitable zone. After more than doubling the number of observations, they determined

that the planet’s period was actually 67 days, well within the habitable zone, and that

the 83 day period was an alias (Mayor et al. 2009). The distinction between an alias

and physical frequency was the distinction between a frozen, dead planet and a planet

possibly hospitable to life. In Chapter 4, we develop a new approach to distinguish a

planets true orbital frequency from spurious alias frequencies. Our approach harnesses

knowledge of the observation window function (set by the observation times) to compute

a finger-print of expected aliases for each possible orbital frequency, which we then

compare to the data. We apply our approach to published data, including super-Earth

55 Cnc e, whose orbital period we revise from 2.8 to 0.74 days, and five other planets

with orbital period ambiguities.

The other most common method for discovering and characterizing exoplanets is

the transit technique, in which the light from a star dims as a planet passes through

our line of sight (e.g. Charbonneau et al. 2000). In Chapter 5, we develop a new

approach for measuring a planet’s orbital eccentricity from its transit light curve. We

created this approach as part of our search for giant planets on highly eccentric orbits,

whose connection to planetary migration is motivated further in Section 1.4. The Kepler

7



CHAPTER 1. INTRODUCTION

Mission (e.g. Borucki et al. 2010) — launched in 2009 — is continuously monitoring

the brightness of 100,000 stars to search for planetary transits and has discovered an

abundance of transiting giant planets. Traditionally, the eccentricities of such planets

would be measured through follow-up precise RV measurements. However limited

telescope time for Kepler follow-up and the faintness of most Kepler targets prevent a

systematic follow-up of giant planets. We develop a Bayesian method (which we term the

photoeccentric e↵ect) to, for the first time, measure an individual planet’s eccentricity

solely from its transit photometry, allowing us to search for Jupiters on super-eccentric

orbits using the Kepler light curves, without the need for RV follow-up. We show that

our approach enables a tight measurement of large eccentricities for Jupiter-sized planets.

1.4 Distinguishing Giant Planet Migration Mecha-

nisms

We now know of hundreds of giant planets orbiting closer to their stars than the Earth

orbits to the sun. Close-in giant planets displaced from their formation location serve

as evidence for the prevalence of planetary migration. The nature of this migration

remains debated, in particular whether it is a smooth process caused by planet-disk

interactions or violent process caused by strong gravitational interactions between the

planet and other planets or stars in the system. Hot Jupiters — which orbit within

just 0.1 AU of their host stars — are particularly mysterious. The typical hot Jupiter

may have migrated smoothly through the proto-planetary disk or, alternatively, been

perturbed by a companion onto a highly eccentric orbit, which tidal dissipation shrank
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and circularized during close passages to the star. Socrates et al. (2012b) proposed a test

for distinguishing models: the latter model should produce a number of super-eccentric

hot Jupiter progenitors readily discoverable by the Kepler Mission. Using the approach

we developed in Chapter 5, we search for the super-eccentric hot Jupiter progenitors

expected if giant migration is spurred by multi-body interactions but not if disk migration

is responsible. In Chapter 6, we apply our technique to KOI-1474.01, finding that the

Jupiter-sized Kepler candidate planet has a large eccentricity of 0.8. KOI-1474.01 also

exhibits transit timing variations due to a massive outer companion, which may be the

culprit responsible for KOI-1474.01s highly eccentric orbit. In Chapter 6, we extend our

search to the entire Kepler sample and find, surprisingly, a paucity of proto-hot Jupiters

on high-eccentricity orbits. We consider observational e↵ects but find that they are

unlikely to explain this discrepancy. We discuss whether our results necessarily indicate

that disk migration is the dominant channel for producing hot Jupiters and under what

circumstances multi-body interactions can still be consistent with our results.

Migration processes must not only produce hot Jupiters but also populate the region

from 0.1 to 1 AU. This region is outside the reach of tidal damping forces exerted by

the host star but interior to both the ice line and the observed pile-up of giant planets

at 1 AU, one of which likely indicates where large, rocky cores can grow and accrete.

We call this semi-major axis range the ”Valley,” because it roughly corresponds to the

“Period Valley” (e.g. Jones et al. 2003), the observed dip in the giant planet orbital

period (P ) distribution from roughly 10 < P < 100 days. The Valley houses gas giants

both on highly eccentric and nearly circular orbits. This bimodality may point to two

di↵erent migration mechanisms: smooth gas disk migration and migration caused by

strong gravitational interactions among planets. If there are two migration mechanisms,
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the physical properties of the proto-planetary environment may determine which is

triggered. In Chapter 8, we present three new observational trends with metallicity that

support this interpretation.
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Chapter 2

Neptune’s Wild Days: Constraints

from the Eccentricity Distribution of

the Classical Kuiper Belt

R. I. Dawson & R. A. Murray-Clay The Astronomical Journal, Vol. 750, id. 43, 2012

Abstract

Neptune’s dynamical history shaped the current orbits of Kuiper Belt objects (KBOs),

leaving clues to the planet’s orbital evolution. In the “classical” region, a population of

dynamically “hot” high-inclination KBOs overlies a flat “cold” population with distinct

physical properties. Simulations of qualitatively di↵erent histories for Neptune including

smooth migration on a circular orbit or scattering by other planets to a high eccentricity

have not simultaneously produced both populations. We explore a general Kuiper Belt
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assembly model that forms hot classical KBOs interior to Neptune and delivers them to

the classical region, where the cold population forms in situ. First, we present evidence

that the cold population is confined to eccentricities well below the limit dictated by

long-term survival. Therefore Neptune must deliver hot KBOs into the long-term

survival region without excessively exciting the eccentricities of the cold population.

Imposing this constraint, we explore the parameter space of Neptune’s eccentricity and

eccentricity damping, migration, and apsidal precession. We rule out much of parameter

space, except where Neptune is scattered to a moderately eccentric orbit (e>0.15) and

subsequently migrates a distance �aN = 1 � 6 AU. Neptune’s moderate eccentricity

must either damp quickly or be accompanied by fast apsidal precession. We find that

Neptune’s high eccentricity alone does not generate a chaotic sea in the classical region.

Chaos can result from Neptune’s interactions with Uranus, exciting the cold KBOs and

placing additional constraints. Finally, we discuss how to interpret our constraints in the

context of the full, complex dynamical history of the solar system.

2.1 Introduction

Neptune, with its nearly circular and equatorial orbit, may seem straight-laced compared

to the oblique, hot, eccentric, and resonant planets in the extra-solar menagerie. But

the highly inclined and eccentric orbits of Pluto (Malhotra 1993, 1995) and subsequently

discovered Kuiper Belt objects (KBOs) imply that Neptune may have experienced its

own “wild days” in the early solar system. During these wild days, Neptune sculpted

the KBOs into four main dynamical classes: objects in mean motion orbital resonance

with Neptune (the “resonant” population), objects that are currently scattering o↵
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Neptune (the “scattering” population), and two populations of “classical” objects that

are currently decoupled from Neptune. One population of classical objects is dynamically

“cold,” on nearly circular orbits at low inclinations, and the other classical population

is dynamically “hot” with a range of eccentricities and inclinations. The cold classicals

have distinct physical properties from the hot classicals, including colors (Tegler &

Romanishin 2000; Thommes et al. 2002; Peixinho et al. 2008), sizes (Levison & Stern

2001; Fraser et al. 2010), albedos (Brucker et al. 2009), and binary fraction (Stephens

& Noll 2006; Noll et al. 2008). A major problem in understanding the formation of the

solar system is that, as we will review below, no model of Neptune’s dynamical history

adequately produces the superposition of hot and cold classicals or accounts for the

di↵erence in their physical properties.

Two types of dynamical sculpting models have been developed to explain, in

particular, the population of resonant KBOs. Extensive migration models (Malhotra

1993, 1995; Hahn & Malhotra 2005) propose that Neptune migrated outward by 7-10

AU on a nearly circular orbit from its location of formation, capturing objects into

resonance as its resonance locations slowly swept through the Kuiper Belt. This type of

model generates the resonant and scattering objects and the cold population (unexcited

objects that, in this model, formed in situ) but not the hot population. It also does

not match the observed inclination distribution within the resonances. Chaotic capture

models (Levison et al. 2008), inspired by the Nice model (see Morbidelli et al. 2008,

and references therein), propose that Neptune was scattered onto a highly eccentric

orbit by other planets during a period of instability (Thommes et al. 1999). Neptune’s

high eccentricity created a chaotic zone in what is now the classical region, and some

objects were caught in resonances when Neptune’s eccentricity damped. Chaotic capture
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models produce a hot population: objects that formed in the inner disk, subsequently

were scattered by Neptune into the classical region, and then decoupled when Neptune’s

eccentricity damped. These models also produce a resonant population and scattering

population. Although some of the objects delivered into the classical region end up on

low-eccentricity orbits, we point out that a cold population confined to low eccentricities

is not produced. Other variations of the Nice model (e.g. Morbidelli et al. 2008) include

an in situ population of cold objects, but, over the course of Neptune’s evolution,

these objects become excited to higher eccentricities. K. Batygin (2010, private

communication1) has suggested that fast apsidal precession of Neptune’s orbit could

prevent Neptune from disrupting the cold classicals during its proposed high-eccentricity

period, but it remains to be explored under what circumstances this mechanism would

work and how it would a↵ect the hot classicals.

With neither the extensive migration models nor chaotic capture models producing

both the hot and cold classicals, the qualitative picture of what happened in the early

solar system, including the roles of planet-planet scattering and planetary migration,

remains up for debate. It remains a question whether Neptune migrated outward by

many AU on a nearly circular orbit, was launched onto an eccentric orbit near its current

location, or none of the above. Pinning down Neptune’s dynamical history, which should

1After the submission of this manuscript, Batygin et al. (2011) presented a model in which Neptune

underwent a period of high eccentricity and, due to its fast apsidal precession, could avoid disrupting

the cold classicals. Because this paper appeared after the submission of our manuscript, we leave a

detailed discussion of its results for future work. However, we note that in the particular simulations they

presented, the cold classicals are dynamically excited, inconsistent with the constraints we will establish.

In Section 2.5.1, we explore under what circumstances, if any, this could be avoided.
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be possible given the constraints from over 500 KBOs with well characterized orbits,

would reveal much about the history of our own solar system and about the processes of

scattering and migration that shape the architecture of many planetary systems.

Previous models attempted to produce all four dynamical classes of KBOs with 0.5-4

Gyr simulations that included all four giant planets and thousands of massless KBOs

(e.g. Hahn & Malhotra 2005; Levison et al. 2008). It has not been computationally

feasible to fully explore parameter space with such extensive simulations. Thus it is

unclear whether the dynamical history described by a particular model (1) has trouble

producing both the cold and hot populations because there is a qualitative problem with

the scenario or, alternatively, because the parameters need to be slightly adjusted; and

(2) is unique, or whether another, qualitatively di↵erent dynamical history would match

the observations just as well.

Inspired by previous models, we explore a generalization in which Neptune undergoes

all potential combinations of high eccentricity, migration, and/or apsidal precession:

“Neptune’s wild days.” In this generalization, the cold objects form in situ where

we observe them today and the hot objects are delivered from the inner disk and

superimposed on the cold objects. “Two-origin” models superimposing a hot classical

population from the inner disk on top of a cold population firmed in situ (e.g. Levison

& Stern 2001; Gomes 2003; Morbidelli et al. 2008) have the advantage of explaining the

di↵erent physical properties of the hot and cold classicals that were discussed above.

The di↵erent colors, sizes, and albedos of the two populations are accounted for by their

formation in di↵erent regions of the solar system’s proto-planteary disk under di↵erent

conditions. For instance, chemical di↵erences may result in di↵erent colors for objects

formed in the inner versus the outer disk (Brown et al. 2011a). The cold classicals have
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a higher binary fraction because any hot classical binaries were likely to have been

disrupted when they were scattered from the inner disk to the classical region (Parker

& Kavelaars 2010) and because binary capture may have been less e�cient in the inner

disk (Murray-Clay & Schlichting 2011). However, to date this class of model has not yet

been demonstrated to work quantitatively. We consider a generalized two-origin model

in which hot classical deliver echoers as a result of scattering by Neptune (rather than

due to resonance sweeping as in Gomes 2003). Focusing on the consistency of this class

of model with the eccentricity distribution of classical KBOs — unaccounted for by

previous model realizations — we explore the parameter space for this generalized model

using several alternative tactics:

• Instead of attempting to produce a single model, we fully explore the parameter

space of Neptune’s eccentricity, semimajor axis, migration rate, eccentricity

damping rate, and precession rate to assess the consistency of a collection of

dynamical histories with the observations. This approach is general in the

sense that previous models (e.g. Malhotra 1995; Levison et al. 2008) are under

consideration (corresponding to a particular set of parameters), as well as other

regions of parameter space that have not been explicitly considered. We will

explore Neptune’s inclination and inclination damping rate in a paper currently in

preparation (R.I. Dawson and R. Murray-Clay 2012, in preparation). In Section

2.5.4, we clarify how to interpret complex solar system histories in the context of

this general model.

• Instead of matching the observations in detail, we focus on matching major

qualitative features of the classical KBO eccentricity distribution that are
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una↵ected by observational bias or by the long-term evolution of the solar system

(i.e. the evolution that happens over the ⇠ 4 Gyr after the planets reach their

final configuration). This approach allows us to perform short integrations that

end once the planets reach their current configuration.

• Instead of relying solely on numerical integrations, we determine which dynamical

processes a↵ect the evolution of the KBOs and place constraints using analytical

expressions.

• Instead of modeling all four planets directly, we model only Neptune but allow

its orbit to change. We will demonstrate why this approach is su�cient for the

problem we are exploring.

Our exploration of parameter space could produce two possible outcomes. If we find

regions of parameter space that can deliver the hot objects on top of the cold, these

consistent regions will provide constraints for more detailed models. If we rule out all

of parameter space, then a new type of model, employing di↵erent physical processes,

is necessary. Either way, we will identify and quantify what physical processes are

responsible for sculpting the eccentricity distribution of the classicals in the generalized

model we are treating. We emphasize that, rather than proposing a new model, we are

exploring a generalization of Neptune’s dynamical history, in which previous models

correspond to a particular set of parameters.

In the next Section, we demonstrate that the hot and cold classicals have not only

a bimodal inclination distribution, as already well established in the literature, but

also distinct eccentricity distributions that were sculpted during Neptune’s wild days.

We use qualitative features of these eccentricity distributions to establish conservative
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criteria that models must meet. In Section 2.3, we establish the framework for our

study and argue that, combined with the distinct physical properties of the hot and

cold populations, these eccentricity distributions imply separate origins for the cold

and the hot classicals. In Section 2.4, we identify, for the classical region, the potential

dynamical consequences of Neptune spending part of its dynamical history with high

eccentricity — delivery of objects via scattering, secular forcing, accelerated secular

forcing near resonances, and a chaotic sea — and present analytical expressions validated

by numerical integrations. In Section 2.5, we combine the analytical expressions from

Section 2.4 with the conservative criteria established in Section 2.2 to place constraints

on Neptune’s path, orbital evolution timescales, and interactions with other planets,

ruling out almost all of parameter space. We find that Neptune must spend time with

high eccentricity to deliver the hot classicals by these processes, but is restricted to one

of two regions of (a, e) space while its eccentricity is high. To avoid disrupting the cold

objects, Neptune’s eccentricity must have damped quickly or the planet’s orbit must

have precessed quickly while its eccentricity was high. Finally, because Neptune’s current

semimajor axis is ruled out when Neptune’s eccentricity is high, Neptune is constrained

to have migrated a short distance after its eccentricity damped. In the final Section, we

discuss our results and their implications for the early history of the solar system.
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2.2 Constraints from the Observed Eccentricity

Distributions of Hot and Cold Classicals

The cold and hot populations are defined by the observed bimodal inclination distribution

of classical KBOs (Brown 2001; Gulbis et al. 2010; Volk & Malhotra 2011). They also

have distinct eccentricity distributions. The eccentricity distribution of all the observed

KBOs is plotted in Figure 2.1. In Section 2.2.1, we present evidence for distinct hot

classical and cold classical eccentricity distributions and identify robust qualitative

features of the distributions that models of Neptune’s dynamical history must produce.

In Section 2.2.2 we lay out the observational constraints which we will use for the

remainder of the paper. In Section 2.2.3, we assess the robustness of these features by

performing statistical tests and considering observational bias.

2.2.1 Evidence for Distinct Hot Classical and Cold Classical

Eccentricity Distributions

We wish to use inclinations to separate the cold and hot classicals and then examine the

eccentricity distributions of these two populations. Traditionally, the observed cold and

hot objects have been separated using one inclination cuto↵. However, because of the

overlap between the hot and cold components in the bimodal inclination distribution,

a single cuto↵ will necessarily result in the misclassification of hot objects as cold and

vice versa. For example, if the classical population follows the model KBO inclination

distribution derived by Gulbis et al. (2010) and we were to distinguish between the cold

and hot populations using an inclination cut-o↵ icut = 4�, 11% of objects with i < 4�
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Figure 2.1.—: Orbital eccentricity distribution of Kuiper Belt Objects. The resonant

and scattered objects are plotted as black pluses. The classical objects are plotted as

colored circles. The red objects have i < 2� and are thus very likely cold classicals. The

blue objects have i > 6� and are thus very likely hot classicals. The membership of

any given purple object, which has 2� < i < 6�, is ambiguous (see Figure 2.2). Objects

are taken from the Minor Planet Center Database and the Canada-France Ecliptic Plane

Survey (CFEPS) and classified by Gladman et al. (2008); Kavelaars et al. (2009); Volk

& Malhotra (2011). Dashed lines indicate the location of mean motion resonances with

Neptune, which are included up through fourth order.
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would be actually be hot objects and 15% of objects with i > 4� would be actually

be cold objects. Thus, using icut = 4�, 11% of the objects classified as cold would be

“contaminated,” and 15% of those classified as hot would be contaminated. In Figure

2.2, we plot the “contaminated” fraction over a range of values for icut for the cold and

hot populations based on three models of the debiased inclination distribution (Brown

2001; Gulbis et al. 2010; Volk & Malhotra 2011). For all three models, less than 10% of

the cold classicals are contaminated for icut < 2�, while less 3% of the hot classicals are

contaminated for icut > 6�.

Therefore, instead of using a single icut, we divide the classicals into a likely cold

population (i < 2�), a likely hot population (i > 6�), and an ambiguous population

(2� < i < 6�). We then examine the eccentricity distributions of the likely cold and likely

hot populations, which are “uncontaminated” samples. We use the uncontaminated

eccentricity distributions to identify major features that models much match. In

Section 2.7, we confirm that our results are consistent if we probabilistically include the

ambiguous population.

We wish to identify features of the eccentricity distribution that are sculpted during

Neptune’s wild days, not by the long-term stability of the region under the influence

of the modern solar system planetary configuration or by observational bias. First we

compare the eccentricities of observed likely cold (i < 2�) and likely hot (i > 6�) objects

to the survival map of Lykawka & Mukai (2005), generated from a 4 Gyr simulation.

Lykawka & Mukai (2005) generated initial conditions for test particles uniformly filling

a cube of (a, e, i) in the classical region: 41.375AU < a < 48.125 AU, 0 < e < 0.3,

and 0 < i < 30�. They then performed a 4 Gyr numerical integration including the

test particles and the four giant planets (starting on their modern orbits). Then they
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Figure 2.2.—: Fraction of each population “contaminated” by the other group as a func-

tion of the cut-o↵ inclination icut between the cold and hot population. The dashed lines,

labeled B01, are calculated from the inclination distribution defined by Brown (2001);

the dotted lines, labeled G10, from the inclination distribution defined by Gulbis et al.

(2010); and the dash-dotted lines, labeled V11, from the inclination distribution defined

by Volk & Malhotra (2011).

computed the survival rate of test particles in bins of (a, e) and (a, i). In this work, we

consider only the eccentricity survival map. This map bins over all inclinations2. After 4

Gyr of evolution under the influence of the planets in their current configuration, KBOs

with an initially uniform eccentricity distribution would be distributed according to this

survival map.

However, rather than following the survival map, the observed cold and hot objects

exhibit major distinct features. In Figure 2.3, we plot the sample of observed classical

objects from the Minor Planet Center (MPC) and the Canada-France Ecliptic Plane

Survey (CFEPS; Kavelaars et al. 2009) on top of the Lykawka & Mukai (2005) stability

2We note that at a given semimajor axis, the survival rate does not show a strong dependence on incli-

nation (Lykawka & Mukai 2005, Figure 4, lower panel), except near the ⌫
8

secular inclination resonance

at 41.5 AU, which is devoid of low inclination objects. We do not establish constraints in this region.
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map. The cold objects are confined to very low eccentricities. From 42.5 to 44 AU, the

cold objects appear to be confined to e < 0.05. From 44 to 45 AU, the cold objects

appear confined below e < 0.1. This confinement of the cold classicals to below the

survival limit implies that they were not excited above these levels because if they had

been, we would still observe objects at higher eccentricities. Similarly, Kavelaars et al.

(2009) found that classical objects with i < 4.5� are restricted to 42.5 AU < a < 45 AU

and e < 0.1. In contrast, hot objects occupy the upper portion of the survival region and

appear uniformly distributed in a from 42 to 47.5 AU. Suggestively, they also appear to

be distributed roughly along a scattering line, as if they were scattered into the classical

region but did not have time to evolve to low eccentricities before Neptune’s eccentricity

damped.

2.2.2 Conservative Criteria that Models Must Meet

We use the following major qualitative features to place constraints on Neptune’s

dynamical history. We consider these criteria “conservative” because they allow for

dynamical histories at the very edge of consistency with the observations.

Cold population: confined to low eccentricities of e < 0.1 in the region from 42.5

to 45 AU. In the region between 42.5 and 45 AU, the cold objects have eccentricities

well below the distribution that follows the survival map. Therefore, Neptune cannot

excite the cold classical objects in this region above e = 0.1. (We choose this value

to be conservative in ruling out regions of parameter space and to match Kavelaars

et al. (2009), but it appears that cold objects with semimajor axes less than 44 AU are

confined below e < 0.05, a tighter constraint.) We indicate this threshold as a solid
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Figure 2.3.—: Observed (plus symbol) eccentricity distributions of cold classicals with

i <� 2 (left) and hot classicals with i > 6� (right), plotted over the survival map of

Lykawka & Mukai (2005). In the left panel, the cold classicals between 42.5-44 AU are

confined to e < 0.05, well below the survival limit in this region, while cold classicals

between 44-45 AU are confined to e < 0.1, also below the survival limit. In the right

panel, the hot classicals occupy the upper portion of the survival region. We plot e = 0.1

from 42.5 to 45 AU as a solid yellow line in the left panel. The dashed line in the

right panel, periapse q = 34 AU, indicates an approximate upper threshold of long-term

survival, which we will use in Sections 2.5.2 and 2.5.3. Classical objects are taken from the

Minor Planet Center Database and the Canada-France Ecliptic Plane Survey (CFEPS;

Kavelaars et al. 2009) and are classified by Gladman et al. (2008), Kavelaars et al. (2009),

and Volk & Malhotra (2011).
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yellow line in Figure 2.3.

Hot population: delivered to the upper survival region with q > 34 AU out to 47.5

AU. The observed hot objects occupy the upper portion of the survival region. Therefore,

a consistent dynamical history should allow some objects to reach this region. It is not

necessary for the transported objects to reach very low eccentricities, only low enough

to survive under the current planetary configuration. We set the criterion that the hot

classicals must be delivered to periapse q > 34 AU (dashed line in Figure 2.3) from 42 A

to 47.5 AU, the edge of observed population.

2.2.3 Assessing the Robustness of the Observed Features

In determining which major features serve as constraints on the dynamical history of the

solar system, we address several complications:

1. The inclinations of objects vary over time (Volk & Malhotra 2011).

2. The inclination cut-o↵ between the hot and cold classicals is model dependent.

3. Proper elements are more robust than the observed instantaneous elements.

4. The features in the eccentricity distributions might be the result of random chance

or small number statistics.

5. The eccentricity distributions may be impacted by observational bias.

The first complication is addressed by Volk & Malhotra (2011). They find

that, at any given time, only 5% of objects will be inconsistent with their original
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inclination-based classification of hot versus cold. Therefore we expect the major

qualitative features we identify to hold despite variations in the inclinations of some

objects

The second complication is that the cut-o↵ inclination between the hot and cold

classicals depends on the parameters and form of the model for the bimodal inclination

distribution. The three models we consider (Brown 2001; Gulbis et al. 2010; Volk &

Malhotra 2011) each use the functional form of sin i multiplied by a Gaussian but use

di↵erent widths and cold/hot fractions. They also use di↵erent planes for the inclination:

Brown (2001) defines the inclination with respect to the ecliptic plane, Gulbis et al.

(2010) with respect to the mean plane of the Kuiper Belt, and Volk & Malhotra (2011)

with respect to the invariable plane. However, despite these di↵erences, i < 2� and

i >� 6 are robust cut-o↵s for establishing an uncontaminated cold and hot population,

respectively, for each of the three models. In regards to the functional form of the model,

Volk & Malhotra (2011) find that the high-inclination component is not well-described

by a Gaussian, and Fabrycky & Winn (2009) argue that the most robust generic

functional form for a distribution of inclinations is a Fischer distribution. However, the

discrepancies between di↵erent functional forms are strongest for classifying objects in

the intermediate, overlapping portion of the bimodal inclination distribution (K. Volk

2011, private communication), so we argue that our approach of definitively classifying

only the “uncontaminated” low and high inclination objects is robust.

Regarding the third complication, the stability map of Lykawka & Mukai (2005)

is formulated in terms of instantaneous eccentricity and inclination, but the most

robust, non-varying formulation of the orbital elements are the proper, or free, elements.

However, none of the model inclination distributions are formulated in terms of the
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proper inclination, nor is the stability map of Lykawka & Mukai (2005) formulated in

the proper elements. To compare “apples to apples,” we use the instantaneous orbital

elements in the plots in this section. We use the proper elements in Section 2.7 and find

that the observational features we identify (Section 2.2.2) still hold.

Addressing the fourth complication, in Section 2.7, we confirm that the confinement

of the cold population to low eccentricities is statistically significant. For the hot

population, we only impose the constraint that the models must deliver them to the

long-term stable region (Section 2.2.2); we will demonstrate that this loosely formulated

restriction ends up imposing strong constraints on Neptune’s dynamical history.

Ruling Out Observational Bias through Statistical Tests

We would not expect observational bias (the final complication) to cause the cold

classicals to appear to confined to low eccentricities; KBO searches are more likely to

preferentially observe high-eccentricity (i.e. small periapse) objects of a given semimajor

axis. However, to ensure that the features on which we base our constraints (Section

2.2.2) are not created by observational bias, we perform the following test to see if

observational bias could generate them:

1. We begin by generating a simulated sample of objects uniformly distributed in

(a, e). We set the inclinations to follow the unbiased inclination distribution of the

classicals, as modeled by Gulbis et al. (2010).

2. Then we use the stability map of Lykawka & Mukai (2005) to transform this

simulated sample following a uniform eccentricity distribution into a sample

following the eccentricity distribution shaped by the four giant planets under their
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current configuration. We call this process “filtering.” For each simulated object,

we obtain a predicted survival rate from the (a, e) stability map of Lykawka &

Mukai (2005). Then we select a uniform random number between 0 and 1. If

the randomly selected number is less than the predicted survival rate, we include

the object in our sample. Note that since the survival rates of Lykawka & Mukai

(2005) are given as a range (e.g. 10 � 20%, 90 � 100%), we repeated this entire

test (i.e., steps 2-4) three times, once using the minimum of each range, once using

the mean of each range, and once using the maximum of each range. As expected,

the resulting eccentricity distribution had higher (lower) eccentricities when we

used the maximum (minimum) each range but the major features we identified still

held. The simulated population in Figure 2.4 uses the mean. Next we transformed

the “survival-rate filtered” sample from step 2 into an observed sample:

3. We randomly assign each object an H magnitude3 between 6 and 8.

4. Then we apply the L7 Survey Simulator for the well-characterized CFEPS.

(Kavelaars et al. 2009).

5. We compare the final simulated distribution to the subset of objects that were

detected by CFEPS (Kavelaars et al. 2009) (Figure 2.4). Figure 2.4 is analogous to

Figure 2.3. It includes the simulated distribution (circles) and only the subset of

KBOs observed by CFEPS. The simulated distribution is not confined to e < 0.1

from 42.5 to 45 AU, confirming this feature of the observed eccentricity distribution

does not result from observational bias. Note also that simulated hot objects are

3An alternative method, randomly drawing the H magnitudes from observed classical CFEPS objects,

yielded results that were qualitatively the same.
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found at lower eccentricities than observed.

2.3 Framework

Our representation of the observations in Figure 2.3 highlights the problem with theories

of a single origin for the hot and cold objects. How could a single origin produce both

a cold population confined to low eccentricities and a hot population, with di↵erent

physical properties and inclinations, dwelling above at high eccentricities? In Section

2.3.1, we explain why a single origin scenario is unlikely. In Section 2.3.2, we describe

a scenario, which we will consider throughout the rest of the paper, in which the cold

population formed in situ and the hot population formed in the inner disk and was

transported to the classical region. In Section 2.3.3, we explain why is it reasonable

to place constraints on Neptune’s history using the evolution of the KBOs only during

Neptune’s wild days, and in Section 2.3.4 we discuss the possibility of alternative

scenarios of Kuiper Belt assembly.

2.3.1 Ruling out a Single Origin for the Hot and Cold Classicals

A single origin for the hot and cold populations seems unlikely. If the cold and hot

classicals formed together in the classical region, where they are observed today, it is

di�cult to imagine a process that would excite the hot population while leaving the cold

population confined to low eccentricities. Hahn & Malhotra (2005) proposed a scenario

in which the classical region has been pre-excited. However, this scenario does not

produce a population of cold classicals confined to low eccentricities. Moreover, if both
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Figure 2.4.—: CFEPS objects only. Plotted over the survival map of Lykawka & Mukai

(2005) are predicted (circle) and observed (plus) distributions of cold classicals with i < 2�

(left) and hot classicals with i > 6� (right). The predicted classicals are the distribution

expected from a uniform (a, e) distribution, filtered by the survival map and put through

the CFEPS Survey Simulator of Kavelaars et al. (2009) (see the text for further detail).

The observed classicals are those observed by CFEPS. In the left panel, the cold classicals

between 42.5 and 44 AU are confined to e < 0.05, well below the survival limit, while cold

classicals between 44 and 45 AU are confined to e < 0.1, also below the survival limit in

this region. We plot e = 0.1 from 42.5 to 45 AU as a solid yellow line in the left panel. In

the right panel, the hot classicals occupy the upper portion of the survival region. The

dashed line indicates an approximate upper threshold of long-term survival, which we will

use in Sections 2.5.2 and 2.5.3.
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the cold and hot classicals were transported from the inner disk, it seems unlikely that

a common deposition process would place the cold classicals solely at low eccentricities.

Levison & Morbidelli (2003) and Levison et al. (2008) propose scenarios in which both

the hot and cold classicals are transported from the inner disk.

In the scenario of Levison & Morbidelli (2003), the cold classicals were pushed

outward by the 2:1 resonance and dropped during stochastic migration, while the

hot classicals scattered o↵ of Neptune. The feasibility of this mechanism depends on

the size distribution of planetesimals, because the migration needs to be stochastic in

order to drop objects from resonance. When Neptune scatters a planetesimal inward

and the planetesimal is ejected by Jupiter, Neptune experiences a net gain in angular

momentum and migrates outward. If the planetesimals are small, this is a smooth

process, but if they are large, it is a jumpy, stochastic process, in which KBOs can be

dropped from resonance. See Murray-Clay & Chiang (2006) for a detailed exploration of

stochastic migration; they conclude that planetesimal-driven migration cannot generate

the necessary stochasticity unless a large fraction of planetesimals formed very large.

This constraint merits a fresh look in light of new planetesimal formation models (see

Chiang & Youdin 2010, and references therein). However, even if extreme planetesimal

properties allowed this mechanism to work, objects dropped from the 2:1 resonance

would have a range eccentricities, not be confined solely to low eccentricities. Therefore

this mechanism holds more potential for producing the hot population than the cold

population.

In the scenario of Levison et al. (2008), the cold classicals are objects that, like

the hot classicals, were scattered into the Kuiper Belt by an eccentric Neptune but,

unlike the hot classicals, evolve down to low eccentricities in regions near resonances.
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However, this mechanism would create a range of eccentricities for the cold classicals

and thus would have trouble producing the confined eccentricities of the region of 42.5

AU < a < 45 AU (Figure 2.3). They do find some correlation between a particle’s final

inclination and its initial semimajor axis in one of their simulations (Levison et al. 2008,

Figure 11, panel (b)), which may be able to partially account for a di↵erence in physical

properties between low and high inclination objects. However, transporting the cold

classicals from the inner disk is not consistent with the finding by Parker & Kavelaars

(2010) that wide binaries — of which the cold population contains a number — cannot

survive transportation from the inner disk to the classical region.

The Eccentricity Distribution was not Sculpted Solely by a Di↵erent Stability

Threshold in the Past

One might wonder whether the observed confinement of the cold classicals (Figure 2.3) is

the result of a smaller stability region than exists today, as if the cold classicals follow an

ancient scattering line. However, there are numerous “hot” objects with i > 6�, as well

as ambiguous objects with 2� < i < 6�, in the region from 42.5 to 45 AU that have high

eccentricities, right up to the modern stability limit. To create the observed distribution,

one would need a mechanism that removes all objects with high eccentricities and i < 2�

while leaving a) objects with low eccentricities and i < 2�, and b) objects with a range of

eccentricities and i > 2�. Therefore, it seems unlikely that this mechanism could produce

both the hot and cold populations. We note that such a scenario could take place before

Neptune transports the hot classicals. However, such initial sculpting would not a↵ect

the constraints we will place, which Neptune still needs to obey during the hot classical

transport phase.
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2.3.2 Colds in Situ, Hots Transported from the Inner Disk

Thus, throughout the rest of paper, we consider the general scenario — also discussed

in Morbidelli et al. (2008) — in which the hot objects are transported to the classical

region from the inner disk and the cold objects form in situ in the classical region.

The cold objects must not be dynamically excited, as quantified by the criterion we

established in Section 2.2.2. In Figure 2.5, we show a conceptualization of this model.

This general scenario encompasses previous models and allows Neptune to undergo any

potential combination of high eccentricity, migration, and/or apsidal precession with a

range of initial eccentricities and semimajor axes. If our constraints do not rule out all

of parameter space for this model, it may be possible to produce both the hot and cold

classical population. Otherwise, a major physical process is missing from current models.
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Figure 2.5.—: Conceptual framework. (i) The hot classicals (blue) form in the inner

disk and the cold classicals (red) form in the outer disk. (ii) Neptune is scattered onto a

high-eccentricity orbit through its interactions with other planets. (iii) Neptune scatters

the hot objects into the classical region without disrupting the cold ones. (iv) Neptune’s

large eccentricity damps, leaving the cold classicals confined to low eccentricities.

For now, we can think of Neptune as having a high eccentricity at one location after

undergoing planet-planet scattering. Our results hold in more complicated scenarios as

well, as we will describe in Section 2.5.4.
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2.3.3 The Case for Considering Short-term Evolution

We have chosen features (Section 2.2.2) that are not shaped by the long-term survival of

KBOs under the current solar system planetary configuration. Therefore, we can focus

on modeling the processes that a↵ect these features during the interval of Neptune’s

wild days instead of treating the entire 4 Gyr. We model these processes analytically in

Section 2.4 and validate our analytical expressions using numerical integrations.

Unless otherwise specified, the integrations are performed as follows. We perform

the integrations using the Mercury 6.2 hybrid symplectic integrator (Chambers 1999),

an N -body code that allows massless test particles. We employ an accuracy parameter of

10�12 and a step size of 200 days and impose (if applicable) the migration and damping

of Neptune’s orbit through user-defined forces and velocities. Migration and damping

follow the following forms:

aN = (aN)f + ((aN)0 � (aN)f ) exp (�t/⌧
aN)

eN = (eN)0 exp (�t/⌧
eN),

(2.1)

where aN is the semimajor axis of Neptune at time t, (aN)0 is the initial semimajor axis,

and (aN)f = 30.1 AU is the final semimajor axis. At time t, the eccentricity of Neptune

is eN; Neptune’s initial eccentricity is (eN)0. The forced evolution of Neptune’s orbit is

implemented through modifications to Mercury 6.2, described in detail in the Appendix

of Wol↵ et al. (2012). The migration and damping are parametrized by timescales ⌧
aN

and ⌧
eN respectively, which we specify in the text in the applicable cases. When specified,

Neptune is forced to undergo apsidal precession using an artificial stellar oblateness

force, built into Mercury 6.2, that we modified to apply only to Neptune, parameterized
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by a J2 coe�cient chosen to produce the correct precession rate. Unless otherwise noted,

Neptune is the only planet included in the integration. The KBOs are modeled as 600

massless test particles with initial a evenly spaced between 40 and 60 AU and initial

e = i = 0. The migration, damping, and apsidal precession are not applied to the KBOs,

only to Neptune.

2.3.4 Alternative Scenarios for Kuiper Belt Assembly

The purpose of this paper is to explore whether the generalized scenario described here

can even work, i.e. whether it is ever possible to transport the hot classicals from the

inner disk to the classical region without disrupting an in situ cold population. Yet

alternative scenarios exist that do not fit within this framework, such as the additional

planet beyond Pluto proposed by Lykawka & Mukai (2008) and others. Furthermore, we

will describe in the conclusion how additional constraints could rule out the generalized

model we consider. In that case, development of alternative scenarios would be necessary.

Obviously, the constraints we will place do not necessary hold for a scenario that is not

encompassed by our general model.

2.4 Physical Processes Resulting from Neptune’s

High Eccentricity

We begin our analysis by describing the physical processes that can impact the Kuiper

Belt if Neptune’s eccentricity is high. First we consider how classical KBOs reach the

classical region. In our generalized model (Figure 2.5), the cold classicals form in situ
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and hot classicals are delivered by Neptune from the inner disk. Once the hot and cold

objects are in the classical region, both evolve in response to an eccentric Neptune. A

tension arises between need of hot objects for Neptune to be eccentric — to deliver

them into the classical region and to allow them to evolve to low eccentricities once they

arrive — and the undesirable excitation of cold objects when Neptune is eccentric. In

this Section, we lay out analytical expressions for how KBOs evolve in response to an

eccentric Neptune and use this theory to transform our observational constraints into

comprehensive constraints on Neptune’s orbit during its high eccentricity period. We will

employ these constraints on Neptune’s orbit in Section 2.5 to rule out much of parameter

space.

2.4.1 Delivery into the Classical Region

In the generalized model we explore, Neptune may be scattered outward from the inner

solar system onto a highly eccentric orbit. After this occurs, Neptune’s new orbit crosses

the orbits of some planetesimals in the inner disk (see Figure 2.5), which scatter o↵ the

planet. This mechanism can potentially deliver hot objects from the inner disk into the

classical region.

The region into which Neptune can scatter objects is defined by the planet’s

semimajor axis aN and eccentricity eN. Neptune can scatter objects outward to periapses

q = a(1 � e) between Neptune’s periapse r
p,N = (aN � aH)(1 � eN) and apoapse

r
a,N = (aN + aH)(1 + eN). In Figure 2.6, we show examples of the region into which

Neptune can scatter KBOs for two sets of parameters (aN, eN). We have adjusted r
p,N and

r
a,N to include the Hill sphere radius, aH (⇠ 1 AU), the distance from Neptune at which
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Neptune’s gravity overcomes the Sun’s tidal gravity. Particles that enter Neptune’s Hill

sphere will be scattered and, if they are scattered outward into the classical region, will

reach – under the approximation that the scattering location becomes the particle’s new

periapse – a given semimajor axis a with eccentricities between 1� r
p,N/a and 1� r

a,N/a.

40 42 44 46 48
a (AU)

0.3

0.6

e

0.3

0.6
e

Figure 2.6.—: Region into which Neptune can scatter particles for aN = 24, eN = 0.02

(top), a typical initial condition for extensive migration models, and aN = 28.9, eN = 0.3

(bottom), which is the initial condition for Run B in Levison et al. (2008). The dashed

line marks the upper threshold of long-term survival, as indicated in Figure 2.4.

Implications of Scattering for the Cold Classicals

If Neptune’s apoapse r
a,N is large enough, the planet can potentially impinge into the

cold classical region, scattering the objects there. However, we find in practice that if

Neptune’s eccentricity damps within the constraints we will place, then cold objects are

never excited up to the scattering line, which moves upward as Neptune’s eccentricity

damps. In Section 2.5.1, we will return to this issue for the special case of Neptune

undergoing fast apsidal precession.
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2.4.2 Secular Forcing

Secular forcing has a strong e↵ect on the behavior of KBOs during the potential period

when Neptune’s eccentricity is high. (See Murray & Dermott 2000 for a pedagogical

description of first order secular theory outside of mean motion resonance.) On a

timescale of a million years, a cold object is excited to a higher eccentricity via Neptune’s

secular forcing. (The direct forcing from the other planets on the KBO is negligible and

the other planets only a↵ect the KBOs via Neptune, as we will demonstrate in Section

2.4.2). A hot object that is scattered into the classical region also experiences secular

forcing, which can decrease its eccentricity so that its orbit no longer crosses Neptune’s.

Hot or cold, an object’s eccentricity is a vector combination of its forced eccentricity

— set by Neptune’s eccentricity, Neptune’s semimajor axis relative to the object’s,

and Neptune’s apsidal precession rate — and of the object’s free eccentricity, which

is set by its initial condition before Neptune is scattered to a high eccentricity. The

object’s free eccentricity precesses about the forced eccentricity at the secular frequency

gKBO. Therefore, as we will demonstrate, a cold object has a well-defined excitation

time and amplitude, and a hot object will have a minimum eccentricity it can reach

after being scattered into the classical region. Thus while Neptune’s eccentricity is high,

secular forcing potentially is an important mechanism for exciting the cold objects and

stabilizing the hot ones. As we will show, when Neptune’s eccentricity damps quickly,

the orbits of the KBOs are “frozen” near the eccentricities they reached through secular

evolution.
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Basic Secular Evolution

First we define expressions for the secular evolution of a test particle under the influence

of a planetary system containing only Neptune and the Sun. The components of the

particle’s eccentricity vector are h = e sin$ and k = e cos$, where $ is the particle’s

longitude of periapse. Secular forcing by Neptune causes h and k to evolve as (to first

order in e and eN):

h = efree sin(gKBOt+ �) + eforced sin($N)

k = efree cos(gKBOt+ �) + eforced cos($N)

(2.2)

where

eforced =
b
(2)
3/2(↵)

b
(1)
3/2(↵)

eN

↵=
aN
a

gKBO = ↵b
(1)
3/2(↵)

mN

mJ
n

4

(2.3)

The constants efree and � are determined from the initial conditions, and the

particle’s forced eccentricity is eforced. Here, $N is the longitude of periapse of Neptune,

eN is the eccentricity of Neptune, and ↵ is the ratio of Neptune’s semimajor axis to that

of the particle, all of which are assumed to be constant. The functions b are standard

Laplace coe�cients (see Murray & Dermott 2000). The secular frequency of the KBO is

gKBO, mN is the mass of Neptune, mJ is the mass of the Sun, n = (GmJ/a3)1/2 is the

particle’s mean motion, and G is the universal gravitational constant.
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Consider a cold object with e = 0 at t = 0. In our approximation, Neptune,

having been scattered by the other giant planets, e↵ectively instantaneously appears

and imparts a forced eccentricity of eforced. From these initial conditions, efree = eforced.

Then, the KBO’s forced eccentricity vector remains fixed and the object’s total free

eccentricity vector precesses about the forced eccentricity. Thus its total eccentricity

varies sinusoidally from e = 0 to e = 2eforced on a timescale set by gKBO.

A hot object scattered into the classical region, in contrast, has an eccentricity e

at t = 0. The magnitude of its free eccentricity is a value between max(0, e � eforced)

and e + eforced, depending on the initial location of its periapse relative to Neptune’s.

Over a timescale set by gKBO, its total eccentricity oscillates. Depending on the initial

conditions, it may reach an eccentricity low enough so that its orbit no longer crosses

Neptune’s and/or so that it is stable under the current configuration of the giant planets.

An example of the secular evolution of cold objects “going up” and hot objects

“going down” in eccentricity is shown in Figure 2.7, highlighting the tension between

the evolution of hot objects to low eccentricities and the evolution of cold objects to

high eccentricities. The cold objects (red) begin with e = 0 (see Section 2.3.3 for a

general description of the integrations we performed.) The hot objects in the integration

(blue) all begin with e = 0.2 and $ = $N + ⇡/3, for the purposes of illustrating secular

evolution4. As time progresses through three snapshots, the cold objects become excited

and the hot objects reach low eccentricities. The analytical model from Equation (2.2)

matches well except near mean motion resonances, where the secular evolution is much

4As shown in Section 2.4.1, a real hot object can only be scattered to a certain region of (a, e) space

in the classical region, and its eccentricity and periapse are actually correlated
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faster than predicted. We also overplot a more accurate analytical expression that

includes a resonant correction term, which we will derive in Section 2.4.2.

Figure 2.7.—: Numerical integration (aN = 30, eN = 0.2) shows cold objects (red) secu-

larly evolving to high eccentricities and hot objects (blue) to low eccentricities. The gray is

our analytical model without the resonance correction terms (Equation 2.2) and the black,

which matches much better near the resonances, includes resonance terms (Equation 2.4).

We note that throughout the paper, we perform numerical integrations of objects

with initial semimajor axes out to 60 AU to give a better conceptual picture of the

secular excitation. Moreover, depending on where the initial population was truncated in

the solar system’s planetesimal disk, it is possible that additional classical KBOs will be

discovered beyond 48 AU in the future, and we would like to make testable predictions.

Finally, the integration results should be interpreted as examples: since we cannot show
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a figure for every possible combination of parameters for Neptune, we plot out to 60 AU

to let the reader imagine the results if Neptune’s semimajor axis were smaller.

Refined Secular Expression

The secular expression in Section 2.4.2 is valid to first order in eccentricity, neglects the

e↵ects of orbital resonances, and applies in the case in which Neptune’s orbit does not

apsidally precess. However, these neglected e↵ects can significantly alter a secularly

evolving KBO’s behavior:

1. Neptune’s high eccentricity makes terms of order e2N (ignored in deriving Equation

2.2) non-negligible. As we will show, these extra terms result in a faster secular

forcing frequency of the KBO.

2. Proximity to mean-motion resonances with Neptune significantly alters the secular

frequencies of KBOs (as shown for other solar system bodies in Hill 1897; Malhotra

et al. 1989; Minton & Malhotra 2011). Following Malhotra et al. (1989), we

incorporate resonance correction terms, described in Section 2.8.1. These resonance

correction terms are very important for objects near resonance but not valid for

objects librating in resonance (we are not considering resonant objects in this

paper5).

3. As Neptune’s eccentricity is damped, the particle’s forced eccentricity goes to zero.

If the damping occurs over a timescale ⌧
eN shorter than the secular oscillation

5It has been claimed (e.g. Levison et al. 2008) that the entire classical region from the 3:2 to the

2:1 resonance is full over overlapping resonances. However, in Section 2.4.5 we will demonstrate that

Neptune’s high eccentricity alone does not cause resonance overlap in the classical region.
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time, the particle’s eccentricity is frozen at approximately the value it reaches at

the eccentricity damping time. If the damping occurs over a longer timescale, the

particle’s eccentricity evolves to its initial free eccentricity.

4. Apsidal precession of Neptune alters the forced eccentricity, keeping it low when

Neptune precesses quickly. It also alters the oscillation timescale of the total

eccentricity, because now both the free and forced eccentricity are precessing.

5. Migration alters the secular frequencies and shifts the locations of the resonances.

Based on these considerations, we modify the standard expression (Equation 2.2)

for the secular evolution of a test particle’s h and k under the influence of an eccentric

Neptune to incorporate these e↵ects.

h = efree,0 sin(gKBOt+ �0) + ēforced sin($N,0 + $̇Nt)

k = efree,0 cos(gKBOt+ �0) + ēforced cos($N,0 + $̇Nt)

(2.4)

gKBO = (1 +
f5
f2
e2N)↵b

(1)
3/2(↵)

mN

mJ
n

4
+ ✏�gKBO (2.5)

�gKBO = ↵(Cxex�1
N )2

mN

mJn (2.6)

ēforced = sin(min(g
gKBO⌧eN , ⇡/2))

g0KBO

$̇N � gKBO
eN(t) (2.7)

g0KBO = �(1 +
f10
f11

e2N) ↵b
(2)
3/2(↵)

mN

mJ
n

4
(2.8)

Compare Equation (2.4) to Equation (2.2). The form is the same but Equation (2.4)

has several key di↵erences and new variables, that we will proceed to discuss and define

throughout the remainder of this subsection. One distinction is that several quantities
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that were fixed in Equation (2.2) (i.e., $N,↵, eN) can now vary with time. Additionally,

we have incorporated corrections for Neptune’s high eccentricity and for the potential

proximity of the KBO to mean motion resonance with Neptune. The impact of the

time-varying eN is the most complicated, so we leave it for last.

As our first correction, we allow the longitude of pericenter of Neptune, $N, to

precess. Neptune’s precession adds an extra term $̇N to Equation (2.4) (where we rewrite

$N as a linear function of time: $N,0 + $̇Nt) and to Equation (2.7), in analogy to the

standard secular theory for the four-planet case. We note that the other giant planets

impact the secular evolution of the KBOs indirectly by causing Neptune’s eccentricity to

precess (see Section 2.4.2 for discussion).

The precession rate $̇N has the same role (and same place, in the denominator of

the forced eccentricity) in the just-Neptune secular theory as in the standard four-planet

secular theory (Section 2.8.2) for the particle except that we are specifying Neptune’s

evolution via !̇N instead of constructing a secular theory for the planets that produces

a particular !̇N. When $̇N is large, the e↵ective forced eccentricity eforced = |ēforced|,

defined below, remains low because the forced eccentricity is inversely proportional to

the precession rate for |$̇N| � |gKBO| (Equation 2.7).

When Neptune migrates, ↵ changes with time. In Wol↵ et al. (2012), we found that

migration occurs in three regimes, relative to the eccentricity damping timescale ⌧
eN :

fast, comparable, and slow. When Neptune’s migration timescale ⌧
aN is slow relative

to the damping time, the secular evolution of the KBOs e↵ectively takes place as if

Neptune remains at its initial location. When Neptune’s migration is fast relative to the

damping time, the secular evolution of the KBOs e↵ectively takes place as if Neptune
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were always at its final location. In the intermediate case, in which ⌧
eN ⇠ ⌧

aN , modeling

the secular evolution at the location Neptune reaches after half a damping time is a

fair approximation. In this work, we therefore use a fixed ↵, which should be chosen

according to these principles for a given evolution of Neptune. Figure 2.8, which we will

describe after discussing our treatment of Neptune’s eccentricity, provides an example

showing that this approach is e↵ective.

Before considering the impact of eN varying with time, we discuss the correction

terms for Neptune’s high eccentricity and for resonances. The correction terms for

Neptune’s high eccentricity do not change the form of the secular evolution. We have

applied a correction term, f5

f2
e2N, in our expression for gKBO (Equation 2.5), and another

such factor, f10

f11
e2N, in g0KBO (Equation 2.8), which is another eigenfrequency. These

terms are derived, the f factors (which are of order unity) defined, and their necessity

demonstrated in Section 2.8.

Proximity to resonance changes the secular frequency gKBO (Equation 2.5), as

described by Malhotra et al. (1989). Orbital resonances greatly increase the secular

forcing frequency because terms in the disturbing function that depend on the resonant

angle can no longer be averaged over. The amplitude of the resonant correction term

✏ is defined in Section 2.8 and depends on how close the particle is to the location of

mean-motion resonance. The frequency, �gKBO, defined in Equation (2.6), depends on

the order of the resonance x and a constant C, of order unity, that is di↵erent for each

resonance. See Figure 2.7 for a demonstration of the resonance correction terms.

Finally, we turn to the impact of eccentricity damping, which alters eN.

Instantaneously, the KBO has the eccentricity components h = e sin$ = efree sin� +
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ēforced sin$N and k = e cos$ = efree cos� + ēforced cos$N, where � = gKBO t + �.

However, now the forced eccentricity vector (ēforced cos$N, ēforced sin$N) is changing. We

have already accounted for the apsidal precession, but now the magnitude of the forced

eccentricity vector is changing as well. When eforced does not change, efree is a constant

determined by initial conditions. This remains true when eforced evolves slowly compared

to the secular forcing time of the KBO. Otherwise, efree changes. Instead of allowing

both efree and eforced to change with time, we use efree,0 and define an “e↵ective” forced

eccentricity, |ēforced| (Equation 2.7). The “e↵ective” forced eccentricity changes with time

proportionally to eN. Throughout the rest of the paper, we will refer to efree,0 as efree and

the “e↵ective” forced eccentricity as eforced. The “e↵ective” forced eccentricity includes a

factor sin(min(g
gKBO⌧eN , ⇡/2)). When Neptune’s eccentricity damping timescale is long

compared to the KBO’s secular oscillation period (i.e. gKBO⌧eN > ⇡/2), the particle’s

total eccentricity damps to its initial free eccentricity, efree,0, and this factor is unity.

However, when Neptune’s eccentricity damps quickly, the particle’s total eccentricity

damps to a value near the eccentricity it reached after one damping time. The empirical

correction factor allows us to model the particle’s behavior without altering the form of

the secular evolution. This empirical factor provides a match to the integrations (see

Figure 2.8).

The modified secular theory, Equation (2.4), matches the integrations even when

damping and migration are included (Figure 2.8). Figure 2.8 shows an example of a

case in which ⌧
eN = 0.3 Myr is shorter than its migration timescale, ⌧

aN = 5 Myr. (See

Section 2.3.3 for a description of how we implemented the damping and migration of

Neptune’s orbit.) In the top row, Neptune undergoes eccentricity damping from e = 0.3

at constant semimajor axis 28 AU. In the middle row, Neptune migrates from 28 AU
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to 30 AU on a timescale ⌧
aN = 5 Myr, without its eccentricity damping. Unlike any

other model in this paper, we use a time-dependent ↵(t) for the analytical model. In

the bottom row, Neptune undergoes both damping and migration, but we plot again

the same analytical model as in row 1, in which Neptune undergoes only eccentricity

damping (no migration). The model over plotted in row 3, even though it in no way

includes the e↵ects of migration, matches well. When the migration is slow compared to

the damping, the change in the secular frequency gKBO is negligible over the timescale

during which Neptune’s eccentricity is high. It is as if Neptune’s eccentricity damps

while Neptune remains at its initial aN. Thus when the migration is slow compared

to the damping timescale, we can model the KBOs’ secular evolution as if Neptune’s

eccentricity damps while Neptune remains in place.
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Figure 2.8.—: Secular excitation of cold classicals when Neptune undergoes eccentricity

damping and/or migration. In the top row, Neptune’s eccentricity damps with ⌧
eN =

0.3 Myr, and the planet does not migrate; secular theory, including damping (Equation

2.4), is plotted in black. In the middle row, Neptune migrates outward on the timescale

⌧
aN = 5 Myr, and its eccentricity does not damp. The secular theory, including migration

(Equation 2.4), is plotted in black. The scattered points in the final panel are objects

that have undergone accelerated forcing near resonances as the resonances swept through.

The bottom row displays a numerical integration including both eccentricity damping and

migration, on the same timescales as above, but the analytical model overplotted in black

is the same as in row 1.
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Figure 2.8.—: Continued

49



CHAPTER 2. NEPTUNE’S WILD DAYS

E↵ects of Other Planets

Our approach of modeling only Neptune, undergoing a range of orbital histories that

would be caused by interactions with the other giant planets and with the solar system’s

planetesimal disk, is su�cient because the other planets primarily a↵ect the KBOs

only indirectly, through influencing Neptune. The influence on the Kuiper Belt of a

single, apsidally precessing Neptune matches the influence of multiple planets in both

integrations and theory.

An illustrative case is shown in Figure 2.9. The initial conditions for the particles

are the same as in Figure 8, and Neptune has aN = 28 and eN = 0.2. The top panel

(four planets) and middle panel (just Neptune undergoing precession) are very similar,

keeping the objects at lower eccentricities than in the bottom panel (just Neptune, no

precession). Thus precession must be included in the parameter space exploration, and

including precession successfully accounts for the influence of the other giant planets.

We note that in the time of the snapshot (1.4 Myr), the particles have secularly evolved

to have eccentricities large enough so that their orbit, at the proper orientation, could

intersect Neptune’s. In cases in which Neptune precesses (top two panels), the objects

are scattered by Neptune as Neptune’s orbit precesses to intersect the orbits of the KBOs

with eccentricities above the scattering line. The cut-o↵ is at 45 AU because, interior

this location, particles are secularly evolving quickly due to their proximity to resonance

and have thus reached high eccentricities, allowing them to scatter. In the final panel,

the particles are not scattered because Neptune’s orbit does not precess to intersect the

orbits of the particles.

The other planets matter in that they a↵ect Neptune, but their direct e↵ect on the
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Figure 2.9.—: Other giant planets a↵ect the cold classicals indirectly by causing apsidal

precession of Neptune. Top panel: snapshot (1.4 Myr) from an integration including four

planets (with initial conditions a = 5.2 AU, e = 0.05, i = 1.3� for Jupiter, a = 9.54 AU,

e = 0.06, i = 2.49� for Saturn, and a = 16 AU, e = 0.05, i = 0.773� for Uranus). Middle

panel: same for integration including just Neptune undergoing apsidal precession with a

period of 1.6 Myr. Bottom panel: same for integration including Neptune not undergoing

precession. The black line in the top plot is the first-order multi-planet secular theory

(i.e. without the extra resonant correction terms or higher order eN terms we included

for the just-Neptune theory) (Murray & Dermott 2000). The gray line on each plot is the

analytical expression from the middle panel for comparison, computed using single planet

secular theory, including precession (Equation 2.4). The black line in the bottom panel

does not include precession. Note the scattering in the top two panels interior to the 2:1

resonance.
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KBOs is negligible. Their main e↵ect is to cause precession of Neptune. Interactions

between Uranus and Neptune, if they closely approach the 2:1 resonance while Neptune’s

eccentricity is high, cause additional e↵ects that we discuss in Section 2.4.5. These e↵ects

can also be modeled using only Neptune, with appropriate orbital variations.

Treating only Neptune reduces the number of free parameters, allowing a more

thorough exploration of the restricted space. The constraints we will develop can be

applied to more extensive models that include the other giant planets. See Section 2.8.2

for a mathematical discussion of how the full four-planet secular theory reduces to the

just-Neptune case.

Constraints from Secular Excitation of Cold Objects

It follows from the expressions in Section 2.4.2 that the excitation of the cold classicals

happens on timescales of millions of years (or shorter near resonances) with an amplitude

and timescale that depend on Neptune’s semimajor axis, eccentricity, eccentricity

damping timescale, migration rate, and precession rate. Complementarily, hot objects

scattered into the classical region can evolve to lower eccentricities on similar timescales.

The observations require that the cold classicals not be excited above e > 0.1 in the

region 42.5 AU < a < 45 AU, as demonstrated in Section 2.2. From Equations (2.4) and

(2.5) derived in Section 2.4.2, it follows that the cold classicals will not be excited above

e > 0.1 at a given location if (CONSTRAINT 1):

sin(min(gKBO⌧eN , ⇡/2))|
g0KBO

$̇N � gKBO
|eN < 0.1 (2.9)
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Thus there are three possible regimes to “preserve” an in situ population of cold

classicals through Neptune’s wild days:

1. The eccentricity of Neptune is small enough that the region’s forced eccentricity,

proportional to eN, is below 0.1 (i.e. |
g

0
KBO

$̇N�gKBO
|eN < 0.1)

2. Neptune’s periapse precesses quickly enough that the region’s forced eccentricity,

inversely proportional to $̇N, is below 0.1 (i.e. $̇N is large).

3. The eccentricity of Neptune damps quickly enough that the objects are not excited

above 0.1 (i.e. ⌧
e

is small).

2.4.3 E↵ects of Post-scattering Secular Evolution on Hot

Objects

Hot objects that have been scattered into the classical region from the inner disk (Section

2.4.1) will undergo secular evolution when they arrive in the classical region. They

will reach a given semimajor axis a in the classical region with eccentricities between

1� r
a,N

/a and 1� r
p,N

/a. Not all of these eccentricities are consistent with stable orbits

over 4 Gyr (Figure 2.3). If a particle is scattered to a high eccentricity above the stable

region, under certain conditions — if ⌧
eN is not too fast and Neptune imparts a forced

eccentricity that is large enough relative to the particle’s free eccentricity — the particle

can reach a region of long-term survival through secular evolution.

In Figure 2.10, we show two examples of KBOs that are scattered into the classical

region from an integration resembling Levison et al. (2008) Run B. In this integration,

Neptune begins with a
N

= 28.9 AU, eN = 0.3. Its eccentricity damps on a timescale
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of ⌧
e

= 2 Myr, and it undergoes migration to 30.1 AU with ⌧
a

= 10 Myr. Uranus

begins with a = 14.5 and e = 0 and also undergoes migration, to 19.3 AU, on the same

timescale. Jupiter and Saturn begin with a = 5.2 AU, e = 0.05 and a = 9.6 AU, e = 0.05

respectively and do not undergo migration or eccentricity damping. The integration

includes 24,000 test particles, half of which (following Levison et al. 2008) begin in the

region from 20-29 AU with e = 0.2 and half of which begin in the region from 29 - 34 AU

with e = 0.15. The two example particles shown were among the group of particles found

in the stable classical region in this integration after 4 Gyr and exhibit typical behavior.

The particles are scattered into the classical region above the region of survival (Figure

3; below dotted line in right panel) but secularly evolve down into the stable region.

After 4 Gyr, the particles remain in this location. Neither of these example objects is

librating in an orbital resonance.

Therefore, Neptune’s apoapse r
p,N

must be large enough so that the hot classicals

reach the region of long-term survival either immediately or can evolve there before the

eccentricity of Neptune damps, after which the eccentricity of the particle is frozen.

However, the post-scattering evolution depends strongly on $ �$N. Particles are

not actually scattered to orbits with independent, random $ �$N. This is because, by

definition, after each scattering, the particle’s new orbit fulfills the condition that at ✓,

the angle at which the orbit of the particle and the orbit of Neptune intersect, r = r
N

:

a(1� e2)

1 + e cos(✓ �$)
=

aN(1� e2N)

1 + eN cos(✓ �$N)
(2.10)

This is important because once the particle is scattered, it begins to undergo secular

oscillations and the initial phase of the oscillation, �0 (Equation 2.4), depends on $�$N.

Since in the classical region, most of the particle’s orbit is outside of Neptune’s
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Figure 2.10.—: Secular evolution can deliver hot objects into the classical region. Evolu-

tion of two example particles (top and bottom) for the first 6 Myr of an 4 Gyr integration

resembling Levison et al. (2008) Run B. Left: path of objects in (a, e) space. The color

varies from purple (beginning of the integration) to red (6 Myr). The dashed line indi-

cates the scattering line q = 35. Right: evolution of the particle’s eccentricity versus time.

The dashed line indicates one e-folding time, ⌧
eN = 2 Myr, for the damping of Neptune’s

eccentricity.
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orbit, the orbits will intersect close to the particle’s periapse, i.e. the interior part of its

orbit, so ✓ ⇡ $. When ✓ = $, Equation (2.10) simplifies to:

q = a(1� e) =
aN(1� e2N)

1 + eN cos($ �$N)
(2.11)

and thus $ maps exactly to the particle’s post-scattering periapse q. For example,

particles scattered to the minimum q = r
p,N

have $ �$N = 0, while particles scattered

to the maximum q = r
a,N have $ � $N = ⇡. Particles scattered to an intermediate

q = aN(1� e2N) have $ �$N = ±⇡/2.

In Figure 2.11, we plot the longitude of periapse relative that of to Neptune $�$N

versus periapse q of test particles that were scattered in an integration we performed.

The $ � $N is from the first (3000 yr) timestep after the particle’s scattering. The

integration lasted for 1 Myr and included Neptune, with aN = 30 AU and eN = 0.3, and

11,600 test particles evenly-spaced in semimajor axis from 29-34 AU, with e = 0.15. The

$ �$N values are well-matched by Equation (2.11).
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Figure 2.11.—: Longitude of periapse relative to Neptune $ � $N of a particle’s orbit

after being scattered by Neptune into the region a > 40 AU maps to the particle’s new

periapse distance q. The particles from the integration are plotted as pluses and the solid

line is Equation (2.11). The dashed lines are the solid line shifted by ±40�.
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The secular evolution of the particle after its scattering will depend on its semimajor

axis, eccentricity, and longitude of pericenter relative to Neptune’s (Equation 2.2).

In particular, from Equation (2.2), it follows that the initial rate of change of the

particle’s eccentricity depends on $�$N. By calculating the particle’s total eccentricity

e =
p

h2 + k2, di↵erentiating with respect to time, and evaluating the time derivative at

t = 0, we find:

ė(t = 0) = �eN sin($ �$N)↵b
(2)
3/2(↵)

mN

mJ
n

4
(2.12)

An analogous expression follows from Equation (2.4).

Along a scattering line q, the KBOs do not have random $ but $ close to the value

dictated by Equation (2.11). Thus the particles scattered to the minimum q = r
p,N

,

which have $ � $N = 0, and maximum q = r
a,N, which have $ � $N = ⇡, are

turning over in their secular evolution cycles (ė = 0). However, particles scattered to an

intermediate q = aN(1� e2N), which have $�$N = ⇡/2, will be decreasing in eccentricity

at the maximum rate in the cycle.

Moreover, the particle’s free eccentricity also depends on $ �$N:

e2free = ē2forced + (e(0))2 � 2e(0)ēforced cos($ �$N) (2.13)

where e(0) is the KBO’s eccentricity at t = 0.

Thus $ �$N sets not only the particle’s initial phase in its secular evolution cycle

but also the amplitude of its free eccentricity. The particles with the phase to achieve

the lowest possible total eccentricity (efree close to eforced) may not initially be evolving

downward in their cycle. Therefore, in order to calculate the minimum time for a particle

to reach the stable region we consider all values of $ �$N.
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Thus particles with $ �$N = 0 and $ �$N = ⇡ have the smallest and largest free

eccentricities respectively, while those with $ �$N = ±⇡/2 have an intermediate value.

Unfortunately for particles trying to reach low eccentricities, the ones with largest free

eccentricity ($ �$N = ⇡) are initially going up (i.e. e is increasing).

From numerical integrations (Figure 2.11), it appears that the maximum deviation

in $ � $N as a function of q from Equation (2.11) is ±40� for conditions relevant to

Neptune and the classical region KBOs (due to the fact that ✓ in Equation (2.10) is not

always exactly $). In setting the initial conditions for the secular evolution of scattered

particles, we employ this mapping between $ �$N and the particle’s q, including the

uncertainty.

Thus the criterion for delivering the hot classicals developed in Section 2.2.2 requires

that:

CONSTRAINT 2: Neptune’s apoapse is large enough (r
a,N > 34 AU) so that

particles are immediately scattered into the stable region, or Neptune imparts an eforced

large enough relative to efree so that it is possible for particles with semimajor axes in

the range 42.5-47.5 AU to evolve to q > 34 AU in less than ⌧
e,N

.

This constraint ensures that it is possible for at least some hot objects in the region

from 42.5 to 47.5 AU to be delivered into the region of longterm stability.

2.4.4 Accelerated Secular Forcing Near Resonances

When two bodies are near resonance, the secular eccentricity forcing happens on a much

faster timescale. This e↵ect has been recognized as the cause of Saturn and Jupiter’s
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fast precession, which Hill (1897) attributed to their period ratios being near 5:2. More

recently, Minton & Malhotra (2011) recognized that the 2:1 resonance also contributes

to Jupiter and Saturn’s fast precession and Malhotra et al. (1989) identified the classical

Uranian satellites’ proximity to resonance as the cause of their deviation from their

predicted ephemerides.

For the cold objects, the accelerated secular forcing near resonance quickly excites

the eccentricities of these objects (as seen in Figure 2.7) , disrupting the confinement

of the cold population. Near resonance, the correction term, ✏�gKBO, to gKBO is large

(Equation 2.5). Thus the secular frequency gKBO is very high. If resonances overlay

the cold classical region at early times, Neptune’s eccentricity would have to damp on

unrealistically short timescales to fulfill CONSTRAINT 1 (Equation 2.9). As shown

in Figure 2.8, the objects near resonance remain dynamically disrupted even after

Neptune’s eccentricity damps. Since the cold objects in the region 42.5 AU < a < 45

AU are confined to low eccentricities (Section 2.2.2), they cannot have been excited by

accelerated secular forcing near resonance while Neptune’s eccentricity was high.

CONSTRAINT 3: Resonances cannot overlie the region 42.5 AU < a < 45 AU

while Neptune’s eccentricity is high. This constraint is a special case of CONSTRAINT

1 (Equation 2.9) and is quantified in Section 2.5.1.

For the hot objects, accelerated secular forcing near resonance can drive down

their eccentricities once they have been scattered into the classical region. Figure 2.12,

inspired by Figure 3 of Levison et al. (2008), shows two example integrations of particles

beginning at large eccentricities and evolving down to smaller eccentricities. The initial

conditions (panel i) match those in Levison et al. (2008), Figure 3 (their top left panel).
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The snapshots in panels (ii) and (iii) are after 1.4 Myr. The integration in panel (ii)

includes all four giant planets. Neptune has initial conditions aN = 30 AU and eN = 0.2,

and the other planets have their modern orbital elements. The integration in panel (iii)

is the same except without Uranus. The particles are undergoing secular evolution, as

demonstrated by their vertical paths in (a, e) space (a does not change under secular

evolution) and their eccentricity oscillations (panel iv). If Uranus is present near the

2:1 resonance with an eccentric Neptune, the evolution of the particles is chaotic (panel

ii), as we will discuss in more detail in Figure 2.4.5. For objects capable of reaching

low eccentricities through secular evolution (Equation 2.13), proximity to resonance

significantly decreases the delivery time. Fast secular evolution near resonances can

also assist in capturing objects into resonance, in addition to the previously identified

mechanisms of chaotic capture (Levison et al. 2008) and smooth migration (Malhotra

1995).

2.4.5 Chaotic Sea: No Additional Constraints

When Neptune’s eccentricity is large, the resonances are widened and potentially overlap

in what Levison et al. (2008) describe as a “chaotic sea.” Levison et al. (2008) argue that

this region extends to the 2:1 resonance when Neptune’s eccentricity is eN > 0.15. We

have investigated the circumstances for chaos and reached several conclusions, which we

will state and then justify:

1. Even when widened by Neptune’s high eccentricity, the resonances between the 5:3

and 2:1 do not overlap except for particles at high eccentricities.

2. Variations in Neptune’s semimajor axis on timescales of order a KBO libration
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Figure 2.12.—: Objects scattered into the classical region undergo re-scattering and sec-

ular evolution. Panel (i): Initial conditions of the particles. Panel (ii): Positions of the

particles (black circles) after 1.4 Myr (compare to the middle row of Levison et al. (2008),

Figure 3) in an integration including all four giant planets. The gray is the cumulative

region visited by the particles. Panel (iii): Same for an integration without Uranus. The

colors show the paths of a few selected particles. Panel (iv): Eccentricity oscillations for

particles corresponding to panel (iii).
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time combine with widened resonances to cause a chaotic region.

3. The existence and extent of the chaotic region depend on the details of Neptune’s

interactions with Uranus.

4. The potential for chaos does not impose immediate additional constraints beyond

those described in the previous subsection (Section 2.4.2). We will show that we

can still model just Neptune, taking into account its potential evolution under the

influence of the other giant planets.

Just Neptune: No Chaotic Sea

In addition to examining each particle individually, a qualitative way to distinguish

between: 1) a chaotic sea, and 2) particles secularly evolving until they are scattered, is

to plot the individual paths of a collection of particles through (a, e) space (Figure 2.13).

First we consider an integration that includes only Neptune (row 1). Each starting at

e = 0, the particles move straight upward vertically in (a, e) space until they reach the

scattering line (solid black line, e = 1 � r
a,N/a), rather than moving horizontally and

vertically as they would in a chaotic sea.

In integrations including just Neptune, with or without apsidal precession, the

eccentricity of an initially cold particle grows secularly until its orbit crosses Neptune’s at

e > 1� r
a,N/a. For a particle at 42.5 AU, when aN = 30 AU and eN = 0.2, this threshold

is e > 0.15. After reaching this threshold, the particle then undergoes scattering events.

Even particles near resonances evolve secularly, with the increased secular frequency

defined by Equation (2.5). These particles appear separated from the coherent excitation

of the other cold particles (Figure 2.7) because they undergo secular evolution so quickly
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and because the secular oscillation rate depends quite steeply on semimajor axis near

resonance. It appears that, for particles that begin at low eccentricities, the resonances

do not overlap even when eN = 0.2. Therefore the constraints from 2.4.2 hold in the

just-Neptune case, even when the planet is precessing.

Neptune, Jupiter, and Saturn: No Chaotic Sea

Adding Jupiter and Saturn in their current configurations does not generate a chaotic

sea (Figure 2.13, row 2). The particles continue to move upward in (a, e) space until

they reach the scattering line. The behavior is not qualitatively di↵erent from the

just-Neptune case.

Neptune and Uranus: Chaotic Sea

However, when Uranus is added on its current orbit, a chaotic sea appears in the classical

region, extending up to the 9:5 resonance (Figure 2.13, row 3). In the chaotic regime,

individual particles exhibit chaotic jumps in their eccentricity. Some cross from one

resonance to another. They move horizontally, as well as vertically, in (a, e) space.

Why does adding Uranus create the chaotic sea? Neptune and Uranus exhibit

anti-correlated variations in their semimajor axes associated with proximity to their 2:1

resonance. For the configuration considered here, the periodicity of this variation is

about 104 years, and the amplitude for Neptune is about 0.2 AU. This timescale is of

order the typical libration time of a resonant KBO in the classical region. We performed

additional integrations in which we modified Mercury6 to turn o↵ the gravitational

interaction between each KBO and any planet except Neptune. The behavior was
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Figure 2.13.—: Paths of particles in (a, e) space provides a qualitative probe of the ex-

istence of a chaotic sea; the solid line indicates the scattering line. The locations of the

resonance centers are plotted as dashed lines; in the case in which Neptune’s semimajor

axis changes (i.e. in rows 3 and 4), the minimum and maximum centers are plotted.

We integrated 200 massless test particles, each starting with e = 0, for 6 Myr under

the influence of a subset of planets. Neptune, present in each integration, begins with

aN = 30, eN = 0.2. Row 1: the top panel is an integration with just Neptune, precessing

with a period of 4 Myr. The chaotic sea is not present: particles evolve secularly upward

in (a, e) space until they reach the scattering line. Row 2: the behavior of the particles

in this integration, which also includes Jupiter and Saturn at their current locations, is

qualitatively similar: no chaotic sea. Row 3: in this integration — which includes Jupiter,

Saturn, and Uranus at their current locations — the chaotic sea appears, extending up

to about 45 AU, just past the 9:5 resonance. Instead of a straight upward path, the

particles move from left to right as well. Row 4: the chaotic sea is also present in this

integration, which includes just Neptune but with its semimajor axis oscillating with a

period of 12,400 yr and amplitude 0.2 AU, as it does under the influence of Uranus in row

3. Values for a and e are in barycentric coordinates.
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Figure 2.13.—: Continued
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qualitatively the same as that shown in Figure 2.13, row 1, suggesting yet again that the

other giant planets only a↵ect the KBOs indirectly through their impact on Neptune’s

orbit. We performed integrations that include just Neptune, no other giant planets, with

its semimajor axis oscillating with a period of 12,400 yr and amplitude 0.2 AU. The

behavior was the same as in the four planet case, and the chaotic sea was present (Figure

2.13, row 4). Evidently this strong periodicity in Neptune’s orbital variations, which is

driven by Uranus and which moves the locations of the resonances on timescales of order

a KBO libration time, causes the chaotic sea.

We note that in the case in which Uranus is excluded (Section 2.4.5, Figure 2.13,

row 2), Neptune’s semimajor axis is perturbed on orbital timescales (165 years) by

Saturn and Jupiter, with an amplitude of 0.02 AU. This small-amplitude perturbation

in aN, on a timescale two orders of magnitude shorter than the resonant timescale of

KBOs, does not create a chaotic sea. The chaotic sea appears to be limited to particular

dynamical histories in which Neptune and Uranus are strongly interacting through the

2:1 resonance. A thorough exploration of these histories are beyond the scope of this

paper, but may provide additional constraints.

The chaotic sea appears to extend to 45 AU, just past the 9:5 resonance. This region

between the 3:2 and 9:5 resonances is already forbidden to overlie today’s cold classical

region because the secular precession rates are extremely fast there (Section 2.4.4), so —

in the case of the cold classicals — the potential for chaos adds no additional constraints.

We notice that 45 AU coincides with the current edge of the cold classical region. In

our interpretation, this is a coincidence. We also note that Levison et al. (2008) found

that the chaotic sea extended to the 2:1. Because the chaos depends on the interactions

between Uranus and Neptune, we expect that this di↵erence may be due to di↵erent
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initial conditions for Uranus. Moreover, their interpretation that the chaotic sea extends

to the 2:1 is based on the fact that the cumulative region visited by the particles extends

to the 2:1 (Levison et al. 2008, Figure 3). An alternative interpretation is that chaotic

sea extends only to the 9:5 but that particles beyond this location are close enough to

either the 9:5 or the 2:1 resonance to quickly reach low eccentricities through secular

evolution, which is faster in regions near resonances.

Our constraints based on secular evolution (Section 2.4.2) are conservative. The

chaotic sea cannot revive a region of parameter space which we have excluded, but it

can rule out additional regions. If oscillations in Neptune’s semimajor axis caused by

interactions with Uranus are large enough, the chaotic sea may extend beyond the 9:5

resonance, which would impose additional constraints. For example, if the chaotic sea

extended to the 2:1 resonance, the region of parameter space for Neptune with eN > 0.1

between 28-29 AU (which we will demonstrate is viable in Section 2.5.1, Figure 2.15),

in which the cold classical region is sandwiched between the 9:5 and the 2:1 resonance,

would no longer preserve the low eccentricities of cold classicals.

Another e↵ect of the oscillations in Neptune’s semimajor axis is to e↵ectively

widen the resonances. This e↵ect could potentially cause more KBOs at the edge of,

but not within, the chaotic sea (for example, KBOs just beyond the 2:1 resonance) to

experience fast secular evolution due to proximity to orbital resonance (Section 2.4.4).

Thus even more parameter space could be ruled out. We do not explicitly take this into

account because the oscillations in Neptune’s semimajor axis depend on the particular

configuration of Neptune and Uranus.

Our constraints are a starting point for more extensive integrations, which will
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require careful consideration of the interactions between Neptune and Uranus. We note

that, for illustrative purposes, we have used the current semimajor axis and eccentricity

of Uranus and current semimajor axis of Neptune in these explorations, but the existence

and extent of the chaotic sea depends on their particular orbital configuration —

especially their proximity to the 2:1 resonance — during Neptune’s wild days.

2.4.6 Summary

By modeling the four dynamical processes that result from Neptune’s high eccentricity

— scattering (Section 2.4.1), secular forcing (Section 2.4.2-2.4.3), accelerated secular

forcing near resonances (Section 2.4.4), and a chaotic sea (Section 2.4.5) — we have

translated the conservative criteria imposed by the observed eccentricity distributions of

the hot and cold classicals (Section 2.2.2) into the following constraints:

• Neptune’s apoapse must be large enough to deliver hot objects to the longterm-

stable classical region immediately (r
a,N > 34 AU) or eforced must be large enough

(relative to efree) to evolve the particle’s e to < 0.3 in less than Neptune’s

eccentricity damping time ⌧
eN

• The final value for the eccentricities of planetesimals in the region from

42.5 AU< a < 45 AUmust be less than e = 0.1: sin(min(gKBO⌧eN , ⇡/2))
g

0
KBO

$̇N�gKBO
eN <

0.1 (or the forced eccentricities must be kept below 0.1 by fast precession).

• Resonances cannot overlie the region 42.5 AU < a < 45 AU while Neptune’s

eccentricity is high.
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Thus Neptune’s eccentricity must be high in order to deliver hot objects to the

classical region and yet will disrupt the cold objects quickly unless Neptune’s high

eccentricity damps quickly or the planet’s orbit apsidally precesses quickly. In all cases,

mean motion resonances with Neptune cannot overlie the region 42.5 AU < a < 45 AU

while Neptune’s eccentricity is large.

2.5 Results: Constraints on Neptune’s Dynamical

History

Applying the constraints developed in Section 2.4, we place constraints on parameters of

Neptune during its dynamical history. First, we consider separately which parameters

of Neptune preserve an in situ cold population (Section 2.5.1) and which allow delivery

the hot classicals (Section 2.5.2). In Section 2.5.3, we combine those constraints and

determine which parameters of Neptune allow the planet to simultaneously preserve the

cold classicals while delivering the hot classicals. In Section 2.5.4, we interpret these

parameter constraints in light of Neptune’s full dynamical history. We present example

integrations illustrating the constraints in Section 2.5.5.

The combined constraints will o↵er answers to the following questions about

Neptune’s dynamical history:

• Could Neptune have been scattered to a high-eccentricity orbit?

• If so, how quickly did dynamical friction damp Neptune’s eccentricity?

• How far did Neptune migrate in the protoplanetary disk?
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• If both damping and migration occurred, what were their relative timescales?

2.5.1 Regions of Parameter Space that Keep Cold Objects at

Low Eccentricities

In Section 2.5.1, we identify which regions of parameter space fulfill CONSTRAINT 1

(Equation 2.9), preserving the cold classicals below e < 0.1 (as summarized in Section

2.4.6), without including the e↵ects of orbital resonances or precession. In Section 2.5.1,

we incorporate CONSTRAINT 3, the e↵ects of orbital resonances. Finally, in Section

2.5.1, we consider the special case of fast precession.

Constraints on Neptune’s Eccentricity and Damping Time

We begin by identifying regions of parameter space where, for a given semimajor axis of

Neptune aN, Neptune’s eccentricity eN is small enough or its damping time ⌧
eN is short

enough to avoid excessively exciting the cold classicals. In this subsection, we neglect

the e↵ects of resonances and assume zero precession of Neptune’s orbit. in Figure 2.14

reveals the two two main regions of parameter space.

1. In the contoured region (high eN), we plot contours of maximum eccentricity

damping time as a function of (aN, eN) that fulfill the criteria set by CONSTRAINT

1 (Equation 2.9). We calculate the maximum eccentricity damping time by

considering the equation in CONSTRAINT 1 for a particle at 42.5 AU, where the

secular evolution is fastest (excluding resonances). This map of (aN, eN) illustrates

constraints on how quickly Neptune’s eccentricity must damp — in order to avoid
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Figure 2.14.—: Constraints on Neptune’s parameters to preserve the forced eccentricities

of KBOs below eforced = 0.1 in the region from 42.5 to 45 AU, where aNeptune = aN

and eNeptune = eN are spelled out for clarity. The white region indicates parameters of

Neptune that keep eforced < 0.1, no matter how long the damping time. The gray regions

are contours of the maximum allowed log10 ⌧eN (where ⌧
eN is in years), neglecting orbital

resonances and assuming Neptune’s orbit has zero precession, to fulfill CONSTRAINT 1

(Equation 2.9).
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exciting the cold classicals above the level we observe — when Neptune occupies a

particular region of (aN, eN) space.

2. In the white region, Neptune’s eccentricity is small enough that the forced

eccentricity of the cold classicals never exceeds eforced = 0.1 and thus the damping

time can be arbitrarily long. As shown in Wol↵ et al. 2012, in the regime of slow

damping, the particle’s eccentricity damps to its free eccentricity which, for a KBO

beginning with e = 0, is equal to eforced.

We will present several more such plots throughout the paper. Note that we plot

only eccentricities up to eN = 0.4, corresponding to a r
p,N

= 18 AU for aN = 30 AU.

Above this value, corrections for Neptune’s high eccentricity beyond what we already

included would be necessary, and one also worries about the orbit of Neptune crossing

the orbit of Uranus, which is currently situated at 19 AU. However, the constraints we

have developed could be considered for larger eN.

The criteria in this subsection hold when the secular excitation times are not a↵ected

by proximity to resonance.

Constraints on Neptune’s Dynamical History, including the E↵ects of

Resonances

In regions near orbital resonance with Neptune, KBOs undergo significantly faster

secular evolution, as demonstrated in Section 2.4.2. Here we incorporate the resonance

correction terms for the secular excitation times. in Figure 2.15, analogous to Figure

2.14, we plot contours of eccentricity damping time as a function of (aN, eN) that fulfill

the criteria set by CONSTRAINT 1 (Equation 2.9) . We calculate the damping time of
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Neptune’s eccentricity, ⌧
e

for which 80% of initially cold objects in the region 42.5 AU

< a < 45 AU remain below e = 0.1. Note the key di↵erence between the two figures: in

Figure 2.14, ⌧
e

varied smoothly through (aN, eN) space, but in Figure 2.15, there are dark

regions where the eccentricity damping time is substantially reduced due to resonances

overlying the classical region.

The damping times are unrealistically short for parameters of Neptune for which

resonances overlie the cold classical region. Neptune is unlikely to have spent substantial

time with high eccentricity in these aN ranges. Ford & Chiang (2007) find that a

Neptune-mass planet at 20 AU with an eccentricity of 0.3 undergoes eccentricity damping

on ⌧
eN = 0.6 Myr to 1.6 Myr (depending on whether Neptune’s orbit intersects the

planetesimal disk at pericenter/apocenter or at quadrature) if the surface density � of

planetesimals is 1 g/cc. This is roughly the surface density needed to grow planetesimals

in the region of Neptune (Kenyon & Luu 1998). Since ⌧
eN / ��1, it is unlikely to be

less than 0.1 Myr (105 yr), an order of magnitude faster than the ⌧
eN calculated by

Ford & Chiang (2007). With resonances incorporated, certain regions cannot satisfy

CONSTRAINT 1 (Equation 2.9) in the zero precession case without un-physically low

values of ⌧
eN . CONSTRAINT 3 is a qualitative statement of this result. Thus by

applying CONSTRAINT 1, including resonances, we recover CONSTRAINT 3.

Incorporating the resonance correction terms, we plot the maximum ⌧
eN as a

function of the KBO’s semimajor axis for several combinations of aN and eN (Fig 2.16).

The maximum eccentricity damping time is larger for lower eccentricities, as shown

for several illustrative values of eN in the top panel. The dips where ⌧
eN approaches

0 correspond to regions of the Kuiper Belt near mean motion resonances where the

secular excitation time is very short. The dips are wider when Neptune’s eccentricity is
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Figure 2.15.—: Contours of log10 ⌧eN (where ⌧
eN is in years), from the constraint that

the small bodies be preserved below e < 0.1 in the region from 42.5 to 45 AU, where

aNeptune = aN and eNeptune = eN are spelled out for clarity. The white region indicates

where Neptune’s eccentricity is small enough that the forced eccentricity of the cold

classicals never exceeds e = 0.1. Note that the dark regions are forbidden to Neptune; in

these regions, the resonances overlie the cold classical region, exciting the cold classicals

to high eccentricities on timescales less than 104.5 years. The constraints in this plot

correspond to the situation in which at least 80% of the particles in the region from 42.5

to 45 AU are confined below e < 0.1.
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higher. When these dips overlie the cold classical region from 42.5 AU < a < 45 AU,

the damping time requirement is un-physically short. In the bottom panel, we see how

the resonances shift with Neptune’s semimajor axis. At aN = 30 AU, several resonances

overlie the cold classical region. When aN = 28 AU, the resonances are shifted interior

and the cold classical region is sandwiched between two resonances, the 9:5 and the 2:1.

For aN = 27.5 AU (not shown), the 2:1 resonance would be on top of the cold classicals.

When aN = 26 AU, all the major resonances are interior to the cold classical region.

Figure 2.16.—: Maximum eccentricity damping time ⌧
eN (abbreviated ⌧

e

) to preserve

the cold classicals at e < 0.1, as a function of a KBO’s semimajor axis for illustrative

parameters of Neptune. The gray region is the cold classical region (42.5 AU < a < 45

AU). Top panel: maximum eccentricity damping times for: aN = 30 and eN = 0.4, 0.3,

0.2, and 0.13. Bottom panel: times for aN = 30, 28.7, 26 for eN = 0.2.
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Special Regimes of Fast Precession

In this subsection, we explore the special case of fast precession. Batygin et al. (2011)

first suggested that if Neptune were to precess su�ciently quickly, the cold classical

population would remain unexcited because fast precession lowers the forced eccentricity

(Equation 2.5). In Figure 2.17, we plot the forced eccentricity as a function of the

particle’s semimajor axis for a range of precession rates when aN = 30 AU, eN = 0.3.

Thus ⌧
eN in the allowed region can be arbitrarily long if the precession period is

su�ciently short. A precession period of 0.9 Myr keeps eforced < 0.1 in the cold classical

region for these parameters of Neptune (compare to the current g8 precession period of 2

Myr). However, an even faster apsidal precession period for Neptune may be required if

not only secular evolution but scattering and/or chaos excites the cold classicals.
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Figure 2.17.—: Forced eccentricity vs semimajor axis for a range of precession rates, for

eN = 0.3, aN = 30. The forced eccentricity stays below 0.1 in the region 42.5 AU < a < 45

AU for 2⇡/$̇ < 0.9 Myr

Unlike in the case of fast damping (Section 2.4.1), in the case of fast precession,

scattering cold KBOs by Neptune may impose an important constraint. In the case of

fast precession (and slow damping), even though the KBO’s eventually evolve to efree once

Neptune’s eccentricity damps, the KBO can reach a maximum value of emax = 2eforced

while eN is still high. Thus the KBO is vulnerable to being scattered. For example,
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foraN = 30 AU, eN = 0.3, a KBO at 42.5 AU can be scattered if it reaches e > 0.08.

Thusthe KBO needs eforced < 1
20.08 = 0.04 to avoid being scattered, requiring a fast

precession period of 0.4 Myr for Neptune.

Chaos (Figure 2.13) can still excite the cold classicals even if their forced eccentricity

is low. In this case, resonances cannot overlie the cold classical region if Neptune’s

semimajor axis oscillates strongly due to interactions with Uranus (Section 2.4.5).

Therefore, if the chaotic sea is present, the dark regions in Figure 2.15 are still forbidden.

Figure 2.18 demonstrates how fast precession caused by Neptune’s interaction with

the other planets is unable to keep the cold objects at low eccentricities in resonance

regions. We performed two integrations; in each of which Neptune has aN = 30.06 and

eN = 0.2, and 600 test particles begin with e = 0. The first integration (top panel)

includes the other three giant planets, on their current orbits; they cause Neptune to

undergo apsidal precession with a period of 1.2 Myr. In the second integration, Neptune

is forced to precess at this rate without any other planets included (see Section 2.3.3

for details on the implementation). We plot the maximum eccentricity reached by each

particle. In the top panel, chaos has dynamically disrupted particles that were preserved

at low eccentricities by fast precession in the bottom panel (i.e. in the region interior to

45 AU).

Unfortunately, the most obvious configuration that causes fast precession —

Neptune and Uranus near their 2:1 resonance — also causes large oscillations in

Neptune’s semimajor axis. The larger the oscillations in Neptune’s semimajor axis,

the wider the chaotic sea. Although Batygin et al. (2011) suggest that a massive

planetesimal disk could contribute to fast precession, this precession rate would be
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Figure 2.18.—: If fast precession is caused by Neptune’s interactions with Uranus, chaos

can disrupt the confinement of the cold classicals. Top panel: maximum eccentricity

reached by each particle during a 1.6 Myr integration including all four giant planets.

Despite fast precession, objects interior to the 2:1 resonance are excited to high eccen-

tricities. Bottom panel: maximum eccentricity when just Neptune precesses at the same

rate (period of 1.2 Myr) as in the four-planet case.
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roughly mdisk
m

J nN, where nN is Neptune’s orbital frequency. Thus a disk mass of roughly 60

Earth masses would produce a precession period of 0.9 Myr. Therefore, it is unlikely that

the planetesimal disk alone could produce su�ciently fast precession. When Neptune is

in the region from 28-29 AU – and the classical region is sandwiched between the 9:5

and 2:1 resonance – oscillations in Neptune’s semimajor axis due to resonant interactions

with Uranus could cause a chaotic sea that extends into this “sandwich” region. Thus

fast precession may fail for parameters for which fast damping has the possibility of

working.

We will present a contour map for Neptune’s precession rate, analogous to Figure

2.15, in Section 2.5.3.

2.5.2 Constraints on Transporting the Hot Objects to the

Classical Region

Now we consider which parameters of Neptune will allow the transport of the hot

objects from the inner disk into the classical region. We consider the full range of (a, e)

into which Neptune can scatter objects from the inner disk and the resulting secular

oscillations of the objects once they reach the classical region. We calculate a minimum

eccentricity damping time as a function of (aN, eN) by requiring that particles can reach

the stability region defined by q > 34 AU (CONSTRAINT 2). The “minimum time”

(contoured) is the time at which it is possible for objects in 50% of semimajor axes

intervals, �a = 0.063 AU, to reach this stable region.

Figure 2.19, a map of constraints on Neptune’s parameters that deliver the hot

objects, illustrates that there are three outcomes for the transport of hot objects:
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Figure 2.19.—: Parameter space of Neptune consistent with delivering the hot objects

from the inner disk to the classical region, where aNeptune = aN and eNeptune = eN are

spelled out for clarity. The white region in the upper right is where particles are imme-

diately scattered into the stable region, q < 34 AU. The bottom left region (black with

red stripes) is where particles can never reach the stable region because their forced ec-

centricity is too small relative to their free eccentricity. In the contoured region (middle),

particles can secularly evolve into the stable region after being scattered if Neptune’s

eccentricity remains high for long enough. The contours represent the minimum time

(see the text) for any scattered KBOs to evolve into the stable region. The pluses mark

the conditions of the top panel and the bottom panel of Figure 2.6, which illustrates the

region into which Neptune can scatter objects for two sets of illustrative parameters.
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1. White region: If r
a,N is su�ciently large, some objects are scattered into the stable

region. This criterion can be quantified as r
a,N = aN(1 + eN) > 34 AU.

2. Black region with red stripes: If r
a,N is too small, the KBOs are scattered into

a region that is not stable over 4 Gyr and their forced eccentricity is too small

(relative to efree) to allow them to secularly evolve down into the stable region. This

second outcome can be understood from Equation (2.2). If the forced eccentricity

is small, the free eccentricity will be close to the particle’s initial (large) eccentricity

after scattering. Thus the free and forced eccentricity vectors cannot destructively

cancel to achieve a low total eccentricity.

3. Middle region with gray-scale timescale contours: For intermediate values of r
a,N ,

the particles are scattered above the stable region (i.e. to eccentricities too large

for stability) but can secularly evolve down into the stable region if Neptune’s

eccentricity damping timescale is long enough. The time contours refer to the

minimum time (defined above) for particles to secularly evolve to the stable region.

We note that, because the analytical model is only first order in the KBO’s

eccentricity, the timescales in the intermediate region may be in error by up to a

factor of two (see Section 2.4.2 for discussion). However, the particles most relevant

for this scenario — those rapidly declining in eccentricity — are matched with

substantially smaller error. We also note that this regime (Outcome 3) is a narrow

region of parameter space and that most parameters for Neptune fall within one of

the two regimes above.

The minimum values for (aN, eN) in the intermediate range of r
a,N has a messy
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analytical solution. The minimum eccentricity a particle can achieve is:

emin = (e2free + e2forced � 2efreeeforced)
1/2 (2.14)

Combining with Equation (2.11) and (2.13), for a given aN one can solve for the cuto↵

eN, below which particles cannot evolve into the long-term stable region.

E↵ects of Resonances and Chaos

As shown in Section 2.5.1, the secular forcing near resonance is much faster than in

regions outside of resonance. Here we address the e↵ects of resonances for the three

outcomes we discussed above:

1. If r
a,N is su�ciently large, some objects are scattered directly into the stable region.

CONSTRAINT 2 (q > 34 AU) can always be met in this region, regardless of

secular evolution, so we consider this region to always work for the hot classicals.

Mean motion resonances can make this already-allowed region even better, allowing

even more objects to reach the stable region.

2. If r
a,N is small, objects are scattered to eccentricities that are too large to allow

the objects to reach the stable region, even through fast secular evolution near

resonance. Although fast secular evolution near resonance lets objects reach their

minimum eccentricity (Equation 2.14), unfortunately all the objects have minimum

eccentricities too large for long-term stability.

3. In the intermediate regime (the small contoured strip of parameter space in Figure

2.19 that does not deliver the hot classicals “directly” or “never”), objects are not

scattered directly to the stable region but can reach the stable region through
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secular evolution, including fast secular evolution near resonances. Without

resonances, the secular evolution timescale at 47.5 AU (the largest KBO semimajor

axis) sets the minimum timescale over which Neptune needs to maintain its

high eccentricity. However, because of fast secular evolution near resonance,

the timescale is actually set by the largest KBO semimajor axis una↵ected by

proximity to resonance. Thus the minimum timescale is shorter (i.e. Neptune can

damp more quickly) than if we neglected the e↵ects of resonances. In practice,

the secular evolution time is not a steep function of the particle’s semimajor axis

(Wol↵ et al. 2012, Figure 4). We created another version (not shown) of Figure

2.19 without including the e↵ects of mean motion resonances. We required objects

at 47.5 AU to be able to reach e < 0.3, because this would ensure that objects

interior of 47.5 would also reach the stable region. The results were qualitatively

the same, with some slightly longer minimum times.

Now we consider whether objects that are actually in resonance, as opposed to being

near resonance, could be more easily delivered to the classical region than our constraints

would imply. Although we did not explicitly take into account objects actually librating

in resonance, we argue that, as a by-product, our constraints include this e↵ect. When

Neptune’s eccentricity is low or its semimajor axis places no strong resonances in the

classical region, objects actually-in-resonance with Neptune occupy a very small portion

of phase space. In the opposite situation, in which Neptune’s eccentricity is high and

strong resonances are present in the classical region, the parameters for Neptune are

already in Outcome 1 above (“directly” scattered). For example, the initial conditions

used to create the Figure 3 of Levison et al. (2008) are part of this region. The constraints

we will place in this region will come only from the cold objects.
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Potentially the 2:1 resonance could “sweep” the classical region, rapidly evolving

transported objects into the stable region, as Neptune migrates. Moreover, resonances

sweeping the region could deliver hot objects to the stable region via orbital chaos.

However, neither of these scenarios would be consistent with preserving the cold

classicals. Because the hot objects span the whole region from 42.5 AU < a < 47.5

(Figure 3, right panel), the 2:1 resonance would have to sweep all the way through this

range, exciting the cold classicals (as would the 9:5 resonance as it passes 42.5 AU).

Moreover, if interactions of Neptune and Uranus created a chaotic sea (Section 2.4.5),

the cold classicals would be dynamically disrupted. Therefore, the location of resonances

do not provide additional constraints or possibilities for the transport of hot classicals.

E↵ects of Precession

Precession has several e↵ects on delivery of the hot classicals:

1. Before the eccentricity of Neptune damps, precession allows Neptune to scatter

more objects from the inner disk. If a KBO in the region near Neptune is on an

eccentric orbit, the orbit of Neptune and the small body will not necessary cross,

depending on the relative positions of their periapses. But if Neptune’s periapse

quickly precesses, Neptune’s orbit may come to intersect additional KBO orbits.

2. As an object secularly evolves after being transported to the classical region, its

longitude of periapse varies. Hence, precession of Neptune’s orbit changes the

likelihood that the object will be scattered again before it reaches the long-term

survival region. We note that the likelihood of scattering depends on the relative

precession rates of Neptune and the object.
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3. If the precession rate is fast enough, it decreases the forced eccentricity. The

magnitude of the particle’s free eccentricity is given by Equation (2.13). For

particles with quickly decreasing eccentricity ($ � $N = ⇡/2) (Equation 2.12),

a reduction in eforced decreases the amplitude of the free eccentricity. Thus fewer

particles scattered above the stable region are ever able to reach it. Certain

(aN, eN) that allowed particles to evolve into the stable region, when Neptune was

not quickly precessing, will no longer work.

4. The precession of the forced eccentricity allows particles that are evolving down

into the stable region via secular oscillation to reach the region more quickly. This

e↵ect changes the timescales for objects evolving to the stable region.

Thus precession can either help or hurt the transport of hot objects into the classical

region, depending on the particular combination of parameters.

Scattering E�ciency of the Hot Objects

The number of hot objects that reach the stable region depends on the surface density

of planetesimals in the inner disk, the eccentricity damping timescale of Neptune, and

Neptune’s precession rate. A faster precession rate evidently delivers more objects to

the classical region, but objects are also more likely to exit the classical region via

subsequent frequent scatterings, resulting in a steady state flux. Perturbations from

other planets could increase the e�ciency by increasing Neptune’s precession rate and

causing additional perturbations to the inner disk. We leave a more detailed exploration

of the scattering e�ciency for future work.

However we contrast the ine�cient process of transporting the hot objects into
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the classical region to the highly e�cient preservation of the cold objects, i.e. all the

cold objects stay in the classical region but few hot objects are transported there. Such

a discrepancy might be possible if the inner disk is much denser than the outer disk.

A dense inner disk is consistent with the short eccentricity damping timescales we

are finding (Section 2.5.1), because the damping rate scales with the surface density

of planetesimals (Ford & Chiang 2007). A dense inner disk and rarefied outer disk

may explain why Neptune ceased its planetesimal-driven migration when it reached 30

AU (see Levison & Morbidelli 2003, for the suggestion that the planetesimal disk was

truncated at 30 AU). However, the low number of cold objects poses a problem for their

formation, as we will discuss in Section 2.6.

2.5.3 Combined Constraints from Both Hot and Cold Objects

We placed constraints on parameters of Neptune that preserve the confinement of cold

objects to low eccentricities (Section 2.5.1) or allow the transportation of the hot objects

from the inner disk into the classical region (Section 2.5.2),. These constraints are useful

separately, and they confirm in situ formation as a feasible origin for the cold objects

and transport from the inner disk as a feasible origin for the hot objects. In this Section,

we investigate which parameters permit the combination of these two origins, producing

both a cold and a hot population. This may be possible if there is overlap between the

parameter space that preserves the cold classicals (Section 2.5.1) and the parameter

space that transports the hot classicals (Section 2.5.2).

In Figure 2.20, we combine the constraints from the hot and cold classicals. First,

as a function (aN, eN) we plot the contours for the maximum eccentricity damping time
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necessary to keep the cold classicals at e < 0.1 in the region from 42.5 to 45 AU. In the

white region, Neptune’s eccentricity is low enough such that the final eccentricities of

the cold objects will be below 0.1, no matter how long the damping timescale. Then

we overplot red, diagonal stripes in the region where Neptune cannot deliver the hot

classicals, neither by direct scattering nor post-scattering secular evolution. In creating

this region, we took into account the sliver of parameter space (Figure 2.6, contoured

region) for which Neptune cannot scatter objects directly into the region q > 34 AU

but for which objects can evolve into the stable region through secular evolution. We

compare the time required for the hot objects to reach the long-term stable region to

the maximum eccentricity damping time to preserve the cold classicals. In most cases,

Neptune’s eccentricity must damp before any hot objects reach the long-term stable

region. From all these considerations, there is only a small region of parameter space

where Neptune can deliver the hot classicals (no red, diagonal stripes) while fast secular

evolution near resonances does not quickly excite the cold classicals (light regions).

The allowed region in (aN, eN) space, in which the hot objects can be transported

without disrupting the cold population, is bounded by a strip extending from (23 AU,

0.4) to (30 AU, 0.10) on the left and (27.5 AU, 0.4) to (30 AU, 0.2) on the right. To

the top right of this strip, the series of resonances extending from the 5:2 to the 9:5,

widened by Neptune’s high eccentricity, are on top of the cold classical region. Within

this bounding strip is a forbidden region near aN = 27.5 AU, at which the 2:1 resonance

overlies the cold classical region.

Based on the considerations above, lower limits can be placed on Neptune’s

migration timescale while Neptune’s eccentricity is high. During Neptune’s period of

high eccentricity, Neptune’s migration timescale must be slow enough to keep Neptune
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Figure 2.20.—: Combined constraints from the hot and cold classicals when the cold

classicals are preserved by Neptune damping quickly, where aNeptune = aN and eNeptune =

eN are spelled out for clarity. The contours refer to the maximum eccentricity damping

time log10 ⌧eN (where ⌧
eN is in years) for Neptune in this region to avoid excessively exciting

the cold classicals. In the white region, the forced eccentricity imparted by Neptune in

the region from 42.5 to 45 AU is below 0.1. In the red, diagonally striped region, Neptune

cannot transport the hot objects to the classical region, defined as q > 34 AU from 42 to

47.5 AU.
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in a region that will not quickly excite the cold classicals. Neptune should not spend

substantial time with high eccentricity near aN = 27.5 AU or aN = 30 AU, lest resonances

disrupt the classical region. Thus Neptune is constrained to migrate no more than a

few AU during Neptune’s eccentricity damping time. Because of the discrete ranges of

consistent semimajor axes, when resonances are accounted for, a “damp first and then

migrate” scenario is consistent with preserving the cold classicals, while a “migrate first

and then damp” scenario is not.

In Figure 2.21, we plot analogous constraints for the special case of fast precession.

The contours represent the precession rate of Neptune necessary to keep eforced

su�ciently low (Equation 2.7). In all cases, the KBOs’ forced eccentricities must be

below eforced < 0.1 (CONSTRAINT 1). We impose an additional constraint to avoid the

scattering of cold particles as they reach their maximum eccentricities of emax = 2eforced.

We require emax must be below the scattering line at the inner edge of the cold classical

region: therefore eforced < 1
2(1 � q

a,N/42.5). For large values of Neptune’s apoapse q
a,N,

this constraint is stricter than eforced < 0.1. This constraint may, in fact, be too strict

because if a cold classical KBO is scattered by Neptune, it is more likely to scattered out

of the classical region altogether than to end up between 42.5 AU < a < 45 AU at an

eccentricity too large to be consistent with the observations but small enough to survive

over 4 Gyr. We leave a detailed investigation into the role of scattering in the case of

fast precession for future work. The red, diagonally striped region is where hot objects

cannot reach the long-term stable region.

Next we consider the constraints for delivering the hot classicals. For each (aN, eN),

we calculate whether objects can be directly scattered into the region q > 34 AU. If not,

we assume Neptune imparts a forced eccentricity small enough to be consistent with
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the constraints above for keeping the cold classicals unexcited (i.e., eforced = 0.1, or,

if smaller, eforced < 1
2(1 � q

a,N/42.5)) and determine whether the hot object can reach

the stable region through secular evolution, using Equation (2.14). If Neptune cannot

directly scatter objects into the stable region and if objects secularly evolving cannot

reach q > 34 AU in more than 50% of semimajor axis intervals, (aN, eN) is not consistent

with delivering the hot objects. In the cases where fast precession is necessary to keep the

cold classicals confined to low eccentricities, hot classicals scattered into the region have

the same low forced eccentricities; therefore, they do not experience significant secular

evolution down into the classical region but remain at their post-scattering eccentricities.

Finally, in blue vertical stripes, we overplot ranges of aN for which the centers of one

or more resonances of fourth order or lower lie in the cold classical region from 42.5 to 45

AU. These aN are not necessary forbidden, but chaos can occur if Neptune’s eccentricity

is high and interactions with Uranus cause oscillations in aN.

Though we are applying constraints that are lenient and conservative in ruling out

regions of parameter space, a substantial fraction of parameter space is ruled out. The

following scenarios have not been ruled out and may work, depending on the details of

the interactions between Uranus and Neptune. In both of these scenarios, resonances

cannot overlie the region of 42.5 AU < a < 45 AU.

• Short ⌧
e

and large r
p,N

: An eccentric Neptune transports objects into the classical

region until its eccentricity damps, which occurs quickly enough that the cold

classicals are not excited (Figure 2.20).

• Fast $̇N and large r
p,N

: An eccentric, quickly precessing Neptune transports

objects into the classical region and its quick apsidal precession keeps the forced
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Figure 2.21.—: Combined constraints from the hot and cold classicals when the cold

classicals are preserved by Neptune precessing quickly, where aNeptune = aN and eNeptune =

eN are spelled out for clarity. The contours refer to the maximum precession period ⌧
$

=

2⇡/$̇N for Neptune to avoid excessively exciting the cold classicals. Neptune must precess

fast enough to keep eforced < 0.1 and, when Neptune intrudes into the region, eforced <

1
2(1� q

a,N/42.5). In the white region, the forced eccentricity imparted by Neptune in the

region from 42.5 to 45 AU is below 0.1 (and below 1
2(1� q

a,N/42.5), even when Neptune

does not precess). In the red, diagonally-striped region, Neptune cannot transport the hot

objects into the stable classical region, defined as q > 34 AU from 42.5 to 47.5 AU. The

blue, vertically striped regions denote aN for which the center of a resonance, of fourth

order or lower, lies in the region from 42.5 to 45 AU. These regions are not necessary

forbidden (see the text).
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eccentricity of the particles low, preserving the cold classicals (Figure 2.21).

In principle, an intermediate r
p,N

could deliver hot objects to high eccentricities

(e > 0.3) in the classical region but allow them to evolve to lower eccentricities (e < 0.3)

before the cold objects are excited. In practice, we found the timescales are not

compatible: if the eccentricity damps quickly enough to preserve the cold classicals from

secular excitation, there is not time for hot objects to secularly evolve down into the Belt.

However, for parameters of Neptune for which hot objects are scattered directly in the

stable region, secular evolution can allow the objects to reach even lower eccentricities,

especially the objects undergoing fast secular evolution near resonances.

Therefore, in practice, the consistent dynamical histories are ones in which Neptune

has a large enough apoapse to transport hot objects immediately into the stable region,

with its eccentricity damping quickly enough or precessing quickly enough so that the

cold classicals remain at low eccentricities consistent with the observations.

2.5.4 Interpretation of Constraints in Light of Neptune’s Full

Dynamical History

The goal of this paper is to determine which parameters for Neptune allow the planet to

deliver the hot classicals from the inner disk into the classical region without dynamically

disrupting the in situ cold classicals. Throughout its dynamical history, Neptune must

satisfy the constraints presented here to avoid excessively exciting the cold classicals

(Section 2.5.1). At some point, Neptune must also spend time in a region of parameter

space where it can also deliver the hot classicals (Section 2.5.3). We clarify that Neptune
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did not necessary form at the location where hot classical delivery takes place or arrive

there after undergoing a single, instantaneous scattering. Before and after hot classical

delivery, Neptune can potentially spend time in any region of parameter space as

long it obeys our constraints against not excessively exciting the cold classicals. The

constraints developed here, which can serve as a “road map” for Neptune’s path through

parameter space, hold for realistic models that include multiple scatterings and have a

straightforward interpretation.

In the context of the Nice model, Neptune may have undergone a series of scatterings,

spending time at a variety of spots in (aN, eN) space. In each of these spots, Neptune

must obey the constraints we place to avoid disrupting the cold classicals. Perhaps the

scattering occurs quickly compared to the excitation time for the cold classicals. If

not, Neptune could pre-excite the cold classicals (but only to below the observational

limit) before it reaches a region where it can deliver the hot classicals. In imposing our

conservative constraints, we are assuming that the cold classicals begin with e = 0, but

if they are pre-excited, the constraints will be stricter.

Another possibility is that Neptune may spend a long time at a location where it

creates a very small region of stability in the classical region, clearing out most of the

cold classicals. This is a potential solution to the mass e�ciency problem, which we

will discuss in Section 2.6. However, as shown in Section 2.3.1, Neptune cannot deliver

the hot classicals in this regime. Therefore, after this period has ended, when Neptune

is delivering the hot classicals, the constraints we will place on not exciting the cold

classicals will hold.

The scattering(s) Neptune undergoes are quick changes in its orbit. After its period
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of high eccentricity ends – or during a temporary period of low eccentricity – Neptune

can undergo slow evolution, including slow migration and slow damping of its (now

small) eccentricity. The KBOs will maintain their free eccentricities throughout this slow

evolution. If Neptune’s eccentricity were excited very gradually, on a timescale much

longer than the secular evolution times of the cold classicals, the cold classicals would

keep their initial low free eccentricities. However, we expect the excitation of Neptune’s

eccentricity via scatterings to take place on a timescale shorter than millions of years

(e.g. Thommes et al. 1999).

We have ruled out much of parameter space with the constraints that Neptune

cannot excite the cold objects above e = 0.1 and must be able to deliver at least a few

hot objects to q > 34 AU in the region from 42-47.5 AU. We note that we are “ruling

out” parts of parameter space where Neptune cannot deliver the hot objects without

disrupting the cold, not “ruling out” that the planet can ever spend time there (see

above). In Figure 2.22, we look for greater consistency with the observations (Figure

2.3): a forced eccentricity less than 0.075 for the cold objects and q
N

> 36 AU (meaning

that a hot object could be scattered to an eccentricity as low as 0.24 at 47.5 AU). The

parameter space shrinks where Neptune can deliver the hot objects without disrupting

the cold (i.e. light gray regions with no red, diagonal constraints). Over-plotted on

this figure is an example (arrows) of Neptune’s path through parameter space. In this

example, Neptune first undergoes multiple scatterings, spending a short enough time

at each (aN, eN) to avoid exciting the cold classicals. Then it reaches 28 AU with an

eccentricity of 0.3; here it delivers the hot classicals, as its eccentricity damps quickly

enough to avoid exciting the cold classicals. Then it migrates at a low-eccentricity to its

current location.
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On this figure, we overplot some parameters as symbols. For the triangles and

circles, we will show example integrations in Section 2.5.5. The pluses are parameters

taken from the literature. The plus at aN = 20, eN = 0.02 marks the initial condition

of Hahn & Malhotra (2005), from which Neptune undergoes migration to its current

location. Neptune remains in a region that is white (never excites the cold classicals)

but also red, diagonal striped (does not deliver the hot classicals); thus this simulation

maintained the low eccentricities of the cold classicals but did not deliver the hot

classicals. The plus at aN = 28.9, eN = 0.3 indicates the initial condition for Levison et al.

(2008), Run B. In this part of parameter space, Neptune can deliver the hot classicals,

which were indeed produced by this simulation. However, Neptune’s eccentricity damped

on a timescale of ⌧
e

= 2 Myr, too slow to avoid exciting an in situ cold population.

2.5.5 Example Integrations Illustrating Constraints

Example integrations illustrating the constraints we have derived are shown in Figure

2.23 and 2.24. Each integration lasts for 1.6 Myr unless otherwise noted (see Section

2.3.3 for a general description of the integrations). In addition to the 600 test particles

in the region from 40-60 AU, we add 59600 test particles in the region from 18-38 AU,

each with initial e = i = 0, representing the inner planetesimal disk from which the hot

classicals are scattered.

The parameters for the four integrations shown in Figure 2.23 are plotted in the

parameter space map in Figure 2.22 as circles and correspond to regions of parameter

space where Neptune cannot both deliver the hot objects and keep the cold objects

at low eccentricities. In row 1, Neptune is at aN = 24, eN = 0.02 and undergoes no
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Figure 2.22.—: Combined constraints from the hot and cold classicals, where aNeptune =

aN and eNeptune = eN are spelled out for clarity. The contours refer to the maximum

eccentricity damping time log10 ⌧eN (where ⌧
eN is in years) for Neptune in this region to

avoid excessively exciting the cold classicals. The constraints are stricter than in Figure

2.20. In the white region, the forced eccentricity imparted by Neptune in the region

from 42.5 to 45 AU is below 0.075. In the red, diagonal striped region, Neptune cannot

transport the hot objects to the classical region, defined as q > 36 from 42.5 to 47.5

AU. The arrows are a schematic illustration of an example of Neptune’s path through

parameter space as it undergoes multiple scatterings, having its eccentricity damped,

or being re-scattered, on the contoured timescale to avoid excessively exciting the cold

classicals. The pluses mark the initial conditions from Hahn & Malhotra (2005) (bottom)

and Levison et al. (2008) (top). The circles are the parameters for example integrations

shown in Figure 2.23 and the triangles for example integrations shown in Figure 2.24.
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eccentricity damping. The cold classicals remain confined to low eccentricities, but the

hot classicals are delivered to high eccentricities and cannot secularly evolve down to

lower eccentricities. For the same reason (i.e. that Neptune’s apoapse is too small),

the hot classicals are also not delivered in row 2 (aN = 22, eN = 0.35). The damping

timescale in this integration is longer (2 Myr) than half a secular evolution time, so the

eccentricities of the cold objects converge to the forced eccentricities, which are above

0.1. This integration lasts 6 Myr. In the third row (aN = 27.5, eN = 0.35, ⌧
e

= 0.2 Myr)

and fourth row (aN = 30.06, eN = 0.35, ⌧
e

= 0.2 Myr), the hot classicals are delivered but

the cold classicals are excited by fast secular evolution near resonances.

Figure 2.23.—: Examples of four numerical integrations that violate the constraints es-

tablished (Figure 2.20). The blue and red triangles are the positions of particles at the

end of the integration. The red triangles are cold objects which began in the region from

40 to 50 AU with e = 0. The blue triangles are hot objects which began in the inner disk

interior to 38 AU. The small triangles have eccentricities above the region of long-term

stability (dashed line in Figure 2.3) and thus are not expected to survive over 4 Gyr.

The yellow line indicates e = 0.1 and the shaded gray region is 42.5 AU < a <45 AU,

where the cold classicals are observed (Figure 2.3) to be confined to low eccentricities.

The parameters for Neptune in each integration are: aN = 24, eN = 0.02,no eccentricity

damping (top row), aN = 22, eN = 0.35, ⌧
e

=2 Myr (row 2), aN = 27.5, eN = 0.35, ⌧
e

= 0.2

Myr (row 3), aN = 30, eN = 0.35, ⌧
e

= 0.2 Myr (row 4). The snapshots are at times 1.6

Myr, 6 Myr, 1.6 Myr, and 1.6 Myr.

The parameters for the two integrations shown in Figure 2.24 are plotted in the

parameter space map in Figure 2.22 as triangles and correspond to a set of parameters in
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Figure 2.23.—: Continued
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each of the two viable regions of parameter space. In both cases, Neptune can deliver the

hot classicals. Moreover, since it is in a region of parameter space where no resonances

overlie the region of 42.5 AU < a < 45 AU, and since its eccentricity damps quickly

enough to obey our constraints, the cold classicals remain at e < 0.1. In the top panel,

we plot the observed objects from Figure 3 for comparison. In the middle panel, the 2:1

resonance is interior to the cold classical region. In the bottom panel, the cold classicals

are sandwiched between two regions where the cold classicals are excited by fast secular

evolution near resonance.

2.6 Discussion

Through an exploration of parameter space (Section 2.5) combined with conservative

criteria from the observed eccentricity distributions of classical KBOs (Section 2.2.2),

we reach the conclusion that most parameters for Neptune are inconsistent with both

delivering a hot population from the inner disk and preserving a cold population formed

in the outer disk. We have explored the full parameter space for a generalized model —

in which Neptune undergoes some combination of high eccentricity, migration, and/or

precession and delivers the hot objects on top of the cold — that encompasses the

previous “chaotic capture” and “extensive migration” models and accounts for the

di↵erent physical properties of the hot and cold classicals. We have found that the

generalized model remains viable only in two restricted regions of parameter space:

Neptune is scattered onto an eccentric orbit with a semimajor axis in one of two ranges,

24-27 AU (so that the 2:1 resonance is interior to 42.5 AU) or 28-29 AU (so that

the region from 42.5 to 45 AU is sandwiched between the 9:5 and the 2:1 resonance).
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Figure 2.24.—: Examples of two integrations that obey the constraints established (Figure

2.20). The top row shows the observed objects from Figure 2.3 for comparison. In rows

2 and 3, blue and red triangle are the positions of particles at the end of the integration.

The red triangles are cold objects which began in the region from 40 to 50 AU with

e = 0. The blue triangles are hot objects which began in the inner disk interior to 38 AU.

The small triangles have eccentricities above the region of long-term stability (dashed

line in Figure 2.3) and thus are not expected to survive over 4 Gyr. The yellow line

indicates e = 0.1 and the shaded gray region is 42.5 AU < a <45 AU, where the cold

classicals are observed (Figure 2.3) to be confined to low eccentricities. The parameters

for Neptune in each integration are: aN = 26, eN = 0.38, ⌧
e

= 0.33 Myr (second row) and

aN = 28.5, eN = 0.33, ⌧
e

= 0.25 Myr (third row).
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Although aN = 30 AU appears feasible on the parameter space plots for eN ⇠ 0.15,

in this region “strips” are excited by overlying resonances and the hot objects are far

from low enough. Neptune scatters the hot objects from the inner disk into the stable

classical region where we observe them. Because Neptune’s eccentricity damps or the

planet’s orbit precesses quickly, Neptune does this without exciting the cold objects

above their observed eccentricities. Because Neptune is confined to one of these two

particular regions, mean motion resonances — which would quickly excite the cold

classicals through accelerated secular forcing and/or chaos — do not, while Neptune’s

eccentricity is high, overlie the region where we observe the cold classicals confined at

low eccentricities today. Most likely, once Neptune’s eccentricity damps, it migrates on a

circular orbit to its current location, a migration distance of �aN = 1-6 AU.

Our constraints should be interpreted in light of Neptune’s full dynamical history,

which may include multiple scatterings of Neptune and/or excitation/sculpting of the

cold classical region before Neptune delivers the hot classicals. Throughout its path

through parameter space, Neptune must obey our constraints on not excessively exciting

the cold classicals. Whatever the prior early evolution, Neptune must eventually spend

time in a region of parameter space where it can deliver the hot classicals while its

eccentricity damps or precesses quickly enough — or Neptune is re-scattered quickly

enough– to avoid exciting the cold classicals. Then it can proceed to its current location

via additional scatterings or migration, maintaining an eccentricity low enough to

continue to avoid exciting the cold objects.

The viable regions of parameter space are qualitatively and quantitatively di↵erent

from the previous models that did not produce the observed eccentricity distributions.

Compared to the Malhotra (1995); Hahn & Malhotra (2005) model, Neptune undergoes
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a period of high eccentricity and migrates a shorter distance (< 6 AU, as opposed to

7-10 AU). The most significant di↵erences from the Levison et al. (2008) model are that

the cold population forms in situ, that a fast damping (0.4 Myr as opposed to 3 Myr) or

precession rate is required, and that resonances, rather than being the mechanism for

creating the cold population by overlapping to create a chaotic sea, cannot overlie the

cold classical region while Neptune’s eccentricity is high.

Another key finding is that the “chaotic sea” that may have existed in the classical

region during Neptune’s wild days (Levison et al. 2008) would not have been caused

solely by Neptune’s high eccentricity but by oscillations in Neptune’s semimajor axis due

to its near-resonant interactions with Uranus. Thus the exact dynamical configuration of

Uranus and Neptune controls the extent and existence of a chaotic zone. Configurations

of these two planets in which their interactions are especially strong might rule out the

region of parameter space of 28 AU < aN < 29 AU during Neptune’s high eccentricity

period, which corresponds to the classical objects being sandwiched between the 9:5 and

the 2:1. A detailed investigation of the e↵ects of the interactions between Uranus and

Neptune will likely provide additional constraints on the dynamical history of the solar

system. The conditions for the chaotic sea not to disrupt the cold classicals may rule out

additional parameter space but will not open up more.

There is a major outstanding problem with forming the cold classicals in in situ:

unsettlingly, the current surface density of cold classicals is thought to be too low

for the in situ formation of the 100 � 1000 km objects we observe (Stern & Colwell

1997; Kenyon & Luu 1998). One potential explanation is that the population has lost

substantial amount of mass to collisions and subsequent removal by radiation forces.

Another potential resolution is that, given that the physics of planetesimal formation is
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currently poorly understood, it may be possible to form such large objects at such low

surface densities (if some major physical process is missing from our understanding of

planetesimal formation). Finally, as discussed in Section 2.5.4, the cold classical region

may have been depleted by scattering before the period of hot classical delivery. Though

none of these potential solutions have been validated, in situ formation of the cold

classicals remains viable due to their distinct physical properties.

Our results are intended to provide constraints for extensive numerical integrations

that include all the giant planets, have tens of thousands of test particles, and last for

the age of the solar system. We established conservative criteria in order to confidently

rule out regions of parameter space; the remaining regions are potentially viable but may

be ruled out by additional constraints, including those that depend on the details of the

configuration of giant planets. We have focused on the classical KBOs in this paper and

have not tried explicitly to match the distribution of resonant KBOs. We expect resonant

objects to be produced, within the parameter space we constrained, by a combination of

migration (Malhotra 1995), chaotic capture (Levison et al. 2008), and, a new mechanism

identified here as being important, fast secular evolution to low eccentricities of hot

objects delivered near resonance followed by capture. Detailed matching of the resonant

population is beyond the scope of this paper but will likely tighten our constraints.

The scattered disk population may also provide additional constraints on Neptune’s

dynamical history. Within the generalized model we have explored, these objects

originate in the inner disk and are scattered out to beyond 48 AU, or within 48 AU at

higher eccentricities and inclinations than the classical objects. If the scattered and hot

objects have the same origin, any model must correctly produce their relative number.

The scattered disk also contains a number of objects beyond 50 AU occupying high-order
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mean motion resonances. Lykawka & Mukai (2007) found that in order to produce

these resonant objects, Neptune must undergo migration after the Kuiper Belt has been

pre-excited out to 50 AU. Our constraints may be consistent with this requirement,

since we find that Neptune’s eccentricity should damp before it migrates to its current

location and that, in one allowed region, unexcited objects are sandwiched between

objects excited by fast secular evolution, extending out to the edge of the 2:1 resonance.

We leave detailed explorations of constraints from the population of resonant objects in

the scattered disk for future work.

The fast damping of Neptune’s eccentricity would imply frequent planetesimal

scatterings and thus a high surface density of planetesimals in the vicinity of its orbit.

Fast precession would imply strong interactions with the other giant planets (or a high

surface density disk). Either way, the dynamical histories of Neptune that produce the

hot and cold KBOs are very di↵erent from the peaceful disk formation that was the

paradigm until 15 years ago. The most viable regions of parameter space we identified

imply that Neptune underwent a period of high eccentricity but, mercifully for the spared

planetesimals that are today’s cold classicals, Neptune’s “wild days” were over soon.

2.7 Statistical Significance of the Hot and Cold

Classical Eccentricity Distributions

In addition to the qualitative assessment performed in Section 2.2, we also conduct

statistical tests of the significance of the confinement of the cold population. We perform

the one-dimensional Kolmogorov-Smirnov (KS) test with the null hypothesis that the
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observed distribution is consistent with being drawn uniformly in a and e and then

filtered by the survival map (Lykawka & Mukai 2005). We perform the test separately in

two regions, 42 < a < 44 AU and 44 < a < 45 AU, because the survival map is di↵erent

in these two regions. Note that we use 42 AU instead of 42.5 AU in order to increase

the sample size. We created the survival map distribution from an initial distribution

uniformly spaced in e < 0.3 with the “stability map filter” method described in Section

2.2.3 for three assumed survival rates: bottom of the range, middle of the range, and

top of the range. We increased the number of objects in the survival map distribution

until the results converged, which meant we had to use 10,000 objects post stability

map filtering. First, for the observed distribution, we compared to the observed “likely

cold” objects with i < 2�. The resulting probabilities that the observed distribution is

consistent with a population shaped only by long-term stability are summarized in Table

2.1.

Table 2.1:: Probability from KS test comparing observed cold objects with i < 2� from

Minor Planet Center (Gladman et al. 2008; Volk & Malhotra 2011) to “survival map”

distribution. “Low,” ”mid,” and ”high” refer to the bottom, middle, and top of the 10%

survival range used by Lykawka & Mukai (2005). For example, for the survival range of

50 � 60%, low, middle, and high would indicate that 50%, 55%, and 60% of particles in

that (a, e) cell survive. See Section 2.2.3 and Section 2.7 for details.

sample size low mid high

42 AU < a < 44 AU 38 10�7 10�8 10�8

44 AU < a < 45 AU 13 0.004 0.002 0.001

Then we created five alternative samples of cold objects. Instead of choosing objects
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with i < 2� for inclusion in the cold sample, we selected a uniform random number

between 0 and 1 for each observed object. If the number was less than the probability

that the object is cold (based on the distribution of Gulbis et al. (2010)), we included

it in the sample. Using the Brown (2001) distribution of inclinations instead of the

Gulbis et al. (2010) did not significantly a↵ect our results. The resulting probabilities

are summarized in Table 2.2.

Table 2.2:: Probability from KS test comparing probabilitistically-selected observed cold

objects to “survival map” distribution.

sample size low mid high

42 AU < a < 44 AU

60 10�8 10�10 10�11

64 10�10 10�11 10�13

69 10�10 10�12 10�13

67 10�9 10�11 10�12

69 10�11 10�12 10�14

44 AU < a < 45 AU 31 10�5 10�5 10�6

33 10�5 10�5 10�6

30 10�4 10�5 10�6

32 10�4 10�5 10�5

29 10�5 10�6 10�6

Based on these results, the orbital distribution of observed objects is not consistent

with our null hypothesis. The confinement of cold objects to low eccentricities is formally

statistically significant.
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Then we repeated the tests using only the CFEPS objects. Instead of using the

survival map distribution, we took the survival map distribution and applied the CFEPS

Survey Simulator. We assumed either H magnitudes uniformly distributed between 6

and 8 or randomly selected from the observed classical objects, and the results were

insensitive to this choice. First we used the “likely cold” objects with i < 2�. The

resulting probabilities are summarized in Table 2.3.

Table 2.3:: Probability from KS test comparing observed CFEPS cold objects to survey-

simulated “survival map” distribution.

sample size low mid high

42 AU < a < 44 AU 12 0.13 0.06 0.04

44 AU < a < 45 AU 11 0.09 0.06 0.03

Then we created five alternative samples of cold objects, as described above for

Table 2. The resulting probabilities are summarized in Table 2.4.

These probabilities using the small sample of CFEPS objects are low, supporting

our conclusion that the cold objects are confined to low eccentricities, but this result

is statistically marginal. However, we would not expect the observed objects in the

full MPC sample to preferentially have lower eccentricities (indeed, in Figure 2.4, the

Survey-Simulated survival map distribution follows the survival map closely), so, given

our results for the full MPC sample, we expect the significance to increase as the CFEPS

sample size becomes larger.

An alternative statistical test is the Anderson-Darling test, which is more sensitive

to the tail of the distribution. However, even though we took measures to avoid
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Table 2.4:: Probability from KS test comparing observed CFEPS cold objects to survey-

simulated “survival map” distribution.

sample size low mid high

42 AU < a < 44 AU

20 0.01 0.003 0.002

25 0.001 0.0004 0.0002

20 0.01 0.003 0.002

20 0.01 0.003 0.002

22 0.001 0.0003 0.0001

44 AU < a < 45 AU 16 0.03 0.01 0.005

20 0.009 0.004 0.001

20 0.009 0.004 0.001

19 0.01 0.005 0.002

18 0.02 0.007 0.003
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contamination, there are likely to be “contaminating” objects in the observed cold

objects that are actually hot. Therefore we do not necessarily want to give the outliers

higher weight, so we judge that the KS test is more robust for this purpose. Using the

Anderson-Darling test, we obtained similar results in the cases with large sample sizes

and somewhat higher probabilities in the low sample size cases.

2.7.1 Proper Elements

We now consider the free, or proper, elements of the observed KBOs, which have been

computed for a subset of KBOs by Knežević & Milani (2000); Knezevic et al. (2002);

Knežević & Milani (2003). The free elements precess about the forced values, which are

set by the current configuration of the giant planets, and thus provide a better window

to the history of the solar system than the instantaneous orbital elements. In Figure

2.25, we plot the proper element eccentricities and inclinations of observed KBOs on

top of the survival maps of Lykawka & Mukai (2005), which are formulated in terms of

instantaneous eccentricity and inclination. Qualitatively, we see the same features as in

Figure 2.3 and Figure 2.4: the cold classicals (red squares) are confined below e < 0.1 in

the region from 42.5 to 45 AU. Throughout the region, the hot objects (blue triangles)

occupy the upper portion of the stability region.

We repeat the same statistical tests (Table 2.5 and 2.6) as above for the subset of

observed KBOs that have computed proper elements. We use the proper inclinations

to classify the objects with i < 2 as cold. For the second test, for which the sample

is probabilistically-selected, we use the inclination distribution from Volk & Malhotra

(2011), which considers the inclinations with respect to the invariable plane. The results
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Figure 2.25.—: Plotted over the survival maps of Lykawka & Mukai (2005) are the proper

eccentricity (left) and proper inclination (right) distributions of the observed classical

KBOs. Note that the survival map uses instantaneous orbital elements. The red squares

are objects with i < 2� and are thus very likely cold classicals. The blue triangles have

i > 6� and are thus very likely hot classicals. The membership of any given purple cir-

cle (2� < i < 6�) is ambiguous. These inclinations are now defined using the proper

elements. The light red squares, light blue triangles, and light purple circles, respec-

tively, are objects for which proper elements have not been computed, and thus we plot

their instantaneous elements. Classical objects are taken from the Minor Planet Center

Database and classified by Gladman et al. (2008) and Volk & Malhotra (2011). Proper

elements were computed by Knežević & Milani (2000); Knezevic et al. (2002); Knežević

& Milani (2003). The yellow line indicates our conservative criterion for preserving the

cold classicals.
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are consistent with the those from the instantaneous orbital elements above. We caution

that we are comparing the proper eccentricities of observed objects to a stability map of

instantaneous eccentricities. This comparison should be repeated when a stability map

formulated in terms of proper elements becomes available.

Table 2.5:: Probability from KS test comparing observed proper eccentricities cold objects

with i < 2� from Minor Planet Center (Gladman et al. 2008; Volk & Malhotra 2011) to

“survival map” distribution.

sample size low mid high

42 < a < 44 AU 35 10�8 10�9 10�9

44 < a < 45 AU 25 0.002 0.0006 0.0003

2.8 Derivation of Secular Theory

In Section 2.8.1, we derive additional factors that we include in the secular theory

(Section 2.4.2). In Section 2.8.2, we consider the secular forcing due to other planets

besides Neptune and demonstrate that, for KBOs, the secular forcing due to all four

planets reduces to the forcing by a precessing Neptune.

2.8.1 Derivation of Additional Terms

In Section 2.4.2, we relegated to this section the derivation of several additional terms

in the modified secular theory. In Section 2.8.1, we derive the factors proportional to e2N

that appear in the extra factors used in Equation (2.5) and (2.8) as coe�cients to e2N. In
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Table 2.6:: Probability from KS test comparing probabilistically-selected observed cold

objects (using proper elements) to “survival map” distribution.

sample size low mid high

42 < a < 44 AU

58 10�12 10�14 10�14

54 10�10 10�11 10�12

55 10�11 10�13 10�13

51 10�12 10�13 10�14

49 10�10 10�11 10�12

44 < a < 45 AU 40 10�5 10�6 10�6

37 10�4 10�4 10�5

39 10�4 10�5 10�5

37 10�4 10�4 10�5

36 10�4 10�5 10�6
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Section 2.8.1, we follow Malhotra et al. (1989) to derive resonance correction terms.

High Order Eccentricity Terms

The basic secular theory includes only the lowest order eccentricity terms. However,

when Neptune’s eccentricity is high, terms containing e2N are no longer negligible.

Therefore gKBO and ēforced must be modified. Here we define the extra terms and factors

used in Equation (2.5), which come from additional terms in the disturbing function

(see Chapter 7 of Murray & Dermott 2000, for a standard derivation). The disturbing

function has the form, up to second order, of:

R = n2a2
mN

mJ [e2(f2 + f5e
2
N + f6e

2)

+ cos($ �$N)eeN(f10 + f11e
2
N + f12e2) + cos(2($ �$N))e

2e2Nf17]

(2.15)

Fully incorporating all e and eN to second order would modify the functional form of the

secular theory. However, if we treat eN as a constant, we can modify the f2 term in the

secular forcing frequency gKBO to f2 + f5e
2
N (Equation 2.5) and the f10 term in the forced

eccentricity to f10 + f11e
2
N (Equation 2.8). Because the form of the secular evolution

Equation (2.2) is derived by di↵erentiating R with respect to the particle’s h and k,

treating eN as a constant does not modify the form of the secular evolution equations

but simply adds extra correction factors. The f factors are defined in Appendix B of

Murray & Dermott (2000). The success and necessity of these extra terms is illustrated

in Figure 2.26.
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Figure 2.26.—: Evolution of several example particles illustrating the necessity of the

additional e2N terms. The colored lines, each representing one of three particles, are the

output of a numerical integration in which Neptune has eN = 0.3. Each particle has a

di↵erent linestyle. The black curve is the analytical model with higher order eN terms

incorporated (Equation 2.4) while the gray curve is the analytical model that neglects

these higher order terms (Equation 2.2). For each particle, the black curve matches

better than the gray curve. When the particle itself has a high eccentricity, depending

on its initial phase, the frequency of the analytical model matches well (purple) or is

o↵ by a factor of up to two (cyan worst case scenario). The discrepancy between the

analytical model and the numerical integration output at some phases for high eccentricity

particles is the result of the approximation which is only to lowest order in the particle’s

eccentricity. Fortunately, the most favorable case for delivering the hot classicals — an

initial periapse that results in the particle’s eccentricity sharply decreasing — is that for

which our analytical model performs best.
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Modification Near Resonances

Proximity to resonance modifies the secular frequencies. Following Malhotra et al.

(1989), we define the resonance-correction terms C and ✏ in Equations (5) and (6).

Malhotra et al. (1989) developed equations for a pair of moons near first order resonance.

Instead of a pair of moons, we treat a massless KBO and Neptune, and we include

resonances above the first order.

Resonances add additional important terms to the disturbing function, R. The

factor C in Equation (6) is proportional to the coe�cient of the direct part of the

disturbing function, with argument (j + x)� � j�N � x$N, where x is the order of the

resonance. Since the coe�cients of this part of the disturbing function R are proportional

to exN, and since ḣ /

@R

@h

and k̇ /

@R

@k

, a factor of xex�1
N comes in (Equation 6), which was

not explicitly included in Malhotra et al. (1989) because they treated only the x = 1

case. The factor C for each order x is tabulated in Table 2.7. These coe�cients were

taken from the expansion of the disturbing function in Appendix B of Murray & Dermott

(2000).

The factor ✏ in Equation (2.5) depends on the proximity to resonance. Extending

Malhotra et al. (1989) to resonances of arbitrary order, we obtain:

! = jn
N

� (j + x)n(1 +
mN

mJ (1 + ↵
d

d↵
)b(0)1/2)

✏ =
3

2

mN

mJ (j + x)2
1 + mN

m

J↵(1 + 7
3↵

d

d↵

+ 2
3↵

2 d

2

d↵

2 )b
(0)
1/2

(!/n)2

(2.16)

where n
N

is the mean motion of Neptune and n is the mean motion of the particle.

The n : 1 resonances have indirect terms not explicitly included in Malhotra et al.
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Table 2.7:: Coe�cients for Equation (6).

x C

1 1
2(�2(j + x)� ↵ d

d↵

)b(j+x)
1/2 (↵)

2 1
8((�5(j + x) + 4(j + x)2) + (�2 + 4(j + x))↵ d

d↵

+↵2 d

2

d↵

2 )b
(j+x)
1/2 (↵)

3 1
48((�26(j + x) + 30(j + x)2 � 8(j + x)3) + (�9 + 27(j + x)� 12(j + x)2)↵ d

d↵

+(6� 6(j + x))↵2 d

2

d↵

2 � ↵3 d

3

d↵

3 )b
(j+x)
1/2 (↵)

4 1
384((�206(j + x) + 283(j + x)2 � 120(j + x)3 + 16(j + x)4) + (�64 + 236(j + x)

�168(j + x)2 + 32(j + x)3)↵ d

d↵

+(48� 78(j + x) + 24(j + x)2)↵2 d

2

d↵

2 + (�12 + 8(j + x))↵3 d

3

d↵

3

+↵4 d

4

d↵

4 )b
(j+x)
1/2 (↵)

(1989) (R. Malhotra, private communication). However, the only relevant n : 1 resonance

in the region of the Kuiper Belt we are studying is the 2 : 1 resonance and its indirect

terms result in expressions that, when incorporated above, are directly proportional to

the mass of the KBO and thus assumed to be negligible.

2.8.2 E↵ects of Other Planets

In the case of multiple planets, the forced eccentricity of a small body on an external

orbit is given by (Murray & Dermott 2000):
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h0 = �

NX

i=1

⌫
i

A� g
i

sin(g
i

t+ �
i

)

k0 = �

NX

i=1

⌫
i

A� g
i

cos(g
i

t+ �
i

)

(2.17)

where

⌫
i

=
NX

j=1

A
j

e
ji

A
j

= �n
1

4

m
j

mJ↵
j

b
(2)
3/2(↵j

)
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NX

j=1

n
1

4

m
j

m
c

↵
j

b
(1)
3/2(↵j

)

(2.18)

where the particle’s forced eccentricity eforced =
p

h2
0 + k2

0 and g
i

and e
ji

are the

eigenfrequencies and eigenvector components of the planetary system. We compare

Equation (2.17) with Equation (7). For KBOs in the classical region, Neptune’s orbits

dominates A, the precession rate of the particle’s free eccentricity. The precession rate

of a particle’s free eccentricity due to Neptune alone agrees with the four-planet case to

within 30%. Thus A ⇡ gKBO. Neptune dominates the ⌫
i

term, and thus the four-planet

secular theory reduces to the single-planet secular theory with an extra g
i

= $̇N term

for Neptune’s precession. Therefore the four planet Equation (2.17) reduces to Equation

(7). The quantity ⌫
i

corresponds to g0KBOeN(t), gi corresponds to $̇N, and A corresponds

to gKBO. The extra sin term in Equation (7) is an empirical factor to account for

eccentricity damping and is discussed in detail in the main text. This conclusion is

consistent with the result of Chiang & Choi (2008) that the current forced eccentricities

of the KBOs are largely determined by Neptune’s orbit.
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Chapter 3

On the Misalignment of the Directly

Imaged Planet � Pictoris b with the

System’s Warped Inner Disk

R. I. Dawson, R. A. Murray-Clay, & D. C. Fabrycky The Astronomical Journal, Vol. 743,

id. L17, 2011

Abstract

The vertical warp in the debris disk � Pictoris – an inclined inner disk extending into

a flat outer disk – has long been interpreted as the signpost of a planet on an inclined

orbit. Direct images spanning 2004-2010 have revealed � Pictoris b, a planet with a mass

and orbital distance consistent with this picture. However, it was recently reported that

the orbit of planet b is aligned with the flat outer disk, not the inclined inner disk, and
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thus lacks the inclination to warp the disk. We explore three scenarios for reconciling the

apparent misalignment of the directly imaged planet � Pictoris b with the warped inner

disk of � Pictoris: observational uncertainty, an additional planet, and damping of planet

b’s inclination. We find that, at the extremes of the uncertainties, the orbit of � Pictoris

b has the inclination necessary to produce the observed warp. We also find that if planet

b were aligned with the flat outer disk, it would prevent another planet from creating a

warp with the observed properties; therefore planet b itself must be responsible for the

warp. Finally, planet b’s inclination could have been damped by dynamical friction and

still produce the observed disk morphology, but the feasibility of damping depends on

disk properties and the presence of other planets. More precise observations of the orbit

of planet b and the position angle of the outer disk will allow us to distinguish between

the first and third scenario.

3.1 Introduction

The � Pictoris debris disk is a rich system, with observational features resulting from the

interplay of gravity, radiation pressure, collisions, infalling comets, sculpting by planets,

and the physical properties of the gas, dust, and rocks that comprise the disk. In the

quarter-century following its discovery (Smith & Terrile 1984), � Pictoris has epitomized

young planetary systems, amenable to state-of-the-art observations and to modeling of

planetary formation processes. For a review, see Vidal-Madjar et al. (1998).

A striking vertical warp in the � Pictoris disk, at approximately 85 AU from the

star, appears in optical and near-infrared images (e.g. Heap et al. 2000; Golimowski et al.

2006). Mouillet et al. (1997) and Augereau et al. (2001) demonstrated that a perturbing
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planet on an inclined orbit could produce the warp, whose distance constrains the posited

planet’s mass and position. A decade later, Lagrange et al. (2009, 2010) discovered, via

direct imaging, � Pictoris b, a planet consistent with producing the warp, if correctly

inclined relative to the disk.

However, Currie et al. (2011) – stitching together recent (Quanz et al. 2010;

Bonnefoy et al. 2011) data and newly reduced data (collected by Lagrange et al. 2010)

– recently measured the planet’s astrometric orbit and reported it to be, surprisingly,

misaligned with the warp. They urged revisiting whether planet b could produce the

warp and suggested an undiscovered additional planet as an alternative culprit.

Here we explore three scenarios to reconcile the apparent misalignment of planet

b with � Pictoris’s warped inner disk. In Section 3.2, we model an inclined planet

sculpting a planetesimal disk. Then (Section 3.3), we consider the first scenario: within

the extremes of the observational uncertainties, � Pictoris b has the inclination to

produce the warp. In Section 3.4, we evaluate the possibility that another planet created

the warp; however, we find that the presence of planet b on a flat orbit prevents another

object from creating the observed warp. In Section 3.5, we explore the third possibility:

planet b had a higher inclination in the past, created the warp, and then its inclination

damped. Thus we suggest (Section 3.6) that planet b produced the warp, whether or not

its orbit is currently aligned with the warped inner disk.

3.2 Model of a Debris Disk Sculpted by an Inclined

Planet
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Figure 3.1.—: Snapshot (8 Myr) from an N-body simulation and an analytical model

of an inclined planet sculpting an initially flat planetesimal disk. Top: Planetesimal

inclinations vs. semi-major axis. The red lines indicate the planet’s inclination i
p

and 2i
p

.

The orange, blue, and black line is composed of triangles, each marking the inclination

of a corresponding planetesimal in the middle panel. The planetesimals are color-coded:

orange triangles have completed an oscillation, blue are just reaching their maximum

inclination, and black are still at low inclinations. We use our analytical model (eqn.

3.1) to calculate the dashed gray line. Middle: Projected positions of the planetesimals.

Lower: Same as middle using the analytical model; it reproduces the N-body simulation

well. Compare these two lower panels to images of the disk, such as those shown in Heap

et al. (2000), Fig. 8 and Golimowski et al. (2006), Fig. 5.
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Figure 3.1.—: Continued
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The warping of the � Pictoris debris disk by a planet on an inclined orbit results

from the secular evolution of the disk’s component planetesimals. The planet secularly

forces the disk, causing the planetesimals to oscillate about the planet’s inclined plane.

Planetesimals in an initially flat disk (inclination i = 0 relative to the plane of the

flat outer disk) reach a maximum i of twice the planet’s inclination i
p

. The oscillation

frequency decreases with the planetesimal’s semi-major axis: in a young system like �

Pictoris, the inner planetesimal disk – which secularly evolves quickly — is centered

on the planet’s inclined plane, while the outer disk – which secularly evolves slowly

– is still near its initial low inclination. Thus secular evolution produces an inclined

inner disk aligned with the planet’s inclined plane, a flat outer disk, and a warped

feature, extending to 2i
p

, at the distance, awarp, where planetesimals are just reaching

their maximum inclination. This distance constrains the disk’s evolution time and the

perturbing planet’s mass and location. In Fig. 3.1, we plot the final inclinations and

projected positions from an N-body simulation of an initially flat planetesimal disk

sculpted by a planet on an inclined orbit. Each of 6000 test-particle planetesimals

begins with e = i = 0, a semi-major axis a between 20-200 AU, and a random periapse,

longitude of ascending node, and mean anomaly. The planet has the observed mass

(m
p

= 9mJupiter) and semi-major axis (a
p

= 9.5 AU) of � Pictoris b, and i
p

= 3.6�;

the star has mass m⇤ = 1.75msun. We used the Mercury 6.2 (Chambers 1999) hybrid

integrator with a step size of 200 days over a timespan of 8 Myr. The system’s age, 12+8
�4

Myr (Zuckerman et al. 2001), minus the planet formation time, < 3� 5 Myr (Hernández

et al. 2007; Currie et al. 2009), imply that warp production likely began 3-20 Myr ago.

We choose the viewing orientation to make both the outer disk and the planet’s orbit

edge-on, as observed.
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3.2.1 Planetesimal inclination evolution

Secular evolution times set the warp’s position: at the pointy part, planetesimals, in

the midst of their first cycle about the planet’s inclined plane, are just reaching their

maximum 2i
p

(blue triangles, Fig. 3.1). The components p and q of the planetesimal’s

instantaneous inclination, i =
p
p2 + q2, evolve as:

p = ifree sin(ft+ �) + pforced

q = ifree cos(ft+ �) + qforced

f = �

n

4

m
p

m⇤
↵↵̄b

(1)
3/2(↵)

(3.1)

where

↵ =

8
>><

>>:

a/a
p

, a < a
p

;

a
p

/a, a > a
p

;

↵̄ =

8
>><

>>:

a/a
p

, a < a
p

;

1, a > a
p

.

(3.2)

The function b is a standard Laplace coe�cient (Murray & Dermott 2000), and

n = (Gm⇤/a
3)1/2 is the planetesimal’s mean motion. When a single inclined planet

forces an initially cold disk, the forced plane, with inclination iforced =
p

p2forced + q2forced,

is the inclined plane of the perturbing planet, i
p

, relative to the flat outer disk. Thus a

planetesimal’s inclination, initially at i = 0, oscillates as:

i = 2i
p

| sin(ft/2)|

(3.3)
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3.2.2 Constraining the Sculpting Planet’s Orbit

The disk reaches its maximal vertical extent, zwarp, at awarp. From eqn. 3.3, the warp’s

secular oscillation frequency f is related to the disk’s evolution time ⌧ by f⌧ = ⇡,

constraining the mass and semi-major axis of the perturbing planet:

⇡/⌧ =
nwarp

4

m
p

m⇤
↵warp↵̄warpb

(1)
3/2(↵warp) (3.4)

and the perturbing planet’s inclination is separately constrained by:

tan(2i
p

) =
zwarp
awarp

(3.5)

Our eqn. 3.4 is equivalent to the warp condition in Mouillet et al. (1997), Section

5 and Augereau et al. (2001), Section 1.2, derived from tidal theory. Additionally,

Mouillet et al. (1997) modeled the disk’s evolution using hydrodynamic simulations.

However, using the secular equations above, we can not only constrain the parameters of

a perturbing planet but produce the time-evolving disk morphology (e.g. Fig. 3.1, panel

3), facilitating comparisons to observations without simulations.

The warp-revealing visual observations measure the light scattered by dust, likely

produced by recent collisions of the planetesimal parent bodies. These dust grains are

subject to radiative pressure, which induces larger, eccentric orbits relative to their

parent bodies. Thus radiation pressure e↵ectively increases the distance of the warp by

a factor of ⇠ 1/(1 � 2�), where � is the ratio of the radiation forces to gravitational

forces (see Chiang et al. 2009). For example, if � = 0.2, a warped disk of parent bodies

extending only to 50 AU creates an observed warp at 85 AU. In Fig. 3.2, we plot

curves of a
p

vs. m
p

that produce a warp at 85 AU (eqn. 3.4) for � = 0 and � = 0.2.

Dust-generating collisions a↵ect the parent bodies’ orbits by damping ifree. However, the
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largest parent bodies in the collisional cascade, which recently experienced their first

collision and have not had ifree significantly damped, set the maximum vertical extent of

the warp.
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Figure 3.2.—: Three curves (solid) of (a
p

,m
p

) that produce a warp at 85 AU for (top to

bottom) ⌧ = 3, 9, 17 Myr. A planet with properties above the lowest curves significantly

impacts the warp evolution over the system lifetime. Equivalent curves for observed dust

grains with radiative forcing parameter � = 0.2 are plotted in dashed grey. Increasing �

decreases the warp distance in the planetesimal parent population, e↵ectively shortening

the warp propagation time.
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3.3 Planet b Possibly Aligned with Inner Disk

The framework in Section 3.2 allows comparison of the model to the observed warp

morphology. In creating Fig. 3.1, we used the observed m
p

and a
p

. We selected i
p

= 3.6�

, corresponding (eqn. 3.5) to a maximum vertical extent of zwarp = 11 AU at awarp = 85

AU (Heap et al. 2000 Fig. 8; Golimowski et al. 2006 Fig. 5). We plot our simulations

from the perspective such that both the outer disk and the planet’s orbit are perfectly

edge-on, as observed, which constrains the orientation of the warp. We find that the

distribution of planetesimals matches the disk shape well.

Currie et al. (2011) reported that planet b is aligned with the flat outer disk

and misaligned with the inclined inner disk. Indeed, the di↵erence between two

separately measured angles, (a) the intersection of the planets orbit with the sky plane,

31.32�[30.56, 32.12] (Currie et al. 2011), and (b) the sky position of the outer disk, 30-31�

(Kalas & Jewitt 1995) or 29.5�±0.5 (Boccaletti et al. 2009), is consistent with alignment.

However, at ⇠ 2-�, � Pictoris b may be misaligned with the flat outer disk by i
p

= 3.6�,

and aligned with the middle of the inclined inner disk, as in our model (Fig. 3.1).

3.4 Planet b Prevents Another Planet from Creating

the Warp

If, contrary to the scenario of Section 3.3, more precise measurements confirm that

planet b’s orbit is aligned with the flat outer disk, an undiscovered planet c would be

an obvious suspect. However, the presence of planet b severely restricts the parameter
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space for an additional, warp-making planet. The following loose, generous constraints

on planet c must be simultaneously satisfied:

1. To have escaped radial velocity detection by Galland et al. (2006), planet c must

satisfy

m
c

mJupiter
< 9
p
a
c

/1AU

.

2. Planets b and c must be su�ciently separated for stability, obeying

�a

a
> 2.4(µ

b

+ µ
c

)1/3

where µ is the planet-to-star mass-ratio (Gladman 1993). Even if planets b and

c underwent scattering, it is unlikely that their unstable configuration would last

long enough to create the warp.

3. Planet c must create the observed disk morphology – an inclined inner disk from

40-90 AU – without exciting planet b’s inclination. We generously allow any

parameters for planet c that produce a forced inclination iforced < 2� for planet b

and 3� < iforced < 8� for the inner disk. We calculate the forced inclinations using

multi-planet secular theory (Murray & Dermott 2000, Section 7.4).

4. Given the system age of 8-20 Myr (Zuckerman et al. 2001), planet c must have a

mass and semi-major axis small enough so that the evolution time of the warp at

85 AU is slower than 1 Myr (but faster than 20 Myr). If the observed dust grains

have � > 0 (Section 3.2.2), the evolution time must satisfy this constraint at 85

AU (1 � 2�), a more restrictive lower limit. The lower limit is generous, allowing

for the possibility that planet c became inclined very recently.
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5. A secular resonance should not disrupt the flat outer disk (90-200 AU); we calculate

the locations of secular resonances using multi-planet secular theory.

We explore the parameter space of planet c’s semi-major axis, mass, and inclination.

For each combination, we evaluate the equations for the five criteria above in a two-planet

system containing planets c, and b, with its nominal m
b

= 9mJupiter, ab = 9.5 AU, and

i
b

= 0. In Fig. 3.3, we shade the (a
c

, m
c

) regions for which no possible inclination of

planet c can satisfy the constraints. Other choices for m
b

and a
b

, within observational

errors, yield qualitatively similar results. Constraint 3 is most restrictive: the planet

must have high enough mass to excite the warp, but low enough mass not to excite i
b

; it

must be far enough out that the warp can extend to 85 AU, but close enough to incline

the inner disk at 40 AU. Constraint 4 considers the time dependence: the warp must

reach 85 AU in the system age. The secular oscillation frequency at 85 AU depends on

the mass and semi-major axis of both planets b and c – but not on their inclinations.

Planet b, even on a non-inclined orbit, makes a large contribution to this frequency,

leaving little room for a contribution from planet c.

Therefore we can rule out that an undiscovered planet c causes the warp, because

it cannot do so in the presence of planet b. Additional planets may be present in the

system, but are unlikely to be predominantly responsible for the warp.

3.5 Planet b’s Inclination May Have Damped

We demonstrated that planet b’s current orbit is consistent with producing the warp

only at the extremes of the uncertainties (Section 3.3) and that planet b’s presence
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Figure 3.3.—: Constraints on a
c

and m
c

. The region shaded horizontal-striped green

violates Constraint 1 (lack of RV detection), upward-slanted black violates Constraint 2

(stability), downward-slanted red violates Constraint 3 (produces disk morphology with-

out exciting planet b), vertical-striped blue violates Constraint 4 (timescale consistency),

and shallow-slant purple violates Constraint 5 (secular resonances in the outer disk). See

text for details.
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inhibits another planet from creating the warp (Section 3.4). If follow-up observations

confirm the nominal orbit of � Pictoris b and position angle of the flat outer disk, we are

left uncomfortably with a planet misaligned with the warp it produced. However, we

need not regard that conclusion with such discomfort. A sculpted planetesimal disk can

record the history of a planet’s orbit, revealing a dynamical past we would never guess

from the planet’s current orbit. For example, Neptune has a nearly circular orbit today

but may have have sculpted the Kuiper Belt, our solar system’s remnant planetesimal

disk, during a period of high eccentricity, which was subsequently damped by dynamical

friction (see Levison et al. 2008, and references therein). Embedded in a planetesimal

disk, � Pictoris b would experience damping of its inclination, though the extent and

timescale depend on disk properties.

3.5.1 Consistency with Disk Morphology

First we demonstrate that the disk morphology can be consistent with the damping of �

Pictoris b’s orbital inclination. The planetesimals, with initial forced inclinations of i
p

,

begin to oscillate about the forced plane and, as we showed in Dawson & Murray-Clay

(2012), e↵ectively freeze at the inclination values they reach after one damping timescale

of the planet’s inclination. Therefore, the warp freezes at the distance it reaches when

the planet’s inclination damps. Because their forced inclinations are damped, the

planetesimals have a maximum i = i
p

instead of 2i
p

, requiring � Pictoris b to have an

initial i
p

⇠ 7�. Fig. 3.4, left panel shows an example: the disk morphology still matches

the observations even though the inclined inner disk is not aligned with the planet’s

orbit.
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Figure 3.4.—: Snapshots at two times (left and right) from an N-body simulation of

a planet (m
p

= 12mJupiter; a
p

= 13.5 AU; initial i
p

= 6�) sculpting an initially flat

planetesimal disk. We imposed damping of the planet’s inclination of the form i̇

i

= 2⇡/(4

Myr), following Appendix A of Wol↵ et al. (2012). Top: Planetesimal inclinations vs.

semi-major axis. The red dashed and solid lines are the planet’s initial and current

inclination, respectively. Bottom: Projected positions of the planetesimals. See Fig. 3.1

for color coding.
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However, if the disk evolves for too long after the planet’s inclination damps,

the planetesimal nodes randomize and the morphology becomes boxy (right panel of

Fig. 3.4). The distinction between a consistent and an excessively boxy morphology

is qualitative and may require sophisticated modeling of the observed scattered light.

However, it is clear that no more than a partial precession period at 85 AU can have

passed since the planet’s inclination damped. Since the system is young, this requirement

does not demand implausible fine-tuning.

3.5.2 Damping Conditions

We consider the feasibility of damping planet b’s orbital inclination. We expect that

planet b started in the outer disk’s plane, was perturbed, and is returning to its original

plane. Possible perturbations include a second planet scattered inward (e.g. Jurić

& Tremaine 2008), or resonant-induced inclinations in the disk near the planet (e.g.

Thommes & Lissauer 2003).

Ejection of a scattered planet could alter the total angular momentum, requiring a

disk with mass comparable to planet b to keep the forced plane, to which planet b damps,

low (e.g. an unusually long-lived gaseous proto-planetary disk – Hillenbrand et al. 1993 –

or a particularly massive planetesimal belt). We confirmed that fast precession of planet

b caused by a massive disk, since the precession occurs about a misaligned axis, would

not prevent the excitation of the warp. On longer timescales, the damping medium must

allow planet b to remain inclined for almost the system’s age. High-mass planets whose

inclinations bring them several scale-heights out of the disk fail to open a gap, and thus

gas interaction damps them after only ⇠ 100 orbits (Marzari & Nelson 2009). A more
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moderate inclination (i . 10�) for planet b, allowing it to maintain a clean gap, would

lead to satisfactorily-ine�cient damping (Bitsch & Kley 2011), perhaps on a 10 Myr

timescale.

However, a modest disk mass may su�ce. During planet-planet scattering, the total

angular momentum is conserved, producing an average forced-plane still aligned with

the flat outer disk. Planetesimals contributing to dynamical friction follow the forced

plane, with each planetesimal attempting to damp the planet to the planetesimal’s own

plane. Even if planet b dominates the forced plane in its immediate vicinity, distant

planetesimals, within a factor of several of the planet’s semi-major axis, could damp

the planet’s orbit to their flat forced plane (i.e. the plane of the outer disk). (However,

planet b would need to dominate the forced plane from 40 - 90 AU to excite the inclined

inner disk.) Following Ford & Chiang (2007), Section 2.3, a surface density as low as

3 lunar masses within 40 AU could damp i
p

from 10� over 4 million years if the disk

remains thin. Collisional dissipation could keep the disk thin (Goldreich et al. 2004, eqn.

33, 50) if

s

1cm
<

< idisk >

2�
mdisk

5mEarth
(3.6)

where s is a typical planetesimal radius. Since the collisional dissipation rate is

/ � / a�1, where � is the disk surface density, collisional dissipation could keep the disk

thin near planet b while allowing excitation from 40-90 AU, where the warp is created.

Clearly further study is required to find evolutionary scenarios that produce the

inclination damping used in Fig. 3.4. These details are independent of this section’s main

message: a transient planetary orbit could establish a warp in a disk, to be observed at

present, even if that planetary orbit has since changed.
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3.6 Conclusion

We explored three scenarios for the apparent misalignment between the warped inner

disk of � Pictoris and the orbit of the directly imaged planet b. In the first, most

plausible scenario (Section 3.3), planet b’s orbit is consistent with producing the warp,

at the extremes of the uncertainties. We argued that the alignment depends not only

on the planet’s orbit but on the (separately measured) position angle of the outer disk.

Therefore both of these quantities must be measured more precisely and, if possible,

simultaneously from the same images.

In the second, most obvious scenario (Section 3.4), another planet warps the disk.

However, we demonstrated that planet b inhibits another planet from producing the

warp. Other planets may exist in the system, creating other disk features, but they

cannot be responsible for the warp.

If the first scenario is ruled out by more precise observations, we are left with the

third scenario (Section 3.5): planet b created the warp and then had its inclination

damped. Detailed modeling of scenarios that allow for the damping of planet b’s

inclination will be necessary. Confirmation of the damping scenario, especially if

observers discover more systems with planets misaligned with the warp they produced,

could shed light on disk properties that are important for planet formation but di�cult

to measure directly.
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Chapter 4

Radial Velocity Planets De-aliased:

A New, Short Period for

Super-Earth 55 Cnc e.

R. I. Dawson & D. C. Fabrycky The Astronomical Journal, Vol. 722, id. 937, 2010

Abstract

Radial velocity measurements of stellar reflex motion have revealed many extrasolar

planets, but gaps in the observations produce aliases, spurious frequencies that are

frequently confused with the planets’ orbital frequencies. In the case of Gl 581 d, the

distinction between an alias and the true frequency was the distinction between a frozen,

dead planet and a planet possibly hospitable to life (Udry et al. 2007; Mayor et al. 2009).

To improve the characterization of planetary systems, we describe how aliases originate
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and present a new approach for distinguishing between orbital frequencies and their

aliases. Our approach harnesses features in the spectral window function to compare the

amplitude and phase of predicted aliases with peaks present in the data. We apply it to

confirm prior alias distinctions for the planets GJ 876 d and HD 75898 b. We find that

the true periods of Gl 581 d and HD 73526 b/c remain ambiguous. We revise the periods

of HD 156668 b and 55 Cnc e, which were a✏icted by daily aliases. For HD 156668 b,

the correct period is 1.2699 days and minimum mass is (3.1± 0.4) M�. For 55 Cnc e, the

correct period is 0.7365 days – the shortest of any known planet – and minimum mass

is (8.3± 0.3) M�. This revision produces a significantly improved 5-planet Keplerian fit

for 55 Cnc, and a self-consistent dynamical fit describes the data just as well. As radial

velocity techniques push to ever-smaller planets, often found in systems of multiple

planets, distinguishing true periods from aliases will become increasingly important.

4.1 Introduction

In the past two decades, over 400 extrasolar planets have been discovered, including

more than 300 detected by radial velocity measurements. The entire architecture of a

planetary system is encoded in the wobbles of its host star. In frequency space, the

star’s radial velocity variations are decomposed into the frequencies associated with

each planet’s gravitational interactions. One obstacle in correctly attributing these

frequencies to planets are the spurious alias frequencies in the periodogram of the star’s

radial velocity measurements, caused by the discrete time sampling of the observations.

Convolved with the orbital frequencies of alien worlds are Earth’s own rotational and

orbital frequencies, which dictate when the host star is visible at night, and – for many
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data sets – the synodic lunar frequency, which impacts the allocation of telescope time.

Distinguishing aliases from physical frequencies is a common problem, yet making

the correct distinction is crucial for characterizing extrasolar planets. For example, Udry

et al. (2007) announced a super-Earth orbiting the M star Gl 581 with period 83 days,

beyond the cold edge of the habitable zone. After more than doubling the number

of observations, they determined that the planet’s period was actually 67 days, well

within the habitable zone, and that the 83 day period was an alias (Mayor et al. 2009).

The distinction between an alias and physical frequency was the distinction between a

frozen, dead planet and a planet possibly hospitable to life. For reasons we will describe

below, planets with periods of one to several months – in or near the habitable zone

of M stars – will typically have aliases with periods within about 30 days of their own

orbital period. As more planets are discovered orbiting M stars, astronomers will be

struggling to distinguish which of two close frequencies, one of which places the planet

in the habitable zone, corresponds to a planet’s orbital frequency. In general, planets

with periods between a few months and a few years often have confusing aliases caused

by convolution with Earth’s orbital period, while planets with periods near a day, such

as the super-Earth GJ 876 d (Rivera et al. 2005), have confusing aliases caused by

convolution with Earth’s rotational period. Automatic de-aliasing algorithms, such as

CLEAN (Roberts et al. 1987), have been applied to particularly complicated radial

velocity periodograms with some success (Queloz et al. 2009), yet, while they are good

for cleaning up a periodogram, they should not be relied on for distinguishing between

an alias and a physical frequency. Aliases also pose a challenge for observing variable

stars and period-searching algorithms have been designed to not fall prey to them (see

for example Plavchan et al. 2008; Reegen 2007, 2011).
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Therefore, to enhance detection and characterization of planets, we have developed

an approach to identify aliases by harnessing features of the “spectral window function,”

the Fourier transform of the observation times. Consider the star’s motion as a signal

that passes through a system, the time sampling window. Because of noise and loss

of information, we can never perfectly reconstruct the signal. But we know everything

there is to know about the system: for a sinusoid of a given amplitude, frequency, and

phase, peaks in the window function cause aliases with calculable amplitudes and phases

(Deeming 1975, 1976). The several time sampling frequencies – sidereal year, sidereal

day, solar day, and synodic month – complicate the radial velocity periodogram yet allow

us to break the degeneracy between alias and physical frequency that would exist for

evenly-sampled data.

In the following section, we describe the origin and characteristics of aliases, supply

the details of our approach for confirming that a particular frequency is not an alias,

and clarify previous misconceptions about aliases. In the third section, we apply our

approach to confirm periods for the planets GJ 876 d and HD 75898 b. We find that

the orbital period for Gl 581 d and for the planets of HD 73526 cannot be definitively

determined due to noise. We discover that the reported orbital period for HD 156668 b,

4.6455 days, is an alias of the true period, 1.2699 days. Finally, we analyze the 5-planet

system 55 Cnc. We find that the period of 2.817 days reported in the literature for planet

e (McArthur et al. 2004; Fischer et al. 2008) is actually a daily alias of its true period of

0.737 days. We conclude by summarizing the approach we have developed, considering

the implications of a new period for 55 Cnc e, and suggesting observational strategies for

mitigating aliases.
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4.2 Method

The existence of a planet orbiting a star is frequently inferred from a signature peak in

the periodogram of radial velocity measurements of the star. However, the periodogram

often contains alias frequencies, the result of discrete sampling times, that, at first

glance, cannot be distinguished from the true periodicities. Many astronomers have

struggled to determine which periodogram peaks are physical frequencies and which are

aliases, often resorting to methods that are unnecessarily computationally intensive,

not definitive, reflect a misunderstanding of aliases, or all of the above. In the first

subsection, we will describe the origin of aliases for evenly and unevenly sampled data.

In the second subsection, we will explain the cause of the daily aliases, prominent for

many Doppler datasets. In the third section, we will present a field guide for identifying

aliases. In the fourth subsection, we will describe the method we have developed. In the

fifth subsection, we will discuss the e↵ects of orbital eccentricity. In the sixth subsection,

we will discuss common misconceptions about aliases that lead to misidentification.

4.2.1 The Origin of Aliases for Evenly and Unevenly Sampled

Data

Aliases are the result of discretely sampling a continuous signal. The resulting

discretely-sampled signal is the product of the continuous signal and the sampling

function, the latter being a “Dirac comb”: a series of delta functions. The periodogram

of the discretely-sampled signal is a convolution of periodogram of the continuous signal

and the periodogram of the sampling function (the spectral window function). Consider
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first the simplified case of an infinite set of evenly-spaced data points, g1[n], the result of

sampling a continuous sine wave s1(t) of frequency f at sampling frequency f
s

. Here we

follow McClellan et al. (1999):

s1(t) = sin(2⇡ft),

g1[n] = s(n/f
s

) = sin(2⇡fn/f
s

),

where n is an integer. However, under this sampling, the signal is indistinguishable from

the sine wave s2(t) of frequency (f +mf
s

):

s2(t) = sin(2⇡(f +mf
s

)t),

g2[n] = sin(2⇡(f +mf
s

)n/f
s

) = sin(2⇡fn/f
s

),

where m is an integer. In the frequency domain, both g1 and g2 will have peaks not only

at f , but also at f +mf
s

.

Moreover, neither has a periodogram distinguishable from a sampled sinusoid of

frequency (�f +mf
s

):

g3[n] = sin(2⇡(�f +mf
s

)n/f
s

) = sin(2⇡fn/f
s

+ ⇡).

That is to say, g1 and g2 will also have peaks at �f + mf
s

, although the phase of

those peaks will be advanced by 1/2 cycle. For evenly sampled data, unless the only

physically possible frequencies fall in a single Nyquist interval f
s

/2, the frequency cannot

be unambiguously determined.

Fig. 4.1 shows the spectral window function of an evenly sampled time series of f
s

= 1 day�1. Peaks in the spectral window function occur at mf
s

, where m is an integer.
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The spectral window function is given by equation 8 in Roberts et al. (1987):

W (⌫) =
1

N

NX

r=1

e�2⇡i⌫tr , (4.1)

where N is the number of data points, and t
r

is the time of the rth data point. It is

evident that when ⌫ = ±mf
s

, e⌥2⇡imfstr = e⌥2⇡imn = 1 and W (⌫) = 1. It’s also evident

from this equation that when ⌫ = 0, W (⌫) = 1. Note that W (�⌫) = W ⇤(⌫).

Figure 4.1.—: Spectral window of data evenly sampled in time, with a sampling frequency

f
s

= 1 day�1, and 300 samples.

The top panel of Fig. 4.2 shows the periodogram1 of a sinusoid of period 1.94 days

sampled every 1 day for 300 days. For a sinusoidal signal, the resulting periodogram

is a convolution of the spectral window function W (⌫) with the peak corresponding to

period 1.94 days. The bottom panel shows the periodogram of a sinusoid of period 2.06

days, an alias of 1.94 days, with the same even sampling. The two periodograms are

indistinguishable. The aliases of the 1.94 day period occur at f = 1/1.94 +mf
s

. For

f
s

= 1 and m = �1, the alias is 1/1.94� 1 = 1/2.06.

1For this and all other periodograms in this paper, at each frequency we (1) let the mean of the data

float, and (2) weighted each data point with the inverse of the square of the reported error bar. See

Cumming et al. 1999 and Zechmeister & Kürster 2009.
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Figure 4.2.—: Periodogram of sinusoids sampled evenly in time. Top: Period 1.94 day.

Bottom: Period 2.06 day. They are indistinguishable.

For a randomly selected frequency ⌫ each e�2⇡i⌫tr will add incoherently. However,

if there are gaps in the data of a certain frequency ⌫, only certain phases occur and

the complex exponentials will add in a partially coherent manner. The spectral window

functions of stellar reflex motion measurements contain peaks at 1 sidereal year, 1

sidereal day, 1 solar day, and sometimes 1 synodic month. These periodicities are

caused by observations being limited to only a particular portion of each of these

periods. Observations are limited to a particular portion of the sidereal year and

sidereal day because the star is only visible at night from the location of the telescope

during particular parts of the sidereal year and day. At some telescopes, spectroscopic

observations of the stars are relegated to “bright time,” the portion of the synodic month

when the moon is near full, because “dark time” is reserved for observing faint objects.

In the next section, we will focus on the daily aliases due to both the solar day and the

sidereal day.

Uneven sampling also dictates that the phase of exp(2⇡if
s

t
r

) will span a width.

Eyer & Bartholdi (1999) demonstrate that for unevenly sampled data, there is e↵ectively
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no Nyquist frequency. Because gaps in the data and uneven spacing sample a non-zero

width in phase, the height of peaks in the window function will never be exactly 1. For

a noiseless data set, the physical frequency will almost always be a higher peak in the

periodogram than any alias. (The only exception is if positive and negative aliases add

coherently.) For noisy data, the noise between two candidate peaks is correlated, but

it may constructively interfere with the alias and destructively interfere with the true

frequency, resulting in the alias peak being taller. Depending the phase of noise, it can

also alter the phase of the true frequency and aliases through vector addition.

4.2.2 Daily Aliases

For most Doppler datasets, the largest peaks in the window function — corresponding

to the largest aliases — are those at n day�1, where n is an integer. We refer to these

peaks as the daily aliases, as they result from the sampling an Earth-bound observer is

able to do at nighttime from a single site.

Let us construct an example dataset, to illustrate their origin. Suppose the sampling

is confined to when the Sun is down and the target star is up. In particular, suppose the

samples are taken nearly daily, midway between when the star rises and the Sun rises, or

midway between when the Sun sets and the star sets, depending on the time of the year.

This sampling would lead to spacings between the solar day (24h 0m 0s) and the sidereal

day (23h 56m 4s). Therefore, in our example dataset, let us take datapoints spaced by

23h 57m 30s, although due to telescope scheduling and weather, only a fraction of the

nights (randomly chosen) are actually observed. Such a sequence is repeated in intervals

of 365 days for 5 years, resulting in a total of 97 observation times. In Fig. 4.3 we

144



CHAPTER 4. RADIAL VELOCITY PLANETS DE-ALIASED:

illustrate this idealized dataset. It is constructed to obey the boundaries set by the Sun

and the star, which are also plotted. The actual times from real datasets are compared,

to show that this sampling, though idealized, reproduces the main daily and yearly

structure of a real dataset.
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Figure 4.3.—: Times of observation of an idealized dataset and two real datasets, folded

to illustrate the origin of daily aliases. The axes show, quantitatively, the time of the

year and the time of the day. The solid lines are labeled and correspond to the time each

day that either the Sun rises or sets (at a constant time-of-day in this idealized example)

or the star rises or sets (which varies according to the time of the year). The dashed

lines are when the star reaches 54 degrees from the zenith, within which a favorable

observation can be made. The idealized dataset is described in the text. The HARPS

data for Gl 581 are from Mayor et al. (2009), and we took t = JD � 2, 452, 970.92 for

convenience. The Keck and Lick data for 55 Cnc are from Fischer et al. (2008), and we

took t = JD � 2, 447, 370.15. Figure courtesy of Daniel Fabrycky.
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Figure 4.3.—: Continued
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The window function for this idealized dataset is shown in Fig. 4.4. There are peaks

at frequencies of n day�1 + m yr�1. In particular, there is a doublet at ⌫ = 1.0000 day�1

and ⌫ = 1.0027 day�1, with the latter peak being larger.

Figure 4.4.—: Spectral window function of data with gaps. The sampling is from the

“idealized dataset” of panel (a) in Fig. 4.3.

How does this structure arise? We see from Fig. 4.3 that for ⌫ = 1.0000 day�1,

the idealized observations only sample the second half of phase. Therefore the window

function as defined by equation (4.1) will have contributions only from phases ⇡ to 2⇡,

so the complex exponential will add up coherently to a large peak. This phase coherence

explains the daily aliases not just at 1 day�1, but everywhere a peak occurs. For instance,

consider at what times data are taken relative to the frequency of the sidereal day,

⌫ = 1.0027 day�1. In Fig. 4.3, this frequency is related to the diagonal line labeled “star

rises.” The idealized dataset consists only of observation times between 0.1 days and

0.4 days after the star rises (above that diagonal line). Therefore the observations cover

only 30% of the phase of the sidereal sampling frequency, which again results in a large

peak in the window function. Here, even a smaller fraction of the total phase is covered,
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so the sampling results in even more coherent summation of complex exponentials, which

is why the window function peak at ⌫ = 1.0027 day�1 is larger than at ⌫ = 1.0000 day�1

(Fig. 4.4). Another way to see this is to note that the line formed by the idealized data in

Fig. 4.3, panel a, has a slope more closely matching the sidereal day (the diagonal lines

related to the star) than the solar day (the horizontal lines related to the Sun). Finally,

we note that no peaks in the window function appear between the solar and sidereal

frequencies because folding the data at those frequencies samples phases throughout 0 to

2⇡.

Having understood the origin of the daily aliases in the window function, including

doublets, we are prepared to recognize and correctly interpret such structure when it

results in periodograms.

To that end, we used this idealized dataset to sample a sinusoid of period 1.94 days

or 2.06 days, and in Fig. 4.5 show their periodograms. In this example, we have taken

the two periods close to those which Rivera et al. (2005) needed to decide between for

GJ 876 d. Here, then, we have identified a simple way to decide between them: the

slightly taller peak is expected to be the true one (because there is no noise), and the

alias will consist of a doublet with spacing 0.0027 day�1. We analyze the Rivera et al.

(2005) dataset in subsection 4.3.1.

4.2.3 A Field Guide to Aliases

An alias is a convolution in frequency space of a physical frequency with the window

function. Fig. 4.6 and Fig. 4.7 display some examples of yearly and daily aliases

respectively and the window function features that cause them. We have chosen
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Figure 4.5.—: Top: Periodogram of sinusoid of period 1.94 day (frequency 0.515 day�1)

with the idealized time sampling from Fig. 4.3. Bottom: Period 2.06 day (frequency 0.485

day�1). With this time sampling, the periods are distinguishable by the imprinting of the

window function features from Fig. 4.4 at f ± f
s

where f is the frequency of the sinusoid

and f
s

of the window function feature.

especially clean examples; ambiguous cases will be addressed throughout the next

section.

4.2.4 Details of Our Method

We recommend the following treatment for a radial velocity dataset or residuals of

an established fit (we will refer to both these categories as “data”) that appear to

exhibit periodic variation. As we emphasized above, the phases of peaks are helpful

for determining what is the true frequency. For example, consider a set of data with

peaks in the spectral window function at 1 year (0.0027 day�1), 1 solar day (1 day�1),

and 1 sidereal day (1.0027 day�1). Consider a true frequency f1 > 1.0027, which will

have aliases at at f2 = f1 � 1 and f3 = f1 � 1.0027. We may wonder if the peak
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Figure 4.6.—: Illustrative examples of yearly aliases taken from GJ 876 (top), 55 Cnc

(middle), and HD 156668 (bottom). The window function is plotted on the left and the

periodogram of the data near the candidate frequency on the right. The arrow in the left

plots indicates the peak in the window function near 1/yr and the arrows in the right

plots indicate the predicted location of the yearly aliases caused by this window function

feature.
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Figure 4.7.—: Illustrative examples of yearly aliases taken from HD 75898 (top), GJ 876

(second row), 55 Cnc Fischer et al. data set (third row), and 55 Cnc combined data set

(bottom row). The window function near a major feature is plotted in the left column and

sections of the periodogram of the data in the middle and right columns. Arrows in the

left column indicate the peaks in the window function near sidereal and solar days and the

arrows in the middle and right plots indicate the predicted locations of the corresponding

aliases. Note that each peak in the window function results in two features in the data

periodogram.

152



CHAPTER 4. RADIAL VELOCITY PLANETS DE-ALIASED:

at f2 is the true frequency, with an alias at f
s

� 0.0027 = f3. However, because of

the phases of the peaks in the window function, the phase of the peak f3 is di↵erent

than the phase we would expect if it were an alias of f2. Because the phase of a peak

can be key in determining the true frequency, we strongly recommend plotting the

phase of selected peaks. We use a symbol we call a “dial” (e.g., Fig. 4.9) where the

phase angle is the counterclockwise angular position from the x-axis. The phase angle

is tan�1(Imaginary(W (⌫))/Real(W (⌫))) for the window function peaks and likewise

tan�1(C(f)/B(f)) for the periodogram peaks, where B and C are the real and imaginary

coe�cients of the periodogram for frequency f .

Our method is composed of the following steps:

1. Plot the spectral window function (eq. 4.1), attaching dials to any large peaks.

Peaks will most likely occur at or near f=0, 1/yr, 1/(solar day), 1/(1 sidereal day),

and, if the observations were taken during a particular part of the lunar cycle, f =

1/month, 1/month ± 1/yr. Spectral window functions of artificial data sets are

plotted in Fig. 4.1 and 4.4 and real data sets in Fig. 4.8, 4.10, 4.12, 4.13, 4.15, 4.17,

4.19 and 4.21.

2. Plot the periodogram.

3. Consider first the possibility that the largest peak is the true frequency; measure

its frequency, phase, and amplitude. Attach dials to peaks we would expect are

aliases, according to the peaks in the window function. If the peak in the radial

velocity periodogram occurs at f and peaks in the window function occur at f
s

,

we expect aliases at f ± f
s

. (If f
s

> f , we will still see a peak at f � f
s

. Flipping

it across 0 frequency gives the phase the opposite sign: a complex conjugation.)
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Generate a sinusoid with the same frequency, phase, and amplitude as the peak in

radial velocity periodogram and plot its periodogram, attaching dials in the same

location. Compare the amplitude and phases of peaks. Are the major aliases for f

present in the data with the predicted phase and amplitude?

4. Now consider that the largest alias(es) of what we considered the true frequency

might actually be the true frequency. Repeat step 3.

5. If the periodogram of the data is well-matched by the periodogram of one and only

one candidate sinusoid, then the true frequency has been determined. As Lomb

(1976) said, “If there is a satisfactory match between an observed spectrum and a

noise-free spectrum of period P , then P is the true period.” However, if several

candidate sinusoids match peaks equally well or poorly, then the data are not

su�cient to distinguish the true period.

4.2.5 Treating the Orbital Eccentricity

Many extra-solar planets have elliptical orbits. The signal of the eccentricity is contained

in harmonics of the orbital frequency; the first harmonic has an amplitude eK, where

e is the eccentricity and K is the amplitude of the sine wave at the planet’s orbital

frequency (Anglada-Escudé et al. 2010). Thus for moderate eccentricities, the same

analysis can be applied to the first harmonic of the orbital frequency. Except in rare

unfortunate cases (such as HD 73526, treated below in section 4.3.3), the period and its

aliases will be well-separated in frequency space from the eccentricity harmonic and its

aliases. In section 4.3.2, we distinguish a peak in the periodogram of HD 75898 b as an

alias that the Robinson et al. (2007) proposed could be an alias, eccentricity harmonic,
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or additional planet.

For certain datasets, orbital eccentricity may help distinguish between a true orbital

period and an alias. Consider a planet with moderate eccentricity e whose host star is

observed with near evenly-spaced sampling as f
s

. Even if the noise is low relative to K,

it may be di�cult to distinguish between the true orbital frequency f and an alias f + f
s

.

However, since the planet’s orbit is eccentric, we will also observe a peak of amplitude

eK at 2f but no such peak at 2(f + f
s

).

In summary, orbital eccentricity contributes to the periodogram in a well-defined

way and, except in rare unfortunate cases that can be easily identified, will not confuse

the distinction between the true orbital period and an alias.

4.2.6 Common Misconceptions

Many problems with aliases are the result of unwarranted assumptions. We describe

some common misconceptions about aliases and how they cause confusion.

1. Assuming that the largest peak in the periodogram is the physical frequency. In

fact, noise may add coherently to an alias or incoherently to the physical frequency,

causing the alias to appear larger. This is what happened for Gl 581 (Udry et al.

2007; Mayor et al. 2009). In multi-planet systems, aliases from several planets

could add to make the highest peak a spurious signal (Foster 1995).

2. Assuming that the frequency that yields the best Keplerian or Newtonian planet

fit is the true frequency. As we saw for Gl 581 d, this is not always the case, due to

noise.
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3. Assuming that aliases occur at frequencies only occur near peaks in the spectral

window function. We have seen authors plot the spectral window function

below the periodogram of the data and assume that if a frequency in the data

periodogram is not near a peak in the spectral window function that it is not

an alias. In fact, aliases occur at |f ± f
s

|, where f
s

is a feature in the spectral

window function. Depending on the relative values of f and f
s

, the alias might be

anywhere in the periodogram. However, periodograms will contain peaks at the

sampling frequencies if there are systemics linked with the observing pattern or if

the peaks are aliases of a very low frequency signal. We emphasize the di↵erence

between these two types of signals: the former is spurious and and the latter has

an extra-solar origin but wrong frequency. We also emphasize the importance

of employing the spectral window function to identify all major aliases, not just

aliases or other spurious frequencies that occur at the sampling frequencies.

4. Assuming that any frequency above 1 is an alias. As we mentioned above, there

is e↵ectively no Nyquist frequency for unevenly sampled data. Many authors cut

o↵ their periodograms at 1 day�1, potentially missing out on or misinterpreting

planets with orbital periods less than a day. We know such planets exist because

they have been detected by transits. Moreover, because long period planets will

have aliases near 1 day, a planet with orbital periods near 1 day is vulnerable to

being discarded as an alias (Kane 2007).

5. Assuming that aliases are so pernicious that one can never identify the correct

period and should thus just pick the most sensible period. In fact, our method

allows one to determine either a correct period or that noise prevents the

identification of the correct period. In the latter case, further observations should
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allow for a definitive determination in the future. It is unwise to judge a priori

which period is the most “sensible” period; as mentioned above, planets have been

found with periods less than a day.

6. Assuming that if an alias frequency is used in a Keplerian or Newtonian planet fit,

a peak corresponding to the true frequency will appear in residuals. This would

only happen if the peak at the alias frequency is much smaller than the peak at the

true frequency, relative to the noise.

7. Assuming that if a frequency is an alias, it will appear in a periodogram of the

data scrambled. Aliases are not caused solely by the spacing observations; they

are convolution of the spectral window function with the periodogram of the data.

Scrambling the data removes the true frequency and thus also removes the alias.

8. Assuming that if you “fold” (i.e., phase) the data with a candidate period, a

coherent pattern will emerge only if the candidate period is the physical period. In

fact, a large alias, by its very definition, will also produce a coherent pattern.

Another method we have seen applied to distinguish between two frequencies, one

of which is an alias, is to generate thousands of mock data sets for each frequency by

combining a sinusoid with simulated noise and then determine how often the alias is

mistaken for the true frequency. This method indeed reveals the probability that the

period is falsely determined, but a proper understanding of the window function leads to

a less computationally intensive method, which we have advocated.

We reemphasize the peaks in the spectral window functions combined with the

true frequencies are what cause aliases. Even if a peak in the periodogram is linked to
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another peak by close to an integer frequency, if that integer frequency is not a peak in

the spectral window function, then the peaks are not aliases of one another and might

represent two distinct planets. Rather than simply noting the possibility that an integer

frequency might link the peaks, the window function reveals it quantitatively.

4.3 Application to Extrasolar Planetary Systems

In the following section, we investigate instances of aliases and ambiguous periods in the

literature.

4.3.1 GJ 876 d

In this section, we apply the approach described above to planetary system GJ 876.

Extensive radial velocity observations spanning almost eight years have revealed three

planets orbiting this M-star. A Jupiter-mass planet b was discovered in 1998 (Marcy et al.

1998), and an interior Jupiter-mass planet c in a 2:1 resonance with b was discovered

three years later (Marcy et al. 2001). After several years of continued observations,

Rivera et al. (2005) discovered an additional 7.5 earth mass planet d with an orbital

period of 1.94 days. This discovery was independently confirmed by Correia et al. (2010)

with new HARPS data. The periodogram of the residuals to the nominal two-planet,

i = 90�, coplanar fit exhibits strong power at frequency 0.52 day�1 but also at f = 0.49

day�1 (P = 2.05 day) and f = 1.52 day�1 (P = 0.66 day) (Fig. 4.9, top panel). Rivera

et al. (2005) performed a series of tests and argued based on the results that the peak at

2.05 days is an alias of the true period at 1.94 days. Our method is able to definitively
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confirm the results of their tests, that the physical period is indeed 1.94 days.

The spectral window function and the periodogram of GJ 876 (actually, of the

residuals from a dynamical fit to planets b and c) are shown in Fig. 4.8 and 4.9,

respectively. Major peaks in the window function occur at 1 sidereal year, 1 sidereal day,

and 1 solar day. The very same features are seen in the example periodogram described

in section 4.2.2. The main peak is tallest 2. The alias has a doublet structure.

Compared to our example idealized data set of Fig. 4.3, 4.4, and 4.5, the yearly

aliases are more pronounced in the data, because the observing season is shorter than

in our idealized dataset. This causes peaks on either side of the true peak (spaced by

1 yr�1 = 0.0027 days�1) which are symmetric in height. Thus we confirm the selection

of P = 1.94 days as the correct period of GJ 876 d (Rivera et al. 2005), and thus we

demonstrate that a signal beyond the traditional Nyquist frequency can be robustly

detected with unevenly sampled data.

4.3.2 HD 75898 b

Robinson et al. (2007) discovered a Jupiter-mass planet orbiting HD 75898 b. They

noticed two peaks in the periodogram, a large one near 400 days and a smaller one near

200 days. They presented three possibilities for the peak near 200 days: an alias of

the 400 day period, an eccentricity harmonic (which we would indeed expect to appear

near P/2 = 200 days), or a second planet. Applying our method, we confirm that the

true period is 400 days, not 200 days; and the peak at 200 days is indeed an alias, not

2We point this out for identification purposes but in a given data set, because of noise, the true

frequency will not necessarily be taller than the alias.

159



CHAPTER 4. RADIAL VELOCITY PLANETS DE-ALIASED:

Figure 4.8.—: Spectral window function of RV Measurements of GJ 876 (Rivera et al.

2005). Major features of the spectral window function are colored: red (at 0 day�1), green

(yearly feature), fuschia (daily features), blue (two day�1), and brown (three day�1). The

corresponding aliases these features cause for several candidate frequencies are indicated

by these colors in Fig. 4.9.
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Figure 4.9.—: Periodograms of GJ 876. The top row is the periodogram of the data.

The second and third rows show the periodograms of sinusoids sampled at the times of

the real data sets as solid lines; they also repeat the periodogram of the data as a gray

background, for comparison. Dials above the peaks show the phase at each peak. Colors

correspond to the feature in the window function that creates the particular alias (see

Fig. 4.8), with red being the candidate frequency, the green sidebands yearly aliases, and

the fuschia, blue, and brown peaks daily, two day�1, and three day�1 aliases respectively.

The second row is the periodogram of an injected sinusoid of period 1.94 days (frequency

0.516 day�1). The third row is the periodogram of an injected sinusoid of period 2.05 days

(frequency 0.487 day�1). The sinusoid of period 1.94 days matches the heights and phases

of the peaks much better, both for the yearly aliases on either side of the main peak in

column 2 and the daily aliases in the other columns. The two candidate frequencies have

di↵erent types of aliases at di↵erent locations, allowing us to break the degeneracy.
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an eccentricity harmonic or second planet. The spectral window function is plotted in

Fig. 4.10; the peak that occurs at 1 yr�1 is the cause of the 200 day alias. In Fig. 4.11,

the periodogram shows that a 400 day period (row 2) produces exactly the aliases we

expect, including the alias at 200 days. Although an eccentricity harmonic would fall

at the same place as this alias, for this system we can rule out a significant eccentricity

harmonic because the peak has the exact phase and amplitude that result from it being

an alias of the 400 day planet; any significant eccentricity harmonic would change the

phase and/or amplitude of this peak. These plots also confirm that the true period is

400 days, not 200 days (row 3).

Figure 4.10.—: Spectral window function of RV Measurements of HD 75898. These

features, convolved with a planet’s orbital frequency, cause the aliases evident in the

periodogram in Fig. 4.11.

4.3.3 HD 73526

Tinney et al. (2003) reported a planet orbiting the G-type star HD 73526 with orbital

period 190.5 days. A later Bayesian analysis by Gregory (2005) revealed three possible

periods for the planet: 190.4 days and (its yearly aliases) 127.88 days and 376.2 days.

Gregory (2005) concluded that the periods 127.88 days and 376.2 days were more

probable. After follow-up observations, Tinney et al. (2006) reported the system actually
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Figure 4.11.—: Periodograms of HD 75898. Dials above the peaks denote their phase.

Row 1 shows the data. The other rows show sinusoids sampled at the times of the real

data sets (solid line and dial), as well as the data again for reference (in gray). In Row 2

the solid line shows, for these time samplings, the periodogram of a sinusoid of frequency

0.00236 day�1. For Row 3, it is for 0.00519 day�1. We confirm that the peak at 0.00519

day�1 is an alias, not a second planet or eccentricity harmonic. In Rows 2 and 3, each

peak results from the convolution of the sinusoidal frequency with the features in the

spectral window function in Fig. 4.10.
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contained two planets, with orbital periods 187.5 and 376.9 days, locked in a 2:1

resonance. The Keplerian fit using these two periods is an excellent match to the data,

with (�2
⌫

)1/2 = 1.09, but the dynamical fit for the system is substantially worse, with

(�2
⌫

)1/2 = 1.57. This implies that, though these periodicities may be strongly present

in the system, the physical model of two planets orbiting with this period may need

modification. Further complicating the interpretation of the system’s periodicities is the

degeneracy between the outer planet’s eccentricity and the inner planet’s mass – or even

its very existence (Anglada-Escudé et al. 2010). The window function for this system and

a periodogram is plotted in Fig. 4.12. The Keplerian fit has eccentricities of 0.4 for both

planets, essentially tuning the phase of the power at 187.5 days (the first eccentricity

harmonic of 376.9 days) to account for both a possible planet there and aliasing from

376.9 days; and introducing power at 93.8 days (the first eccentricity harmonic of 187.5

days and also a yearly alias of 127 days). However the eccentricities for the dynamical

fit (Tinney et al. 2006) are substantially lower, implying that high eccentricities would

cause dynamical interactions inconsistent with the data. It is possible that the periods

127.88 days and 376.2 days are incorrect but that by introducing a large eccentricity

harmonic, the combination of orbital periods, eccentricity harmonics, and aliases match

the periodicities of the data, which may be the result of di↵erent physical orbital

frequencies. This system is complicated because of the degeneracy in frequency between

resonant planets, eccentricity, and aliases. We recommend further observations and

modeling of this system to confirm the orbital periods.
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Figure 4.12.—: Top Panel: Spectral window function of RV measurements of HD 73526.

Bottom Panel: Periodogram of RV measurements of HD 73526. The solid arrows indicate

the locations of a peak’s yearly aliases and the dashed line the location of the eccentricity

harmonic.
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4.3.4 Gl 581 d

HARPS measurements have revealed four planets orbiting the M dwarf Gl 581: a

⇠ 2M� planet e (Mayor et al. 2009), Neptune-mass planet b (Bonfils et al. 2005), and

super-Earth planets c and d (Udry et al. 2007). Planet d was originally reported to

have a period of 83 days, beyond the cold edge of the habitable zone. After further

observations, the HARPS team announced that the true period of planet d is 67 days,

placing it within the habitable zone, and that the original 83 day period was a one year

alias of the true 67 day period. In Fig. 4.13, we plot the spectral window function of

Mayor et al. (2009)’s new data set. Prominent peaks are evident at 1 year, 1 sidereal day,

and 1 solar day. A periodogram of the data, with planets b and c subtracted (subtracting

planet e made no significant di↵erence) and sinusoids of several candidate frequencies are

plotted in Fig. 4.14. In the original data set, the highest peak in the periodogram was

at 0.0122 day�1 (corresponding to a period of 83 days). In the new data set, the highest

peak is at 0.9877 day�1. The second highest peak is at 0.0150 day�1 (67 days), the period

reported by Mayor et al. (2009). The 0.0122 day�1 peak and 0.0150 day�1 are linked by

a feature in the window function at 1 sidereal year. Yet neither produces an alias that

corresponds to the other frequency with a phase and amplitude that match the data

(first column of rows 2 and 3). The highest peak, 0.9877 day�1, is linked to the peaks

at 0.0122 day�1 and 0.0150 days�1 by the window function peaks at 1 solar day and 1

sidereal day respectively; it better matches the phase and amplitude at these frequencies

(row 4, column 1). This dataset has sampling which is too regular (Fig. 4.3b), which

resulted in pernicious daily aliases. However, there are discrepancies between the phase

and amplitude of the aliases predicted by all three candidate frequencies. For example,

at 1.99 days (column 4), the larger alias predicted for 0.9877 day�1 (linked by the large
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1 sidereal day alias) is consistent in amplitude with the data while the other frequencies

(linked by the smaller window function feature at 2 days) predict aliases that are too

small; however, the phase for the 0.9877 day�1 alias is a bit o↵. Although none of the

frequencies is fully consistent, we slightly prefer 0.9877 day�1, followed by 0.0150 day�1

and 0.0122 day�1. However, using the previous data set from Udry et al. (2007), we

favor (in order): 0.0122 day�1, 0.0150 day�1, and 0.9877 day�1. We also fit a four-planet

Keplerian model to both datasets. In the Udry et al. (2007) dataset, a frequency of

0.0122 day�1 for planet d gave the best fit, while in the Mayor et al. (2009) dataset, a

period of 0.9877 day�1 gave the best fit. However, a model with orbital frequency 0.0122

day�1 where e
d

is allowed to float gives a significantly better fit than one with orbital

frequency 0.9877 day�1 where e
d

is fixed at zero (which would likely be attained by tidal

dissipation). Because the period of planet d remains ambiguous, we recommend that

future observations take place with the star at a greater air mass – instead of only when

the star is crossing the meridian – in order to reduce the amplitude of the aliases and

allow us to definitively distinguish between these three candidate periods.

Figure 4.13.—: Spectral window function of Gl 581. These features, convolved with a

planet’s orbital frequency, cause the aliases evident in the periodogram in Fig. 4.14.
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Figure 4.14.—: Periodograms of Gl 581 for planet d (planets b and c subtracted have been

removed from the data set and planet e has been ignored; we obtain consistent results if

we also remove planet e). Dials above the peaks denote their phase. Row 1 shows the

data. The other rows show sinusoids sampled at the times of the real data sets (solid

line and dial), as well as the data again for reference (in gray). In Row 2 the solid line

shows, for these time samplings, the periodogram of a sinusoid of frequency 0.0122 day�1.

For Row 3, it is for 0.0150 day�1. For Row 4, 0.9877 day�1. In Rows 2-4, each peak

results from the convolution of the sinusoidal frequency with the features in the spectral

window function in Fig. 4.13. Note that the phases and amplitudes of 0.0122 day�1 and

0.0150 day�1 are not consistent with the aliases we would expect. The period remains

ambiguous, but we favor 0.9877 day�1 based on this data set.
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4.3.5 HD 156668 b

Howard et al. (2011) reported a 4 M� planet orbiting HD 156668 b with period 4.6455

days (a frequency of 0.2153 day�1). However, they considered that the correct period

might be 1.2699 days (a frequency of 0.7875 day�1), and our analysis confirms that as

the correct period, as follows. The window function for this system is plotted in Fig. 4.15

and periodograms of the data and sinusoids at two candidate frequencies in Fig. 4.16.

Note that large peaks in the window function occur at 1 sidereal and 1 synodic day

while smaller peaks occur near 2 days (Fig. 4.15). For a true frequency of 0.2153 day�1

(second row), we would expect two pairs of large peaks due to sidereal and solar aliases

(second row, second and third column) and a smaller pair of peaks for the ⇠2 day�1

aliases (second row, fourth column). On the other hand, for a true frequency of 0.7875

day�1 (third row), we would expect two pairs of large peaks due to sidereal and solar

aliases (third row, first and fourth column) and a smaller pair of peaks for the ⇠ 2 day�1

aliases (third row, third column). The phase and amplitude of these aliases predicted

for 0.7875 day�1 (row 3) are thus more consistent with the data (row 1). Therefore we

conclude that the planet’s true period is 1.2699 days and that the peak at period 4.6455

days identified by Howard et al. (2011) is an alias. The Keplerian orbital elements are

reported in Table 4.1, along with the predicted transit window. The eccentricity was

held to zero, as expected from tidal dissipation, following Howard et al. (2011). Howard

et al. (2011) “filtered” the data by simultaneously fitting a two-planet model and a linear

trend. They state that the ”second planet” is a form of high-pass filter, not necessarily

an actual planet. We do not fit a linear trend or additional planets in our reported fit

and do not subtract them out in Fig. 4.16. However, we have confirmed that our results

hold if we do.
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Figure 4.15.—: Spectral window function of RV measurements of HD 156668. Major

features of the spectral window function are colored: red (at 0 day�1), green (yearly

feature), fuschia (daily features), and blue (two day�1). The corresponding aliases these

features cause for several candidate frequencies are indicated by these colors in 4.16.

Table 4.1. New parameters for HD 156668,eb = 0.a

K M sin i P a e ! � V

ms�1 MEarth days AU deg deg ms�1

b 2.2(3) 3.1(4) 1.26984(7) 0.0211(2) 0.000(0) 0.(0) 136.(19)

�0.4(2)

aThe following gravitational constants were used: GM� = 0.0002959122082856, ratio of the sun to Earth = 332945.51. The mass of the

star was assumed to be 0.77 solar masses. Formal errors from the Levenberg-Marquardt algorithm are given in parentheses, referring to the

final digit(s).

Note. — Data are the Keck data presented by Howard et al. (2011). T
epoch

is set to the first data point (JD 2453478.97768). These

parameters predict a transit epoch of T
tr

[JD] = 2453478.82(7) + E ⇥ 1.26984(7).
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Figure 4.16.—: Periodograms of HD 156668. Row 1 shows the data. The other rows

show sinusoids sampled at the times of the real data sets (solid line and dial), as well as

the data again for reference (in gray). Colors correspond to the feature in the window

function that creates the particular alias (see Fig. 4.15), with red being the candidate

frequency, the green sidebands yearly aliases, and the fuschia and blue peaks daily and

two day�1 aliases respectively. In Row 2 the solid line shows, for these time samplings, the

periodogram of a sinusoid of frequency 0.215 day�1. For Row 3, it is for 0.787 day�1, our

favored value. The two candidate frequencies have di↵erent types of aliases at di↵erent

locations, allowing us to break the degeneracy.
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4.3.6 55 Cnc

With five discovered planets (Fischer et al. 2008), more than any other extrasolar

planetary system, 55 Cnc is a rich environment for study. The first planet was discovered

by Butler et al. (1997): this planet b has an orbital period of 14.65 days. Five more

years of observations revealed two additional planets (Marcy et al. 2002): planet c, with

orbital period 44 days, and planet d, with orbital period 5000 days. Measurements

from the Hobby-Eberly Telescope (McArthur et al. 2004) (HET) revealed, on their

own and combined with the Lick measurements by Marcy et al. (2002) and ELODIE

measurements by Naef et al. (2004), the presence of planet e, with a reported orbital

period of 2.8 days. In 2005, in a poster presentation (Wisdom 2005) and an informally

circulated paper 3, Wisdom (hereby referred to as W05) reanalyzed the combined HET,

Lick, and ELODIE measurements, found evidence for a 260 day period planet, and

questioned whether the reported 2.8 day signal might be an alias of planet c. Finally,

Fischer et al. (2008) confirmed the 2.8 day planet e and reported a 260 day planet f

based on a decade of Lick and Keck measurements. They also noted a peak at 460 days

and considered whether this peak was an alias of the 260 day planet.

Because the literature has considered whether they might be aliases and because

their periods are in the range where aliases can be the most confusing, planet e and

planet f warrant additional consideration. We confirmed by our analysis that the period

of f is correct. In the following subsection, we apply our method to planet e and find

that the 2.8 day period is actually an alias, not of planet c but of a true period of 0.74

3Available electronically at

http://groups.csail.mit.edu/mac/users/wisdom/planet.ps
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days: planet e still exists but its period is actually 0.7 days, not 2.8 days.

A New Period for 55 Cnc e

First, let us look at the discovery data for 55 Cnc e. We plot the window function

for the data collected by McArthur et al. (2004) using HET in Fig. 4.17. The data

spans only 190 days and therefore contains no yearly gaps. Therefore, no peak in the

window function occurs at yr�1, and there is no splitting of the daily alias into solar and

sidereal days. We also note that this daily alias has quite a strong value of ⇠ 0.8. The

consequence of that can be seen in Fig. 4.18, the periodogram using only the HET data.

The top panels are the periodogram of the data themselves. The peaks at 0.356 day�1

and 1.358 day�1 are of similar size. In the middle panels, we sample a noiseless sinusoid

with a period, amplitude, and phase matching that of the peak at 0.356 day�1. An

alias results at 1.358 day�1 at approximately the right height and phase, so McArthur

et al. (2004) may have dismissed the latter as an alias, although they did not mention

it explicitly. However, reversing the argument, if we had a noiseless sinusoid with the

period, amplitude, and phase of the peak at 1.358 day�1 (bottom panels), then its alias

nearly matches the peak at 0.356 day�1, within the noise. This is to say, the data of

McArthur et al. (2004) cannot distinguish between the two possible periods.

W05 presented two arguments for why the 2.8 day signal might be an alias. First he

noticed that the 2.8 day period is linked to the 44 day period of planet c by a period of

3 days ( 1
2.8 ⇡

1
3 +

1
44), but noted that there is no reason we would expect an alias to be

caused by a 3 day period. In Fig. 4.17, 4.19, and 4.21 we demonstrate that there is no

peak in the spectral window function at 1
3 day�1 for any of the data sets. Therefore, the
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2.8 day signal cannot be an alias of the 44 day signal.

Second, W05 noticed that in the HET data, one peak occurs at 2.808 day, while in

the combined data set a pair of peaks occurs at 2.7957 days and 2.8175 day, a splitting of

1 year. In fact, this is just the doublet structure described in section 4.2.2. The combined

set spans multiple years, which creates the yr�1 spacing in the doublet structure of the

daily alias, as shown in Fig. 4.19. Therefore we would actually expect to see this doublet

structure in the combined data set but only a single peak at the daily aliases in the HET

data set.

So Wisdom was right to suspect that the 2.8 day signal is an alias. It is not an alias

of the 44 day planet c but of a planet with true period 0.7 days; the alias is a daily alias

(1/2.8 days = 1/0.74 days - 1/days).

With the combined data set, and with new data that has come out with higher

precision from Lick and Keck (Fischer et al. 2008), we can confirm with high confidence

that the 0.74 day period is the correct one. The window functions of these datasets are

shown in Fig. 4.19 and 4.21. In Fig. 4.20 and 4.22 we show the resulting periodograms,

after subtracting the signal of planets b, c, and d with a best-fitting Keplerian model. In

both datasets, the true peak at 1.358 day�1 is very much higher and the other peaks at

various frequencies are fully consistent with being an alias of it. For instance, in both

datasets, doublet structure at the reported frequency shows that it is actually a daily

alias. These peaks are identified for various candidate periods in Tables 4.2 and 4.4

for the combined data set and 4.3 and 4.5 for the Fischer et al. (2008) data set. We

also performed the same analysis on the combined data set of all four instruments and

obtained consistent results. The results are also unambiguous when only the Keck data
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are used.

With this new period for planet e, we fit a 5-planet Keplerian model to the Keck and

Lick data of Fischer et al. (2008), via the Levenberg-Marquardt algorithm implemented

in IDL by Markwardt (2009). Following Fischer et al. (2008), jitter values of 1.5 m/s and

3.0 m/s were adopted for Keck and Lick data, respectively, such that the errors became

�2
i

= �2
quoted,i + �2

jitter,i. The resulting model fits the data much better than previous

results, with the same number of free parameters. Compare Table 4.6 and Table 4.7. The

rms is reduced from 6.45 ms�1 to 5.91 ms�1 (10%) and the (�2
⌫

)1/2 is reduced from 1.666

to 1.411 (15%). We conclude that we have determined the correct period of 55 Cnc e.

We use an epoch chosen as the weighted average of the observation times. The

weighting was 1/�2
i

; this weighting minimizes the correlation between the parameters P

and � for each planet. We have confirmed that the rms and (�2
⌫

)1/2 we achieve using a

weighted epoch, as opposed to using the first data point as the epoch, is identical in the

Keplerian case.

With such a small period, we would expect planet e to circularize via tidal

dissipation. Of course, in the presence of perturbations of the other planets, this

expectation will not be completely fulfilled. Nevertheless, we also repeated the fit with

the eccentricity of planet e fixed at zero (Table 4.8).

Fitting a self-consistent Newtonian 5-planet model, Fischer et al. (2008) obtained

a (�2
⌫

)1/2 of 2.012 and rms of 7.712 ms�1, significantly worse than their best Keplerian

five-planet model. We performed our own self-consistent Newtonian 5-planet fit using the

modified Wisdom-Holman symplectic integrator (Wisdom & Holman 1991) in SWIFT

(Levison & Duncan 1994). Using our newly defined epoch, we obtain (�2
⌫

)1/2 for both
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candidate periods of planet e that are statistically indistinguishable from their Keplerian

equivalents (Table 4.9 and Table 4.10). We speculate that the new epoch starts the

Levenberg-Marquardt fit closer to the global minimum and strongly recommend choosing

the epoch as the weighted average of the observation times, as we have done, instead of

the first observation. We have only begun to explore the dynamics of this system and

future work adjusting the line of sight inclination of the system and relative inclinations

of the planets may result in improved fits and better characterization of the dynamics of

this system.

Figure 4.17.—: Spectral window function of 55 Cnc for HET data set (McArthur et al.

2004). These features, convolved with a planet’s orbital frequency, cause the aliases

evident in the periodogram in Fig. 4.18.
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Figure 4.18.—: Periodograms of 55 Cnc for planet e only, using only the data from HET

(McArthur et al. 2004). The top row is the periodogram of the data themselves. The other

rows show the periodograms of sinusoids sampled at the times of the real data sets as solid

lines; they also repeat the periodogram of the data as a gray background, for comparison.

Dials above the peaks show the phase at each peak. The second row has a sinusoid of the

reported frequency. The third row has a sinusoid of the new frequency. In Rows 2 and

3, each peak results from the convolution of the sinusoidal frequency with the features in

the spectral window function in Fig. 4.17. In this data set, due to noise, neither noiseless

candidate frequency matches the data. Note the large phase discrepancies between the

reported frequency and the data. Based on this data set alone, the planet’s orbital period

cannot be unambiguously determined.
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Figure 4.19.—: Spectral window function of 55 Cnc for HET data set combined with

ELODIE (Naef et al. 2004) and Lick (Marcy et al. 2002). Major features of the spectral

window function are colored: red (at 0 day�1), green (yearly feature), fuschia (daily

features), and blue (two day�1). The corresponding aliases these features cause for several

candidate frequencies are indicated by these colors in 4.20.

Table 4.2. 55 Cnc Combined Data Set: expectations from the window function.

Candidate Window Function Feature

frequency, f 0.0028-f 0.0028+f 1.0000-f 1.0027-f 1.0000+f 1.0027+f 2.0028-f 2.0028+f

0.3550 0.3522 0.3578 0.6450 0.6477 1.3550 1.3577 – –

0.3577 0.3549 0.3605 0.6423 0.6450 1.3577 1.3604 – 2.3604

1.3577 1.3549 1.3605 0.3550 0.3577 2.3577 2.3604 – –

Note. — Along the top row are peaks in the window function at frequencies fs (Fig. 4.19). Each row refers to a candidate frequency f ; rows

1-3 in this table match to rows 2-4 in Fig. 4.20, respectively. The cells are frequency values |f ± fs| expected for peaks in the periodogram.

If the predicted alias is consistent with a peak in the data in both amplitude and phase, the cell is bolded. A non-emphasized cell indicates a

large discrepancy in amplitude or phase. For dashed cells, no comparison was done. Units are day�1. The frequency of f = 1.3577 day�1 is

overwhelmingly the best match to the data.
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Figure 4.20.—: Periodogram of 55 Cnc for planet e only. Dials above the peaks denote

their phase. Colors correspond to the feature in the window function that creates the

particular alias (see Fig. 4.19), with red being the candidate frequency, the green sidebands

yearly aliases, and the fuschia and blue peaks daily and two day�1 aliases respectively.

The top row shows the data (HET+ELODIE+Lick). In Row 2 the solid lines show, for

these time samplings, the periodogram of a sinusoid of frequency 0.3550 day�1. For Row

3, it is for 0.3577 day�1. For Row 4, it is for 1.3577 day�1, our now-favored value. The

three candidate frequencies have di↵erent types of aliases at di↵erent locations, allowing

us to break the degeneracy.
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Figure 4.21.—: Spectral Window Functions of 55 Cnc for combined Lick and Keck data

set (Fischer et al. 2008). Major features of the spectral window function are colored: red

(at 0 day�1), green (yearly feature), fuschia (daily features), and blue (two day�1). The

corresponding aliases these features cause for several candidate frequencies are indicated

by these colors in 4.22.

Table 4.3. 55 Cnc Fischer et al. (2008) Data Set: expectations from the window

function.

Candidate Window Function Feature

frequency, f 0.0028-f 0.0028+f 1.0000-f 1.0027-f 1.0000+f 1.0027+f 2.0027-f 2.0055-f 2.0027+f 2.0055+f

0.3550 0.3522 0.3578 0.6450 0.6477 1.3550 1.3577 – – 2.3577 2.3605

0.3577 0.3549 0.3605 0.6423 0.6450 1.3577 1.3604 – – 2.3604 2.3632

1.3577 1.3542 1.3605 0.3550 0.3577 2.3577 2.3604 0. 6450 0.6478 – –

Note. — The format is the same as Table 4.2. Features in the window function are from Fig. 4.21. The candidate frequencies in rows 1-3

in this table match to rows 2-4 in Fig. 4.22, respectively.
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Figure 4.22.—: Periodogram of 55 Cnc for planet e only. Dials above the peaks denote

their phase. Colors correspond to the feature in the window function that creates the par-

ticular alias (see Fig. 4.21), with red being the candidate frequency, the green sidebands

yearly aliases, and the fuschia and blue peaks daily and two day�1 aliases respectively.

Row 1 shows the data (Lick+Keck). In Row 2 the solid lines show, for these time sam-

plings, the periodogram of a sinusoid of frequency 0.3550 day�1. For Row 3, it is for 0.3577

day�1. For Row 4, it is for 1.3577 day�1, our now-favored value. The three candidate

frequencies have di↵erent types of aliases at di↵erent locations, allowing us to break the

degeneracy.
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Table 4.4. 55 Cnc Combined Data Set: features in the data periodogram.

Candidate Major Data Feature

frequency, f 0.3550 0.3577 0.6450 1.3577 2.3577 2.3604

0.3550 f f + 0.0028 1.0000-f 1.0027+f 2.0027+f

0.3577 f-0.0028 f 1.0027-f 1.0000+f 2.0027+f

1.3577 f-1.0027 f -1 .0000 2.0027-f f 1.0000+f 1.0027+f

Note. — The top row indicates a major peak seen in the data near the frequencies where aliases are predicted. Each row refers to a candidate

frequency; rows 1-3 in this table match to rows 2-4 in Fig. 4.19, respectively. If, based on examining the plots, the frequency creates an alias

that matches that peak in the data in both amplitude and phase, the cell is bolded. A non-emphasized cell indicates a large discrepancy in

amplitude or phase. A blank cell indicates that the candidate frequency does not cause an alias at that frequency. Units are day�1. This

table shows that a frequency of 1.3577 day�1 is best able to account for the peaks in the data.

Table 4.5. 55 Cnc Fischer et al. (2008) Data Set: features in the data periodogram.

Candidate Major Data Feature

frequency, f 0.3550 0.3577 0.6450 0.6478 1.3577 2.3577 2.3604

0.3550 f f + 0.0028 1.0000-f 1.0027-f 1.0027+f 2.0027+f 2.0054+f

0.3577 f-0.0028 f 1.0027-f 1.0000+f 2.0027+f

1.3577 f-1.0027 f -1 .0000 2.0027-f 2.0054-f f 1.0000+f 1.0027+f

Note. — The format is the same as Table 4.4. Candidate frequencies in rows 1-3 in this table match to rows 5-8 in Fig. 4.21, respectively.
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Table 4.6. 55 Cnc Keplerian radial velocity fit, P
e

= 2.8 days.a

K M sin i P a e ! � VL VK �2 N (�2

⌫)1/2

ms�1 MJup days AU deg deg ms�1 ms�1

e 5.2(2) 0.0346(16) 2.81705(5) 0.0382(3) 0.066(48) 238.(41) 86(14)

b 71.3(3) 0.824(3) 14.65164(11) 0.1148(8) 0.014(4) 135.(15) 327.4(10)

c 10.0(2) 0.167(4) 44.349(7) 0.2402(17) 0.09(3) 66.(17) 312(7)

f 5.3(3) 0.148(9) 259.7(5) 0.780(6) 0.40(5) 182.(9) 308(14)

d 46.9(4) 3.84(4) 5191.(53) 5.76(6) 0.015(9) 223.(33) 201(4)

6.8(6) 5.9(7) 813.2 27 1.666

aThe following gravitational constants were used: GM� = 0.0002959122082856, ratio of the sun to Jupiter = 1047.35. The mass of the star

was assumed to be 0.94 solar masses. Formal errors from the Levenberg-Marquardt algorithm are given in parentheses, referring to the final

digit(s). Masses and semi-major axes are in Jacobian coordinates, as recommended by Lee & Peale (2003).

Note. — Data are the Lick and Keck data presented by Fischer et al. (2008). T
epoch

is set to the weighted mean of the observation times

(JD 2453094.762), which should minimize the correlation in the errors between P and � for each planet.

Table 4.7. 55 Cnc Keplerian radial velocity fit, P
e

= 0.74 days.a

K M sin i P a e ! � VL VK �2 N (�2

⌫)1/2

ms�1 MJup days AU deg deg ms�1 ms�1

e 6.2(2) 0.0261(10) 0.736539(3) 0.01564(11) 0.17(4) 177.(13) 126(2)

b 71.4(3) 0.826(3) 14.65160(11) 0.1148(8) 0.014(4) 146.(15) 139.7(2)

c 10.2(2) 0.171(4) 44.342(7) 0.2402(17) 0.05(3) 95.(28) 90.(2)

f 5.1(3) 0.150(8) 259.8(5) 0.781(6) 0.25(6) 180.(12) 36(4)

d 46.6(4) 3.83(4) 5205.(54) 5.77(6) 0.024(10) 192.(16) 222.7(8)

6.7(5) 6.5(6) 583.1 27 1.411

Note. — Data are the Lick and Keck data presented by Fischer et al. (2008). T
epoch

is set to the weighted mean of the observation times

(JD 2453094.762), which should minimize the correlation in the errors between P and � for each planet. For planet e, these parameters predict

a transit epoch of T
tr

[JD] = 2453094.728(10) + E ⇥ 0.736539(3).
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Table 4.8. 55 Cnc Keplerian radial velocity fit, Pe = 0.74 days,ee = 0.a

K M sin i P a e ! � VL VK �2 N (�2

⌫)1/2

ms�1 MJup days AU deg deg ms�1 ms�1

e 6.1(2) 0.0258(10) 0.736540(3) 0.01564(11) 0.000(0) 0.(0) 126(2)

b 71.4(3) 0.825(3) 14.65158(11) 0.1148(8) 0.012(4) 147.(17) 139.7(2)

c 10.3(2) 0.172(4) 44.341(7) 0.2402(17) 0.06(3) 99.(23) 90.5(15)

f 5.0(3) 0.150(8) 260.0(5) 0.781(6) 0.13(6) 180.(21) 37(3)

d 46.7(4) 3.83(4) 5214.(54) 5.77(6) 0.029(10) 189.(14) 222.6(8)

6.8(5) 6.3(6) 598.1 27 1.429

Note. — Data are the Lick and Keck data presented by Fischer et al. (2008). T
epoch

[JD] = 2453094.762 Because tidal dissipation has

most likely nearly circularized planet the orbit or planet e, here e
e

is held at zero. For planet e, these parameters predict a transit epoch of

T
tr

[JD] = 2453094.688(4) + E ⇥ 0.736540(3).

Table 4.9. 55 Cnc dynamical radial velocity fit, P
e

= 2.8 days.a

K M sin i P a e ! � VL VK �2 N (�2

⌫)1/2

ms�1 MJup days AU deg deg ms�1 ms�1

e 5.1(2) 0.0339(16) 2.81703(17) 0.0382(3) 0.09(5) 178(4) 118(4)

b 71.4(3) 0.825(3) 14.6507(4) 0.1148(8) 0.011(3) 143(19) 139.7(4)

c 10.1(2) 0.169(4) 44.375(10) 0.2403(17) 0.02(2) 359.9(3) 88(2)

f 5.8(3) 0.158(8)) 259.8(4) 0.781(6) 0.42(4) 178(3) 33.(3)

d 47.1(6) 3.84(4) 5165.(43) 5.74(4) 0.012(6) 279(22) 224.0(6)

6.3(5) 5.9(6) 830.1 27 1.683

Note. — Data are the Lick and Keck data presented by Fischer et al. (2008). T
epoch

is set to the weighted mean of the observation times

(JD 2453094.762), which should minimize the correlation in the errors between P and � for each planet. Masses and semi-major axes are in

Jacobian coordinates, as recommended by Lee & Peale (2003).
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Table 4.10. 55 Cnc dynamical radial velocity fit, P
e

= 0.74 days.a

K M sin i P a e ! � VL VK �2 N (�2

⌫)1/2

ms�1 MJup days AU deg deg ms�1 ms�1

e 6.2(2) 0.0260(10) 0.736537(13) 0.01560(11) 0.17(4) 181(2) 125.(6)

b 71.4(3) 0.825(3) 14.6507(4) 0.1148(8) 0.010(3) 139(17) 139.6(3)

c 10.2(2) 0.171(4) 44.364(7) 0.2403(17) 0.005(3) 252.(41) 90.(2)

f 5.4(3) 0.155(8) 259.8(5) 0.781(6) 0.30(5) 180.(10)) 35.(3)

d 46.8(6) 3.82(4) 5169.(53) 5.74(4) 0.014(9) 186(8) 223.2(7)

6.3(5) 6.3(6) 591.7 27 1.421

Note. — Data are the Lick and Keck data presented by Fischer et al. (2008). T
epoch

is set to the weighted mean of the observation times

(JD 2453094.762), which should minimize the correlation in the errors between P and � for each planet.
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4.4 Discussion

4.4.1 Summary of Approach

Aliases result from a convolution between a true physical frequency and the spectral

window function, which is created by gaps in the data set due to observational

constraints. Our method harnesses features in the window function to distinguish aliases

from true frequencies. For a given frequency f and window function peak f
s

, aliases will

occur at |f ± f
s

|, where f
s

is a feature in the window function. In the ranges where we

expect major aliases to occur, we compare the phase and amplitude of aliases predicted

by a sinusoid of the candidate frequency sampled to the data, with other known planets

subtracted o↵ beforehand. We judge whether the “pattern” of the predicted aliases

matches the data: for example, yearly aliases appear as sidebands of the candidate

frequency while daily aliases often appear as a doublet caused by the sidereal and solar

day. If all the aliases match in amplitude, phase, and pattern, we can be confident

that we have found the true orbital period. If there are discrepancies and the aliases

of none of the candidate frequencies match the data, we know that noise prevents

us from definitively determining the true period and that follow-up observations are

necessary. Misunderstandings about aliases have previously led to incorrect identification

of planet’s orbital periods, a key parameter in defining the planet’s properties, as well

as the dynamical behavior of the planets in the system. We have corrected common

misconceptions, including that aliases always appear near the frequency of peaks in the

window function, that any frequency above 1 cycle/day is necessarily an alias, and that

aliases will appear if the data are scrambled or if the true frequency is subtracted out.
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4.4.2 Summary of Results

For two systems, we confirmed previous distinctions between alias and true frequency.

The period of GJ 876 d is indeed 1.94 days, not 2.05 days. The period of HD 75898 b is

indeed 400 days and the periodogram peak at 200 days is indeed an alias, not a second

planet or eccentricity harmonic, the alternative explanations proposed by Robinson et al.

(2007).

For two other systems, we determined that the data are too noisy to allow us to

definitely distinguish between alias or true frequency. According to our analysis, it

remains unclear whether the period of Gl 581 d is 67 days or 83 days; even a period of 1

day cannot be ruled out. It also remains unclear whether HD 73526 contains two planets

with orbital periods 187.5 and 376.9 days, locked in a 2:1 resonance, or whether one of

the periods is actually 127 days. Further observations of these systems are required,

preferably at times that reduce the aliasing.

For a final pair of systems, we determined the reported orbital period was incorrect,

due to mistaking a daily alias for the true frequency. According to our analysis, the

orbital period of HD 156668 b is actually 1.2699 days, not 4.6455 days. The orbital

period 55 Cnc e is 0.7365 days, not 2.817 days. The standard, general-purpose software

SigSpec mentioned in the introduction (Reegen 2007, 2011) agrees with our orbital

period distinctions (we used the parameters: depth=2, par = 0.2 and par = 0.5, and a

frequency upper limit of 2 day�1).
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4.4.3 Implications for 55 Cnc e

What are the implications of an updated period for the innermost planet of 55 Cnc?

First, it dramatically lowers the e↵ective noise when determining the parameters of

the planetary system. Fischer et al. (2008) reported independent Keplerian fits with rms

of 6.74 m/s, and a self-consistent dynamical fit with rms of 7.712 m/s. Our Keplerian fit

achieves rms of 5.91 m/s, and our self-consistent coplanar dynamical fit achieves rms of

5.96 m/s. By adjusting the inclination of the system relative to our line-of-sight and the

planets’ mutual inclinations, an even better self-consistent might be possible. Therefore

perturbations might be directly detected via a lower rms when interactions among the

planets are included, and the architecture of the system further constrained. We have

just begun exploring this avenue.

Second, 55 Cnc e itself can now be searched for transits at the new period, with

high a priori probability of ⇠ 25%. Given the period and phase of the radial-velocity

signal, we report predicted transit epochs in Tables 4.7 and 4.8. The predictions di↵er

because the latter assumes zero eccentricity, and the formally significant value of ee

matters. Nevertheless, folding the systematic uncertainty related to eccentricity into the

predicted transit time, we still can predict transit times good to �
T

' 1 hour in 2010.

This search can be accomplished simply by folding the photometric data reported by

Fischer et al. (2008) at the new ephemeris. Gregory Henry (priv. comm.) has made

such a search, finds no positive signal, and constrains putative transits in the period

range 0.7 � 0.8 days to a depth < 0.7 mmag, or > 2.6 R�. Earth-composition models

of super-Earths predict a radius ⇠ 1.9 R� (Valencia et al. 2006), so a search at higher

precision is certainly worthwhile.
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Third, even apart from a transit, this super-Earth must be very hot, as it is very

close-in to a solar-type star. Following Léger et al. (2009), we find that the substellar

point could be up to 2750 K, if the insolation is absorbed then reradiated locally. We

would naively expect that the enormous radiation this planet takes in would evaporate

any atmosphere (e.g., Jackson et al. 2010). Moreover, the host star is also very bright as

seen from Earth. Therefore it might be useful to look for its phase curve with Spitzer, to

detect or rule out an atmosphere (Seager & Deming 2009). Another attractive possibility

is probing a magma ocean, which may exist because of the irradiation (Gelman et al.

2009; Gaidos et al. 2010), but this may require transit measurements.

Fourth, the presence of the other 4 planets surely injects a non-zero eccentricity into

this tidally-dissipating planet. Its expected value remains to be calculated, but will likely

be on the order of 10�4. This forced eccentricity could stimulate considerable geologic

activity — it might be a “super-Io” (Barnes et al. 2010).

4.4.4 Observational Strategies for Mitigating Aliases

Can aliases be prevented or mitigated by the choice of observation times? Constraints on

when the star is visible at night necessarily result in gaps in the data that cause aliases.

However, we encourage observers to engage in “window carpentry” (Scargle 1982) by

observing the star during the greatest span of the sidereal and solar day possible, not

just when the star transits the meridian. Unfortunately, observing stars as they rise and

set poses a challenge for observers, who minimize slew time4 and thus maximize the

4If the slew time exceeds the read-out time, fewer observations may be gathered per night. However,

the wise spacing of observation times can more than make up for this through disambiguation of alias
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number of stars observed per night by observing at the meridian for the majority of the

night. This observing strategy (Fig. 4.3b) results in strong daily and yearly aliases (ex.

Fig. 4.13). Another strategy is to start in the west and gradually move east over the

course of the night (Fig. 4.3c), observing as much of the sky as possible. This strategy

reduces yearly aliases but sidereal daily aliases remain strong (ex. Fig. 4.15 and 4.21). To

reduce sidereal daily aliases, we recommend the following procedure. Start the telescope

somewhere west of the meridian (randomized from night to night) and move east to cover

half the sky over the course of half the night. Then make one large slew to the place the

telescope started and re-observe the same portion of the sky. Some stars will gain the

advantage of being observed twice in one night. Moreover, when the data are folded at

the mean sampling period, they still show some variety in phase of observation, which

is needed to reduce window function peaks and de-alias candidate periods. However,

another consideration is that at higher air mass, both the extinction is greater and

the seeing is worse. The increased atmospheric attenuation means a longer integration

time is required, reducing the number of stars that can be observed, while the seeing

increases the measurement errors. For a particular set of stars, observers can work out a

slew pattern that will maximize the number of stars observed while minimizing aliasing.

Saunders et al. (2006) present a clever method for determining the optimal sampling

when period searching using satellite telescopes or a longitude-distributed network

that can observe continuously. Unfortunately this strategy is impractical to implement

using a single telescope on the ground. Ford (2008) presents useful adaptive scheduling

algorithms for observing multiple targets that can be parametrized to reduce aliasing.

frequencies using fewer data points.

190



CHAPTER 4. RADIAL VELOCITY PLANETS DE-ALIASED:

We suggest taking advantage of any unusual time windows: for example, the rare

granted dark time or time at the beginning or end of another observer’s night. Observers

focusing on a large group of stars can determine which star would most benefit from this

unusual time by calculating the window function with the new observation times added

or, in the case of a planet with two candidate periods, determining for which system the

observation times would best distinguish between two candidate orbits. We also suggest

that it would be beneficial to observe stars using telescopes in two or more locations at

di↵erent latitude and longitudes (ex. Fig. 4.19).

At the stage of data analysis, we encourage the use of our method to distinguish

true frequencies from aliases, crucial for the correct characterization of the planet. As

astronomers push to observing lower mass planets and modeling planets near the noise

limit, they cannot assume that the highest peak in the periodogram – or even the best

Keplerian fit – corresponds to the true orbital period. Only by harnessing features in

the window function to compare the amplitude, phase, and pattern of an assortment of

predicted aliases to the data can we distinguish the planet’s true orbital frequency – or

determine that more observations are needed.

4.4.5 Conclusion

Knowing a planet’s correct orbital period is essential for accurately characterizing it. By

Kepler’s law, the planet’s distance from the star increases as its orbital period increases.

Therefore the planet’s orbital period sets its temperature: too hot, too cold, or just right

for life. The planet’s inferred mass, as calculated from the radial velocity amplitude,

increases as the period decreases – a closer planet needs less mass to exert a given force
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on the star – so a di↵erence in orbital period may be the di↵erence between an Earth

analog and a super-Earth. In the case of multi-planet systems, the spacing of the planets

determines their mutual interactions: therefore a di↵erence in orbital period may be

the di↵erence between a precariously placed planet and one locked deep in a stabilizing

resonance. The signal of a planet’s eccentricity is contained in the harmonics of the

planet’s orbital period: therefore a di↵erence in orbital period may be the di↵erence

between a planet that formed in situ and a planet violently scattered, a calm planet

that has long been tidally circularized or a planet erupting with volcanoes due to tidal

dissipation. But periods that correspond to totally di↵erent worlds are only subtly

distinguishable in the radial velocity signal. Such are the machinations of aliases.

Through our method, astronomers can confirm a planet’s orbital period or determine

that noise prevents a definitive distinction. In the latter case, follow-up observations

taken according to the suggestions above should eventually allow the true period to be

determined. Ironically, Earth’s own rotational and orbital period make it challenging to

uncover the orbital period of other worlds, particularly Earth analogs. But by better

understanding of digital signal processing, we can mitigate the deleterious e↵ects of the

inevitable sunrise and starset.
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Chapter 5

The Photoeccentric E↵ect and

Proto-hot Jupiters. I. Measuring

Photometric Eccentricities of

Individual Transiting Planets

R. I. Dawson & J. A. Johnson The Astronomical Journal, Vol. 756, id. 122, 2012

Abstract

Exoplanet orbital eccentricities o↵er valuable clues about the history of planetary

systems. Eccentric, Jupiter-sized planets are particularly interesting: they may link

the “cold” Jupiters beyond the ice line to close-in hot Jupiters, which are unlikely to
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have formed in situ. To date, eccentricities of individual transiting planets primarily

come from radial velocity measurements. Kepler has discovered hundreds of transiting

Jupiters spanning a range of periods, but the faintness of the host stars precludes radial

velocity follow-up of most. Here we demonstrate a Bayesian method of measuring an

individual planet’s eccentricity solely from its transit light curve using prior knowledge

of its host star’s density. We show that eccentric Jupiters are readily identified by their

short ingress/egress/total transit durations – part of the “photoeccentric” light curve

signature of a planet’s eccentricity — even with long-cadence Kepler photometry and

loosely-constrained stellar parameters. A Markov Chain Monte Carlo exploration of

parameter posteriors naturally marginalizes over the periapse angle and automatically

accounts for the transit probability. To demonstrate, we use three published transit light

curves of HD 17156 b to measure an eccentricity of e = 0.71+0.16
�0.09, in good agreement with

the discovery value e = 0.67±0.08 based on 33 radial-velocity measurements. We present

two additional tests using actual Kepler data. In each case the technique proves to be

a viable method of measuring exoplanet eccentricities and their confidence intervals.

Finally, we argue that this method is the most e�cient, e↵ective means of identifying the

extremely eccentric, proto hot Jupiters predicted by Socrates et al. (2012).

5.1 Introduction

Many exoplanets have highly eccentric orbits, a trend that has been interpreted as a

signature of the dynamical processes that shape the architectures of planetary systems

(e.g. Jurić & Tremaine 2008; Ford & Rasio 2008; Nagasawa & Ida 2011). Giant planets

on eccentric orbits are of particular interest because they may be relics of the same
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processes that created the enigmatic class of planets known as hot Jupiters: planets

on very short period (P < 10 days) orbits that, unlike smaller planets (e.g. Hansen &

Murray 2012), could not have formed in situ. Hot Jupiters may have smoothly migrated

inward through the disk from which they formed (e.g. Goldreich & Tremaine 1980; Ward

1997; Alibert et al. 2005; Ida & Lin 2008; Bromley & Kenyon 2011). Alternatively, the

typical hot Jupiter may have been perturbed by another body onto an eccentric orbit

(see Naoz et al. 2012), with a star-skirting periapse that became the parking spot for

the planet as its orbit circularized through tidal dissipation, initiated by one of several

perturbation mechanisms (e.g. Wu & Murray 2003; Ford & Rasio 2006; Wu & Lithwick

2011).

Socrates et al. (2012b) (hereafter S12) refer to this process as “high eccentricity

migration” (HEM). If HEM were responsible for hot Jupiters, at any given time we

would observe hot Jupiters that have undergone full tidal circularization, failed hot

Jupiters that have tidal timescales too long to circularize over the star’s lifetime, and

proto hot Jupiters that are caught in the process of tidal circularization. S12 predicted

that the Kepler Mission should detect several “super-eccentric” proto hot Jupiters with

eccentricities in excess of 0.9. This prediction was tested by Dong et al. (2013) on a

sample of eclipsing binaries in the Kepler field: in an incomplete search, they found 14

long-period, highly eccentric binaries and expect to eventually find a total of 100.

As a test of planetary architecture theories, we are devoting a series papers to

measuring the individual eccentricities of the Kepler Jupiters to either identify or rule

out the super-eccentric proto hot Jupiters predicted by S12. In this first paper, we

describe and demonstrate our technique for measuring individual eccentricities from

transit light curves. Measuring the eccentricity of a Jupiter-sized planet is also key to
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understanding its tidal history (e.g. Jackson et al. 2008a; Hansen 2010) and tidal heating

(e.g. Mardling 2007; Jackson et al. 2008b), climate variations (e.g. Kataria et al. 2011),

and the e↵ect of the variation in insolation on the habitability (e.g. Spiegel et al. 2010;

Dressing et al. 2010) of possible orbiting rocky exomoons detectable by Kepler (e.g.

Kipping et al. 2009).

To date, the measurements of eccentricities of individual transiting planets have been

made through radial velocity follow-up, except when the planet exhibits transit timing

variations (e.g. Nesvorný et al. 2012). However, a transit light curve is significantly

a↵ected by a planet’s eccentricity, particularly if the photometry is of high quality:

we refer to the signature of a planet’s eccentricity as the “photoeccentric” e↵ect. One

aspect is the asymmetry between ingress and egress shapes (Burke et al. 2007; Kipping

2008). The eccentricity also a↵ects the timing, duration, and existence of secondary

eclipses (Kane & von Braun 2009; Dong et al. 2013). The most detectable aspect of the

photoeccentric e↵ect in Kepler photometry for long-period, planet-sized companions is

the transit event’s duration at a given orbital period P , which is the focus of this work.

Depending on the orientation of the planet’s argument of periapse (!), the planet

moves faster or slower during its transit than if it were on a circular orbit with the same

orbital period (Barnes 2007, Burke 2008, Ford et al. 2008, hereafter FQV08; Moorhead

et al. 2011). If the transit ingress and egress durations can be constrained, the duration

aspect of the photoeccentric e↵ect can be distinguished from the e↵ect of the planet’s

impact parameter (b), because although b > 0 shortens the full transit duration (T23,

during which the full disk of the planet is inside the disk of the star, i.e. from second to

third contact), it lengthens the ingress/egress duration. Therefore, with prior knowledge

or assumptions of the stellar parameters, combined with measurements from the light
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curve of the planet’s period and size (R
P

/R
?

), one can identify highly eccentric planets

as those moving at speeds inconsistent with a circular orbit as they pass in front of their

stars (see also §3 of Barnes 2007, §3.1 of FQV08).

Barnes (2007) presented the first comprehensive description of the e↵ects of orbital

eccentricity on a transit light curve, including that a short transit duration corresponds

to a minimum eccentricity, contingent on the measurement of b and of the host star’s

density. Burke (2008) discussed the e↵ect of orbital eccentricity on transit detection and

on the inferred distribution of planetary eccentricities. FQV08 laid out the framework

for using photometry to measure both the distribution of exoplanet eccentricities and,

for high signal-to-noise transits of stars with known parameters, the eccentricities of

individual planets. They derived expressions linking the orbital eccentricity to the

transit duration and presented predicted posterior distributions of eccentricity and ! for

a given ratio of: 1) the measured total transit duration (i.e. from first to fourth contact,

including ingress and egress) T14 to 2) the T14 expected for a planet on a circular orbit

with the same b, stellar density ⇢
?

, and P . Then they showed how the distribution

of planetary transit durations reveals the underlying eccentricity distribution. FQV08

focused on the possibility of measuring the eccentricity distribution of terrestrial planets,

which has implications for habitability. Here we will show that the technique they

describe for measuring individual planet eccentricities is particularly well-suited for

Jupiter-sized planets.

The work of FQV08 was the basis for several recent analyses of high-precision light

curves from the Kepler mission that have revealed information about the eccentricity

distribution of extra-solar planets and the eccentricities of planets in multi-transiting

systems. By comparing the distribution of observed transit durations to the distribution
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derived from model populations of eccentric planets, Moorhead et al. (2011) ruled out

extreme eccentricity distributions. They also identified individual planets with transit

durations too long to be consistent with a circular orbit; these planets are either on

eccentric orbits (transiting near apoapse) or orbit host stars whose stellar radii are

significantly underestimated.

Kane et al. (2012) used the distribution of transit durations to determine that the

eccentricity distribution of Kepler planets matches that of planets detected by the RV

method and to discover a trend that small planets have less eccentric orbits. In contrast,

Plavchan et al. (2012) found that the distribution of eccentricities inferred from the

transit durations is not in agreement with the eccentricity distribution of the RV sample;

they suggested that the di↵erence may be due to errors in the stellar parameters. Finally,

Kipping et al. (2012) presented a method that they refer to as Multibody Asterodensity

Profiling to constrain eccentricities of planets in systems in which multiple planets

transit. They noted that one can also apply the technique to single transiting planets,

but discouraged doing so, except for planets whose host star densities have been tightly

constrained (e.g. by asteroseismology). FQV08 recommend measuring eccentricities

photometrically only for planets with “well-measured stellar properties” but also point

out the weak dependence of eccentricity on stellar density.

In this work we apply the idea first proposed by FQV08 to real data and demonstrate

that we can measure the eccentricity of an individual transiting planet from its transit

light curve. We show that this technique is particularly well-suited for our goal of

identifying highly eccentric, giant planets. In Section 5.2, we show that even a loose prior

on the stellar density allows for a strong constraint on the planet’s orbital eccentricity.

In Section 5.3, we argue that Markov Chain Monte Carlo (MCMC) exploration of the
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parameter posteriors naturally marginalizes over the periapse angle and automatically

accounts for the transit probability. We include both a mathematical and practical

framework for transforming the data and prior information into an eccentricity posterior.

In Section 5.4, we measure the eccentricity of HD 17156 b from ground-based transit light

curves alone, finding good agreement with the nominal value from RV measurements.

We also measure the eccentricity of a transit signal injected into both short and long

cadence Kepler data and of Kepler Object of Interest (KOI) 686.01 from long-cadence,

publicly-available Kepler data, finding an eccentricity of e = 0.62+0.18
�0.14. In Section 5.5, we

present our program of “distilling” highly eccentric Jupiters from the KOI sample and

we conclude (Section 5.6) with prospects for further applications of the photoeccentric

e↵ect.

5.2 Precise Eccentricities from Loose Constraints on

Stellar Density

To first order, a transiting planet’s eccentricity and its host star’s density depend

degenerately on transit light curve observables. Kipping et al. (2012) harnessed the

power of multiple planets transiting the same host star to break this degeneracy (see

also Ragozzine & Holman 2010). Yet, as FQV08 first pointed out, although the transit

observables depend on the stellar density, this dependence is weak (the ratio of the

planet’s semi-major axis to the stellar radius a/R
?

/ ⇢
1/3
?

). Thus a loose prior on the

stellar density should allow for a strong constraint on the eccentricity.

In the limit of a constant star-planet distance during transit and a non-grazing
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transit (such that the transit is approximately centered at conjunction), Kipping (2010b)

derived the following expression (Kipping 2010b Equations 30 and 31) for T14, the

duration from first to fourth contact (i.e. the total transit duration including ingress and

egress), and for T23, the duration from first to third contact (i.e. the full transit duration

during which the full disk of the planet is inside the disk of the star):

T14/23 =
P

⇡

(1� e2)3/2

(1 + e sin!)2
arcsin

2

4

q
(1 + /� �1/2)2 � (a/R

?

)2( 1�e

2

1+e sin!

)2 cos2 i

(a/R
?

) 1�e

2

1+e sin!

sin i

3

5 (5.1)

where P is the orbital period; e is the eccentricity; ! is the argument of periapse; R
?

is the stellar radius; � = (R
p

/R
?

)2 is the fractional transit depth with R
p

the planetary

radius; a is the semi-major axis; and i is the inclination. By combining T14 and T23, we

can rewrite Equation (5.1) as

sin2(
⇡

P

[1 + e sin!]2

(1� e2)3/2
T14)� sin2(

⇡

P

[1 + e sin!]2

(1� e2)3/2
T23) =

4�1/2(1 + e sin!)2

sin2 i (a/R
?

)2(1� e2)2
(5.2)

Using the small angle approximation, which is also used by Kipping (2010b), allows us

to group the transit light curve observables on the right-hand side:

a

R
?

g(e,!) sin i =
2�1/4P

⇡
p

T 2
14 � T 2

23

(5.3)

where

g(e,!) =
1 + e sin!
p

1� e2
(5.4)

The g notation is inspired by Kipping (2010b) and Kipping et al. (2012)’s variable  ,

for which  = g3. Dynamically, g is the ratio of the planet’s velocity during transit

(approximated as being constant throughout the transit) to the speed expected of a

planet with the same period but e = 0. Note that ! is the angle of the periapse from the

sky plane, such that ! = 90� corresponds to a transit at periapse and ! = �90� to a

transit at apoapse. For a given P and �, T14 and T23 are shortest (longest) and g largest
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(smallest) when the planet transits at periapse (apoapse). Moreover, if we approximate

sin i = 1, we can rewrite Equation (5.3) as:

a

R
?

g(e,!) =
2�1/4P

⇡
p

T 2
14 � T 2

23

(5.5)

Finally, using Kepler’s third law and assuming that the planet mass is much less than

the stellar mass (M
p

⌧ M
?

), the transit observables can be expressed in terms of the

stellar density ⇢
?

:

⇢
?

(e,!) = g(e,!)�3⇢circ (5.6)

where

⇢circ = ⇢
?

(e = 0) =

"
2�1/4p
T 2
14 � T 2

23

#3✓
3P

G⇡2

◆
(5.7)

Although Equation 5.6 was derived under several stated approximations, the relationships

among ⇢
?

, e, and ! are key to understanding how and to what extent we can constrain a

transiting planet’s eccentricity using a full light curve model. Because g(e,!) is raised

to such a large power, a small range of g(e,!) corresponds to a large range in the ratio

⇢
?

/⇢circ, i.e. the ratio of the true stellar density to the density measured from fitting a

circular transit light curve model. For instance, the assumed value of ⇢
?

would need to be

in error by two orders of magnitude to produce the same e↵ect as a planet with e = 0.9

and ! = 90�. Thus the ⇢circ derived from the transit light curve strongly constrains g,

even with a weak prior on ⇢
?

, because g / ⇢
1/3
?

.

5.2.1 Constraints on ⇢circ from the Light Curve: Common

Concerns

One might worry that long-cadence data, such as the 30-minute binning of most Kepler

light curves, cannot resolve the ingress and egress times su�ciently to constrain a/R
?

, or
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equivalently ⇢circ. In other words, one might worry that a/R
?

is completely degenerate

with b, and hence that the denominator of Equation (5.5) is unconstrained. This is

often the case for small planets. However, Jupiter-sized planets have high signal-to-noise

transits and longer ingress and egress durations (due to the large size of the planet).

See Section 2.1 of FQV08 for an analysis of how the precision of Kepler data a↵ects

constraints on the total, ingress, and egress durations.

Furthermore, even if the ingress is unresolved or poorly resolved, it is often

impossible for the impact parameter b to account for the short duration of a highly

eccentric, Jupiter-sized planet’s non-grazing transit. The maximum non-grazing impact

parameter is 1 � R
P

/R
?

. 0.9 for a Jupiter around a Sun-like star. Imagine that an

eccentric planet transits at zero impact parameter (i.e. travels across 2R
p

+2R
?

) at speed

g. If we instead assume that planet is transiting at its circular speed g = 1 across the

short chord of length (2
p

(R
?

+R
p

)2 � (blarge enoughR?

)2), the required impact parameter

would be:

blarge enough ⇡ (1 + �1/2)
p
1� 1/g2 (5.8)

For g = 2.38 (corresponding to e = 0.7,! = 90�) and �1/2 = R
p

/R
?

= 0.1, b would need

to be ⇡ 0.998, which would be inconsistent with a non-grazing transit. In contrast, a

planet with R
p

/R
?

= 0.01 would have blarge enough ⇡ 0.917, consistent with the b < 0.99

necessary for a non-grazing transit. We note this e↵ect simply to highlight a constraint

that arises naturally when fitting a Mandel & Agol (2002) transit model to a light curve.

Additionally, with a properly binned model (as discussed in Kipping 2010a, who

advocates resampling the data times, computing a model light curve, and then smoothing

to match the data cadence), multiple transits allow for constraints on the ingress and
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egress, even if they are poorly resolved in a single transit. We demonstrate eccentricity

measurements using long-cadence data in Section 5.4.2.

Another concern regards the degeneracy of a/R
?

and b with the limb-darkening

parameters. Limb darkening causes the shape of the transit to be rounded instead of flat,

potentially causing confusion between the full transit and the ingress/egress. However, in

practice we find that it makes little di↵erence whether we freely vary the limb darkening

parameters or impose a normal prior based on the stellar parameters (e.g. the coe�cients

computed for the Kepler bandpass by Sing 2010). FQV08 also find that limb darkening

does not have a significant e↵ect on the other parameters, as demonstrated through tests

on simulated light curves (see FQV08 Section 2.1 and FQV08 Figure 5).

Finally, one might worry about dilution by light from a nearby or background star

blended with the target star (see Johnson et al. 2011b for a Kepler example). Dilution

would cause R
p

/R
?

to appear too small. Consider the impact that dilution would have

on the derived parameters of an eccentric planet transiting near periapse. The ingress

and egress durations would be longer than expected, and the inferred maximum impact

parameter to avoid a grazing orbit (i.e. 1 � R
p

/R
?

) would be too large. Both of these

e↵ects would caused the planet’s orbit to appear less eccentric (or, equivalently, for

⇢circ to appear smaller; see Kipping & Tinetti 2010 for a formal derivation of the e↵ect

of blending on the measurement of a/R
?

). Therefore, dilution would not cause us to

overestimate a planet’s eccentricity, if the transit duration is shorter that circular.

Moreover, because ⇢circ depends only weakly on the transit depth (Equation 5.7), the

e↵ect of blending on the eccentricity measurement is small. We quantify this e↵ect

through an example in the next subsection.
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Furthermore, if we were to mistakenly attribute an apparently overly-long transit

caused by blending to a planet transiting near apoapse, the resulting false eccentricity

would be quite small. Imagine that the planet is on a circular orbit, but that the blend

causes us to measure ⇢circ = (1 � f)⇢
?

, where 0 < f ⌧ 1. The inferred g would be

g = [⇢circ/⇢?]1/3 ⇡ 1� f/3, very close to the true g = 1 of the circular orbit.

5.2.2 Constraints on Eccentricity

From Equation 5.6, it might appear that e and ! are inextricably degenerate for a single

transiting planet. Certainly, if ⇢circ is consistent with ⇢
?

, any eccentricity is consistent

with the transit observables. However, a nominal value of ⇢
?

smaller than ⇢circ translates

to a minimum eccentricity emin, the value obtained by assuming the planet transits

at periapse (! = 90�; see also Barnes 2007, Section 3; Kane et al. 2012, Section 4).

Conversely, a value of ⇢
?

larger than ⇢circ corresponds to an emin obtained by assuming

the planet transits at apoapse (! = �90�). Therefore, we can easily identify planets with

large eccentricities. A full MCMC exploration provides a confidence interval that shrinks

as e ! 1, as we discuss in detail in Section 5.3. For example, consider a planet with an

eccentricity of 0.9 that transits at semilatus rectum (! = 0). Based on the transit light

curve observables, we would deduce that it has an eccentricity of at least emin = 0.68. A

planet transiting at semilatus rectum with e = 0.98 would have a deduced emin = 0.92.

Above the sharp lower limit emin, the eccentricity posterior probability falls o↵ gradually,

as we discuss in Section 5.3. Note that the emin we have defined here, which assumes we

can distinguish between b and ⇢circ (i.e. via some constraint on ingress/egress time), is

a stronger limit than the minimum eccentricity from the constraint that the transit be
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non-grazing (which we discussed in Section 5.2.1).

Returning to the issue of contamination by blending (discussed in Section 5.2.1),

consider a transit with g = 2.5 and thus emin = 0.724. If the transit depth were diluted

by a factor1 of 0.9 by an undetected second star in the photometric aperture, we would

measure g = 0.91/42.5 = 2.435 and infer nearly the same minimum eccentricity of

emin = 0.711. Finally, imagine that some of the constraint on g measured from the light

curve came from the non-grazing shape of the transit, implying an impact parameter

greater than 1� R
p

/R
?

. If the R
p

/R
?

measured from the diluted transit curve were 0.1,

the inferred maximum impact parameter would be 0.9. If the true R
p

/R
?

is 5% larger,

then the maximum impact parameter should be 0.895. This translates into a negligible

e↵ect on the constraint on g.

In Figure 5.1, we plot ⇢circ as a function of !. Centered at ! = 90� is a broad range of

! for which ⇢circ would be quite high. For example, for e = 0.9, ⇢circ would be erroneously

high by a factor of 10-100 for �3� < ! < 183�, over half the possible orientations.

Moreover, although the periapses of eccentric planets are intrinsically randomly oriented

throughout the galaxy, based on geometry eccentric planets with ! ⇡ 90� are more likely

to transit. For example, from a population of planets with e = 0.9 (0.95, 0.99) and a

given orbital separation, we would be able to observe 19 (39,photo199) times as many

transiting at periapse as at apoapse.

Another happy coincidence is that the true stellar density is unlikely to be higher

than the Kepler Input Catalog (KIC, Batalha et al. 2010) value by a factor of 10.

1This is a worst-case scenario because in fact we could easily detect a companion causing such a large

dilution.
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The opposite situation is common; a star identified as being on the main sequence

may actually be a low-density subgiant or giant (e.g. Mann et al. 2012; Dressing &

Charbonneau 2013). Conversely, there are not many stars with the density of lead. Even

when precise measurements of the stellar density are unavailable, our basic knowledge

of stellar structure and evolution often allows for constraints on the eccentricity. If

there exists a population of highly-eccentric Jupiter-sized planets, many of them will be

identifiable from the light curve alone, i.e. we would deduce a large emin.
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Figure 5.1.—: The ratio of the circular density to the nominal stellar density, ⇢circ/⇢?,

required for a circular model to account for the transit observables of an eccentric planet.

The ratio is plotted as a function of the planet’s argument of periapse. The solid (dotted,

dashed) line corresponds to a planet with an eccentricity of 0.95 (0.9, 0.8). For a large

range of periapse angles, one would infer a density much larger than the nominal value if

one modeled the eccentric planet’s orbit as circular.
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5.3 Generating an Eccentricity Posterior Probability

Distribution

Through an MCMC exploration—in our case implemented in the Transit Analysis

Package software (TAP, Gazak et al. 2012)–we can not only determine emin but impose

even tighter constraints on a planet’s eccentricity. For example, in Section 5.2 we stated

that a candidate whose circular density is consistent with the nominal value could have

any eccentricity (i.e. for any value of eccentricity, there is an ! that satisfies g(e,!) = 1).

However, for g ⇠ 1, the eccentricity posterior marginalized over ! will be dominated by

low eccentricity values, even with a flat prior on the eccentricity. For example, if e = 0,

any value of ! will satisfy g = 1, whereas only a small range of ! allow for g = 1 and

e > 0.9. Thus, because we expect planetary periapses to be distributed isotropically

in the galaxy, a deduced g = 1 is most likely to truly correspond to a planet with a

low eccentricity. By the same argument, the eccentricity posterior corresponding to a

measured g 6= 1 will peak just above emin.

Of course, the transit probability also a↵ects the eccentricity posterior distribution

(Burke 2008): an eccentric orbit with a periapse pointed towards us (! = 90�) is

geometrically more likely to transit than a circular orbit or an eccentric orbit whose

apoapse is pointed towards us. We will discuss how an MCMC exploration automatically

accounts for the transit probability later in this section.
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5.3.1 Monte Carlo Simulation of Expected Eccentricity and !

Posteriors

To calibrate our expectations for the output of a more sophisticated MCMC parameter

exploration, we first perform a Monte Carlo simulation to generate predicted posterior

distributions of e vs. ! via the following steps:

1. We begin by generating a uniform grid of e and !, equivalent to assuming a

uniform prior on each of these parameters.

2. Then we calculate g(e,!) (Equation 5.4) for each point (e,!) on the grid.

3. We compute

probng =
R

?

a
(1�R

p

/R
?

)
1 + e sin!

1� e2
, (5.9)

where probng is the probability of a non-grazing transit, for each point (e,!) (Winn

2010, Equation 9). We generate a uniform random number between 0 and 1 and

discard the point if the random number is greater than the transit probability.

4. We calculate the periapse distance a

R?
(1 � e) for each grid point and drop the

point if the planet’s periapse would be inside the star (e↵ectively imposing a

physically-motivated maximum eccentricity, which is most constraining for small

a/R
?

).

5. We downsample to a subset of grid points that follows a normal distribution

centered on g, with a width of �
g

/g = 0.1, corresponding to a 30% uncertainty in

the stellar density. To do this, we calculate the probability

prob
g

=
1

�
g

p

2⇡
exp

✓
�

[g(e,!)� g]2

2�2
g

◆
(5.10)
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and discard the point (e,!) if a uniform random number is greater than prob
g

.

We plot the resulting posterior e vs. ! distributions in Figure 5.2 for two a/R
?

, one

large and one small, and R
p

= 0.1. The banana shape of the posterior results from the

correlation between e and ! (i.e. Equation 5.4).
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Figure 5.2.—: Contoured eccentricity vs. ! posteriors from Monte Carlo simulations

for representative values of g. The points follow a normal distribution centered at the

indicated value of g (columns) with a width of 10%, corresponding to a 30% uncertainty

in ⇢
?

. We show the posteriors for two values of a/R
?

(rows). The black (gray, light gray)

contours represent the {68.3, 95, 99}% probability density levels (i.e. 68% of the posterior

is contained within the black contour). Over-plotted as a black-and-white dotted line

are histograms illustrating the eccentricity posterior probability distribution marginalized

over !.

The posteriors reveal that, rather than being inextricably entwined with !, the

eccentricities deduced from g are well constrained. A ⇢circ consistent with the nominal

value (g = 1 with ⇢
?

constrained to within 30%) is more likely to correspond to a
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small e (e.g. the probability that e < 0.32 is 68.3% for a/R
?

= 10 and that e < 0.35

is 68.3% for a/R
?

= 300), while circular densities inconsistent with the normal values

(g significantly di↵erent from unity) have a well-defined minimum e, above which the

eccentricity posterior falls o↵ gently. For example, for g = 2.5 and a/R
?

= 300, the

probability that e > 0.69 is 99%. Furthermore, the eccentricity is likely to be close to

this minimum eccentricity because the range of possible ! narrows as e ! 1. For g = 2.5

and a/R
?

= 300, the probability that 0.69 < e < 0.89 is 95%.

Next we explore how the uncertainty in ⇢
?

a↵ects the eccentricity posterior,

quantifying how “loose” this prior constraint can be. In Figure 5.3, we plot eccentricity

contours using a/R* = 30 for g = 1 (i.e. consistent with circular; bottom) and g = 2.5

(top) for five values of �
⇢?/⇢? assuming a normal distribution and that �

g

/g = 1
3�⇢?/⇢?.

For g = 2.5, the measured eccentricity is always e = 0.79; it has an uncertainty of +0.12
�0.06

for �
⇢?/⇢? = 0.01 and +0.12

�0.07 for �
⇢?/⇢? = 0.5. Thus the eccentricity remains tightly

constrained even for large uncertainties in the stellar density. For g = 1, the measured

eccentricity depends more strongly on the uncertainty: e = 0.03+0.34
�0.03 for �

⇢?/⇢? = 0.01

and e = 0.24+0.41
�0.18 for �

⇢?/⇢? = 0.5. Thus for full, ingress, and egress durations consistent

with circular, a tighter constraint on the stellar density allows for a stronger upper limit

on the eccentricity. However, even for a very poorly constrained ⇢
?

, the posterior reveals

that the eccentricity is most likely to be small.

5.3.2 A Bayesian Framework for Generating Posteriors

In the Monte Carlo simulation in the previous subsection, we used random numbers to

select grid points in (e, !) that were consistent with the light curve parameters, the prior
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knowledge of the stellar density, and the transit probability. An MCMC fitting routine

naturally generates such a posterior in eccentricity and ! according to the following

Bayesian framework.

Let the model light curve be parametrized by e, !, ⇢
?

, and X, where X represents

the additional light curve parameters (i.e. orbital period, cos(inclination), radius ratio,

mid transit-time, limb darkening parameters, and noise parameters). Let D represent the

light curve data. We wish to determine the probability of various e and ! conditioned

on the data, or prob(e,!, ⇢
?

, X|D).

According to Bayes’ theorem:

prob(e,!, ⇢
?

, X|D) / prob(D|e,!, ⇢
?

, X)prob(e,!, ⇢
?

, X) (5.11)

where the final term represents prior knowledge.

We assume a uniform prior on all the parameters except ⇢
?

, for which we impose a

prior based on the stellar parameters and their uncertainties. Therefore, we can rewrite

the equation as:

prob(e,!, ⇢
?

, X|D) / prob(D|e,!, ⇢
?

, X)prob(⇢
?

) (5.12)

Next we marginalize over X and ⇢
?

to obtain

prob(e,!|D) /

Z Z
prob(D|e,!, ⇢

?

, X)prob(⇢
?

)dXd⇢
?

(5.13)

the two-dimensional joint posterior distribution for eccentricity and !. The first term

under the integral is the likelihood of the data given e, !, ⇢
?

and X. Thus a uniform

prior on both these quantities naturally accounts for the transit probability because
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prob(D|e,!, ⇢
?

, X) is the transit probability; for certain values of e and !, the observed

transit D is more likely to occur. Combinations of parameters that produce no transits

are poor models, resulting in a low likelihood of the data. Evaluation of the likelihood

prob(D|e,!, ⇢
?

, X) is part of how we obtain the parameter posteriors through an MCMC

exploration, the details of which we describe in the next subsection.

Finally, we can marginalize over ! to obtain

prob(e|D) /

Z Z Z
prob(D|e,!, ⇢

?

, X)prob(⇢
?

)dXd⇢
?

d! (5.14)

Thus, although stellar density, eccentricity, and ! depend degenerately on light

curve properties (Equation 5.6), a Bayesian approach to parameter space exploration

translates a loose prior on the stellar density, prob(⇢
?

), and uniform priors on the

intrinsic planetary values of eccentricity and !, into a tight constraint on the planet’s

eccentricity.

5.3.3 Obtaining the Eccentricity Posterior through an MCMC

Sampling Method

When performing light curve fits with eccentric orbital models, it is essential to use an

MCMC sampling method, or some other algorithm for which the time spent in each

region of parameter space is proportional to the probability. We refer the reader to

Bowler et al. (2010) (Section 3) for a helpful description of the MCMC method. The

MCMC method can be used to minimize the �2 (in the limit of uniform priors and

Gaussian noise) or to maximize whatever likelihood function is most appropriate given

one’s prior knowledge. In our case, we impose a normal prior on ⇢
?

and account for red
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noise using a wavelet-based model by Carter & Winn 2009. Obtaining the eccentricity

posterior through an MCMC sampling method o↵ers several advantages:

1. It naturally allows for marginalization over all values of !. For example, in the case

of a circular density near the nominal value (g ⇠ 1), the chain will naturally spend

more time at low eccentricities, for which a large range of ! provide a good fit,

than at high eccentricities, for which only a narrow range of ! provide a good fit.

2. It reveals and comprehensively explores complicated parameter posteriors. In

particular, some of the distributions in Figure 5.2 and 5.3 have banana shapes,

which often cause conventional chi-squared minimization algorithms to remain

stuck in the region of parameter space where they began. In contrast, an MCMC

exploration will eventually fully sample the posterior distribution. (See Chib

& Greenberg 1995, for a pedagogical proof of this theorem.) Because of the

“banana-shaped” e vs. ! posterior for high eccentricities (Figure 5.2 and 5.3),

conventional MCMC algorithms, like TAP, require many iterations to converge

and fully explore parameter space. In our case, we test for convergence by plotting

e and ! each as a function of chain link and assess if the exploration appears

random. We also check to ensure that the ! posterior is symmetric about ! = 90�.

Asymmetry indicates that the chains have not yet converged. We note that the

variables e cos! and e sin! also have a banana-shaped posterior. When feasible,

we recommend implementing an a�ne-invariant code such as emcee that more

e�ciently explores banana-shaped posteriors (e.g. Foreman-Mackey et al. 2012). In

Section 5.3.3, we describe how to speed up the fit convergence by using g instead

of e as a variable while maintaining a uniform prior in e and !.
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3. It allows us to easily impose priors on certain parameters, such as the stellar

density. If desired, one can impose a prior on the eccentricity. In Section 5.4, we

perform an additional fit for each dataset using a Je↵rey’s2 prior on the eccentricity,

which is appropriate if we wish to avoid assumptions about the magnitude of the

eccentricity. Here we implement the prior through regularization (i.e. as an extra

term in the jump probability).

4. It automatically accounts for the transit probability, because jumps to regions of

parameter space that do not produce a transit are rejected. To address what may

be a misconception, we emphasize that it is unnecessary — and actually a double

penalty — to impose transit probability priors on the eccentricity or periapse.

5. It provides uncertainties that are more reliable than the estimates based on a

simple covariance matrix (as obtained from traditional least-squares minimization)

because there is no assumption that the uncertainties are normally distributed. The

uncertainties fully account for complicated parameter posteriors and correlations.

Therefore we can be confident in the constraints on ⇢circ even when the ingress and

egress are not well-resolved.

We caution that although this Bayesian framework is appropriate for obtaining the

posteriors of a single planet, selection e↵ects must be carefully considered when making

2We use a true Je↵rey’s prior prob(e) / 1/e, which we have not normalized because we only consider

the ratio of probabilities when assessing a jump in an MCMC chain. For the fits in Section 4, for which

e
min

is well above 0, this prior is su�cient. However, if e = 0 is a possibility (i.e. for g near 1), the

reader may wish to use a modified Je↵rey’s prior, prob(e) / 1/(e + e
0

), where e
0

is the noise level. We

recommend estimating an upper limit on g from the uncertainty in ⇢
circ

and ⇢? and solving Equation

(5.4) for e
0

using ! = 90�.
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inferences about a population.

Using g as a Variable for Faster Convergence

Using g (Equation 5.4) instead of e as a variable in the transit fit model avoids the

MCMC having to explore a banana-shaped posterior. The g variable allows for faster

convergence and prevents the chain from getting stuck. In order to preserve a uniform

prior in e and !, we must impose a prior on g by adding an additional term to the

likelihood function. Following the Appendix of Burke et al. (2007), the transformation

from a uniform prior in e to a prior in g is:

prob(g)dg = prob(e)
@e

@g
dg

prob(g) = prob(e)
@e

@g
=

sin2 !
�
sin2 ! � 1

�
+ g2

�
1 + sin2 !

�
± 2g sin!

p
sin2 ! � 1 + g2

p
sin2 ! � 1 + g2

�
g2 + sin2 !

�2

(5.15)

where we have assumed prob(e) = 1 and for which the + corresponds to g > 1 and the

� to g < 1. .

Therefore, we add the following term to the log likelihood:

�L = ln

"
sin2 !

�
sin2 ! � 1

�
+ g2

�
1 + sin2 !

�
± 2g sin!

p
sin2 ! � 1 + g2

p
sin2 ! � 1 + g2

�
g2 + sin2 !

�2

#
(5.16)

We demonstrate the use of this variable in Section 5.4. We note that in our light

curve fits, we use g only to explore parameter space, transforming the variable to e in

order compute the Keplerian orbit, with no approximations, for the Mandel & Agol

(2002) light curve model.
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Figure 5.3.—: Contoured eccentricity vs. ! posteriors from Monte Carlo simulations for

representative values of g (rows; the points follow a normal distribution centered g) and

uncertainty in ⇢
?

(columns), all for a/R
?

= 30. The black (gray, light gray) contours

represent the [68.3,95,99]% probability density levels. Over-plotted as a black-and-white

dotted line are histograms illustrating the eccentricity posterior probability distribution

marginalized over !.
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5.3.4 Obtaining the Eccentricity Posterior from the Circular-Fit

Posterior

The Monte Carlo exploration in Section 5.3.1 was meant to give us a handle on what the

eccentricity and ! posterior should look like and how they are a↵ected by uncertainty in

⇢
?

. However, one could use a more formal version of this exploration to obtain posteriors

of eccentricity and ! directly from the posteriors derived from circular fits to the light

curve, an approach that was adopted by Kipping et al. (2012). One could maximize the

following likelihood for the parameters ⇢
?

, e, and !:

L = �

1

2

[g(e,!)3⇢
?

� ⇢circ]2

�2
⇢circ

�

1

2

[⇢
?

� ⇢
?,measured]2

�2
⇢?,measured

+ ln
�
probng

�
(5.17)

The first term in the likelihood function demands agreement with the ⇢circ derived

from the circular fit to the light curve. If the ⇢circ posterior is not normal, one could

replace this term with the log of the probability of g(e,!)3⇢
?

given the ⇢circ posterior.

Note that g(e,!) can either be computed from the approximation in Equation (5.4) or

by solving and integrating Kepler’s equation to obtain the mean ratio of the transiting

planet’s velocity to its Keplerian velocity over the course of the transit. The second term

is the prior on ⇢
?

from the stellar parameters independently measured from spectroscopy

(or asteroseismology). The final term is the probability of a non-grazing transit

(Equation 5.9). If one uses the variable g instead e, one should add Equation (5.16) to

the likelihood. We warn that this likelihood function drops constants, so although it can

be used to generate parameter posteriors, it should not be used to compute the Bayesian

evidence quantity.
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In the next section, we demonstrate that this approach yields the same eccentricity

and ! posteriors as directly fitting for the eccentricity from the light curve.

5.4 Demonstration: Measuring the Eccentricities of

Transiting Jupiters

To demonstrate that the duration aspect of the photoeccentric e↵ect allows for precise

and accurate measurements of a transiting planet’s eccentricity from the light curve

alone, we apply the method described in Section 5.3 to several test cases. In Section

5.4.1 we measure the eccentricity of a transiting planet that has a known eccentricity

from RV measurements. In Section 5.4.2 we inject a transit into short and long cadence

Kepler data and compare the resulting e and ! posteriors. In Section 5.4.3, we measure

the eccentricity of a Kepler candidate that has only long-cadence data available.

5.4.1 HD 17156 b: a Planet with a Large Eccentricity Measured

from RVs

HD 17156 b was discovered by the Next 2000 Stars (N2K) Doppler survey (Fischer

et al. 2005, 2007). Fischer et al. (2007) reported that the planet has a large orbital

eccentricity of e = 0.67± 0.08. We identified this planet and the relevant references using

exoplanets.org (Wright et al. 2011). Barbieri et al. (2007) reported several partial

transits observed by small-telescope observers throughout the Northern Hemisphere, and

Barbieri et al. (2009) and Winn et al. (2009d) observed full transits using high-precision,
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ground-based photometry. Here we demonstrate that the planet’s eccentricity could have

been measured from the transit light curve data alone.

We simultaneously fit three light curves (Figure 5.4), one from Barbieri et al. (2009)

and two from Winn et al. (2009d) using TAP (Gazak et al. 2012), which employs an

MCMC technique to generate a posterior for each parameter of the Mandel and Agol

(2002) transit model. Time-correlated, “red” noise is accounted for using the Carter

& Winn (2009) wavelet-based likelihood function. To achieve the 2N (where N is an

integer) data points required by the wavelet-based likelihood function without excessive

zero-padding, we trimmed the first Winn et al. (2009d) light curve from 523 data points

to 512 data points by removing the last 11 data points in the time series. Initially, we

fixed the candidate’s eccentricity at 0 and fit for ⇢circ with no prior imposed, to see

how much it di↵ers from the well-measured value of ⇢
?

. Then we refitted the transit

light curves with a normal prior imposed on the stellar density, this time allowing the

eccentricity to vary. In both cases, we treated the limb darkening coe�cients following

the literature: we fixed the coe�cients for the Barbieri et al. (2009) light curve and

left the coe�cients free for the Winn et al. (2009d) light curves. Following Winn

et al. (2009d), we also included linear extinction free parameters for the two Winn

et al. (2009d) light curves. (The published Barbieri et al. 2009 light curve was already

pre-corrected for extinction.)

Figure 5.5 shows posterior distributions from a circular fit (top row) and an

eccentric fit (bottom row) with a prior imposed on the stellar density from Gilliland

et al. (2011). In Figure 5.6, we compare the posteriors generated from a) the eccentric

fit to the light curve using g as a parameter (with a prior imposed to maintain a uniform

eccentricity prior; Equation (5.16) to posteriors generated using: b) a Je↵rey’s prior
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on the eccentricity, c) e instead of g as a free parameter (to demonstrate that they

are equivalent), and d) the likelihood-maximization method described in Section 3.4,

using the posterior of ⇢circ from the circular fit. The four sets of posteriors closely

resemble one another. The computation times were about 1 day for the circular fit,

about 1 day for the eccentric fit using g as a parameter, several days for the eccentric

fit using e as a parameter, and thirty minutes for the likelihood maximization method

of Section 3.4. Note that the final method requires the best-fitting parameters resulting

from a circular fit to the light curve, including accurate parameter posteriors. We

therefore caution against using the parameters listed in the Kepler public data releases

for this purpose because those values are the result of a least-squares fit and make the

assumption of normally distributed parameter uncertainties. However, if one has already

precomputed circular fits using an MCMC algorithm that incorporates red noise and

limb darkening—as we have done for all of the Jupiter-sized KOIs (Section 5.5)—the

final method (Section 5.3.4) is advantageous because of the decreased computation time.

Based on the circular fit alone, we would infer g(emin, ⇡/2) = 2.0, corresponding

to a minimum eccentricity of emin = 0.61. From the eccentric fit, we obtain a value

of e = 0.71+0.16
�0.09 using a uniform prior on the eccentricity and e = 0.69+0.16

�0.09 using a

Je↵rey’s prior. Therefore, we could have deduced the eccentricity determined from 33

RV measurements — e = 0.67 ± 0.08 (Fischer et al. 2007) — from these three transit

light curves alone.

The host star has a particularly well-constrained density from asteroseismology

(Gilliland et al. 2011). We artificially enlarge the error bars on the stellar density

from 1% to 20% and repeat the fitting procedure, obtaining an eccentricity of

e = 0.70+0.14
�0.09. We also repeat the fitting procedure with a density derived from the
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Figure 5.4.—: Light curves of HD 17156 from Barbieri et al. (2009) (top) and Winn et al.

(2009d) (middle, bottom). A set of eccentric model light curves drawn from the posterior

are plotted as solid lines.
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Figure 5.5.—: Posterior distributions of e and ! for the HD 17156 transiting system,

with eccentricity fixed at 0 (row 1) and free to vary (row 2). Row 1: Left: ⇢
?

derived

from circular fit. The solid line marks the nominal value. Right: Posterior distribution

for eccentricity solving Equation (5.5) for ! = 0 (solid line), ! = 45� (dashed line), and

! = 90� (dotted line). Row 2: Left: Posterior distribution for ! from eccentric fit (i.e.

a fit to the light curve in which the eccentricity is a free parameter; solid). Gaussian

illustrating posterior from Fischer et al. (2007) RV fit (dotted line). Right: Same for

eccentricity posterior.
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Figure 5.6.—: Left: Posterior distribution for ! for a fit to the light curve using g as

a free parameter with a uniform prior on the eccentricity (sold line) and Je↵rey’s prior

(dotted line). Posterior distribution using e instead of ! as a free parameter (dot-dashed

line). Posterior distribution using method described in Section 5.3.4 (dashed line). Right:

Same as left, for eccentricity posterior.

stellar parameters M
?

and R
?

determined by Winn et al. (2009d) from isocrone fitting.

This “pre-asteroseismology” density has an uncertainty of 10% and, moreover, is about

5% larger than the value measured by Gilliland et al. (2011). We obtain an eccentricity

of e = 0.70+0.16
�0.11. In Figure 5.7 and 5.8, we plot the resulting posterior distributions,

which are very similar. Therefore, even with uncertainties and systematics in the stellar

density, we can measure a transiting planet’s eccentricity to high precision and accuracy.

5.4.2 Short vs. Long Cadence Kepler Data

Kipping (2010a) explored in detail the e↵ects of long integration times and binning on

transit light curve measurements, with a particular focus on long-cadence Kepler data.

He demonstrated that by binning a finely-sampled model to match the cadence of the

data, as TAP has implemented, one can fit accurate (though less precise than from short

cadence data) light curve parameters. Using short and long cadence Kepler data of a
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Figure 5.7.—: Posterior distributions of e and ! for the HD 17156 transiting system,

with three di↵erent priors on the stellar density: the density measured by Gilliland et al.

(2011) (solid); the density measured by Gilliland et al. (2011) with uncertainties enlarged

to �
⇢?/⇢? = 0.2, (dashed) and the density based on the stellar parameters from Winn

et al. (2009d) (dotted).
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Figure 5.8.—: Eccentricity vs. ! posterior distributions for HD 17156 b based on fits

using a prior on the stellar density from Gilliland et al. (2011) (left); Gilliland et al.

(2011) with error bars enlarged to 20% (middle); and Winn et al. (2009d) (left).
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planet with known parameters (TrES-2-b), he validated this approach.

Here we explore, through a test scenario of an eccentric planet injected into short

and long Kepler data, whether this approach holds (as one would expect) for fitting an

eccentric orbit and what value short-cadence data adds to the constraint on eccentricity.

We chose parameters for the planet typical of an eccentric Jupiter and main-sequence

host star: P = 60 days, i = 89.5�, R
p

/R
?

= 0.1, e = 0.8, ! = 90�, M
?

= R
?

= 1, and

limb darkening parameters µ1 = µ2 = 0.3. We considered the situation in which long

cadence data is available for Q0-Q6 but short-cadence is available only for one quarter

(or may be in the future). We retrieved Q0-Q6 data from the Multimission Archive

at the Space Telescope Science Institute (MAST) for Kepler target star KIC 2306756,

selected because it has both long and short cadence data. Then we applied the TAP

MCMC fitting routine to fit a) one short-cadence transit (fixing the period at 60 days)

that took place in a single segment of short-cadence data and b) all seven long-cadence

transits.

As in Section 5.4.1, we performed one set of fits fixing the orbit as circular and

another set with g and ! as free parameters, imposing a prior on the stellar density

corresponding to a 20% uncertainty in the stellar density and a prior on g from a uniform

prior in e and ! (Equation 5.16). In both cases, we allowed the limb darkening to be

a free parameter. We plot the resulting posterior distributions of eccentricity and ! in

Figure 5.9. From the circular fits, the constraint on ⇢circ is somewhat stronger from

the short cadence data (26.3+1.0
�1.6 ⇢�) than from the long cadence data (25.9+1.0

�2.7 ⇢�), as

Kipping (2010a) found. From the short cadence data, we measure an eccentricity of

e = 0.85+0.08
�0.05 with a uniform prior on the eccentricity and e = 0.85+0.07

�0.05 with a Je↵rey’s

prior. From the long cadence data, we measure an eccentricity of e = 0.84+0.08
�0.05 with a
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uniform prior on the eccentricity and e = 0.84+0.07
�0.04 with a Je↵rey’s prior. Therefore, the

long cadence data is su�cient to obtain a precise eccentricity measurement. In this case,

the 20% uncertainty in the stellar density dominated over the constraint from the transit

light curve on ⇢circ; however, for very well-constrained stellar properties, we would expect

the greater precision of the short cadence data to allow for a tighter constraint on the

eccentricity (see Figure 5.3).
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Figure 5.9.—: Posterior distributions of e and ! for an injected, artificial transit, with

eccentricity fixed at 0 (panel 1) and free to vary (panel 2-3). The sold curves are from

a fit to seven light curves from the long-cadence data and the dotted to a single light

curve from the short cadence data. Left: ⇢
?

derived from circular fit. The dashed curve

represents the nominal value and its uncertainty. Middle: Posterior distribution for !

from eccentric fit (solid line). Right: Eccentricity posterior.

5.4.3 KOI 686.01, a Moderately Eccentric, Jupiter-sized Kepler

Candidate

KOI 686.01 was identified by Borucki et al. (2011) and Batalha et al. (2013) as a 11.1

REarth candidate that transits its host star every 52.5135651 days. We retrieved the

Q0-Q6 data from MAST and detrended the light curve using AutoKep (Gazak et al.

2012). We plot the light curves in Figure 5.10.
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We obtained a spectrum of KOI 686 using the HIgh Resolution Echelle Spectrometer

(HIRES) on the Keck I Telescope (Vogt et al. 1994). The spectrum was obtained with

the red cross-disperser and 0.0086 slit using the standard setup of the California Planet

Survey (CPS), but with the iodine cell out of the light path. The extracted spectrum

has a median signal-to-noise ratio of 40 at 5500 Å, and a resolution �/�� ⇡ 55, 000. To

estimate the stellar temperature, surface gravity, and metallicity, we use the SpecMatch

code, which searches through the CPS’s vast library of stellar spectra for stars with

Spectroscopy Made Easy (SME; Valenti & Piskunov 1996; Valenti & Fischer 2005)

parameters and finds the best matches. The final values are the weighted mean of the

10 best matches. We then interpolate these stellar parameters onto the Padova stellar

evolution tracks to obtain a stellar mass and radius. We checked these values using the

empirical relationships of Torres et al. (2010). We find ⇢
?

= 1.02+0.45
�0.29 ⇢� (the other

stellar parameters for this KOI and parameters for other KOI will be published as part

of another work, Johnson et al. 2012, in prep).

We then fit circular and eccentric orbits to the transit light curve, as described

above, binning the model light curves to match the 30-minute cadence of the data. We

impose a normal prior on the limb-darkening coe�cients based on the values from Sing

(2010). Figure 5.11 shows posterior distributions from a circular fit (top row) and an

eccentric fit (bottom row) with a prior imposed on the stellar density. We measure the

eccentricity to be e = 0.62+0.18
�0.14.

We caution that this candidate has not yet been validated; Morton & Johnson

(2011b) estimate a false-positive probability of 8%. If the candidate is a false positive,

its orbit (and other properties, such as its radius) is likely to be di↵erent from that

inferred. However, we note that if the candidate is a background binary or hierarchical
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Figure 5.10.—: Light curves of KOI 686. A set of eccentric model light curves drawn from

the posterior are plotted as solid lines. The second-from-bottom curve is a compilation of

all the light curves. The bottom points are the residuals multiplied by 10.
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Figure 5.11.—: Posterior distributions for KOI 686.01 with eccentricity fixed at 0 (row 1)

and free to vary (row 2). Row 1: Left: ⇢
?

derived from circular fit. The solid line marks

the nominal value. Right: Posterior distribution for eccentricity solving Equation (5.5)

for ! = 0 (solid line), ! = 45� (dashed line), and ! = 90� (dotted line). Row 2: Left:

Posterior distribution for ! from eccentric fit (solid). Posterior distribution using method

from Section 5.3.4 (dotted). Right: Same as left, for eccentricity posterior.
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triple and is actually larger than a planet, the inferred eccentricity would actually be

higher (i.e. if the candidate is actually larger, it must be moving through its ingress and

egress even faster), unless KOI 686 is not the primary and the primary has a higher

density than KOI 686. Another possibility, if the candidate is false positive, is that the

assumption of M
p

⌧ M
?

may no longer hold and ⇢� (Equation 5.6) should be compared

to ⇢
?

+ ⇢companion rather than ⇢
s

tar to obtain g. However, even if ⇢companion ⇠ ⇢
?

, the

error in g would be only (12)
3 = 12.5%.

Santerne et al. (2012) recently found a false positive rate of 35% for Jupiter-sized

candidates, comprised of brown dwarfs, undiluted eclipsing binaries, and diluted eclipsing

binaries. In the case of diluted eclipsing binaries, the blend e↵ects that we discussed

in Section 5.2 could be larger than we considered. However, Morton (2012) notes that

most of the false positives that Santerne et al. (2012) discovered through radial-velocity

follow-up already exhibited V-shapes or faint secondary eclipses in their light curves.

In the search for highly eccentric Jupiters, we recommend a careful inspection of the

transit light curve for false-positive signatures and, when possible, a single spectroscopic

observation and adaptive-optics imaging to rule out false-positive scenarios.

If the planetary nature of this object is confirmed, it will be one of a number of

Jupiter-sized planets with orbital periods of 10-100 days and moderate eccentricities,

but the first in the Kepler sample with a photometrically-measured eccentricity. Many

previously known, moderately-eccentric planets have orbits inside the snow line; their

eccentricities are thought to be signatures of the dynamical process(es) that displaced

them from their region of formation.
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5.5 A plan for Distilling Highly-Eccentric Jupiters

from the Kepler Sample

To test the HEM hypothesis (S12), we are “distilling” highly-eccentric, Jupiter-sized

planets — proto hot Jupiters — from the sample of announced Kepler candidates using

the publicly released Kepler light curves (Borucki et al. 2011; Batalha et al. 2013).

To identify planets that must be highly eccentric, we are refitting the Kepler light

curves of all the Jupiter-sized candidates using the TAP. Initially, we fix the candidate’s

eccentricity at 0. We identify candidates whose posteriors for ⇢circ are wildly di↵erent

than the nominal value ⇢
?

from the KIC. From this subset of objects, we obtain spectra

of the host stars. We refine the stellar parameters using SpecMatch, interpolate them

onto the Padova stellar evolution tracks to obtain a stellar mass and radius, and check

the inferred M
?

and R
?

using the empirical relationships of Torres et al. (2010). We

validate the candidate using the method outlined in Morton (2012). Finally, we refit the

transit light curves with a prior imposed on the stellar density, this time allowing the

eccentricity to vary. This process will allow to us easily identify the most unambiguous

highly-eccentric hot Jupiters.

5.6 Discussion

Measuring a transiting planet’s orbital eccentricity was once solely the province of

radial-velocity observations. Short-period planets were discovered by transits and

followed-up with RVs, which sometimes revealed a sizable eccentricity (e.g. HAT-P-2b,

Bakos et al. 2007; CoRoT-10b, Bonomo et al. 2010). Long-period planets—which, based
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on the RV distribution, are more commonly eccentric—were discovered by radial-velocity

measurements and, on lucky occasions, found to transit (e.g. HD 17156 b, Fischer et al.

2007, the planet discussed in Section 5.4.1, as well as HD 806066 b, Naef et al. 2001).

But now, from its huge, relatively unbiased target sample size of 150,000 stars, Kepler

has discovered a number of long-period, transiting candidates. Among these are likely

to be a substantial number of eccentric planets (S12), which have enhanced transit

probabilities (Kane et al. 2012). Moorhead et al. (2011); Kane et al. (2012) and Plavchan

et al. (2012) have characterized the eccentricity distributions of these candidates based

on Kepler photometry. Kipping et al. (2012) are employing MAP to measure the

eccentricities of planets in systems in which multiple planets transits. Here we have

demonstrated that it is also possible to constrain an individual planet’s eccentricity from

a set of high signal-to-noise transits using a Bayesian formalism that employs relatively

loosely-constrained priors on the stellar density. The technique we have presented can

be applied to any transit light curve, as we did in Section 5.4.1, for HD 17156 b using

ground-based photometry. Comparing this technique to Kipping et al. (2012)’s MAP,

MAP is more model independent – requiring no knowledge at all of the stellar density

– but our technique is applicable to single transiting planets, as Jupiter-sized Kepler

candidates tend to be (e.g. Latham et al. 2011). We are the process of fitting the orbits

of all Jupiter-sized Kepler candidates, which will lead to the following prospects:

1. For candidates with host stars too faint for RV follow-up (65% of candidates in

Borucki et al. 2011 are fainter than Kepler magnitude 14), our technique will

provide an estimate of the planet’s eccentricity. We may also be able to deduce

the presence of companions from transit timing variations, thereby allowing us to

search for “smoking gun” perturbers that may be responsible for the inner planet’s
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orbital configuration. In a companion paper (Dawson et al. 2012), we present the

validation and characterization of a KOI with a high, photometrically-measured

eccentricity and transit timing variations.

2. For candidates bright enough for follow-up RV measurements, the eccentricity and

! posteriors from photometric fits allow us to make just a few optimally timed

radial velocity measurements to pinpoint the planet’s eccentricity, the mass and

host-star density, instead of needing to devote precious telescope time to sampling

the full orbital period. The tight constraints on eccentricity from photometry alone

can be combined with radial-velocity measurements to constrain the candidate’s

orbit—either by fitting both datasets simultaneously or by using the posteriors

from the photometry as priors for fitting a model to the RVs. To maximize the

information gain, the prior on the stellar density should remain in place. This

serves as an additional motivation for measuring the spectroscopic properties of

candidate host stars in the Kepler field.

3. We can also measure the spin-orbit angles of the candidates orbiting the brightest

stars with Rossiter-McLaughlin measurements. Then we can compare the

distribution of spin-orbit angles of those planets we have identified as eccentric

with the distribution of those we have constrained to be most likely circular.

4. S12 argue that HEM mechanisms for producing hot Jupiters should also produce

a population of highly eccentric (e > 0.9) proto hot Jupiters and predict that we

should find 3-5 in the Kepler sample. Moreover, Kepler ’s continuous coverage

may o↵er the best prospect for detecting highly eccentric planets, against which

RV surveys are biased (Johnson et al. 2006; O’Toole et al. 2009). In Section 5.5,
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we described our process for distilling highly-eccentric Jupiters from the Kepler

sample.

The Kepler sample has already revealed a wealth of information about the dynamics

and architectures of planetary systems (e.g. Lissauer et al. 2011; Fabrycky et al. 2012a)

but primarily for closely-packed systems of low mass, multiple-transiting planets.

Measuring the eccentricities of individual, Jupiter-sized planets in the Kepler will allow

us to investigate a di↵erent regime: planetary systems made up of massive planets

that potentially underwent violent, mutual gravitational interactions followed by tidal

interactions with the host star.
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Chapter 6

The Photoeccentric E↵ect and

Proto-hot Jupiters. II. KOI-1474.01,

a Candidate Eccentric Planet

Perturbed by an Unseen Companion

R. I. Dawson, J. A. Johnson, T. D. Morton, J. R. Crepp, D. C. Fabrycky, R. A. Murray-

Clay, & A. W. Howard The Astronomical Journal, Vol. 761, id. 163, 2012

Abstract

The exoplanets known as hot Jupiters—Jupiter-sized planets with periods less than

10 days—likely are relics of dynamical processes that shape all planetary system
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architectures. Socrates et al. (2012) argued that high eccentricity migration (HEM)

mechanisms proposed for situating these close-in planets should produce an observable

population of highly eccentric proto-hot Jupiters that have not yet tidally circularized.

HEM should also create failed-hot Jupiters, with periapses just beyond the influence

of fast circularization. Using the technique we previously presented for measuring

eccentricities from photometry (the “photoeccentric e↵ect”), we are distilling a collection

of eccentric proto- and failed-hot Jupiters from the Kepler Objects of Interest (KOI).

Here we present the first, KOI-1474.01, which has a long orbital period (69.7340

days) and a large eccentricity e = 0.81+0.10
�0.07, skirting the proto-hot Jupiter boundary.

Combining Kepler photometry, ground-based spectroscopy, and stellar evolution models,

we characterize host KOI-1474 as a rapidly-rotating F-star. Statistical arguments reveal

that the transiting candidate has a low false-positive probability of 3.1%. KOI-1474.01

also exhibits transit timing variations of order an hour. We explore characteristics of

the third-body perturber, which is possibly the “smoking-gun” cause of KOI-1474.01’s

large eccentricity. Using the host-star’s rotation period, radius, and projected rotational

velocity, we find KOI-1474.01’s orbit is marginally consistent with aligned with the

stellar spin axis, although a reanalysis is warranted with future additional data. Finally,

we discuss how the number and existence of proto-hot Jupiters will not only demonstrate

that hot Jupiters migrate via HEM, but also shed light on the typical timescale for the

mechanism.
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6.1 Introduction

The start of the exoplanet era brought with it the discovery of an exotic new class of

planets: Jupiter-sized bodies with short-period orbits (P . 10 days), commonly known as

hot Jupiters (Mayor & Queloz 1995; Marcy et al. 1997). Most theories require formation

of Jupiter-sized planets at or beyond the so-called “snow line,” located at roughly a few

AU,1 and debate the mechanisms through which they “migrated” inward to achieve such

small semimajor axes. The leading theories fall into two categories: smooth migration

through the proto planetary disk (e.g. Goldreich & Tremaine 1980; Ward 1997; Alibert

et al. 2005; Ida & Lin 2008; Bromley & Kenyon 2011), or what Socrates et al. (2012b)

(hereafter S12) term high eccentricity migration (HEM), in which the planet is perturbed

by another body onto an inclined and eccentric orbit that subsequently circularizes

through tidal dissipation (e.g. Wu & Murray 2003; Ford & Rasio 2006; Fabrycky &

Tremaine 2007a; Naoz et al. 2011; Wu & Lithwick 2011)

From the present-day orbits of exoplanets we can potentially distinguish between

mechanisms proposed to shape the architectures of planetary systems during the early

period of dynamical upheaval. In this spirit, Morton & Johnson (2011b) used the

distribution of stellar obliquities to estimate the fraction of hot Jupiters on misaligned

orbits and to distinguish between two specific migration mechanisms (see also Fabrycky

& Winn 2009; Triaud et al. 2010; Winn et al. 2010); Naoz et al. (2012) recently applied

a similar technique to estimate the relative contributions of two di↵erent mechanisms.

However, deducing dynamical histories from the eccentricity distribution of exoplanets

1Kenyon & Bromley (2008) and Kennedy & Kenyon (2008) explore in detail the location of the ice

line for di↵erent stellar and disk parameters.
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poses a challenge because most hot Jupiters have already undergone tidal circularization

and “cold” Jupiters at larger orbital distances may have formed in situ. Furthermore,

type-II (gap-opening) migration may either excite or damp a planet’s eccentricity

through resonance torques (Goldreich & Sari 2003; Sari & Goldreich 2004). Finally,

Guillochon et al. (2011) find evidence that some hot Jupiters may have undergone disk

migration either prior to or following scattering. In the latter case, disk migration may

have damped their eccentricities. The eccentricity distribution is potentially shaped by a

combination of HEM, tidal circularization, and planet-disk interactions.

Motivated by the HEM mechanisms proposed by Wu & Murray (2003) and

others, S12 proposed an observational test for HEM. As an alternative to modeling

the distribution of eccentricities, they suggested that we look for the individual highly

eccentric, long-period progenitors of hot Jupiters caught of the act of tidal circularization.

S12 identified HD80606 b as one such progenitor, which was originally discovered by

radial velocity (RV) measurements of its host star’s reflex motion (Naef et al. 2001)

and later found to transit along an orbit that is misaligned with respect to its host

star’s spin axis (Moutou et al. 2009; Winn et al. 2009c). From statistical arguments

S12 predicted that if HEM produces the majority of hot Jupiters, the Kepler Mission

should detect several “super-eccentric” Jupiters with orbital periods less than 93 days

and eccentricities in excess of 0.9. A couple of these planets should be proto-hot

Jupiters, with post-circularization semimajor axes in the region where all hot Jupiters

have circularized (i.e. P < 5 days). Several more eccentric planets should have final

periods above 5 days, in the region where not all hot Jupiters have circularized; these

planets may be “failed-hot Jupiters” that will never circularize over their host stars’

lifetimes. A failed-hot Jupiter may have either halted at its post-HEM location due to
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the tidal circularization timescale exceeding the age of the system, or undergone some

tidal circularization but subsequently stalled after a perturber in the system raised its

periapse. S12’s prediction is supported by the existence of super-eccentric eclipsing

binaries in the Kepler sample, which are also thought to have been created by HEM

mechanisms (Dong et al. 2013).

To test the HEM hypothesis we are “distilling” eccentric, Jupiter-sized planets from

the sample of announced Kepler candidates using the publicly released Kepler light

curves (Bromley & Kenyon 2011; Batalha et al. 2013). We described the distillation

process and our technique for measuring eccentricities from transit light curves based

on the “photoeccentric e↵ect” in Dawson & Johnson (2012), hereafter Paper I. In

summary, eccentric Jupiters are readily identified by their short ingress/egress/total

transit durations (Barnes 2007; Ford & Rasio 2008; Burke 2008; Plavchan et al. 2012;

Kane et al. 2012). A Markov-Chain Monte Carlo (MCMC) exploration of the posterior

distributions of the transit parameters, together with a loose prior imposed on the

stellar density, naturally accounts for the eccentricity-dependent transit probability and

marginalizes over the periapse angle, yielding a tight measurement of a large orbital

eccentricity (Paper I).

Here we present the first eccentric, Jupiter-sized candidate from the Kepler sample:

Kepler Object of Interest (KOI) number 1474.01. We find that this eccentric candidate

also has large transit-timing variations (TTVs). In fact, the TTVs are so large that they

were likely missed by the automatic TTV-detection algorithms, as they were not listed

in a recent cataloging of TTV candidates (Ford et al. 2012; Ste↵en et al. 2012b). Ballard

et al. (2011) recently deduced the presence and planetary nature of the non-transiting

Kepler-19c from the TTVs it caused in the transiting planet Kepler-19b, demonstrating
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the viability of detecting non-transiting planets through TTVs. More recently, Nesvorný

et al. (2012) characterized a Saturn-mass non-transiting planet using this technique.

Thus the TTVs of 1474.01 may place constraints on the nature of an additional, unseen

companion, thereby elucidating the dynamical history of the system.

In Section 6.2, we present the light curve of KOI-1474.01. In Section 6.3,

we characterize the host-star KOI-1474 using Kepler photometry, ground-based

spectroscopy, and stellar evolution models. In Section 6.4, we estimate the candidate’s

false positive probability (FPP) to be 3.1%. In Section 6.5, we measure KOI-1474.01’s

large eccentricity, investigate its TTVs and the perturbing third body that causes them,

and measure the projected alignment of the transiting planet’s orbit with the host

star’s spin axis. In Section 6.6, we place KOI-1474.01 in the context of known hot

Jupiters, proto-hot Jupiters, and failed-hot Jupiters, and explore whether KOI-1474.01

is a failed-hot Jupiter that will retain its current orbit or a proto-hot Jupiter that will

eventually circularize at a distance close to the host star. We conclude in Section 6.7

by discussing the implications for planetary system formation models and suggesting

directions for future follow up of highly eccentric planets in the Kepler sample.
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Figure 6.1.—: Detrended light curves, color-coded by transit epoch, spaced with arbi-

trary vertical o↵sets. The top eight light curves are phased based on a constant, linear

ephemeris (Table 6.2, column 3), revealing the large TTVs. Each light curve is labeled ‘C’

with its best-fit mid-transit time (Table 6.2, column 3). In the second-from-the-bottom

compilation, each light curve is shifted to have an individual best-fitting mid-transit time

at t=0. The bottom points are the residuals multiplied by 10. Solid lines: best-fitting

eccentric model (Table 6.2, column 3).
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Figure 6.1.—: Continued
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6.2 KOI-1474.01: an Interesting Object of Interest

KOI-1474.01 was identified by Borucki et al. (2011) as an 11.3 R� candidate that transits

its 1.23 M�, 6498 K host star every 69.74538 days (Batalha et al. 2010). With a Kepler

bandpass magnitude K
P

= 13.005, the star is one of the brighter candidates in the

Kepler sample, making it amenable to follow up by Doppler spectroscopy. We retrieved

the Q0-Q6 data from the Multimission Archive at the Space Telescope Science Institute

(MAST) and detrended the light curve using AutoKep (Gazak et al. 2012). We identified

eight transits (Figure 6.1), which together reveal three notable properties:

1. When folded at a constant period, the transits are not coincident in phase. Indeed,

some fall early or late by a noticeable fraction of a transit duration.

2. The transit durations are short for a planet with such a long orbital period (the

total transit duration, from first to last contact, is T14=2.92 hours, or 0.17% of the

69.74538 day orbital period). Yet instead of the V shape characteristic of a large

impact parameter, the transit light curves feature short ingresses and egresses—

corresponding to a planet moving at 3 times the circular Keplerian velocity [based

on the Kepler Input Catalog (KIC) stellar parameters]—and a nearly flat bottom,

implying that either the planet has a large eccentricity or orbits a very dense

star (see Paper I). The candidate’s reported a/R
?

= 129.0525 ± 0.0014 (Borucki

et al. 2011) corresponds to a stellar density of 6⇢�, which is inconsistent with

main-sequence stellar evolution for all stars but late M-dwarfs. This implausibly

high density derived from a circular orbital fit to the light curve implies that the

planet has an eccentric orbit and is transiting near periapse (e.g. Figure 1 of Paper

I).

243



CHAPTER 6. ECCENTRIC KOI-1474.01

3. The in-transit data feature structures that may be caused by star spot crossings

(e.g. the bump in the purple, solid circle light curve marked C=377.739 in Figure

6.1). The ratio of scatter inside of transits to that outside of transits is about

1.2. If the star exhibits photometric variability due to the rotation of its spot

pattern, we may be able to measure the stellar rotation period and combine it with

other stellar parameters to constrain the line-of-sight component of the system’s

spin-orbit configuration (e.g. Sanchis-Ojeda et al. 2011; Nutzman et al. 2011;

Désert et al. 2011). If the star’s surface temperature were greater than or equal to

the KIC estimate of 6498 K (Batalha et al. 2010), we might expect the star to lack

a convective envelope (Pinsonneault et al. 2001) and star spots. Therefore the star

may be significantly cooler than this estimate.2

The light curve implies that the transiting candidate KOI-1474.01 may be an

eccentric planet experiencing perturbations from an unseen companion and with a

measurable spin-orbit alignment, an ideal testbed for theories of planetary migration.

However, in order to validate and characterize the candidate, first we must pin down the

stellar properties and assess the probability that the apparent planetary signal is a false

positive.

2However, Hirano et al. (2012) recently found photometric variability due to star spots for several hot

stars, including KOI-1464, which has a surface temperature of 6578±70 K, so the signatures of star spots

we notice are not necessarily inconsistent with KOI-1474’s KIC temperature.
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6.3 Host KOI-1474, a Rapidly-rotating F Star

The stellar properties of KOI-1474 are essential for validating and characterizing the

transiting candidate, but the parameters in the KIC are based on broadband photometry

and may be systematically in error, as noted by Brown et al. (2011b). Here we use a

combination of spectroscopy (Section 6.3.1), photometry (Section 6.3.2), and stellar

evolution models (Section 6.3.3) to characterize host star KOI-1474.

6.3.1 Stellar Temperature, Metallicity, and Surface Gravity

from Spectroscopy

John Johnson obtained two high signal-to-noise, high resolution spectra for KOI-1474

using the HIgh Resolution Echelle Spectrometer (HIRES) on the Keck I Telescope (Vogt

et al. 1994). The spectra were observed using the standard setup of the California Planet

Survey, with the red cross disperser and the 0.0086 C2 decker, but with the iodine cell out

of the light path (Johnson et al. 2012). The first observation was made with an exposure

time of 270 seconds, resulting in a signal-to-noise ratio (SNR) of ⇡ 45 at 6000 Å; the

second exposure was 1200 seconds long, resulting in a SNR ⇡ 90.

As described in Paper I, John Johnson used SpecMatch to compare the two spectra

to the California Planet Survey’s vast library of spectra for stars with parameters

from Spectroscopy Made Easy (SME; Valenti & Piskunov 1996; Valenti & Fischer

2005). The closest-matching spectrum is that of HD3861. In order to match KOI-1474

to this relatively slowly rotating F dwarf, John Johnson rotationally broadened the

spectrum of HD3861. The total line broadening for KOI-1474, vrot sin is = 13.6± 0.5
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km/s, is a combination of the HIRES instrumental profile, rotational broadening, and

broadening due to turbulence (macroturbulence being the dominant term, rather than

microturbulence: Valenti & Fischer 2005). John Johnson assumed that KOI-1474 has the

same macroturbulent broadening and instrumental profile as HD3861. Then he applied

additional rotational broadening to HD3861 using MORPH (Johnson et al. 2006) to

match the spectra of KOI-1474 using the rotational broadening kernel described by Gray

(2008). The vrot sin is for KOI-1474 is

vrot sin is =
q

(vrot sin is)2HD3861 + (vrot sin is)2broad

where (vrot sin is)HD3861 = 2.67 km/s is the known vrot sin is of HD 3861 (Valenti & Fischer

2005) and (vrot sin is)broad = 13.3 km/s is the additional rotational broadening applied

to the HD3861 spectrum to match the lines of KOI-1474. See Albrecht et al. (2011),

Section 3.1 for a discussion and demonstration of this technique for measuring vrot sin is.

Next, from a weighted average of the properties of HD 3861 and the other best

match spectra, John Johnson measured an e↵ective temperature Te↵ = 6240 ± 100 K,

surface gravity log g = 4.16 ± 0.20, and iron abundance [Fe/H] = 0.09 ± 0.15. These

measured values are consistent with the KIC estimates of Te↵ = 6498 ± 200 K and

log g = 4.08 ± 0.4 (with uncertainties estimated by Brown et al. 2011b) but are more

accurate and precise because they come from high-resolution spectroscopy rather than

broadband photometry. Based on the revised, cooler value for its e↵ective temperature,

KOI-1474 may indeed have a convective envelope and thus the structures in the transit

light curves (Figure 6.1) could be due to spots. Therefore spot-induced photometric

variability may allow us to measure the stellar rotation period Prot (Section 6.3.2),

which we can combine with other stellar parameters to infer the transiting candidate’s
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projected spin-orbit alignment (Section 6.5.2).
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Figure 6.2.—: Discrete-correlation-function (DCF, Edelson and Krolik 1988) for the long-

cadence Kepler Q0-Q6 KOI-1474 photometric, dataset as a function of time lag. The

peak at 4.6± 0.4 days corresponds to the stellar rotation period.

6.3.2 Stellar Rotation Period from Photometry

KOI-1474 appears to exhibit rotational photometric variability due to star spots, which

cause the star to appear brighter (dimmer) as the less (more) spotted hemisphere rotates

into view. We see what may be an e↵ect of these spots in the purple, solid circle light

curve marked C=377.739 in Figure 6.1: a bump during transit consistent with a planet

crossing a star spot. A periodogram (not shown) of the entire photometric dataset

(Q0-Q6) exhibits a prominent cluster of peaks near 5 days. However, a periodogram

is not the best tool to measure stellar rotation periods because: a) the photometric

variability is non-sinusoidal, and b) the spot pattern is not expected to remain coherent
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Figure 6.3.—: Posteriors (solid) of stellar radius (panel 1), mass (panel 2), and density

(panel 3) in solar units. The posteriors obtained from the prior alone (dashed gray) and

from the data alone (dotted) are plotted in each panel, demonstrating that our data

provide stronger constraints on the stellar parameters than do our priors.

over the entire 508-day dataset and thus the phase and amplitude of the best-fit sinusoid

change over the data’s timespan.

To obtain an optimal measurement of the stellar rotation period, we compute

the discrete-correlation-function (DCF, Equation 2 of Edelson & Krolik 1988), which

was recently used to measure the rotation period of Corot-7 (Queloz et al. 2009) and

Kepler-30 (Fabrycky et al. 2012b). First we detrended the data with the PyKE routine3

using co-trending vectors. Welsh (1999) found that it is crucial to remove long-term

trends from the time series before applying the DCF or biases may result. Then we

computed the DCF using the Institut für Astronomie und Astrophysik Tübingen DCF

routine,4 an IDL implementation of the DCF described in Edelson & Krolik (1988). The

possible range for the DCF is -1 to 1; the amplitude is normalized such that DCF = 1

indicates perfect correlation. We plot the DCF (computed with a lag range of 0.1 days

3Available at Kepler Guest Observer Home: http://keplergo.arc.nasa.gov

4Available at http://astro.uni-tuebingen.de/software/idl/aitlib/index.shtml
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to 20 days and with 200 frequencies) as a function of time lag in Figure 6.2. The DCF is

highest in the region lag < 0.2 days (i.e. lags that are small but greater than 0, for which

the DCF =1 by definition), indicating that most of the photometric variability occurs on

short timescales, most likely due to a combination of high-frequency stellar variability

and instrumental noise. However, we also see lower amplitude but pronounced peaks at

longer periods.

The DCF exhibits the variations we expect due to star spots. Imagine observing the

star at time t; the hemisphere in view has either more or fewer spots than the unseen

hemisphere. At time t+ Prot/2, the other hemisphere has fully rotated into view, so the

flux at t and t + Prot/2 are negatively correlated. Therefore, we interpret the negative

DCF near 2 days as corresponding to half the stellar rotation period. At time t + Prot,

we see the same hemisphere as at time t; therefore, we interpret the strong positive

correlation at lag 4.6 ± 0.4 days as the stellar rotation period, for which uncertainty

range corresponds to the width at half-maximum. The amplitude DCF = 0.1 indicates a

10% correlation between points separated in time by Prot. The other hemisphere rotates

fully into view again at t+ 3Prot/2, corresponding to the negative DCF at lag 7 days; at

lag 2Prot = 9 days, the DCF is positive again. This pattern continues, and the amplitude

would remain constant if the spot pattern were constant. However, the spot pattern

is changing over time, so the amplitude of the correlation “envelope” decreases with

time lag.5 The measured rotation period of 4.6 days is consistent with the distribution

measured for F, G, K stars by Reiners & Schmitt (2003); they find that the distribution

5Unfortunately, the decrease in the correlation amplitude with lag implies that we are unlikely to be

able to measure the stellar obliquity using the method of Sanchis-Ojeda et al. (2011) and Nutzman et al.

(2011). The spot cycle is likely shorter than the interval between subsequent transits.
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of projected rotation periods (i.e. the rotation periods measured from vrot sin is assuming

i
s

= 90�) peaks at 5 days.

6.3.3 Stellar Density from Evolution Models

The candidate’s orbital eccentricity, the ultimate quantity of interest, depends weakly

on the host star’s density (see Paper I and references therein). Thus it is important to

have an accurate, if not precise, estimate of the host star’s density and, importantly, a

conservative estimate of the uncertainty. For this task we use the finely-sampled YREC

stellar evolution models computed by Takeda et al. (2007), sampled evenly in intervals

of 0.02 dex, 0.02 M�, and 0.02 Gyr for metallicity [Fe/H], stellar mass M
?

and age ⌧
?

respectively. The model parameters are stellar age ⌧
?

, mass M
?

, and fractional metallicity

Z, and we wish to match the e↵ective temperature Te↵ , surface gravity log g, and [Fe/H]

measured spectroscopically in Section 6.3.3, along with their 68.2% confidence ranges

denoted by their “one-sigma errors” {�
Te↵

, �log g, �[Fe/H]}, respectively. In what follows,

the subscript “spec” refers to the spectroscopically measured quantity, while quantities

with no subscript are the model parameters.

Applying Bayes’ theorem, the model posterior probability distribution is

prob(M
?

, ⌧
?

, Z|Te↵,spec, [Fe/H]spec, log gspec, I) /

prob(Te↵,spec, [Fe/H]spec, log gspec|M?

, ⌧
?

, Z, I)prob(M
?

, ⌧
?

, Z|I) (6.1)

where I represents additional information available to us based on prior knowledge of

the Galactic stellar population.

The first term on the right hand side (RHS) is the likelihood, which we compute by
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comparing the e↵ective temperature, surface gravity, and metallicity generated by the

model to the values we measured from spectroscopy:

prob(Te↵,spec[Fe/H]spec, log gspec|M?

, ⌧
?

, Z, I)

/ exp

✓
�

�2
Te↵

2

◆
exp

 
�

�2
[Fe/H]

2

!
exp

✓
�

�2
log g

2

◆
(6.2)

where

�2
Te↵

=
[T (M

?

, ⌧
?

, Z)� Te↵,spec]
2

�2
Te↵,spec

�2
[Fe/H] =

h
[Fe/H](M

?

, ⌧
?

, Z)� [Fe/H]
,spec

i2

�2
[Fe/H],spec

�log g =
[log g(M

?

, ⌧
?

, Z)� log gspec]
2

�2
log g,spec

(6.3)

The second term on the RHS of Equation (6.1), prob(M
?

, ⌧
?

, Z|I), is the prior

information known about the model parameters. Here we make use of some additional

information I—the galactic latitude and longitude of the Kepler field and the measured

apparent Kepler magnitude of KOI-1474—to infer the relative probability of observing

di↵erent types of stars. A number of factors go into this probability, including the

present-day stellar mass function, the volume distribution and ages of stars along our line

of sight to the Kepler field, and the Malmquist bias. Fortunately, the TRILEGAL code

(TRIdimensional modeL of thE GALaxy; Girardi et al. 2005) synthesizes a large body

of observational, empirical, and theoretical studies to produce a model population of

stars in the Kepler field that are consistent with KOI-1474’s apparent Kepler magnitude

K
P

= 13.005 ± 0.030 (Batalha et al. 2010) and Galactic coordinates. From this model

population, we use a Gaussian kernel density estimator to compute a three-dimensional

density function for the prior prob(M
?

, ⌧
?

, Z|I).
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Each combination of Takeda et al. (2007) model parameters — (M
?

, ⌧
?

, Z) —

has a corresponding R
?

and L
?

, and we calculate the corresponding stellar density

⇢
?

= M?
M�

(R�
R?

)3 ⇢�. We compute the star’s absolute Kepler bandpass magnitude

K
P,absolute through the follow steps: we transform L

?

into a V magnitude using a

bolometric correction, transform V into the absolute Sloan magnitude g, and compute

the distance modulus using the di↵erence between the absolute g magnitude and the

apparent g magnitude from the KIC (Batalha et al. 2010). Then we apply the distance

modulus to the apparent K
P

to obtain K
P,absolute. Thus we can transform the model

posterior prob(M
?

, ⌧
?

, Z|Te↵,spec, [Fe/H]spec, log gspec, I) into posteriors for the stellar

stellar properties M
?

, ⌧
?

, R
?

, ⇢
?

, L
?

, and K
P,absolute (Table 6.1, column 3). In Figure 6.3

we plot the resulting posteriors for M
?

, R
?

, and ⇢
?

. We also plot the same distributions

obtained from the data alone and from the priors6 alone; evidently most of the constraint

comes from the data (i.e. the spectroscopic quantities).

6The M? prior probability appears truncated below M? = 0.78 in Figure 6.3 because we only compute

Takeda et al. (2007) models above this value. However, the likelihood completely rules out stars with

M? < 1M�.
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Table 6.1. Stellar Parameters for KOI 1474

Parameter Valuea

Measured Derived from model

Right ascension, RA (hour,J2000) 19.694530

Declination, Dec (degree,J2000) 51.184800

Projected rotation speed, v
rot

sin is [km s�1] 13.6±0.5

Stellar e↵ective temperature, T
e↵

[K] 6240±100 6230±100

Iron abundance, [Fe/H] 0.09 ±0.15 0.00 +0.16
�0.12

Surface gravity, log(g[cms�2] 4.16±0.20 4.23+0.13
�0.16

Limb darkening coe�cient, µ
1

b 0.320 ± 0.015

Limb darkening coe�cient, µ
2

b 0.304 ± 0.007

Main sequence age, ⌧? [Gyr] c 2.8+1.3
�1.2

Stellar mass, M? [M�] c 1.22+0.12
�0.08

Stellar radius, R? [R�] 1.40+0.37
�0.21

Stellar density, ⇢? [⇢�] 0.44+0.26
�0.20

Stellar luminosity, L? [L�] 2.7+1.6
�0.8

Apparent Kepler-band magnitude, KP 13.005 ± 0.030

Absolute Kepler-band magnitude, KP,absolute 3.6+0.4
�0.5

Distance (kpc) 0.78+0.23
�0.13

Rotation period, P
rot

[days] 4.6 ± 0.4

Rotation speed, v
rot

[km s�1] 14.7+2.6
�1.0

Sine of stellar spin axis inclination angle, sin is 0.93+0.06
�0.14

Stellar spin axis inclination angle, is[degree] 69+14

�17

Deviation of stellar spin axis from edge-on, |90� is [degree] 21+17

�14
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Table 6.1—Continued

Parameter Valuea

aThe uncertainties

represent the 68.3%

confidence interval of

the posterior distribu-

tion.
bSing 2010
cA prior was im-

posed on this param-

eter.

254



CHAPTER 6. ECCENTRIC KOI-1474.01

Table 6.2. Planet Parameters for KOI 1474.01

Parameter Valuea

Circular fit Eccentric fit

Average orbital period, P [days]b 69.7339±0.0016 69.7340±0.0015

Average mid transit epoch, Tc [days] [BJD-2455000] 238.273±0.011 238.273±0.010

Mid transit epoch of transit 1, T
1

[days] [BJD-2455000] -40.6701±0.0008 -40.6702±0.0009

T
2

[days] [BJD-2455000] 29.0600±0.0006 29.0600±0.0007

T
3

[days] [BJD-2455000] 98.7647±0.0006 98.7647±0.0007

T
4

[days] [BJD-2455000] 168.5752±0.0006 168.5752±0.0007

T
5

[days] [BJD-2455000] 238.3146±0.0005 238.3146±0.0007

T
6

[days] [BJD-2455000] 308.0092±0.0008 308.0092±0.0009

T
7

[days] [BJD-2455000] 377.7250±0.0006 377.7250±0.0007

T
8

[days] [BJD-2455000] 447.4555±0.0006 447.4555±0.0007

Planet-to-star radius ratio, Rp/R? 0.0618 +0.0007
�0.0003 0.0617 +0.0006

�0.0004

Stellar density, ⇢? 9.2 +0.4
�1.6 0.36c+0.30

�0.10

Orbital inclination, i [degree] 89.93 +0.05
�0.08 89.2 +0.4

�1.3

Limb darkening coe�cient, µ
1

c 0.314+0.018
�0.012 0.311+0.016

�0.012

Limb darkening coe�cient, µ
2

c 0.302 +0.006
�0.008 0.304+0.005

�0.009

Impact parameter, b 0.18+0.21
�0.12 0.14+0.25

�0.09

Planetary radius, Rp [R�] 9.5+2.4
�1.4

Normalized red noise, �r 0.00005+0.00007
�0.00003 0.00007+0.00005

�0.00005

Normalized white noise, �w 0.000131+0.000010
�0.000004 0.000134+0.000007

�0.000007

Eccentricity, e 0.81+0.10
�0.07

Orbital period after tidal circularization, P
final

14+6

�10
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Table 6.2—Continued

Parameter Valuea

Line-of-sight spin-orbit angle, |i� is| [degree] 21.+17

�14

aThe uncertainties represent the 68.3% confidence interval of

the posterior distribution.

bP and Tc are determined from a linear fit to the transit times.

The uncertainty in Tc is the median absolute deviation of the tran-

sit times from this ephemeris; the uncertainty P is this quantity

divided by the number of orbits between the first and last observed

transits.
cA prior was imposed on this parameter.
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The derived density for KOI-1474, 0.44+0.26
�0.20⇢�, has an uncertainty range

encompassing the KIC value of 0.26 ⇢� (Batalha et al. 2010). The star is significantly

less dense than the value of 6⇢� derived from a/R
?

in the table of candidates (Borucki

et al. 2011; Batalha et al. 2013) . Therefore, planet candidate KOI-1474.01 is likely to

have a large eccentricity, which we will measure in §6.5. Fortunately, as shown as Paper

I, even the loose constraint on the stellar density derived here will result in a precise

measurement of the candidate’s large orbital eccentricity.
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Figure 6.4.—: Sensitivity to o↵-axis sources in the immediate vicinity of KOI-1474 using

adaptive optics imaging observations with NIRC2 at Keck in the K’-band (�
c

= 2.12µm).

Figure courtesy of Justin Crepp.

6.4 False Positive Probability
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Figure 6.5.—: Three-dimensional probability distribution for the trapezoidal shape pa-

rameters (depth �, duration T , and “slope” T/⌧) for the nominal planet scenario. The

distributions are generated by simulating a statistically representative population (see

Morton 2012, Section 3.1) for the scenario and fitting the shape parameters to each

simulated instance. Each population begins with 100,000 simulated instances, and only

instances that pass all available observational constraints are included in these distribu-

tions. In this case, no additional observational constraints are available so the 100% of the

distribution remains. The transit’s shape parameters �, T , and T/⌧ are marked on each

plot with an “X” denoting the the median of an MCMC fit. Figure courtesy of Timothy

Morton.
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Figure 6.6.—: Same as Figure 6.5 for the HEB scenario. In this case, the upper-limit

of 200 ppm we place on the secondary eclipse depth eliminates 30.4% of the distribution

and limits from the Ks-band adaptive optics image eliminate 29.1% of the distribution,

leaving 40.5% remaining. Figure courtesy of Timothy Morton.
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Figure 6.7.—: Prior (top left), likelihood (top right), and final (bottom) probabilities for

four false positive scenarios — an undiluted eclipsing binary (“eb”), hierarchical eclipsing

binary (“heb”), background eclipsing binary (“bgeb”), and background planet (“bgpl”).

The priors and likelihoods are computed following Morton (2012). Each final probability is

the product of the scenario’s prior and likelihood, normalized so that the total probabilities

sum to 1. The quantity fpl,V indicates the specific occurrence rate for planets of this size

that we would need to assume in order for the FPP to be less than 0.5%. Since this rate,

fpl,V = 6.4%, is higher than our assumed fpl = 0.01, we do not consider the candidate

validated. Figure courtesy of Timothy Morton.
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Although a transiting planet may cause the photometric signal observed in light

curves (Figure 6.1), any of several scenarios involving stellar eclipsing binaries might

cause a similar signal. This is the well-known problem of astrophysical false positives for

transit surveys (e.g. Brown 2003; Torres et al. 2011). Traditionally transiting planets

have been confirmed through detection of their radial velocity (RV) signals. However,

the Kepler mission has necessitated a di↵erent paradigm: one of probabilistic validation.

If the false positive probability (FPP) of a given transit signal can be shown to be

su�ciently low (e.g. ⌧ 1%), then the planet can be considered validated, even if not

dynamically confirmed. Timothy Morton attempted to validate KOI-1474.01 but found

a 3.1% probability that the signal is due to an astrophysical false positive.

At first glance, the short duration of KOI-1474.01’s transit (Section 6.2) causes

particular concern: the signal could be a transit or eclipse of an object orbiting a smaller,

blended star, which would make the duration more in line with that expected for a

circular orbit. In order to calculate the FPP for KOI-1474.01, Timothy Forton followed

the procedure outlined in Morton (2012), which incorporates simulations of realistic

populations of false positive scenarios, the KIC colors, the measured spectroscopic stellar

properties, and a descriptive, trapezoidal fit to the photometric data.

To place constraints on blending by searching for nearby sources, Justin Crepp

obtained adaptive optics images of KOI-1474 on March 29, 2012 using NIRC2 (PI: Keith

Matthews) at the 10m Keck II telescopes. KOI-1474 is su�ciently bright to serve as its

own natural guide star (K
P

= 13.005) and therefore does not require the use of a laser

to correct for wavefront errors introduced by the Earth’s atmosphere. His observations

consist of 18 dithered images (10 coadds per frame, 2 seconds per coadd) taken in the K 0

filter (�
c

= 2.12µm). He used NIRC2’s narrow camera mode, which has a platescale of
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10 mas / pix, to provide fine spatial sampling of the stellar point-spread function.

Raw frames were processed by cleaning hot pixels, flat-fielding, subtracting

background noise from the sky and instrument optics, and coadding the results.

No o↵-axis sources were noticed in individual frames or the final processed image.

Figure 6.4 shows the contrast levels achieved from Justin Crepp’s observations. His

di↵raction-limited images rule out the presence of contaminants down to �K 0 = 5 mag

and �K 0 = 8 mag fainter than the primary star for separations beyond 0.2” and 0.7”

respectively.

Timothy Morton plots the probability distributions for the nominal planet scenario

in Figure 6.5, as well as for the most likely alternative to a transiting planet: an

hierarchical eclipsing binary (HEB) (Figure 6.6), in which KOI-1474 has a wide binary

companion of comparable brightness (within a few magnitudes) that is being eclipsed by

a small tertiary companion. The probability of the HEB scenario is 2.3%. In Figure 6.7,

Timothy Morton summarizes the prior, likelihood, and total probability of the nominal

transiting planet scenario compared to that of several false positive scenarios. The FPP

is:

FPP =
L
FP

L
FP

+ fP

0.01LTP

=
(0.002 + 0.029 + 0.000 + 0.000)

(0.002 + 0.029 + 0.000 + 0.000) + 0.01
0.010.969

= 0.031 (6.4)

where L
FP

is the sum of the probabilities of the false-positive scenarios, L
TP

is the

probability of the nominal planet scenario, and f
P

is the assumed specific occurrence

rate7 for planets between 5.7 and 11.3 R�. Although this FPP is low, we do not consider

it su�ciently low to validate the planet. In the analysis following in the remainder of the

7The assumed 1% occurrence rate is motivated by the debiased 1% occurrence rate for hot Jupiters in
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paper, we assume that KOI-1474.01 is a planet and refer to it as “planet,” but in fact

it remains a candidate planet. John Johnson is conducting a radial-velocity follow-up

campaign of this target to confirm this candidate by measuring its mass.

6.5 The Highly Eccentric Orbit of KOI-1474.01

In Section 6.3, we revised the stellar properties of KOI-1474 and found that the star’s

density indicates that the (validated) planet’s orbit is highly eccentric. To quantify

the eccentricity, we now model the light curves (Figure 6.1) with the Transit Analysis

Package software (TAP, Gazak et al. 2012) to obtain the posterior distribution for the

eccentricity and other transit parameters (Section 6.5.1), using the technique described

in Paper I. In Section 6.5.2, we place constraints on the spin-orbit alignment based on

stellar properties measured in Section 6.3.3. In Section 6.5.3, we assess the observed

TTVs and explore the nature of the third-body perturber.

6.5.1 Fitting Orbital Parameters to the Light Curve

Here we measure KOI-1474.01’s orbital parameters, including eccentricity, from the

transit light curves (Figure 6.1). We use TAP to fit a Mandel & Agol (2002) light

curve model, employing the wavelet likelihood function of Carter & Winn (2009).

We replace the parameter a/R
?

with ⇢
?

(Winn 2010, Equation 30) in the limit that

(M
?

+M
p

)/(43⇡R?

)3 ! ⇢
?

, but transform ⇢
?

into a/R
?

to compute the light curve model.

the RV sample (Wright et al. 2012). In order to produce a FPP of than 0.5%, fp would have be greater

than 6.4%. See Morton (2012) for a discussion of specific planet occurrence rates.
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Using the spectroscopic stellar parameters measured in Section 6.3.1 (Table 6.1, column

2), we calculate the limb darkening coe�cients µ1 and µ2 and their uncertainties with the

table and interpolation routine provided by Sing (2010). In all the orbital fits discussed

here, we impose normal priors on µ1 and µ2 (Table 6.1), which are well-measured for

the Kepler bandpass. We also verified that uniform priors on the limb darkening yield

consistent results (with slightly larger uncertainties) for all the orbital fits we perform.

The other light curve parameters we fit for are the mid-transit time of each light curve

T , the planet-to-stellar radius ratio R
p

/R
?

, the fractional white noise �
w

, the red noise

�
r

, the inclination i, and the argument of periapse !, with uniform priors on each of

these quantities.

Finally, to speed up the fit convergence, we explore parameter space using the

parameter g instead of the planet’s orbital eccentricity e. The parameter g corresponds

approximately to the ratio of the observed transit speed to the speed expected of a

planet with the same period but e = 0:

g(e,!) =
1 + e sin!
p

1� e2
=

✓
⇢
?

⇢circ

◆1/3

(6.5)

We impose a prior on g to maintain a uniform eccentricity prior (see Section 3.3.1

of Paper I for further details):

prob(g) =
sin2 !

�
sin2 ! � 1

�
+ g2

�
1 + sin2 !

�
± 2g sin!

p
sin2 ! � 1 + g2

p
sin2 ! � 1 + g2

�
g2 + sin2 !

�2 (6.6)

for which the + corresponds to g > 1 and the � to g < 1. We transform g into e to

compute the light curve model.
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First we fit a circular orbit (Table 6.2, column 2), fixing e = 0 and leaving free ⇢
?

,

to which we refer as ⇢circ. We find that: 1) although we only have long-cadence data for

KOI-1474 (Figure 6.1), ⇢circ and the impact parameter b are separately well-constrained

(see also Section 4.2 of Paper I for a discussion of long-cadence data), and 2)the ⇢
?

posterior computed from stellar properties in Section 6.3.3 (⇢
?

= 0.44+0.26
�0.20⇢�) falls far

outside the transit light curve posterior distribution for ⇢circ (⇢? = 9.2+0.4
�1.6⇢�, Figure 6.8,

top left panel), where the uncertainties indicate the 68.3% confidence interval. Thus a

circular fit is inconsistent with our prior knowledge of the stellar parameters.

Because the eccentricity depends only weakly on the assumed stellar density, the

eccentricity measurement we are about to perform is relatively robust to errors in

the assumed stellar density. When ⇢
?

> ⇢circ, the transiting planet has a minimum

eccentricity obtained by setting ! = ⇡/2 in Equation (6.5) (i.e. the planet transits at

periapse). Imagine that ⇢
?

were biased or in error. The fractional change in emin would

be:

�emin

emin
=

4

3

⇣
⇢?

⇢circ

⌘2/3
�

⇣
⇢?

⇢circ

⌘�2/3
�
�( ⇢?

⇢circ
)

( ⇢?

⇢circ
)

(6.7)

The ratio ⇢?

⇢circ
= 9.2

0.44 = 21, corresponding to emin = 0.77 and �emin
emin

= 0.18
�( ⇢?

⇢circ
)

( ⇢?
⇢circ

) . So

if the stellar density were biased upward by 10%, the minimum eccentricity would be

biased upward by only 1.8%. See Section 3.1 and Section 4.1 Paper I for a detailed

exploration of how the stellar density’s assumed probability distribution a↵ects the

eccentricity measurement.

Next we fit the light curve allowing the planet to have an eccentric orbit (Table 6.2,

column 3) and using the stellar density posterior from Section 6.3.3 as the stellar density

prior for the light curve fit. As argued in Paper I (Section 3), an MCMC exploration —
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as implemented in TAP — naturally accounts for the transit probability and marginalizes

over the uncertainties in other parameters. Even though e and ! are degenerate for a

given g (Equation 6.5), there is a lower limit on e, and the posterior falls o↵ gradually,

as e ! 1 and the range of possible ! satisfying Equation 6.5 narrows. The posterior

distributions for e and ! are plotted in Figure 6.8. We measure e = 0.81+0.10
�0.07. For

comparison, if we had set the stellar density prior to be uniform between 0.1⇢� � 0.2⇢�

(0.6⇢� � 1.2⇢�), we would measure e = 0.90+0.03
�0.03 (e = 0.73+0.15

�0.09).

By conservation of angular momentum, this planet would attain a final period

Pfinal(1 � e2)3/2 = 14+9
�10 days if it were to undergo full tidal circularization. In Section

6.6, we will discuss whether the planet is best classified as a proto-hot Jupiter — likely

to circularize over the star’s lifetime and achieve a short-period orbit — or a failed-hot

Jupiter, just outside the reach of fast tidal circularization.

6.5.2 Constraints on Spin-orbit Alignment

Whatever process perturbed KOI-1474.01 onto an eccentric orbit may have also tilted

the planet’s orbit from the plane in which it formed. With a temperature of 6240±100 K

(Section 6.3.1), KOI-1474 sits right on the 6250 K boundary between hot stars with high

obliquities and cool stars with well-aligned planets (Winn et al. 2010). However, if 1)

cool stars have low obliquities because their hot Jupiters have realigned the star’s outer

convective layer, as proposed by Winn et al. (2010), and 2) KOI-1474.01 is a failed-hot

Jupiter, with a tidal dissipation rate too low to experience significant circularization over

KOI-1474’s lifetime, then KOI-1474.01 may have also not yet realigned KOI-1474’s outer

layer. Ultimately we will wish to determine  , the total misalignment between the orbit
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normal and the host star spin axis, from three measured projected angles (Fabrycky

& Winn 2009; Schlaufman 2010): i, the inclination between the planet’s orbit and the

observer’s line of sight; the sky-projected spin-orbit angle �; and i
s

, the inclination

between the stellar spin axis and the line of sight. We measured i from the transit light

curve in Section 6.5.1 (Table 6.2). The sky-projected spin-orbit angle � could one day

be measured via the Rossiter-McLaughlin (RM) e↵ect (McLaughlin 1924; Rossiter 1924;

Queloz et al. 2000), the change in the observed radial velocity as a transiting planet

blocks portions of the star rotating toward or away from the observer. The e↵ect has

a maximum amplitude of about 50 m/s (Winn 2010, Equation 40) However, because

KOI-1474.01’s transits can occur early or late by over an hour, RM measurements of

KOI-1474.01 will remain challenging until the TTV pattern “turns over” in future Kepler

observations, allowing us to predict future transits to much higher precision (Section

6.5.3). We can measure the third projected angle, i
s

, from (vrot sin is)spec (Section

6.3.1) and the posteriors of Prot (Section 6.3.2) and R
?

(Section 6.3.3), an approach

that was recently applied by Hirano et al. (2012) to fifteen KOI systems. KOI-1474’s

rotational velocity is vrot =
2⇡R?
Prot

and we have measured the projected rotational velocity

(vrot sin is)spec. Therefore we can find the angle of that projection, i
s

. According to Bayes

theorem:

prob (Prot, R?

, i
s

|(vrot sin is)spec) = prob ((vrot sin is)spec|Prot, R?

, i
s

) prob (Prot, R?

, i
s

) .

(6.8)

The prior, prob (Prot, R?

, i
s

), is the product

prob (Prot, R?

, i
s

) = prob(Prot)prob(R?

)prob(i
s

)

where prob(Prot) is a normal distribution with mean 4.6 m/s and standard deviation 0.4

m/s (Section 6.3.2) and prob(R
?

) is the posterior from Section 6.3.3. Assuming stellar
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spin axes are randomly oriented throughout the Galaxy, the distribution of cos i
s

is

uniform and thus prob(i
s

) = 1
2 sin is.

Next, we integrate Equation 6.8 over Prot and R
?

to obtain the stellar inclination i
s

conditioned on our measured projected rotational velocity vrot sin is.

prob (i
s

|(vrot sin is)spec) =

Z Z
prob ((vrot sin is)spec|Prot, R?

, i
s

) prob (Prot, R?

, i
s

) dProtdR?

(6.9)

As a practical implementation of Equation (6.9) we randomly draw Prot and R
?

from

the distributions calculated in Section 6.3.2 and Section 6.3.3 respectively and i
s

from a

uniform distribution of cos i between 0 and 1. Drawing from these respective distributions

is equivalent to creating a grid in these parameters and subsequently downsampling

according to the prior probabilitities. Then we compute the likelihood

prob ((vrot sin is)spec|Prot, R?

, i
s

)

= exp

"
�

✓
2⇡R

?

Prot
sin i

s

� (vrot sin is)spec

◆2

/
⇣
2�2

(vrot sin is)spec

⌘#
(6.10)

where (vrot sin is)spec =13.6 m/s and �(vrot sin is)spec = 0.5 m/s (Section 6.3.1). Then we

select a uniform random number between 0 and 1; if the uniform random number is less

than prob ((vrot sin is)spec|Prot, R?

, i
s

) (Equation 6.10), we include the model (Prot, R?

, i
s

)

in the posterior. We repeat drawing (Prot, R?

, i
s

) models until we have thousands of

models that comprise the posterior.

We measure a projected angle for the stellar spin axis i
s

= 69+14
�17 degrees. Combining

the posterior of i
s

with the posterior of the planet’s inclination i (Section 6.5.1),we obtain

|i � i
s

| = 21+17
�14, for which the total uncertainty is dominated by the uncertainty in the

stellar radius. We list these angles in Table 6.2, and plot the posterior for the line-of-sight

spin-orbit angle |i � i
s

| in Figure 6.8 (top right panel). Our posterior distribution is
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consistent (within 2 �) with close alignment, yet allows misaligned configurations as

well. We also caution that di↵erential rotation may cause systematic errors in the

measured alignment, depending on the latitude of the spots (see Hirano et al. 2012,

Section 5.3 for a detailed discussion). Furthermore, the line-of-sight spin-orbit angle

|i � i
s

| o↵ers no constraint on whether the planet’s orbit is prograde or retrograde.

However, two types of future follow-up observations will allow us to better constrain the

planet’s orbit in three dimensions. First, additional constraints on the planet’s orbit

through radial-velocity measurements will in turn constrain the stellar radius, providing

a more precise measurement of |i � i
s

|. To this end we are currently conducting a

Doppler follow-up program at Keck with HIRES. Second, from the measurement of the

sky-projected spin-orbit angle � via the RM e↵ect, the total spin-orbit angle  can be

computed by combining � with a refined line-of-sight measurement |i� i
s

|.

6.5.3 Transit Timing Variations

The light curves in Figure 6.1 reveal large variations in the mid-transit times of

KOI-1474.01, which may be caused by perturbations from another planet or sub-stellar

companion. If KOI-1474.01 underwent HEM, this perturber may have been responsible.

Table 6.2 displays the mid-transit times from the orbital fits performed in Section 6.5.1.

There the best-fitting linear ephemeris is also given, from which the times deviate

significantly. In Figure 6.9, we plot an observed minus calculated (O-C) diagram of

the observed transit time minus the transit time calculated from a constant orbital

period. The scale and sharpness of the features in Figure 6.9 suggest a nearby giant

planet or brown dwarf perturber. We assume this perturber is on an exterior orbit,
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as KOI-1474.01’s eccentric orbit leaves little dynamical room interior to itself. John

Johnson undertaking a radial-velocity follow-up campaign (Johnson et al. 2013, in prep)

that may allow us to rule out an interior, Jupiter-mass companion.

The “jump” in the O-C diagram likely corresponds to the periapse passage of an

eccentric companion (Borkovits et al. 2003, 2004; Agol et al. 2005; Borkovits et al.

2011). Throughout its orbit, this perturbing companion creates a tidal force on the

orbit of the transiting planet. If the companion’s orbit is exterior to and within the

plane of the transiting planet’s, the tidal force increases the inner planet’s orbital period

or, equivalently, decreases the e↵ective mass of the central star (see Section 4 of Agol

et al. 2005 for a detailed derivation). The tidal force varies with the distance between

the perturber and star and is strongest when the perturber is at periapse. Therefore,

as the perturber approaches periapse, the transiting planet’s orbital period lengthens,

causing later and later transit arrival times, corresponding to the discontinuity seen in

Figure 6.9. The period of the TTV cycle corresponds to the perturbing planet’s orbital

period. The amplitude is set by the change in the tidal force (a combination of the

perturbing planet’s mass and periapse distance, which is a function of the eccentricity

and orbital period). The sharpness of the O-C depends on the perturber’s eccentricity —

whether the perturbation is the flyby of a companion on a highly eccentric orbit or the

gradual approach of a moderately eccentric companion. The transiting planet’s orbital

eccentricity also subtly a↵ects the shape of the O-C diagram, as explored in detail by

Borkovits et al. (2011). Our Figure 6.9 has a similar appearance to the TTVs produced

by Borkovits et al. (2011)’s analytical and numerical models of eccentric, hierarchal

systems.

Currently we do not have a long enough TTV baseline to uniquely model the
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Figure 6.8.—: Top left: ⇢circ obtained from circular fit to the transit light curve (solid) and

posterior for ⇢
?

from Section 6.3.3 (dashed); since the host star is not highly dense (i.e.

the two posteriors do not overlap), the planet’s orbit must be highly eccentric. Top right:

Posterior for projected spin-orbit alignment from an eccentric fit to transit light curve,

imposing a prior on ⇢
?

. Bottom left: Posterior distribution ! from an eccentric fit to

transit light curve, imposing a prior on ⇢
?

. Bottom right: Joint posterior for ! vs. e. The

black (gray, light gray) contours represent the {68.3, 95, 99}% probability density levels

(i.e. 68% of the posterior is contained within the black contour) Over-plotted as a black-

and-white dotted line is a histogram of the eccentricity posterior probability distribution

marginalized over !.
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Figure 6.9.—: Left: Observed mid transit times (purple dots) of the eight transits of

1474.01 with subtracted best fit linear ephemeris from the Section 6.5.1 transit light

curve model (Table 6.2, column 3). TTV predictions from the first (solid black, open

diamonds), second (red, open squares), and third (blue, open circles) dynamical model in

Table 6.3. All three models match the data well. Right: Same models as left plotted over

longer timespan; the models di↵er in their predictions for future O-C variations. Models

courtesy of Daniel Fabrycky.
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perturbing companion, as Nesvorný et al. (2012) achieved for the system KOI-857. Since

“jumps” in the O-C diagram correspond to the perturber’s periapse passage and we have

only seen one such jump, apparently the current TTVs cover less than one orbit of the

outer companion. Therefore we cannot well constrain the outer body’s orbital period.

The TTV amplitude – set by the tidal force on the transiter’s orbit – is well constrained

but depends on the perturber’s mass, orbital period, and eccentricity; therefore we

expect to find degeneracy among these quantities. Furthermore, the tidal force on the

transiter’s orbit depends on the mutual inclinations of the bodies. The tide due to a

polar position for the perturber would decrease the transiter’s orbital period; averaging

over the bodies’ positions, a very inclined perturber could be more massive and yet

produce a comparable amplitude perturbation.

Daniel Fabrycky explored a subset of all possible parameters for the perturbing

planet. With only eight transit times (Table 6.2), he had a great amount of freedom in

the fits, but it is still of interest whether or not a physical model of a perturber can fit

these data.8 Thus he proceeded with direct 3-body fits to the data. He did not expect

the TTVs to be sensitive to the mass of the transiting planet or the host star (Borkovits

et al. 2011; Nesvorný et al. 2012) so he fixed M
.01 = 1MJup and M

?

= 1.22M�. He fixed

the eccentricity and argument of periapse of KOI-1474.01 to various values consistent

with the light curve, then fit for the period P2, the conjunction epoch T0,2, e2 cos!2,

e2 sin!2, and the mass M2 of the perturbing body (denoted “2”). The fits are performed

8For example, Nesvorný et al. (2012) demonstrated that, as expected, they could not find a physically

plausible model when they scrambled their TTVs. Failure to find an orbital model that reproduces

the observed TTVs would cast suspicion on our interpretation that they are the signature of an unseen

companion.
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via a Levenberg-Marquardt algorithm driving a numerical integration that solves for

transit times (Fabrycky 2010).

Initially Daniel Fabrycky considered coplanar, edge-on orbits. This configuration is

consistent with the transiting planet, and although no transit of the perturbing body has

been observed, it may transit in future data or may be within a few degrees of edge-on,

which would make little di↵erence to the TTVs. He first allowed all 5 parameters of

the outer planet to float freely, finding the best fits at each value. He performed two

fits (Table 6.3, rows 1-4), one with KOI-1474.01 transiting at periapse and another with

it transiting at semilatus rectum. Both fits are acceptable, so he found that he cannot

currently use TTVs to distinguish these possibilities. In Figure 6.9, we plot the O-C

variations generated by Daniel Fabrycky’s two models. In both cases, the perturber is

a giant planet on a moderately eccentric orbit with a roughly Martian orbital period.

He repeated both these fits with a fixed mass of 100MJup for KOI-1474.01 and found,

as expected, that the solutions were similar, with only a slightly larger (⇠ 20%) best-fit

mass for the perturber.

Next he performed a fit for which the transiting planet and the perturbing body

have a 124� mutual inclination, a possible outcome of the secular chaos HEM mechanism

(Naoz et al. 2011). As discussed above, non-coplanar orbits allow for a more massive

perturbing companion. This fit (Table 6.3, row 5-6), featuring a 24.3 MJup brown dwarf

companion with a one-thousand day orbital period and moderate eccentricity, is an

excellent match to the observed TTVs and is plotted in Figure 6.9. In contrast to the

coplanar fits, this model predicts deviations not only in the central transit times but in

the duration of the transits (e.g. Miralda-Escudé 2002; Nesvorný et al. 2012), due to a

secular variation in the transiting planet’s duration. However, the small transit duration
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Table 6.3. Parameter values for TTV fits, courtesy of Daniel Fabrycky. Fixed in all fits

are M
?

= 1.22M�, M.01 = 1MJup, i.01 = 90�, and ⌦
.01 = 0�. Orbital elements are

Jacobian elements (the outer body’s orbit referred to the center-of-mass of the star and

the planet) defined at dynamical epoch BJD 2455200. Table and fits courtesy of Daniel

Fabrycky.

P.01 T.01[BJD-2455000] e01 !.01 P2 T2[BJD-2455000] e2 cos!2 e2 sin!2 M2 (MJup) i2 ⌦2 �

2

[days] [days] [days] [days]

69.709474 238.271516 0.74 90� 660.7 496.0 -0.0092 -0.1824 6.66 90� 0� 4.65

±0.001696 ±0.002734 fixed fixed ±21.0 ±7.2 ±0.0105 ±0.0192 ±0.34 fixed fixed

69.721695 238.150714 0.90 180� 643.8 304.81 0.148 -0.0496 5.82 90� 0� 2.62

±0.002548 ±0.004422 fixed fixed ±50.6 ±2.31 ± 0.059 ±0.0103 ±0.98 fixed fixed

69.749706 238.303853 0.74 90� 1038.0 841.9 -0.0681 -0.3567 24.28 60� 130� 0.01

±0.000499 ±0.000672 fixed fixed ±38.5 ±21.3 ±0.0078 ±0.0148 ±0.41 fixed fixed
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variations predicted by this model would not be significantly detected in the current

data and, depending on the impact parameter, may or may not be detectable in by the

Kepler extended mission. Comparing the goodness of this fit to the two coplanar ones,

Daniel Fabrycky saw the he could neither distinguish the orbital plane of the third body,

nor limit its mass to the planetary regime.

In all three cases, we see in the integrations that, as expected, the “jumps” in the

TTVs correspond to the companion’s periapse passage. In the right panel of Figure 6.9,

we plot the TTVs9 into the future. Additional transits in the Q7-Q12 data scheduled

for future public release and through the Kepler extended mission may allow us to

distinguish among them, as well as the many other possible models among which we

cannot distinguish currently. We have used the Bulirsch Stoer integrator in Mercury

(Chambers 1999) to confirm that all three fits described here are dynamically stable

over 10 Myr, with no planet-planet scattering occuring during this interval. The fits

do not rule out past planet-planet scattering: in the context of HEM, the bodies could

have undergone scattering in the past and subsequently stabilized as KOI-1474.01’s

orbit shrank through tidal dissipation. We note that the transiting planet’s eccentricity

undergoes secular variations and, in the case of the first two fits, the current e01 is not

the maximum and thus the planet experiences enhanced tidal dissipation during other

parts of the secular cycle. We discuss this behavior further in the next section, in which

we consider whether KOI-1474.01 is a failed- or proto-hot Jupiter. We defer exhaustive

exploration of the parameter space of the three body model until more data are available,

9In plotting these extended models, we have slightly adjusted the linear ephemeris of the transiting

planet to remain consistent with the data while keeping future O-C variations centered at 0. Otherwise

the predicted di↵erences between the three di↵erent models appear misleadingly large.
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including additional transit times that extend the baseline to cover the perturber’s

subsequent periapse passage and complementary constraints on the perturber’s mass,

period, and eccentricity from planned radial-velocity measurements. However, the

possibilities illustrated here show that pinning down the perturber’s mass and orbit will

likely reveal clues about the past mechanism of HEM and the future fate of KOI-1474.01.

6.6 KOI-1474.01: a Proto- or Failed-hot Jupiter?

KOI-1474.01 is a highly eccentric, Jupiter-sized planet being perturbed by an unseen

companion, the “smoking gun” that may have been responsible for KOI-1474.01’s HEM.

The transiting planet might be either a proto-hot Jupiter that will achieve a short period,

low eccentricity orbit via tidal dissipation over its host star’s lifetime or a failed-hot

Jupiter, too far from its star to experience significant tidal dissipation. If the planet is a

failed-hot Jupiter, it is destined to spend the remainder of its host star’s lifetime in the

“period valley” (Jones et al. 2003; Udry et al. 2003; Wittenmyer et al. 2010), between

the region where it formed (beyond 1 AU) and the hot Jupiter region (P < 10 days

⇡ 0.091 AU).

S12 predicted the discovery of super-eccentric hot Jupiter progenitors among the

Kepler candidates based on the following argument. A Jupiter kicked to a small periapse

via one of several proposed HEM mechanisms will enter the proto-hot Jupiter stage.

Assuming that a steady flux of hot Jupiters are being spawned throughout the Galaxy,

there must exist a steady-state stream of highly eccentric planets on their way to

becoming the population of hot Jupiters thus far observed. The tidally-decaying Jupiters

follow tracks of constant angular momentum: Pfinal = P (1 � e2)3/2, where P and e are
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the values corresponding to any time during the circularization process.

To predict the number of highly-eccentric proto-hot Jupiters that Kepler will

discover, S12 used the Exoplanet Orbit Database (EOD) sample of planets withM
p

sin i >

0.25MJup and Pfinal < 10 days (Wright et al. 2011, http://www.exoplanets.org). The

Pfinal cut-o↵ is motivated by the excess of currently known Jupiter-mass planets on

circular orbits with P < 10 days. They computed the fraction of Jupiters in the ranges 3

< Pfinal < 5 days and 5 < Pfinal < 10 days that are moderately eccentric (0.2 < e < 0.6).

Next they multiplied these fractions by the total number of Jupiter-sized (R > 8R�)

Kepler candidates in these two Pfinal ranges, yielding the predicted number of moderately

eccentric Kepler Jupiters. Finally, they use the Hut (1981) tidal equations to compute

the relative number of highly eccentric to moderately eccentric Jupiters at a given Pfinal

and predict 5-7 super eccentric Jupiters in the Kepler sample with e > 0.9 and P < 93

days.

Because of the uncertainty in KOI-1474.01’s eccentricity, we cannot definitively say

whether it is one of the super-eccentric Jupiters predicted by S12. From our orbital fits

in Section 6.5.1, we derive a Pfinal posterior distribution of which 42% have Pfinal < 10

days and 19% have Pfinal < 5 days. Therefore, the evidence only slightly favors the

interpretation that KOI-1474.01 is a failed-hot Jupiter with a Pfinal > 10 days. Follow-up,

high-precision radial velocity measurements may allow us to constrain KOI-1474.01’s

eccentricity even more tightly and confirm or rule out e > 0.9 and Pfinal < 10 days.

Furthermore, the perturbing companion may cause secular variations in KOI-1474.01’s

eccentricity (Section 6.5.3), boosting the tidal circularization rate during intervals of

higher eccentricity; additional constraints on the perturber’s identity may one day allow

us to explore this e↵ect.
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In Figure 6.10, we display KOI-1474.01 (gray circle) in the context of the current

sample of Jupiter-sized and Jupiter-mass planets. We plot the quantity (1� e2) vs. a to

allow us to overlay tracks of constant angular momentum while visually distinguishing

high vs. low eccentricities. An afinal track is the path through phase space that a

particular Jupiter follows during its tidal evolution; a Jupiter’s current afinal defines its

angular momentum and remains constant as the Jupiter undergoes tidal circularization.

The solid, black lines represent tracks of angular momentum corresponding to

afinal = 0.057, 0.091 AU, i.e. Pfinal = 5, 10 days around Sun-like stars. Any Jupiter

along an afinal track will stay on that track, reaching a = afinal as its e ! 0. The

other symbols represent planets with M
p

sin i > 0.25MJup, 0.7M� < M
?

< 1.3M�, and

measured eccentricities from the EOD (Wright et al. 2011). The median of KOI-1474.01’s

eccentricity posterior places the planet in the period valley from 0.1 < a < 1 AU,

along with about a dozen other eccentric Jupiters. At one-sigma, KOI-1474.01 may be

within (i.e. to the left of) the afinal < 0.057 AU track (i.e. will end up at a semi-major

axis less than 0.057 AU if it fully circularizes), like the poster-planet of high eccentricity,

HD 80606 b (red square).

However, KOI-1474.01’s ultimate fate is determined not only by Pfinal but by its

tidal circularization rate; even if the planet has Pfinal < 10 days, it will not become

a hot Jupiter unless it can circularize over its host star’s lifetime. A hot Jupiter’s

tidal circularization rate depends on a combination of orbital properties and physical

planetary and stellar properties. Following Eggleton et al. (1998) and Hansen (2010)

— and neglecting the e↵ects of the planet’s spin and tides raised on the star — a
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Figure 6.10.—: Distribution (1 � e2) vs. semimajor axis for known exoplanets from the

EOD with 0.7M� < M
?

< 1.3M�, measured eccentricities, M
p

sin i > 0.25MJup, and

with apoapses beyond 0.9 AU (blue, downward triangles) or within 0.9 AU (red, upward

triangles) (Wright et al. 2011, http://www.exoplanets.org). The gray circle marks

KOI-1474.01, with the asymmetric gray error bars representing the 1-sigma (dark gray),

2-sigma (light gray) confidence interval of KOI-1474.01’s eccentricity. HD 80606 b is

denoted with a red square symbol. The solid black lines are tracks of constant angular

momentum corresponding to afinal = 0.057, 0.091AU; each indicates a track that a single

Jupiter follows through phase space as it undergoes tidal circularization and maintains a

constant angular momentum. As it fully circularizes (e ! 0), a Jupiter ends up at the top

of the track at 1�e2 = 1. The purple, dashed lines represent constant tidal circularization

rates corresponding to acirc = 0.057, 0.091AU (Equation 6.13). A group of Jupiters that

lie along a particular purple acirc line is undergoing tidal circularization at the same rate.
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tidally-circularizing planet’s eccentricity e-folding time is:

e

ė
= �

a8(1� e2)13/2M
p

63M2
?

R10
p

f
e

�
P

(6.11)

where �
P

is the planet’s internal dissipation constant and

f
e

=
1 + 45

14e
2 + 8e4 + 685

224e
6 + 255

448e
8 + 25

1792e
10

1 + 3e2 + 3
8e

4
' 1 + 2.63e3 (6.12)

Note that the tidal circularization timescale e/ė depends steeply on the planet’s

semimajor axis and eccentricity, but only weakly on physical stellar and planetary

parameters10. Therefore we might expect to see a signature of tidal circularization in our

1� e2 vs. a plot even neglecting the di↵erence in physical properties among the planets

plotted.

First imagine if all the planets underwent HEM at once and have tidally evolved

for time t. A certain curve in (1 � e2) vs. a space, acirc(a, 1 � e2), represents the

circularization time (Equation 6.11) equal to t. We would expect this curve to envelope

the still-eccentric Jupiter population, because all planets to the left of the curve (i.e. with

1 � e2 less than the curve for a given semi-major axis) would have already undergone

an e-folding’s worth of circularization. The semi-major axis a = acirc would be the edge

of the circular population we call “hot Jupiters,” planets for which t was a su�cient

10The other parameter raised to a large power is R10

p . Most objects with M > 0.25M
Jup

— from

Jupiters to brown dwarfs — have Rp ⇡ R
Jup

; the R10

p term varies by a factor of 60 from 1 Jupiter

radius to 1.5 Jupiter radius. However, in practice we find if that we normalize a by (Rp/RJup

)5/4 for

planets with known radii, Figure 6.10 does not change significantly. The circularization rate’s strong

dependence on a dominates, because a undergoes large fractional changes throughout the hot Jupiter

region, with a change in semimajor axis of 0.02 AU corresponding to an order of magnitude change in

the tidal circularization timescale.
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amount of time to circularize. In reality, proto-hot Jupiters are being continuously

spawned as new stars are born and as Jupiters undergo HEM. However, because of the

steep a tidal dependence – with the tidal circularization timescale changing by an order

of magnitude roughly every 0.02 AU in the hot Jupiter region — we still expect to see an

acirc boundary, corresponding to a circularization time equal to a typical stellar lifetime.

To the left of this this acirc boundary would be only true proto-hot Jupiters, caught in

the act of tidal circularization. With a detailed accounting for observational bias and the

relatively weak e↵ects of the planets’ di↵erent physical properties, one could predict the

relative number of proto-hot Jupiters on each acirc curve (e.g. Hansen 2010).

Solving Equation (6.11) for (1� e2), we can combine all the constants — including

the timescale e/ė — into acirc and rewrite:

(1� e2)f�2/13
e

=
⇣acirc

a

⌘16/13
(6.13)

where acirc represents the distance within which circular hot Jupiters have arrived

via tidal dissipation. For small eccentricities, the factor of f
e

is negligible. For large

eccentricities, we can solve Equation (6.13) numerically for (1� e2). We plot acirc curves

– along which all Jupiters have a similar tidal circularization rate – in Figure 6.10

as purple dashed lines. We emphasize that although the black afinal lines and purple,

dashed acirc lines Figure 6.10 are close together, their physical interpretation is di↵erent:

the quantity acirc represents a proxy for the tidal circularization rate, whereas afinal is

a track that an individual Jupiter follows as it undergoes tidal circularization obeying

conservation of angular momentum. If the tidal evolution according to Eggleton et al.

(1998) that yielded Equation 6.13 is a good approximation, then acirc may be the best

quantity to consider for the cut-o↵ between proto- and failed-hot Jupiter.
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Since we see a pile-up of circular hot Jupiters and no Jupiters with 1 � e2 < 0.9

to the left of the purple dashed line acirc < 0.057 AU (P = 5 days around a Sun-like

star), this may represent the timescale at which circularization happens over a fraction

of a stellar lifetime. Under this interpretation, HD 80606 b’s identity as a proto-hot

Jupiter is not certain: it lies between acirc = 0.057 AU and acirc = 0.091 AU, along

with several other eccentric Jupiters that have yet to circularize. Using the internal

dissipation constant �
P

= 3.4⇥ 10�7(5.9⇥ 10�54)g�1cm�2 derived by Hansen (2010), the

cut-o↵ is even stricter: a Jupiter-like planet around a Sun-like star would only undergo

an e-folding’s worth of circularization over 10 Gyr if it had acirc < 0.034 AU. However,

we note that Hansen (2010) derived the tidal dissipation constant under the assumption

that proto-hot Jupiters, upon beginning their tidal circularization, have eccentricities

drawn from a normal distribution with a mean e = 0.2 and standard deviation of 0.25.

If the starting eccentricities are larger — as assumed by S12 for proto-hot Jupiters — a

larger dissipation constant may be necessary to match the observed hot Jupiter sample.

In order for a 10 Gyr e-folding time to correspond to acirc = 0.057 AU, the dissipation

constant would need to be larger by a factor of 60.

The two-sigma upper limit on KOI-1474’s eccentricity places the planet within

acirc < 0.057 AU, but the two-sigma lower limit places it well beyond this boundary. The

host star’s age ⌧
?

is currently poorly constrained (Section 6.3.3), and we do not know how

recently the planet underwent HEM. However, if the assumptions behind the discussion

above are correct, the steep dependence of the tidal circularization rate on a and e means

that most Jupiters within acirc < 0.057 AU would have circularization timescales ⌧ ⌧
?

and most Jupiters beyond acirc > 0.057 would have circularization timescales � ⌧
?

. Thus

the planet’s fate is not sensitively dependent on either the star’s age or when the planet

283



CHAPTER 6. ECCENTRIC KOI-1474.01

underwent HEM; the more important quantity to pinpoint is e.

Finally, we note that the expected number of proto-hot Jupiters depends on the

timescale for the S12 assumption of steady production. Consider the following two

possibilities for the dominant HEM mechanism:

• HEM typically occurs on a short timescale compared to the stellar lifetime (for

example, immediately as the gas disk has dissipated). Since we cannot detect

planets via the transit or radial-velocity method around very young stars due to

their enhanced activity, we would miss most proto-hot Jupiters, except for those in

the small sliver of parameter space for which tidal circularization timescale is of

order one stellar lifetime.

• HEM typically occurs on a timescale comparable to the stellar lifetime. In this

case, we would expect to see proto-hot Jupiters at every acirc, with the relative

number of eccentric Jupiters (accounting for observational biases) set by the tidal

circularization timescale corresponding to that acirc.

The timescale of HEM depends on which HEM mechanism is at play and on the

typical initial architectures of planetary systems (e.g. for the planet-planet scattering

mechanism, how tightly packed the initial configuration is). Therefore, the discovery of

definitive proto-hot Jupiters would not only reveal that HEM occurs but also constrain

the details of the dominant HEM mechanism. If the highly eccentric planets we find are

clustered at a single acirc — which would correspond to a tidal circularization timescale

of order the stellar lifetime — then we would conclude that HEM usually occurs early in

a planetary system’s history. But if highly eccentric planets are found at a range of acirc
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— including acirc within (i.e. to the left of) which most planets have circularized — then

we would conclude that HEM typically occurs throughout a planetary system’s history.

6.7 Discussion and Future Directions

We have identified KOI-1474.01 as a highly eccentric, Jupiter-sized planet using

a combination of a detailed analysis of the light curve shape and the statistical

validation procedure of Morton (2012). This makes KOI-1474.01 the second planet or

planet candidate with an eccentricity measured solely via the duration aspect of the

“photoeccentric e↵ect,” joining KOI-686.01 whose eccentricity we measured in Paper I.

We measured one component of the angle between the stellar spin axis and the planet’s

orbit, finding that the degree of misalignment is not currently well-constrained. Based

on the variations in KOI-1474.01’s transit times, we explored the identity of a perturbing

companion; we found the TTVs to be consistent with perturbations from a massive,

eccentric outer companion but could not uniquely constrain the perturber’s mass, period,

eccentricity, and mutual inclination with the currently available data. However, the main

reason the perturber’s parameters are poorly constrained is that we have only witnessed

perturber periapse passage; we are likely to witness another periapse passage over the

timespan of the Kepler mission, potentially allowing us to distinguish between possible

perturbers, including a coplanar giant planet vs. a brown dwarf with a large mutual

inclination.

Because of the uncertainty in KOI-1474.01’s measured orbital eccentricity and

possible secular variations in that eccentricity due to the perturbing companion, it is not

yet clear whether KOI-1474.01 is a proto-hot Jupiter — with a periapse close enough to
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its star that the planet will undergo full tidal circularization over the star’s lifetime — or

a failed-hot Jupiter, just outside the reach of fast tidal circularization. However, either

way, the planet’s discovery adds to the growing evidence that HEM mechanisms play

a major role in shaping the architecture of planetary systems. The broad eccentricity

distribution of extrasolar planets (Jurić & Tremaine 2008), the sculpting of debris disks

by planets on inclined and eccentric orbits (e.g. Mouillet et al. 1997; Thommes et al.

1999; Augereau et al. 2001; Quillen 2006; Levison et al. 2008; Chiang et al. 2009; Dawson

et al. 2011; Dawson & Murray-Clay 2012), the population of free-floating planets (Sumi

et al. 2011), and the large mutual inclinations measured in the Upsilon Andromeda

system (McArthur et al. 2010) all point to a dynamically violent youth for planetary

systems. But the strongest evidence for HEM comes from hot Jupiters themselves —

their existence and, in many cases, misaligned or retrograde orbits (e.g. Winn et al.

2009a; Johnson et al. 2011a; Triaud 2011).

As a proto- or failed-hot Jupiter, KOI-1474.01 plays the crucial role of linking hot

Jupiters, which are intrinsically rare, to other planetary systems. Even though they

make up only a small percentage of the planet population (Howard et al. 2010; Youdin

2011; Howard et al. 2012b; Mayor et al. 2011; Wright et al. 2012) we focus attention on

hot Jupiters because, like meteorites discovered in Antarctica, they are known to come

from somewhere else, bringing with them vital information about the past. In contrast,

we do not know whether planets at greater orbital distances or of smaller sizes underwent

migration, or if they formed in situ (e.g. Veras et al. 2009; Hansen & Murray 2012).

Moreover, the HEM mechanisms for producing hot Jupiters — including planet-planet

scattering (Nagasawa & Ida 2011), the Kozai mechanism (Wu & Murray 2003; Fabrycky

& Tremaine 2007a; Naoz et al. 2011), dynamical relaxation (Jurić & Tremaine 2008),
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and secular chaos (Wu & Lithwick 2011) — make specific predictions for the inclination

distributions of hot Jupiters, which can be probed via the Rossiter-McLaughlin e↵ect.

The existence of proto- and failed-hot Jupiters will allow us to argue that the mechanisms

for producing hot Jupiters are, more generally, the mechanisms that sculpt many types

of planetary systems, particularly those with giant planets within 1 AU.

The KOI-1474 system—an inner proto- or failed-hot Jupiter with a massive,

long-period companion—may be the prototype of systems of hot Jupiters with distant,

massive, outer companions, including as HAT-P-13 (Bakos et al. 2009), HAT-P-17

(Howard et al. 2012a; a hot Saturn), and Qatar-2 (Bryan et al. 2012). Bryan et al. (2012)

present a compilation of the eight other hot Jupiters with known outer companions.

HD 163607 (Giguere et al. 2012) resembles KOI-1474.01 in that it harbors both an

eccentric inner planet (e = 0.73, P = 75.29 days) and an outer companion (in this

case, a massive outer planet); however, inner planet HD 163607 b is very likely a

failed-hot Jupiter, as it has Pfinal = 24 days. The expanding baseline for radial-velocity

measurements may reveal additional, long-period outer companions of other hot Jupiters,

proto-hot Jupiters, and failed-hot Jupiters (Wright et al. 2009). These additional

companions may have been the culprits responsible for the HEM of their inner brethren.

Moreover, although Ste↵en et al. (2012a) examined the transit timing variations of

Kepler hot Jupiters and found no evidence for nearby massive planets, the extended

Kepler Mission will allow for the detection of distant companions, should they exist,

through TTVs.

Through radial-velocity follow up with Keck/HIRES we will measure the mass

of KOI-1474.01, tighten the measurement of its high eccentricity, place additional

constraints on the outer companion, and potentially discover additional bodies in the
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system. Assuming a Jupiter-like composition to estimate a mass for KOI-1474.01 of

M
p

⇡ MJup, host star KOI-1474 would have an radial velocity semiamplitude of ⇠ 70 m

s�1, feasible for detection using Keck/HIRES. We will then combine the RV-measured

eccentricity with the transit light curves to more tightly constrain the stellar parameters,

yielding a better constraint on the planet’s line-of-sight spin-orbit angle |i � i
s

|, which

is currently ambiguous due to uncertainty in the stellar radius. It may even be possible

to detect the Rossiter-McLaughlin e↵ect, which has a maximum amplitude of ⇡ 50 m/s

(Winn 2010, eqn. 40). Although RV measurements of such a faint star (K
P

= 13.005)

pose a challenge, Johnson et al. (2012) have demonstrated the feasibility of following up

faint Kepler targets with their measurements of KOI-254, a much fainter, redder star

(K
P

= 15.979).

KOI-1474.01 contributes to the growing sample of proto- and failed-hot Jupiters.

From an estimate of the unbiased number of proto-hot Jupiters, we can determine

whether HEM accounts for all the hot Jupiters observed, or whether another mechanism,

such as smooth disk migration, must deliver some fraction of hot Jupiters. (See Morton

& Johnson 2011a for the statistical methodology necessary for such a measurement.)

Transiting failed-hot Jupiters orbiting cool stars will be valuable targets for testing the

obliquity hypothesis of Winn et al. (2010) that hot Jupiters realign cool stars: we would

expect failed-hot Jupiters - which have long tidal friction timescales — to be misaligned

around both hot and cool stars.

Designed to search for Earth twins in the habitable zones of Sun-like stars, Kepler

is revealing a wealth of information about the origin of the most unhabitable planets of

all: hot Jupiters. Kepler’s precise photometry, combined with a loose prior on the stellar

density, allow us to measure the eccentricities of transiting planets from light curves
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alone and to search for the highly eccentric proto- and failed-hot Jupiters we would

expect from HEM but not from smooth disk migration (S12). If our basic understanding

of HEM and tidal circularization is correct, KOI-1474.01 is the first of a collection of

highly eccentric planets that will be discovered by Kepler .
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Chapter 7

A Paucity of Proto-hot Jupiters on

Supereccentric Orbits,

R. I. Dawson, J. A. Johnson, & R. A. Murray-Clay submitted to The Astronomical

Journal, arXiv:1211.0554

Abstract

Gas giant planets orbiting within 0.1 AU of their host stars, unlikely to have formed in

situ, are evidence for planetary migration. It is debated whether the typical hot Jupiter

smoothly migrated inward from its formation location through the proto-planetary

disk or was perturbed by another body onto a highly eccentric orbit, which tidal

dissipation subsequently shrank and circularized during close stellar passages. Socrates

and collaborators predicted that the latter class of model should produce a population

of super-eccentric proto-hot Jupiters readily observable by Kepler. We find a paucity
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of such planets in the Kepler sample, inconsistent with the theoretical prediction with

95.8% confidence. Observational e↵ects are unlikely to explain this discrepancy. We

find that the fraction of hot Jupiters with orbital period P > 3 days produced by

the stellar binary Kozai mechanism does not exceed (at two-sigma) 33%. Our results

may indicate that disk migration is the dominant channel for producing hot Jupiters

with P > 3 days. Alternatively, the typical hot Jupiter may have been perturbed to

a high eccentricity by interactions with a planetary rather than stellar companion and

began tidal circularization much interior to the ice line after multiple scatterings. A

final alternative is that tidal circularization occurs much more rapidly early in the tidal

circularization process at high eccentricities than later in the process at low eccentricities,

contrary to current tidal theories.

7.1 Introduction

Roughly 1% of Sun-like stars host hot Jupiters, giant planets with small semi-major axes

(Mayor et al. 2011; Howard et al. 2012b; Wright et al. 2012). Unlikely to have formed

in situ, hot Jupiters are evidence for the prevalence of planetary migration, which may

take place via interactions with the proto-planetary disk (e.g. Goldreich & Tremaine

1980; Ward 1997; Alibert et al. 2005; Ida & Lin 2008; Bromley & Kenyon 2011), or other

bodies in the system. One or more companions can create a hot Jupiter by perturbing

a cold Jupiter onto an eccentric orbit, which tidal forces shrink and circularize during

close passages to the star. Proposed mechanisms for this “high eccentricity migration”

(HEM) include Kozai oscillations induced by a distant stellar binary companion (e.g.

Wu & Murray 2003; Fabrycky & Tremaine 2007a; Naoz et al. 2012) or by another planet
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in the system (Naoz et al. 2011; Lithwick & Naoz 2011), planet-planet scattering (e.g.

Rasio & Ford 1996; Ford & Rasio 2006; Chatterjee et al. 2008; Ford & Rasio 2008; Jurić

& Tremaine 2008; Matsumura et al. 2010; Nagasawa & Ida 2011; Beaugé & Nesvorný

2012; Boley et al. 2012), and secular chaos (Wu & Lithwick 2011).

One way to distinguish whether disk migration or HEM is dominant in setting

the architecture of systems of giant planets is to search for additional populations of

giant planets that may also result from HEM, including 1) failed hot Jupiters, which

are stuck at high eccentricities but with periapses too large to undergo significant tidal

circularization over the star’s lifetime, 2) Jupiters on short-period, moderately-eccentric

orbits, nearing the end of their HEM journey, and 3) proto-hot Jupiters on super-eccentric

orbits in the process of HEM. Recently, Socrates et al. (2012b) (S12 hereafter) suggested

that, if HEM is the dominant channel for producing hot Jupiters, we should readily detect

a number of super-eccentric Jupiters in the act of migrating inward. Moreover, they

showed that the number of super-eccentric Jupiters can be estimated from the number

of moderately-eccentric Jupiters that have similar angular momentum, based on their

relative circularization rates. Based on the number of moderately-eccentric, short-period

Jupiters found by other planet hunting programs (tabulated in the Exoplanet Orbit

Database, EOD, by Wright et al. 2011), S12 predicted that the Kepler Mission should

discover 5-7 proto-hot Jupiters with eccentricities e > 0.9 and noted that these planets

should in fact already be present in the Borucki et al. (2011) candidate collection.

The S12 prediction requires a steady production rate of hot Jupiters throughout

the Galaxy, as well as several conventional assumptions, including conservation of the

hot Jupiter’s angular momentum, tidal circularization under the constant time lag

approximation, and the beginning of HEM at or beyond the ice line. This prediction is a
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useful, quantitative test for discerning the origin of hot Jupiters. Confirmation of their

prediction would reveal that hot Jupiters are produced by interactions with companions,

not a disk, while a paucity of proto-hot Jupiters in the Kepler sample would inform us

that HEM is not the dominant channel, or that some aspect of our current understanding

of HEM is incorrect.

Motivated by the S12 prediction, we have been using what we term the

“photoeccentric e↵ect” to measure individual eccentricities of Jupiter-sized planets from

their transit light curves (Dawson & Johnson 2012, DJ12 hereafter). Dawson et al.

(2012) (D12 hereafter) identified KOI-1474.01 as a transiting planet candidate with

a long orbital period (69.7 days), a large eccentricity (e = 0.81 ± 0.10), and transit

timing variations caused by a massive outer companion. However, uncertainty in the

candidate’s eccentricity made it ambiguous whether KOI-1474.01 is one of the proto-hot

Jupiters predicted by S12 or, alternatively, a failed-hot Jupiter beyond the reach of tidal

circularization over its host star’s lifetime.

Here we examine the entire sample of Kepler Jupiters to assess whether the planets

expected from HEM are present. We find with 95.8% confidence that the putative

highly-eccentric progenitors of hot Jupiters are partly or entirely missing from the Kepler

sample. In Section 7.2, we summarize the S12 prediction and assumptions. In Section

7.3, we update the S12 prediction, accounting for Poisson counting uncertainties and

incompleteness, and translate it into a prediction for transit light curve observables.

In Section 7.4, we compare the prediction of Section 7.3 to the light curve properties

of candidates in the Kepler sample and conclude that there is a paucity of proto-hot

Jupiters. We consider observational causes, finding that they are unlikely to explain the

discrepancy between theory and observations. In Section 7.5, we place an upper-limit on
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the fraction of hot Jupiters created by stellar binaries, consider the contribution of disk

migration to the hot Jupiter population, and present Monte Carlo predictions for other

dynamical scenarios, finding that the paucity of proto-hot Jupiters can be compatible

with HEM. We conclude (Section 7.6) by outlining the theoretical and observational

pathways necessary to distinguish the dominant channel for hot Jupiter creation.

7.2 Predictions and Assumptions by Socrates and

Collaborators

S12 predicted that the Kepler mission should discover a number of super-eccentric, hot

Jupiter progenitors in the process of high eccentricity migration (HEM). Previously

(DJ12), we showed that super-eccentric planets should be easily identifiable from their

transit light curves and thus precise radial-velocity (RV) follow-up is not necessary. This

is fortunate as most Kepler stars are too faint to be amenable to precise RV observations.

To predict the number of super-eccentric Jupiters, S12 considered a population of

proto-hot Jupiters undergoing tidal circularization along a “track” of constant angular

momentum. Using an eccentricity-dependent tidal circularization rate (described below),

they computed the number ratio of super-eccentric to moderately-eccentric proto-hot

Jupiters along the track. In Section 7.2.1, we follow S12 to derive a formula for the

expected number of super-eccentric proto-hot Jupiters. In Section 7.2.2, we summarize

the assumptions on which the S12 prediction depends and how these assumptions a↵ect

the expected number of proto-hot Jupiters.

294



CHAPTER 7. PAUCITY OF PROTO-HOT JUPITERS

7.2.1 Number of Super-eccentric Jupiters Along an Angular

Momentum Track

To predict the number of super-eccentric proto-hot Jupiters, S12 assumed a steady

production of hot Jupiters and assessed the relative amount of time spent in the early,

high-eccentricity phase by a proto-hot Jupiter undergoing tidal circularization, compared

to the time spent at moderate eccentricities later in the process. They assumed that the

planet’s specific orbital angular momentum h is conserved in HEM and thus the planet

follows a “track” defined by a constant afinal, the semi-major axis the planet reaches once

its orbit has fully circularized. For a planet with mass M
p

orbiting a star of M
?

:

afinal = h2/[G(M
?

+M
p

)] = a(1� e2) (7.1)

where G is the universal gravitational constant, a the instantaneous semi-major axis, and

e the instantaneous eccentricity. The angular momentum can also be defined in terms of

the final orbital period Pfinal:

Pfinal = (2⇡a2final)/h = P (1� e2)3/2 (7.2)

where P is the instantaneous orbital period.

The number of super-eccentric Jupiters (N sup) along a track of constant angular

momentum is related to the number of moderately-eccentric Jupiters (Nmod) by:

N sup = Nmodr(emax) (7.3)

where the variable emax =
h
1� (Pfinal/Pmax)

2/3
i1/2

is set by maximum observable orbital

period Pmax and r(emax) is the ratio of time spent at super-eccentricities (0.9 < e < emax)
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to moderate eccentricities (0.2 < e < 0.6). We place bars over Nsup and Nmod to indicate

that these are mean numbers. The observationally counted numbers are sampled from

Poisson distributions defined by these means. The ratio is

r(emax) =

R
emax

0.9 |ė|�1de
R 0.6

0.2 |ė|�1de
, (7.4)

For example, for Pmax = 1.5 years and Pfinal = 5 days, emax = 0.978. The eccentricity

damping rate ė due to tides raised on the planet under the constant tidal time lag

approximation (Eggleton et al. 1998, Hansen 2010, S12, Socrates & Katz 2012; Socrates

et al. 2012a), assuming the planet’s spin is pseudo-synchronous, is:

ė

e
= �

(1� e2)3/2f
e

Cphysa8final
(7.5)

where f
e

, a function of e of order unity, and Cphys, a constant based on M
?

, M
p

, and the

planet’s radius R
p

, are defined in Table 7.1.
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Table 7.1. Table of tidal quantities

Quantity Definition

�p global planetary

tidal dissipation constant (Hansen 2010)

fe
�
7 + 45

2

e2 + 56e4 + 685

32

e6 + 255

64

e8 + 25

256

e10
�

/
⇥
4(1 + 3e2 + 3/8e4)

⇤

⇡ 7(1 + 2.63e3)/4

C
phys

Mp/
⇥
M?(Mp +M?)R10

p �P

⇤
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Most Jupiters in the Kepler sample lack measured eccentricities, and therefore

Nmod of the Kepler sample is unknown. Following S12, we make use of the sample of

planets detected by non-Kepler surveys, which we denote with subcript 0 (Figure 7.1,

compiled from the EOD, Wright et al. 2012, queried on April 10th, 2013). To estimate

Nmod along a track in the Kepler sample, we use the ratio of Nmod,0 to the number in

another class of calibration object. This other class needs to be countable in the Kepler

sample. Ideally, this class would along a Pfinal track. However, because the eccentricities

of the Kepler planets are unknown, instead the class we use is planets with orbital

period P = Pfinal, of which there are N
P=Pfinal,0 in the calibration sample. If we assume

this ratio Nmod,0/NP=Pfinal,0 is the same for calibration sample as for the Kepler sample,

then we can compute the expected Nmod for the Kepler sample:

Nmod =
Nmod,0

N
P=Pfinal,0

N
P=Pfinal (7.6)

Based on Equation (7.3)1 S12 predicted 5-7 super-eccentric proto-hot Jupiters in

the Borucki et al. (2011) sample. We will recompute this prediction in Section 7.3,

incorporating the latest survey samples, Poisson uncertainties, and incompleteness.

1S12 used NP=Pfinal

for the Kepler sample but, for the calibration sample, they used the total number

of planets observed along the P
final

track. However, we wish to treat both samples the same and thus use

the same type of quantity for both: NP=Pfinal

for the Kepler sample and NP=Pfinal,0 for the calibration

sample. Another di↵erence between our sample and S12 is that we combine non-Kepler planets detected

by transit surveys and those detected radial-velocity surveys in order to enhance our sample size. The non-

Kepler transit surveys are not particularly better suited than the radial-velocity surveys for a comparison

to the Kepler stars, except for the transit probability. However, as noted by S12, the transit probability is

constant along an angular momentum track, so the ratio of planets along di↵erent portions of the tracks

is not a↵ected.
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Figure 7.1.—: Giant planets detected by non-Kepler surveys from the EOD (Wright et al.

2012; queried on April 12th, 2013). All are Jupiter-mass (M
p

> 0.25MJup or 8R� < 22R�)

planets orbiting stars with 4500 < Te↵ < 6500 K, log g > 4. The dashed lines represent

tracks of Pfinal = 3, 5, 10 days. The shaded and patterned regions correspond to Figure 7.6.

Within the 3 < Pfinal < 10 days angular momentum tracks are hot Jupiters (red triangles),

moderately-eccentric Jupiters with 0.2 < e < 0.6 (blue stars), Jupiters with 0.6 < e < 0.9

(orange horizontal striped region), and super-eccentric Jupiters (blue, diagional-striped

region), The RV-discovered planet HD 17156 b lies in the orange, horizontal striped region,

and the RV-discovered planet HD 80606 b lies in the blue, diagonal-striped region. Period

valley: grey region denotes Jupiters with Pfinal > 10 days but interior to the ice line, and

the black region houses circular Jupiters interior to the ice line but exterior to hot Jupiters.
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7.2.2 Summary of Assumptions Forming the Basis for the S12

Prediction

Here we summarize both stated and unstated assumptions of S12 and infer how

violations would a↵ect the expected number of super-eccentric proto-hot Jupiters in the

Kepler sample. Certain assumptions, if violated, may result in fewer than expected

super-eccentric Jupiters. We discuss these assumptions in detail in Section 7.5: hot

Jupiters of orbital periods up to 10 days have migrated via tidal circularization (Section

7.5.1); a proto-hot-Jupiter typically begins its HEM journey at or beyond the ice

line, after which it experiences no perturbations that permanently change its angular

momentum (Sections 7.5.2 and 7.5.3); a steady “current” of proto-hot Jupiters is being

produced around the sample of observable stars (Section 7.5.4); and the ratio used in

Equation (7.6) is the same for the Kepler and calibration samples (Section 7.5.4).

In Section 7.9, we describe additional assumptions, which we do not expect to

a↵ect our results. S12 assumed that the planet’s radius does not change, an assumption

which, if violated, would not result in fewer super-eccentric Jupiters. S12 made several

assumptions that we do not expect to be violated: angular momentum is not exchanged

between the star and planet or between the planet’s spin and orbit, moderately-eccentric

Jupiters in the calibration sample truly have e > 0.2, and the Kepler false positive rate

is low.

Finally, S12 assumed that tidal evolution (for tides raised on the planet; see

Section 7.9 regarding tides raised on the star) occurs according to the constant tidal

time lag approximation (Hut 1981; Eggleton et al. 1998; Socrates & Katz 2012;

Socrates et al. 2012a). This assumption controls the ratio r(emax) (Equation 7.4) of
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high-eccentricity proto-hot Jupiters to moderate-eccentricity hot Jupiters along a given

angular momentum track. The constant tidal time lag approximation is conventional but

may be violated: if the dissipation rate were larger for highly-eccentric Jupiters along a

given angular momentum track than for moderately-eccentric Jupiters, we would expect

fewer super-eccentric proto-hot Jupiters than predicted or vice versa.

Dynamic tides, in which dissipation occurs through surface gravity waves (e.g. Zahn

1975), may be important in a proto-hot Jupiter’s tidal evolution. Beaugé & Nesvorný

(2012) argue that dynamic tides act at high eccentricities and equilibrium tides at low

eccentricities; they added an empirical correction factor to the constant time-lag model

so that, at large eccentricities, it matches the numerical results of the dynamical tide

model computed by Ivanov & Papaloizou (2011). The empirical correction factor is

proportional to 10200qe
2
, where q is the periapse distance (Beaugé & Nesvorný 2012).

Along a given angular momentum track, q = afinal/(1 + e), so the tidal dissipation

timescale [proportional to 10200afinale
2
/(1+e)] is longer for larger eccentricities. If this

correction factor applies, the contribution of dynamical tides would increase the expected

number of super-eccentric proto-hot Jupiters.

The e↵ect of tides on orbital evolution remains uncertain and is a topic of ongoing

research. It remains unclear whether the true typical tidal evolution would result in

more or in fewer super-eccentric Jupiters. Our results should be revisited as this subfield

continues to advance.
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7.3 Updated Prediction for Number of Super-

eccentric Proto-hot Jupiters and Transit Light

Curve Observables

In Section 7.3.1, we derive the expected number of identifiable Kepler super-eccentric

proto-hot Jupiters, following S12 but using updated survey samples. We refine the S12

prediction by quantifying its uncertainty and incorporating incompleteness due to the

limited timespan of the data. In Section 7.3.2, we describe how to confirm or rule out

the existence of super-eccentric proto-hot Jupiters using Kepler photometry alone by

recasting the prediction in terms of light curve observables.

7.3.1 Expected Number of Proto-hot Jupiters with e > 0.9 in

the Kepler Sample

In Section 7.2.1, we followed S12 to derive an equation for the expected number of

super-eccentric proto-hot Jupiters for a given Pfinal (Equation 7.3) based on Nmod,0,

N
P=Pfinal,0, and N

P=Pfinal. However, to estimate posteriors for these means from the

counted numbers, we must account for incompleteness and Poisson uncertainty.

The prediction by S12 was for an ideal Kepler sample complete out to orbital

periods of 2 years (Subo Dong, private communication, 2012). In contrast, the Kepler

Mission nominally only lasts for 3 years (though fortunately, due to its great success,

the mission was recently extended to 7 years). To derive the expected number of

super-eccentric proto-hot Jupiters in a sample of a limited timespan tsur we must account
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for incompleteness. If Ntrans,min transits are the minimum number of transits required

for the Kepler transit pipeline to detect the proto-hot Jupiter, the completeness (with

respect to this e↵ect alone) Ccomp ranges from 100% at orbital periods  tsur/Ntrans,min

to 0% at orbital periods of tsur/(Ntrans,min � 1). We update Equation (7.4) to account for

incompleteness:

r(emax) =

R
emax

0.9 Ccomp(e)|ė|�1de
R 0.6

0.2 |ė|�1de
(7.7)

where the completeness Ccomp(e) is

Ccomp(e) =8
><

>:

1 , e < e(tsur/Ntrans,min)

1 + (1� e2)3/2(tsur/Pfinal)�Ntrans,min , e( tsur
Ntrans,min

) < e < e[ tsur
(Ntrans,min�1) ],

(7.8)

and e[tsur/Ntrans,min] =
h
1� (Ntrans,minPfinal/tsur)

2/3
i1/2

,

and e[tsur/(Ntrans,min � 1)] =
⇣
1� [(Ntrans,min � 1)Pfinal/tsur]

2/3
⌘1/2

.

Although calculations are often made under the assumption that the Kepler

candidate list (Borucki et al. 2011; Batalha et al. 2013; Burke et al. 2013) is complete for

Jupiter-sized planets exhibiting two transits in the timespan under consideration (e.g.

Fressin et al. 2013), we make a more conservative assumption about the completeness

here. The Kepler pipeline is set up to only detect objects that transit three times during

the quarters over which the pipeline was run and all candidates (Borucki et al. 2011;

Batalha et al. 2013; Burke et al. 2013) transiting only 1-2 times were detected by eye

(Christopher Burke and Jason Rowe, private communication, 2013). There exists no

estimate for the by-eye completeness. The latest candidates list (Burke et al. 2013) is

only complete for Jupiter-sized planets that transit three times within Q1-Q8 (tsur = 2
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years). The threshold-crossing events table (TCE) is complete for Jupiter-sized planets

that transit three times within Q1-Q12 (tsur = 3 years), but those objects have been not

been vetted as candidates. As described in Section 7.8, we use the TCE table to expand

our sample so that it is complete for Jupiter-sized planets that transit three times in

Q1-Q12, finding three additional candidates. Then we employ Equation 7.8 using tsur = 3

years and Ntrans,min = 3. We obtain r = 0.813, 0.608, 0.370 for Pfinal = 3, 5, 10 days

respectively. Later in this section we will update the completeness further to account for

noise and missing data.

Next we describe the selection cuts we make to count Nmod,0 (blue stars, Figure 7.1),

N
P=Pfinal,0 (open symbols, Figure 7.1), and N

P=Pfinal. Because the stellar parameters

from the Kepler Input Catalog (KIC) are not reliable for stars outside the temperature

range 4500 < Te↵ < 6500 K (Brown et al. 2011b) we only include stars within this

temperature range in both the Kepler and calibration samples. We impose an aggressive

cut of stellar surface gravity log g > 4 to exclude giant stars, because their KIC

parameters are unreliable (we include stars with log g below 4 but are consistent with

log g = 4 within two sigma). We select planets with 8R� < R
p

< 22R�. From the

Burke et al. (2013) Kepler sample, we remove three known false positives (KOI-425.01,

Santerne et al. 2012 and see also Madhusudhan et al. 2012; KOI-208.01 and KOI-895.01,

Demory & Seager 2011). Since it is not possible to detect planets along exactly the same

angular momentum track, we follow S12 and consider two Pfinal intervals: 2.8 < Pfinal < 5

(Interval 1)2 and 5 < Pfinal < 10 (Interval 2). The transit probability does not change

very much throughout each interval. We tabulate the counted numbers and their sources

2We use a lower limit of 2.8 days because 2.8 days is the P
final

below which we do not see any

moderately eccentric Jupiters in the non-Kepler surveys.

304



CHAPTER 7. PAUCITY OF PROTO-HOT JUPITERS

in Table 7.2.

Each number of counted planets (Table 7.2) is drawn from a Poisson distribution

with an unknown mean. We wish to compute the expected number of super-eccentric

proto-hot Jupiters using not the counted numbers but rather using estimated posteriors

for the mean numbers, incorporating uncertainty. See Section 7.7 for a description of

our approach. We use a Je↵rey’s prior. Note that in the calibration sample, we exclude

planets whose eccentricities are poorly constrained. For planets with e = 0 in the EOD,

we refer to the literature or fit the data ourselves and only include planets listed with

e = 0 that are constrained to have e < 0.2.

There are two additional e↵ects on the completeness that we now consider. First,

transits may fall during gaps in the data or missing quarters. To incorporate this e↵ect,

we numerically integrate Equation 7.4, inserting an extra factor Ccomp,sampled into the

integrand, where Ccomp,sampled is the fraction of phases for which we would observe

three or more transits during Q1-Q12. We estimate Ccomp,sampled using the observation

times through Q12 for the 43 hot Jupiters hosts with 2.8 < P < 10 days in our

sample (Table 7.2). In using the hot Jupiter hosts, we assume that their observational

cadence is representative of that of proto-hot Jupiter hosts. The factor Ccomp,sampled

naturally incorporates Ccomp (Equation 7.8). Accounting for missing data reduces r to

0.769, 0.569, 0.332 for Pfinal = 2.8, 5, 10 days respectively.

Second, we consider whether the transits have su�cient signal-to-noise to be

detected. For the expected progenitors of a given hot Jupiter, the signal-to-noise is
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Table 7.2. Counted planets

e Interval Counted Mean a Sampleb

[days]

0.2 < e < 0.6 1: 2.8-5 N
mod,0= 7 N

mod,0= 7+3

�2

Cal

2: 5-10 N
mod,0= 7 N

mod,0= 7+3

�2

Cal

unspecified 1: 2.8-5 NP=Pfinal,0= 69 NP=Pfinal,0= 69+9

�8 Cal

1: 2.8-5 NP=Pfinal

= 24 NP=Pfinal

= 24± 5 Kep

2: 5-10 NP=Pfinal,0= 18 NP=Pfinal,0= 18+5

�4

Cal

2: 5-10 NP=Pfinal

= 19 NP=Pfinal

= 19+5

�4

Kep

aMedian, with 68.3% confidence interval, of posterior of Poisson means, each

defining a Poisson distribution from which the counted number may be sampled.

bKep = Kepler ; Cal = calibration non-Kepler (Figure 7.1).
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(based on Howard et al. 2012b, Equation 1):

S/N =
�

�CDPP

s
tsurvey(1� e2)3/2

PHJ

s
tHJ/(1 + e cos!)

tCDPP

S/N =
�

�CDPP

s
tsurveytHJ(1� e2)3/2

PHJtCDPP(1 + e cos!)

(7.9)

where � is the transit depth, �CDPP is the combined di↵erential photometric precision

(CDPP), tsurvey(1�e

2)3/2

PHJ
is the average number of transits for a hot-Jupiter progenitor

with P = PHJ(1 � e2)�3/2, tHJ is the transit duration of the hot Jupiter’s transit and

tHJ/(1 + e cos!) is the duration of the progenitor’s transit, and tCDPP is the timescale

of the CDPP. For each of the 43 Kepler hot Jupiters hosts with 2.8 < P < 10 days,

we compute the signal-to-noise of set of randomly generated progenitors, weighted by ė,

the completeness (Equation 7.8), and the transit probability. Note that two of the hot

Jupiters have S/N of < 9 in a single transit, meaning that multiple transits are likely

required to detect the planet; a progenitor at a long period with a short duration and

few transits may escape detection. This approach automatically accounts for the e↵ect of

impact parameter on the transit duration by using the observed transit duration of the

hot Jupiters. The resulting distribution of SNR peaks at 60, with 95% of progenitors have

an SNR greater than 16. Following Fressin et al. (2013), we model the SNR-dependent

completeness as a linear ramp ranging from 0 at SNR = 6 to 100% at SNR = 16. As a

result, 96% of progenitors are detected. Incorporating this e↵ect (in addition to the e↵ect

of missing data above), r = 0.738, 0.546, 0.319 for Pfinal = 2.8, 5, 10 days respectively.

Finally, we allow for the possibility that some planets exhibiting just two transits

in the Q1-Q8 data were detected. Of the planets that transit twice in Q1-Q8 and

again before the end of Q12, five out of seven were included in the Bolmont et al.
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(2013) candidates list. We recompute Ccomp,sampled but allow for 5/7 probability that

a planet that transits twice in Q1-Q8 but has its third transit after Q12 is detected.

Combining this new Ccomp,sampled with the SNR completeness, r = 0.789, 0.563, 0.330 for

Pfinal = 2.8, 5, 10 days respectively.

Next we derive the mean number of super-eccentric planets, N sup. To do so we

insert the posteriors from Table 7.2 into Equation (7.3), making use of Equations (7.6)

and (7.7), with the r described above. We perform this procedure separately for Interval

1 and Interval 2 and use tsur = 3 year, obtaining a N sup posterior for each interval,

which we sum to compute a total N sup (Figure 7.2). The total expected number is

N sup = 5.2+2.2
�1.6. This posterior represents a distribution of Poisson means. We transform

the distribution of means into a distribution of expected values by sampling Nsup from

N sup according to Equation (7.16). Each sample requires first drawing a mean (N sup)

from the distribution of means (Figure 7.2, top row) and then drawing an observed

number Nsup from the Poisson distribution with that mean. The expected observed

number is Nsup = 5+3
�2, where the uncertainties represent the range falling within 1 sigma.

The two-sigma range is 2-12. The change of observing 0 is 1.4%. The expected number

will continue to increase as the Kepler sample becomes more complete to long-period

Jupiter-sized planets; we will apply the framework described here to a future sample,

once available.
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Predicted mean

0 5 10 15
N supereccentric

Predicted number observed

Figure 7.2.—: Top: Predicted mean number of super-eccentric Jupiters (Interval 1: red

dotted, Interval 2: blue dashed, total: black solid). Bottom: Sampling from above distri-

bution of Poisson means to create a distribution of expected number observed.
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7.3.2 Prediction for Transit Light Curve Observables

We expect to be able to identify super-eccentric proto-hot Jupiters in the Kepler sample

by fitting their transit light curves and identifying those for which the light curve model

parameters are inconsistent with a circular orbit. A planet’s orbital eccentricity a↵ects

its transit light curve in a number of ways (e.g. Barnes 2007; Ford et al. 2008; Kipping

2008). For long-period, highly eccentric, Jupiter-sized planets, the most detectable e↵ect

is on the transit duration. For a wide range of periapse orientations relative to our line of

sight, a planet on a highly eccentric orbit transits its star moving at a much larger speed

than if it were on a circular orbit with the same orbital period. For Jupiter-sized planets,

one can distinguish the e↵ects of the transit speed on the ingress, egress, and full transit

duration from the e↵ects of the transit impact parameter and/or limb-darkening, even

with long-cadence Kepler data (DJ12).

For each planet, we fit a Mandel & Agol (2002) transit light curve model with the

following parameters: the planetary-to-stellar radius ratio R
p

/R
?

, the orbital period P ,

the inclination i, the scaled semi-major axis a/R
?

, and the quadratic limb darkening

parameters µ1 and µ2. Assuming a circular orbit and a planetary mass much less than

the stellar mass (M
p

<< M
?

), one can recast the scaled semi-major axis a/R
?

(by

substituting a =
⇥
GM

?

(P/[2⇡])2
⇤1/3

) as the bulk stellar density, ⇢
?

= M
?

/(43⇡R
3
?

), which

we will refer to simply as the stellar density hereafter. The stellar density measured from

the light curve under the assumption of a circular orbit, ⇢circ, is related to the true stellar
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density, ⇢
?

by:

⇢
?

(e,!)g3(e,!) = ⇢circ, (7.10)

where

g(e,!) =
1 + e sin!
p

1� e2
(7.11)

is approximately the ratio of the observed transit speed to the transit speed that the

planet would have if it were on a circular orbit with the same orbital period (see Kipping

2010b and DJ12 for a detailed derivation). The argument of periapse ! represents the

angle on the sky plane (! = 90� for a planet transiting at periapse).

We determine ⇢circ by fixing e = 0, allowing the stellar density to vary as a free

parameter in the light curve model. The resulting ⇢circ is determined entirely by the

shape and timing of the light curve. We then compare ⇢circ to the value of ⇢
?

determine

through other methods (i.e. stellar models fit to the temperature and surface gravity

determined through colors or spectroscopy). Although g is degenerate with the host

star’s density (Equation 7.10), a loose (order-of-magnitude) constraint on ⇢
?

is su�cient

for a tight constraint on the eccentricity (DJ12), measurement of which we will describe

and perform in Section 7.4. For now, we use ⇢circ/⇢?. If ⇢circ/⇢? is very large, then g

must be large, and therefore the planet is moving more quickly during transits than a

planet with orbital period P on a circular orbit. In Section 7.10, we summarize how our

approach avoids problems caused by incorrect stellar parameters.

Expectations for Super-eccentric Planets

We perform a Monte Carlo simulation to predict the signature in the transit light curve

observable ⇢circ/⇢? expected from the super-eccentric proto-hot Jupiters (Section 7.3.1).
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We generate two-dimensional (2D) probability distributions in (P, ⇢circ/⇢?) in Figure 7.3,

where P is the orbital period, as follows:

1. We begin with an assumed Pfinal.

2. Using the completeness Equation 7.8, we generate a distribution of eccentricities

{e
i

} with a normalization constant Cnorm following:

Prob(e) =

8
><

>:

0 e > emax or e < 0.9

CnormCcomp,sampled|ė|
�1 0.9 < e < emax

(7.12)

3. For each eccentricity, we compute the corresponding orbital period P
i

and randomly

select an argument of periapse !
i

. Assuming a Sun-like star, we compute the scaled

semi-major axis a
i

/R
?

.

4. We compute the transit probability:

probtransit =
R

?

a
i

1 + e
i

sin!
i

1� e2
i

(7.13)

Then we select a uniform random number between 0 and 1. If the number is less

than the transit probability, we retain (e
i

,!
i

) in the distribution.

5. Then we compute ⇢circ/⇢? using Equation (7.10).

We use the above procedure to generate four plots, corresponding to di↵erent Pfinal

(Figure 7.3). In the fourth panel, instead of using a single Pfinal, we draw the Pfinal of

each trial from the observed N
P=Pfinal, weighting each Pfinal by Nmod,0/NP=Pfinal,0 in the

two intervals. We see that a population of super-eccentric Jupiters will manifest itself

as a collection of light curves with astrophysically implausible ⇢circ of 10-1000 times the

estimated values for ⇢
?

. The super-eccentric proto-hot Jupiters will have orbital periods
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that range from P = 2.8 days/(1� 0.92)3/2 = 34 days to two years (this maximum period

will increase with the timespan of the Mission). About 90% of the expected planets have

⇢circ/⇢? > 10, making them easy to identify.

Proto-hot Jupiters with 0.6 < e < 0.9

S12 focused their prediction on super-eccentric planets with e > 0.9. However, we also

expect to find proto-hot Jupiters with less extreme eccentricities (0.6 < e < 0.9) along

the same Pfinal track. We repeat the procedure in 7.3.2 for the interval 0.6 < e < 0.9.

The overall occurrence rate for this interval is 0.61 relative to Nmod. As shown in

Figure 7.4, the proto-hot Jupiters in the 0.6 < e < 0.9 range have shorter orbital periods

(6 < P < 121 days). However, their transit durations and the inferred stellar density

from a circular fit are not as strikingly anomalous as for the super-eccentric proto-hot

Jupiters, making them less easy to identify. Therefore, we do not focus on these objects

but discuss them further in the conclusion (Section 7.6).

7.4 Results: a Paucity of Proto-hot Jupiters

We search for the super-eccentric proto-hot Jupiters predicted by S12 and find

significantly fewer than expected. We describe our search procedure and present our

measurements (Section 7.4.1) and assess the significance of this null result (Section

7.4.2).
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Figure 7.3.—: Top: 2D posterior, orbital period P vs. ⇢circ/⇢?, for planets with e > 0.9

and Pfinal = 3, 5, 10 days (panels 1-3) or Pfinal drawn from Kepler hot Jupiters with

3 < P < 10 days (panel 4). Bottom: Posterior ⇢circ/⇢? marginalized over orbital period.

Proto-hot Jupiters with e > 0.9 should have anomalously large ⇢circ measured from the

transit light curve compared to their estimated ⇢
?

, making them easy to identify. We

expect half a dozen super-eccentric proto-hot Jupiters in the high probability density

region.
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Figure 7.4.—: Top: 2D posterior for orbital period P vs. ⇢circ/⇢? for planets with 0.6 <

e < 0.9 and Pfinal = 3, 5, 10 days (panels 1 - 3) or with Pfinal drawn fromKepler hot Jupiters

in the interval 3 < P < 10 days (panel 4). Bottom: Posterior ⇢circ/⇢? marginalized over

orbital period. Proto-hot Jupiters with 0.6 < e < 0.9 do not typically have such large

⇢circ/⇢? as their super-eccentric (e > 0.9) counterparts (Figure 7.3), making them less

easy to identify.
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7.4.1 Transit Light Curve Observables for Potential Proto-hot

Jupiters

We begin by identifying planet candidates that conform to our selection criteria

using the Burke et al. (2013) candidates list provided by NExSci, queried on April

10th, 2013. Applying the same criteria as in Section 7.3, we identify candidates with

8R� < R
p

< 22R� and stellar parameters 4500 < Te↵ < 6500 K and log g > 4 (or, for

those with log g < 4, consisent with 4 within the uncertainty). We restrict the orbital

periods to those between 34 days and which – based on their period and phase — at

least twice in Q1-Q8 (i.e. if there should be two transits in Q1-Q8 but one is missing,

we still include the planet, provided it transit again before Q14 so we can measure its

period), with the lower limit corresponding to Pfinal = 2.8 for e = 0.9. We are left with

42 planet candidates, including KOI-1474.01 (D12).

For each candidate, we retrieve the Q0-Q9 publicly-available data from MAST. We

extract the transits using AutoKep (Gazak et al. 2012) and perform an MCMC fit using

the Transit Analysis Package (TAP; Gazak et al. 2012). We fix e = 0 but allow all other

parameters to vary, including noise parameters for the Carter & Winn (2009) wavelet

likelihood function and first-order polynomial correction terms. We use short-cadence

data when available. We obtain each candidate’s ⇢circ posterior.

Next we follow3 Section 3.3 of D12 to compute a ⇢
?

posterior for each host star using

3Instead of imposing a prior on the stellar mass, metallicity, and age from a TRILEGAL (TRIdi-

mensional modeL of thE GALaxy; Girardi et al. 2005) synthetic Kepler field population, we assume a

uniform prior on these model parameters, because a similar prior was already imposed by Batalha et al.

(2010) to generate the e↵ective temperature and surface gravity in the KIC.
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the Takeda et al. (2007) stellar evolution models and the estimated e↵ective temperature

and surface gravity listed in the Kepler candidates Table (Batalha et al. 2013). For stars

with stellar properties measured from spectroscopy, we adopt conservative uncertainties

of 100 K for Te↵ and 0.1 for log g (all above the uncertainties reported in Brown et al.

2011b). For stars for which the e↵ective temperature and surface gravity were derived

from the KIC colors, we adopt uncertainties of 200 K for the e↵ective temperature

(Brown et al. 2011b). For stars with updated temperatures from Pinsonneault et al.

(2012), we adopt that value and its uncertainty. Based on Verner et al. (2011), we adopt

an uncertainty of 0.3 for the log g of Kepler stars measured from the KIC colors and

use the points from their Figure 2 to correct the log g for stars with g � r < 0.65. We

describe exceptions to this procedure, as well as additional cuts that left us with 27

planet candidates, in Section 7.11.

Finally, we combine the ⇢circ and ⇢
?

posteriors into a posterior of ⇢circ/⇢? for each

candidate, marginalized over all other parameters. In Figure 7.5, we plot the resulting

values on top of the probability distribution for predicted super-eccentric proto-hot

Jupiters (Figure 7.3, panel 4). None of the candidates fall in the high-probability area

of the prediction. We indicate candidates with known companions in their system with

blue bars; none can have e > 0.9 and 3 < Pfinal < 10 days without its orbit crossing a

companion’s. As expected, all4 candidates with companions have ⇢circ/⇢? close to 1.

Two candidates without companions, KOI-1474.01 (D12) and KOI-211.01 both have

⇢circ/⇢? > 10. The probability of KOI-211.01 having e > 0.9 and 2.8 < Pfinal < 10 days

is 17%. D12 found that KOI-1474.01 has e = 0.81+0.10
�0.07 and Pfinal = 14+6

�10 days. The

4KOI-433.02 has a low ⇢
circ

/⇢?. We discuss it further in Section 7.11.
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probability of it having e > 0.9 and 2.8 < Pfinal < 10 days is 12%. However, we have

conducted radial-velocity measurements of KOI-1474 that rule out e > 0.9 (Johnson

et al., in preparation). In assessing the consistency of the observations with the

prediction of Section 7.3, we will fully consider the possibility that KOI-211.01 might be

a super-eccentric proto-hot Jupiter.

We emphasize that it is not surprising that many of the candidates lie in the

low-probability region (likely Jupiters with e < 0.9 or Pfinal > 10 days, of which there

may be any number). It is only surprising that we do not see half a dozen in the

high-probability region.

7.4.2 Statistical Significance of Lack of Proto-hot Jupiters

None of the observed candidates lie in the high-probability-density region of Figure 7.5,

so it is unlikely that the half a dozen predicted (Section 7.3.1) super-eccentric proto-

hot-Jupiters are present but missed. If we were certain that none of the candidates

has e > 0.9 and 2.8 < Pfinal < 10 days, the probability that observed number of

super-eccentric proto-hot-Jupiters agrees with the prediction would simply be 1.4%.

(This is the probability, computed in Section 7.3, of observing 0 super-eccentric proto-hot

Jupiters given the Poisson uncertainties in the observed number of super-eccentric

Jupiters and in numbers used to compute the prediction.) However, there is a small

chance that there are indeed super-eccentric proto-hot-Jupiters among the sample but

that they just so happen to have their periapses oriented in the narrow range of angles

producing an unremarkable ⇢circ/⇢?. Therefore we use a Monte Carlo procedure to

assess the consistency of ⇢circ/⇢? posterior derived for each candidate with the predicted
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Figure 7.5.—: Expected 2D posterior for orbital period P vs. ⇢circ/⇢? (taken from panel 4

of Figure 7.3). The values we measured for our 31 candidates are overplotted. Thin, blue

bars: candidates with companions in their systems. Thick, red bars: candidates with no

known companions. We do not see the expected half a dozen candidates in the region of

high-probability density. Blue diamonds: KOI-1474.01 (bottom), KOI-211.01 (top).
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population of super-eccentric planets.

We first use the ⇢circ/⇢? posteriors to generate an eccentricity posterior for each

candidate, via a MCMC exploration of a limited set of parameters: ⇢circ, ⇢?, e and !

(as outlined in DJ12, Section 3.4). Although we can only make a tight eccentricity

measurement when the planet’s eccentricity is large (DJ12), the broad eccentricity

posterior for the typical candidate here is useful for this purpose: it contains very little

probability at the high eccentricities corresponding to e > 0.9, 2.8 < Pfinal < 10 days. We

then perform 106 trials in which we randomly select an eccentricity from each candidate’s

eccentricity posterior. We compute Pfinal and count Nsup in Intervals 1 and 2. If both

are greater than or equal to the respective numbers drawn from posteriors in Figure 7.2,

bottom panel (red dotted and blue dashed curves), we count the trial as a success,

meaning that at least as many super-eccentric Jupiters as predicted were detected. 95.8%

of trials were unsuccessful. We exclude the candidates with known companions from

this procedure (Figure 7.5, thin blue bars), because it so happens that none of them can

have e > 0.9 and 2.8 < Pfinal < 10 days without crossing the orbit of another candidate

in the system. We find that, with 95.8% confidence, we detected too few super-eccentric

proto-hot Jupiters to be consistent with the prediction of Section 7.3. For example, 40%

of trials had 0 super-eccentric proto-hot Jupiters, 78% had 1 or fewer, and 95% had 2 or

fewer. From these trials, we measure a Nsup posterior with a median Nsup = 1± 1.

7.5 Explaining the Paucity of Proto-hot Jupiters

So far (Sections 7.1-7.4) we have been considering a scenario in which hot Jupiters begin

beyond the ice line on super-eccentric orbits — caused by gravitational perturbations
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from a companion (e.g. stellar binary Kozai, planetary Kozai, planet-planet scattering,

secular chaos) — and subsequently undergo tidal circularization along a constant angular

momentum track, reaching a final orbital period Pfinal. This process is known as high-

eccentricity migration (HEM). We schematically summarize this (black arrows) and other

possible origins for hot Jupiters (white and gray arrows), as well as moderately-eccentric

Jupiters with 3 < Pfinal < 10 days, in Figure 7.6. The corresponding populations from

the RV-detected sample (EOD, Wright et al. 2012) are plotted in Figure 7.1. Now we

relax previous assumptions about HEM (Section 7.2.2) and explore how we can account

for the lack of super-eccentric proto-hot Jupiters (Section 7.4). In Sections 7.5.1 and

7.5.2, we relax the assumption that Jupiters began beyond the ice line, finding that

this possibility could indeed account for the lack of super-eccentric Jupiters. In Section

7.5.3, we consider the particular case of HEM via the Kozai mechanism with a planetary

perturber. In Section 7.5.4, we relax the assumption of a steady current of hot Jupiters

produced by HEM but find that a lack of steady current is unlikely to account for the

lack of super-eccentric proto-hot Jupiters. In Section 7.5.5, we place an upper-limit

on the fraction of hot Jupiters caused by Kozai perturbations from a stellar binary

companion.
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Figure 7.6.—: Schematic of pathways (arrows) for creating the observed giant planet

populations, which we assume formed beyond the ice line and reached semi-major axes

interior to the ice line via the stellar binary Kozai mechanism, planetary Kozai mechanism,

planet-planet scattering, secular chaos, or disk migration. “Track” refers to the angular

momentum range under consideration, i.e. 3 < Pfinal < 10 days. The black arrows

indicate the path that we have assumed throughout the paper for HEM caused either by

a planetary or stellar perturber. For example, a Jupiter may be perturbed by a stellar

binary companion, follow the black arrow to the region of super-eccentric Jupiters with

3 < Pfinal < 10 days (blue, diagonal stripe region), undergo tidal circularization along

its angular momentum track to e < 0.9 (horizontal orange striped region), become a

moderately-eccentric Jupiter (blue stars), and eventually achieve hot-Jupiter-hood (red

triangles). The purple dashed arrows represent planetary Kozai, which (depending on

the perturber) may cause the proto-hot Jupiter to undergo low-eccentricity excursions o↵

the track (Smadar Naoz, private communication, 2012). The other color arrows indicate

alternative pathways caused by secular chaos or scattering (white) or disk migration

(gray), and colors and patterns of the boxes correspond to the regions of parameter space

in Figure 7.1. See text for detailed discussion of the possible scenarios represented here.
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Figure 7.6.—: Continued
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7.5.1 No Tidal Circularization: Hot Jupiters and Moderately-

eccentric Jupiters Implanted Interior to the Ice Line

Rather than starting on highly-eccentric orbits exterior to the ice line, hot Jupiters and

moderately-eccentric Jupiters may have been placed directly into the region we observe

today. The moderately-eccentric Jupiters (blue stars, Figure 7.1, 7.6, 7.1) observed along

the angular momentum tracks have may not have undergone tidal circularization but

may have been placed there by whatever mechanism eccentric Jupiters interior to the

ice line (gray region, Figures 7.6 and 7.1). This underlying population could originate

from planet-planet scattering or secular chaos, or possibly from disk migration. Wu &

Lithwick (2011) found that secular chaos should produce a number of moderate-to-high

eccentricity “warm Jupiters” in the region from 0.1 to 1 AU. Goldreich & Sari (2003)

and Sari & Goldreich (2004) argued that disk migration can potentially excite moderate

eccentricities through resonance torques, but recently Dunhill et al. 2013 modeled

planet-disk interactions using high-resolution three-dimensional simulations and found

that disks are unlikely to excite the eccentricities of giant planets.

In Figure 7.1, the blue stars look as if they could be an extension of the distribution

in the gray region. In Table 7.3, we compute the occurrence rate of giant planets in the

RV-discovered sample in di↵erent regions of Figure 7.1. The occurrence rate per log

semi-major axis interval of moderately-eccentric Jupiters with 2.8 < Pfinal < 10 days is

less than or equal to that in the gray region (10 < P < 250 days). Therefore a separate

mechanism for producing the blue stars apart from direct implantation may not be

necessary. If non-tidal implantation was dominant, the number of moderately-eccentric

Jupiters should not be used to predict the number of super-eccentric Jupiters because
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the moderately-eccentric Jupiters did not tidally circularize from super-eccentric orbits.

If moderately-eccentric Jupiters with 2.8 < Pfinal < 10 days did not undergo tidal

circularization, hot Jupiters themselves could be part of a continuous distribution of

circular Jupiters interior to the ice line (Figure 7.6 and 7.1, black region), which must

have migrated somehow. Disk migration e↵ectively produces planets on circular orbits,

but seems inconsistent with the high obliquities of hot Jupiters orbiting hot stars (Winn

et al. 2010; Albrecht et al. 2012, but see also Rogers et al. 2012). However, disk migration

may have produced some or all of the well-aligned hot Jupiters, if their low obliquities

are not the result of tidal realignment.

If the cut-o↵ for tidal circularization is 2.8 days, rather than 10 days, Jupiters on

circular orbits with P > 3 days would actually be part of the so-called “period-valley,”

rather than the hot Jupiter pile-up. The period valley refers to the region exterior to

hot Jupiters but interior to the ice line (P < 250 days), where giant planets are scarce.

The divide between hot Jupiters and the period valley (i.e. if it is 2.8 days, 10 days or

some other value) is ambiguous in the literature (e.g. Jones et al. 2003; Udry et al. 2003;

Wright et al. 2009; Wittenmyer et al. 2010). The observed “edge” of hot Jupiters in

ground-based transit surveys may be partially caused by a combination of the reduced

geometric transit probability of long-period planets and ine�ciency of ground-based

transit surveys in detecting them (Gaudi et al. 2005), rather than a drop in the intrinsic

occurrence rate. We note that the distribution of giant planets inferred from the Kepler

Mission, assessed out to 50 days (Youdin 2011; Howard et al. 2012b), has no such edge.

However, Wright et al. (2009) detect an edge at approximately 0.07 AU (5 days) in their

RV survey, which su↵ers from di↵erent (but less severe) biases than transit surveys.

Thus, the existence and location of the cut-o↵ remains uncertain.

325



CHAPTER 7. PAUCITY OF PROTO-HOT JUPITERS

Table 7.3. Occurrenceaof Jupiters detected by RV surveys

Period range Eccentricity Count Poisson Number

(days) rangeb per log
10

a

2.8 < P
final

< 10 0.2 < e < 0.6 4 4± 2 11+6

�5

10 < P < 250 0.2 < e < 0.6 18 18+5

�4

19+5

�4

- - - - - - - - - - - - - - - - - - - - - - - - - - - - – - - - - - - - - - - - - -

2.8 < P < 5 0 < e < 0.2 17 17± 4 100+30

�20

2.8 < P < 10 0 < e < 0.2 21 21+5

�4

57+13

�11

5 < P < 10 0 < e < 0.2 4 4.2+2.4
�1.7 21+12

�9

5 < P < 250 0 < e < 0.2 29 29+6

�5

26+5

�4

10 < P < 250 0 < e < 0.2 25 25± 5 27+6

�5

aNumbers do not account for RV observational biases
bRange of Poisson means from whose distributions the count could

have been drawn, computed using Je↵rey’s prior. The median is higher

than the counted number due to the skewed Poisson distribution shape.
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Therefore the cut-o↵ may in fact be between P = 2.8 days and P = 10 days. In

Figure 7.1, the edge of the pile-up of circular Jupiters appears to end at around 0.057

AU (5 days), as Wright et al. (2009) found. If we separate the hot Jupiters below this

cut-o↵, we recover a pile-up of hot Jupiters: in the region from 2.8 < P < 5 days, we

observe an excess of circular Jupiters inconsistent with the occurrence rate in the period

valley by a factor of 3 (Table 7.3). If the cut-o↵ for hot-Jupiters is truly 5 days, the

prediction for super-eccentric proto-hot Jupiters should be based only on the number

moderately-eccentric Jupiters with 2.8 < Pfinal < 5 days. In that case (repeating the

calculations of Section 7.3.1), we expect to find only 1+2
�1 super-eccentric proto-hot

Jupiters with e > 0.9 and 2.8 < Pfinal < 5 days, and our confidence that we found fewer

than predicted (Section 7.4.2) drops to 66%.

7.5.2 Some or All Proto-hot Jupiters May Have Bypassed the

e > 0.9 Portion of the Pfinal Track

Alternatively, the typical hot Jupiter may have undergone tidal circularization but

bypassed the high eccentricity phase, starting on the HEM track with 0.6 < e < 0.9 in

the region indicated by orange stripes in Figure 7.6 and 7.1 (or even in the 0.2 < e < 0.6

region). For Pfinal < 10 days, a Jupiter would begin the HEM track at an orbital

period less than 120 days, or 0.5 AU around a Sun-like star. The Jupiter is unlikely to

have formed here — the critical core mass required to accrete a massive atmosphere

most likely exceeds the amount of refractory materials available (Rafikov 2006) — but

may have been delivered to this region via planet-planet scattering or secular chaos.

Assuming a steady-flux of proto-hot Jupiters into the orange striped region, if the
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two moderately-eccentric, RV-detected5 Jupiters (corresponding to Nmod = 2.7+2.0
�1.3) in

Figure 7.1 (blue stars) originated from the orange region, we would expect

Nmod

✓Z 0.9

0.6

Ccomp(e)|ė|
�1de

◆
/

✓Z 0.6

0.2

Ccomp(e)|ė|
�1de

◆

= 2.7+2.0
�1.3 ⇥ 0.616 = 1.7+1.2

�0.8

proto-hot Jupiters in the orange region. We indeed see one such planet, HD 17156 b

(Figure 7.1).

Since we observe HD 80606 b in the blue striped region, all proto-hot Jupiters would

not necessarily begin in the orange striped region. Planet-planet scattering or secular

chaos may place proto-hot Jupiters in both the orange striped region and the blue striped

region, with the majority in orange striped region. The proto-hot Jupiters in these two

regions would be created by the same dynamical processes responsible for Jupiters with

Pfinal > 10 days (failed hot Jupiters), of which we observe more with 0.6 < e < 0.9 than

with e > 0.9 (though this may be partly due to observational bias). The overall picture

of this scenario is that proto-hot Jupiters start the HEM track interior to the ice line

with eccentricities similar to those of planets we observe in the period valley, rather than

starting with e ! 1 beyond the ice line.

5In this calculation, we use the RV-detected sample. Even though transit probability is constant along

an a
final

track, ground-based transit survey are still strongly biased against detecting planets transiting

with longer orbital periods. RV samples su↵er from their own biases against long period and eccentric

planets, which we do not account for here.
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7.5.3 Proto-hot Jupiters Created by Planetary Kozai

Proto-hot Jupiters created by distant stellar companions likely decoupled by time they

reach P < 2 years. However, those created by nearby planetary companions may still

be coupled to their perturbers and spend much of their evolution at low e (Smadar

Naoz, private communication, 2012).The possibility that a proto-hot Jupiter spends part

of its time o↵ the HEM track due to Kozai oscillations is indicated by white, purple

dashed arrows in Figure 7.6. We clarify that the possibility that supereccentric proto-hot

Jupiters spend time at low eccentricities does not reduce their expected number. S12

demonstrate that tidal dissipation primarily occurs during high eccentricity intervals.

Regardless of how much time the Jupiter spends o↵ its afinal track during low-eccentricity

Kozai phases, it spends the same total amount of time on the afinal track undergoing

tidal dissipation. Therefore Equation (7.3) predicts the total number of super-eccentric

Jupiters observed on the track.

However, there are two ways in which the planetary Kozai could cause fewer

super-eccentric proto-hot Jupiter than computed in Section 7.3. First, even the

moderately-eccentric calibration proto-hot Jupiters (Nmod,0 blue stars in Figure 7.1)

could potentially still be coupled to a nearby planetary perturber (Smadar Naoz,

private communication, 2012). We note that several of the moderately-eccentric Jupiters

(HAT-P-34 b, HAT-P-31 b, and WASP-8 b) have linear trends in the RV observations

(Wright et al. 2011), indicating the presence of a companion in the system; it may

be the companion is su�ciently massive, inclined, and nearby to remain coupled. If

the moderately-eccentric Jupiters are still undergoing Kozai oscillations, we may be

observing them in the low-eccentricity portions of their cycles, and they may actually
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be tidally dissipating on a track with Pfinal < 3 days. If so, they should not have

been used to compute the expected number of super-eccentric proto-hot Jupiters with

3 < Pfinal < 10 days. We clarify that even if the moderately eccentric Jupiters oscillate to

high eccentricity intervals corresponding to a dissipation track with Pfinal < 3 days, they

should not be used to compute the number of super-eccentric Jupiters with Pfinal < 3

days, because Equation (7.3) only applies to planets observed on the track.

Second, assuming that the proto-hot Jupiter and its planetary perturber formed

co-planar in the disk, they likely underwent scattering to achieve the mutual inclinations

necessary for Kozai. This scattering process may have delivered the proto-hot-Jupiter

interior to the ice line, leading to the scenario described in Section 7.5.2, in which the

proto-hot Jupiter embarks on its HEM track at a < 0.5 AU and e < 0.9. Indeed, in

planetary Kozai, the proto-hot Jupiter can sometimes only reach a maximum eccentricity

of only 0.6 < e < 0.9, rather than e ! 1 (Smadar Naoz, private communication, 2012).

7.5.4 Alternatives to the “Steady Current” Approximation

The S12 prediction of a readily observable number of super-eccentric proto-hot Jupiters

assumed a “steady current” of proto-hot Jupiter production. We only expect a steady

current if: a) the rate of hot Jupiter production throughout a star’s lifetime is constant

(e.g. that a hot Jupiter is just as likely to be produced between 4.1-4.2 Gyr as it is during

the first 100 Myr), or b) although the hot Jupiter production rate may, for example,

be restricted to early in a star’s lifetime, new planetary systems are being produced

at a constant rate throughout the Galaxy. In the latter case, we would see proto-hot

Jupiters along all afinal tracks only if the sample included stars in the stage of hot Jupiter
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production. Nonetheless, even if neither is true, we would still expect to observe proto-hot

Jupiters. However, they would restricted to the narrow range of afinal tracks for which

the circularization timescale is of order a star’s age, instead of being found along all afinal

tracks in proportion to the circularization timescale (e/ė / a8final, Equation 7.5).

Assumption (a) seems unlikely. In the HEM mechanisms proposed (Section 7.1),

proto-hot Jupiters are spawned on instability timescales (planet-planet scattering, secular

chaos) or the Kozai timescale, which are unlikely to always coincide with the typical

stellar lifetime. More likely, the distribution of timescales is uniform (or normal) in order

of magnitude and thus most proto-hot Jupiters are spawned early in their host stars’

lifetimes. Indeed, Quinn et al. (2012) recently discovered hot Jupiters in the 600 Myr

Beehive cluster and found that the, accounting for the cluster’s enhanced metallicity,

the hot Jupiter occurrence rate is consistent with that of the solar neighborhood.

Regarding assumption (b), in practice we expect young stars to be rotating too rapidly

to be amenable to Doppler observations and too uncommon in our stellar neighborhood

to make up a representative sample of transit surveys. Therefore the steady current

approximation is unlikely to hold.

Inspired by population simulations by Hansen (2010) and Hansen (2012), we

simulate an extreme scenario in which every proto-hot Jupiter in the observable sample

is created simultaneously (Figure 7.7, left panel). We begin with a population of Jupiters

uniformly distributed in eccentricity and semi-major axis, extending to 10 AU; gray

open circles had initial semi-major axes interior to 1 AU (representing the possibility

that planets can begin HEM interior to the ice line, as discussed in Section 7.5.2). Then

we evolve the tidal evolution equations (Equations 7.5 and the corresponding ȧ/a)

until Jupiters with Pfinal < 5 days have circularized. We overplot tracks of constant
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angular momentum (dotted lines), as well as lines defined by a constant “orbital change

timescale,”

tmove =
⇥
(ȧ/a)2 + (ė/e)2

⇤�1/2
, (7.14)

(dashed orange lines) which match the afinal tracks at low eccentricities. Although there

is no steady current, we see a “track” consisting of a) Jupiters along the same afinal track

but with di↵erent starting eccentricities/semi-major axes, and b) Jupiters along close,

adjacent afinal tracks (those along the slightly larger afinal track have higher eccentricities

because e/ė / a8final).

For comparison (Figure 7.7, right panel) we perform a simulation featuring a steady

current of hot Jupiters. In this case, the proto-hot Jupiters are distributed over a range

of angular momenta tracks but are most common (black diamonds) along the track where

the tidal circularization time is order the total elapsed time (i.e. most of the proto-hot

Jupiters began their HEM early in the lifetime of the oldest stars in the sample). The

smaller afinal tracks (red squares, blue X) are more sparsely populated because these

planets circularize very quickly and we just happen to be catching some. The left and

right panels are not strikingly di↵erent. Particularly with a small observational sample

size, we are unlikely to be able to be able to distinguish whether we are seeing a narrow

range of afinal tracks due to a lack of steady current (left) or simply due to a higher

relative population along the afinal track of order a stellar age (right).

However, without a steady current of hot Jupiters, the number of moderately-

eccentric Jupiters in a Pfinal range cannot be used in Equation (7.7) to predict the number

of super-eccentric Jupiters. The number of super-eccentric Jupiters would depend on the

initial conditions generated by HEM mechanisms: the relative number of hot Jupiters
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Figure 7.7.—: Monte Carlo simulation of tidal evolution of proto-hot Jupiters assuming

that all the proto-hot Jupiters were created at once (left panel) or that there is a steady

current (right panelu). In each simulation, proto-hot Jupiters are drawn from a distribu-

tion uniform in eccentricity and semi-major axis, extending to 10 AU. Planets that began

interior to 1 AU are marked as open, gray circles. We overplot tracks of constant angular

momentum (dotted lines) corresponding to Pfinal = 3, 5, 10 days, as well as lines defined by

a constant “orbital change timescale” (dashed orange lines). In the right panel, the outer

orange-dashed line represents a timescale 40 times longer than the inner orange-dashed

line. The red squares (blue x) were created two (thirteen) times more recently than the

black diamonds.
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along adjacent angular momentum tracks and beginning at di↵erent semi-major axes

along the same track. However, if the initial eccentricities are roughly independent of

semi-major axis, the distribution today would resemble one resulting from a steady

current. The observed lack of super-eccentric proto-hot Jupiters would require very

fine-tuned initial conditions, such as substantially fewer Jupiters beginning along a

slightly larger angular momentum track. Therefore the paucity we found in Section 7.4

is unlikely to be fully accounted for by a lack of steady current.

Throughout this work, we have assumed that proto-hot Jupiters can travel along

HEM tracks with circularization timescales of order a stellar lifetime. However, a nearby

planetary perturber can potentially permanently remove the proto-hot Jupiter from

the angular momentum track before tidal circularization decouples it. For example, in

secular chaos, a planet may be perturbed to a high eccentricity, begin to circularize

along a track with a timescale longer than the chaos timescale, but then be chaotically

perturbed by nearby planets again. If all proto-hot Jupiters are created early in the

star’s lifetime and only those with extremely short tidal circularization timescales escape

the perturbations of nearby planets, we would indeed see a lack of super-eccentric

proto-hot Jupiters in a sample that lacks young stars. In this framework, the observed

moderately-eccentric Jupiters would not have been produced by HEM but by some other

mechanism, as explored in Section 7.5.1. Their survival indicates that the circularization

timescale is not extremely short in 3 < Pfinal < 10 days, and therefore the argument that

planets can only travel along paths with very short circularization timescales would only

apply for hot Jupiters with P < 3 days.

Finally, a related issue is whether the ratio of moderately-eccentric Jupiters

to Jupiters with P = Pfinal is the same in the Kepler and calibration samples (i.e.
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Nmod/NP=Pfinal ' Nmod,0/NP=Pfinal,0), as assumed in Equation (7.6). We would expect

the pile-up of hot Jupiters to be greater in the older sample (i.e. the Kepler sample) and

therefore that Equation (7.6) might over predict the number of super-eccentric Jupiters.

However, we note that the overall occurrence rate of hot Jupiters in the Kepler sample

is actually smaller than the in the RV-sample (Howard et al. 2012b; Wright et al. 2012),

so this is unlikely to be a problem in practice.

7.5.5 Upper Limit on Stellar Kozai Contribution

If the observed moderately-eccentric proto-hot Jupiters began beyond the ice line with

e ! 1 and underwent tidal circularization while staying on a track of constant angular

momentum (black arrows, Figure 7.6), we would expect to see 7+5
�3 super-eccentric

proto-hot Jupiters (Section 7.3); the lack of such planets indicates that one or more of

the alternative pathways in Figure 7.6 (white, purple, and gray arrows) may dominate.

These alternative pathways all originate from a planetary perturber or disk, rather

than a stellar perturber. Here we place an upper limit on the fraction of hot Jupiters

that followed the black arrow channel of HEM, beginning with a super eccentricity and

moving along a track of constant angular momentum. Since this is the only pathway

open to hot Jupiters produced by stellar binary Kozai oscillations, the upper limit is

also on the fraction of hot Jupiters created by stellar binaries. We repeat the MCMC

procedure in Section 7.4.2 but update Equation (7.3) with an additional parameter, f
?

,

representing the fraction of hot Jupiters that undergo HEM from super-eccentricities (or,

equivalently, the maximum fraction produced by stellar Kozai):
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N sup = f
?

r(emax)Nmod. (7.15)

We impose a modified Je↵rey’s prior on f
?

, so the prior is uniform between 0 and

5% and scales with 1/f
?

above f
?

= 5%. We choose 5% because, with only 87 Jupiters

in the non-Kepler sample, a lower rate would be within the Poisson noise. We obtain a

two-sigma limit of 33% on the fractional contribution from stellar binaries. Therefore,

we expect the majority of hot Jupiters were created by a planetary perturber (or a disk).

We note that this result technically only applies to hot Jupiters with P > 2.8 days,

because no super-eccentric Jupiters with Pfinal < 2.8 days were expected. This limit is

consistent with 30% contribution rate found by Naoz et al. (2012).

This limit also implies that we would need at least a 67% false positive rate to

account for the discrepancy. As discussed in Appendix 7.9, such a high false positive rate

is unlikely.

7.6 Conclusion

S12 predicted that if high-eccentricity migration (HEM) is the primary channel for

producing hot Jupiters, the Kepler candidate collection should harbor a population

of super-eccentric Jupiter-sized planets that are in the midst of tidal circularization.

We developed and performed a procedure to use the publicly-available Kepler transit

light curves to confirm or rule out this prediction and found a paucity of proto-hot

Jupiters on super-eccentric orbits. Incorporating uncertainties due to counting statistics,

uncertainties in the light curve fit parameters and in the assumed stellar parameters,
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incompleteness due to the limited observational timespan and missing data, and the

signal-to-noise limit, we expected to observe Nsup = 5+3
�2 (Section 7.3) but instead found

only 1± 1 (Section 7.4). False positives are unlikely to account for the discrepancy. The

lack of super-eccentric proto-hot Jupiters may indicate that the assumed constant tidal

time lag approximation — which sets the ratio of super-eccentric proto-hot Jupiters to

the observed, partially circularized moderately-eccentric Jupiters used to compute the

prediction — is incorrect (Section 7.2.2). However, violation of this assumption could

only account for the discrepancy if tidal dissipation were actually much stronger at high

eccentricities along a given angular momentum track.

With the current sample, the statistical signifiance of our results is 95.8%. The

expected number of supereccentric Jupiters will increase steeply as the mission continues

and the completeness to long-period planets increases. If we continue to find a paucity

of super-eccentric Jupiters, our confidence will increase, or perhaps we have been

very unlucky and will find one after all. In the future, we will also utilize a pipeline

targeted to finding large-period, Jupiter-sized planets and inject the transits of simulated

super-eccentric Jupiters to ensure that the assumptions about completeness we have

made here are correct.

In Section 7.5, we explored a number of dynamical explanations for the paucity

of super-eccentric proto-hot Jupiters, relaxing the assumptions by S12 that proto-hot

Jupiters begin HEM beyond the ice line and that a steady current of hot Jupiters is

being produced. We found that the lack of super-eccentric planets could be explained by

one of the following scenarios. First, hot Jupiters with P > 2.8 days may be directly

implanted interior to the ice line, and only those with P < 3 days have undergone tidal

circularization. This would be the case either if the tidal circularization timescale is
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typically only less than a stellar lifetime for Pfinal < 2.8 days or if only proto-hot Jupiters

with fast circularization timescales can manage to complete their circularization without

being moved by a nearby planetary perturber. Second, hot Jupiters with P > 2.8 days

may have undergone tidal circularization but bypassed the super-eccentric phase of

HEM, beginning their tidal circularization interior to 0.5 AU with 0.6 < e < 0.9 rather

than beyond the ice line with e ! 1. Third, the moderately-eccentric Jupiters used to

calibrate the prediction may be undergoing Kozai eccentricity oscillations caused by a

nearby planetary perturber and we are observing them in the low-eccentricity phase, in

which they are not currently undergoing tidal dissipation. In that case, we would not

expect to observe super-eccentric Jupiters currently undergoing tidal dissipation.

All these explanations point either to disk migration or to secular chaos, planet-

planet scattering, or planetary Kozai (or other yet-to-be-proposed dynamical mechanism)

as the dominant channel for hot-Jupiter production, rather than the stellar Kozai

mechanism. In Section 7.5, we placed an upper limit of 33% on the contribution of

stellar Kozai to hot Jupiters, consistent with the findings of Naoz et al. (2012). Our

limit only applies to hot Jupiters with orbital periods greater than 2.8 days, as the

prediction for super-eccentric Jupiters only applied to those ending their HEM journey

at 2.8 < P < 10 days.

In this paper, we explored S12’s prediction for proto-hot Jupiters, but they made a

similar prediction for a population super-eccentric binary stars, which they subsequently

discovered (Dong et al. 2013). It would not be surprising if short-period stars were

produced by the Kozai mechanism but short-period planets primarily by scattering and

chaos, which can potentially deliver the planets observed interior to the ice line without

the planets undergoing a super-eccentric phase. The initial conditions for stellar systems
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and planetary systems may di↵er in that planetary systems are both theorized (e.g.

Barnes & Raymond 2004) and observed (e.g. Wright et al. 2009; Lissauer et al. 2011;

Mayor et al. 2011) to form packed with many planets, a condition that may often lead

to scattering and secular chaos. In contrast, stellar multiples are typically hierarchical,

an optimal setup for the Kozai mechanism.

The lack of super-eccentric proto-hot Jupiters is a new piece of evidence that models

for making hot Jupiters must match, joining the distribution of spin orbit measurements

(e.g. Fabrycky & Winn 2009; Morton & Johnson 2011a; Naoz et al. 2012). We

recommend that future theoretical studies of dynamical models for forming hot Jupiters

predict: the distribution of timescales for instabilities that form proto-hot Jupiters, how

often the high-eccentricity phase of HEM is bypassed, the initial conditions along the

HEM angular momentum tracks, and the expectations for high-eccentricity “failed” hot

Jupiters that likely have periapses too distant to undergo tidal circularization, such as

KOI 1474.01 (D12). For the brightest Kepler host stars, we recommend measuring the

spin-orbit alignment of planets in the period valley, whose obliquities have presumably

not been a↵ected by tides. Such measurements could elucidate whether the planets

in the period valley have a single origin or if there are two populations, which might

correspond to the circular planets and the eccentric planets. Additionally, we recommend

investigating whether a gas disk could flatten and circularize a period valley planet’s

orbit if the planet were scattered there before the gas disk dissipated.

We recommend that observers strive to better characterize the eccentricity

distribution of the period valley, which we argued may be the launching point for the

typical hot Jupiter’s HEM journey. It would be helpful to assess if the occurrence rate of

eccentric Jupiters in this region is – when extrapolated to the 3 < Pfinal < 10 days region
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– su�cient to launch all the hot Jupiters interior to, rather than at or beyond, the ice

line. We also recommend that observers attempt to nail down the period or semi-major

axis cut-o↵ between the hot Jupiter pile-up and the period valley. Finally, although we

found that it would be more di�cult to identify proto-hot Jupiters with 0.6 < e < 0.9

using the “photoeccentric e↵ect,” it could be feasible with more accurate and precise

stellar parameters. We recommend spectroscopic follow-up of KOI host stars for this

purpose.

7.7 Computing the Posterior of the Mean Number

of Planets Based on the Observed Number of

Planets

The probability of observing Npl from a Poisson distribution with mean Npl is:

prob(Npl|Npl) =
N

Npl

pl

Npl!
exp[�Npl] (7.16)

We wish to determine the posterior distribution for Npl, give the observed Npl.

Applying Bayes’ theorem:

prob(Npl)|Npl) = prob(Npl|Npl)prob(Npl) =
N

Npl

pl

Npl!
exp[�Npl]prob(Npl) (7.17)

where prob(Npl) is the prior on Npl. For a uniform prior on prob(Npl), the median of

the posterior, Med(Npl) is the solution to the equation:

0.5 =

R1
Med(Npl)

N

Npl
pl

Npl!
exp[�Npl]prob(Npl)dNpl

R1
0

N

Npl
pl

Npl!
exp[�Npl]prob(Npl)dNpl

(7.18)
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For a uniform prior prob(Npl) / 1,

0.5 =

R1
Med(Npl)

N
Npl

pl exp[�Npl]dNpl

R1
0 N

Npl

pl exp[�Npl]dNpl

=
�[Npl + 1,Med(Npl)]

�[Npl + 1]
(7.19)

where � is the gamma function. For a Je↵rey’s prior (appropriate when the scale of the

parameter is unknown), which for a Poisson distribution is prob(Npl) / (Npl)�1/2 (e.g.

Bernardo & Smith 2000; Farr et al. 2013),

0.5 =

R1
Med(Npl)

N
Npl�0.5
pl exp[�Npl]dNpl

R1
0 N

Npl�0.5
pl exp[�Npl]dNpl

=
�[Npl + 0.5,Med(Npl)]

�[Npl + 0.5]
(7.20)

The 68.3% confidence interval be calculated by equating the ratios in Equation 7.19

and 7.20 to 0.1585 and 0.8415. These posteriors have medians slightly larger than the

counted numbers because of the skewed shape of a Poisson distribution at small values

of the mean (Npl < 10). It is more probable that we are observing fewer planets than

the true mean number than vice versa. As an extreme example, if the mean number of

planets per sample is greater than 0, there’s some possibility that our sample will happen

to contain 0.

7.8 New Candidates Identified from the Threshold

Crossing Events (TCE) Table

We identified three new candidates from the Threshold Crossing Events, which is

complete for transits with su�cient signal-to-noise and at least three transits: KIC

12735740 (orbital period 282 days), KIC 8827930 (orbital period 288 days), and KIC

9025971 (orbital period 141 days). The first two exhibited two transits in Q1-Q8 but

were apparently not caught by eye. The third did not exhibit two transits, despite its
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shorter orbital period, due to missing data. These new candidates were also found by

Planet Hunters (Wang et al. 2013), and there were no other planets in Wang et al.

(2013)’s sample of long-period giant planets that met our criteria. However, a final

candidate, KIC 6805414 (orbital period 200 days), was not in the TCE table or in Wang

et al. (2013) but was discovered by Huang et al. (2013) using the HAT pipeline. Of the

new candidates discovered by Huang et al. (2013)., this is the only one that falls within

our stellar and planetary cuts. We think this object was missed by the Kepler pipeline

because strong stellar variability occurs on the same timescale as the transit duration.

We include all these candidates in our sample. In the case of KIC 6805414, we use

detrended data provided to us by Chelsea Huang (2012, private communication).

7.9 Assumptions that Cannot Explain a Lower than

Expected Number of Super-eccentric Proto-hot

Jupiters

These assumptions cannot explain observing fewer than expected super-eccentric

proto-hot Jupiters, either because a violation would result in more super-eccentric

progenitors (1) or because they are unlikely to be violated (2-5).

1. The evolution of the planet’s radius due to tidal inflation is negligible, and no

planets are disrupted by tides. However, if the planet’s radius were to expand over

the course of HEM due to tidal inflation, then the tidal dissipation rate would

be even lower during the earlier stages of HEM, causing planets to spend even
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longer at high eccentricities. Therefore, this e↵ect could only increase the expected

number of super-eccentric proto-hot Jupiters. The prevalence of tidal disruption

does not a↵ect the S12 prediction, because the prediction is based on the survivors.

Depending on the timescale of tidal disruption, we may observe additional doomed

proto-hot Jupiters that will not survive their HEM.

2. Angular momentum is not exchanged between the planet and star. If planets

were to typically transfer angular momentum to stars, we would expect more

super-eccentric hot Jupiters than predicted and vice versa. However, Penev et al.

(2012) argue that stellar tidal dissipation is likely unimportant, because if it were,

most hot Jupiters would be subsumed by their stars on short timescales. We note

that although a star can add or remove angular momentum from the planet’s orbit

as the star rapidly expands on the giant branch (e.g. Santerne et al. 2012), we

strictly restrict our samples to main-sequence stars so we can ignore this e↵ect.

We note that the Sun’s spin angular momentum ranges from about 10% (Pfinal =

3 days) to 6% (Pfinal = 10 days) the orbital angular momentum of a proto-hot

Jupiter.

3. The planet’s orbital angular momentum and spin angular momentum are not

exchanged. We neglect this e↵ect because we assume that the planet maintains a

pseudo-synchronous spin throughout its evolution. If the ratio of the planet’s orbital

angular momentum to its spin angular momentum is large, the planet’s spin quickly

(compared to the circularization timescale) evolves to this pseudo-synchronous

state, in which the planet’s spin rate is similar to the orbital frequency at periapse.

We expect the ratio of orbital to spin angular momentum is indeed typically large,

because the planet’s distance from the star is very large compared to the planetary
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radius.

4. Moderately-eccentric calibration Jupiters (Nmod,0) truly have e > 0.2; they are not

low-eccentricity planets that appear eccentric due to eccentricity bias. Eccentricity

bias occurs when noise masquerades as eccentricity. Because the eccentricity cannot

be negative, it is biased toward higher values. If one decomposes the RV signal

caused by an eccentric planet into sinusoidal harmonics of the planet’s orbital

frequency, one finds that the signal due to eccentricity is primarily embedded in

the second harmonic and has an amplitude of eK, where K is the RV amplitude

(e.g. Anglada-Escudé et al. 2010). Eccentricity bias is primarily a concern when

eK is near the noise level, i.e. for low-mass and/or long-period planets with small

K. In contrast, Jupiter-mass planets on short-period orbits have large K. For an

RV precision of a few m/s and a typical hot Jupiter K ⇠ 100 m/s, a signal of

amplitude e⇥K = 0.2 ⇥ 100 m/s = 20 m/s is well above the noise level. Moreover,

an even tighter constraint on the planet’s eccentricity is possible through a joint fit

to the RVs and transit light curve, as performed for each member of the calibration

sample. Therefore we expect that the calibration sample moderately-eccentric

Jupiters (which have orbital periods ranging from 3 - 15 days) truly do have

e > 0.2.

5. Only a small fraction of Kepler hot Jupiters are false positives. The expected

number of proto-hot Jupiters is proportional to the true rate of Kepler hot Jupiters

N
P=Pfinal (Equation 7.6). For example, if half the Kepler hot Jupiters were false

positives, the predicted number of proto-hot Jupiters should be cut in half. Morton

& Johnson (2011b) and Desert et al. (2012) find low false-positive rates for Kepler

candidates (< 10%). Santerne et al. (2012), Colón et al. (2012), and Fressin et al.
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(2013) find higher false-positive rates. However, Santerne et al. (2012) focused on a

population with high a priori false-positive probabilities because of their V-shaped

light curves. Moreover, the false positive discoveries by Colón et al. (2012) were for

planets with P < 3 days, which Colón et al. (2012) suggested can be expected from

the period distribution of binaries, and we do not include planets with P < 3 days

in our sample here. We have removed known false-positives from the computations

in Section 7.3. Finally, the false positive rate derived by Fressin et al. (2013) is

somewhat larger (18%). However, this rate was based on the Bolmont et al. (2013)

sample and, since then, roughly 25% of hot Jupiters have been removed from the

Kepler sample and marked as false positives Burke et al. (2013), so we expect the

false positive rate of the Burke et al. (2013) sample that we use is significantly

lower.

7.10 Avoiding Problems Due to Incorrect Stellar

Parameters

Characterizing the entire planetary eccentricity distribution from transit light curve

parameters can be complicated by systematic errors and uncertainties in the stellar

parameters (e.g. Moorhead et al. 2011; Kane et al. 2012; Plavchan et al. 2012). Instead,

we simply aim to determine whether or not there are light curves for which ⇢circ is

physically unlikely. For example, a planet transiting at periapse with e = 0.95 would

have ⇢circ = 244⇢
?

. Such a high density would be astrophysically implausible based on

our knowledge of stellar evolution.
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We consider three potential problems caused by incorrect stellar parameters. First,

we could mistakenly identify a planet as being highly eccentric even if it had ⇢circ ⇠ ⇢� if

we were to underestimate ⇢
?

as being very low. Second, we could miss an eccentric planet

if we thought its host star had ⇢
?

⇠ ⇢� but the true stellar density were much smaller.

However, we avoid both these problems by restricting our samples to exclude giants. All

of the ⇢
?

we derive for Kepler hosts in Section 7.4 are of order 1. Moreover, by excluding

giants from the well-characterized, calibration sample of stars with both transits and RV

measurements (Figure 7.1), we did not make any predictions for super-eccentric planets

orbiting giants, and therefore cannot miss any.

The third potential problem is that we used the number of hot Jupiters in the Kepler

sample, N
P=Pfinal, as an input for predicting Nsup (Equation 7.6). If a large fraction of

the Kepler hot Jupiters orbits stars that are secretly giants but slipped past our stellar

parameter cuts, then we might overpredict the expected number of super-eccentric

proto-hot Jupiters. As shown by Mann et al. (2012) and Dressing & Charbonneau 2013,

some of the stars classified as M or K dwarfs might be giants. However, Mann et al.

(2012) find that imposing a cut of log g > 4, as we do, helps avoid this misclassification.

With the cut imposed, 97% of cool stars dimmer than Kp = 14 are dwarves (Mann et al.

2012). Among our sample of Kepler hot Jupiters, all the stars with Te↵ < 5714 K have

Kp > 14, so it is very unlikely our sample harbors many giants masquerading as M or K

dwarves.
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7.11 Excluded and Exceptional Candidates

Based on our fits to the transit light curves, we find that three candidates are likely

eclipsing binaries: KOI-772.01, KOI-1193.01, and KOI-1587.01 and exclude them from

the rest of this work.The orbital periods of KOI-1477.01, KOI-1486.01, and KOI-211.01

were incorrectly reported, perhaps because of missing transits; their true orbital periods

are 169.54 days,127.2824 days, and 124.03599 days respectively respectively. KOI-211.01

is on the list of Kepler eclipsing binaries but this may be an error so we keep it in our

sample.

The transits of KOI-1095.01 were particularly noisy. We applied co-detrending

vectors before processing with AutoKep and imposed a normal prior on the limb

darkening parameters using the routine provided by Sing (2010). Typically we can

distinguish between a large eccentricity and a large impact parameter for Jupiter-sized

planets (DJ12), but in this case, we could not tell whether the transit is grazing. To more

easily explore parameter space, we fit the parameter ln ⇢circ instead of ⇢circ. In order to

maintain a uniform prior on e and !, we correspondingly use the parameter ln ⇢circ when

performing the MCMC fit to obtain the eccentricity posterior (Section 7.4.2). Including

or excluding this candidate only a↵ects the significance of the results by 0.1%.

KOI-433.02 (Figure 5) has an anomalously low ⇢circ, but it has a companion in the

system. If KOI-433.02 had Pfinal < 10 days, its orbit would cross that of KOI-433.01.

Therefore, likely either: a) the candidate has a large eccentricity but Pfinal > 10 days, and

is not part of the prediction, or b) the host star’s density is overestimated. Fortunately,

as discussed in Appendix 7.10, we have designed our approach so that it is not a problem

for our assessment of the prediction if some host stars have much lower densities than we
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estimate.

As part of our spectroscopic survey, we measured spectroscopic parameters using

SpecMatch for KOI-44, KOI-193, KOI-211, KOI-686, and KOI-1474, which we use

instead of the KIC parameters. For these candidates only, we impose a prior on the

stellar mass, metallicity, and age from a TRILEGAL (TRIdimensional modeL of thE

GALaxy; Girardi et al. 2005) synthetic Kepler field population, as described in Section

3.3 of D12.

The Takeda et al. (2007) evolution models only include stars with M
?

> 0.7M�.

For a subset of low-mass host stars — KOI-398, KOI-433, KOI-806, KOI-855, KOI-918,

KOI-1095, KOI-1466, KOI-1477, and KOI-1552 — we use the Dartmouth stellar evolution

models (Dotter et al. 2008) instead, sampling to maintain a uniform prior on stellar age,

mass, and metallicity.
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Chapter 8

Giant Planets Orbiting Metal-rich

Stars Show Signatures of

Planet-planet Interactions

R. I. Dawson & R. A. Murray-Clay The Astronomical Journal, Vol. 767, id. L14, 2013

Abstract

Gas giants orbiting interior to the ice line are thought to have been displaced from

their formation locations by processes that remain debated. Here we uncover several

new metallicity trends, which together may indicate that two competing mechanisms

deliver close-in giant planets: gentle disk migration, operating in environments with

a range of metallicities, and violent planet-planet gravitational interactions, primarily

triggered in metal-rich systems in which multiple giant planets can form. First, we
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show with 99.1% confidence that giant planets with semi-major axes between 0.1 and

1 AU orbiting metal-poor stars ([Fe/H]<0) are confined to lower eccentricities than

those orbiting metal-rich stars. Second, we show with 93.3% confidence that eccentric

proto-hot Jupiters undergoing tidal circularization primarily orbit metal-rich stars.

Finally, we show that only metal-rich stars host a pile-up of hot Jupiters, helping account

for the lack of such a pile-up in the overall Kepler sample. Migration caused by stellar

perturbers (e.g. stellar Kozai) is unlikely to account for the trends. These trends further

motivate follow-up theoretical work addressing which hot Jupiter migration theories can

also produce the observed population of eccentric giant planets between 0.1 and 1 AU.

8.1 Introduction

Approximately 1% of stars host hot Jupiters, ousted from their birthplaces to short-period

orbits (Wright et al. 2012) via mechanisms that remain debated. Proposed theories fall

into two classes: smooth disk migration (e.g. Goldreich & Tremaine 1980), and migration

via gravitational perturbations, either by stars (e.g. stellar binary Kozai, Wu & Murray

2003) or sibling planets (including planetary Kozai, e.g. Naoz et al. 2011; scattering, e.g.

Rasio & Ford 1996; and secular chaos, e.g. Wu & Lithwick 2011). (See Dawson et al.

2013, DMJ13 hereafter, for additional references.) We consider the latter class as also

encompassing gravitational perturbations preceeded by disk migration (e.g. Guillochon

et al. 2011).

Migration processes must not only produce hot Jupiters — heavily studied,

extensively observed gas giants orbiting within 0.1 AU of their host stars — but also

populate the region from 0.1 to 1 AU. This region is outside the reach of tidal damping
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forces exerted by the host star but interior to both the ice line and the observed pile-up of

giant planets at 1 AU, one of which likely indicates where large, rocky cores can grow and

accrete. We call this semi-major axis range the ”Valley,” because it roughly corresponds

to the “Period Valley” (e.g. Jones et al. 2003), the observed dip in the giant planet

orbital period (P ) distribution from roughly 10 < P < 100 days. The Valley houses gas

giants both on highly eccentric and nearly circular orbits. Gas disk migration is unlikely

to excite large eccentricities (e.g. Dunhill et al. 2013) whereas dynamical interactions are

unlikely to produce a substantial population of circular orbits. Therefore this eccentricity

distribution may point toward intermixing between two di↵erent migration mechanisms,

one gentle and one violent. Another orbital feature — the bimodal distribution of

spin-orbit alignments among hot Jupiters — is sometimes interpreted as evidence for

two migration mechanisms (Fabrycky & Winn 2009; Morton & Johnson 2011a; Naoz

et al. 2012). However, it may result from stellar torques on the proto-planetary disk

(Batygin 2012), gravity waves that misalign the star’s spin axis (Rogers et al. 2012), or

two regimes for tidal realignment (Winn et al. 2010; Albrecht et al. 2012). Because tides

are negligible in the Valley (except at the most extreme periastron, e.g. HD-80606-b,

HD-17156-b), we can interpret trends more easily. Excited inclinations and eccentricities

cannot have been erased by tidal damping.

If two common mechanisms indeed deliver close-in giant planets, physical properties

of the proto-planetary environment may determine which is triggered. A decade ago,

Santos et al. (2001, 2004) discovered that giant planets more commonly orbit metal-rich

stars, supporting the core accretion formation theory. Independent and follow-up studies

confirmed this trend for giant planets (e.g. Fischer & Valenti 2005, Sozzetti et al. 2009

Johnson et al. 2010, Sousa et al. 2011, Mortier et al. 2012) but not small planets (Ribas
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& Miralda-Escudé 2007; Buchhave et al. 2012). Neither the Santos et al. (2004) nor the

Fischer & Valenti (2005) samples exhibited correlations between stellar metallicity and

planetary period or eccentricity, but now the radial-velocity (RV) sample has quadrupled.

It is time to revisit the planet-metallicity correlation, but now to gain insight into the

dynamical evolution of planetary systems following planet formation.

Another motivation is the puzzlingly low occurrence rate of hot Jupiters in the

Kepler vs. RV sample (Youdin 2011; Howard et al. 2012b; Wright et al. 2012). Kepler

targets have systematically lower metallicities than RV targets. We will show that

di↵erences in the planetary period distribution — not just the overall occurrence rate —

between metal-rich and metal-poor stars may account for the discrepancy.

We uncover new stellar metallicity trends in the eccentricities of giant Valley planets

(Section 8.2), eccentricities of giant planets tidally circularizing (Section 8.3), and giant

planet period distribution (Section 8.4). These correlations point toward planet-planet

interactions as one of two mechanisms for delivering close-in gas giants (Section 8.5).

8.2 Eccentric Valley Planets Orbit Metal-rich Stars

Valley gas giants are unlikely to have formed in situ (Rafikov 2006) and exhibit a

range of eccentricities (e) (Figure 1). Here we consider giant planets discovered by

radial-velocity surveys with m sin i > 0.1MJup, (queried from the Exoplanet Orbit

Database1 [EOD] on March 1st, 2013, Wright et al. 2011). We restrict the sample to

1Five planets fulfilling our selection criteria have eccentricities fixed at 0 in the EOD fits. We perform

Monte Carlo Markov Chain fits to the RVs of 14-And-b (e = 0.026+0.016
�0.013), HD-81688-b (e = 0.031+0.020

�0.015),
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Figure 8.1.—: Left: Valley (gray region) giant planets orbiting metal-rich stars ([Fe/H]�0,

blue circles) have a range of eccentricities; those orbiting metal-poor stars ([Fe/H]<0, red

squares) are confined to low eccentricities. Small symbols represent stars with log g < 4.

For reference, above the dashed line (a tidal circularization track ending at 0.1 AU) planets

are unlikely to experience significant tidal circularization. We plot the quantity 1� e2 to

emphasize high-eccentricity planets. Right: Eccentricity distributions of Valley planets

orbiting metal-rich (blue solid) and metal-poor (red dashed) stars. The bold distributions

omit stars with log g < 4.
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FGK stars (0.4 < M
?

< 1.4M�).

Under the two migration mechanisms hypothesis, Valley planets on nearly circular

orbits moved in smoothly through the gaseous proto-planetary disk, whereas those

on eccentric orbits were displaced through multi-body interactions. In Figure 1, we

emphasize planets with large eccentricities by plotting 1 � e2. This quantity is related

to the specific orbital angular momentum, h =
p

a(1� e2), an important parameter

for dynamical interactions. This scale also minimizes eccentricity bias. For example, as

a result of noise and eccentricity bias, a planet truly on a circular orbit could have a

measured e ⇠ 0.1. However, on this scale, e = 0.1 would be nearly indistinguishable from

e = 0.

We divide the sample into planets orbiting metal-rich stars ([Fe/H]�0, blue circles)

vs. metal-poor stars ([Fe/H]<0, red squares). Only the metal-rich stars host Valley

planets with large eccentricities. The eccentricities of these 61 planets extend up to

0.93. In contrast, the 17 Valley planets orbiting metal-poor stars are confined to low

eccentricities (e  0.43). Overall, 28% of Valley planets orbiting metal-rich stars have

eccentricities exceeding that of the most eccentric one orbiting a metal-poor star.

We assess the statistical significance of the low eccentricities of Valley planets

orbiting metal-poor stars. We perform a Kolmogorov-Smirnov (K-S) test on the null

hypothesis that the eccentricities of the metal-rich and metal-poor sample are drawn

from the same distribution. We reject the null hypothesis with 95.1% confidence. Using

a test more sensitive to the tails of distributions, Anderson-Darling (A-D), we reject

and Xi-Aql-b (e = 0.26± 0.04) using Sato et al. (2008)’s data; adopt Johnson et al. (2011c)’s e = 0.03(<

0.28) for HD-96063-b; and remove HD-104067-b because the RVs are unavailable.
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the null hypothesis with 96.9% confidence. Finally the probability that the maximum

eccentricity of the 17 planets is less than or equal to the observed e = 0.43 is the ratio of

combinations:

0

B@
61 Valley e  0.43

17 Valley [Fe/H] < 0

1

CA

0

B@
78 Valley

17 Valley [Fe/H] < 0

1

CA

= 0.86%

The results are insensitive to the exact metallicity cut and significant at 95%

confidence or higher for any cut located between -0.15 and 0.03 dex. Therefore, with

99.14% confidence, we reject the hypothesis that the confinement to low eccentricities of

the planets orbiting metal-poor stars results from chance. Although the exact statistical

significance is somewhat sensitive to the definition of the Valley, which defines the

sample size, it is evident in Figure 1 that the trend occurs throughout the Valley, and

the significance of the results is 95% or higher for cuts from 0.6 < a < 1.16 AU. The

significance is 99.86% without the stellar cuts and 97.8% with an additional cut of

log g > 4 to remove evolved stars.

As suggested by Johansen et al. (2012) in the context of the mutual inclinations

of Kepler multi-planet systems, one might expect a threshold metallicity to trigger

instability. Decreasing planets’ semi-major axes (a) via gravitational perturbations

requires interactions between at least two (and probably more) closely-spaced giant

planets. It may be that only metal-rich proto-planetary environments can form such
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systems.2 In contrast, planets on circular orbits would have arrived via disk migration,

which can occur regardless of metallicity.

We note that beyond 1 AU, the metal-rich and metal-poor sample have similar

eccentricity distributions. Planets with a > 1 AU have not necessarily changed their

semi-major axes: they may have formed where we observe them. These planets on

eccentric orbits near their formation location may have exchanged angular momentum

with another planet or star without requiring the abundance of closely-packed giant

planets necessary to drastically alter a.

8.3 Proto-hot Jupiters Orbit Metal-rich Stars

We turn to planets experiencing significant tidal dissipation, detected3 by non-Kepler

transit surveys (Figure 2) and followed up with RV measurements. We use the stellar and

2RV systems containing multiple known giant planets do appear to have systematically higher metal-

licities than those containing one, but the statistical significance is marginal. We note that planets may

be scattered to distances beyond current RV detection or ejected, so systems with only one known giant

planet perhaps originally had more.

3Some planets have e fixed at 0 in EOD fits. We remove those with poorly-constrained eccentricities:

CoRoT-7-b, HAT-P-9-b, OGLE-TR-10-b, OGLE-TR-111-b, TrES-1-b, TrES-4-b, WASP-13-b, WASP-

39-b, WASP-58-b, XO-1-b, XO-5-b. We include planets whose eccentricities are constrained to be small

(e < 0.2), by our fits (CoRoT-13-b, CoRoT-17-b, WASP-16-b) or the literature (CoRoT-7-b, HAT-P-1-b,

HAT-P-4-b, HAT-P-8-b, HAT-P-12-b, HAT-P-27-b, HAT-P-39-b, OGLE-TR-211-b, KELT-2-Ab, WASP-

7, WASP-11-b, WASP-15-b, WASP-21-b, WASP-25-b, WASP-31-b, WASP-35-b, WASP-37-b, WASP-41-

b, WASP-42-b, WASP-47-b, WASP-61-b, WASP-62-b, WASP-63-b, WASP-67-b). See the EOD for each

planet’s orbital reference.
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Figure 8.2.—: Left: Giant planets discovered by non-Kepler transit surveys, orbiting

metal-rich (blue circles) and metal-poor (red squares) stars. The striped region encloses

planets undergoing tidal circularization to 3 < Pfinal < 10 days. Planets below the dotted

line have e > 0.2, most of which orbit metal-rich stars. Right: Distribution of host star

metallicities for planets in the striped region (left) with e >0.2 (dotted line) and e < 0.2

(solid line).
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planetary cuts described in Section 8.2 (except for XO-3-b, see below). Socrates et al.

(2012b) and DMJ13 used this sample to calculate the abundance of moderately-eccentric

proto-hot Jupiters. Advantageously for this sample, transit surveys are less inclined to

target metal-rich stars, yielding planets orbiting metal-poor stars for comparison. To be

consistent with Socrates et al. (2012b) and DMJ13 and to avoid eccentricity bias, we

classify planets with e > 0.2 as eccentric.

The striped region contains planets undergoing tidal circularization along tracks of

constant angular momentum (see Socrates et al. 2012b, DMJ13) to final orbital periods

Pfinal between 2.8 and 10 days. (The traditional boundary for hot Jupiters is 10 days,

and 2.8 days is the limit above which we still see eccentric giant planets. Those with

Pfinal < 2.8 days have much faster tidal circularization rates.) Most observed eccentric

planets orbit metal-rich stars (blue circles). We suggest that only giant planets forming

in metal-rich systems with multiple giant planets are likely to be scattered onto eccentric

orbits that bring them close enough to the star to undergo tidal circularization (e.g.

Ford & Rasio 2006).

The probability of randomly selecting eight planets orbiting stars with [Fe/H] � 0

and one planet (i.e. XO-3-b) orbiting a star with [Fe/H] � �0.18 is the ratio of

combinations: 0

B@
38

8

1

CA⇥ 14 +

0

B@
38

9

1

CA

0

B@
59

9

1

CA

= 6.7%

where, among the 59 stars in the Pfinal range, 38 have [Fe/H] � 0 and 14 have

�0.18  [Fe/H] < 0. XO-3 has M
?

= 1.41M�, just above our stellar mass cut; the
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high mass of the star (corresponding to a more massive disk and more metals to form

giant planets) may account for the presence of a proto-hot Jupiter despite the star’s low

metallicity. Without this star, the statistical significance is 98.3%. We also perform a

K-S (A-D) test, rejecting with 95.5% (92.1%) confidence the null hypothesis that the

host star metallicities of planets in the striped region with e >0.2 are drawn from the

same distribution as those with e < 0.2.

8.4 The Short-period Pile-up is a Feature of Metal-

rich Stars

Howard et al. (2012b) found a surprisingly low Kepler hot Jupiter occurrence rate

(fHJ,Kepler) — the expected number of giant planets per star with P < 10 days —

compared to RV surveys (fHJ,RV), a trend confirmed by Wright et al. (2012) and Fressin

et al. (2013); all suggested that the systematically lower metallicities of Kepler host

stars may contribute to the discrepancy. In Figure 3, we compare the period distribution

of transiting giant planet candidates detected by the Kepler survey (Burke et al.

2013; see also Borucki et al. 2011 and Batalha et al. 2013) — applying a radius cut of

8< Rplanet < 20Rearth — to that expected from the RV sample,4 using a normalization

constant Cnorm (defined below). The RV sample includes only planets discovered by

RV surveys, not transit surveys. For both samples, we follow DMJ13 and impose cuts

4 The RV sample is not uniform; we plot it for qualitative comparison. The expected distribution

derived from the period distribution reported by Cumming et al. (2008) appears similar. We there-

fore interpret the short-period pile-up as real, not due to preferential detection. For the quantitative

calculations in this section, we use the uniform Fischer & Valenti (2005) sample.
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Figure 8.3.—: Red striped: number of transiting giant planets detected by Kepler. Black

dashed: expected number based on the RV-discovered (i.e. excluding planets discovered

by transit surveys) sample4. The gray error bars are from uncertainties in Cnorm, not the

Poisson uncertainties of each individual bin. The two distributions are consistent at long

periods, but the Kepler sample lacks a short period pile-up.
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Figure 8.4.—: Number of transiting giant planets observed by Kepler without a stellar

metallically cut (top), with [Fe/H]�0 (middle), and with [Fe/H]<0 (bottom). In the

metal-rich sample (middle), we recover the shape of the short-period pile-up seen in the

RV sample (black-dashed line, Figure 3). In contrast, the metal-poor sample (bottom) is

depleted in short-period giants.
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Figure 8.5.—: Same as Figure 3 but for metal-rich (left) and metal-poor (right) subsam-

ples. Left: Metal-rich Kepler sample (red striped) exhibits a short-period pile-up, but

falls below RV expectations in the 3-5 day bin. Right: Metal-poor Kepler sample is not

inconsistent with the metal-poor RV sample, but the latter is di�cult to characterize due

to small numbers.
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of stellar temperature 4500 < T < 6500K and surface gravity log g > 4 to restrict

the sample to well-characterized Kepler host stars (Brown et al. 2011b). The two

distributions appear consistent beyond 10 days but di↵er strikingly at short orbital

periods: the Kepler period distribution lacks a short-period pile-up (in fact, the absolute

Kepler giant planet occurrence declines toward short orbital periods, as modeled by

Youdin 2011 and Howard et al. 2012b).

Although Kepler Input Catalog (KIC) metallicity estimates are known to be

uncertain (Brown et al. 2011b), we can roughly divide the Kepler sample into metal-rich

([Fe/H]�0) and metal-poor ([Fe/H]<0). In Figure 4, we compare the period distributions

for Kepler giant planets orbiting metal-rich vs. metal-poor stars. When we limit

the sample to [Fe/H]� 0 (row 2), we recover the missing short-period pile-up, which

the metal-poor sample (row 3) lacks. Performing a K-S test, we reject with 99.95%

confidence the hypothesis that the metal-rich sample and metal-poor sample are drawn

from the same distribution. The results are insensitive to the exact metallicity cut.

We compare the Kepler metal-rich(poor) sample to the RV metal-rich(poor) sample

in Figure 5. In Figures 3 and 5, we compare the observed number of transiting Kepler

giant planets (red striped) to the number expected (black dashed) based on the RV

sample,

NRV,trans = CnormNRVprobtrans,

where NRV is the observed number of RV planets per bin and probtrans(P ) is the transit

probability. We set the normalization constant, Cnorm, using the values (computed

below) of fHJ,Kepler and fHJ,RV:

Cnorm =
fHJ,RV

fHJ,Kepler

P10days
P=0 Ntrans,Kep(P )/probtrans(P )

P10days
P=0 NRV(P )

.
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Each error bar is due to the uncertainty in fHJ,RV/fHJ,Kepler. To compute fHJ,Kepler, we

follow Howard et al. (2012b), using our own stellar and planetary cuts and the latest

sample of Kepler candidates (Burke et al. 2013). The Barbara A. Mikulski Archive for

Space Telescopes (MAST) supplied the stellar parameters and the NExSci Exoplanet

Archive the transit shape parameters (duration, depth, a/R
?

, Rplanet/R?

). We obtain5

fHJ,Kepler = 0.38+0.08
�0.07% for giant planets with P <10 days (consistent with Howard et al.

2012b and Fressin et al. 2013), 1.08+0.33
�0.27% for the metal-rich sample, and 0.25+0.08

�0.06% for

the metal-poor sample. To compute fHJ,RV, we use the stellar and planetary sample from

the iconic planet-metallicity correlation (Fischer & Valenti 2005) and associated stellar

parameters (Valenti & Fischer 2005), the last RV target list to be publicly released.

We obtain fHJ,RV = 1.03+0.34
�0.32% for giant planets with P <10 days (in agreement with

Wright et al. 2012), 1.74+0.67
�0.54% for those orbiting stars with [Fe/H]�0, and 0.07+0.23

�0.06% for

[Fe/H]<0. With no metallicity cut, fHJ,Kepler is inconsistent with fHJ,RV at the 2.0� level.

In the metal-rich comparison (Figure 5, left), we see greater consistency between the

Kepler and RV distribution than in the full sample (Figure 3). The metal-rich Kepler

sample exhibits a short-period pile-up; the discrepancy between fHJ,Kepler vs. fHJ,RV is

now only 1.0�, with the greatest discrepancy in the 3-5 day bin. This improvement

motivates a detailed follow-up analysis, including a more precise estimate of fHJ,RV using

the latest RV target lists. If follow-up studies find a significant discrepancy between the

metal-rich Kepler and radial velocity samples, it could be due to the KIC metallicity

estimates. Using spectroscopic metallicity measurements by Buchhave et al. (2012), we

find that high metallicities do correspond linearly to high spectroscopic metallicities

5We estimate the occurrence rates and uncertainties based on the Poisson likelihood and a Je↵rey’s

prior, following DMJ13.
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(with a scatter of about 0.2 dex about a best-fit line with slope 0.3), but the spectroscopic

metallicities have a systematic o↵set corresponding to 0.1 dex at KIC [Fe/H] = 0,

consistent with the discussion by Brown et al. (2011b). However, we attribute the

systematic o↵set to the fact that stars targeted for spectroscopic follow-up are bright,

main-sequence stars in our solar neighborhood and thus have systematically higher

metallicities; in contrast, the KIC metallicities were computed assuming a low-metallicity

prior, due to the Kepler targets being above the galactic plane. The planetary radius

cut may also contribute to the discrepancy. The 8Rearth cut for the Kepler sample

corresponds to the RV cut of m sini = 0.1MJup for a planet made of pure hydrogen

at a low e↵ective temperature (e.g. Seager et al. 2007). However, close-in, low-mass

planets may be inflated to > 8Rearth and may have a di↵erent period distribution,

contaminating the sample. In the metal-poor comparison (Figure 5, right), the Kepler

and RV distributions do not appear inconsistent, but it is di�cult to judge given the

very small sample of RV-detected planets orbiting metal-poor stars.

8.5 Conclusion

We found three ways in which the properties of hot Jupiters and Valley giants depend

on host star metallicity:

1. Gas giants with a < 1AU orbiting metal-rich stars have a range of eccentricities,

whereas those orbiting metal-poor stars are restricted to lower eccentricities.

2. Metal-rich stars host most eccentric proto-hot Jupiters undergoing tidal

circularization.
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3. The pile-up of short-period giant planets, missing in the Kepler sample, is a feature

of metal-rich stars and is largely recovered for giants orbiting metal-rich Kepler

host stars.

Hot Jupiters and Valley giants are both thought to have been displaced from

their birthplaces. Therefore these metallicity trends can be understood if smooth disk

migration and planet-planet scattering both contribute to the early evolution of systems

of giant planets. We expect disk migration could occur in any system, but only systems

packed with giant planets – which most easily form around metal-rich stars – can scatter

giant planets inward to large eccentricities (Trend 1). Some of these tides shrink and

circularize (Trend 2), creating a pile-up of short-period giants (Trend 3). Moreover, these

trends support planet-planet interactions (e.g. scattering, secular chaos, or Kozai) as the

dynamical migration mechanism for delivering close-in giant planets, rather than stellar

Kozai. This is consistent with previous work by DMJ13 arguing that stellar Kozai does

not produce most hot Jupiters, based on the lack of super-eccentric proto-hot Jupiters.

We would not expect planet-planet scattering to typically result in nearby companions to

hot Jupiters, which have been ruled out in the Kepler sample by Ste↵en et al. (2012a).

(See also Latham et al. 2011.)

One possible challenge for our interpretation is the lack of apparent correlation

between spin-orbit misalignment and metallicity. However, spin-orbit misalignments are

not necessary caused by dynamical perturbations, and their interpretation is complicated

because measurements have primarily been performed for close-in planets subject to

tidal realignment. We recommend spin-orbit alignment measurements, via spectroscopy

(McLaughlin 1924; Rossiter 1924; Queloz et al. 2000) or photometry (Nutzman et al.
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2011; Sanchis-Ojeda et al. 2011), of Kepler candidates in the Valley, which are typically

too distant to be tidally realigned.

To support or rule-out the interpretation that these metallicity trends are signatures

of planet-planet interactions, we further recommend: 1) theoretical assessments of

whether planet-planet interaction mechanisms designed to account for hot Jupiters can

simultaneously produce the observed population of eccentric Valley planets, and 2) more

sophisticated assessments of the trends we report here, using the target lists of recent

RV surveys and, as undertaken by Fressin et al. (2013), a careful treatment of Kepler

false-positives and detection thresholds.

Note added in proof: We thank readers for alerting us to references we missed.

Gonzalez (1997) first pointed out the planet-metallicity correlation, Gould et al. (2006)

that RV surveys are biased toward higher metallicities, and, in a submitted conference

proceedings, Taylor (2012) a correlation between eccentricity and metallicity for close-in

giant planets.
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Conclusion

9.1 Summary

The surprisingly dynamical architectures of extra-solar planetary systems and of our

own solar system’s Kuiper belt have necessitated looking beyond the simple “clockwork”

picture of planetary system evolution. Four centuries after Kepler declared planetary

systems to be “not like a divine animal but like a clock,” new discoveries have left

us struggling to make sense of the animal-like properties of the growing menagerie of

extra-solar planets and Kuiper belt objects. This thesis investigated the migratory

behavior of planetary systems, in which giant planets leave behind the icy regions where

they formed for warmer and/or more exotic climes. We sought to distinguish whether

planetary migration is a smooth or violent process through a two-pronged approach: 1)

reconstructing the migratory behavior of planets based on the debris disks they sculpted

in the process (Chapters 2 - 3) and 2) developing new methods for characterizing

modern planetary orbits, which we used to understand the histories of planetary systems
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(Chapters 4 - 8).

In Chapter 2, we investigated planetary migration in our own solar system,

addressing the question of whether Neptune underwent smooth, planetesimal-driven

migration or violent planet-planet scattering. We made use of the fact that Neptune’s

migration created several dynamical populations in our solar system’s debris disk,

the Kuiper belt. These populations include one of dynamically ”hot” high-inclination

objects overlying another flat, dynamically ”cold” population with distinct physical

properties. We presented a new observational constraint: the cold population is confined

to eccentricities well below the limit dictated by long-term survival. Thus Neptune

must deliver hot KBOs into the Kuiper belt without excessively exciting the cold

KBOs eccentricities. We explored the parameter space for Neptune’s migration history,

developing analytical expressions that allowed us thoroughly explore this parameter

space without the need for a computationally-prohibitive number of simulations. We

ruled out much of parameter space, except where Neptune is scattered to a moderately

eccentric orbit (e> 0.15), experiences eccentricity-damping from the dynamical friction of

planetesimals, and subsequently migrates a distance � a = 1-6 AU. Therefore Neptune

likely experienced both planet-planet scattering and smooth disk migration.

Next (Chapter 3), we modeled the warping of the extra-solar debris disk, � Pictoris,

by a planet on inclined orbit. The known planet in the system, � Pictoris b, was reported

by Currie et al. (2011) to be on an orbit aligned with the system’s flat outer disk and

therefore unable to produce the observed warp in the disk. We showed that if planet

b were aligned with the flat outer disk, it would prevent another planet from creating

a warp with the observed properties; therefore planet b itself must be responsible for

the warp. Next, we demonstrated that, at the extremes of the uncertainties, planet b is
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su�ciently inclined to produce the observed warp. Finally, we showed that planet b’s

inclination could have been damped by dynamical friction and still produce the observed

disk morphology, but the feasibility of such damping depends on the disk properties and

the presence of other planets.

Knowing a planet’s true orbital period is essential for understanding the dynamics

and migration history of its planetary system. In Chapter 4, we developed and

applied a new approach for correctly identifying a planet’s orbital frequency from

radial-velocity data and avoid confusion with alias frequencies, which can cause severe

mischaracterization of the planet. Our approach makes use of the fact that ground-based

observations contain gaps on multiple timescales, leading to a predictable pattern of

aliases that can be compared with the data. We examined six cases of orbital ambiguity

and found in particular that the orbital period 55 Cnc e is 0.7365 days, not the 2.817

days reported in the literature.

In Chapters 5, 6, and 7, we searched for hot Jupiters’ posited progenitors: Jupiters

on long-period, highly-eccentric orbits undergoing migration through tidal damping

of their orbits. Socrates et al. (2012b) had predicted that the Kepler Mission should

discover a significant number of these super-eccentric Jupiters if hot Jupiters achieve

their close-in orbits via strong gravitational interactions. In Chapter 5, We presented a

new approach for measuring a planet’s eccentricity from its transit light curve, preventing

the need for radial-velocity follow-up. In Chapter 6, we applied this approach to Kepler

candidate KOI-1474.01, finding that this Jupiter-sized planet has a large eccentricity

and exhibits transit timing variations due to a massive outer companion. However,

its periapse is probably too far for the star for tidal friction to transform it to a hot

Jupiter over its host star’s lifetime. Therefore we consider KOI-1474.01 a failed hot
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Jupiter. Then we applied our approach to the other giant planets discovered by the

Kepler Mission and found a lack of super-eccentric hot Jupiter progenitors, allowing us

to place an upper limit on the fraction of hot Jupiters produced by the Kozai mechanism.

Therefore most hot Jupiters are likely produced by disk migration and/or some form of

planet-planet interactions that do not require the hot Jupiter progenitor to undergo a

super-eccentric phase.

Finally, we proposed in Chapter 8 that if both planet-disk and multi-body

interactions commonly cause giant planet migration, physical properties of the proto-

planetary environment may determine which is triggered. We identified three trends in

which giant planets orbiting metal rich stars show signatures of planet-planet interactions:

(1) gas giants orbiting within 1 AU of metal-rich stars have a range of eccentricities,

whereas those orbiting metal-poor stars are restricted to lower eccentricities; (2)

metal-rich stars host most eccentric proto-hot Jupiters undergoing tidal circularization;

and (3) the pile-up of short-period giant planets, missing in the Kepler sample, is a

feature of metal-rich stars and is largely recovered for giants orbiting metal-rich Kepler

host stars.

The results of this thesis suggest that both disk migration and planet-planet

interactions may be widespread, with the latter occurring primarily in metal-rich

planetary systems where multiple giant planets can form.
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9.2 Follow-up

The work presented in thesis has spurred a variety of follow-up work by us and others.

We are continuing to investigate Neptune’s migration history by focusing on the origin of

the Kuiper belt’s bimodal inclination distribution (Brown 2001; Gulbis et al. 2010; Volk

& Malhotra 2011). To date no simulations have been able to produce both the high and

low inclination classical Kuiper belt objects while qualitatively matching their observed

eccentricity distribution. We are expanding the framework we developed in Chapter 2 to

explore whether the large inclinations of many Kuiper belt objects could be the result of

Neptune undergoing a period of high inclination during the early period of solar system

upheaval (Dawson & Murray-Clay, in preparation). We are also assessing whether our

constraints hold if the Kuiper belt was quite massive during the period of upheaval.

Since the publication of Chapter 3 in 2011, more observations of � Pictoris have

been conducted. We had found that either � Pictoris b must either be on an inclined

orbit misaligned with the flat, outer disk or that its orbit was inclined in the past and

subsequently damped. We argued that the apparent alignment of � Pictoris b with the

flat outer disk reported by Currie et al. (2011) could be the result of uncertainty in the

measured sky position of the planet and disk, which were measured in separate images,

and had recommended endeavoring to measure the position of the planet and the disk

in the same image. Lagrange et al. (2012) made this measurement and found that the

planet is indeed misaligned with the flat outer disk and thus has su�cient inclination to

produce the observed warp.

Our revised period for the radial-velocity-discovered super-Earth 55 Cnc e (Chapter

4) resulted in an enhanced transit probability, motivating new searches for its transit.
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We collaborated in campaign led by Joshua Winn to photometrically monitor 55 Cnc

with the MOST satellite, and the planet was found to transit (Winn et al. 2011). The

transit was concurrently discovered with Spitzer by Demory et al. (2011). A super-Earth

transiting a bright star, 55 Cnc e is now a laboratory for composition and atmospheric

studies, both theoretical (e.g. Castan & Menou 2011; Madhusudhan et al. 2012; Lopez

et al. 2012) and observational (e.g. Crossfield 2012; Demory et al. 2012; Ehrenreich et al.

2012). The new period also led to new insights on the dynamics of the system (Kaib et al.

2011; Van Laerhoven & Greenberg 2012; Bolmont et al. 2013). Our de-aliasing approach

was recently employed to distinguish the true orbital period of an Earth-mass planet

orbiting our stellar neighbor Alpha Centauri B (Dumusque et al. 2012, supplementary

material).

With the new Kepler data collected since the publication of Chapter 6 and

radial-velocity measurements conducted by John Johnson, we are measuring the highly

eccentric KOI-1474.01’s mass and pinning down the identity of its perturber. Combining

the transit timing variations and radial-velocity measurements, we are constraining the

mutual inclinations of the planets. We can also better constrain the projected rotational

velocity of the star and therefore the transiting planet’s projected spin-orbit alignment.

This combined orbital knowledge will hopefully reveal a three-dimensional view of this

planetary system. The “photo-eccentric e↵ect” (Chapter 5) was recently applied by

Sanchis-Ojeda et al. (2013, submitted to the Astrophysical Journal) to constrain the

eccentricity of a misaligned planet.
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9.3 Future Directions

Although we have made process toward understanding the migratory behavior of

planetary systems, a number of open questions remain, including:

1. Which of several proposed mechanisms for migration via planet-planet interactions

is most common?

2. What is the role of planetesimal-driven migration, an important process in our own

solar system, in extra-solar systems?

3. What e↵ects does planetary migration have on the composition and, ultimately,

habitability of planets in the system, including those not directly involved in the

migration?

Planetary migration models have previously been crafted and fine-tuned to

reproduce the regions of exoplanet parameter space well-populated with early discoveries.

Therefore, we may be able to leap forward by targeting exoplanet exceptions, those

lying in under-populated regions of parameter space, as a new test ground for migration

theories, allowing us to distinguish the contributions of the potpourri of proposed

migration mechanisms. Because a complete migration theory must account for these

exoplanet exceptions and their occurrence rates, exoplanet exceptions promise either

to be the exceptions that prove the rule, or to demand the incorporation of migration

processes previously considered unimportant.

One promising class of planets for future investigations are those located in the

“Period Valley,” interior to the ice line but exterior to hot Jupiters. These are the giant
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planets for which we found a correlation between eccentricity and metallicity in Chapter

8. In this region, there is an observed drop in the occurrence rate of giant planets, but

radial-velocity surveys and the Kepler Mission have found exoplanet exceptions here

(e.g. Wright et al. 2009; Borucki et al. 2011), many on eccentric orbits. Migration

models, designed to produce hot Jupiters from Jupiters formed at or beyond the ice line,

can populate the Period Valley as a side e↵ect (e.g. Ida & Lin 2008; Matsumura et al.

2010; Wu & Lithwick 2011). Focusing on migration models involving strong gravitational

interactions among planets, which have the greatest potential to produce the observed

eccentric orbits of Period Valley planets, we can perform computer simulations and

develop analytical expressions to predict the typical orbital properties of planets in the

Period Valley, which we expect to vary significantly among migration models. The

following orbital properties may be particularly important for distinguishing which

mechanisms of planet-planet interactions cause migration:

• Eccentricities: We can make predictions for the eccentricities of Period Valley

planets based on di↵erent models for creating hot Jupiters via planet-planet

interactions, including: 1) planet-planet scattering (e.g. Rasio & Ford 1996;

Matsumura et al. 2010), in which planets undergo random walks through the

Period Valley, resulting in a broad range of eccentricities, and 2) secular (long

timescale) mechanisms in which planets transverse the Period Valley primarily on

high eccentricity orbits (e.g. Wu & Murray 2003; Wu & Lithwick 2011). We can

compare these predictions to eccentricities measured by radial-velocity surveys,

and expand the collection of eccentricities measured from Kepler data using the

photo-eccentric e↵ect described in Chapter 5. Radial-velocity surveys are biased

against highly eccentric planets (O’Toole et al. 2009), which the photoeccentric
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e↵ect is most e↵ective for identifying, so combining these complementary datasets

would allow us disentangle selection e↵ects.

• Inclinations: Migration caused by perturbations from other stars and planets can

tilt a planets orbit out of the plane it formed in. Migration models have previously

been used to make predictions for the orbital inclinations of hot Jupiters (e.g.

Fabrycky & Tremaine 2007b; Naoz et al. 2011). However, due to their close-in

orbits, hot Jupiters experience strong tidal dissipation that can erase inclination

signatures of migration (e.g. Winn et al. 2010; Albrecht et al. 2012). We can

predict inclinations for the pristine period-valley planets (i.e. most are too distant

from their stars to be a↵ected by tides) and compute how these inclinations

translate to projected obliquities between the planets orbit and host stars spin

axis, measurements of which should be feasible among the subset of bright Kepler

host stars via the Rossiter-McLaughlin e↵ect (Rossiter 1924; McLaughlin 1924))

and the Sanchis-Nutzman e↵ect (Sanchis-Ojeda et al. 2011; Nutzman et al. 2011).

• Interplanetary interactions: Strong interplanetary gravitational interactions in a

planetary system lead to orbital variations, which cause a planet to transit its host

star at intervals that deviate from a constant orbital period (Holman & Murray

2005; Agol et al. 2005). Kepler has detected such transit timing variations for

many period-valley planets (Ford et al. 2012). We can use the typical magnitudes

and timescales of these observed variations to distinguish migration models in

which Period Valley planets decouple from their perturbers after reaching their

final orbital positions vs. remaining coupled, as well as distinguishing between

models featuring distant perturbers vs. nearby perturbers, which cause stronger

transit timing variations.
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Through the comparisons above, we can make progress toward distinguishing

between a subset of planetary migration models that all involve gravitational interactions

among planets but which range qualitatively from more gentle, long-timescale

perturbations to more violent, short-timescale upheaval.

Another class of “exoplanets exceptions” may provide new insights about disk

migration. Within the Period Valley itself, gas disk migration models predict an even

more striking depletion: a total lack of super-Earth and Neptune-mass planets (Alibert

et al. 2005; Ida & Lin 2008). This so-called ”Planet Desert” arises because as planets

migrate through the Period Valley, they undergo runaway gas accretion and end up

Jupiter-mass. Although early radial-velocity surveys were consistent with this prediction,

recent, more sensitive radial-velocity surveys, as well as Kepler , have discovered a

number of exceptions (Howard et al. 2010, 2012b). We should explore whether debris

from planet formation can cause migration (e.g. Fernandez & Ip 1984) that populates

the Planet Desert after the gas disk dissipates and allows Neptune-mass planets to move

interior to the ice line without undergoing run-away gas accretion. To investigate the

role of planetesimal-driven migration in populating the Planet Desert, we are developing

a code (gadgetbelt; based on gadget, Springel 2005), that fully models the gravitational

interactions between planets and debris disks, rather than the analytical prescriptions

typically used. This approach is necessary because we expect that early in a planetary

systems history, the participating debris disk may have a mass comparable to Neptunes.

Finally, the TESS Mission will provide a rich sample of well-characterized planets

essential for investigating links between the dynamics and composition of planets. For

example, consider a Super-Earth orbiting near its star. We might expect it to have

a di↵erent bulk and/or atmospheric composition if: a) plowed through a disk of gas
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and/or planetesimals, accreting along the way; b) was scattered inward during an

upheaval caused by giant planets in the system; or c) formed in situ, a theory of origin

for Super-Earths and mini-Neptunes that has recently been growing in popularity (e.g.

Chiang & Laughlin 2012). Moreover, when the first Earth-analogs are discovered, it will

be essential to understand the migratory history of any giant planets in the system, who

may caused an upheaval with profound e↵ects on habitability.
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Bakos, G. Á., et al. 2007, ApJ, 670, 826

—. 2009, ApJ, 707, 446

Ballard, S., et al. 2011, ApJ, 743, 200

Barbieri, M., et al. 2007, A&A, 476, L13

—. 2009, A&A, 503, 601

Barnes, J. W. 2007, PASP, 119, 986

Barnes, R., & Raymond, S. N. 2004, ApJ, 617, 569

Barnes, R., Raymond, S. N., Greenberg, R., Jackson, B., & Kaib, N. A. 2010, ApJ,

709, L95

Batalha, N. M., et al. 2010, ApJ, 713, L109

—. 2013, ApJS, 204, 24

379



REFERENCES

Batygin, K. 2012, Nature, 491, 418

Batygin, K., & Brown, M. E. 2010, ApJ, 716, 1323

Batygin, K., Brown, M. E., & Fraser, W. C. 2011, ApJ, 738, 13
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Nesvorný, D., Kipping, D. M., Buchhave, L. A., Bakos, G. Á., Hartman, J., &
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