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Moduli of Galois Representations

Abstract

The theme of this thesis is the study of moduli stacks of representations of an associative

algebra, with an eye toward continuous representations of profinite groups such as Galois

groups. The central object of study is the geometry of the map  ̄ from the moduli stack of

representations to the moduli scheme of pseudorepresentations. The first chapter culminates

in showing that  ̄ is very close to an adequate moduli space of Alper [Alp10]. In particular,

 ̄ is universally closed. The second chapter refines the results of the first chapter. In

particular, certain projective subschemes of the fibers of  ̄ are identified, generalizing a

suggestion of Kisin [Kis09a, Remark 3.2.7]. The third chapter applies the results of the first

two chapters to moduli groupoids of continuous representations and pseudorepresentations

of profinite algebras. In this context, the moduli formal scheme of pseudorepresentations is

semi-local, with each component Spf B
¯D being the moduli of deformations of a given finite

field-valued pseudorepresentation D̄. Under a finiteness condition, it is shown that  ̄ is not

only formally finite type over Spf B
¯D, but arises as the completion of a finite type algebraic

stack over SpecB
¯D. Finally, the fourth chapter extends Kisin’s construction [Kis08] of loci

of coe�cient spaces for p-adic local Galois representations cut out by conditions from p-adic

Hodge theory. The result is extended from the case that the coe�cient ring is a complete

Noetherian local ring to the more general case that the coe�cient space is a Noetherian

formal scheme.
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CHAPTER 1

Pseudorepresentations and Representations

In this chapter, we develop the notion of a pseudorepresentation following Chenevier

[Che11], who calls them determinants. Essentially, a pseudorepresentation in the data of the

characteristic polynomials of a representation. We make it a goal in §1.1 is to give a thorough

exposition of the theory of pseudorepresentations. We emphasize that much of this content

is due to Chenever; he, in turn, synthesizes and builds on work of Roby, Vaccarino, Donkin,

Zubkov, Procesi, and others. We will make these attributions clear. In particular, §§1.1-1.3

are due in large part to Chenevier, and our presentation follows his, adding detail to the

sources he draws on. Our original contributions in these sections consist of the application

of polynomial identity ring theory, which we begin to discuss in §1.2.2.

Starting in §1.4, we define and study moduli stacks of representations. A representation

induces a pseudorepresentation, so that there is a natural morphism from moduli stacks of

representations to the moduli scheme of pseudorepresentation. Our task is to study the ge-

ometry of this morphism, which we call  . Our main result in this chapter, Theorem 1.5.4.2,

is that  is very nearly an adequate moduli space. Adequate moduli spaces, a notion due

to Alper [Alp10, Alp08], are introduced in §1.5.1. They are meant to generalize a situation

commonly arising in geometric invariant theory (GIT); they are basically “isomorphisms

minus representability,” having important properties of both proper morphisms and a�ne

morphisms (cf. Remark 1.5.1.5). Indeed, a more precise way of stating our result is that the

moduli space of pseudorepresentations di↵ers by at most a finite universal homeomorphism

from the GIT quotient of the moduli scheme of framed representations by the natural action

of conjugation.

The controlling idea is that the moduli scheme of pseudorepresentations is a concrete

replacement for the GIT quotient of the moduli scheme of representations by the action

1



of conjugation. As pseudorepresentations have a sensible functorial definition, the moduli

problem of pseudorepresentations is representable by an a�ne scheme. This is what we mean

by “concrete.” On the other hand, the GIT quotient of a moduli scheme by a reductive group

of natural automorphisms has a priori a moduli-theoretic interpretation only for its functor

of geometric points, even though it is a scheme (cf. Theorem 1.5.1.4(2), Remarks 1.5.1.6 and

1.5.2.3). We lack a functor of points because the universal property of a quotient addresses

moprhisms out of the quotient instead of morphisms to the quotient. The moduli space of

pseudorepresentations is useful because it nearly attains both universal properties.

Later, in Chapter 2, we will improve Theorem 1.5.4.2, identifying certain loci in the base

over which  is an adequate moduli space. However, we expect that it is always an adequate

moduli space; Corollary 2.3.3.9 will provide some evidence.

In this chapter, we also begin to see what the concreteness of the moduli problem of pseu-

dorepresentations a↵ords to us. The main thing we achieve in this chapter is the demon-

stration of some finiteness properties of representations that are visible when one studies

moduli spaces of representations relative to the moduli space of pseudorepresentations. We

accomplish this by applying the notion of a Cayley-Hamilton pseudorepresentation and us-

ing results from polynomial identity ring theory to study the category of Cayley-Hamilton

representations (see §1.2). In particular, if a non-commutative algebra is finitely generated

over a commutative Noetherian ring, we show in Theorem 1.4.3.1 that all of its d-dimensional

representations canonically factor through a single algebra that is finite as a module over

its center. This line of thought will be followed in Chapter 3, when we approach our main

goal of studying moduli spaces of representations and pseudorepresentations of profinite

groups and algebras in the category of formal schemes. In particular, we show that under a

suitable finiteness condition on a profinite algebra, its moduli stacks of representations are

algebraizable over the moduli space of pseudorepresentations (cf. Corollary 3.2.4.3).

Notation and Conventions. Throughout this chapter, we will consider representations

and pseudorepresentations of non-commutative algebras over commutative rings. All rings

and algebras are associative, and they are unital except in some discussion of nil-algebras
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in §1.2.2. Generally, we will use A for a commutative base ring of coe�cients, R as a A-

algebra whose representations we study, and B for a commutative A-algebra of coe�cients.

When a fixed base is needed to study functors and groupoids of representations and pseu-

dorepresentations, we will use a commutative ring A, so that B are commutative A-algebras.

Sometimes, we will also assume that A is Noetherian and that R is finitely generated in

order that the schemes paramterizing the representation and pseudorepresentation functors

will be finite type over SpecA. We may also use S as a base coe�cient scheme. We will

use � for a group, often finitely generated, when we want to study group representations.

Except for some study of the moduli of group scheme valued representations in §1.4.4, we

study the representations of � by studying the representations and pseudorepresentations of

R = A[�].

1.1. Pseudorepresentations

In this section, we give an introduction to pseudorepresentations, our goal being to

provide a thorough exposition of background material on pseudorepresentations. All of

this material is due to Roby [Rob63, Rob80]1 and Chenevier [Che11, §§1-2]. Chenevier

emphasizes that the main theorems (Theorem 1.3.1.1 and Theorem 2.1.3.3) “should not be

considered as original, as they could probably be deduced from earlier works of Procesi via

the relation between determinants and generic matrices established by Vaccarino, Donkin,

and Zubkov” [Che11, p. 4]. We will give these attributions as they appear. We note that we

call “pseudorepresentation” what Chenevier calls a “determinant.”

1.1.1. Introduction to Pseudorepresentations. Let A be a commutative ring and

R be an A-algebra. We will give a preliminary (but accurate) definition of a pseudorepre-

sentation that we will provide more theoretical context for in the sequel.

1A helpful summary of Roby’s work appears in [BO78, Appendix A].
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Definition 1.1.1.1. A d-dimensional pseudorepresentationD of R over A is the structure

of an A-algebra on R and an association to each commutative A-algebra B to the map

DB : R⌦A B �! B

satisfying the following conditions:

(1) DB is multiplicative and unit-preserving (but not necessarily additive),

(2) DB is homogenous of degree d, i.e.

8 b 2 B, 8 x 2 R⌦A B,DB(bx) = bdDB(x),

(3) D is functorial on A-algebras, i.e. for any map B ! B0 of commutative A-algebras,

the diagram

R⌦A B
D

B

//

✏✏

B

✏✏

R⌦A B0 DB

0
// B0

commutes.

We write D : R! A for such data, although this data is much more than a map from R to

A.

Notation. If R is an A-algebra and B is a commutative A-algebra, we denote by

PsRd
R(B) the set of d-dimensional pseudorepresentations of R ⌦A B over B. We will soon

see that there is a natural structure of a functor on this map from A-algebras to sets.

The main interest in pseudorepresentations comes from their relation to representations

through the characteristic polynomial of a representation. Indeed, a d-dimensional represen-

tation ⇢ : R ! Md(A) of R over A induces a d-dimensional pseudorepresentation D of R

over A as follows. For any commutative A-algebra B, let DB be the composition

(1.1.1.2) DB : R⌦A B
⇢⌦

A

B�! Md(A)⌦A B
⇠�!Md(B)

det�! B

of the representation itself with the determinant map. We observe that
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(1) DB is multiplicative, because ⇢ and det are multiplicative,

(2) DB is homogenous of degree d because ⇢ is linear (homogenous of degree 1) and det

is homogenous of degree d, and

(3) one can check that the functionality condition (3) holds.

This map from representations to pseudorepresentations is a bit abstract until one con-

siders the characteristic polynomial associated to a pseudorepresentation. Of course, this

characteristic polynomial exists even if the pseudorepresentation does not come from a rep-

resentation.

Definition 1.1.1.3. Given a d-dimensional pseudorepresentation D : R �! A of R over

A, its characteristic polynomial function is

�(·, t) : R �! A[t]

r 7! DA[t](t� r) = td � ⇤
1

(r)td�1 + · · ·+ (�1)d⇤d(r)

where ⇤i are maps R ! A. We will sometimes write these maps as ⇤D
i when specificity is

required.

When we have a representation ⇢ : R ! Md(A) and the induced pseudorepresentation

D = D(⇢), a look at the definitions allows us to see that the characteristic polynomial of

r 2 R under the representation ⇢, that is, the polynomial

det(t · Id⇥d � ⇢(r)) 2 A[t],

is identical to the characteristic polynomial of the pseudorepresentation D. Therefore, a

pseudorepresentation retains at least as much information as the characteristic polynomial

of a representation. Later, we will see that it has exactly this much information, i.e. a

pseudorepresentation is characterized by its characteristic polynomial coe�cients ⇤i (Corol-

lary 1.1.9.15). It is useful to think of a pseudorepresentation as the data of characteristic
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polynomial coe�cient functions {⇤i} on R satisfying the relations imposed by being the char-

acteristic polynomial of a representation. However, we never have need to these relations

explicit.

Remark 1.1.1.4. The construction of (1.1.1.2) works just as well whenMd(A) is replaced

by R, an Azumaya A-algebra of rank d2 over its center A, and det is replaced by the reduced

norm R ! A. This includes the case of the Azumaya algebra EndA(V ) for a projective

rank d A-module V . These three notions of representation – a homomorphism into a d-by-d

matrix algebra, a linear action on a rank d projective module, and a homomorphism into

an Azumaya algebra – are defined in Definition 1.4.1.1 and explored in §1.4. Note that each

notion of representation listed includes the previous notions in the list. Profinite topological

analogues of these representations are given in Definition 3.2.1.1 and studied in Chapter 2.

It is well known that a semisimple representation of an algebra over an algebraically

closed field is characterized up to isomorphism by its characteristic polynomial, and there-

fore also by its associated pseudorepresentation. This leads us to ask when we can reverse

the map from representations to pseudorepresentations, and make a representation from a

pseudorepresentation. In fact, we describe in Theorem 1.3.1.1 a result of Chenevier: given

an algebraically closed A-field k̄, the induced map

{semisimple d-dimensional representations of R⌦A k̄}/ ⇠

#

PsRd
R(k̄)

is a bijection! This is an important fact, suggesting that “pseudorepresentations” deserve

their name: over an algebraically closed field, they are realizable as the determinant of a

representation.

Let us overview the content of this section. Pseudorepresentations are, in fact, partic-

ular cases of multiplicative polynomial laws, which is a notion due to Roby. Roby’s work

[Rob63] on polynomial laws is reviewed for several of the next paragraphs, and we discuss
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his work on multiplicative polynomial laws starting in §1.1.6. Then, we follow Chenevier:

pseudorepresentations are defined in §1.1.7, and a universal pseudorepresentation and the

resulting moduli scheme are identified in Theorem 1.1.7.4. Then, in §§1.1.8-1.1.9, we explore

properties of pseudorepresentations through their characteristic polynomials. In particular,

“Amitsur’s formula” shows that a pseudorepresentation is characterized by its characteris-

tic polynomial, and a certain “Cayley-Hamilton identity” holds for pseudorepresentations.

Work of Vaccarino [Vac08] critical for these identities is reviewed in §1.1.10, along with con-

tributions of Donkin and others that he build upon. The only original part of this section is

§1.1.11, where we give a direct sum operation on pseudorepresentations that decategorifies

the direct sum operation on representations. This makes the moduli space of pseudorepre-

sentations of all dimensions a “scheme in commutative monoids.” We conclude this section

in §1.1.12 with a discussion of an alternate notion of pseudorepresentation which we call

“pseudocharacters” in order to indicate that they retain only the data of a trace function,

while a pseudorepresentation consists of the entire characteristic polynomial. This notion of

pseudorepresentation is due to Taylor [Tay91] following a definition of Wiles [Wil88].

1.1.2. Polynomial Laws. A d-dimensional determinant of R over A is a particular

case of a polynomial law that is homogenous of degree d and multiplicative. We will define

these terms and make a preliminary study of them. This content is originally due to Roby

[Rob63, Rob80], and we are indebted to the exposition of Chenevier [Che11, §1]. The main

result, Theorem 1.1.7.4, is that the functor of d-dimensional pseudorepresentations PsRd
R on

A-algebras is representable. In particular, there exists a universal pseudorepresentation.

First we define a polynomial law.

Definition 1.1.2.1 ([Rob63, §1.2]). ] Let A be a commutative ring and let M,N be

A-modules. A polynomial law P : M ! N is the association to each commutative A-algebra

B a set-theoretic map

PB : M ⌦A B ! N ⇥A B

7



such that for any A-algebras B ! B0, the diagram

(1.1.2.2) M ⌦A B
P
B

//

✏✏

N ⌦A B

✏✏

M ⌦A B0 P
B

0
// N ⌦A B0

commutes. The set of polynomial laws from M to N is denoted PA(M,N).

Remark 1.1.2.3. A more sophisticated way of saying this is that if M is the quasi-

coherent sheaf on the big Zariski site Sch/ SpecA associated to M , then a polynomial law

P : M ! N is just a morphism (M)
Set

! (N)
Set

of the underlying sheaves of sets.

Example 1.1.2.4. Let M �! N be a homomorphism of A-modules. Applying ⌦AB

to this homomorphism for each A-algebra B defines a polynomial law. This is a linear

polynomial law. The set of linear polynomial laws in PA(M,N) is the image of HomA(M,N)

under the mapping we have just described.

It is possible to apply to polynomial laws many of the notions applicable to conventional

polynomial functions. For example, given A-modules M,N, P , we may compose pairs in

PA(M,N) ⇥ PA(N,P ). Also, PA(M,N) is naturally an A-module: if P, P 0 2 PA(M,N),

then setting (P + P 0)B to be PB + P 0
B for each A-algebra B defines a valid polynomial law.

Likewise, for a 2 A, P 2 PA(M,N), composing PB with the action of a on N ⌦A B for each

A-algebra B gives an A-module structure on PA(M,N).

Polynomials are sums of their homogenous components of each degree. In the same way,

we can assign a degree to a polynomial law and define homogenous polynomial laws.

Definition 1.1.2.5. Let P 2 PA(M,N) be a polynomial law between A-modules M,N

and let d � 0. We call P homogenous of degree d if for all A-algebras B, all b 2 B, and all

x 2M ⌦A B,

P (bx) = bdP (x).

We write Pd
A(M,N) for the set of polynomial laws of degree d.

8



We observe that Pd
A(M,N) is a sub-A-module of PA(M,N): if P, P 0 2 Pd

A(M,N), then

their sum is homogenous of degree d, as is a scalar multiple. In fact, just as for conventional

polynomials, a polynomial law can be decomposed into its homogenous components of each

degree. Following [BO78, §A4], take P 2 PA(M,N) and consider for any A-algebra B the

map PB[t] : M⌦AB[t]! N⌦AB[t]. For any x 2M⌦AB, define P d
B(x) 2 N⌦AB according

to the formula

PB[t](x⌦ t) =
X
d�0

P d(x)td.

Since this is an element of N ⌦A B[t], P d(x) = 0 for su�ciently large d, i.e. this is a

“polynomial” in t. One can then check that the P d
B are functorial in B, so that they define

a P d 2 Pd
A(M,N). Then by using the functionality of P under the map B[t]! B, t 7! 1 for

each A-algebra B, we see that PB(x) =
P

d�0

P d
B(x) for all A-algebras B and all x 2M⌦AB.

This decomposition into homogenous components is locally finite, in the sense that for any

given element of M ⌦A B, the result is a polynomial. However, as B and x vary, the

polynomial “degree” may grow.

Remark 1.1.2.6. As noted in [BO78, Appendix A], there is a sort of analogy between

homogenous polynomial laws (of a given degree) and modular functions (of a given weight).

Example 1.1.2.7 ([Rob63, Proposition I.5]). When P 2 PA(M,N) is homogenous of

degree 0, this is a “constant” polynomial law, and amounts to n 2 N such that PB(x) =

n⌦ 1 2 N ⌦A B for all x 2M ⌦A B.

Example 1.1.2.8 ([Rob63, §I.4]). Any linear polynomial law is homogenous of degree 1.

Using the Yoneda Lemma, one can see that the map HomA(M,N)! PA(M,N) defines an

isomorphism of A-modules HomA(M,N)
⇠! P1

A(M,N).

Example 1.1.2.9 (cf. [Rob63, §II.3]). Let P 2 P2

A(M,N) be a homogenous degree 2

polynomial law. This gives rise to a bilinear form BP : M �M ! N by setting

BP (m,m0) = PA(m+m0)� PA(m)� PA(m
0).

9



One can check that this is bilinear by observing that BP is the t
1

t
2

-coe�cient of

PA[t1,t2](m1

⌦ t
1

+m
2

⌦ t
2

);

while this is just the standard association of a bilinear form to a quadratic form, see Definition

1.1.2.14 to set this in the context of polynomial laws. In fact, P is characterized by PA, and

is characterized by BP if 2 is not a zero divisor in A. Conversely, if Q : M ! N is a quadratic

map, i.e. Q(am) = a2Q(m) for all a 2 A,m 2M , and if BQ constructed as above is bilinear,

then there exists a unique polynomial law Q̃ 2 P2

A(M,N) such that Q̃A = Q. This is proved

in [Rob63, Proposition II.1].

The example above shows that a polynomial law of degree two P 2 P 2(M,N) is actually

determined by PA, i.e. PA determines PB for all A-algebras B, cf. [Rob63, Proposition II.1].

However, this is not necessarily the case in general, as the following example shows.

Example 1.1.2.10 ([Che11, Example 1.2(iii)]). The Frobenius automorphism of the field

A = F
2

of 2 elements can be used to find a polynomial law of degree 3 P 2 P3

A(M,N) not

determined by PA. Let M be a two-dimensional A-vector space and let N = A. Choose

a basis {X, Y } of HomA(M,A). Then the A-polynomial law P : M ! N defined by

XY 2 �X2Y is homogenous of degree q + 1. Clearly P 6= 0, but PA is the zero map.

On the other hand, there are general conditions for a polynomial law to be determined

by its restriction PA : M ! N to M .

Proposition 1.1.2.11 ([Rob63, Proposition I.8]). If the ring A is an infinite cardinality

domain and if for every 0 6= x 2 N there exists some A-linear map � : N ! A such that

�(x) 6= 0, then any P 2 PA(M,N) is determined by PA.

For example, any free A-module N satisfies the condition on N in the statement.

One can isolate a single “coe�cient” of a polynomial through the following procedure.

Definition 1.1.2.12. Let P 2 PA(M,N) and choose integers p � 1 and let ↵ =

(↵
1

, . . . ,↵p) be a p-tuple of non-negative integers. Then if A[t
1

, . . . , tp] is the free polynomial

10



algebra over A in p variables t
1

, . . . , tp, write P [↵] : M�p to N as the following function. For

(m
1

, . . . ,mp) 2Mp, P [↵](m
1

, . . . ,mp) is the coe�cient of t↵1
1

t↵2
2

· · · t↵p

p in

PA[t1,...,tp]

 
pX

i=1

miti

!
.

Note that by applying the homogeneity condition, we may quickly see that if P 2

Pd
A(M,N), then P [↵] 6⌘ 0 =)

Pp
i=1

↵i = d.

Remark 1.1.2.13 (cf. [Rob63, §II.2]). If P 2 Pd
A(M,N) and p = d, i.e. if ↵ is the d-tuple

(1, . . . , 1), then P [↵] is a multilinear function M⌦d ! N . Roby calls this the “complete

polarization” of a homogenous polynomial law. For d = 2, we have already seen this in

Example 1.1.2.9 above. We readily observe that this multilinear function is symmetric,

i.e. commutes with the action of Sd. When d! is invertible in A, this defines a bijection

between homogenous polynomial laws of degree d and symmetric multilinear functions from

M⌦d to N . This means that when Pd
A(M,�) is representable by Symd M , which we note

is a quotient of M⌦d. The universal object (corresponding to Symd M
id�! Symd M) is the

d-dimensional homogenous polynomial law

m 7! m⌦ · · ·⌦m/p! 2 Pd
A(M, Symd M).

However, since the main goal of introducing pseudorepresentations in place of pseudochar-

acters2 is to allow the characteristic of coe�cient rings of representations to be arbitrary, we

want a theory without this weakness. In fact, there is a universal object for Pd
A(M,�) for

arbitrary A and M , as we will see in the sequel.

We are interested in a simple, explicit set of functions that characterize a polynomial

law. These are the “coe�cients” of the polynomial law.

Definition 1.1.2.14. Let P 2 PA(M,N). Then for any choice of positive integer n � 1,

any choice of m
1

, . . . ,mn 2 M , and any ordered n-tuple of integers ↵ = (↵
1

, . . . ,↵n), set

2In short, pseudocharacters keep track of the trace function of a representation, while pseudorepresentations
keep track of the entire characteristic polynomial. See §1.1.12 for a discussion of pseudocharacters and the
history of notions of pseudorepresentations.
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P [↵] : Mn �! N by

PA[t1,...,tn](
nX

i=1

mi ⌦ ti) =
X
↵

P [↵](m
1

, . . . ,mn)t
↵,

where t↵ :=
Qn

i=1

t↵i .

Definition 1.1.2.15. Let Idn denote the set of tuples ↵ = (↵
1

, . . . ,↵n) of non-negative

integers such that their sum is d. We will use the notation Id when the size n of the tuple

is clear from the context.

Often, we will use Id will refer to d-tuples, since at most d entries of an element of Idn are

non-zero and the data, such as P [↵], labeled by a choice of an element of Idn are completely

determined by the data labeled by elements of Idd .

The following proposition shows that the coe�cients of a polynomial law share analogous

properties to the coe�cients of a polynomial.

Proposition 1.1.2.16 (cf. [Rob63, Theorem I.1]). With P , ↵ 2 Idn, and P [↵] as in the

definition above, then

(1) For any m
1

, . . . ,mn 2 Mn, there are only finitely many n-tuples of non-negative

integers ↵ such that P [↵](m
1

, . . . ,mn) 6= 0.

(2) If m
1

, . . . ,mn generates M , then P [↵](m
1

, . . . ,mn) characterizes P , as ↵ varies over

all n-tuples of non-negative integers.

(3) If P is homogenous of degree d � 0, then P is characterized by the degree d homoge-

nous functions {P [↵] | ↵ 2 Idd}, and P [↵] ⌘ 0 if
P

↵ ↵i 6= d.

(4) If P is homogenous of degree d, then P is characterized by the degree d homogenous

function PA[t1,...,t
d

]

: R⌦A A[t
1

, . . . , td]! A[t
1

, . . . , td].

Proof. Parts (1) and (2) are proved in [Rob63, Theorem I.1]. Part (4) clearly follows

from (2) and (3).

Let us prove (3). By part (2), it will su�ce to show that if ↵ 2 Id0 where d 6= d0

and P 2 Pd
A(M,N), then P [↵] = 0. Say that we have a counterexample ↵ 2 Ind0 , so that

12



there exists some n-tuple (x
1

, . . . , xn) 2 Mn such that P [↵](x
1

, . . . , xn) 6= 0. Then if t is an

indeterminant,

(1.1.2.17)

td · P (
nX

i=1

miti) = P (t ·
nX

i=1

miti)

= P (
nX

i=1

mi(tti)

=
X
D�0

X
↵2In

D

P [↵](m
1

, . . . ,mn) · tD · t↵

where we recall that t↵ stands for
Qn

i=1

t↵i

i . Setting D = d0 and (m
1

, . . . ,mn) = (x
1

, . . . , xn)

and ↵ = ↵, and expanding the expression above in terms of monomials in the variables

t, t
1

, . . . , tn, we have that there is a nonzero term in the final line of (1.1.2.17) where the

degree of t is not d. This violates the homogeneity expressed in the first line of (1.1.2.17). ⇤

1.1.3. Representability. Now we assemble notions needed to specify the A-module

representing the functors N 7! PA(M,N) and N 7! Pd
A(M,N) for d � 0. Firstly we define

the divided power A-algebra �A(M) of M along with its graded component A-modules

�d
A(M), and construct a degree d homogenous polynomial law

Ld : M �! �d
A(M).

This will turn out to be the representing A-module and universal object for Pd
A(M,�).

Definition 1.1.3.1. Let M be an A-module. The commutative A-algebra �A(M) is the

quotient algebra of the polynomial algebra generated by the symbols m[i] where m 2M and

i � 0, subject to the relations

(1) m[0] = 1 for m 2M ,

(2) (am)[i] = aim[i] for a 2 A,m 2M, i � 0,

(3) m[i]m[j] = i!j!
(i+j)!

m[i+j] for m 2M, i, j � 0, and

(4) (m+m0)[i] =
P

p+q=i m
[p]m0[q].

13



Assigning to m[i] the degree i, we see that as the relations form a homogenous ideal, �A(M)

is a graded A-algebra under this grading, and we denote by �d
A(M) the dth graded piece, so

�A(M) ⇠=
M
d�0

�d
A(M).

Definition 1.1.3.2. We define the universal degree d homogenous polynomial law Ld 2

P d(M,�d
A(M)) by the maps

Ld
B : M ⌦A B �! �A(M)⌦A B ⇠= �B(M ⌦A B)

m⌦ b 7! m[i] ⌦ bi ⇠= (bm)[i].

The relations above show that this map is well-defined, functorial in B, and degree d ho-

mogenous.

We think of the element m[i] as “mi/i!,” even though i! may not be invertible in A.

Remark 1.1.3.3. This graded algebra is called the divided power algebra of M because

the ideal �+

A(M) ⇢ �A(M) of positive degree elements is a divided power ideal for �A(M)

with divided power structure � = (�i) characterized by the property �i(m[1]) = m[i] for all

m 2 M, i � 0 [BO78, Theorem A9]. This algebra has a special universal property among

A-algebras with a divided power ideal [BO78, Theorem 3.9].

The universality of Ld among degree d homogenous polynomial laws out of M is sum-

marized by this theorem.

Theorem 1.1.3.4 ([Rob63, Theorem IV.1]). Let M,N be two A-modules and let d � 0.

There is a canonical isomorphism

(1.1.3.5) HomA(�
d
A(M), N)

⇠�! Pd
A(M,N)

given by sending f 2 HomA(�d
A(M), N) to its composition f �Ld with the universal degree d

homogenous polynomial law Ld : M ! �d
A(M).
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We can already see that the map (1.1.3.5) exists, by composing Ld with a linear map

�d
A(M)! N . In order to show it is a bijection as the theorem claims, we need to introduce

two notions: a natural functor that the A-algebra �A(M) represents, and the notion of the

derivative of a polynomial law. In this we follow [BO78, Appendix A].

In order to prove Theorem 1.1.3.4, we introduce two tools. The first is the exp functor.

Definition 1.1.3.6. Let B be a commutative A-algebra. Let exp(B) be the following

B-module, a subgroup of the abelian group of units f 2 B[[t]]⇥ such that

(1) f(0) = 1,

(2) f(t
1

+ t
2

) = f(t
1

)f(t
2

) for free commutative variables t
1

, t
2

,

with B-module structure given by (b · f)(t) = f(bt).

As remarked in [BO78, p. 1], the following property of �A is “in a way, a multiplicative

version of SymA” as SymA is the left-adjoint of the forgetful functor from commutative

A-algebras to A-modules.

Proposition 1.1.3.7 ([BO78, Proposition A1], [Rob63, Theorem III.1]). For B a com-

mutative A-algebra, there is a canonical bijection

(1.1.3.8) Hom
Alg

A

(�A(M), B)
⇠�! HomA�mod

(M, exp(B))

given by the relation, for f 2 Hom
Alg

A

(�A(M), B), g 2 HomA�mod

(M, exp(B)), and m 2M ,

(1.1.3.9) g(m) =
1X
n=0

f(m[n])tn,

i.e. �A is left-adjoint to exp.

Proof. Write GA(M) for the free polynomial algebra over A generated by the symbols

m[i] for m 2 M and i � 0 and IA(M) for the ideal of relations of conditions (1) to (4) of

Definition 1.1.3.1, so that GA(M)/IA(M)
⇠! �A(M).

Given any map of sets g : M ! B[[t]], we have coe�cient functions bg = b : M ⇥ N! B

so that g(m) =
P1

i=0

b(m, i)ti. We observe that this defines a map b : GA(M) ! B, and
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that the associations g 7! bg 7! b 2 HomA(GA(M), B) are bijective. All that we need to do

is to show that b(IA(M)) = 0 if and only if the image of g lies in exp(B) ⇢ B[[t]] and g is a

map of A-modules.

We will progress through the generators of IA(M) given by conditions (1) to (4) of

Definition 1.1.3.1 in sequence.

(1) We see that b kills (m, 0) � 1 for all m 2 M if and only if the leading coe�cient

of g(m) is 1 for all m 2 M , i.e. g(m)(0) = 1, which is condition (1) of Definition

1.1.3.6 that g(m) must satisfy in order that g(m) 2 exp(B) ⇢ B[[t]].

(2) We see that b kills (am, i) � ai(m, i) for all m 2 M, i � 0, a 2 A if and only if

g(m)(at) = g(am)(t); by the A-module structure on exp(B), this means that g

satisfies the a · g(m) = g(am) condition on morphisms of A-modules.

(3) We see that b kills

(m, i)(m, j)� (i+ j)!

i!j!
(m, i+ j)

for all m 2M, i, j � 0 if and only if

g(m)(t
1

+ t
2

) =
1X
k=0

b(m, k)(t
1

+ t
2

)k

=
1X
k=0

X
i+j=k

✓
b(m, i)b(m, j)

i!j!

(i+ j)!

◆✓
i+ j

i

◆
ti
1

tj
2

=

 1X
i=0

b(m, i)ti
1

! 1X
j=0

b(m, j)tj
2

!

= g(m)(t
1

) · g(m)(t
2

),

which is condition (2) of Definition 1.1.3.6 for g(m) to lie in exp(B) ⇢ B[[t]].
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(4) We see that b kills (m+m0, i)�
P

p+q=i(m, p)(m0, q) for all m,m0 2M , i � 0 if and

only if

g(m) · g(m0) =

 1X
i=0

b(m, i)ti
! 1X

j=0

b(m0, j)tj
!

=
1X
k=0

X
i+j=k

b(m, i)b(m0, j)ti+j

=
1X
k=0

b(m+m0, k)tk

= g(m+m0),

as required for g : M ! exp(B) to obey the property g(m+m0) = g(m) + g(m0) of

A-module homomorphisms. ⇤

The following corollaries will be very useful.

Corollary 1.1.3.10 ([BO78, Proposition A2], [Rob63, Theorems III.3 and III.4]). Let

A be a commutative ring.

(1) If B is a commutative A-algebra and M is an A-module, �A(M)⌦AB
⇠�! �B(M⌦A

B), by sending

m[i] ⌦ 1 7! (m⌦ 1)[i].

(2) If M = lim�!�
M� is a colimit of A-modules, then

lim�!�A(M�) ⇠= �A(lim�!M�).

(3) If M
1

,M
2

are A-modules, then there is a canonical isomorphism

�A(M1

�M
2

)
⇠�! �A(M1

)⌦A �A(M2

)

(m
1

,m
2

)[i] 7!
X
p+q=i

m
[p]
1

m
[q]
2
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such that the grading on the left corresponds to the “sum” of the bi-grading on the

right, i.e. there is an induced isomorphism of A-modules

�d
A(M1

�M
2

)
⇠�!

M
d1+d2=d

�d1
A (M

1

)⌦A �
d2
A (M

2

)

We supply a proof along the lines of [BO78].

Proof. To show (1) we simply note that (1.1.3.8) can be composed with the standard

canonical isomorphisms

HomB�alg

(�A(M)⌦A B,B)
⇠�! Hom

Alg

A

(�A(M), B),

HomA�mod

(M, exp(B))
⇠�! HomB�mod

(M ⌦A B, exp(B))

to establish (1).

Since we can state Proposition 1.1.3.7 by saying that �A : A�mod �! AlgA is left-adjoint

to exp : AlgA �! A�mod and left-adjoint functors preserve colimits, we have (2).

As ⌦A is the coproduct in the category of commutative A-algebras and � is the coproduct

in the category of A-modules, we directly derive (3) from Proposition 1.1.3.7. The explicit

form of the map may be deduced from relation (4) of Definition 1.1.3.1. ⇤

Now we can concretely describe �d
A(M) in the case that M is a free A-module.

Corollary 1.1.3.11 ([BO78, Proposition A3], compare [Rob63, Theorem IV.2]). If the

A-module M is free with basis {ei}i2I , then for d � 0, �d
A(M) is free with basis {

Q
i2I e

[k
i

]

i |P
I ki = d}, where the ki are non-negative integers.

Proof. Corollary 1.1.3.10(2) allows us to confine ourselves to finitely generated A-

modules M . Corollary 1.1.3.10(3) allows us to reduce to the case that M is free of rank

1! Finally, Corollary 1.1.3.10(1) allows us to reduce to the case that A = Z. If we write {e}

for the basis of M , then the definition of the divided power algebra and its grading show

that e[d] is a generator for �d
Z(M). Therefore it will su�ce to show that for all non-negative

integers a, a · e[d] 6= 0.
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Now clearly the Taylor expansion exp(t) 2 Q[[t]] of et lies in exp(Q). As M is free,

there exists a map M ! exp(Q) sending x 7! exp(t). Then by Proposition 1.1.3.7, there

is a canonical map �Z(M) ! Q sending e[d] to the coe�cient 1/d! of td in exp(t). Clearly

a/d! 6= 0 when a 6= 0, so a · e[d] 6= 0 as well. ⇤

Now we add a second tool toward proving Theorem 1.1.3.4 in addition to the exp functor:

the derivative operators.

Definition/Lemma 1.1.3.12. Let M,N be A-modules, let m 2M , and i � 0. Then we

define the derivative operator @im on PA(M,N) as the A-module endomorphism of PA(M,N)

given by following notions.

(1) For P 2 PA(M,N), a commutative A-algebra B, and an element x 2M ⌦AB, then

then Taylor expansion of P at x with respect to m is

Sm(P )B(x) := PB[t](m⌦ t+ x).

(2) We observe that the Sm(P )B are functorial in B, and thereby defines a polynomial

law

Sm(P ) 2 PA(M,N ⌦A A[t]).

(3) Decompose Sm(P ) into coe�cient polynomial laws @im(P ) such that for all commu-

tative A-algebras B and all x 2M ⌦A B,

Sm(P )B(x) =
1X
i=0

@im(P )B(x)t
i

(4) For m 2 M and i � 0, write @im for the (A-linear) endomorphism of PA(M,N)

defined by the association P 7! @im(P ), and write

Sm :=
1X
i=0

@imt
i

for the resulting formal power series with coe�cients in EndA(PA(M,N)).
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(5) The A-subalgebra D ⇢ EndA(PA(M,N)) generated by {@im | m 2 M, i � 0} is

commutative.

Proof. For (2) we observe that for any morphism of A-algebras B ! B0, any x 2

M ⌦A B, the diagram

x //

✏✏

PB[t](m⌦ t+ x)

✏✏

x⌦B 1B0 // PB0
[t](m⌦ t+ x⌦ 1)

commutes.

For (3) we observe that the composition of the polynomial law Sm(P ) with the linear

polynomial law induced by the homomorphism of A-modules N ⌦A A[t]! N,
P

i nit
i 7! ni,

remains a polynomial law. This composition is the coe�cient polynomial law @im(P ).

For (4) we must show that @im : PA(M,N)! PA(M,N) is A-linear. This is straightfor-

ward:

Sm(P + P 0)B(x) := (P + P 0)B[t](m⌦ t+ x) = PB[t](m⌦ t+ x) + P 0
B[t](m⌦ t+ x)

= Sm(P )B(x) + Sm(P
0)B(x),

and Sm(a · P ) = a · Sm(P ) for a 2 A follows similarly.

The remaining claim is (5), that the operators

{@im | m 2M, i � 0} ⇢ EndA(PA(M,N))

commute. We deduce this by composing the operation Sm with itself, repeating the argument

of [BO78]: for B 2 AlgA, m1

,m
2

2M,x 2M ⌦A B, and indeterminates t
1

, t
2

,

PB[t1,t2](m1

t
1

+m
2

t
2

+ x) = PB[t1,t2](m2

t
2

+m
1

t
1

+ x)

Sm1(P )B[t2](m2

t
2

+ x) = Sm2(P )B[t1](m1

t
1

+ x)

Sm2(Sm1(P ))B(x) = Sm1(Sm2(P ))B(x),
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so comparing terms of the polynomial coe�cients in t
1

, t
2

, we find that

@im2
@jm1

ti
2

tj
1

= @jm1
@im2

tj
1

ti
2

for all i, j 2 N. ⇤

The key role that these derivatives will play in showing that �dA(M) represents the functor

Pd
A(M,�) starts to become apparent with this

Lemma 1.1.3.13. The map S := S
(·) : M ! D[[t]] defines an A-linear map

S : M �! exp(D).

Proof. First we show that the image of S
(·) =

P1
i=0

@i
(·)t

i lies in exp(D) ⇢ D[[t]]. Since

the coe�cient of t0 in Sm(P )B(x) = PB[t](m⌦t+x) is given by @0m(P )B(x) = PB[t](x) = PB(x)

for x 2M ⌦A B, we see that @0m(P ) = P , i.e. the coe�cient is 1 2 D as desired.

The remaining condition to verify in order to see that Sm 2 exp(D) ⇢ D[[t]] is that

Sm(t1 + t
2

) = Sm(t1) · Sm(t2) 2 D[[t
1

, t
2

]].

We now write Sm(ti) in place of Sm to specify the variable put in the place of t in the original

definition of S. We check that the required identity is satisfied by calculating that for all

m 2M,P 2 PA(M,N), B 2 AlgA, x 2M ⌦A B, we have

Sm(t1 + t
2

)(P )B(x) = PB[t1,t2](m⌦ t
1

+m⌦ t
2

+ x)

= Sm(t1)(P )B[t2](m⌦ t
2

+ x)

=
�
Sm(t1)Sm(t2)

�
(P )B(x),

so Sm(t1 + t
2

) = Sm(t1) · Sm(t2) as desired.
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It remains to show that S
(·) is a homomorphism of A-modules. This is a simple calcula-

tion: for m
1

,m
2

2M and all P,B, and x as above,

Sm1+m2(P )B(x) = PB[t](m1

⌦ t+m
2

⌦ t+ x)

= Sm1(P )B[t](m2

⌦ t+ x)

= Sm1(Sm2(P ))B(x).

This is commutative also, and we have Sm1+m2 = Sm1 · Sm2 = Sm2 · Sm1 . Finally, for

a 2 A,m 2M , and P,B, x as above,

Sam(t)(P )B(x) = PB[t](am⌦ t+ x)

= PB[t](m⌦ (at) + x)

= Sm(at)(P )B(x),

so Sam(t) = Sm(at) = a · Sm(t) as desired. ⇤

Now we prove Theorem 1.1.3.4, which we recall here. Given an A-module M and d � 0,

we have constructed the universal homogenous degree d polynomial law

Ld : M ! �d
A(M),

and want to prove that it deserves its name, i.e. for any A-module N , the natural map

HomA(�d
A(M), N)

(1.1.3.5)�! Pd
A(M,N) given by composing with Ld is bijective.

Proof. (Theorem 1.1.3.4) To show the injectivity of (1.1.3.5), choose

f 2 HomA(�d
A(M), N) and let P = f � Ld. This is a homogenous degree d polynomial

law P : M ! N . For ↵ 2 Idd recall the coe�cients P [↵] of P (Definition 1.1.2.14). For

m
1

, . . . ,md 2M , we have, by definition of the P [↵],

PA[t1,...,t
d

]

(m
1

⌦ t
1

+ · · ·+md ⌦ td) =
X
↵2Id

d

P [↵](m
1

, . . . ,md)t
↵.
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On the other hand, because �d
A[t1,...,t

d

]

(M⌦AA[t1, . . . , td]) ⇠= �d
A(M)⌦AA[t1, . . . , td] (Corol-

lary 1.1.3.10(1)), we see that

Ld
A[t1,...,t

d

]

(m
1

⌦ t
1

+ · · ·+md ⌦ td) = (m
1

⌦ t
1

+ · · ·+md ⌦ td)
[d]

=
X
↵2Id

d

Y
1id

m
[↵

i

]

i t↵i

i .

Comparing coe�cients, this shows that for each ↵ 2 Idd ,

f(m[↵1]

1

· · ·m[↵
d

]

d ) = P [↵](m
1

, . . . ,md), 8(m1

, . . . ,md) 2Md.

As {
Qd

1

m
[↵

i

]

i | ↵ 2 Idd , (mi) 2Md} spans �d
A(M) as a module by its construction (Definition

1.1.3.1), this shows that P = f � Ld determines f , i.e. (1.1.3.5) is injective.

Now we show that (1.1.3.5) is surjective. Let P 2 Pd
A(M,N). We need to produce a

linear map f : �d
A(M)! N such that

f :
dY

i=1

m
[↵

i

]

i 7! P [↵](m
1

, . . . ,md), 8(mi) 2Md,↵ 2 Idd .

For brevity we write m for (mi) = (m
1

, . . . ,md) and m[↵] for
Qd

i=1

m
[↵

i

]

i .

We have S : M ! exp(D) where D ⇢ EndA(PA(M,N)) is a commutative subalgebra

(Definition/Lemma 1.1.3.12(5)), and therefore by Proposition 1.1.3.7, an induced homo-

morphism of commutative A-algebras S̃ : �A(M) ! D. One can verify from the relation

(1.1.3.9) that just as Sm =
P1

0

@imt
i, so also S̃(m[i]) = @im. Therefore, for any m[↵] 2 �A(M),

S̃(m[↵]) = @↵m :=
Q

i @
↵
i

m
i

.

Apply these constructions to P 2 Pd
A(M,N) by “evaluating at zero” the derivative of P

by some @ 2 D, so that for each such P we have an A-linear map

evP : D ! N

@ 7! @(P )A(0)
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Composing evP with S̃, we have an A-linear map f : �A(M)! N , mapping

f : m[↵] 7! @↵m(P )A(0).

We find these quantities as coe�cients of t↵ by expanding the definition of the Taylor series:

if we restrict ↵ to have cardinality n, then for all B and x 2M ⌦A B,

X
↵

@↵m(P )B(x)t
↵ = PB[t1,...,tn](m1

⌦ t
1

+ · · ·+mn ⌦ tn + x),

and specializing to x = 0 2M , we have

X
↵

@↵m(P )A(0)t
↵ = PA[t1,...,tn](m1

⌦ t
1

+ · · ·+mn ⌦ tn).

The coe�cient of t↵ is f(m[↵]) 2 N in this series, but it is also equal to P [↵](m
1

, . . . ,mn) by

Definition 1.1.2.14. This is what we wanted to prove. ⇤

We derive a useful corollary of Theorem 1.1.3.4 regarding the functorial behavior of �dA.

Corollary 1.1.3.14 ([BO78, Corollary A6]). Let

M 0 ◆ M �!M 00 �! 0

be an exact sequence of A-modules. For d � 1 and an A-module N , this induces an exact

sequence of modules of A-polynomial laws

0 �! Pd
A(M

00, N) �! Pd
A(M,N) ◆ Pd

A(M
0, N),

and an exact sequence

�d
A(M

0) ◆ �d
A(M) �! �d

A(M
00) �! 0.

Proof. For any commutative A-algebra B,

M 0 ⌦A B ◆ M ⌦A B �!M 00 ⌦A B �! 0
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is also exact. This is what we need in order to see the first exact sequence. The second exact

sequence then follows from Theorem 1.1.3.4. ⇤

1.1.4. Symmetric Tensor Algebras. In the case that M is a free A-module, there

is an isomorphism of A-modules between the symmetric tensors of M of degree d and the

dth graded component of the divided power algebra for M . This will be helpful later in

understanding the multiplication law on the algebra representing the functor of pseudorep-

resentations.

First we define the A-algebra of symmetric tensors.

Definition 1.1.4.1 ([Rob63, §III.5]). Let TSd
A(M) be the submodule of M⌦d of elements

invariant under the natural action of the symmetric group Sd. Let TSA(M) := �d�0

TSd
A(M)

with the following structure of a graded algebra. For x 2 TSd
A(M), x0 2 TSd0

A(M), let

D = d + d0 and consider x ⌦ x0 2 M⌦D

A . Then x ⌦ x0 is invariant under the subgroup

Sd⇥Sd0 ,! SD, where the injections are defined by the ordering of the coordinates of x⌦x0.

Let (�) be a set of representatives of the left cosets of Sd ⇥ Sd0 . Define multiplication

⇤ : TSA(M)⇥ TSA(M)! TSA(M) by extending the multiplication on monomials

(1.1.4.2) x ⇤ x0 :=
X
�

�(x⌦ x0).

This multiplication is clearly bilinear so factors through TSA(M)⌦ATS(M), but showing

that it is associative takes a bit more work. For a full presentation of the commutativity and

associativity, see [Rob63, §III.5].

We observe that the map

M �!M⌦d

m 7! m⌦ · · ·⌦m =: m⌦d

A

is compatible with ⌦AB for commutative A-algebras B and therefore defines a polynomial

law that is homogenous of degree d. Therefore, by Theorem 1.1.3.4, we have a canonical
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map

(1.1.4.3) �d
A(M) �! TSd

A(M).

This map is characterized by the property that m[d] 7! m⌦d

A for all m 2 M [Rob63, Propo-

sition III.1]. Using this property, one can see that the relations of Definition 1.1.3.1 defining

�A(M) as a quotient of the free commutative algebra on m[i] (m 2 M, i � 0) are sent to

zero under the map from this free commutative algebra to TS(M) defined by m[i] 7! m⌦i

A ,

so that we have a canonical map

(1.1.4.4) �A(M) �! TSA(M).

See [Rob63, Proposition III.1] for further detail.

This map is often an isomorphism!

Proposition 1.1.4.5 ([Rob63, Proposition IV.5]). When M is either free or is projective

of finite rank as an A-module, then (1.1.4.4) is an isomorphism of A-modules, induced by an

isomorphism of graded A-algebras

�A(M)
⇠�! TSA(M).

Proof. When M is projective of finite rank, we reduce to the case that M is free, as all

of the arguments below commute with localization.

Let M be a free A-module and choose a basis (ei)i2I . Choose a total ordering on the

index set I for the basis. Consider the set of simple monomials ei1⌦ . . .⌦ ei
d

2M⌦d

and the

equivalence classes under the action of Sd. The ordering gives us a unique representative of

each class with the property that

i
1

 i
2

 · · ·  id.

Let K be the set of equivalence classes, and for K 2 K let eK represent the sum of the

elements of the equivalence class and let ẽK represent the unique representative specified
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above of the class K. This representative ẽK may be uniquely written (with a new choice of

indices ij 2 I) in the form

(1.1.4.6) ẽK = e⌦
k1

i1
⌦ · · ·⌦ e⌦

k

h

i
h

where i
1

< i
2

< · · · < ih,

hX
j=1

kj = d.

We note that

k
1

! · · · kh! · eK =
X
�2S

d

�(ẽK).

Choose some x 2 TSd(M), which may be uniquely written as

x =
X

i1,...,i
d

2I
�i1,...,i

d

ei1 ⌦ . . .⌦ ei
d

.

Because this is a symmetric tensor, for all � 2 Sd we have �i
�(1),...,i�(d)

= �i1,...,i
d

. This means

that we can write x uniquely as

x =
X
K2K

�KeK ,

where we can set �K = �i1,...,i
d

for any (i
1

, . . . , id) such that ei1 ⌦ . . . ,⌦ei
d

2 K. This shows

that {eK}K2K is a basis for TSd
A(M). Now we will show that this basis is the image of a

basis for �d
A(M).

We recall from Corollary 1.1.3.11 that �d
A(M) is free with the set

(1.1.4.7) {
hY

j=1

e
[k

j

]

i
j

| conditions of (1.1.4.6) on ij, kj} ⇢ �d
A(M)

being a basis over A. This basis is in natural bijective correspondence with K. We will be

done if we can show that the map �d
A(M)! TSd

A(M) preserves the correspondence between

their respective bases and K. Because m[i] 7! m⌦i

for all m 2 M, i � 0, the image of

e
[k1]
i1

· · · e[kh]i
h

2 �d
A(M) is

e⌦
k1

i1
⇤ · · · ⇤ e⌦k

h

i
h

.

Using (1.1.4.2), we find that this product is precisely the sum over the permutations of the

orderings of factors e⌦
k

j

i
j

, which is the basis element eK ⇤
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1.1.5. Faithful Polynomial Laws. We introduce the notion of a kernel of a polynomial

law P : M ! N , which is the kernel of the surjection from M onto the smallest quotient

A-module of M through which a polynomial law P 2 PA(M,N) factors.

Definition 1.1.5.1 ([Che11, §1.17]). Let P 2 P (M,N). Then ker(P ) ⇢M is the subset

of elements m 2M such that

8B 2 AlgA, 8b 2 B, 8x 2M ⌦A B, P (m⌦ b+ x) = P (x),

which we immediately observe is a A-submodule of M . By Proposition 1.1.2.16, m is in

ker(P ) if and only if for all n � 1 and m
1

, . . . ,mn 2M ,

P (tm+ t
1

m
1

+ · · ·+ tnmn) 2 N [t, t
1

, . . . , tn]

lies in N ⌦A A[t
1

, . . . , tn], i.e. it is independent of t.

When ker(P ) = 0, we say that P is faithful.

This lemma shows that the kernel deserves its name.

Lemma 1.1.5.2 ([Che11, Lemma 1.18]). Let P 2 PA(M,N).

(1) ker(P ) is the biggest A-submodule K ⇢ M such that P admits a factorization P =eP � ⇡ where ⇡ is the canonical A-linear surjection M �!M/K.

(2) eP : M/ ker(P ) �! N is a faithful polynomial law, and if P is homogenous of degree

d, so is eP .

(3) If B is a commutative A-algebra, then the image of

ker(P )⌦A B �!M ⌦A B

is contained in ker(P ⌦A B).

Proof. Assertion (3) follows from transitivity of the tensor product � ⌦A B ⌦B C

involved in the “restriction” of P to B-algebras C through the morphism A! B.
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Clearly if P factors through M ! M/K for some A-submodule K of M , then K is in

the kernel of P by definition. Now we check the converse: say K ⇢ ker(P ). We need to

factor P through a polynomial law eP : M/K �! N .

For any commutative A-algebra B, set

KB := =(K ⌦A B �!M ⌦A B).

Then ◆ : (M/K) ⌦A B
⇠! (M ⌦A B)/KB by the right-exactness of the tensor product

functor � ⌦A B, and KB ⇢ ker(P ⌦A B) by part (3). Now, applying the assumption that

K ⇢ ker(P ) and the definition of the kernel, we observe that the map PB : M⌦AB ! N⌦AB

satisfies PB(k + m) = PB(m) for any m 2 M ⌦A B, k 2 KB, so that PB factors through

⇡B : M ⌦A B ! (M ⌦A B)/KB. Composing this map with the isomorphism above, we have

a map which is well-defined by the relation

(1.1.5.3)

ePB : (M/K)⌦A B ! N ⌦A B

ePB(◆
�1 � ⇡B(M)) := PB(m)

because ◆�1 � ⇡B is surjective onto (M/K) ⌦A B. As all of the maps defining this relation

are functorial in B, we have defined an polynomial law eP 2 PA(M/K,N).

Because of the relation (1.1.5.3), we see that ker( eP ) = ker(P )/K. This is the first part

of (2), and the second part of (2) also follows from examining (1.1.5.3). ⇤

1.1.6. Multiplicative Polynomial Laws. Now we consider polynomial laws between

A-algebras. These are polynomial laws between the underlying A-modules with multiplica-

tivity imposed. It is possible to define these laws when A is neither associative nor unital.

Definition 1.1.6.1. Let R, S have the structure of A-algebras (not necessarily commu-

tative) and P 2 Pd
A(R, S). Then P is called multiplicative provided that

(1) P (1) = 1, i.e. PA(1R) = 1S, from which it follows that PB(1R⌦
A

B) = 1S⌦
A

B for all

commutative A-algebras B, and
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(2) PB is multiplicative for all commutative A-algebras B, i.e. for all B and all x, y 2

R⌦A B, PB(xy) = PB(x)PB(y).

For d � 0, we denote byMd
A(R, S) ⇢ Pd

A(R, S) the set of degree d homogenous multiplicative

polynomial laws from R to S over A.

Remark 1.1.6.2. A multiplicative polynomial law of degree 0 must be constant, and so

must send every element to the multiplicative identity.

We now ask if there exists a universal object for the functor Md
A(R,�) on the category

of A-algebras. Of course, an element of Md
A(R, S) induces an element of Pd

A(R, S) by the

forgetful functor from A-algebras to A-modules, so that P 2Md
A(R, S) induces a morphism

of A-modules �d
A(R)! S. The composite

R! �d
A(R)! S

is multiplicative. In fact, there exists a A-algebra structure on �d
A(R) such that the first

map of the composite is multiplicative, and the multiplicativity of the composite depends

on the multiplicativity of the second map. This reasoning, due to Roby [Rob80], makes the

first map a universal homogenous degree d multiplicative polynomial law. This is what we

will now explain.

Let M,N 2 A�mod, and for d � 0 write Ld
M for the universal homogenous degree

d polynomial law Ld
M : M ! �d

A(M). By the universal property of the tensor product

of modules, M ⌦A N is universal for bilinear maps out of M ⇥ N . The universal map

M �N ! M ⌦A N is manifestly homogenous of degree 2 and compatible with �⌦A B for

commutative A-algebras B. Therefore we have a degree 2 homogenous polynomial law from

M �N to M ⌦A N , which we will denote by �M,N 2 P2

A(M �N,M ⌦A N).

The composition Ld
M⌦

A

N ��M,N defines a degree 2d polynomial law in P2d
A (M �N,M ⌦A

N), so that by Theorem 1.1.3.4 there exists a canonical A-linear homomorphism

⌘M,N : �2d
A (M �N) �! �d

A(M ⌦A N)
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such that Ld
M⌦

A

N � �M,N = ⌘M,N � L2d
M�N is an equality of polynomial laws. Recall from

Corollary 1.1.3.10(2) that there is a canonical isomorphism

M
p+q=2d

�p
A(M)⌦A �

q
A(N)

⇠�! �2d
A (M �N),

and we will also write ⌘M,N for its restriction to �p
A(M)⌦A �

q
A(N) for p+ q = 2d, considered

as a submodule of �2n
A (M �N).

Sublemma 1.1.6.3 ([Rob80, p. 869]). With M,N, d, �M,N , and ⌘M,N as above, let

m[↵] := m↵1
1

· · ·m↵
r

r , where
rX

i=1

↵i = p

n[↵0
] := n

↵0
1

1

· · ·n↵0
s

s , where
sX

j=1

↵0
j = q

be representative elements of �p
A(M) and �q

A(N), respectively. Then

⌘M,N(m
[↵] ⌦ n[↵0

]) =
X
�
ij

Y
1ir
1js

(mi ⌦ nj)
[�

ij

],

where ↵i =
P

j �ij and ↵
0
j =

P
i �ij. In particular, ⌘M,N kills �p

A(M)⌦A �
q
A(N) ⇢ �2d

A (M ⌦A

N) if p 6= q.

Now we replace M and N with an A-algebra R, and write ⌘R (resp. �R) for ⌘M,N

(resp. �M,N). Let ✓ : R ⌦A R ! R be the linear multiplication structure map for R.

As �A is a functor, the data of ✓ as a map of A-modules induces a morphism of A-algebras

�(✓) : �A(R⌦A R) �! �A(R),

which restricts to its graded components �n(✓). Now write ✓d for the composition

✓d : �
d
A(R)⌦ �d

A(R)
⌘
R�! �d

A(R⌦A R)
�

d

(✓)�! �d
A(R).

Lemma 1.1.6.4 ([Rob80, p. 870]). The A-linear map ✓d defines the structure of an A-

algebra on �d
A(R). If R is
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(1) unital,

(2) associative, or

(3) commutative,

then for all d � 0, �d
A(R) is as well.

Now we know that an associative unital A-algebra R gives rise to an associative unital

A-algebra �d
A(R). We can also check that the universal polynomial law Ld

R : R ! �d
A(R) of

Theorem 1.1.3.4 is multiplicative with respect to this structure. In fact, this the multiplica-

tive polynomial law Ld
R is universal for multiplicative homogenous degree d polynomial laws

out of R.

Theorem 1.1.6.5 ([Rob80, Théorèm]). For A-algebras R, S, there is a canonical bijection

Md
A(R, S)

⇠�! Hom
Alg

A

(�d
A(R), S)

with universal object (Ld
R : R �! �d

A(R)) 2Md
A(R,�d

A(R)).

Recall that the kernel of a polynomial law P 2 PA(M,N) is kernel of the factor map to the

smallest quotient A-module of M through which P factors. Naturally, in the multiplicative

case, we would like this quotient to be a quotient ring and the kernel to be a two-sided ideal

of a multiplicative polynomial law P 2 Md
A(R, S). The following lemma proves this and

provides a simplification of the description of ker(P ) for the multiplicative case relative to

the module-theoretic case.

Lemma 1.1.6.6 ([Che11, Lemma 1.19]). Let R, S be a A-algebras and let P 2Md
A(R, S).

Then

(1) The submodule ker(P ) ⇢ R defined in Definition 1.1.5.1 satisfies

ker(P ) = {r 2 R | 8B, 8r0 2 R⌦A B, P (1 + rr0) = 1},

and the same equality holds on replacing the condition P (1 + rr0) = 1 with P (1 +

r0r) = 1.
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(2) ker(P ) ⇢ R is a two-sided ideal of R. It is proper if d > 0, and it is the biggest

two-sided ideal K ⇢ R such that P admits a factorization P = eP � ⇡ where ⇡ is the

standard surjection ⇡ : R! R/K and eP 2Md
A(R/K, S).

There is sometimes an even more concise description of the kernel, which we leave to

Lemma 1.1.7.2 below.

Proof. Write J
1

(P ) for the right and side of the equality in (1), and write J
2

(P ) for

the same set with the condition P (1 + r0r) = 1 in place of P (1 + rr0) = 1. First, we

show that ker(P ) ✓ J
1

(P ). The same argument will show that ker(P ) ✓ J
2

(P ). Choose

r 2 ker(P ), a commutative A-algebra B, and r0 = 1+h 2 R⌦AB. It will su�ce to show that

P (1+r(1+th)) is the unit polynomial 1 in S⌦AB[t]; we can then deduce the desired identity

by specializing t to t = 1. Since this polynomial has degree at most d in t, it will su�ce to

check that this holds in S⌦AB[t]/(td+1). Notice that 1+ th is invertible in R⌦AB[t]/(td+1).

Applying multiplicativity and the definition of the kernel (Definition 1.1.5.1), we have

P (1 + r(1 + th)) = P ((1 + th)�1 + r)P (1 + th) = P ((1 + th)�1)P (1 + th) = P (1) = 1.

Therefore, J
1

(P ) ✓ ker(P ), and the analogous calculation with P (1 + (1 + th)r) shows that

J
2

(P ) ✓ ker(P ).

A similar argument shows that ker(P ) ◆ J
1

(P ): choose B, r, and r0 = 1 + h as above.

Using the fact that r 2 J
1

(P ), and calculating in S ⌦A B[t]/(td+1), we have

P (rt+ (1 + h)) = P ((1 + rt) + h) = P (1 + (1 + rt)�1h)P (1 + rt)

= P (1 + (1 + rt)�1h) = P (1 + h+ r(· · · )) = P (1 + h),

and the lack of dependence on t shows that r 2 ker(P ) by definition. The same argument

shows that ker(P ) ✓ J
2

(P ) as well.

By part (1), ker(P ) is visibly a two-sided ideal of R. The rest of part (2) follows directly

from the calculations in the proof of Lemma 1.1.5.2, in particular (1.1.5.3). ⇤

33



1.1.7. Definition of Pseudorepresentations and Representability of the Pseu-

dorepresentation Functor. With the background above in place, we can restate the def-

inition of pseudorepresentations in terms of polynomial laws, and immediately make sev-

eral conclusions based on the theory of multiplicative homogenous polynomial laws outlined

above.

Definition 1.1.7.1 (Reprising Definition 1.1.1.1). Let A be a commutative ring, let R

be an A-algebra, and let d � 0. A d-dimensional pseudorepresentation D of R over A is a

degree d homogenous multiplicative polynomial law

D : R �! A.

The set of d-dimensional pseudorepresentations of R over A is denoted PsRd
R(A). When

B is a commutative A-algebra, we use PsRR(B) to denote the set of d-dimensional pseu-

dorepresentations of R⌦A B over B, and we observe that PsRd
R is naturally a functor under

the tensor product. Following Remark 1.1.6.2, we note that there is always a unique degree

0 pseudorepresentation sending everything to the multiplicative identity. We will formally

set this to be the determinant of the unique “zero-dimensional representation.”

We will freely use the notions associated to multiplicative polynomial laws to describe

pseudorepresentations. One particular notion that we will use heavily of is the kernel of a

pseudorepresentation D : R ! A, written ker(D). This is a two-sided ideal of R, which

is the kernel of the surjection of A-algebras R ⇣ R/ ker(D) with the special property that

this is the smallest quotient of R through which D factors (cf. Lemma 1.1.6.6). The fol-

lowing lemma is special to the case that a multiplicative A-polynomial law P : R ! S is a

pseudorepresentation (i.e. S = A).

Lemma 1.1.7.2. Let A be an infinite cardinality commutative domain and let D : R! A

be a d-dimensional pseudorepresentation. Then

ker(D) = {r 2 R | 8r0 2 R,D(1 + rr0) = 1}.
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Proof. Combine Proposition 1.1.2.11 and Lemma 1.1.6.6. ⇤

Remark 1.1.7.3. In order to call a homogenous multiplicative polynomial law a pseu-

dorepresentation of R over A, it is occasionally important to be precise about the stipulation

that the target is A and the source R is an A-algebra. It is common and reasonable to

depart from this precision in the following case: if B is a commutative A-algebra, a degree

d homogenous multiplicative A-polynomial law

R �! B

is not, strictly speaking, a pseudorepresentation of R into B or over B (there is no such

thing because R is not a B-algebra). However, the distinction is not vast, because this data

induces a degree d homogenous multiplicative polynomial law

R⌦A B �! B

which is a d-dimensional pseudorepresentation of R ⌦A B over B. By Corollary 1.1.3.10,

this induction of a pseudorepresentation from a multiplicative polynomial law is a bijection.

Therefore, we call the degree d homogenous multiplicative polynomial law R �! B a d-

dimensional pseudorepresentation of R valued in B.

The results of Roby on homogenous multiplicative polynomial laws immediately imply

important facts about pseudorepresentations. To state these, we recall that the abelian-

ization Rab of an algebra R is its quotient by its two-sided ideal generated by xy � yx for

x, y 2 R. Obviously this quotient has the universal property expected of the abelianization.

Theorem 1.1.7.4 ([Che11, Proposition 1.6]). Let R be an A-algebra and d � 1. The

functor PsRd
R : AlgA ! Set is representable by the commutative A-algebra

�d
A(R)ab,
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with universal pseudorepresentation

Du : R �! �d
A(R)ab

r 7! r[d]

Moreover, for any commutative A-algebra B,

(1) There is an isomorphism of functors on B-algebras

PsRR ⇥SpecA SpecB
⇠! PsRR⌦

A

B,

corresponding to the canonical isomorphism of B-algebras

�d
A(R)ab ⌦A B

⇠�! �d
B(R⌦A B)ab.

(2) When D : R ! B is a homogenous multiplicative polynomial law (of unspecified

and possibly non-existent degree), the degree is constant on connected components

of SpecB. In particular, if SpecB is connected, then D is a pseudorepresentation

of some dimension.

(3) If R is free as an A-module, then PsRR(�) is represented by the commutative A-

algebra TSd
A(R)ab with universal pseudorepresentation

R �! TSd
A(R)

r 7! r⌦
d

A

(4) If R is the group algebra over A of the group (or monoid) �, then

PsRd
R

⇠�! Spec(TSd
Z(Z[�]))ab ⇥SpecZ SpecA.

(5) If R is finite as an A-module, for example the group algebra of a finite group, then

�d
A(R)ab is finite as an A-module.

(6) A d-dimensional B-valued representation of R, i.e.

R⌦A B �! E ,
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where E is a rank d2 Azumaya B-algebra, induces a pseudorepresentation by com-

position with the reduced norm E ! B.

For the definition of an Azumaya algebra, see Definition 1.4.1.5.

Before proving this theorem, which summarizes our knowledge up to this point, we note

the most glaringly missing basic fact about the pseudorepresentation functor: we do not know

if finite generation (or some other condition other than finiteness of R as an A-module) of

R over A implies finite generation of �d
A(R)ab. This is true (it is Theorem 1.1.10.15), but

will require the study of pseudorepresentations on freely generated (non-commutative) A-

algebras in §1.1.9, and the application of invariant theory.

Remark 1.1.7.5. Recall that there is a unique 0-dimensional pseudorepresentation which

sends everything to the multiplicative identity. This corresponds to the fact that �0A(R) ⇠= A,

i.e. PsR0

R = SpecA.

Proof. The main theorem statement follows closely from the representability statement

for homogenous multiplicative polynomial laws, Theorem 1.1.6.5. Indeed, we know that for

a commutative A-algebra B, the association

Md
A(R,B)

⇠�! Hom
Alg

A

(�d
A(R), B)

is an isomorphism, and the right hand side is canonically isomorphic to HomA(�d
A(R)ab, B)

since B is commutative. As the association

Md
A(R,B)

⇠�! PsRd
R(B)

D 7! D ⌦A B

discussed in Remark 1.1.7.3, following Corollary 1.1.3.10, is bijective, we have the theorem.

In addition, part (1) follows directly from Corollary 1.1.3.10 and the main theorem.

Forgetting the algebra structure on R and B, the polynomial law D induces a map of

modules �A(R) ! B by Theorem 1.1.3.4. By the proof of Theorem 1.1.6.5, the multiplica-

tivity of D implies that �A(R)! B is multiplicative, where this multiplication operation is

37



not the multiplication of the divided power algebra, but the multiplication on each graded

component �d
A(R), d � 0. As B is commutative, this amounts to an A-algebra homomor-

phism Y
d�0

�d
A(R)ab �! B.

As B has no nontrivial idempotents, this map factors through one of the factors, say of degree

d, so that D is a homogenous multiplicative polynomial law of degree d. This establishes

(2).

Part (3) follows directly from Proposition 1.1.4.5. Part (4) follows from part (3) and the

fact that a group algebra A[�] is equal to Z[�]⌦Z A. Part (5) is quickly checkable, say with

the explicit generators for �d
A(R) given in Corollary 1.1.3.11, along with Corollary 1.1.3.14.

Let Md be the ring-scheme over SpecZ, the d-by-d matrix algebra. Each coe�cient

of the characteristic polynomial defines a regular function Md ! A1

Z which is equivariant

under the adjoint action of PGLd on Md and the trivial action on A1. Each Azumaya

algebra E is a form of Md twisted by this action (cf. [Gro68, Corollary 5.11]); therefore,

the characteristic polynomial function descends from E ⌦O
X

OU
⇠= Md(OU) to E over OX

[Gro68, 5.13]. As PsRd
R is an étale sheaf (it is representable by a scheme), the formation of

a pseudorepresentation by taking the determinant of a representation into a matrix algebra

descends to the case of a representation into an Azumaya algebra. This establishes (6). ⇤

Remark 1.1.7.6. For any A-scheme X, we may extend the definition of a pseudorepre-

sentation to allow for a OX-valued d-dimensional pseudorepresentation of R. This functor

is still represented by the a�ne A-scheme PsRd
R.

Example 1.1.7.7. Let R = A[X]. Then R is free as an A-module, so by Theorem

1.1.7.4(4), PsRd
R is represented by the d graded piece of the symmetric tensor algebra

TSd
A(A[X])ab = A[X

1

, . . . , Xd]
S
d = A[⌃

1

, . . . ,⌃d],
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where (⌃i) are the standard symmetric polynomials on d variables. The universal pseudorep-

resentation A[X] ! A[⌃
1

, . . . ,⌃d], X 7! ⌃d is realized as the associated pseudorepresenta-

tion of a d-dimensional representation: let A[X] act on the rank d free A[⌃
1

, . . . ,⌃d]-module

A[⌃
1

, . . . ,⌃d][Y ]/(Y d � ⌃
1

Y d�1 + . . .+ (�1)d⌃d)

by X 7! Y . The characteristic polynomial of X is the standard one, i.e. the generator of the

ideal in the line above.

Example 1.1.7.8. Let A = Z and let � = Z. Letting X represent a generator of �, we

write R = A[X,X�1]. As in the previous example, the dth graded component of the symmet-

ric tensor algebra represents PsRd
R. We observe that R⌦d

Z is a standard presentation of the

coordinate ring of the split rank d torus Gd
m/ SpecZ, and that its subring TSd

Z(Z[X,X�1]) is

the subring of invariants of the action of the Weyl group. Via the Chevalley isomorphism, the

geometric points of SpecTSd
Z(R) are in natural bijective correspondence with the semisimple

geometric points of GLd, up to conjugation. This latter set is clearly in natural bijective

correspondence with d-dimensional semisimple representations of Z up to isomorphism.

Example 1.1.7.9. As noted in the theorem, for a finite group �, TSd
Z(Z[�]) is a finite

Z-module. We observe that Z[�]⌦d ⇠= Z[�⇥d

] is generated (as a module, even) by elements of

finite multiplicative order, i.e. �n = id for some n � 1. Therefore its subquotient TSd
Z(Z[�])ab

consists of sums with coe�cients in Z of elements of finite multiplicative order.

Now fix a d-dimensional complex representation of �. By the discussion of §1.1.1,

we may associate to this representation a C-valued pseudorepresentation, and therefore a

map TSd
Z(Z[�])ab ! C. The property above shows that the image must be contained in

lim�!n
Z[µn] ⇢ C, where µn is a primitive nth root of unity. Since the image of the map is

generated by characteristic polynomial coe�cients of elements of �, we observe the well-

known fact that characteristic polynomial coe�cients of a given representation generate a

cyclotomic integral extension of Z.
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Such observations also may be used to observe the Brauer character theory of positive

characteristic representations of �.

We now investigate the pseudorepresentations of a rank n2 Azumaya algebra R over a

commutative ring A. This includes the case that R = Mn(A), as Azumaya algebras are étale

locally matrix algebras (see Definition 1.4.1.5). Since the representation theory of a matrix

algebra over a field consists of direct sums of the identity representations, we expect this to

be reflected in its pseudorepresentations. This is what we record in the following proposition,

due to Ziplies [Zip86].

Proposition 1.1.7.10 ([Zip86], see also [Che11, Exercise 2.5]). Let R be an Azumaya A-

algebra of rank n2. Then the pseudorepresentations D : R! A consist precisely of powers of

the reduced norm detR : R! A. In other words, the reduced norm induces an isomorphism,

for each d � 0 divisible by n,

�d
A(R)ab

⇠�! �d/n
A (A) ⇠= A,

and for n - d there are no d-dimensional pseudorepresentations of R.

Remark 1.1.7.11. Proposition 1.1.7.10 reflects the fact that the basic algebra corre-

sponding to e.g. Md(C) is C, and that Md(C) and C are Morita equivalent. See Definition

2.2.2.1 for the notion of a basic algebra, see Definition 2.2.2.8 for the notion of a basic al-

gebra associated to an algebra, and Theorem 2.2.2.10 for the fact that their representation

categories are equivalent.

We record for future reference some important qualities of the functor ab sending A-

algebras to commutative A-algebras.

Lemma 1.1.7.12 (cf. [Vac08, Lemma 5.14]). If f : R ⇣ S is a surjection of A-algebras,

then

(1) The induced homomorphism of commutative A-algebras f ab : Rab ! Sab is also

surjective, and
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(2) ker f ab ⇠= abA(ker f), where abA : A ⇣ Aab is the canonical homomorphism.

Proof. Let Iab(A) be the kernel of abA. Then the lemma follows from the snake lemma

applied to the commutative diagram

Iab(A) //

✏✏

Iab(B) //

✏✏

0

0 // ker f //

ab

A

✏✏

A
f

//

ab

A

✏✏

B //

ab

B

✏✏

0

0 // ker f ab // Aab

fab

//

✏✏

Bab //

✏✏

0

0 0

⇤

1.1.8. The Characteristic Polynomial. Let R be an A-algebra and A be a com-

mutative ring as usual, and fix for this subsection a d-dimensional pseudorepresentation

D : R ! A. As described in the introduction §1.1.1, D induces a characteristic polyno-

mial function �D(·, t) : R ! A[t] according to the following definition, repeated from the

introduction.

Definition 1.1.8.1. Given a d-dimensional pseudorepresentation D : R �! A of R over

A, its characteristic polynomial function is

�D(·, t) : R �! A[t]

r 7! DA[t](t� r) = td � ⇤
1

(r)td�1 + · · ·+ (�1)d⇤d(r)

where ⇤i are maps R! A.

In fact, by taking B-valued pseudorepresentaitons of R for commutative A-algebras B,

the characteristic polynomial coe�cients are homogenous polynomial laws extending the

functions ⇤i : R! A described above.
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Definition/Lemma 1.1.8.2. With D,R,A as above and a commutative A-algebra B

and i � 0, let the function ⇤i,B : R⌦A B ! B be defined by the formula, for r 2 R⌦A B,

�D(r, t) := DB[t](t� r) =
dX

i=0

(�1)i⇤i,B(r)t
d�i.

is a homogenous A-polynomial law of degree i from R to A. We also have characteristic

polynomial coe�cient polynomial laws ⇤i, where ⇤0

⌘ 1 and ⇤d = D are multiplicative, and

for i � d+ 1 we set ⇤i ⌘ 0. We call ⇤
1

the trace.

We note that the data of the polynomial law ⇤
1

is characterized by the A-linear map

R! A (cf. Example 1.1.2.8).

Proof. We must prove the implied claim that ⇤i is a homogenous polynomial law of

degree i. First we observe that ⇤i is a polynomial law, since the formula for ⇤i,B given a

commutative A-algebra B can be checked to be functorial in B. For b 2 B and x 2 R⌦A B,

⇤i,B(bx) is the coe�cient of td�i in DB[t](t � bx). If we write t = t
1

and let t
2

be an

indeterminant, then the functorality of polynomial laws shows that ⇤D
i is the specialization

of DB[t1,t2](t1+ t
2

(�x)) via B[t
1

, t
2

]! B[t], t
1

7! t, t
2

7! b. By Proposition 1.1.2.16, the only

nonzero coe�cient of DB[t1,t2] where t
1

appears to the (d� i)th power also has t
2

to the ith

power. Therefore ⇤i,B(bx) = bi · ⇤i,B(x) as desired. ⇤

The characteristic polynomial coe�cient polynomial laws allow for another description

of the kernel of D : R! A:

ker(D) = {r 2 R | 8B, 8r0 2 R⌦A B, 8i � 1,⇤i,B(rr
0) = 0}

One can, therefore, give a description of the kernel of D as the set of elements of R such

that any multiple of r in R ⌦A B for all B has the characteristic polynomial td. When A is

an infinite domain, this criteria still works when applied only to R (see Lemma 1.1.7.2).

Example 1.1.8.3. Let Td(A) ⇢Md(A) be the A-subalgebra of upper triangular matrices,

with the pseudorepresentation D : Td(A) ! A induced from the determinant on Md(A).
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Then ker(D) is the ideal of strictly upper triangular matrices, and D factors through the

diagonal subalgebra Td(A)/ ker(D) of Md(A).

Implicit in the example above is the Cayley-Hamilton theorem: When R is a matrix

algebra Md(A) and D = det is induced by the standard determinant, this defines a degree d

polynomial law, and the characteristic polynomial �D is the same as the standard character-

istic polynomial. It is very important that each element r 2 R satisfies its own characteristic

polynomial! That is, �(r, r) = 0. This is the Cayley-Hamilton theorem. For a general

A,R,D, this may not be the case, and the following polynomial laws measure this failure.

Definition 1.1.8.4. With A,R,D, and � as above, let � : R �! R be the homogenous

degree d A-polynomial law

�(r) = �D(r, r) = rd � ⇤
1

(r)rd�1 + ⇤
2

(r)rd�2 + · · ·+ (�1)d⇤d(r).

For any n � 1 and ↵ 2 Inn (the set of n-tuples of non-negative integers (↵
1

, . . . ,↵n) with sum

n), we recall that �[↵] of Definition 1.1.2.14 are the coe�cient functions of �, defined by the

relation

�R[t1,...,tn](r1t1 + · · ·+ rntn) =
X
↵2In

n

�[↵](r
1

, . . . , rn)t
↵,

where t↵ =
Qn

1

t↵i

i .

We recall Proposition 1.1.2.16(3): because � is homogenous of degree d, �[↵] 6⌘ 0 only

when n = d, and � is characterized by the functions {�[↵] | ↵ 2 Idd}. Therefore given

A,R,D, d as usual, every element r 2 R “satisfies its characteristic polynomial” if and only

if � ⌘ 0 as a polynomial law if and only if �[↵] ⌘ 0 for all ↵ 2 Idd .

This equivalence results in the notion of a Cayley-Hamilton pseudorepresentation.

Definition 1.1.8.5 (cf. [Che11, p. 17]). Let R be an A-algebra and let D be a d-

dimension pseudorepresentation. Let CH(D) ⇢ R be the two-sided ideal generated by

�[↵](r
1

, . . . , rd) as (ri) varies over all d-tuples in R and ↵ varies over Idd . We say that D
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is Cayley-Hamilton if CH(D) = 0. Equivalently, � ⌘ 0 as a polynomial law. We also say

that (R,D) is a Cayley-Hamilton A-algebra of degree d.

Of course, R/CH(D) is a Cayley-Hamilton A-algebra.

The following observation will be very important in the sequel (see e.g. Proposition

1.2.4.3).

Lemma 1.1.8.6. The Cayley-Hamilton property of a pseudorepresentation D : R! A is

stable under base changes ⌦AB, i.e. if (R,D) is a Cayley-Hamilton A-algebra, then (R ⌦A

B,D⌦AB) is as well. In particular, if D is an arbitrary d-dimensional pseudorepresentation,

then there is a natural isomorphism

(1.1.8.7) R/CH(D)⌦A B
⇠�! (R⌦A B)/CH(D ⌦A B).

Proof. The Cayley-Hamilton property and the Cayley-Hamilton ideal CH(D) are func-

torial under base change because they are defined by the image of the A-polynomial law

� : R ! R, and the functions �B as B varies over the category of commutative A-algebras

is functorial (1.1.2.2). Therefore, if (R,D) is Cayley-Hamilton, then � = �D is equal to 0

as an A-polynomial law; therefore �B, being simply a restriction of � from the category of

A-algebras to the category of B-algebras via the map A! B, is still 0. This proves the first

part of the statement of the lemma.

By the definition of CH(D) as the ideal of R generated by the images of an A-polynomial

law, we see that there exists a map

(1.1.8.8) CH(D)⌦A B ! CH(D ⌦A B) ⇢ R⌦A B

and that this map is an surjection. This proves that the A-homomorphism (1.1.8.7) exists and

is injective. Using the canonical isomorphism R/CH(D)⌦A B
⇠! (R⌦A B)/(CH(D)⌦A B),

we see that (1.1.8.7) is surjective, completing the proof. ⇤

1.1.9. Universal Polynomial Identities. We remarked in the introduction that a

pseudorepresentation of an A-algebra R over A amounts to the data of a characteristic
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polynomial for each element of r. We will substantiate this comment in Corollary 1.1.9.15,

showing that the characteristic polynomial coe�cient functions ⇤i characterize a pseudorep-

resentation. Conversely, given a characteristic polynomial function �(·, t) : R ! A[t], one

would have to impose a great deal of identities upon this function in order to “call it a

pseudorepresentation.” While we will not find a complete list of identities, in this section

we will prove that the characteristic polynomial of a pseudorepresentation “satisfies all of

the identities that one would expect form the characteristic polynomials of a representation”

(see (1.1.9.5)), even though it may not be induced by an actual Azumaya/matrix algebra-

valued representation. After that, we will deduce a few particular, useful identities from this

collection (Proposition 1.1.9.11).

Definition 1.1.9.1. Given a set X, the d-dimensional generic matrices representation

involves the following data:

(1) The free Z-algebra Z{X} on the set X;

(2) The coe�cient ring FX(d) = Z[xij], the free polynomial ring on generators xij for

x 2 X and 1  i, j  d;

(3) The representation

⇢univ : Z{X} �!Md(FX(d))

x 7! (xij)ij

(4) We also define the subring EX(d) ⇢ FX(d) generated by characteristic polynomial

coe�cients of ⇢univ, i.e. by ⇤i,Z(x) for x 2 Z{X} and for ⇤i,Z : Z{X} ! FX(d) for

1  i  d the characteristic polynomial coe�cient functions of the d-dimensional

pseudorepresentation det �⇢univ : Z{X} �! FX(d).

Remark 1.1.9.2. It remains to be shown that the pseudorepresentation det �⇢univ factors

through EX(d) ,! FX(d). This will come along with the proof that a pseudorepresentation

is determined by its characteristic polynomial coe�cient functions.
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Theorem 1.1.9.3 (Vaccarino [Vac08]). With notation as in Definition 1.1.9.1, the canon-

ical map �d
Z(Z{X})ab ! FX(d) associated to the d-dimensional pseudorepresentation

det �⇢univ : Z{X}! FX(d)

induces a canonical isomorphism

(1.1.9.4) �d
Z(Z{X})ab ⇠�! EX(d).

We postpone to §1.1.10 the the discussion of the results of Donkin, Zubkov, and Vaccarino

that are summarized in Theorem 1.1.9.3. Here we discuss the implications of this theorem

for pseudorepresentations.

Let D : R �! A be a d-dimensional pseudorepresentation of an A-algebra R. Let X be

a set of generators for R over Z, e.g. X = R, so that there exists a surjection ⇡ : Z{X} ⇣ R.

Theorem 1.1.9.3, along with the representability Theorem 1.1.6.5, shows that there is a

unique ring homomorphism fX : EX(d)! A such that

Z{X}
det �⇢univ

//

⇡

✏✏

EX(d)

f
X

✏✏

R
D

// A

is a commutative diagram of homogenous polynomial laws over Z, where the horizontal maps

have degree d and the vertical maps have degree 1 (they are ring homomorphisms).

Using EX(d)
f
X�! A �! R where the second map is the structure map, we consider R as

an EX(d)-algebra, so that D is a homogenous multiplicative EX(d)-polynomial law of degree

d. Therefore we have a diagram of homogenous multiplicative EX(d)-polynomial laws

(1.1.9.5) Z{X}⌦Z EX(d)
⇢univ⌦1

//

⇡⌦f
X

✏✏

Md(FX(d))
det

// EX(d)

f
X

✏✏

R
D

// A
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As the top row factors through a matrix algebra, we can use this diagram to show

that identities in a matrix algebra, for instance, the Cayley-Hamilton identity, give rise to

identities in arbitrary homogenous multiplicative polynomial laws. One of these identities,

Amitsur’s formula, requires some initial explanation.

Definition 1.1.9.6. Let X be a totally ordered finite set (alphabet), and let X+ be the

monoid of words with letters in this set, with the induced total lexicographic ordering.

(1) A word w 2 X+ is called a Lyndon word if w is less than or equal to any of its

rotations, or, equivalently, if w = xw0, then w  w0. The set of Lyndon words of an

alphabet X is denoted LX .

(2) By the Chen-Fox-Lyndon theorem [CFL58, §1], any word w 2 X+ may be uniquely

factored into a Lyndon decomposition w = w
1

· · ·wn, where w
1

� w
2

� · · · � wn,

wi 2 LX . We also present the Lyndon decomposition as

w = wl1
1

wl2
2

· · ·wl
s

s , where w
1

> · · · > ws, wi 2 LX .

(3) There is a unique map ✏ : X+ ! {±1}, multiplicative on Lyndon words, given by

sending w to 1 if the length of its Lyndon decomposition is even, and �1 otherwise.

We can write ✏(w) = (�1)n or ✏(w) =
Qs

1

(�1)li .

With the notion of Lyndon words, we can explain Amitsur’s formula.

Definition 1.1.9.7. We say that characteristic polynomial functions ⇤i,A : R ! A

satisfy Amitsur’s formula when for any finite subset X = {r
1

, . . . , rn} ⇢ R, totally ordered

by the indices, we have

(1.1.9.8) ⇤i,A(r1 + · · ·+ rn) =
X
`(w)=i

✏(w)⇤(w),

where ` : X+ ! N is the length of w in terms of the letters X, and

⇤(w) := ⇤l
s

(ws) · · ·⇤l2(w2

)⇤l1(w1

).
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Amitsur’s formula applies just as well to the polynomial laws ⇤i : R ! A associated

to a d-dimensional pseudorepresentation D : R ! A by applying the condition to ⇤i,B :

R⌦AB ! B for every commutative A-algebra B. This gives us a notion of when D satisfies

Amitsur’s formula.

Definition 1.1.9.9 (cf. [Ami80]). For A,R, d as usual, let D : R! B be a homogenous

degree d polynomial law into a commutative A-algebra B. Let X = {r
1

⌦ t
1

, . . . , rn ⌦ tn} ⇢

R ⌦A A[t
1

, . . . , tn] with the standard lexicographic ordering, and preserve the notation of

Definition 1.1.9.7 otherwise. We say that D satisfies Amitsur’s formula if

(1.1.9.10) D

✓
1�

nX
j=1

rjtj

◆
=
Y

w2L
X

 
dX

i=0

(�1)i⇤i(w)

!
,

where the product is taken over Lyndon words with length bounded by d, ordered decreas-

ingly. Equivalently, the homogenous of degree i component of this identity holds for all

1  i  d:

⇤i(r1t1 + · · ·+ rntn) =
X
`(w)=i

✏(w)⇤(w),

where the letters in the words on the right hand side are now taken to be the n monomials

“riti.”

Proposition 1.1.9.11 ([Che11, Lemma 1.12]). For A,R, d as usual, let D : R! B be a

homogenous degree d polynomial law into a commutative A-algebra B. Let ⇤i,B : R! B be

the induced characteristic polynomial coe�cient polynomial laws (homogenous of degree i),

and in case B = A, let �D : R ! R be the degree d polynomial law given by evaluation of

the characteristic polynomial. Then the following identities hold.

(1) (commutativity of determinant) For all r, r0 2 R,

D(1 + rr0) = D(1 + r0r).

(2) (Amitsur’s formula) For all r
1

, . . . , rn 2 R, Amitsur’s relations (1.1.9.8) on ⇤i are

satisfied.
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(3) (Pseudocharacter identity) The “trace function” Tr = ⇤
1

: R ! B satisfies the

d-dimensional pseudocharacter identity (1.1.12.2).

(4) (Cayley-Hamilton identity) If B = A (in which case D is a pseudorepresentation),

then for all ↵ 2 Id, (r
1

, . . . , rd) 2 Rd, and r 2 R,

D(1 + �[↵](r
1

, . . . , rd) · r) = 1.

Identity (1) is basic, reflecting the fact that the characteristic polynomial coe�cients

are central functions. The remaining identities have a particular, prominent use. Amitsur’s

formula (2) often reduces the study of multiplicative polynomial laws to the study of their

characteristic polynomial coe�cient functions. For example, we will use it to show that the

characteristic polynomial functions characterize a pseudorepresentation. The pseudocharac-

ter identity (3) on ⇤
1

will allow us to compare pseudorepresentations to pseudocharacters.

And the Cayley-Hamilton identity (4) will be most prominent in the new material of this

thesis, and will play a prominent role in relating pseudorepresentations to representations.

Proof. Our strategy is to use the relation (1.1.9.5) between, on the one hand, the

universal d-dimensional pseudorepresentation induced by the determinant function Duniv =

det �⇢univ of the universal, generic matrices representation of the free algebra Z{X} with

X = R, and, on the other hand, the degree d homogenous polynomial law D : R ! B. We

will show that these identities hold for the universal pseudorepresentation Duniv because it

is the determinant of a d-dimensional representation, and we will remark on any di�culties

in deducing the same identity for D.

We know that the characteristic polynomial functions of a representation are central

functions. Therefore, for r, r0 2 Z{X} ⌦Z EX(d), �Duniv(rr0, t) = �Duniv(r0r, t). Specializing

to t = �1, we deduce that Duniv(1 + rr0) = Duniv(1 + r0r), proving (1).

Part (2) is precisely [Ami80, Theorem B]: the relation (1.1.9.10) is proved for the deter-

minant of an arbitrary matrix algebra-valued representation.

The pseudocharacter identity is given in (1.1.12.2). The fact that the trace function on

the multiplicative monoid of a matrix algebra satisfies the identity (1.1.12.2) is originally
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due to Frobenius [Fro96, §3, 21]. For a modern source, see e.g. [Tay91, Theorem 1(1)].

Alternatively, taking Chenevier’s approach, the identity may be deduced as a particular

case of Amitsur’s formula: simply let the homogenous degree i in the homogenous form

(1.1.9.8) of Amitsur’s formula be 1. We immediately observe that this is identical to the

pseudocharacter condition (1.1.12.2).

To prove (4), we may replace R by R⌦A A[t
1

, . . . , td] and recall Definition 1.1.8.4 to see

that it will su�ce to show that ⇤i(�(r)r0) = 0 for all r, r0 2 R, 1  i  d. Applying this to

R0 := Z{X} ⌦Z EX(d), we see that ⇢univ � �(r) = 0 in Md(FX(d)) for all r 2 R0, since �(r)

is the substitution of r into its own characteristic polynomial, which vanishes in Md(FX(d))

by the Cayley-Hamilton theorem. Now as ⇤i factors through ⇢univ, we have the result. ⇤

Remark 1.1.9.12 (cf. [Che11, Remark 1.13]). Proposition 1.1.9.11(2) (Amitsur’s for-

mula) may be proved for homogenous multiplicative polynomial laws into arbitrary associa-

tive A-algebras S in the place of commutative A-algebras B. That is, these identities in

the case of determinants of representations are due to Amitsur [Ami80], but they are are

particular instances of facts known to hold in more generality! In particular, an arbitrary

homogenous multiplicative polynomial law is determined by its “characteristic polynomial

coe�cients.” These identities are established in this generality by Chenevier in [Che11,

Lemma 1.12] (following [RS87]). Here, we have confined our proof to the case that B is

commutative. We refer to Chenevier for the general case.

Remark 1.1.9.13. In contrast to the previous remark, the Cayley-Hamilton identity is

special not merely to the case that the target of a multiplicative polynomial law is commu-

tative, but actually only makes sense in the case of pseudorepresentations (i.e. B = A).

Remark 1.1.9.14. In Proposition 1.1.2.16(3), we showed that certain functions P [↵] :

R ! S characterize a polynomial law P 2 Pd
A(R, S). It is quite convenient that when a

polynomial law is multiplicative, it can be characterized by what is apparently less data: the

d characteristic polynomial coe�cient functions ⇤i,A : R! S on R alone. Amitsur’s formula

uses multiplicativity to express P [↵] in terms of ⇤i,A.
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Now we use Amitsur’s formula to show that a pseudorepresentation D : R ! A is

characterized by its characteristic polynomial functions on R, i.e. the function ⇤i,A : R! A

contained in the polynomial law ⇤i : R! A. In fact, these notions (characteristic polynomial

coe�cient polynomial laws ⇤i, and Amitsur’s formula) make sense even when D : R ! S

is a homogenous multiplicative A-polynomial law into a non-commutative A-algebra S (see

Remark 1.1.9.12 below), and we prove this fact in this generality.

Corollary 1.1.9.15 ([Che11, Corollary 1.14]). Let A be a commutative ring, and let

R and S be possibly non-commutative A-algebras. Let D : R ! S 2 Md
A(R, S) be a

degree d homogenous multiplicative polynomial law. Then characteristic polynomial functions

⇤i = ⇤i,A : R ! S of D characterize D. In particular, characteristic polynomial coe�cient

functions characterize D when D is a pseudorepresentation (i.e. A = S).

Proof. We know from Proposition 1.1.2.16(4) that the multiplicative polynomial law

D is characterized by the function

DA[t1,...,t
d

]

: R⌦A A[t
1

, . . . , td]! S ⌦A A[t
1

, . . . , td].

We know from the discussion in Remark 1.1.9.12 regarding Chenevier’s proof of Amitsur’s

formula that D satisfies Amitsur’s formula. Now Amitsur’s formula (1.1.9.10) allows us to

express

DA[t1,...,t
d

]

(r
1

t
1

+ · · ·+ rd), (r
1

, . . . , rd) 2 Rd

as a sum of monomials in ⇤i,A(w) and ti with prescribed coe�cients 1 and �1, where w is a

word in the letters r
1

, . . . , rd. Therefore the characteristic polynomial functions ⇤i,A : R! S

characterize D, as desired. ⇤

Because of its importance, Corollary 1.1.9.15 has been stated succinctly and solitarily

above. However, there are other consequences of its proof (e.g. consequences of Amitsur’s

formula) which are significant. We list them here.

Corollary 1.1.9.16. Let A,R, S,D, and d be as in the previous corollary. Let C ⇢ S be

the sub-A-algebra of S generated by the coe�cients ⇤i(r) of �(w, t) for all r 2 R, 1  i  d.
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(1) Then D factors through a (unique) C-valued degree d multiplicative polynomial law

D
⇤

: R! C ⇢ S.

(2) The S-valued d-dimensional pseudorepresentation D⌦AB : R⌦AB ! B induced by

D is induced by the C-valued d-dimensional pseudorepresentation D
⇤

: R⌦AC ! C

induced by D
⇤

.

(3) If R is generated over A by some monoid �, i.e. R = A{�}, and ⇤i,A(�) lie in a

sub-A-algebra C ⇢ B for all � 2 �, 1  i  d, then the conclusion of part (1) holds.

Proof. Part (1) follows from the comment in the proof above that the only factors in

the coe�cients other than ⇤i(w) and ti are 1 and �1. Part (2) follows directly from the

proof above, along with the equivalence between multiplicative polynomial laws from R to

B and pseudorepresentations from R ⌦A B to B that follows from Corollary 1.1.3.10. Part

(3) is a special case of part (1). ⇤

1.1.10. Work of Vaccarino, Donkin, Zubkov, and Procesi. In this paragraph we

describe work leading up Vaccarino’s proof of Theorem 1.1.9.3. We also deduce that if R is

a finitely generated A-algebra, then PsRd
R is finite type as an a�ne A-scheme.

The fundamental idea behind the proof of Theorem 1.1.9.3 is the generalization of the

ring of symmetric functions ⇤, where ⇤ is to the singleton set as generalizations of ⇤ are to

other sets. This idea goes at least back to [Don93].

First we review the theory of ⇤, corresponding to a singleton set X. Then TSd
Z(Z{X}) ⇠=

Z[⌃
1

, . . . ,⌃d] =: ⇤d is the ring of symmetric polynomials on d coe�cients (cf. Example

1.1.7.7). The ring of symmetric functions is ⇤ := lim �d
⇤d, where the maps are given by

ld : ⇤d ! ⇤d�1

, (x
1

, . . . , xd) 7! (x
1

, . . . , xd�1

).

One key fact about this limit presentation is its behavior under the filtration by homogenous

polynomial degree, which we will denote by n here. Let ⇤n
d denote grn⇤d for n � 0. Then

for d � n, the composition of the li for n+1  i  d induces an isomorphism ⇤n
d

⇠! ⇤n
n. For

example, the “trace” ⌃
1

= x
1

+ · · ·+ xd 2 ⇤1

d is a generator for ⇤1

d for all d � 1.
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Now we generalize this construction of ⇤, starting with a finite set X. Write X+ for

the associated monoid of words with letters in X. As Vaccarino proves these results for an

arbitrary commutative base ring A, we will replace Z above with A. We can assign each

element of X degree 1, which induces a degree, which we will index by n � 0, on TSd
A(A{X})

for any d. Write the nth graded piece as TSd
A(A{X})n. With the analogous maps of graded

(non-commutative) A-algebras ld : TS
d
A(A{X})! TSd�1

A (A{X}), the inverse limit

TSA(A{X}) := lim �
d

TSd
A(A{X})

stabilizes on each graded piece, so that (cf. [Vac08, Corollary 5.5])

TSA(A{X})n := lim �
d

TSd
A(A{X})n ⇠= TSn

A(A{X})n.

Therefore TSA(A{X}) is a graded A-algebra with each homogenous summand being finitely

generated as an A-module. Moreover, all of these objects are free A-modules with an explicit

basis that we do not require here [Vac08, Propostion 3.12]. It will be useful to have a set

of generators of TSd
A(A{X}) as a A-algebra, however. Recall the notation of the proof of

Proposition 1.1.4.5, in particular the basis element eK for TSd
A(A{X}), where K = K(w, i)

is the equivalence class of tensors including

ẽK(w,i) := w⌦i ⌦ 1⌦
d�i 2 TSd

A(A{X})

as its special representative for some w 2 X+, i  d. For future reference, it will be helpful

to record that if e(d)K(w,i) 2 TSd
A(A{X}), where we make the degree d of the basis element

explicit, then ld : TS
d
A(A{X})! TSd�1

A (A{X}) is given by the formula

(1.1.10.1) ld : e
(d)
K(w,i) 7!

8<: e(d�1)

K(w,i) if i < d,

0 if i = d
,

which is directly analogous to the maps in the theory of ring of symmetric functions. As an

A-algebra, TSd
A(A{X}) is generated by eK(w,i) as i varies over positive integers less than d and

w varies over elements of X+ that are “primitive,” i.e. not proper powers of another word
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[Vac08, Theorem 4.10]. By the stabilization of the grading discussed above, these eK(w,i)

have a canonical preimage in TSA(A{X}), and these preimages generate the A-algebra as

f primitive and i ranges over all positive integers. We summarize our knowledge in this

proposition

Proposition 1.1.10.2. The graded A-algebra TSA(A{X}) is free as an A-module and

generated as an A-algebra by eK(w,i) as w ranges over primitive words in X+ and i ranges

over positive integers.

All of these statements hold true after replacing each of these A-algebras with their

abelianizations,3 and although this is non-trivial, in fact even more is true: TSA(A{X})ab

is a polynomial ring over A! We record this result in Theorem 1.1.10.8 below, but first we

explain the proof, as we will accomplish our main task of proving Theorem 1.1.9.3 along the

way.

Recall the generic matrices representations ⇢univd : A{X}! Md(FX(d)A) for each d � 1,

where FX(d)A denotes FX(d)⌦Z A. The determinant of ⇢univd is a d-dimensional pseudorep-

resentation of A{X}, inducing a canonical ring homomorphism

(1.1.10.3) �d : TS
d
A(A{X}) �! FX(d)A,

using TSd
A(A{X}) in place of �d

A(A{X}) in light of Proposition 1.1.4.5. He then observes in

[Vac08, Proposition 5.19] that

(1.1.10.4) �d(eK(w,i)) = ⇤i(⇢
univ(w))

for all primitive w and 1  i  d, where ⇤i : Md(FX(d)A) ! EX(d)A is the ith coe�cient

of the standard characteristic polynomial on the matrix algebra and, recall, EX(d)A is the

sub-A-algebra of FX(d)A generated by coe�cients of characteristic polynomials of the image

of ⇢univd . As the eK(w,i) generate TSd
A(A{X}), this shows that the characteristic polynomial

3Indeed, it is the freeness of �d
Z(Z{X})ab as a Z-module that is the fundamental input from the work of

Vaccarino et. al. that Chenevier needs to establish the Cayley-Hamilton identity. But this comes part-and-
parcel with the rest of these results, cf. [Che11, Remark 1.16].
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coe�cient functions generate the image of TSd
A(A{X}), i.e. the image of �d is precisely

EX(d)A. Since the image of �d is a commutative algebra, we have a surjective induced map

(1.1.10.5) �abd : TSd
A(A{X})ab ⇣ EX(d)A.

Remark 1.1.10.6. The line of argument that we have just concluded is su�cient to prove

Corollary 1.1.9.15.

Following [Vac08, §5.1.3], we extend this representation and the maps �d to the limit

as d ! 1. First we filter FX(d)A and EX(d)A by degree denoted n, where the generators

xij for x 2 X, 1  i, j  d are given degree 1. With the notation of Definition 1.1.9.1, let

!d : FX(d)A ⇣ FX(d� 1)A via

xij 7!

8<: xij if i, j < d

0 if i = d or j = d.

This induces a map (!d)d : Md(FX(d)A)!Md(FX(d� 1)A) such that

(!d)d � ⇢univd =

0@ ⇢univd�1

0d�1⇥1

0
1⇥d�1

0

1A .

We observe that ⇤(d)
i � (!d)d � ⇢univd = ⇤(d�1)

i � ⇢univd�1

for d � 1, where the superscript on the

characteristic polynomial coe�cient function indicates the dimension of the matrix algebra

on which it is defined. As a result, since the image of ⇤(d)
i �⇢univd generates EX(d)A, we have a

well-defined induced map !d : EX(d)A ! EX(d�1A) on the A-subalgebra EX(d)A ⇢ FX(d)A.

Therefore the maps !d induce limits of graded A-algebras

FX,A := lim �
d

FX(d)A � EX,A := lim �
d

EX(d)A

with the same stabilization properties for the filtration by degree as discussed above for

the limit defining TSA(A{X}). In particular, for any w 2 X+, there is a well defined

characteristic polynomial coe�cient ⇤i(⇢univ(w)) 2 EX,A, where ⇤i(⇢univ(w)) has bounded

degree i · `(w) where `(w) is the length of w. Strictly speaking, ⇤i � ⇢univ := lim �d
⇤(d)

i � ⇢univd .
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Define � : TSA(A{X}) ⇣ EX,A by

· · · // TSd
A(A{X})

l
d

//

�d

✏✏

TSd�1

A (A{X})
l
d�1

//

�d�1

✏✏

· · ·

· · · // EX(d)A
!
d

// EX(d� 1)A
!
d�1

// · · ·

where the fact that � is a surjection must be deduced from the fact that each �d is a surjection

by definition, along with a study of the gradings ([Vac08, Lemma 5.22]). The generating set

eK(w,i) for TSA(A{X}) of Proposition 1.1.10.2 and the calculation of (1.1.10.4) shows that

the characteristic polynomial coe�cients ⇤i(⇢univ(w)) generate EX,A, where i varies over

positive integers and w 2 X+ vary over primitive words. Of course, � factors through

TSA(A{X}) �! TSA(A{X})ab,

and our goal is to show that

�ab : TSA(A{X})ab �! EX,A

is an isomorphism. This will follow from this result of Donkin:

Theorem 1.1.10.7 ([Don93, §3(10)]). The ring EX,A is a polynomial ring over A with free

generators ⇤i(⇢univ(w)), where w varies over a set  representatives of equivalence classes

of primitive words, where the equivalence relation is cyclic permutation.

Now we can prove that �ab is an isomorphism.

Theorem 1.1.10.8 ([Vac08, Theorem 5.23]). The map of graded A-algebras

�ab : TSA(A{X})ab �! EX,A

is an isomorphism, and, consequently, the commutative A-algebra TSA(A{X})ab is a poly-

nomial ring over A with generators eK(f,i) where i � 1 and f varies over  .
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Proof. We know that �ab is a surjection. As EX,A is a free polynomial A-algebra, there

exists a section s : EX,A ! TSA(A{X})ab sending ⇤i(⇢univ(w)) to the image of eK(w,i) in the

abelianization, where i � 1 and w varies over the representatives of the equivalence classes

mentioned in Theorem 1.1.10.7. By [Vac08, Corollary 5.12], eKw,i, w 2  are su�cient to

generate TSA(A{X})ab. Therefore s is surjective, and �ab is an isomorphism. ⇤

Now, our goal is to deduce from Theorem 1.1.10.8 that �d is an isomorphism as well.

Here, Vaccarino’s remaining work is to apply work of Procesi, Razmyslov, and Zubkov,

whose background we now explain.

The issue we must confront is the determination ideal of relations that the free generators

⇤i(w) := ⇤i(⇢univ(w)) of EX,A satisfy when they are projected to ⇤(d)
i (w) 2 EX(d)A. Clearly

if i > d, then ⇤i(w) ⌘ 0 2 EX(d)A, and the ⇤(d)
i (w) generate EX(d)A. But are there

further relations? And are there more relations among ⇤(d)
i (w) 2 EX(d)A than among

eK(w,i) 2 TSd
A(A{X})?

When A is an algebraically closed field of characteristic zero, this question was answered

by Procesi [Pro76, Theorem 4.6(a)] and Razmyslov [Raz74]: the kernel of EX,A ⇣ EX(d)A

is generated as an ideal by ⇤d+1

(w) as w varies over representatives of equivalence classes

of primitive words. For an arbitrary infinite field A, it was shown by Zubkov [Zub96, Main

Theorem] that the kernel of EX,A ⇣ EX(d)A is the ideal generated by

(1.1.10.9) {⇤i(w) | i > d, w primitive}.

The answers to the analogous questions for TSA(A{X}) ⇣ TSd
A(A{X}) are easier, and

A may be an arbitrary commutative ring: we know that TSA(A{X}) is a graded polynomial

algebra in the variables {eK(w,i) | w 2  , i � 1}. By examining the explicit presentation of

the maps ld composing the limit defining A{X} in (1.1.10.1), we see that

0 �! (eK(w,i) : w primitive, i > d) �! TSA(A{X}) �! TSd
A(A{X}) �! 0
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is exact. Applying Lemma 1.1.7.12, the sequence

(1.1.10.10) 0! ab
TS

(eK(w,i) : w primitive, i > d)! TSA(A{X})ab ! TSd
A(A{X})ab ! 0

is still exact.

Therefore, when A is an infinite field, using Zubkov’s result in (1.1.10.9) along with

(1.1.10.10) and the isomorphism of Theorem 1.1.10.8, we have that

(1.1.10.11)

TSd
A(A{X})ab ⇠= A[eK(w,i) : i � 1, w 2  ]/ab

TS

(eK(w,i) : i > d, w primitive}

⇠= EX,A/(⇤i(w) | i > d, w primitive)

⇠= EX(d)A.

Vaccarino’s final task is to show that this isomorphism over infinite fields A implies that

the isomorphism holds in the case A = Z. To explain this last step, we introduce some more

background on the interest in these objects, culminating in a result over Z that we will need

to finish the proof of Theorem 1.1.9.3.

Recall the universal representation

⇢univ = ⇢univd : A{X} �!Md(FX(d)A)

from Definition 1.1.9.1. The adjoint action of PGLd(A) on Md(A) for all commutative rings

A induces an action of the group scheme PGLd/ SpecZ on SpecFX(d) = SpecFX(d)Z, with

g 2 PGLd(A) sending xij for x 2 X, 1  i, j  d to the element of FX(d)A appearing

in the (i, j)-coordinate after conjugation by g. Clearly EX(d)A ⇢ FX(d)
PGL

d

(A)

A for all A,

because characteristic polynomial coe�cients are invariant under conjugation. Is this map

an isomorphism?

This question was first investigated for A an algebraically closed field of characteristic

zero, and then for positive characteristic algebraically closed fields and A = Z. The motivat-

ing question was to describe the invariant theory of n-tuples of d⇥ d-matrices (m
1

, . . . ,mn).

That is, what is the subring of regular functions on the a�ne variety Mn
d = Md ⇥ · · ·⇥Md

invariant under the diagonal action of PGLd by conjugation on Md ⇥ · · · ⇥Md? M. Artin
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conjectured4 that the subring of conjugation-invariant regular functions were generated by

traces of products of these n matrices, i.e. for some finite word w in the alphabet {1, . . . , n}

with letters wi, the regular function

Tr(mw1 ·mw2 · · · · ·mw
n

)

on Mn
d . In positive characteristic, one conjectures that such functions will generate the

invariant subring once other characteristic polynomial coe�cients ⇤i, 1  i  d are also

allowed. In other words, the conjecture is that EX(d) = FX(d)PGL

d . This conjecture can

be extended over arbitrary bases. To be clear, over the base ring A, FX(d)
PGL

d

A denotes the

co-invariants of the co-action of the coordinate ring of PGLd/A

FX(d)A �! FX(d)A ⌦A A[PGLd],

i.e. those f 2 FX(d) such that its image is f ⌦ 1. Also, set FX(d)PGL

d := FX(d)
PGL

d

Z .

This is the main result of Donkin [Don92, §3] over arbitrary algebraically closed fields

and over Z (depending on his integrality result [Don93]); this was also proved by Zubkov

[Zub94]. This followed a proof by Procesi [Pro67] and, independently, Sibirski [Sib67], of

Artin’s conjecture in the characteristic zero case. Here is the key result of Donkin’s work for

our purposes.

Theorem 1.1.10.12 ([Don92, §3.1]). For A = Z and d � 1, the map EX(d) �!

FX(d)PGL

d is an isomorphism, and, for every algebraically closed field k̄, induces an iso-

morphism

EX(d)⌦Z k̄
⇠�! FX(d)

PGL

d

¯k
.

Vaccarino uses this theorem along with the following argument (cf. [Vac08, Theorem 6.1])

to complete the proof of Theorem 1.1.9.3.

Proof. (Theorem 1.1.9.3) Let A be a commutative ring. By Corollary 1.1.3.10(1),

we have an isomorphism TSd
A(A{X}) ⇠! TSd

Z(Z{X}) ⌦Z A. By the universal property of

4For the attribution of this conjecture, see [Pro76, Introduction].
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abelianization, the map

ab
TSZ ⌦ 1A : TSd

Z(Z{X})⌦Z A �! TSd
Z(Z{X})ab ⌦Z A

can be factored through the abelianization TSd
A(A{X})! TSd

A(A{X})ab, making the com-

mutative diagram

(1.1.10.13) TSd
A(A{X})

⇠
//

abTS
A

✏✏

TSd
Z(Z{X})⌦Z A

abTSZ⌦1

A

✏✏

TSd
A(A{X})ab // TSd

Z(Z{X})ab ⌦Z A

where the bottom horizontal arrow is surjective. Letting A = k̄, an algebraically closed field,

this bottom horizontal arrow is the top arrow in the commutative diagram

TSd
¯k(k̄{X})ab

⇠
=

✏✏

// TSd
Z(Z{X})ab ⌦Z k̄

�ab
d

⌦1

k̄

✏✏

(FX(d)¯k)
PGL

d

⇠
=

// EX(d)⌦Z k̄

where the composite map from the top left to the bottom right is known to be an isomorphism

by (1.1.10.11) and the bottom horizontal arrow is known to be an isomorphism by Theorem

1.1.10.12. Since we know from (1.1.10.13) that the top horizontal arrow is surjective, and

the right vertical arrow is surjective since it is obtained by ⌦Zk̄ from the surjective map �abd

of (1.1.10.5), all of the maps in the diagram are isomorphisms.

Therefore we have a surjective map of graded rings

(1.1.10.14) TSd
Z(Z{X})ab �! EX(d)

that becomes an isomorphism after tensoring by any algebraically closed field. Each graded

component TSd
Z(Z{X})abn , EX(d)n of each ring is a finite Z-module, and these finite Z-

modules are free because they are submodules of the polynomial algebra EX , and there-

fore torsion-free. As these finite free Z-modules become isomorphic after tensoring by any
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algebraically closed field, they must be of the same rank and therefore (1.1.10.14) is an

isomorphism. ⇤

Now we discuss the finite generation of �d
A(R)ab over A. The invariant theoretic content

above will be very useful for this. We can now show the that �d
Z(Z{X})ab is finitely generated

over Z when X is finite, from which we can deduce that PsRd
R is finitely type as an a�ne

A-scheme when R is a finitely generated A-algebra. We follow Chenevier, using the invariant

theoretic content above with the input of geometric invariant theory.

Theorem 1.1.10.15 ([Che11, Proposition 2.38]). Let A be a commutative Noetherian

ring, let R be a finitely generated A-algebra, and let d � 0. Then �d
A(R)ab is finitely generated

as an A-algebra.

Proof. Let X be a finite set an let m = |X|. As R is finitely generated over A, there

exists a surjective A-algebra homomorphism

A{X} ⇣ R,

and therefore also a surjective A-algebra homomorphism �d
A(A{X})ab ⇣ �d

A(R)ab, where the

surjectivity follows from Corollary 1.1.3.14 and Lemma 1.1.7.12. Therefore we are reduced

to the case that R = A{X}. As �d
A(A{X})ab ⇠= �d

Z(Z{X})ab ⌦Z A by Corollary 1.1.3.10, we

further reduce to the case A = Z.

Our main achievement of this section, Theorem 1.1.9.3, shows that the determinant of

⇢univ is a pseudorepresentation inducing an isomorphism �d
Z(Z{X})ab ⇠! EX(d). By Theorem

1.1.10.12, EX(d) ⇠= FX(d)PGL

d . By the main theorems of geometric invariant theory (see for

example [Alp10, Main Theorem, (4)] or the original source [Ses77, Theorem 2]), the fact

that FX(d) is finitely generated over Z implies that FX(d)PGL

d is finitely generated over Z

as well. ⇤

Remark 1.1.10.16. We will often assume the assumptions of Theorem 1.1.10.15, so that

PsRd
R is an a�ne Noetherian A-scheme. Later, we will see that these assumptions are also

necessary in order to know moduli spaces of representations and are finite type over SpecA.
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1.1.11. A Direct Sum Operation on Pseudorepresentations. Given two repre-

sentations of an A-algebra R, one can form a representation out of their direct sum. In this

paragraph, we study the analogy of this construction for pseudorepresentations, and verify

that this operation behaves well with respect to dimension.

Let R
1

, R
2

be A-algebras, and let B be a commutative A-algebra. We know from Corol-

lary 1.1.3.10(3) along with Theorem 1.1.6.5 that we have an isomorphism of A-algebras

(1.1.11.1) �d
A(R1

⇥R
2

)ab
⇠�!

Y
d1+d2=d

�d1
A (R

1

)ab ⌦A �
d2
A (R

2

)ab.

By representability, this corresponds to a binary operation, associating two multiplicative

A-polynomial laws

D
1

: R
1

�! A, D
2

: R
2

�! A,

which are homogenous of degree di respectively, to their product, which is a multiplicative

A-polynomial law

D
1

·D
2

: R
1

⇥R
2

�! A

of degree d = d
1

+ d
2

. One can check that the construction is

(1.1.11.2)
D

1

�D
2

: R
1

⇥R
2

�! A

(r
1

, r
2

) 7! D
1

(r
1

) ·D
2

(r
2

),

which is compatible with ⌦AB, and thereby a polynomial law. One can also quickly see that

this polynomial law is multiplicative of degree d = d
1

+ d
2

(cf. 1.1.11.5).

Remark 1.1.11.3. It is important to notice that the case of degree 0 homogenous mul-

tiplicative polynomial laws play an important role in the isomorphisms above: for example,

in (1.1.11.1), the d
1

, d
2

must vary over all non-negative integers such that d
1

+ d
2

= d. We

also see the importance of zero-dimensional pseudorepresentations having constant value 1.

It is natural, since pseudorepresentations are sometimes constructed by taking determi-

nants, to think of this operation as a product. However, we will call it a sum, either by

analogy to the data of the trace function that a pseudorepresentation holds, or by observing
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that if we have two representations

R
1

�!Md1(A), R
2

�!Md2(A),

then there is a direct sum representation

R
1

⇥R
2

�!Md1(A)⇥Md2(A) ,!Md1+d2(A)

which is compatible with the construction above by taking the pseudorepresentations induced

by the determinants of the three representations.

Remark 1.1.11.4. We also choose to call this operation a sum � on pseudorepresenta-

tions because some preliminary calculations suggest that if R has the structure of a (cocom-

mutative) Hopf algebra, there is a (commutative) tensor product operation ⌦ on pseudorep-

resentations which decategorifies the tensor product of representations of R.

We summarize our discussion about the sum in this proposition, also adding the basic

fact that the degree of a homogenous polynomial law into a commutative ring is locally

constant; then we know that we are not making any restriction by studying homogenous

multiplicative polynomial laws of a given degree.

Proposition 1.1.11.5 (Following [Che11, Lemma 2.2]). With R
1

, R
2

being A-algebras,

let B be a commutative A-algebra and let Di : Ri ! B be a multiplicative A-polynomial laws.

If SpecB is connected, then

(1) D
1

(resp. D
2

) is homogenous of some degree d � 0.

(2) any degree d homogenous multiplicative A-polynomial law D : R
1

⇥ R
2

! B is the

sum, D
1

�D
2

, of two unique multiplicative homogenous polynomial laws Di : Ri ! A

of degree di, with d
1

+ d
2

= d.

Part (2) is also proved in [Che11, Lemma 2.2(iii)].

Proof. Part (1) is precisely Theorem 1.1.7.4(2).
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To prove (2), simply observe that as SpecB is connected, its image in PsRd
R1⇥R2

must be

confined to one of the elements of the disjoint union

PsRd
R1⇥R2

⇠�!
a

d1+d2=d

PsRd1
R1
⇥

SpecA PsRd2
R2

induced by (1.1.11.1). ⇤

Now we set R
1

= R
2

= R, so that the work above amounts to the analogue in the

category of pseudorepresentations of the construction of the R ⇥ R-module M � N out of

two R-modules M,N , where the first copy of R acts on N trivially and the second copy of R

acts on M trivially. To construct from this R⇥R module the direct sum R-module M �N ,

we simply compose with the diagonal embedding

R
��! R⇥R.

This construction inspires the construction of the direct sum of pseudorepresentations.

Definition 1.1.11.6. Let R be an A-algebra, and let D
1

, D
2

be pseudorepresentations

of dimension d
1

, d
2

of R over A. Set d = d
1

+ d
2

. Then the direct sum pseudorepresentation

D := D
1

�D
2

of R over A is given by the d-dimensional homogenous polynomial law such

that for each commutative A-algebra B,

DB(x) = D
1,B(x) ·D2,B(x) 8x 2 R⌦A B.

We take note of the basic properties of this operation.

Lemma 1.1.11.7. Let R be an A-algebra, and let d
1

, d
2

, and d be non-negative integers

such that d
1

+ d
2

= d. Then

(1) The operation

� : PsRd1
R ⇥SpecA PsRd2

R �! PsRd
R
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is a morphism in the category of a�ne A-schemes, corresponding to the homomor-

phism of commutative A-algebras

�d
A(R)ab

�

d

(�)�! �d
A(R⇥R)ab

(1.1.11.1)

⇣ �d1
A (R)ab ⌦A �

d2
A (R

2

)ab.

(2) If D
1

2 PsRd1
R (B) and PsRd2

R (B) are induced from d-dimensional B-valued repre-

sentations of R, ⇢
1

of dimension d
1

and ⇢
2

of dimension d
2

respectively, then the

det �(⇢
1

� ⇢
2

) ⇠= D
1

�D
2

. In other words, the direct sum operations on representa-

tions and pseudorepresentations commute with the map det from representations to

pseudorepresentations.

Proof. For (1), simply compose (1.1.11.2) and �, and note that this is the same as the

direct sum given in Definition 1.1.11.6.

To prove (2), we note that the determinant of a direct sum of representations is equal to

the product of the determinants of the representations. ⇤

The structures above induce a commutative monoid structure on the functor of all pseu-

dorepresentations.

Definition 1.1.11.8. Let R be an A-algebra. Then write PsR+

R for the SpecA-scheme

in commutative monoids

PsR+

R :=
a
d�0

PsRd
R,

where the group operation is

� : PsR+

R ⇥SpecA PsR+

R �! PsR+

R

and the identity section is

SpecA ⇠= PsR0

R ,! PsR+

R.

Later in Theorem 1.3.1.1, we will see that when A ⇠= k̄ is an algebraically closed field,

the commutative monoid PsR+

R(k̄) will be the Grothendieck semigroup of the category of

representations of R.
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1.1.12. Relation to Pseudocharacters. In this paragraph, we describe a previous

version of a pseudorepresentation, which is also commonly known as a pseudorepresenta-

tion. This is a pseudocharacter, which is a function on an algebra or multiplicative monoid

satisfying the identities one expects of the trace function of a matrix algebra.

Definition 1.1.12.1 (cf. [Tay91, §1.1], [Nys96, Rou96]). Let � be a monoid and let A

be a commutative ring. Let R be an A-algebra. A pseudocharacter of � over A of dimension

d is the data of a function T : �! A such that

(1) T (1) = d,

(2) T is central, i.e. T (�
1

�
2

) = T (�
2

�
1

) for all �
1

, �
2

2 �, and

(3) the d-dimensional pseudocharacter identity holds:

(1.1.12.2)
X

�2S
d+1

sgn(�)T�(�1, . . . , �d+1

) for all �
1

, . . . , �d+1

2 �,

where Sd+1

is the symmetric group on d+ 1 letters and T� is the function given by

T� : �d+1 �! A

(�
1

, . . . , �d+1

) 7!
sY

j=1

T (�
i
(j)
1

· · · �
i
(j)
r

j

),

where � has cycle decomposition

� = (i(1)
1

. . . i(1)r1
)(i(2)

1

. . . i(2)r2
) . . . (i(s)

1

. . . i(s)r
s

).

The definition of a pseudocharacter for R is identical, using the multiplicative monoid of R,

except that we impose the additional condition that T be A-linear.

Taylor [Tay91] gave the definition of pseudorepresentation above, following on Wiles’

definition for two-dimensional representations [Wil88]. That the identity (1.1.12.2) is satis-

fied by a trace function of a representation is due to Frobenius [Fro96], and Procesi [Pro76,

Theorem 1.2] showed that this is the only identity that a central function needs to satisfy
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in order to correspond to an invariant (by the adjoint action) function on a space of repre-

sentations. Taylor used this result to show that pseudorepresentations over an algebraically

closed field of characteristic zero are in natural bijection with semisimple characteristic zero

representations up to isomorphism. Rouquier [Rou96] extended this to the case that the

characteristic of the field is either 0 or greater than the dimension of the pseudocharacter.

We will give Chenevier’s [Che11] extension of this theorem to arbitrary characteristic, which

is achieved by replacing pseudocharacters with pseudorepresentations, in Theorem 1.3.1.1.

Carayol [Car94] showed that the deformations of an absolutely irreducible representation

over a field are determined by the induced deformation of its pseudocharacter, where this

deformation is given by the trace function of the representation. Nyssen [Nys96, Theorem

1] and Rouquier [Rou96, Theorem 5.1] proved a converse, showing that deformations of a

pseudocharacter to a henselian local ring determine a unique (up to isomorphism) defor-

mation of its associated semisimple representation. Definition 1.3.4.1 describes absolutely

irreducible pseudorepresentations, and we give Chenevier’s an analogous result for pseu-

dorepresentations to the result of Cayayol, Nyssen, and Rouquier’s work in the in Theorem

2.1.3.3.

To what extent are pseudocharacters and pseudorepresentations comparable? This propo-

sition, due to Chenevier, gives the state of knowledge on this question.

Proposition 1.1.12.3 ([Che11, Propositions 1.27 and 1.29]). Let A be a commutative

ring and let R be an A-algebra. To each d-dimensional pseudorepresentation D : R! A, we

associate to D its trace function function T = ⇤
1,A : R! A via Definition 1.1.8.2.

(1) T is a pseudocharacter of dimension d; in particular, it satisfies (1.1.12.2).

(2) The association of determinants to pseudocharacters is injective.

(3) If (2d)! 2 A⇥, then the association is bijective.

Proof. The first part is precisely Proposition 1.1.9.11(3). See [Che11, Propositions 1.27

and 1.29] for parts (2) and (3). ⇤
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We will use the theory of pseudocharacters in §2.3 in order to apply Belläıche-Chenevier’s

definition of generalized matrix algebra. We propose a notion of generalized matrix algebra

with respect to pseudorepresentations instead of pseudocharacters in Remark 2.3.3.6. How-

ever, when we do this, we will restrict ourselves to the case that (2d)! is invertible in our

coe�cient rings, so that we can join our theory of pseudorepresentations with the theory of

generalized matrix algebras. Proposition 1.1.12.3(3) shows that this is sensible.

1.2. Cayley-Hamilton Pseudorepresentations

Recall from Definition 1.1.8.5 that a pseudorepresentation D : R �! A is called Cayley-

Hamilton if the homogenous degree d pseudorepresentation

� = �D : r 7! rd � ⇤
1

(r)rd�1 + ⇤
2

(r)rd�2 + · · ·+ (�1)d⇤d(r)

vanishes identically, i.e. every element of R satisfies its own characteristic polynomial, just

as if R were a matrix algebra. We also say that (R,D) is a Cayley-Hamilton A-algebra.

Cayley-Hamilton algebras have several special properties which we will explore here. We are

motivated by exploring to what extent R has similarities to matrix algebras. For example,

Procesi [Pro87] proved that in characteristic zero, a Cayley-Hamilton A-algebra admits an

embedding into a matrix algebra Md(B) for some commutative A-algebra B.

While the material of this section is mostly due to Chenevier [Che11], our main new

contribution is the application of polynomial invariant ring (PI ring) theory to show that

Cayley-Hamilton algebras are finite over their pseudorepresentation algebra O
PsR

d

R

, and in

particular finite over their center. This allows us to strengthen one of Chenevier’s results.

1.2.1. Properties of Cayley-Hamilton Algebras. We freely use the notation of Def-

inition 1.1.8.5. One of the most basic properties of the two-sided ideal CH(D) ⇢ R is the

following lemma, showing that any pseudorepresentation factors through a Cayley-Hamilton

algebra and that faithful pseudorepresentations are Cayley-Hamilton.

Lemma 1.2.1.1 ([Che11, Lemma 1.21]). With A, R, D, and d as usual, ker(D) contains

CH(D). In particular, if D is faithful, then (R,D) is Cayley-Hamilton.
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Proof. We have proved the “Cayley-Hamilton identity for pseudorepresentations” in

Proposition 1.1.9.11(4), namely

D(1 + �[↵](r
1

, . . . , rd) · r) = 1

for any ↵ 2 Idd , (r1, . . . , rd) 2 Rd, and r 2 R. It remains to show that this holds true after

replacing r with an element of R ⌦A B for B any commutative A-algebra. This follows

from the fact that, for a given ↵, the functions �[↵]
B : (R ⌦A B)d ! R associated to the

pseudorepresentation D ⌦A B : R⌦A B ! B belong to the commutative diagram

Rd
�[↵]

//

✏✏

R

✏✏

(R⌦A B)d
�
[↵]
B

// R⌦A B

⇤

Example 1.2.1.2 ([Che11, Example 1.20]). Consider a matrix algebra Md(A) over a

commutative ring A, with its standard d-dimensional pseudorepresentation det coming from

the determinant Md(A) ! A. Of course, this pseudorepresentation is Cayley-Hamilton, as

every matrix satisfies its characteristic polynomial by the Cayley-Hamilton theorem. It is

also faithful, since for any 0 6= r 2 Md(A) there exists r0 2 Md(A) such that the char-

acteristic polynomial of rr0 is not td. Consider now the restriction D : Td(A) ! A of

det to the A-subalgebra Td(A) ⇢ Md(A) of upper triangular matrices. We see that D is

still Cayley-Hamilton, illustrating the general fact that the restriction of a Cayley-Hamilton

pseudorepresentation to a subalgebra remains Cayley-Hamilton. However, this example also

illustrates that the “faithful” property of a pseudorepresentation is not stable under restric-

tion to a subalgebra. For det is faithful, but the kernel of D is precisely the two-sided ideal

of strictly upper triangular matrices in Td(A).

We record the following lemma on the decomposition of a pseudorepresentation by idem-

potents. Recall that an idempotent e 2 R induces a decomposition eRe � (1 � e)R(1 � e)
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which is a A-subalgebra of R isomorphic to eRe⇥ (1� e)R(1� e) via the natural map

(1.2.1.3) x 7! (ex, (1� e)x).

Also recall that a set of idempotents is called orthogonal provided that the product of any

pair of distinct elements of the set is zero. Note that not all of this lemma depends on D

being Cayley-Hamilton.

Lemma 1.2.1.4 ([Che11, Lemma 2.4]). Assume that SpecA is connected and let e 2 R

be an idempotent element. Let D : R! A be a d-dimensional pseudorepresentation.

(1) The polynomial law De : eRe ! A defined by r 7! D(r + 1 � e) is a pseudorepre-

sentation whose dimension r(e) satisfies r(e)  d.

(2) We have r(e) + r(1 � e) = d, and the restriction of D to the A-subalgebra eRe �

(1� e)R(1� e) is the direct sum pseudorepresentation DeD1�e of (1.1.11.2).

(3) If D is Cayley-Hamilton (resp. faithful), then so is De.

(4) Assume that D is Cayley-Hamilton. Then e = 1 (resp. e = 0) if and only if D(e) = 1

(resp. r(e) = 0). Let e
1

, . . . , es be a family of nonzero orthogonal idempotents of R.

Then s  d, and we have an inequality
Ps

i=1

r(ei)  d, which is an equality if and

only if e
1

+ e
2

+ · · ·+ es = 1.

Proof. Write S
1

= eRe and S
2

= (1 � e)R(1 � e). Let S be the A-subalgebra S =

S
1

� S
2

⇢ R. As noted above, (1.2.1.3) induces an isomorphism with S
1

⇥ S
2

. Now parts

(1) and (2) follow directly from Proposition 1.1.11.5.

Assume that D is faithful. Note that for any commutative A-algebra B, the B-algebra

eRe ⌦A B is naturally isomorphic to a direct summand e(R ⌦A B)e of R ⌦A B. Choose

r 2 ker(De) ⇢ eRe ⇢ R. Using the characterization of the kernel in Lemma 1.1.6.6, we have

for any r0 2 R⌦A B that

D(1 + rr0) = D(1 + erer0) = D(1� e+ e+ erer0) = De(e+ erer0) = 1.

Therefore r 2 ker(D) so r = 0 by assumption.
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Assume that D is Cayley-Hamilton. For r 2 R ⌦A B, we have the Cayley-Hamilton

identity �D(r, r) = 0. From part (2), we know that

�D(r, t) = �D
e(er, t)�D1�e((1� e)r, t) 2 B[t].

For r 2 e(R⌦A B)e, we apply the Cayley-Hamilton identity for �D to r (resp. r + 1� e) to

find that

�D
e(er, r)rd2 = 0, resp. �D

e(e(r + 1� e), r + 1� e)(r � 1)d2 = 0.

As the ideal of B[t] generated by td2 and (t� 1)d2 is B[t], we get De(r, r) = 0, showing that

De is Cayley-Hamilton.

Let us show part (4). It is always the case that �D(e, e)�D(e) 2 Ae ⇢ R. If D is Cayley-

Hamilton and D(e) = 1, then e is a unit in A (see (1.2.3.3) for this fact) and therefore e = 1.

If r(e) = 0, then De(·) = D(·+ 1� e) is a determinant of degree 0 on eRe, and is therefore

constant and equal to 1. In particular, D(1 � e) = 1 so e = 0 by the argument above. For

the last claim of part (4), set es+1

= 1 � (e
1

+ · · · + es). Note that 1  r(ei)  d for each

ei, since ei 6= 0 and therefore r(ei) 6= 0 for each i. However,
Ps+1

1

r(ei) = d by applying part

(2) s times. This proves the last claim in (4). ⇤

Lemma 1.2.1.5 ([Che11, Lemma 2.6]). Let D : R ! A be a 1-dimensional Cayley-

Hamilton pseudorepresentation. Then R = A and D is the identity map.

Proof. For each r 2 R, �(r, t) = t �D(r). As r satisfies its characteristic polynomial

and D is A-linear, the lemma follows. ⇤

1.2.2. Background in PI Ring Theory. Our main aim in this paragraph is to apply

the theory of polynomial identity rings to prove that a Cayley-Hamilton A-algebra (R,D)

is often finite as a module over A. One implication of this is that all representations of an

arbitrary finitely generated A-algebra R of a fixed dimension d simultaneously factor through

an algebra that is finite over its center.
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We begin with a short review of the theory of polynomial invariant algebras over a

commutative ring A, following Procesi’s book [Pro73]. We will use the notation A{xs} to

denote the free (non-commutative) A-algebra on a set X.

Definition 1.2.2.1. Let R be an A-algebra.

(1) An ideal I ⇢ A{xs} is called a T -ideal if, for any endomorphism ' : A{xs}! A{xs},

we have '(I) ✓ I.

(2) The set

I = {f(xs) 2 A{xs} | f(rs) = 0 for all rs 2 R}

is called the T -ideal of polynomial identities of R.

(3) A T -ideal I ⇢ A{xs} is called a proper T -ideal provided that it is not contained in

J{xs} for any ideal J 6= A of A.

(4) We call R a polynomial ideal algebra or PI-algebra if the T -ideal I of polynomial

identities of R is proper.

Since every element of a degree d Cayley-Hamilton A-algebra satisfies its own degree d

characteristic polynomial, which is monic and degree d in A[t], it is a PI A-algebra because

of the following fact.

Proposition 1.2.2.2 ([Pro73, Proposition 3.22]). Let d be a positive integer. Then there

exists a proper polynomial identity such that for any commutative ring A and any A-algebra

R, R satisfies this polynomial identity if every element of R is integral over A of degree

bounded by d. In particular, such an algebra R is a PI A-algebra.

Proof. We will specify this polynomial identity and leave it to the reader to complete the

proof or look up the reference. Let Pn for n � 1 be the polynomial in the (noncommutative)

free algebra over Z generated by n indeterminates x
1

, . . . , xn given by

Pn(x1

, . . . , xn) =
X
�2S

n

sgn(�)x�(1)x�(2) · · · x�(n),
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where Sn is the symmetric group on n letters and sgn is the signature character sgn : Sn !

{±1}. Define f(x, y) in the (noncommutative) free algebra over Z by

f(x, y) = Pd+1

(ydx, yd�1x, yd�2x, . . . , yx, x).

Then f is a proper polynomial identity whose existence is asserted in the statement of the

proposition. ⇤

When A is Noetherian and R is finitely generated a A-algebra and Cayley-Hamilton, the

following fact will allow us to conclude immediately that R is finite as an A-module.

Theorem 1.2.2.3 ([Pro73, Theorem 2.7]). Let R be a finitely generated PI algebra over

a commutative Noetherian ring A. Then if R is integral over A, it is also finite as a module

over A.

However, in some particular cases relevant to our investigation of Cayley-Hamilton al-

gebras, we will be able to establish module finiteness of R over A when R satisfies weaker

conditions than the conditions of Theorem 1.2.2.3.5 In order to accomplish this, it will be

particularly important to show that if R is a nil algebra (i.e. every element is nilpotent; in

particular, a nil algebra does not have a unit) of bounded nil degree over a field k, then R

is finite dimensional as a k-vector space. The following theorems will be very useful to this

end.

The first important theorem is known as the Nagata-Higman theorem.

Theorem 1.2.2.4 (Dubnov-Ivanov [DI43]). Let k be a field and let R be a nil k-algebra

such that there exists a positive integer d with the property that rd = 0 for every r 2 R. Then

if char(k) = 0 or char(k) > d, there exists some N  2d � 1 such that RN = 0.

There exist examples showing that 2d � 1 is the best possible such bound.

5The most important example will be Theorem 3.2.3.2. Here we are working over a fixed pseudorepresentation
into a complete local ring, and the condition �D̄ is the finitude of the vector space of self-extensions of the
semisimple representation corresponding to the pseudorepresentation of the special fiber D̄. This shows that
the complete local ring can be taken to be Noetherian (Theorem 3.1.5.3), but finite generation of the algebra
over this base is not required. The condition on the self-extensions su�ces.
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Remark 1.2.2.5. This theorem is known as the Nagata-Higman theorem, since it was

discovered in the western mathematical community by Nagata [Nag52] in characteristic zero,

and then generalized to large enough positive characteristic by Higman [Hig56]. It was first

discovered Dubnov and Ivanov [DI43] but overlooked in the west. For a few further remarks

on the history and context of these works, see [For90].

The following theorem is more in the spirit of Shirshov’s height theorem [Šir57], and

fulfills Chenevier’s suspicion [Che11, Remark 2.29] that there exists some such result which

will allow one to show the nilpotence of the kernel of a Cayley-Hamilton pseudorepresentation

over a field, even when the characteristic is too small to apply the Nagata-Higman theorem.

For further comments on Shirshov’s height theorem, see [Kem09].

Theorem 1.2.2.6 (Samoilov [Sam09]). Let R be an associative PI algebra over a field k

of characteristic p > 0. If R is generated by a set X and every word in the elements of x is

nilpotent of degree not exceeding d, then R is a nilalgebra, i.e. there exists a positive integer

N such that RN = 0. Here N depends on p, the particular polynomial identity it satisfies,

and on d, but it does not depend on the cardinality of X.

For future reference, let us record a particular integer N = N(p, d).

Definition 1.2.2.7. Let p be a prime number and let d be a positive integer. Let

N(p, d) be the integer determined by Theorem 1.2.2.6, where, in the notation of the theorem

statement, p is the characteristic of the field k, d is the bound on the nil-degree of the

elements of X, and the polynomial identity is xd. Let N(d) be the integer specified in

Corollary 1.2.2.8 below.

For a fixed d, Theorems 1.2.2.4 and 1.2.2.6 combine to form the following result.

Corollary 1.2.2.8. There exists an integer N(d) � 0 dependent only on d with the

following property: for any associative, non-unital algebra R over a characteristic p � 0 field

k such that every element of R satisfies the identity xd where d � 1, R is nilpotent of degree
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no more than N(d), i.e. RN(d) = 0. The integer N(d, p) also has this property over such

algebras R where k has characteristic p.

Proof. Let N(d) be the maximum of the finite collection of integers

{N(p, d) : prime p  d} [ {2d � 1}.

Then by Theorems 1.2.2.4 and 1.2.2.6, RN(d) = 0. ⇤

While we will prove stronger results later, let us now list some immediate corollaries,

applying the results from PI theory above to Cayley-Hamilton A-algebras.

Corollary 1.2.2.9. Let (R,D) be a finitely generated Cayley-Hamilton A-algebra of

degree d, where A is a commutative Noetherian ring. Then R is finite as a module over A.

Proof. As (R,D) is a Cayey-Hamilton A-algebra, each element r 2 R satisfies its char-

acteristic polynomial, which is a degree d monic polynomial equation �(r, t) with coe�cients

in A. Proposition 1.2.2.2 implies that R is a PI A-algebra, and then Theorem 1.2.2.3 implies

that R is finite as a module over A. ⇤

There are several more very useful consequences of this finiteness, which we now discuss.

Corollary 1.2.2.10. Let (R,D) be a d-dimensional finitely generated Cayley-Hamilton

A-algebra, where A is a commutative Noetherian ring.

(1) R is finite as an A-module; in particular, it is finite over its center and is a Noe-

therian ring.

(2) ker(D) ⇢ R is a nilpotent two-sided ideal.

(3) If A is a Jacobson ring (e.g. a field), then R is a Jacobson ring as well, and J(R) =

N(R) is an equality of nilpotent ideals.

(4) If A is an Artinian ring, then R is as well.

Proof. The first statement in (1) repeats Corollary 1.2.2.9. When A is a commutative

Noetherian ring, then an A-algebra which is finite as an A-module via the structure map is

also Noetherian (see e.g. [MR01, Lemma 1.1.3]). This proves (1).
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Because (R,D) is Cayley-Hamilton, each element r 2 ker(D) satisfies its characteristic

polynomial �(r, t) = td. Therefore the kernel is a nil two-sided ideal. Since R is Noetherian,

the nilradical of R contains ker(D) and is nilpotent (see Remark 1.2.2.11 below). Hence

ker(D) is nilpotent as well.

If A is a Jacobson ring, then R is a Jacobson ring as well, as it is finite as a module

over A [MR01, §9.1.3] (see also [MR01, Theorem 13.10.4(iii)]). Therefore its nilradical is

the same as its Jacobson radical. As R is Noetherian, both are nilpotent (see the Remark

immediately below). This proves (3).

Taking R as an A-module, it is the descending chain condition holds on sub-A-modules of

R because it is a finitely generated module over an Artinian ring. As ideals of R are certain

sub-A-modules of R, the descending chain condition also holds for ideals, proving (4). ⇤

Remark 1.2.2.11. There are several notions of nilradical which coincide for Noetherian

rings. Here are the notions for a general noncommutative ring R.

(1) The lower nilradical is the intersection of all prime ideals in a ring, where an ideal

I ⇢ R is prime if for any ideals A,B such that A · B ✓ I, then either A ✓ I or

B ✓ I.

(2) The Levitsky radical is the largest locally nilpotent ideal, where an ideal is called

locally nilpotent if any finitely generated sub-ideal is nilpotent.

(3) The upper nilradical is the ideal generated by all nil ideals in R, where an ideal is

called nil if every element in it is nil. Note that the ideal generated by nilpotent

elements may not be nil in the noncommutative case; this definition of upper radical

is chosen so that it the upper radical is a nil ideal.

In general there is an inclusion

lower nilradical ✓ Levitsky radical ✓ upper nilradical,
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but one can check that these definitions coincide when R is Noetherian, so that one can

speak of “the nilradical of R.” In particular, in the Noetherian case, its follows from this

equivalence that the nilradical is a nilpotent ideal.

The Jacobson radical always contains the (upper) nilradical, and is equal to the nilradical

when R is Jacobson and Noetherian. For more information see e.g. [GW04].

1.2.3. The Jacobson Radical of a Cayley-Hamilton Algebra. We write J(R) for

the Jacobson radical of an algebra R.

The following lemma is a strengthening of a lemma of Chenevier [Che11, Lemma 2.7-

2.8], beginning an exploration of the extent to which the kernel of a d-dimensional Cayley-

Hamilton pseudorepresentation behaves like a nilpotent subalgebra (without unit) of a matrix

algebra. The addition to and partial simplification of Chenevier’s arguments comes from PI

ring theory.

Lemma 1.2.3.1 (Following [Che11, Lemma 2.7]). Let D : R �! A be a Cayley-Hamilton

pseudorepresentation, where A is a commutative ring and R is an A-algebra.

(1) J(R) is the largest two-sided ideal J ⇢ R such that D(1 + J) ⇢ A⇥.

(2) For any r 2 ker(D), we have (rr0)d = 0 for all r0 2 R. In particular, ker(D) is a nil

ideal and is contained in the upper nilradical of R, and therefore also contained in

J(R).

Now assume that A is a field.

(3) r 2 R is nilpotent if and only if D(t� r) = td. Moreover, J(R) consists of nilpotent

elements.

(4) ker(D) and J(R) are nilpotent ideals, with degree of nilpotence bounded by the integer

N(d) of Definition 1.2.2.7, which depends only on the integer d. However, if d! is

invertible in A, then the bound 2d � 1 su�ces.

(5) ker(D) = J(R).

(6) If I ⇢ R is a two-sided ideal such that In = 0 for some n � 1, then I ⇢ ker(D)

(here it is not necessary to assume that D is Cayley-Hamilton).
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Remark 1.2.3.2. This lemma and its proof is based on Chenevier’s lemma [Che11,

Lemma 2.7]. It is due to him, except for (3), which comes from our use of PI ring theory.

Proof. Without applying a Cayley-Hamilton assumption, if r 2 R is invertible, then

D(r) is invertible since D is multiplicative and preserves units. Assuming the Cayley-

Hamilton property, the converse is true: if D(r) = a is invertible in A, then the multiplicative

inverse of r is given by manipulating its characteristic polynomial.

(1.2.3.3) (rd�1 � ⇤
1

(r)rd�2 + · · ·+ (�1)d�1⇤d�1

(r)) · r = �a.

Since the Jacobson radical J(R) of R is the set of quasiregular elements, i.e. r 2 R such that

1� r is a unit in R, we see that r 2 J(R) if and only if D(1� r) is a unit, proving (1).

Now we will prove (2). If r 2 ker(D) and r0 2 R, then ⇤i(rr0) = 0 for 1  i  d. Then r

must satisfy the characteristic polynomial �(r, t) = td. This shows that ker(D) is a nil ideal

of bounded nil-degree d. Therefore ker(D) ✓ N(R).

Now let A be a field k. If r 2 R is nilpotent, then 1 + tr 2 R ⌦k k[t] is invertible.

Therefore D(1 + tr) is invertible in k[t], hence D(1 + tr) is in k⇥. Using the homogenous

multiplicativity of D on B = A[t, t�1], we see that

t�d ·DB(1� tr) = DB(t
�1 � r) = �(r, t�1),

so that �(r, t) = td and D(1 + tr) = 1. Therefore rd = 0, proving one direction of part (3).

For the converse, we simply use the Cayley-Hamilton property. Now choose x 2 J(R). For

all y 2 k[x], 1 + yx is invertible in k[x], so that D(1 + yx) 2 k⇥. Then, as in the proof

of part (1), we know that 1 + yx is invertible in k[x]. This means that x 2 J(k[x]). This

only happens when k[x] is finite dimensional as a k-vector space. Since any element of the

Jacobson radical of a finite dimensional algebra over a field is nilpotent, we conclude that x

is nilpotent as desired. This concludes (3).

Parts (2) and (3) have shown that ker(D) and J(R) are nil-ideals of bounded nil-degree

d, i.e. all of their elements are nilpotent of degree d. Part (4) follows directly from this fact,

upon applying Corollary 1.2.2.8.

78



To prove (5), let us first assume that k is an infinite field. We know from part (3) that

J(R) consists of nilpotent elements, and that D(1 + r) = 1 for all r 2 J(R). Since k is an

infinite domain and J(R) is a two-sided ideal, we may apply Lemma 1.1.7.2, which tells us

that

ker(D) = {r 2 R | 8r0 2 R,D(1 + rr0) = 1}.

This shows that J(R) ✓ ker(D). The opposite inclusion is part (2). It remains only to

reduce to the case that k is an infinite field; this is accomplished in Lemma 1.2.3.5 below.

This completes our proof that J(R) = ker(D) when A is a field.

For part (6), let I be a nilpotent ideal of R and choose r 2 I. Then for any y 2

R⌦AA[t
1

, · · · ,m] for any m, ry is nilpotent. Therefore D(1+ try) is invertible, hence equal

to 1 by the logic above. Therefore r 2 ker(D) by definition. ⇤

Remark 1.2.3.4. The nilpotence of the nilradical of a finitely generated PI algebra over

a commutative Noetherian ring was first proved by Braun [Bra84]. We proved this more

simply because, in our case of concern, R is integral of bounded degree over A and therefore

finite as an A-module.

Lemma 1.2.3.5 ([Che11, Lemma 2.8]). Let k be a field and let D : R ! k be a d-

dimensional pseudorepresentation. Then for any separable algebraic extension K/k, the nat-

ural injection R⌦k K induces isomorphisms

J(R)⌦k K
⇠�! J(R⌦k K), ker(D)⌦k K

⇠�! ker(D ⌦k K).

This proof is due to Chenevier.

Proof. By Lemma 1.1.5.2, we have an injection

ker(D)⌦k K �! ker(D ⌦k K).

We need to show that this map is surjective. Enlarge K if necessary, so that K/k is normal

with Galois group �. Consider the natural semilinear action of � on R ⌦k K. By Hilbert’s

Theorem 90, each �-stable K-subvector space of V of R⌦k K has the form V �⌦k K, where

79



V � ⇢ R is the k-vector space of fixed points. We claim that ker(D ⌦k K) is �-stable.

Observe that � has a natural semilinear action on any K-algebra B. As the characteristic

polynomial coe�cient functions of D⌦k K are defined over k, we have for any K-algebra B,

any r 2 R⌦k B, and any � 2 � that D is �-equivariant, i.e.

D(�(r)) = �(D(r)).

The claim now follows upon examining the definition of the kernel: if r 2 ker(D⌦k K), then

D(1+rr0) = 1 for all K-algebras B and r0 2 R⌦kB, and this will remain true after replacing

r with �(r). Now the desired surjectivity follows from the fact that ker(D⌦k K)� ⇢ ker(D).

This also follows from the �-equivariance of D. ⇤

1.2.4. The Universal Cayley-Hamilton Algebra. This paragraph discusses a trivial

generalization of [Che11, 1.22-1.23], introducing the category of “Cayley-Hamilton represen-

tations” of a given A-algebra R. We may think of this as a generalization of the universal

Azumaya-algebra valued representation of R discussed in §1.4 below.

We start with the usual data of an algebra R over a commutative ring A. From Theorem

1.1.7.4, we have the universal pseudorepresentation

Du : R⌦A �
d
A(R)ab �! �d

A(R)ab

of R over �d
A(R)ab. Now we apply the notion of a Cayley-Hamilton algebra to this universal

pseudorepresentation.

Definition 1.2.4.1. Let R,A, and Du be as above. Let B a commutative A-algebra.

(1) A Cayley-Hamilton B-representation of R of dimension d over B is a triple

(B, (E,D), ⇢)

where (E,D) is a Cayley-Hamilton A-algebra relative to the pseudorepresentation

D : E ! B, and ⇢ : R⌦A B ! E is a homomorphism of B-algebras.
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(2) The universal Cayley-Hamilton representation of R is

(�d
A(R)ab, (E(R, d), Du|E), ⇢u),

where E(R, d) is the �d
A(R)ab-algebra

E(R, d) := (R⌦A �
d
A(R)ab)/CH(Du)

receiving the canonical quotient homomorphism ⇢u : R⌦A �d
A(R)ab ! E(R, d), and

Du|E : E(R, d)! �d
A(R)ab is the factorization of Du through ⇢u.

Of course, the factorization Du|E exists, in view of Lemma 1.1.6.6(2) and Lemma 1.2.1.1.

Remark 1.2.4.2. Cayley-Hamilton representations are direct generalizations of the usual

notion of a representation. With R,A as usual, let R ⌦A B ! Md(B) be a B-valued d-

dimensional representation of R. Then

(B, (Md(B), det), ⇢)

is a d-dimensional Cayley-Hamitlon representation of R over B, where det is the standard

determinant map det : Md(B)! B.

We want to show that the “universal” d-dimensional Cayley-Hamilton representation of

R deserves its name, but first we must define the structure of a category CHd(R) where

this representation will be initial, following [Che11, §1.22]. The objects are the data of the

definition above, and a morphism of Cayley-Hamilton representations of R

(B
1

, (E
1

, D
1

), ⇢
1

) �! (B
2

, (E
2

, D
2

), ⇢
2

)
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is a pair (f, g) where f : B
1

! B
2

and g : E
1

! E
2

are ring homomorphisms such that if

◆i : Bi ! Ei is the Bi-algebra structure on Ei, then the diagrams

B
1

◆1
//

f
✏✏

E
1

g

✏✏

E
1

D1
//

g

✏✏

B
1

f
✏✏

B
2

◆2
// E

2

E
2

D2
// B

2

and

R⌦A B
1

⇢1
//

id⌦f
✏✏

E
1

g

✏✏

R⌦A B
2

⇢2
// E

2

commute.

Proposition 1.2.4.3 ([Che11, Proposition 1.23]). The universal d-dimensional Cayley-

Hamilton representation

(�d
A(R)ab, (E(R, d), Du|E), ⇢u)

is the initial object of CHd(R).

Proof. Let (B, (S,D), ⌘) be a d-dimensional Cayley-Hamilton representation of R. The

B-algebra homomorphism ⌘ : R ⌦A B ! S induces a d-dimensional B-valued pseudorepre-

sentation of R, namely D � ⌘. This induces an A-algebra homomorphism f : �d
A(R)ab ! B.

This in turn induces an A-algebra homomorphism

R⌦A �
d
A(R)ab �! R⌦A B

⌘�! S.

Since (S,D) is Cayley-Hamilton, Lemma 1.1.8.6 implies that this map factors through ⇢u :

R⌦A �d
A(R)ab ⇣ E(R, d), with quotient

g : E(R, d) �! S.

We observe that f �Du|E = D�g, and that (f, g) has the remaining properties of a morphism

in CHd(R), as desired. ⇤

82



Now, assuming that A is Noetherian and R is finitely generated as an A-module, we have

a pleasant consequence of the PI theory of §1.2.2. This proposition will be applied in §1.4.3

to show that the representation theory of such an algebra R reduces to the representation

theory of a finite-over-center algebra, basically by exploring the consequences of Remark

1.2.4.2.

Proposition 1.2.4.4. If A is Noetherian and R is finitely generated as an A-algebra,

then the universal d-dimensional Cayley-Hamilton algebra of degree d associated to R, namely

the �d
A(R)ab-algebra E(R, d), is finite as a �d

A(R)ab-module. In particular, E(R, d) is a

Noetherian ring and is finite as a module over its center.

Proof. This is an instance of Corollary 1.2.2.10(1). ⇤

1.3. Pseudorepresentations over Fields

In the current chapter, we are developing the theory of pseudorepresentations and then,

starting in §1.4, studying the moduli space of pseudorepresentations relative to the moduli

space of representations. The main theorem of this chapter, Theorem 1.5.4.2, depends heavily

on the comparison of representations wtih pseudorepresentations over an algebraically closed

field. Indeed, it is fair to say that in Chapter 1 we prove what we can about this situation

by studying moduli functors through their geometric points, and in Chapter 2 we aim for a

closer, local-on-the-base study.

This is our motivation for studying pseudorepresentations over fields. We can find a close

relationship between semisimple representations and pseudorepresentations over fields. We

will now give the main theorem. This is a critical property of this notion of pseudorepresen-

tation, developed by Chenevier, who calls it a “determinant.” Previous notions, which we

call “pseudocharacters” here, did not function well in the case that the dimension is greater

than or equal to the characteristic of the field (see §1.1.12).

1.3.1. Main Theorem. As usual, let R is an A-algebra. We have seen that represen-

tations of R valued in an Azumaya algebra, and in particular a matrix algebra, induce a
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pseudorepresentation (Theorem 1.1.7.4(6)). We have also seen that given a pseudorepre-

sentation D of R, the universal Cayley-Hamilton representations of R over D share some

similarities with representations of R valued in subalgebras of matrix algebras (cf. Corollary

1.2.2.10). Now we will show that over an algebraically closed field, pseudorepresentations

are in natural bijection with representations. Here is our main theorem, due to Chenevier.

Theorem 1.3.1.1 ([Che11, Theorem 2.12]). Let k̄ be an algebraically closed A-field.

There is a bijection between conjugacy classes of semisimple d-dimensional representations

⇢ of R over k̄ and d-dimensional pseudorepresentations of R over k̄, given by sending

⇢ : R ⌦A k̄ ! Md(k̄) to det �⇢. In fact, if D is a d-dimensional k̄-valued pseudorepre-

sentation of R, then the corresponding semisimple representation may be written as

R⌦A k̄ �! (R⌦A k̄)/ ker(D) '
Y

Md
i

(k̄),

where
P

di = d.

We will also find an analogous result over arbitrary A-fields k. Indeed, Theorem 1.3.1.1

follows directly from this more general case. However, it will require that we establish some

notions and notation.

The following notion of an “exponent” describes the size of field extensions K/k in a

di↵erent way than the degree of an extension. Indeed, the exponent may be finite and

meaningful even when the degree of the extension is infinite. We also give “determinant”

maps from central simple algebras S/K to k ⇢ K whenK/k has finite exponent, generalizing

the determinant on a matrix algebra.

Definition 1.3.1.2. Let K/k be a field extension, and let k0 ⇢ K be the maximal

separable subextension of K. Assume that k0/k is finite. If the characteristic p of k is

positive, let q be the smallest power of p such that Kq ✓ k0, and if p = 0 let q = 1. Define

the exponent (f, q) 2 N2 of K/k by f = [k0 : k] and q as above. It is possible for both or

either of the quantities in the exponent to be infinite.
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Now assume that K/k has finite exponent (f, q), and let S be a central simple K-algebra

of rank n2 over K with its reduced norm N : S ! K. Let Nk0/k : k0 ! k be the norm map

on finite separable fields, and let F q : K ! k0 be the q-power Frobenius map. Then there is

a natural determinant

detS : S ! k

of k-homogenous degree nqf defined by detS = Nk0/k � F q �N .

We observe that in the case that the exponent of S is trivial (1, 1), detS is the standard

reduced norm of an Azumaya algebra, such a matrix algebra.

Now we can state the theorem describing pseudorepresentations of an algebra over an

arbitrary field

Theorem 1.3.1.3 ([Che11, Theorem 2.16]). Let R be a k-algebra. Let D : R ! k be a

d-dimensional pseudorepresentation.

(1) Then there is an isomorphism of k-algebras

R/ ker(D)
⇠�!

sY
i=1

Si

where Si is a simple k-algebra which is of finite dimension n2

i over its center ki, and

where ki/k is a with finite exponent (fi, qi). In particular, R/ ker(D) is semisimple.

(2) Moreover, under such an isomorphism, D is equal to the sum of determinants

D =
sM

i=1

detmi

S
i

, d =
sX

i=1

miniqifi,

where mi are certain uniquely determined integers.

(3) The pseudorepresentation D is realizable as the composition of the natural sum of

determinants detS
i

with the following product of the natural surjections R ⇣ Si,

namely

R �!
sY

i=1

m
iY

j=1

Si,

where the integers mi are as above.
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(4) R/ ker(D) is finite-dimensional as a k-vector space and, equivalently, each ki is

finite-dimensional if any of the following conditions are satisfied, where p is the

characteristic of k.

(a) k is perfect,

(b) d < p,

(c) p > 0 and [k : kp] <1, or

(d) R is finitely generated as a k-algebra.

Let us deduce the algebraically closed case from this general case.

Proof. (Theorem 1.3.1.3 implies Theorem 1.3.1.1.) Beginning with the notation of

Theorem 1.3.1.1, we let k̄ be an algebraically closed A-field and replace R by R ⌦A k̄ and

think of R as a k̄-algebra and let D be a d-dimensional pseudorepresentation D : R! k̄.

By definition of the exponent, every element of a field extension K/k̄ of finite exponent

is algebraic over k̄. Since k̄ is algebraically, closed this means that K = k̄ when K/k̄ has

finite exponent, i.e. the exponent is (1, 1). Now Theorem 1.3.1.3 implies that R/ ker(D)

is a product of central simple k̄-algebras, which are therefore matrix algebras because k̄ is

algebraically closed. We write

R/ ker(D)
⇠�!

sY
i=1

Md
i

(k̄).

If we write deti for the determinant function on Md
i

(k̄), Theorem 1.3.1.3 tells us that

D ⇠=
sM

i=1

detmi

i , where
sX

i=1

midi = d,

and where � refers to the direct sum of (1.1.11.2). If Vi a the di-dimensional representation

of R corresponding to R ⇣ Md
i

(k̄), then clearly the representation

sM
i=1

V �m
i

i
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realizes D as its determinant. Since, by the Brauer-Nesbitt theorem, a semisimple represen-

tation over an algebraically closed field is determined up to isomorphism by its character-

istic polynomials, this semisimple representation is unique up to isomorphism. Conversely,

a pseudorepresentation is determined by its characteristic polynomial functions (Corollary

1.1.9.15). Therefore the correspondence is bijective. ⇤

We will prove Theorem 1.3.1.3 in the next paragraph.

1.3.2. Semisimple k-algebras. Now we work toward proving Theorem 1.3.1.3. Firstly,

we will note that our existing knowledge allows us to conclude immediately that R/ ker(D)

is semisimple and track the number of orthogonal idempotents.

Recall that R is a k-algebra with a d-dimensional pseudorepresentation D : R! k. Let

p be the characteristic of k.

Because Lemma 1.2.1.1 tells us that (R/ ker(D), D) is a Cayley-Hamilton k-algebra, we

can apply our study of Cayley-Hamilton algebras from §1.2. Let us review the facts that we

can deduce directly from this study.

• Every element of R is integral (i.e. algebraic) of bounded degree d over k: each

element satisfies its own characteristic polynomial.

• By Proposition 1.2.2.2 R is a PI-k-algebra.

• By Lemma 1.2.3.1(5), ker(D) is the Jacobson radical J(R) of R, so R/ ker(D) is

semisimple.

• By Lemma 1.2.1.4, the largest possible cardinality of a family of pairwise orthogonal

idempotents of R/ ker(D) is d.

Also, Corollary 1.2.2.9, if R is finitely generated as a k-algebra, R/ ker(D) is a finite dimen-

sional k-algebra. However, we are not currently assuming that R is finitely generated as a

k-algebra.

All that we need to do is to control the exponent of the centers of the simple fac-

tors (Lemma 1.3.2.1 below) and control the possible pseudorepresentations out of simple

k-algebras (Lemma 1.3.2.3 below).
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The following lemma describes field extensions of k satisfying the first property of the

bullet list above; these are the possible fields that can appear as the center of a k-algebra

satisfying all of the properties of the bullet list.

Lemma 1.3.2.1 ([Che11, Lemma 2.14]). If S is a k-algebra satisfying the properties in

the bullet list above, then

S
⇠�!

sY
i=1

Mn
i

(Ei)

where Ei is a division k-algebra, finite dimensional over its center ki, and s  d. In partic-

ular, S is semisimple. The center ki of Ei is a finite separable extension of k, unless k has

positive characteristic p, in which case k[kq
i ] is separable, where q is the greatest power of p

less then n. Moreover, S is finite dimensional over k if any of the following conditions are

satisfied:

(1) k is perfect,

(2) p > d,

(3) p > 0 and [k : kp] <1, or

(4) R is finitely generated over k.

We record some of the proof here for reference, following the proof of [Che11, Lemma

2.14].

Proof. Let A be a commutative k-algebra satisfying the properties in the bullet list. If

p > 0, define q as in the statement of the lemma, and set q = 1 otherwise. The bound on

the number of idempotents implies that

A
⇠�!

sY
i=1

Ai

where s  d, and where Ai is an algebraic field extension of k. Since Ai/k has bounded

algebraic degree d, its maximal separable subextension Aét

i is finite dimensional over k. As

the center Z(S) of S has the properties of A, we have established the conditions of the last

part of the lemma are su�cient to imply that the center is finite dimensional over k.
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Now we show that S is semisimple. Let M be a simple S-module, and let E be the

division algebra EndS(M). First, we claim that M is finite dimensional over E. Indeed,

Jacobson’s density theorem6 implies that either M is finite dimensional over E and S !

EndE(M) ' Ms(Eop) is surjective, or for each j � 1 there is a k-subalgebra Rj ⇢ S and a

surjective k-algebra homomorphism Rj ⇣ Mj(Eop), but the second option is not possible

since the elements of S are algebraic of bounded degree over k.

Now we claim that there are finitely many simple S-modules M
1

, . . . ,Ms up to isomor-

phism. This will complete the proof that S is semisimple, for in this case the fact that

J(S) = 0 implies that

(1.3.2.2) S �!
sY

i=1

Mn
i

(Eop

i ), where Ei := EndS(Mi)

is injective, and the fact that the Mi are pairwise non-isomorphic implies that it is surjective.

It remains to check the claim. For this, we refer the reader to the remainder of the proof,

found in [Che11, Lemma 2.14]. ⇤

Now we must describe the possible pseudorepresentations out of a simple k-algebra S

whose center K is a finite exponent extension of k. Let us first recall that we have already

given such a result in the case that the center of S is k, so that S is an Azumaya algebra

over k. This is Proposition 1.1.7.10, due to Ziplies [Zip86], which states that all of the

pseudorepresentations out of an Azumaya algebra are induced by integral powers of the

reduced norm.

Having described the Azumaya algebra case, we proceed to the general case.

Lemma 1.3.2.3 ([Che11, Lemma 2.17]). Let K/k be a field extension with finite exponent

(f, q), and let S be a central simple finite dimensional K-algebra. Then any pseudorepresen-

tation D : S ! k has the form detmS for some unique integer m � 0.

6Jacobson’s density theorem states that for any simple left module N of a ring R, any EndR(N)-linear
transformation ⌘ of N , and any finite set of elements {xi} of N , there exists r 2 R such that ⌘(xi) = r · xi

for all i. See e.g. [Her68, Theorem 2.1.2].
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Proof. Let D : S ! k be a d-dimensional pseudorepresentation, and define n2 :=

dimK(S). Note that if D = detmS , then we must have d = fmnq since detS is homogenous

of degree fnq by definition; this shows that m is unique if it exists.

We will use the following fact below: if two d-dimensional pseudorepresentations D
1

, D
2

:

R! A are such that D
1

⌦A B ⇠= D
2

⌦A B for some commutative A-algebra B with A! B

injective, then D
1

⇠= D
2

. This follows directly from the representability of the moduli space

of pseudorepresentations, Theorem 1.1.7.4.

Assume for the moment that k is separably closed, so that K is as well. The Noether-

Jacobson theorem implies that S is isomorphic to some matrix algebra Mn(K), n � 1. Set

A := K⌦kK, and denote by I the kernel of the natural split surjection A! K. We see that

I is generated as an A-module by elements of the form x⌦ 1� 1⌦ x, which are nilpotent of

index  q. In, particular, I is a nil ideal, and any finite type A-submodule of I is nilpotent as

an ideal. Now Lemma 1.2.3.1(6) implies that for any pseudorepresentation D : Mn(A)! K,

D factors through ⇡ : Mn(A) ⇣ Mn(A/I) = Mn(K). Applying this to

D ⌦k K : S ⌦k K 'Mn(K)⌦k K ⇠= Mn(A) �! K,

we get a pseudorepresentation Mn(K) ! K, which is an integral power of the usual deter-

minant by Proposition 1.1.7.10, say D ⌦k K ⇠= detsM
n

(K)

�⇡ and d = ns. Now recall that

the restriction of D ⌦k K to Mn(K) ⌦ 1 ⇢ Mn(A) must be valued in k, since D is valued

in l. This means that dets(Mn(K)) ⇢ k. Therefore q must divide s, and we observe that

dets/qS ⌦kK ⇠= D ⌦k K. Now by the fact mentioned above, this implies that D ⇠= dets/qS .

Now we reduce to the case that k is separably closed. We have

K ⌦k k
sep

⇠�!
fY

i=1

Ki,

where Ki = K · ksep is a separable algebraic closure of K such that Kq
i ⇢ ksep for each i (q

is minimal for this property) and Gal(ksep/k) permutes transitively the Ki. Recall that f is
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the (finite) separable degree of K over k. Likewise,

S ⌦k k
sep ⇠= S ⌦K (K ⌦k k

sep)
⇠�!

fY
i=1

Si,

where Si = S ⌦K Ki is central simple of rank n2 over Ki. By Proposition 1.1.11.5(2), each

D ⌦k k
sep is the product of determinants Si

⇠! Mn(Ki) ! ksep, which have the form detmi

S
i

by the previous step above, and d = n(
Pf

i=1

mi). As D ⌦k k
sep is Gal(ksep/k)-equivariant,

this implies that mi is independent of i, i.e. mi = m for each i. Therefore, m = d/nf , and

we observe that D ⌦k k
sep ⇠= detmS ⌦kk

sep. Now by the fact mentioned above, this implies

that D ⇠= detmS , as desired. ⇤

Now we complete the proof of Theorem 1.3.1.3.

Proof. (Theorem 1.3.1.3) By Lemma 1.3.2.1, we know that R/ ker(D) is isomorphic to

a product of s  d simple k-algebras Si whose centers ki are finite exponent extensions of k.

This is part (1). Write (fi, qi) for the exponent of ki.

By Proposition 1.1.11.5(2), any pseudorepresentation out of R/ ker(D) is the sum7 of

pseudorepresentations Di, one out of each Si. Indeed, Spec k is connected, so that the con-

ditions of Proposition 1.1.11.5 are satisfied. Lemma 1.3.2.3 implies that each Di is a power

detmi

S
i

of detS
i

. As Proposition 1.1.11.5 tells us that the degree of a sum of pseudorepresen-

tations is the sum of the degrees, and detS
i

has degree niqifi, the formula for the degree

follows; this is part (2).

For part (3), we are simply combining part (1) with Lemma 1.1.6.6(2). Part (4) follows

directly from Lemma 1.3.2.1. ⇤

Corollary 1.3.2.4. Let D : R ! k be a d-dimensional pseudorepresentation of a k-

algebra R.

7Recall that this sum is defined in (1.1.11.2).
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(1) There exists a field extension L/k such that D⌦k L is realizable as the determinant

of a matrix algebra-valued representation

R⌦k K !Md(L).

If R/k is finitely generated, then L/k may be chosen to be a finite extension.

(2) When the centers ki/k, 1  i  s, of exponent (fi, qi), the simple factors Si of

R/ ker(D) of Theorem 1.3.1.3 are separable extensions, e.g. when k is perfect, then

there exists a finite separable extension K of degree bounded by
Qs

i=1

fi such that

R/ ker(D)⌦k K

is a product of matrix algebras and the natural map from R ⌦k K to this algebra is

a d-dimensional representation whose determinant induces D ⌦k K.

Proof. We begin with the case that the integer s from Theorem 1.3.1.3 is 1, i.e. the

k-algebra R/ ker(D) is a central simple n2-dimensional L-algebra S where L/k is a field

extension of finite exponent (f, q) such that d = n ·f · q. Its maximal separable subextension

L0/k has degree f . Because universal homeomorphisms such as inseparable extensions induce

equivalences of étale topoi and Brauer groups classify central simple algebras over a field,

the L0 algebra S ⌦k L
0 is isomorphic to Mn(L). We then observe that the product L-algebra

qY
i=1

Y
�2Gal(L0/k)

�Mn(L)

is naturally embeddable in Md(L). The pseudorepresentation resulting from

R/ ker(D)⌦k L �!
qY

i=1

Y
�2Gal(L0/k)

�Mn(L) �!Md(L)
det�! L

is then equal to D ⌦k L, upon examining the “determinant” detS of S defined in Definition

1.3.1.2 and the conclusion of Theorem 1.3.1.3.
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The general result (1) follows by applying this to each of the simple factors Si of

R/ ker(D), taking the sum of the resulting pseudorepresentations on the product of these

factors, and tensoring D by the composite field of the extensions L0 above of each factor.

The claim that the finite generation of R/k implies the finitude of L/k follows from

Theorem 1.3.1.3(4d).

Part (2) follows from part (1) and its proof when qi = 1 for each i. ⇤

1.3.3. Finite-Dimensional Cayley-Hamilton Algebras. In this paragraph, we find

conditions under which a Cayley-Hamilton algebra (R,D) over a field k is finite-dimensional.

There are three basic ingredients. Results from PI ring theory from §1.2.2 culminated in the

fact that the Jacobson radical of a Cayley-Hamilton algebra over a field is nilpotent, with

degree of nilpotence bounded in terms of the degree of the pseudorepresentation (Lemma

1.2.3.1). The next ingredient is the conditions we have given above for the maximal semisim-

ple quotient of R to be finite-dimensional. Finally, we require some basic lemma, which we

now give. This translates the condition that ker(D)/ ker(D)2 is a finite dimensional vector

space, which is the last fact we require, into a condition on the deformations to k["]/("2) of

the semisimple representation ⇢ associated to D.

Lemma 1.3.3.1. Let A be a commutative ring, R an A-algebra. Let I be a two-sided ideal

of R. There is a natural A-module isomorphism

HomR(I/I
2, R/I)

⇠�! Ext1R(R/I,R/I).

Proof. Apply HomR(�, R/I) to the exact sequence of R-modules

0 �! I �! R �! R/I �! 0,

and use that Ext1R(R,�) = 0. ⇤

We continue to work with deformations of a fixed d-dimensional pseudorepresentation

D̄ : R ! k. Now let us restrict to the case that S := R/ ker(D̄) is finite dimensional as a

k-vector space.
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Theorem 1.3.3.2. Let k be a field of characteristic p � 0 and let R be a k-algebra

equipped with a Cayley-Hamilton d-dimensional pseudorepresentation D : R ! k. Assume

that S := R/ ker(D) is finite-dimensional over k. If Ext1R(S, S) is finite-dimensional as a k-

vector space, where S is treated as an R-module here, then R is finite-dimensional k-algebra.

Recall that su�cient conditions for S to be finite dimensional over k are given in Theorem

1.3.1.3(4).

Proof. Apply Lemma 1.3.3.1, so that the assumption that dimk Ext
1

R(S, S) <1 implies

that dimk HomS(ker(D)/ ker(D)2, S) < 1. This means that ker(D)/ ker(D)2 is a finite

sum of simple representations of S, but this in turn implies that ker(D)/ ker(D)2 is finite-

dimensional as a k-vector space.

Because there are natural surjections

(I/I2)⌦
n

k ⇣ In/In+1

for any ideal I ⇢ R, this means that R/ ker(D̄)2n is also finite dimensional over k for any

positive integer n. Since (R,D) is Cayley-Hamilton, Lemma 1.2.3.1(4) implies that ker(D) is

nilpotent of index bounded by N(d) (or by N(d, p)), where N(d) is the integer of Definition

1.2.2.7. This completes the proof. ⇤

1.3.4. Composition Factors of Field-Valued Pseudorepresentations. We con-

clude this section with some discussion of the simple factor algebras of R/ ker(D), where

we continue to let R be a k-algebra where k is a field. Equivalently (almost), we discuss

the Jordan-Hölder factors that appear in representations of R arising from pseudorepresen-

tations according to Theorem 1.3.1.1. We mostly follow Chenevier’s discussion of [Che11,

§2], and introduce some notions – the Grothendieck group of R and dimension vectors of

representations – that will be useful in §2.2. These notions will be heavily used when we

discussion deformation theory of pseudorepresentations in Chapter 2.
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Definition/Lemma 1.3.4.1 ([Che11, Defn.-Prop. 2.18]). Let D : R ! k be a d-

dimensional pseudorepresentation over a field k. We call D absolutely irreducible provided

that one of the following equivalent conditions is true.

(1) The semisimple representation ⇢D : R⌦k k̄ !Md(k̄) with determinant equal to the

pseudorepresentation D, which exists and is unique up to isomorphism by Theorem

1.3.1.1, is irreducible,

(2) (R⌦k k̄)/ ker(D ⌦k k̄) 'Md(k̄),

(3) R/ ker(D) is a central simple k-algebra of rank d2,

(4) R/CH(D) is a central simple k-algebra of rank d2,

(5) for some (resp. all) subset X ⇢ R generating R as a k-vector space, there exists

x
1

, x
2

, . . . , xd2 2 X such that the abstract d2 ⇥ d2 matrix ((⇤
1

(xixj))i,j belongs to

GLd2(k).

If they are satisfied, then CH(D) = ker(D) = {x 2 R, 8y 2 R,⇤
1

(xy) = 0}.

Proof. Since we know from Proposition 1.1.7.10 that any pseudorepresentation out of a

matrix algebra is a power of the determinant, and a pseudorepresentation factors through the

quotient by its kernel, (2) implies (1) since we know thatD has dimension d. Conversely, if ⇢ :

R⌦k k̄ !Md(k̄) is as in (1), then Wedderburn’s theorem tells us that ⇢ is surjective. We see

that ker(⇢) ⇢ ker(D), since the pseudorepresentation det �⇢ is invariant under multiplication

by ker(⇢). Therefore (2) follows from Theorem 1.3.1.3. Also, (5) (for any subset X ⇢ R

satisfying the conditions above) follows from (1) or (2) by the nondegeneracy of the trace

pairing on Md(k̄). Conversely, if X ⇢ R satisfies (5), then

dim
¯k((R⌦k k̄)/ ker(D ⌦k k̄)) � d2,

and now (5) implies (2) by Theorem 1.3.1.3, since positive integers ni, 1  i  s, such thatPs
1

ni = d also satisfy
P

n2

i = d2 if and only if s = 1 and d = n.

We have shown that (1), (2), and (5) are equivalent. Because the quotient R/CH(D)

commutes with arbitrary base changes (this is Lemma 1.1.8.6), and a k-algebra R is central
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simple of rank d2 if and only if R ⌦k k̄ is a rank d2 matrix algebra, we see that (4) ()

(2). Now recall from Lemma 1.2.3.1 that the kernel of the natural surjection

R/CH(D) �! R/ ker(D)

is nilpotent and equal to the Jacobson radical of R/CH(D). Clearly (4) implies (3), since

the kernel ker(D) is non-trivial by Lemma 1.1.6.6(2). To complete the proof, we show that

(3) implies (5). Since the kernel is stable under separable extensions by Lemma 1.2.3.5 and

the central simple algebra R/ ker(D) of finite rank is split by a finite separable extension

k0/k, we have that Md(k0) ⇠= R/ ker(D) ⌦k k0 ⇠= (R ⌦k k0)/ ker(D ⌦k k0). We can choose

x
1

, . . . , xd2 in R to be lifts of a k-basis for R/ ker(D); as this k-basis is also a k0-basis for

(R⌦k k
0)/ ker(D⌦k k

0) ⇠= Md(k0) and (D⌦k k
0)(t� xi⌦ 1) = D(t� xi), (5) follows from the

nondegeneracy of the trace pairing on Md(k0). ⇤

We can derive from these equivalences the fact that the locus of absolutely irreducible

pseudorepresentations is open. First we give a definition.

Definition 1.3.4.2. We write PsIrrdR ⇢ PsRd
R for the subfunctor of PsRd

R cut out by the

following condition: for B 2 AlgA and D 2 PsRd
R(B), we say that D 2 PsIrrdR provided that

for every B-field k, D ⌦B k : R⌦B k ! k is an absolutely irreducible pseudorepresentation.

Corollary 1.3.4.3 (cf. [Che11, Example 2.20]). The subfunctor PsIrrdR ⇢ PsRd
R is

Zariski open and therefore representable.

Proof. We use condition (5) of Definition/Lemma 1.3.4.1: choose r
1

, . . . , rd2 such that

(5) holds. This defines a morphism of a�ne SpecA-schemes

PsRd
R �!Md2

D 7! (⇤
1

(rirj))i,j,

and Definition/Lemma 1.3.4.1 tells us that the absolutely irreducible locus is the inverse

image of the open subscheme GLd2 ⇢Md2 , which is therefore an open subscheme. ⇤
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As we will discuss in §2.1.3, the deformation theory of absolutely irreducible pseudorep-

resentations is especially nice. It amounts to deforming the absolutely irreducible represen-

tation associated to it by Theorem 1.3.1.1; this is already suggested by Corollary 1.3.4.3

The next most tractable case for the deformation theory of pseudorepresentations (which

we will discuss in §2.1) is the multiplicity free case, which we now define. While “multiplicity

free” is defined over any field k by using the base change to the algebraic closure, just like the

case for “absolutely irreducible,” we will sometimes require that the pseudorepresentation

be realizable as the determinant of a matrix algebra-valued representation over k. We define

the term split for this purpose.

Definition/Lemma 1.3.4.4 ([Che11, Definition 2.19]). Given a d-dimensional pseu-

dorepresentation D : R ! k, we say that D : R ! k is multiplicity free provided that

D ⌦k k̄ is the determinant of a direct sum of pairwise non-isomorphic irreducible k̄-linear

representations. In the notation of Theorem 1.3.1.3, it is equivalent to say that mi = qi = 1

for each i.

Call D split provided that it is induced by the determinant of a representation R !

Md(k). Equivalently, D is split if and only if R/ ker(D) is a finite product of matrix algebras

over k.

Proof. We will prove the equivalence of the definitions of “split.” If R/ ker(D) is a

finite product of matrix algebras
Qs

1

Mn
i

(k), then by Proposition 1.1.11.5(2) and Proposition

1.1.7.10, D is a product of powers of the determinants of each Mn
i

(k), say D = � detmi

M
n

i

,

where
Ps

1

nimi = d. If Mi is the representation of R corresponding to R!Mn
i

(k), then we

can recover D as the determinant of the d-dimensional representation �M�m
i

i .

Conversely, assume that R/ ker(D) is not a finite product of matrix algebras. In this

case, R/ ker(D) is nonetheless semisimple with additional properties prescribed by Theorem

1.3.1.3: it is a product of simple k-algebras Si, each of which is of finite dimension n2

i over

its center ki, where ki/k has exponent (fi, qi). The k-valued pseudorepresentations of Si are

described in Lemma 1.3.2.3. Using Proposition 1.1.11.5(2) and Lemma 1.3.2.3 in the same

way as above, D = � detmi

S
i

for some non-negative integers mi, and d =
Ps

1

fiqimini. We
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note that ki has separable degree fi over k, and inseparable degree at least qi over k. We

note that any representation of Si has dimension at least fiqini over k, and this is achieved

if and only if Si is a matrix algebra over ki. Since at least one Si is not a matrix algebra by

assumption, we see that D cannot possibly be realized as the determinant of a d-dimensional

sum of representations of the Si. ⇤

Write RepR(k) for the abelian category of finite-dimensional representations of the k-

algebra R over k. To be precise, an object of this category is a finite-dimensional k-vector

space V with a k-linear action of R. We give the following definitions in the context of

representations of algebras; the second term comes from the theory of quiver representations.

Definition 1.3.4.5. Let C be an abelian category.

(1) The Grothendieck group of C, denoted K
0

(C), is the quotient of the free abelian

group on the objects of C by the subgroup generated by exact sequences, i.e. by

[M 0]� [M ] + [M 00] where

0 �!M 0 �!M �!M 00 �! 0

is an exact sequence in C.

(2) Assuming that any object of C has a unique composition series, the Grothendieck

semi-group is the set of isomorphism classes of semisimple objects of C, with the

operation coming from the direct sum of objects.

(3) The dimension vector of an object of C is its image in the Grothendieck group

K
0

(C).

(4) If any element ⇢ of C has a composition series, we consider the dimension vector �⇢

to be a vector with respect to the basis of K
0

(C) given by simple objects.

In the case that C is RepR(k), the finite-dimensional restriction shows that any object

has a composition series (the representation factors through a subalgebra of Endk(V ); apply

the Hopkins-Levitsky theorem). From this, we deduce that K
0

(RepR(k)) is generated by the
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simple finite-dimensional representations of R over k. We can think of the dimension vector

of a representation (or its semisimplification) as a vector with respect to this basis.

Using this basis for K
0

(RepR(k̄)), one can say that a pseudorepresentation D : R ! k

is absolutely irreducible when the associated element of K
0

(RepR(k̄)) has a single non-

zero entry, which is 1. The pseudopresentation is multiplicity free when the corresponding

representation has dimension vector with coordinates consisting of 0 and 1.

1.4. Moduli Spaces of Representations

Let S be an a�ne Noetherian scheme and let R be a finitely generated, not necessarily

commutative quasi-coherent OS-algebra, which amounts to a finitely generated �(O
SpecS)-

algebra. We consider moduli spaces of representations of R over S-schemes. The Noetherian

hypothesis on S will allow for the moduli spaces of representations of R that we will de-

scribe below to be Noetherian as well (also cf. Remark 1.1.10.16). We will conclude this

section by drawing a morphism from these moduli spaces of representations to their induced

pseudorepresentation.

1.4.1. Moduli Schemes and Algebraic Stacks. The following definitions describe

the functors and groupoids of representations of R that we will study.

Definition 1.4.1.1. With S and R as above and a positive integer d, define the following

S-functors and S-groupoids of d-dimensional representations over an S-scheme X.

(1) Define the functor on S-schemes Rep⇤,d
R by

X 7! {OX-algebra homomorphisms R⌦O
S

OX �!Md(X).

(2) Define the S-groupoid Repd
R by

obRepd
R(X) = {V/X rank d vector bundle,

OX-algebra homomorphism R⌦O
S

OX �! EndO
X

(V )}
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(3) Define the S-groupoid Rep
d

R by

obRep
d

R(X) = {E a rank d2OX-Azumaya algebra,

OX-algebra homomorphism R⌦O
S

OX �! E}

The functor Rep⇤,d
R is of natural interest, but we will often be interested in studying rep-

resentations of R up to isomorphism, where isomorphisms come from conjugation. Explicitly,

we say that ⇢, ⇢0 2 Rep⇤,d
R (SpecA) are equivalent when there exists some g 2 GLd(A) such

that ⇢ = g�1 · ⇢0 · g. We fix this adjoint action of GLd or PGLd on Rep⇤,d
R , and we desire a

scheme that represents the functor of orbits of this action.

However, the functor sending SpecA to the set of such equivalence classes/orbits – we

could say that it is the functor sending an S-scheme X to a free module with an action

of R, up to isomorphism – is not representable in general. Projective modules must be

allowed in order to put equivalence classes of representations of R into families and still

retain representability by an algebraic object. There are two possible strategies that have

been explored most. One strategy is to find the S-scheme which does the best possible job,

by some standard, in representing the moduli problem up to isomorphism. This approach

of “geometric invariant theory” will be discussed in the next section §1.5. Here, we will

follow the other approach, which is to remember the data of the isomorphisms between

objects, resulting in groupoids fibered over the category of S-schemes that are representable

by algebraic stacks. As we will see below (Theorem 1.4.1.4), the groupoids described above

will naturally arise as the quotient stacks of the adjoint action.

There is a canonical 1-equivalence to the functor (better, S-setoid) Rep⇤,d
R from the S-

groupoid whose fiber over an S-scheme X is the data of a free, rank d OX-module, a basis,

and an OX-linear action of R⌦O
S

OX . Having drawn this equivalence, we observe that there

are canonical maps

(1.4.1.2) Rep⇤,d
R �! Repd

R �! Rep
d

R
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where the first arrow is given by forgetting the basis and retaining the free rank d vector

bundle with its action, and the second arrow is given by forgetting the vector bundle and

retaining the homomorphism from R ⌦O
S

OX into its bundle of endomorphisms. We note

that the Azumaya algebras in Rep
d

R are not taken up to equivalence8, so that they corespond

up to isomorphism with PGLd-torsors, not elements of the Brauer group. In other words, we

consider non-trivial but locally isotrivial (i.e. Zariski locally trivializable) Azumaya algebras.

Theorem 1.4.1.3. Let S,R, and d be as above. Then the functor Rep⇤,d
R is representable

by an a�ne finite type S-scheme.

Proof. Choose a set of generators r
1

, . . . , rn for R over A. Then we have a morphism

of functors
Rep⇤,d

R �!Mn
d

⇢ 7! (⇢(r
1

), ⇢(r
2

), . . . , ⇢(rn)).

Let X be the finite set X = {x
1

, . . . , xn} and let F be the non-commutative quasi-coherent

S-algebra freely generated by X. We observe that the map above induces an isomorphism

Rep⇤,d
F

⇠! Mn
d . There is a canonical map F ⇣ X given by sending xi 7! ri for each

i, 1  i  n, and let J ⇢ F be its kernel, which is a two-sided ideal of F . For f 2 J ,

consider it as a function f(x
1

, . . . , xn) of the free variables xi. There exists a morphism

W f 2 HomS�schemes

(Mn
d ,Md) corresponding to f , given by sending an n-tuples of d ⇥ d-

dimensional matrices (m
1

, . . . ,mn) to f(m
1

, . . . ,mn). Let W f
ij 2 �(O(Mn

d )) be the regular

function obtained from composing W f with the projection onto the (i, j)th coordinate of

d ⇥ d-matrices, and let IJ be the ideal of �(O(Mn
d )) generated by W f

ij as f varies over

elements of J and 1  i, j  d.

We claim that the closed subscheme V (IJ) ⇢Mn
d represents the functor Rep⇤,d

R is isomor-

phic to Rep⇤,d
R under the map above. Clearly we have a monomorphism Rep⇤,d

R ! V (IJ) ⇢

Mn
d , because each of the relations f 2 J are sent to zero under the representation. For

any a�ne S-scheme SpecA, the map of sets Rep⇤,d
R (A) ! V (IJ)(A) is surjective, since for

8Azumaya algebras E1, E2 over A are called equivalent if there exist finite rank projective modules V1, V2 such
that there exists an isomorphism of A modules E1 ⌦A EndA(V1) ⇠= E2 ⌦A EndA(V2). The Azumaya-Brauer
group classifies Azumaya A-algebras up to equivalence, cf. [Gro68, §2].
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(m
1

, . . . ,mn) 2 V (IJ)(A), the A-algebra homomorphism R ⌦
�(O

S

)

A! Md(A) arising from

sending ri to mi defines a representation which maps to (m
1

, . . . ,mn). ⇤

We recall that GLd and PGLd act on Rep⇤,d
R via the adjoint action, conjugating the

matrix coe�cients of the representations.

Theorem 1.4.1.4. The groupoids Repd
R and Rep

d

R are equivalent to algebraic stacks, in

particular the quotient algebraic stacks

Repd
R
⇠= [Rep⇤,d

R /GLd], Rep
d

R
⇠= [Rep⇤,d

R /PGLd].

The canonical smooth presentation maps of these quotient stacks

Rep⇤,d
R �! [Rep⇤,d/GLd] �! [Rep⇤,d

R /PGLd]

correspond to the natural maps of groupoids (1.4.1.2).

For the reader’s convenience, we recall some equivalent definitions of Azumaya algebras.

Definition 1.4.1.5 ([Gro68, Theorem 5.1]). Let X be a scheme, and let E be a coherent

OX-module which has the structure of a OX-algebra. Then we say that E is an Azumaya

algebra if one of the following equivalent conditions are satisfied.

(1) E is locally free as a OX-module, and for every x 2 X, the fiber E ⌦O
X

(x) is a

central simple algebra.

(2) E is locally free as a OX-module, and the canonical homomorphism E ⌦O
X

Eop !

EndO
X

(E) is an isomorphism.

(3) There exists an étale covering U ! X such that E ⌦O
X

OU
⇠= Md(OU) for some

d � 1.

Now we prove Theorem 1.4.1.4.

Proof. The quotient [Rep⇤,d
R /GLd] parameterizes, by definition, a GLd-torsor G along

with a GLd-equivariant map G ! Rep⇤,d
R . This is what we will create from the data of an

SpecA-point of Repd
R, i.e. the data (V/A, ⇢ : R ⌦O

S

A ! EndA(V )), where V is a rank
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d projective A-module. We create a GLd torsor over SpecA corresponding to V , setting

its functor of points on SpecA-schemes X to be G(X) := IsomO
X

(V ⌦A OX ,O�d
X ). This

defines an equivalence of categories between GLd-torsors up to isomorphism and rank d

locally free sheaves up to isomorphism. The identity map in G(G) = IsomOG(V ⌦A OG,O�d
G )

is a canonical isomorphism V ⌦A OG
⇠! O�d

G . This defines a OG-linear action of R ⌦O
S

OG

on the free vector bundle O�d
G with its canonical basis, so that we have a map G ! Rep⇤,d

R .

It remains to show that this map is GLd-equivariant. The action of GLd on G on the right

comes from the standard action of GLd(X) on O�d
X . This is e↵ectively the basis change

action of GLd on the map R ⌦O
S

OX ! Md(X), which is the adjoint action. This is an

A-point of [Rep⇤,d
R /GLd], as desired.

For the inverse construction, we take an A-point of [Rep⇤,d
R /GLd], i.e. a GLd-equivariant

map G ! Rep⇤,d
R , and create an object of Repd

R(A). We use the equivalence of categories

between vector bundles and GL-torsors mentioned above to find a rank d projective A-

module such that G(X) ⇠= IsomO
X

(V ⌦A OX ,O�d
X ) for all A-schemes X. As V ⌦A OG is a

rank d-free module with a canonical basis as discussed above, we can take our initial data

of R⌦O
S

OG !Md(G) and compose it with the canonical map Md(G) ⇠! EndOG(V ⌦A OG),

to obtain an action of R ⌦O
S

OG on V ⌦A OG. We leave it as an exercise to show that the

GLd-equivariance of G ! Rep⇤,d
R is then exactly what we need in order to descend this map

to SpecA.

The proof that Rep
d

R
⇠= [Rep⇤,d

R /PGLd] goes along the same lines. We choose a SpecA-

point of Rep
d

R: a map R⌦O
S

A! E, where E is a rank d2 Azumaya A-algebra. We can then

create a PGLd-torsor G whose X-points for an A-scheme X are G(X) := IsomO
X

�alg

(E ⌦A

OX ,Md(X)), and the action of PGLd(X) on G(X) comes from its adjoint action on Md(X).

Then the identity map id 2 G(G) corresponds to a canonical isomorphism E⌦AOG
⇠!Md(G)

defining a morphism G ! Rep⇤,d
R , and we observe that the adjoint action on both the source

and target make this map PGLd-equivariant, and therefore an A-point of [Rep⇤,d
R /PGLd].
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For the inverse construction, from an A-point G ! Rep⇤,d
R of [Rep⇤,d

R /PGLd] we construct

a rank d2 Azumaya A-algebra E so that there is a canonical isomorphism of coherent OG-

algebras E ⌦A OG
⇠! Md ⌦OG. Then the map R ⌦O

S

OG ! Md(G) can be composed with

E(G) ⇠!Md(G) to get a map R⌦O
S

OG ! E⌦AOG. The PGLd-equivariance of G ! Rep⇤,d
R

allows us to descend this map from G to SpecA.

The claim that the forgetful maps from Rep⇤,d
R and the presentation maps commute with

the equivalences we have drawn follows from checking that the universal framed representa-

tion over Rep⇤,d
R induces a map to Repd

R (resp. Rep
d

R) compatible with the universal object

on the quotient stack via the correspondence that we have written out above. ⇤

1.4.2. Mapping Algebraic Stacks of Representations to the Moduli Scheme

of Pseudorepresentations. Let X be an S-scheme. Having defined these moduli spaces

of representations of the OS-algebra R, we know that the association of an X-valued repre-

sentation of R, that is, the data

(⇢ : R⌦O
S

OX �!Md(OX)) 2 Rep⇤,d
R (X)

to an X-valued pseudorepresentation by taking the determinant (see Theorem 1.1.7.4(6) and

Remark 1.1.7.6)

R⌦O
S

OX
⇢�!Md(OX)

det�! OX

defines a morphism of S-schemes

(1.4.2.1)  ⇤ : Rep⇤,d
R �! PsRd

R.

Think “ ” for pseudorepresentation.

We will now show that there is also a natural pseudorepresentation associated to objects

of Repd
R(X) and Rep

d

R(X) that is constant across isomorphism classes in the groupoid, so

that there are morphisms of algebraic stacks

 : Repd
R ! PsRd

R,  ̄ : Rep
d

R ! PsRd
R
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which commute with the canonical maps (1.4.1.2). Then we will have a commutative diagram

(1.4.2.2) Rep⇤,d
R

(1.4.1.2)

//

 ⇤

))

Repd
R

(1.4.1.2)

//

 

""

Rep
d

R

¯ 
✏✏

PsRd
R

All that we need to do is construct the vertical arrow  ̄, sending, for X an S-scheme, an

Azumaya OX-algebra-valued representation R ⌦O
S

OX ! E to an OX-valued pseudorepre-

sentation. We will achieve this using the reduced norm map out of any Azumaya algebra,

and indeed, the rest of the characteristic polynomial coe�cients. We construct these coe�-

cient functions as follows. Each coe�cient of the characteristic polynomial defines a regular

function Md ! A1 which is invariant under the adjoint action of PGLd. Each Azumaya

algebra E is a form of Md twisted by this action (cf. [Gro68, Corollary 5.11]); therefore, the

characteristic polynomial function descends from E⌦O
X

OU
⇠= Md(OU) to E over OX [Gro68,

5.13].

Now there are at least two perspectives we could take on the pseudorepresentation asso-

ciated to an object ⇢ : R⌦O
S

OS ! E of Rep
d

R(X). We can compose this representation with

the reduced norm, which we continue to write as “det” as it is equal to det étale-locally:

R⌦O
S

OS
⇢�! E det�! OX

is compatible with base change, making a pseudorepresentation. Alternatively, as PsRd
R is a

scheme, it is a sheaf on the étale site S
`

Et

, so that we can choose an étale cover U of X and

descend the pseudorepresentation

R⌦O
S

OU
⇢⌦O

U�! E ⌦O
X

OU
⇠= Md(OU)

det�! OU

to a pseudorepresentation over OX .

In any case, we have completed the construction of the diagram (1.4.2.2).
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1.4.3. Representations Factor through the Universal Cayley-Hamilton Alge-

bra. In this paragraph, we will show that our basic assumptions – that R is a finitely gen-

erated algebra over an a�ne Noetherian base – are su�cient to show that the d-dimensional

universal representation of R factors through an algebra finite over its center. This is a con-

sequence of the theorem below, which shows that any representation of R factors through

the universal d-dimensional Cayley-Hamilton representation associated to R,

⇢u : R⌦A �
d
A(R)ab �! E(R, d)

Recall the definition of Cayley-Hamilton representations from §1.2.4. In particular, E(R, d)

is a �d
A(R)ab-algebra, defined to be (R⌦A �d

A(R)ab)/CH(Du).

Theorem 1.4.3.1. Any representation in Rep⇤,d
R (B) (resp. Repd

R(B), resp. Rep
d

R(B)) of

R factors uniquely through the universal Cayley-Hamilton representation

⇢u ⌦
�

d

A

(R)

ab B : R⌦A B �! E(R, d)⌦
�

d

A

(R)

ab B.

This factorization induces canonical equivalences of PsRd
R-schemes (resp. algebraic stacks)

Rep⇤,d
R

⇠�! Rep⇤,d
E(R,d),Du|

E

,

Repd
R

⇠�! Repd
E(R,d),Du|

E

,

Rep
d

R
⇠�! Rep

d

E(R,d),Du|
E

,

where the left hand side algebraic stacks are considered to be PsRd
R-stacks through the map

 ⇤ (resp.  , resp.  ̄).

The implicit map �d
A(R)ab ! B arises from the determinant (or reduced norm) of the

representation, along with the representability result Theorem 1.1.7.4.

Remark 1.4.3.2. While the theorem has an especially nice consequence when A is as-

sumed to be Noetherian and R is assumed to be finite generated over A, the theorem is true

with or without these finiteness assumptions.
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Proof. Let SpecB be an a�ne PsRd
R-scheme (and therefore naturally an A-algebra) and

write ⇣ : SpecB ! PsRd
R for the structure map, i.e. a choice of a B-valued d-dimensional

pseudorepresentation of R. Any object of the SpecA-groupoids Rep⇤,d
R (B), Repd

R(B) induces

an Azumaya B-algebra-valued representation ⇢ : R ⌦A B ! E 2 Rep
d

R(B) by the forgetful

maps (1.4.1.2). The question of the factorization of a representation does not depend on the

forgotten data, so it will su�ce to prove the result for ⇢. So we choose ⇢ 2 Rep
d

R(B), such

that

SpecB
⇢
//

⇣ ##

Rep
d

R

¯ 
✏✏

PsRd
R

commutes.

Recall Definition 1.2.4.1, which is the notion of a Cayley-Hamilton representation of R.

Following Remark 1.2.4.2, we note that a the data of ⇢ induces a d-dimensional Cayley-

Hamilton representation of R over B, namely

(B, (E , det), ⇢),

where det : E ! B represents the reduced norm map for the Azumaya B-algebra E .

Proposition 1.2.4.3 shows that the universal d-dimensional Cayley-Hamilton represen-

tation (�d
A(R)ab, (E(R, d), Du|E), ⇢u) is initial in the category CHd(R) of Cayley-Hamilton

representations of R. Thus there exists a canonical CHd(R)-morphism

(�d
A(R)ab, (E(R, d), Du|E), ⇢u) �! (B, (E , det), ⇢).

This includes the datum of a A-morphism �d
A(R)ab ! B, corresponding to the pseudorep-

resentation det �⇢ by representability and contravariantly equivalent to ⇣. There is also a

canonical morphism

E(R, d)⌦
�

d

A

(R)

ab B ! E 2 Rep
d

E(R,d),Du|
E

(B),
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factoring ⇢ through the canonical quotient map ⇢u : R⌦A �d
A(R)ab ! E(R, d).

We have therefore exhibited a PsRd
R-morphism Rep

d

R ! Rep
d

E(R,d),Du|
E

.

We can derive a quasi-inverse from ⇢u. Define

⌘ : E(R, d)⌦
�

d

A

(R)

ab B ! E 2 RepE(R,d),Du|
E

(B).

We get from ⌘ a representation of R, ⌘ � (⇢u ⌦ B) 2 Rep
d

R(B). ⇤

When A and R satisfy appropriate finiteness conditions, we know that the universal

Cayley-Hamilton algebra, the �d
A(R)ab-algebra E(R, d), is finite as a �d

A(R) and is a Noether-

ian ring. Therefore we may show that the representation theory of a finitely generated algebra

over a commutative Noetherian ring reduces to the theory of Noetherian (non-commutative)

rings that are finite over their Noetherian center.

Corollary 1.4.3.3. Fix a positive integer d. If A is Noetherian and R is finitely gener-

ated as an A-algebra, all of the d-dimensional representations of R factor canonically through

an algebra which is finite as a module over its center and Noetherian, namely, each repre-

sentation factors uniquely through

⇢u : R⌦A �
d
A(R)ab �! E(R, d).

Proof. This follows directly from Theorem 1.4.3.1 along with Corollary 1.2.2.10.

We recapitulate Theorem 1.4.3.1 for clarity. A B-valued d-dimensional representation

of R amounts to some map ⇢ : R ⌦A B ! E where E is a rank d2 B-Azumaya algebra,

possibly with some extra data that we can discard. The induced pseudorepresentation  ̄(⇢)

induces a map �d
A(R)ab ! B by the representability of PsRd

R. This gives us the B-valued

representation of R⌦A�d
A(R)ab. Then Theorem 1.4.3.1 shows that this representation factors

through ⇢u ⌦
�

d

A

(R)

ab B.

The rest of the statements follow directly from Corollary 1.2.2.10. Since E(R, d) is

an �d
A(R)ab-algebra, the center of E(R, d) contains the image of �d

A(R)ab in E(R, d), and

E(R, d) is finite as a �d
A(R)ab-module, it must also be module-finite over its center. As
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noted in Corollary 1.2.2.10, these facts along with the Noetherianness of A imply that R is

Noetherian as well. ⇤

Remark 1.4.3.4. We could prove a version of Corollary 1.4.3.3 with A being a field and

demanding that a base pseudorepresentation D : R ! A be fixed. Then the functor of all

representations lying over this pseudorepresentation via  would factor through the Cayley-

Hamilton quotient R/CH(D) of R relative to D, and Theorem 1.3.3.2 gives conditions for

this quotient to be finite dimensional. We will use these ideas later, extending Corollary

1.4.3.3 to the case that R is a profinite algebra satisfying an appropriate finiteness condition

(see Theorem 3.2.3.2).

1.4.4. Representations of Groups into A�ne Group Schemes. In this paragraph

we restrict our attention to representations of group algebras as opposed to general asso-

ciative algebras, and then generalize this case to representations of a group valued in an

arbitrary group scheme.

Let � be a finitely generated group. Then R = OS[�] is a finitely generated quasi-

coherent OS-algebra, and the formalism of the above can be repeated. We leave the reader

to verify the following basic equivalences, which amount to saying for a ring A that A-

valued d-dimensional representations ⇢ : � ! GLd(A) are equivalent to homomorphisms

A[�]!Md(A).

Proposition 1.4.4.1. Let R = OS[�] and let X represent an S-scheme. Then

(1) Rep⇤,d
R is naturally equivalent to the functor

X 7! {� �! GLd(X)}.

(2) Repd
R is equivalent to the S-groupoid with objects over X being

{V/X a rank d vector bundle, � �! AutO
X

(V )(X)}.

and morphisms being isomorphisms of these data.
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(3) Rep
d

R is naturally equivalent to the S-groupoid with objects over X being

{H/X an inner form of GLd,� �! H(X)}.

and morphisms being isomorphisms of these data.

Proof. Omitted. ⇤

We also might be interested in representations of � that fix certain tensors, for example,

representations valued in Spd or SOd. We will simply let G be an arbitrary finite type flat

a�ne S-group scheme and consider the moduli of representations of � into G.

Definition 1.4.4.2. For an abstract group � and a finite type flat a�ne S-group scheme

G, we define the following functors and S-groupoids.

(1) Let Rep⇤,G
�

denote the functor on S-schemes X

X 7! {homomorphisms � �! G(X).

(2) Define the S-groupoid RepG
d by

obRepG
�

(X) = {G a right G-torsor over X,

� �! AutGX(G)(X)}.

Here AutGX(G) is the X-group scheme of automorphisms of G, where an automor-

phism of G over an X-scheme Y is an endomorphism of the Y -scheme G⇥X Y which

is equivariant for the right action of G⇥S Y .

(3) Define the S-groupoid Rep
G

d by

obRep
G

�

(X) = {an inner form H of G over X,

� �! H(X)}.

We observe that there are natural maps

(1.4.4.3) Rep⇤,G
�

�! RepG
�

�! Rep
G

�

.
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To construct the first map, choose a trivial G-torsor G over S so that

(1.4.4.4) AutGS (G)
⇠�! G,

where the isomorphism follows from the fact that the maps G ! G which are equivariant

for the right action of G on itself are precisely the left translations of G on itself. Then the

first map is given by sending (⇢ : �! G(X)) 2 Rep⇤,G
�

(X) to the composition

� �! G(X)
⇠�! AutGS (G)(X).

The second map is given by forgetting the G-torsor G over X inducing the inner form

H := AutGX(G)(X), where we see that this is an inner form by the isomorphism, for a trivial

G-torsor.

Theorem 1.4.4.5. Let �, G be as above. Then the functor Rep⇤,G
d is representable by an

a�ne finite type S-scheme.

Proof. Choose a set of generators �
1

, . . . , �n for �. Then we have a morphism of functors

Rep⇤,G
�

�! Gn

⇢ 7! (⇢(r
1

), ⇢(r
2

), . . . , ⇢(rn)).

Any word w on the n letters �
1

, . . . , �n induces a map

fw : Gn �! G

(g
1

, . . . , gn) 7! w(g
1

, . . . , gn).

given by substituting gi for �i. We observe that Gn represents RepG
F
n

, where Fn is the

free group on n letters. A representation of Fn valued in A corresponding to a morphism

p : SpecA ! Gn induces a representation of � if and only if, for every word w in the

letters (�i) such that w = id 2 �, fw � p ⇠= idG ⇥S SpecA, where idG is the identity section

idG : S ! G of the S-group scheme G. Therefore Rep⇤,G
�

is precisely the intersection over
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words w such that w = id 2 � of the closed subschemes Gw of Gn given by the fiber product

Gw //

✏✏

Gn

f
w

✏✏

S
id

G

// G.

As S is Noetherian and G is finite type over S, so is Gw Noetherian and finite type over

S. ⇤

Just as GLd (or PGLd) acts on group representations � ! GLd via the adjoint action,

so does the adjoint group of G, namely G/Z(G), act on itself by the adjoint action. This

gives an action of G and PG := G/Z(G) on Rep⇤,G
�

. Also, like before, this is a natural

notion of equivalence for the points of Rep⇤,G
�

, but the functor of equivalence classes is not

representable. The following quotient stacks retain the equivariant geometry of Rep⇤,G
�

, and

are equivalent to the stacks of representations defined above.

Theorem 1.4.4.6. The groupoids RepG
�

and Rep
G

�

are equivalent to algebraic stacks, in

particular the quotient algebraic stacks

RepG
�

⇠= [Rep⇤,G
�

/G], Rep
G

�

⇠= [Rep⇤,G
�

/PG].

The canonical flat presentation maps of these quotient stacks

Rep⇤,G
�

�! [Rep⇤,G/G] �! [Rep⇤,G
�

/PG]

correspond to the natural maps of groupoids (1.4.4.3).

Proof. Let G1 be a right G-torsor over an S-scheme X, equipped with a group homo-

morphism � ! AutGX(G1)(X), where we use the superscript to denote various copies of the

same G-torsor. We wish to induce from this data a G-equivariant map G2 ! Rep⇤,G
�

. We

know that G2 ! X trivializes G1 via the map

(1.4.4.7)
G⇥X G2

⇠�! G1 ⇥X G2

(g, x) 7! (xg, x),
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so we have a map

(1.4.4.8) � �! AutGG2(G1 ⇥X G2)(G2)
⇠�! GG2(G2)

inducing a map G2 ! Rep⇤,G
�

. Now we wish to show that (1.4.4.8) is G-equivariant for the

standard right action of G on the left and the adjoint action of G on the right.

The right action of g0 2 G on G2 on the right side of (1.4.4.7) sends

(xg, x) 7! (xg, xg0) = (xg0g0�1g, xg0),

and therefore acts on the left side of (1.4.4.7) by

(g, x) 7! (g0�1g, xg0).

so its action on GG2 is the right action by multiplication on the left by the inverse. Now we

need to consider GG2 as a trivial right G-torsor and calculate the induced intertwining action

on the functor of automorphisms of GG2 as a torsor. These automorphisms are precisely the

left translations by g00 2 G, g 7! g00g. The intertwining action of g0 2 G on this map is then

(g, x) 7! (g0g, xg0�1) 7! (g00g0g, xg0�1) 7! (g0�1g00g0�1g, x),

which is the adjoint action, as desired.

For the inverse construction, we start with a G-equivariant map from a G-torsor G2 over

an S-scheme X with a G-equivariant map G2 ! Rep⇤,G
�

. By definition of Rep⇤,G
�

, there

exists a homomorphism

� �! G(G2).

As G2/X is trivialized by G1 ! X, we can fix an isomorphism AutGG1(G2 ⇥X G1) ⇠= GG1 , and

replace G with this expression in the homomorphism above. We leave it as an exercise to

check that the G-equivariance of G2 ! Rep⇤,G
�

is exactly what we need in order to descend

the automorphisms of G2 ⇥X G1 from G1 to X. ⇤
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1.5. Geometric Invariant Theory of Representations

In the previous section, we defined the a�ne, finite type S-scheme Rep⇤,d
R of d-dimensional

representations of the quasi-coherent, finitely generated OS-algebra R. After making note of

the natural equivalence relation of conjugation, we defined the algebraic quotient S-stacks

arising from this action. These algebraic stacks have a clear, explicit description as an S-

groupoid. In this section, we will study an alternative approach, using geometric invariant

theory to find the “best possible” S-scheme to stand in for a quotient of Rep⇤,d
R . Geometric

invariant theory (GIT) was originally developed by Mumford (see e.g. [Mum65]). We will first

describe Alper’s theory of adequate moduli spaces [Alp10], which summarizes and generalizes

the results of geometric invariant theory in a way that will be useful for our purposes, as

describes nicely the relationship between the quotient stack and the GIT quotient scheme

via the canonical projection morphism.

1.5.1. Alper’s Theory of Adequate Moduli Spaces. Say that an a�ne algebraic

group G acts on a finite type a�ne scheme X = SpecA over a field k. The GIT quotient

scheme, which we will denote X//G, is the spectrum of the invariant regular functions on

X. That is, X//G := SpecAG, where AG ⇢ A is the k-subalgebra of A of co-invariants of

the co-action A ! O[G] ⌦k A. We have a natural map X ! X//G. When G is reductive,

Mumford’s theory implies that X//G is finite type over Spec k and the map X ! X//G has

appropriate universal properties of the quotient of a group action. The finite type property

of the quotient is not necessarily true when G is not reductive [Nag60]. Now we turn our

interest toward the relationship of the quotient stack [X/G] to the GIT quotient scheme

through the canonical morphism � : [X/G]! X//G. We write X := [X/G] for short.

As Alper notes [Alp10, p. 2], � can be checked to have the special properties

(1) For any surjection of quasi-coherent OX -algebras A ! B and section t 2 �(X ,B),

there exists an integer N > 0 and a section s 2 �(X ,A) such that s 7! tN .

(2) AG ! �(OX ) is an isomorphism.
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Slight extension of these properties to apply locally on non-a�ne spaces give the definitional

conditions for � to be an adequate moduli space. As Alper puts it, “it turns out that

properties (1) and (2) capture the stack-intrinsic properties of such GIT quotient stacks

[X/G] and that these properties alone su�ce to show that the quotient X//G inherits nice

geometric properties” [Alp10, p. 2].

Definition 1.5.1.1 ([Alp10]). A quasi-compact and quasi-separated morphism � : X !

Y from an algebraic stack to an algebraic space is an adequate moduli space if the following

two properties are satisfied:

(1) For every surjection of quasi-coherentOX -algebrasA ⇣ B and every étale morphism

p : U = SpecA ! Y and section t 2 �(U, p⇤�⇤B) there exists N > 0 and a section

s 2 �(U, p⇤�⇤A) such that s 7! tN , and

(2) OY ! �⇤OX is an isomorphism.

The first property is called “adequately a�ne,” and indeed, any quasi-compact, quasi-

separated map of algebraic spaces that is adequately a�ne is a�ne [Alp10, Theorem 4.3.1],

generalizing Serre’s criterion for a�neness (which is the same condition with N = 1). In

sum, we require the following notions of adequacy.

Definition/Lemma 1.5.1.2. Let A! B be a homomorphism of rings. Let X ! Y be

a morphism of algebraic spaces.

(1) We call A ! B adequate if for all b 2 B, there exists some N > 0 and a 2 A such

that a 7! bN .

(2) We call A ! B universally adequate if for all A-algebras A0, A0 ! A0 ⌦A B is

adequate.

(3) We call X ! Y an adequate homeomorphism if its is an integral, universal homeo-

morphism which is a local isomorphism at all points with a residue field of charac-

teristic zero. In particular, SpecB ! SpecA is an adequate homeomorphism if and

only if

(a) ker(A! B) is locally nilpotent (i.e. every element is nilpotent),
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(b) ker(A! B)⌦Q = 0, and

(c) A! B is universally adequate.

Proof. The “if and only if” statement is [Alp10, Proposition 3.3.5(2)]. ⇤

We will be interested in adequate moduli spaces that arise from the conventional GIT

setting, where a reductive group scheme acts on a scheme.

Example 1.5.1.3 ([Alp10, Theorem 9.1.4]). Let S be an a�ne scheme and letX = SpecA

be an a�ne S-scheme. Let G be a reductive group S-scheme with an action on X. Then

� : [X/G] �! SpecAG

is an adequate moduli space.

Here is Alper’s main theorem on adequate moduli spaces.

Theorem 1.5.1.4 ([Alp10, Main Theorem]). Let � : X ! Y be an adequate moduli space.

Then

(1) � is surjective, universally closed, and universally submersive.

(2) Two geometric points x
1

, x
2

2 X (k̄) are identified in Y if and only if their closures

{x
1

} and {x
2

} in X ⇥Z k̄ intersect.

(3) If Y 0 ! Y is any morphism of algebraic spaces, then X ⇥Y Y 0 ! Y 0 factors as

an adequate moduli spaces X ⇥Y Y 0 ! eY followed by an adequate homeomorphismeY ! Y 0.

(4) Suppose X is finite type over a Noetherian scheme S. Then Y is finite type over S

and for every coherent OX -module F , �⇤F is coherent.

(5) � is universal for maps from X to algebraic spaces which are either locally separated

or Zariski-locally have a�ne diagonal.

Remark 1.5.1.5. We note that adequate moduli spaces � : X ! Y share particular

similarities with both a�ne morphisms of schemes and proper morphisms of schemes. Indeed,

an adequate moduli space is adequately a�ne (part (1) of Definition 1.5.1.1), and as we noted
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above, a quasi-compact, quasi-separated morphism of algebraic spaces is adequately a�ne if

and only if it is a�ne. On the other hand, � is universally closed and �⇤ preserves coherent

sheaves, which are characteristics of proper morphisms. Since a morphism of schemes that is

both a�ne and proper is finite, we expect � to behave somewhat like a finite morphism and

moreover, by part (2) of the Definition 1.5.1.1, like an isomorphism! The obstruction to being

an isomorphism is the lack of representability and the accompanying lack of separatedness

(fact: a quotient stack of a separated scheme is separated if and only if all stabilizers are

finite). This “isomorphism up to lack of representability” property is encapsulated more

precisely in part (5) of the theorem (1.5.1.4).

Remark 1.5.1.6. One important notion from geometric invariant theory that will be used

in the sequel is the following two facts about orbits (of geometric points) of the action of a

reductive group on a scheme. Working over an algebraically closed field, let a reductive group

G act on an variety X, which for simplicity we assume to be a�ne. Because X = SpecA

is a�ne, every orbit is semistable. The standard fact from geometric invariant theory is

that every semistable orbit contains a unique closed semistable orbit (one can get this by

combining Example 1.5.1.3 and part (2) of the theorem above). Now, obviously an invariant

regular function on X must remain constant along an orbit. Moreover, it must remain

constant along an orbit’s closure, since regular functions are “continuous.” This means that

invariant regular functions cannot distinguish orbits whose closures overlap! It turns out that

the geometric points of X//G := SpecAG are in bijective correspondence with the orbits of

G in X modulo the equivalence relation of overlapping closure. This is what part (5) of

Theorem 1.5.1.4 expresses.

1.5.2. Geometric Invariant Theory on Rep⇤. Example 1.5.1.3 shows that in the

classical setting of geometric invariant theory, where a reductive group G acts on an a�ne

schemeX, the resulting morphism [X/G]! X//G is an adequate moduli space. By Theorem

1.4.1.4, the algebraic stacks Repd
R (resp. Rep

d

R) are quotient stacks for the adjoint action of

GLd (resp. PGLd) on the finite type a�ne S-scheme Rep⇤,d
R . Therefore, as Rep⇤,d

R is an a�ne
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scheme and Rep⇤,d
R //GLd

⇠= Rep⇤,d
R //PGLd, each of the morphisms

(1.5.2.1)
� : Repd

R �! Rep⇤,d
R //PGLd,

�̄ : Rep
d

R �! Rep⇤,d
R //PGLd

are adequate moduli spaces. Therefore by the universality of the GIT quotient scheme

for maps to separated schemes (Theorem 1.5.1.4(5)) we can canonically factor the diagram

(1.4.2.2) to get a diagram

(1.5.2.2) Rep⇤,d
R

//

 ⇤

##

�⇤

))

Repd
R

//  

⌅⌅

�

##

Rep
d

R

¯ 

⌃⌃

¯�

✏✏

GIT

⌫

✏✏

PsRd
R

where GIT stands in for the GIT quotient scheme Rep⇤,d
R //PGLd. To put these ideas in

words, the maps  ⇤, ,  ̄ of (1.4.2.2) factor uniquely through the GIT quotient.

Remark 1.5.2.3. One shortcoming of the GIT quotient is that despite the concrete

moduli problem that Rep⇤,d
R and the other moduli stacks solve, this does not lend us a

complete description of the GIT quotient in terms of a “functor of points.” Its one universal

property is that of Theorem 1.5.1.4(5), but this characterizes morphisms out of it instead

of its functor of points. However, we do know the “functor of geometric points” of the GIT

quotient, following Remark 1.5.1.6: geometric points of a GIT quotient of an a�ne scheme

correspond to closed orbits of geometric points. In the next paragraph, we will discover what

these closed orbits in Rep⇤,d
R are in terms of its moduli problem. But we emphasize that

this is a property of Rep⇤,d
R //PGLd and not a characterization, since the geometric points

of a scheme do not characterize it. For another, related shortcoming of GIT quotients, see

Remark 1.5.4.4.
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As noted in the introduction, one of the main ideas behind pseudorepresentations is to

serve as a concrete (i.e. a moduli problem) replacement for the GIT quotient Rep⇤,d
R //PGLd.

We will therefore be very interested in the map

(1.5.2.4) ⌫ : Rep⇤,d
R //PGLd �! PsRd

R,

which we expect to be nearly an isomorphism (see Theorem 1.5.4.2).

1.5.3. Work of Kraft, Richardson, et al. on Orbits of the Adjoint Action on

Representations. In this paragraph we describe the geometric points of the GIT quo-

tient scheme Rep⇤,d
R //PGLd of the adjoint action of PGLd on Rep⇤,d

R . As we noted in

Remark 1.5.1.6 following Theorem 1.5.1.4(2), these geometric points correspond naturally

and bijectively to closed orbits in Rep⇤,d
R , or, equivalently, closed geometric points in RepdR

(resp. Rep
d

R). So what are the closed geometric points in Repd
R?

Kraft [Kra82] answered this question, proving the following

Theorem 1.5.3.1 ([Kra82, §II.4.5, Proposition]). As usual, let R be a finitely generated

quasi-coherent OS-algebra where S is an a�ne Noetherian scheme. For any algebraically

closed S-field k̄, the following equivalent statements are true.

(1) The closed orbits of PGLd(k̄) in Rep⇤,d
R (k̄) are precisely the orbits of semisimple

d-dimensional representations of R⌦O
S

k̄.

(2) The closed geometric points of Repd
R (resp. Rep

d

R) are in natural bijective corre-

spondence with isomorphism classes of semisimple d-dimensional representations of

R⌦O
S

k̄.

(3) The geometric points of the GIT quotient a�ne scheme Rep⇤,d
R //PGLd are in natural

bijective correspondence with the semisimple d-dimensional representations of R⌦O
S

k̄.

This result uses the Hilbert-Mumford criterion.

Remark 1.5.3.2. This theorem implies that the canonical map ⌫ : Rep⇤,d
R //PGLd �!

PsRd
R of (1.5.2.4) induces a bijection on geometric points! We will take up this point in
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the following paragraph, spending this paragraph on the proof of Theorem 1.5.3.1 and its

analogue Theorem 1.5.3.7, which addresses Rep⇤,G
�

in place of Rep⇤,d
R .

Proof. Part (1) is due to Kraft [Kra82, §II.4.5, Proposition]. The equivalence of (1)

with (2) and (3) follows from Remark 1.5.1.6. ⇤

Richardson [Ric88] answered this question in the case that R is a group algebra; in fact,

his proof addresses representations of a finitely generated group � into a reductive group G

(see the setup for these representation moduli schemes/stacks in §1.4.4), with G = GLd as

a special case. The techniques of his proof were improved by several people, with notable

contributions (for our purposes) of Serre [Ser05] (following [Ser98, Part II]) and Bate-Martin-

Röhrle [BMR05]. These are the results that we now overview. They can be summarized in

brief by saying that the closed orbits of the adjoint action ofG on Rep⇤,G
�

over an algebraically

closed field (or, equivalently, the closed geometric points in RepG
�

or Rep
G

�

) are in natural

bijective correspondence with “semisimple” representations. Of course, we must say what

semisimple means in G.

We work over an algebraically closed field k̄.

Definition 1.5.3.3 ([Ser05]). A subgroup H ⇢ G(k̄) is called G-completely reducible

provided that whenever H is contained in some parabolic subgroup P of G, it is contained

in a Levi subgroup of P .

This generalizes the familiar case from GLd: if H ⇢ GL(V ), then V is a semisimple

H-module if and only if H is GL(V )-completely reducible. By the same token, we give a

notion of semisimplicity for a reductive group-valued homomorphism.

Definition 1.5.3.4. Let G be a reductive group over an algebraically closed field k̄, and

let � be a group. We say that a homomorphism ⇢ : � ! G(k̄) is semisimple if ⇢(G) is

G-completely reducible.

One would hope that a result analogous to Theorem 1.5.3.1 can be proved with G in

place of GLd. The basic problem is that in positive characteristic, a reductive subgroup of a
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reductive group may not be semisimple. Richardson proved a result to this e↵ect, overcoming

problems in positive characteristic, although it was originally proved with the notion of a

strongly reductive subgroup in place of a completely reducible subgroup.

Definition 1.5.3.5 ([Ric88, Definition 16.1]). Let G be a reductive group over an al-

gebraically closed field. Let H be a closed subgroup of G and let S be a maximal torus of

CG(H), the centralizer in G of H. We call H a strongly reductive subgroup of G provided

that H is not contained in any proper parabolic subgroup of CG(S).

Richardson’s definition is set up in order to apply geometric invariant theory – in partic-

ular, the Hilbert-Mumford numerical criterion – to show that the closed orbits of the adjoint

action on G (or PG) on Rep⇤,G
�

correspond to strongly reductive subgroups. Here, the sub-

group in question is the closure of the image of the representation. It was more recently

proved that strong reductivity is the same as complete reducibility.

Theorem 1.5.3.6 ([BMR05, Theorem 3.1]). Let G be a reductive algebraic group over an

algebraically closed field k̄, and let H be a closed algebraic subgroup. Then H is G-completely

reducible if and only if H is strongly reductive in G.

From this, the desired result follows.

Theorem 1.5.3.7. As usual, let � be a finitely generated group and let G be a reductive

S-group scheme. For any algebraically closed S-field k̄, the following equivalent statements

are true.

(1) The closed orbits of G(k̄) (resp. PG(k̄)) in Rep⇤,G
�

(k̄) are precisely the orbits of

semisimple representations �! G(k̄).

(2) The closed geometric points of RepG
�

(resp. Rep
G

�

) are in natural bijective correspon-

dence with isomorphism classes of semisimple representations �! G(k̄).

(3) The geometric points of the GIT quotient a�ne scheme Rep⇤,G
�

//PG are in natural

bijective correspondence with semisimple representations �! G(k̄).
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Proof. Richardson proved that the n-tuples of geometric points of G whose orbit under

the adjoint action of G or PG is closed are precisely those n-tuples whose generated subgroup

of G is strongly reductive [Ric88, Theorem 16.4]. This is equivalent to statement (1) by

Theorem 1.5.3.6. The equivalence of (1) with (2) and (3) is clearly, in light of Remark

1.5.1.6. ⇤

1.5.4. The GIT quotient and PsRd
R are Almost Isomorphic. In this paragraph,

we will show that the canonical map ⌫ : Rep⇤,d
R //PGLd ! PsRd

R is a finite universal home-

omorphism. Another name for finite universal homeomorphisms is “almost isomorphisms,”

so we will be able to say that the two schemes are almost isomorphic. This reduces the

question of the di↵erence between the GIT quotient and PsRd
R to a local question; will will

take up this question locally in Chapter 2.

From the previous paragraph, we know that the geometric points of the GIT quotient by

the adjoint action Rep⇤,d
R //PGLd are in natural bijective correspondence with isomorphism

classes of semisimple representations of R. This naturality of this bijection refers to the

canonical map � : Repd
R ! Rep⇤,d

R //PGLd (resp. �̄ : Repd
R ! Rep⇤,d

R //PGLd) of (1.5.2.1), as

each geometric fiber of � (resp. �̄) has a unique closed geometric point (cf. Remark 1.5.1.6)

corresponding to a semisimple representation.

The map  : Repd
R ! PsRd

R (resp.  ̄ : Rep
d

R ! PsRd
R) has a similar property: by

Theorem 1.3.1.1, the geometric points of PsRd
R are in natural bijective correspondence with

isomorphism classes of semisimple representations, meaning that there is a unique semisimple

point in each geometric fiber of  (resp.  ̄). As  (resp.  ̄) factors uniquely through ⌫ :

Repd
R//PGLd in (1.5.2.2), ⌫ is an isomorphism on geometric points.

From this we know that ⌫ is finite type, radicial, and surjective. We recall this and a few

other useful basic definitions and properties.

Definition 1.5.4.1 ([Gro60, Definition 3.5.4]). Let f : X ! Y be a morphism of

schemes.
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(1) We call f radicial or, equivalently, universally injective, if for all fields k, the induced

map of sets X(k)! Y (k) is injective. As remarked in [Gro60, §3.5.5], it su�ces to

verify this property on algebraically closed fields.

(2) We call f a universal homeomorphism if after any base change by Y 0 ! Y , fY 0 is a

homeomorphism. By [Gro67, Corollary 18.12.11], f is a universal homeomorphism

if and only if it is integral, radicial, and surjective.

(3) We call f an almost isomorphism if f is a finite universal homeomorphism, or,

equivalently, if f is a finite type universal homeomorphism.

To verify that ⌫ is a universal homeomorphism, it remains to show that it is integral, or,

equivalently, finite. This is what we show in the following

Theorem 1.5.4.2. Let S be an a�ne Noetherian scheme, and let R be a quasi-coherent

finitely generated OS-algebra. The map ⌫ : Rep⇤,d
R //PGLd ! PsRd

R induced by  or  ̄ is a

finite universal homeomorphism.

Remark 1.5.4.3. We must remark that there are well known facts that can be im-

mediately applied to improve this theorem. Indeed, Chenevier has generalized in [Che11,

Theorem 2.22(i)] (which we record below in Theorem 2.1.3.3) a result of Nyssen [Nys96] and

Rouquier [Rou96], showing that deforming an absolutely irreducible pseudorepresentation

(recall Defintiion/Lemma 1.3.4.1) is equivalent to deforming the associated absolutely irre-

ducible representation. This shows that ⌫ is an isomorphism over this locus; this is already

visible in the study of the locus that we already did in §1.3.4. However, we are deferring

this local study of pseudorepresentations to Chapter 2. These results on absolutely irre-

ducible pseudorepresentations will be discussed in §2.1.3. The full extent of what we prove,

which extends the result of Chenevier to the multiplicity free case, may be found in Theorem

2.3.3.7.

We thank Brian Conrad for comments leading to this remark.

Remark 1.5.4.4. Let us remark on the basic di�culty in making Theorem 1.5.4.2 more

precise than it currently is. That is, why is ⌫ hard to control? One major issue is that
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GIT quotients are not stable under base change. For example, if one could prove that ⌫ had

geometrically reduced fibers, then by [Gro67, Corollaire 18.12.6], ⌫ is a closed immersion.

Therefore we might take a geometric fiber of ⌫ and  at a point D̄ 2 PsRd
R(k̄),

Rep⇤,d
R ⇥

PsR

d

R

Spec k̄

✏✏

// Rep⇤,d
R

✏✏

Rep
d

R ⇥PsR

d

R

Spec k̄

✏✏

// Rep
d

R

✏✏

Rep⇤,d
R //PGLd ⇥

PsR

d

R

Spec k̄ //

✏✏

Rep⇤,d
R //PGLd

✏✏

Spec k̄ // PsRd
R.

Then we would want to draw conclusions about this fiber of ⌫ by studying the fiber of  or

 ⇤. We could study the invariants of the action of PGLd on the upper left entry. However,

non-flat base change of an adequate moduli space is no longer an adequate moduli space,

but may di↵er from an adequate moduli space by an adequate homeomorphism [Alp10,

Proposition 5.2.9(3)]. Adequate homeomorphisms are not necessarily reduced, so we are

unable to conclude anything about the fiber of ⌫ over D̄ by considering the fiber of  or

 ⇤ over D̄. In other words, the GIT quotient is not stable under base change, and the base

change of a GIT quotient may di↵er from the GIT quotient of a base change by an adequate

homeomorphism.

Remark 1.5.4.5. We expect that it follows from Procesi’s solution of the “embedding

problem” for Cayley-Hamilton algebras9 in characteristic zero [Pro87] that we can show that

⌫ is not only an finite universal homeomorphism, but an adequate homeomorphism. The

additional content required is that ⌫ is an isomorphism in characteristic zero.

9The embedding problem for Cayley-Hamilton algebras (R,D) is the problem of finding an embedding ⇢ of
R into a matrix algebra M which is compatible with the native pseudorepresentation D, i.e. ⇢ induces a
morphism in CHd(R) over D, i.e. D = det �⇢.
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Proof. As noted above, Kraft’s result (Theorem 1.5.3.1) implies that ⌫ is surjective and

radicial. It is also finite type, since the source and target of ⌫ are each finite type over the

Noetherian scheme S by Theorems 1.5.1.4(4) and 1.1.10.15, respectively. Then by [Gro67,

Corollary 18.12.11], if in addition ⌫ is finite, then ⌫ is a finite universal homeomorphism.

We will actually check that ⌫ is universally closed in order to show that it is finite; this will

su�ce because ⌫ is clearly a�ne.

To show that ⌫ is proper, we verify the valuative criterion for universal closedness. Using

our knowledge that this morphism is separated and finite type between Noetherian schemes,

[LMB00, Theorem 7.10] (see also [Gro61a, Remark 7.3.9(i)]) allows us to verify the following

valuative criterion on spectra of complete discrete valuation rings B with algebraically closed

residue fields: for every diagram

SpecK //

✏✏

Rep⇤,d
R //PGLd

⌫
✏✏

SpecB // PsRd
R

where K is the fraction field of B, there exists a field extension SpecK 0 ! SpecK which is

the fraction field of a valuation ring B0 with a dominant map SpecB0 ! SpecB such that

there exists a section

(1.5.4.6) SpecK 0 //

✏✏

SpecK //

✏✏

Rep⇤,d
R //PGLd

⌫
✏✏

SpecB0 //

44

SpecB // PsRd
R

In fact, we will achieve this where K 0/K is a finite field extension and B0 is the integral

closure of B in K 0.

Let D denote the pseudorepresentation of R overK associated to theK-point of PsRd
R in-

duced by the B-point induced above, and let DB denote the underlying B-valued pseudorep-

resentation, so that D = DB ⌦B K. Corollary 1.3.2.4(1) and its proof gives us a semisimple

representation ⇢ : R ⌦O
S

K 0 ! Md(K 0) in Rep⇤,d
R (K 0) where K 0/K is a finite extension of
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fields, and whose induced pseudorepresentation DK0 := det �⇢ appears as the base change

from K to K 0 of the pseudorepresentation D. Sending the K 0-point ⇢ 2 Repd,⇤
R (K 0) via �⇤

to an K 0-point of Repd,⇤
R //PGLd, this K 0-point lies over the K-point D of Repd,⇤

R //PGLd

given in the data of the valuative criterion above. Taking B0 to be the integral closure of B

in K 0, we now have all of the maps of (1.5.4.6) except the desired diagonal section.

We claim that ⇢ is conjugate to the tensor by ⌦B0K 0 of a representation ⇢B0 : R⌦O
S

B0 !

EndB0(L0), where L0 is a rank d projective B0-module. The projection of this B0-point of

Repd
R to Rep⇤,d

R //PGLd via � is the desired section in (1.5.4.6). Therefore, proving the claim

will complete the proof of the theorem.

To prove the claim, first note that the OS-algebra homomorphism R!Md(K 0) induced

by ⇢ factors through the Cayley-Hamilton algebra R ! (R ⌦O
S

K)/CH(D) by Proposition

1.2.4.3. Moreover, since D is induced by ⌦BK from DB 2 PsRd
R(B), it factors through

R! R⌦O
S

B/CH(DB), i.e. this map lies in the composite

R �! (R⌦O
S

B)/CH(DB) �!Md(K
0).

By Corollary 1.2.2.9, the B-algebra (R⌦O
S

B)/CH(DB) is finite as a B-module.

Choose a d-dimensional K 0-vector space V 0 and choose a basis in order to draw an

isomorphism Md(K 0) ⇠! EndK0(V 0). Also choose a rank d B0-lattice L ⇢ V 0, where B0 is

the integral closure of B in the finite extension K 0/K. Now let L0 be the B0-linear span of

the translates of L by R ⌦O
S

B. Since this is a finite B-module, L0 is a finite projective

B0-submodule of V , which is therefore rank d. Its action of R⌦O
S

B0 induces ⇢ by applying

⌦B0K 0. Now R ⌦O
S

B0 ! EndB0(L0) is an object of Repd
R(B

0) inducing ⇢ 2 Repd
R(K

0),

completing the proof of the claim. ⇤

Here is a nice result of our work: the maps  and  ̄ are adequate moduli spaces up to an

almost isomorphism. Some of the properties of an adequate moduli space still hold despite

this defect.
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Corollary 1.5.4.7. With assumptions as in Theorem 1.5.4.2, the morphisms  and  ̄

have the properties (1), (2), and (4) proved of adequate moduli spaces in Theorem 1.5.1.4,

as well as property (1) defining adequate moduli spaces in Definition 1.5.1.1. Namely,  and

 ̄ are finite type, universally closed, push forward coherent sheaves to coherent sheaves, and

two geometric points in Repd
R(k̄) (resp. Rep

d

R(k̄)) have overlapping closures if and only if

their images under  (resp.  ̄) are isomorphic.

Proof. We have shown that ⌫ : Rep⇤,d
R //PGLd ! PsRd

R is a finite universal homeomor-

phism. Now we apply Theorem 1.5.1.4: because the canonical map � from Repd
R to the GIT

quotient is finite type and has the geometric point closure property, the same is true of the

composition ⌫ � � =  ; because it is universally closed, its composition with the finite and

therefore proper map ⌫ is still universally closed. Finally, since push forwards of coherent

sheaves are coherent under � and under the finite morphism ⌫, the same is true of  . This

all holds for  ̄ on Rep
d

R as well. ⇤
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CHAPTER 2

Local Study of Pseudorepresentations

In Chapter 1, we described moduli spaces of representations and pseudorepresentations

and proved that the maps  ,  ̄ sending algebraic stacks of representations to their associated

pseudorepresentations are very close to adequate moduli spaces. In particular, they are

universally closed. We accomplished this almost entirely through a study of the geometric

points of these moduli spaces, the only additional input being the verification that ⌫ satisfies

the valuative criterion for properness in Theorem 1.5.4.2. However, as we noted in Remark

1.5.4.4, the study of the defect ⌫ of  (resp.  ̄) from being an adequate moduli space is

not visible through the fibers of  (resp.  ̄). The challenge is that the GIT quotient, which

is the base of adequate moduli space, does not admit a good moduli interpretation – only

its geometric points have a satisfying moduli interpretation. However, as remarked at the

beginning of §1.5.4, we have reduced the study of the defect ⌫ to  being an adequate moduli

space to a local question on the base. This is one reason why we will now study the moduli

space of pseudorepresentaitons locally. For example, in §2.3, we make progress in showing

that ⌫ is an isomorphism by adding more linear structure to representations whose induced

pseudorepresentation deforms a fixed multiplicity free psueodrepresentation. In this case, we

will be able to eliminate the defect ⌫. This result is recorded in Theorem 2.3.3.7.

Of course, there are other reasons to study pseudorepresentations locally. One reason

is to study their tangent spaces and deformation theory, which is what we begin with,

following Chenevier [Che11]. Our main result here is Proposition 2.1.2.3. This gives a

representation theoretic condition for the finitude of the dimension of the tangent space to a

field-valued pseudorepresentation. In this, we make an improvement on [Che11, Proposition

2.28] by eliminating the assumption that the characteristic of the field must be larger than
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the dimension or must be 0. This follows from the application of PI ring theory described

in Chapter 1.

The other major goal in this chapter is to identify some projective subschemes of Rep
d

R,

locally on the base PsRd
R of  . To accomplish this fiber-wise is to apply one of the results

of King [Kin94] (Theorem 2.2.1.12 here), which shows that these projective spaces exist

inside geometric fibers of  ̄. Our additional contribution is the deformation of this ample

line bundle to henselian neighborhoods of a point, so that the projective subscheme can be

deformed to complete local neighborhoods (Theorem 2.2.4.1). To this end, our work here is

to carefully identify the ample line bundle implicit in King’s result.

Our motivating case of interest for this local study is the moduli of continuous pseudorep-

resentations and representations of a profinite group or algebra, with a certain finiteness

condition. In this case, the results above apply very well, as the moduli formal scheme of

continuous pseudorepresentations is semi-local (see Corollary 3.1.6.13). Each component is

the formal spectrum of a complete local Noetherian ring! We are preparing the results in

Chapter 2 with their application to profinite representation theory in Chapter 3 in mind.

2.1. Pseudorepresentations over Local Rings

In this section, we will study pseudorepresentations of an algebra R over a commutative

local ring A. In practice, we will often fix a d-dimensional pseudorepresentation

D : R �! A

and draw conclusions about D given some conditions about the data. We will begin with

deformation theory of a field-valued pseudorepresentation and then discuss the tangent space

of the pseudorepresentation functor at such a point. We will conclude with some facts about

Cayley-Hamilton algebras (R,A) over local rings.

2.1.1. Deformation Theory Setup. Our study of the deformations of pseudorepre-

sentations will follow Chenevier [Che11]. As usual, let A be a commutative ring and let R

be an A-algebra. We could consider a closed SpecA-subscheme X ⇢ PsRd
R with its reduced
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structure, and then study the completion of PsRd
R at X. However, our purposes do not

require this generality; in particular, our work in Chapter 1 shows that we can study the

morphism ⌫ locally on the base. Our setting for the study deformations will be a complete

Noetherian local base ring A with residue field FA of characteristic p � 0, along with a given

d-dimensional FA-valued pseudorepresentation of R, denoted

D̄ : R⌦A FA �! FA.

For example, in this setting, A may be the Cohen ring of FA, which we denote by W .

We study deformations of D̄ to the following rings, writing F for FA.

Definition 2.1.1.1. Let AF be the category of Artinian local A-algebras with residue

field F, where morphisms are local A-algebra homomorphisms.

Let ÂF be the category of Noetherian local A-algebras with residue field F, where mor-

phisms are local W -algebra homomorphisms. For B 2 AF we write mB for its maximal

ideal.

The category ÂF includes AF as a full subcategory, and objects in ÂF consist of limits

(filtered projective limits with surjective maps) in AF.

We define the deformation functor PsR
¯D as follows.

Definition 2.1.1.2. With the data p, A,R, D̄, d and F as above, let PsR
¯D be the covari-

ant functor on ÂF associating to each B 2 ob ÂF the set of d-dimensional pseudorepresenta-

tions

D : R⌦A B �! B

such that D ⌦B F �! F ⇠= D̄. We call such deformations of D̄ pseudodeformations.

The representability of this deformation functor in the category ÂF follows immedi-

ately from the representability for the usual pseudorepresentation moduli scheme PsRd
R over

SpecA.
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Proposition 2.1.1.3. Given F, A,R, d, and D̄ as above, let D̄ also denote its associated

F-point of PsRd
R. Then the pseudodeformation functor is representable by the completion B

¯D

of the local ring O
PsR

d

R

, ¯D at its maximal ideal m
¯D, with the universal object Du ⌦

�

d

A

(R)

ab B ¯D.

Proof. By definition of pseudodeformation, any object of PsR
¯D over B 2 Â

¯D corre-

sponds to a map SpecB ! PsRd
R factoring through the natural map SpecB

¯D ! PsRd
R. ⇤

Corollary 2.1.1.4. If R is finitely generated as a A-algebra, B
¯D is Noetherian.

Proof. In this case, PsRd
R is Noetherian and finitely generated over SpecA by Theorem

1.1.10.15. Then since B
¯D is the completion of a localization of a Noetherian ring, PsR

¯D is

Noetherian. ⇤

Since B
¯D is a complete local ring, there are several conditions on B

¯D equivalent to the

Noetherian condition.

Lemma 2.1.1.5. Since B
¯D is a complete local A-algebra and A is a complete Noetherian

local ring, the Cohen structure theorem (see e.g. [MR10, Theorem 3.2.4]) implies that the

following properties are equivalent.

(1) There exists a surjection W [[t
1

, . . . , tn]] ⇣ B
¯D for some n � 0.

(2) There exists a surjection A[[t
1

, . . . , tn]] ⇣ B
¯D for some n � 0.

(3) B
¯D topologically finite type1 as a A-algebra.

(4) B
¯D is Noetherian.

(5) dimF(m ¯D/m
2

¯D
) is finite.

(6) The tangent F-vector space PsR
¯D(F["]/("2)) is finite-dimensional.

This is our motivation to study the tangent space T
¯D := PsR

¯D(F["]/("2)) of PsRd
R at D̄.

We will give a (co)homological condition for the finiteness of the tangent space in the next

paragraph.

1When we say that B is topologically finite type over A, we mean that it is (or admits a surjection from)
the completion of some finite type A-algebra with respect to the powers of some ideal of A.
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2.1.2. Tangent Spaces of the Pseudorepresentation Functor. We now describe

and give a su�cient condition for the finiteness of the tangent space of the pseudorepresen-

tation functor (or pseudodeformation functor) at a point. We follow Chenevier [Che11, 2.24-

2.29] here. We make an improvement on Chenevier’s results, generalizing [Che11, Proposition

2.28] to arbitrary characteristic in Proposition 2.1.2.3; the improvement entirely rests on the

use of the reference [Sam09] (see Theorem 1.2.2.6 and its use in Lemma 1.2.3.1), and we

follow Chenevier’s techniques otherwise.

This study is especially useful in preparation for giving su�cient conditions for the

Noetherianess of a complete local “pseudodeformation ring” of continuous deformations of

a field-valued pseudorepresentation of a profinite algebra (see Theorem 3.1.5.3).

As usual, we have a commutative ring A and an A-algebra R. Let D̄ : R ! A be a

d-dimensional pseudorepresentation. We will write A[✏] for A[✏]/(✏2), i.e. ✏2 = 0. For any

A-module M , we write M [✏] for M ⌦A A[✏].

Definition 2.1.2.1. Let D̄ be a d-dimensional pseudorepresentation D̄ : R ! A. We

call a pseudorepresentation D : R[✏] ! A[✏] a lift of D̄ when D ⌦A[✏] A ⇠= D̄. Through the

canonical identification

Md
A(R,A[✏])

⇠�! PsRd
R[✏](A[✏]),

of Corollary 1.1.3.10, the set of lifts is canonically functorially isomorphic to the set of

multiplicative A-polynomial laws

P : R �! A[✏]

such that they map to D̄ via composition with the A-algebra homomorphism ⇡ = ⇡A :

A[✏]
✏ 7!0�! A. We denote this set of multiplicative polynomial laws by T = T

¯D ⇢Md
A(R,A[✏]),

the tangent space at D̄.

Another way of defining this tangent space is to say that T
¯D := (⇡⇤)�1(D

0

), where

⇡⇤ : HomA�alg(�
d
A(R)ab, A[✏]) �! HomA�alg(�

d
A(R)ab, A)

f 7! ⇡ � f.
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One can check that it has a natural A-module structure.

From now on, in our discussion of lifts of pseudorepresentations, we let A be a field F.

Lemma 2.1.2.2 ([Che11, Lemma 2.26]). Let R be a F-algebra and let D̄ : R ! F be a

d-dimensional pseudorepresentation. Assume that there exists a positive integer N such that

ker(D̄)N ⇢ CH(D̄). Then T ⇢ Pd
F(R/ ker(D̄)2N ,F).

Proof. Let P 2 T
¯D and let D : R[✏] ! F[✏] be the associated pseudorepresentation.

One can check that ker(P ) = ker(D)\R. Therefore want to show that 2N such that satisfies

the relation ker(D̄)2N ✓ ker(D).

Consider the Cayley-Hamilton F[✏]-algebras S := R/CH(D̄) and S[✏], which is canoni-

cally isomorphic to R[✏]/CH(D) by Lemma 1.1.8.6. For r 2 ker(D̄)[✏] ⇢ R[✏], we have by

assumption ⇤i(r) 2 ✏F for all 1  i  d, and therefore sd 2 ✏ · F[s] for all s 2 J [✏] ⇢ S[✏].

Let J := ker(D̄)/CH(D̄) ⇢ S, so J ⇠= J [✏]/✏J [✏]. The assumption ker(D̄)N ⇢ CH(D̄) implies

that (J [✏]/✏J [✏])N = 0, and then J [✏]2N = 0. Consequently, ker(D̄)2N ⇢ CH(D) ⇢ ker(D),

where the latter inclusion is the content of Lemma 1.2.1.1. ⇤

We continue to work with deformations of a fixed d-dimensional pseudorepresentation

D̄ : R! F. Now let us restrict to the case that S := R/ ker(D̄) is finite-dimensional as a F-

vector space. By Theorem 1.3.1.3, this condition will hold when F is perfect, p = char(F) > 0

and [F : Fp] <1, R/F is finitely generated, or d < p. This lemma improves [Che11, Lemmas

2.26].

Proposition 2.1.2.3 (Following [Che11, Proposition 2.28]). Let R,F, D̄ : R ! F, and

assume that S = R/ ker(D̄) is finite-dimensional over F. Then if Ext1R(S, S) is finite-

dimensional over F, where S is treated as a R-module here, then T
¯D is also finite-dimensional

over F.

Compare this statement with Theorem 1.3.3.2; the methods of proof also correspond in

large part.
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Proof. Choose N such that ker(D̄) ⇢ CH(D̄). Such an N exists by Lemma 1.2.3.1(4),

and is bounded by the integers N(d) and N(d, p) of Definition 1.2.2.7.

Now Lemma 1.3.3.1 tells us that

HomR(I/I
2, S) ⇠= HomS(I/I

2, S)

is also finite-dimensional as a F-vector space. Since S is semisimple and the S-module S con-

tains all simple S-modules as submodules, the finiteness of the dimension of HomS(I/I2, S)

implies that I/I2 is finite length as a S-module, and therefore also implies that dimF I/I
2 <

1.

Because there are natural surjections

(I/I2)⌦
n

F ⇣ In/In+1

for any ideal I ⇢ R, this means that R/ ker(D̄)2N is also finite-dimensional over F. Using

Lemma 2.1.2.2, we know that T
¯D ⇢ Pd

F(R/ ker(D̄)2N ,F). Finally, because the finitude of a

general A-module M implies the finitude of �d
A(M) as an A-module for any d � 0, we apply

Theorem 1.1.3.4 to conclude. ⇤

We can apply Proposition 2.1.2.3 to give a criterion depending only on D̄ for the Noethe-

rianness of the complete local deformation ring B
¯D defined in Proposition 2.1.1.3, using the

Noetherianness criteria of Lemma 2.1.1.5. For this statement, we resume the language of

§2.1.1, also setting R̄ := R⌦A FA.

Corollary 2.1.2.4. Let A be a complete Noetherian local ring and let R be an A-algebra.

Fix a d-dimensional pseudorepresentation D̄ : R̄ ! FA such that if we take S̄ := R̄/ ker(D̄)

as an R-module, Ext1R(S, S) is finite-dimensional as a FA-vector space. Then the complete

local pseudodeformation ring B
¯D of Proposition 2.1.1.3 is Noetherian.

Since we will be interested in this primarily in the profinite topological case, we will give

the proof for the profinite case in Theorem 3.1.5.3. A proof in this case would feature the

same techniques without the topological considerations.

134



2.1.3. Cayley-Hamilton Pseudorepresentations over Local Rings. As we have

remarked, a d-dimensional Cayley-Hamilton A-algebra (R,D) shares properties with alge-

bras appearing as subalgebras of d⇥d matrix algebras. For example, each element is integral

of degree d over A, and if A is a field, we have shown that the Jacobson radical is nilpotent

(see Lemma 1.2.3.1 and Corollary 1.2.2.10 for this and other properties of Cayley-Hamilton

algebras). When A is a henselian local ring and the semisimple representation correspond-

ing to the special fiber of D is absolutely irreducible and split over the residue field, this

correspondence with matrix algebras is exact. This is what we describe in this paragraph.

First we require a lemma on the Jacobson radical of Cayley-Hamilton algebras over local

rings. Recall that J(R) denotes the Jacobson radical of the ring R.

Lemma 2.1.3.1 (Following [Che11, Lemma 2.10]). Let A be a local ring with maximal ideal

mA and residue field F = FA. Let R be an A-algebra with a d-dimensional Cayley-Hamilton

pseudorepresentation D : R! A with residual pseudorepresentation D̄ = D ⌦A F.

(1) The kernel of the canonical surjection R ⇣ (R⌦A F)/ ker D̄ is J(R).

(2) If ms
A = 0 for s � 1 an integer, then J(R)N(d)s = 0, where N(d) is the integer of Def-

inition 1.2.2.7, which depends only on d. The possibly lesser integer N(d, charFA)

can be used in place of N(d).

Our use of polynomial identity ring theory improves Chenevier’s result in the case d �

charFA.

Proof. Write I for the two-sided ideal named in statement (1). Let us first show that

I ✓ J(R), which will follow from checking that 1 + I ⇢ R⇥. By Lemma 1.2.3.1(1), it

is equivalent to check that D(1 + I) ⇢ A⇥. But it is clear that D(1 + I) ✓ 1 + mA by

assumption, so we have I ✓ J(R). To show the reverse inclusion, we first observe that

mA · R ✓ I ✓ J(R), so it will su�ce to prove the reverse inclusion with A = FA. Now the

desired inclusion J(R) ✓ I is given by Lemma 1.2.3.1(5).
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Now we assume that ms
A = 0. It is clear that we may replace R by R/mA · R, assume

that A = FA, and show that J(R)N(d) = 0. This is precisely what we get from Lemma

1.2.3.1(4). ⇤

Recall this essential property of henselian rings. The idempotent lifting is what we require

in order to make a comparison with a matrix algebra over all of SpecA, and not just over

the closed point.

Lemma 2.1.3.2 (cf. [BLR90, §2.3, Proposition 4]). Let A be a local ring with residue field

FA. Then A is Henselian if and only if for any finite A-algebra B, the canonical map on

idempotents

Idem(B) �! Idem(B ⌦A FA)

is an isomorphism.

Now we can give the main theorem of this paragraph.

Theorem 2.1.3.3 ([Che11, Theorem 2.22(i)]). Assume that D is Cayley-Hamilton and

that A is a henselian local ring with residue field FA. If D̄ is split and absolutely irreducible,

then there is an A-algebra isomorphism

⇢ : R
⇠�!Md(A)

such that D = det �⇢.

Proof. Omitted. ⇤

Recall the representation theoretic moduli spaces of §1.4. The local result Theorem

2.1.3.3 is enough for us to show that the universal Cayley-Hamilton algebra is globally an

Azumaya algebra when restricted to the absolutely irreducible locus PsIrrdR ⇢ PsRd
R. We

also point out that  ̄ is an isomorphism over this locus, which immediately implies that

the deformation functor of a chosen absolutely irreducible field-valued representation of R

is equivalent to the deformation functor of the representation. This is an improvement of
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Chenevier of the results of Nyssen [Nys96] and Rouquier [Rou96], who showed that deform-

ing an absolutely irreducible pseudocharacter is equivalent to deforming the associated an

absolutely irreducible representation.

Corollary 2.1.3.4 ([Che11, Corollary 2.23]). Let A be a commutative ring and let R

be an A-algebra.

(1) Over the absolutely irreducible locus PsIrrdR ⇢ PsRd
R, the restriction of the universal

Cayley-Hamilton algebra E(R, d) to PsIrrdR is an Azumaya O
PsIrr

d

R

-algebra of rank

d2.

(2) Over PsIrrdR ⇢ PsRd
R,  ̄ and ⌫ are isomorphisms.

(3) For each split point D̄ 2 PsIrrdR, the m
¯D-adic completion of O

PsIrr

d

R

, ¯D is canonically

isomorphic to the deformation ring for the representation

R �!Md((D̄)).

Proof. Chose x 2 PsIrrdR and let B be the strict henselization of O
PsR

d

R

,x. By Lemma

1.1.8.6,

E(R, d)⌦O
PsRd

R

B
⇠�! (R⌦A B)/CH(Du ⌦ A).

Theorem 2.1.3.3 now implies that the right hand side is isomorphic to Md2(B). Hence

E(R, d) ⌦O
PsRd

R

O
PsR

d

R

,x is an Azumaya algebra of rank d2 since O
PsR

d

R

,x ! B is faithfully

flat (cf. [Sta, Lemma 07QM]). Now we observe that E(R, d) is an Azumaya algebra, as the

definition of an Azumaya algebra may be given locally (see Definition 1.4.1.5(1)).

Parts (2) and (3) follow at once, as the Azumaya O
PsIrr

d

R

-algebra defines a section to  ̄

over PsIrrdR. ⇤

Remark 2.1.3.5. This generalizes results previously known for pseudocharacters when

the characteristic is larger than the dimension, e.g. [Nys96, Rou96, Car94]. In particular,
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Carayol [Car94] showed that a deformation of an absolutely irreducible residual representa-

tion is characterized by its trace. Nyssen and Rouquier [Nys96, Rou96] showed the “con-

verse,” that the deformation of a residual pseudocharacter arising as the trace of an absolutely

irreducible representation is realizable as the trace of a deformation of said representation.

We have succeeded in showing that  ̄ is an adequate moduli space over the absolutely

irreducible locus, but this is a trivial case since  ̄ is an isomorphism here. We will prove this

in a nontrivial case in Corollary 2.3.3.9.

2.2. Fibers of  

Recall Theorem 1.4.3.1, where we show that schemes and stacks parameterizing d-

dimensional representations of an algebra R are equivalent to the analogous moduli space for

representations of the universal Cayley-Hamilton algebra E(R, d) over the universal pseu-

dorepresentation of R. This is a particularly useful result in the case that E(R, d) is finite

as a O
PsR

d

R

-module. We have shown that this is true when, for example, A is Noetherian

and R is finitely generated (Corollary 1.4.3.3).

Assuming that E(R, d) is finite, we study of the fibers of  ⇤ (resp.  , resp.  ̄). Fix a

residue field F of PsRd
R and let D̄ denote the associated pseudorepresentation

D̄ = Du ⌦ F : E(R, d)⌦
�

d

A

(R)

ab F �! F.

Recall that by Lemma 1.1.8.6, the formation of the Cayley-Hamilton quotient of R commutes

with base change over PsRd
R. Therefore, when E(R, d) is finite over O

PsR

d

R

, the study of the

fibers of  amounts to the study of representations of a finite-dimensional algebra

E(R, d)⌦
�

d

A

(R)

ab F

over the field F, with the condition that the induced pseudorepresentation of these represen-

tations is precisely D̄.

Consider also the case where R is an algebra over a field F that is not finitely generated,

but where a pseudorepresentation D̄ : R! F satisfies the conditions of Theorem 1.3.3.2, so
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that the associated Cayley-Hamilton algebra E := R/CH(D̄) is finite-dimensional over F.

Then, using the universality of the Cayley-Hamilton algebra (Theorem 1.4.3.1), the repre-

sentations of R inducing D̄ as a determinant amount to the representations of E inducing

D̄|E as a determinant. Once again, we are reduced to the study of the representations of a

finite-dimensional algebra. We will also find ourselves remanded to this case when we study

representations of profinite topological algebras in Chapter 3, provided that an appropriate

finiteness condition is satisfied.

Therefore, for this section we will let E be a finite-dimensional F-algebra with a given

Cayley-Hamilton d-dimensional pseudorepresentation

D̄ : E ! F.

Certainly, this satisfies the conditions of Theorem 1.4.1.3, so that the scheme of framed

representations and the algebraic stacks of representations are finite type SpecF-schemes.

We will study the fiber of the representation spaces of E over D̄, i.e.

Rep⇤,�
¯D

:=  ⇤,�1(D̄) ⇢ Rep⇤,d
E ,

Rep�̄
D :=  �1(D̄) ⇢ Repd

E,

Rep
�
¯D :=  ̄�1(D̄) ⇢ Rep

d

E.

Important point. This condition that a representation lie in the fiber of D̄ is equivalent,

once D̄ is split, to the condition that its Jordan-Hölder factors match those of the semisimple

representation ⇢ss
¯D
associated to ⇢ via Theorem 1.3.1.1. Therefore, Rep�̄

D is a geometric real-

ization of the category (whose morphisms are isomorphisms) of representations of E with a

given semisimplification. Of course, semisimple representations of a finite-dimensional alge-

bra are naturally in bijective correspondence with functions from simple representations to

the non-negative integers. This description is known as a dimension vector. Therefore, once

F is large enough so that E/ ker(D̄) is split, we can speak of F-valued pseudorepresentations

as dimension vectors, and vice-versa. This lange will be particularly natural as we introduce

representations of quivers.
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The main goal of our study is to show that there are projective subspaces of Rep
�
¯D

corresponding to certain notions of (semi)stability, formally analogous to the theory of vector

bundles over a curve. Basically, we are reviewing a result of A. D. King [Kin94]. Let us

begin with a brief summary of his result. We will freely use terminology from §1.3.4.

Given an integer-valued character ✓ : K
0

(RepE(F)) ! Z of the Grothendieck group of

E, he develops a corresponding notion of semi-stability and stability for representations of

E. He then shows that semistability (resp. stability) of a representation ⇢ 2 Rep⇤
¯D ⇢ Rep⇤,d

E

is equivalent to it lying in a semistable (resp. stable) orbit for a certain action of a certain

reductive group and a linearization of Rep⇤
E corresponding to ✓. Then the GIT quotient of the

semistable orbit locus is a projective space which is a coarse moduli space parameterizing ✓-

semistable representations of E up to S-equivalence. The notion of S-equivalence is analogous

to the notion of S-equivalence of vector bundles on curves due to Seshadri [Ses67]. The

equivalence relation is better on the stable locus within the GIT quotient: it is a coarse

moduli space for ✓-stable representations with respect to the usual notion of equivalence

between E-modules.

We will not pursue these generalities and the notion of S-equivalence. Rather, we will

focus on a particular case when we get a projective, fine moduli space out of this GIT

construction. This case is noted by King [Kin94, Remark 5.4]: ✓ may be chosen (relative to

D̄) so that ✓-semistability implies ✓-stability in Rep⇤
¯D, and such that the GIT quotient is a fine

moduli space.2 This will show that there are large projective subschemes of Rep
�
¯D(✓) ⇢ Rep

�
¯D

corresponding to ✓-(semi)stable representations of E.

Remark 2.2.0.6. This observation generalizes and answers a�rmatively a suspicion of

Kisin [Kis09a, Remark 3.2.7] on the existence of projective loci (relative to  ) inside moduli

spaces of representations, and adds many more instances to the cases that Kisin pointed out

(see Corollary 2.2.2.14). Of course, we must wait until Chapter 3 to see that the case of

extensions of continuous representations of a profinite group with finite field coe�cients can

be reduced to the case that we now work with.

2The former condition is the more interesting one.
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In terms of the intrinsic study of the special fiber of  , King’s result is all that we require,

and it would su�ce to quote his result in order to show which families of representations of

E form projective spaces in Rep
�
¯D. However, we are also interested in showing that these

projective sub-moduli-spaces exist locally on the base in PsRd
R, or complete-locally in the

profinite case PsR
¯D ⇢ PsRd

R. Of course, this will follow if we can show that an ample

line bundle for King’s projective space is the specialization of a locally well-defined line

bundle in Rep
d

R to PsRd
R. We will accomplish this over complete local rings, with our work

culminating in Theorem 2.2.4.1. This will take some work, since King’s work uses the fact

that the category of modules for any finite-dimensional algebra is equivalent to the category

of modules for a a quotient algebra of a path algebra for a finite quiver. It is in the category

of representations of quivers that these projective spaces are most naturally constructed,

and our work is to follow the ample line bundle on a space of representations of a quiver

through several equivalences necessary to identify an ample line bundle on a certain space

of representations of E.

Assumption. We assume that F is algebraically closed. This assumption will be in

place only for this section.

Remark 2.2.0.7. This assumption is used to ensure that R/ ker(D̄), the semisimple

algebra associated to the pseudorepresentation, will be split in the sense of Definition 1.3.4.4.

It is also necessary in order to ensure that statements about points of a GIT quotient are

accurate, as GIT only has a good functor of geometric points (cf. Remark 1.5.1.6). The

former issue is more serious, as we will need to find as many idempotents as the dimension

of an algebra in order to draw comparisons with quivers. In many cases, including those

that we will be concerned with for profinite algebras in Chapter 3, this can be achieved with

a finite separable extension of a field F. Therefore an assumption that D̄ is split over F will

be su�cient to apply the results of this section.

2.2.1. King’s Result on Quiver Representation Moduli. We give a brisk intro-

duction to quivers in order to state King’s result. For more background on quivers, see for

example [ASS06].
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Definition 2.2.1.1. A quiver Q is an oriented graph Q = (Q
0

, Q
1

), where Q
0

is the set

of vertices, and Q
1

the set of oriented edges, also known as arrows. We define the head and

tail functions

h, t : Q
1

! Q
0

to be the maps sending an arrow a 2 Q
1

, to the head h(a) of the arrow and the tail t(a) of

the arrow. A quiver Q is called finite if Q
0

and Q
1

are finite.

Definition 2.2.1.2. Let Q be a quiver.

(1) A representation of Q over a field F is a collection of F-vector spaces Wv for each

v 2 Q
0

and a collection of F-linear maps �a : Wt(a) ! Wh(a) for each arrow a 2 Q
1

.

(2) A morphism of such representations, (Wv,�a)! (Uv, a) is a collection of F-linear

maps fv : Wv ! Uv such that fh(a) � �a =  a � ft(a) for each a 2 Q
1

.

(3) The dimension vector � 2 ZQ0 of a representation (Wv,�a) is the vector of integers

�v = dimF Wv for each v 2 Q
0

. A representation is called finite-dimensional if Wv

is finite-dimensional for all v and �v = 0 for all but finitely many v 2 Q
0

.

(4) Given a dimension vector � we use GL(�) to denote the group ⇥v2Q0GL(Wv) of

linear automorphisms of (Wv).

(5) � ⇢ GL(�) denotes the diagonal subgroup of scalars (t, . . . , t) ⇢ GL(�), and

PGL(�) denotes the quotient.

Note that PGL(�) is not generally the product over v 2 Q
0

of PGL(Wv).

Convention. We will work with finite quivers and finite-dimensional representations

from now on, without remarking on their finiteness.

Once we define the path algebra FQ of Q, we will see that under the equivalence of

between representations of Q and representations of FQ, dimension vectors correspond to

pseudorepresentations of FQ.

First, we note that framed moduli spaces of representations of quivers are a�ne spaces!

Indeed, the set of representations of F over a given dimension vector � 2 ZQ0 corresponding
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to the set of vector spaces (Wv)v2Q0 is

Rep⇤
� (F) :=

M
a2Q1

HomF(Wt(a),Wh(a)).

The group GL(�)(F) acts naturally on this set, and one can check that two representations

in Rep⇤
� (F) are isomorphic if and only if they lie in the same orbit of GL(�)(F).

We let Rep⇤
� represent the functor from SpecF-schemes to the set of such representations;

explicitly, this functor sends a SpecF-scheme X to the OX-module

M
a2Q1

HomO
X

(Wt(a) ⌦F OX ,Wh(a) ⌦F OX).

Observe that there is a natural isomorphism

(2.2.1.3) Rep⇤
�

⇠�! Spec Sym⇤
F

 M
a2Q1

HomF(Wt(a),Wh(a))
^
!
,

and that the algebraic group GL(�) acts naturally on Rep⇤
� , with orbits consisting of iso-

morphism classes of representations. In addition, PGL(�) acts on Rep⇤
� ; it acts on each

space Hom(Wt(a),Wh(a)) even though it does not have a sensible action on Wv for v 2 Q
0

.

In analogy to Definition 1.4.1.1, we define the following groupoids of representations.

Definition 2.2.1.4. Let Q be a quiver. Define groupoids on SpecF-schemes by mapping

an SpecF-scheme X to the following sets.

Rep� := X 7! {For each v 2 Q
0

, a vector bundle Wv/X of rank �v,

for each a 2 Q
1

,�a 2 HomO
X

(Wt(a),Wh(a))}.
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The definition of Rep� amounts to tracking the data of the the data of (Wv,�a) modulo

simultaneous twists of (Wv) by a line bundle L 2 PicX.3

Rep� := X 7! {For v, w, x 2 Q
0

, a vector bundle Hvw/X of rank �v�w,

OX-Azumaya algebra structure on Ev := Hvv,

OX-module surjections cvwx : Hvw ⌦O
X

Hwx ! Hvx,

and, for a 2 Q
1

,�a 2 Ht(a)h(a)}

such that the following conditions on cvwx hold (following [BC09, §1.3.2]):

(UNIT) For all v, w 2 Q
0

, cvvw : Ev ⌦ Hvw ! Hvw (resp. cvww : Hvw ⌦ Eww ! Hvw) is

compatible with the Azumaya algebra structure on Ev.

(ASSO) For all v, w, x, y 2 Q
0

, the two natural maps Hvw ⌦Hwx ⌦Hxy ! Hvy coincide.

(COM) For all v, w 2 Q
0

, x 2 Hvw, y 2 Hwv, cvwv(x⌦ y) = cwvw(y ⌦ x).

In analogy to Theorem 1.4.1.4, one can check that there are natural equivalences of

SpecF-groupoids

(2.2.1.5) Rep�
⇠�! [Rep⇤

� /GL(�)], Rep�
⇠�! [Rep⇤

� /PGL(�)].

Now choose ✓ 2 ZQ0 , which we call a character of Rep(Q). In fact, such a character

naturally determines a character of the Grothendieck group of Rep(Q) (cf. Definition 1.3.4.5).

Simple Q-representations over F are in natural bijective correspondence with Q
0

, sending

w 2 Q
0

to the representation (Wv,�a), where we have

Wv =

8<: Wv = F v = w

Wv = {0} v 6= w

and we have �a = idW
v

if h(a) = t(a) = v, and �a = 0 otherwise. This establishes a

natural equivalence between characters of Rep(Q) characters of the Grothendieck group

3This corrects a small oversight in [Kin94] – he does not mention the twists of families of representations of
Q by a line bundle and the resulting lack of representability of Rep� .
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K
0

(RepQ(F)). We call a character of Rep(Q) indivisible if it is not the scalar multiple of

another character.

We will define two notions of ✓-semistability (resp. ✓-stability), one intrinsic to the rep-

resentation theory, and one being that of the GIT notion of semistability (resp. stability)

of a point in Rep⇤
� for the �✓-linearized action of GL(�), where �✓ is a character of GL(�)

associated to ✓.

First we give the representation theoretic definition for a general F-algebra E, which

makes sense for representations of a quiver Q even though we have not yet realized the

representations of Q as the representations of its path algebra. As King points out, this

definition makes sense for any abelian category; special cases of the notion include Mumford’s

notion of stability for vector bundles over a curve.

Definition 2.2.1.6 ([Kin94, Definition 1.1]). With F, E, and a character

✓ : K
0

(RepE)! Z

as above,

(1) a representation W 2 RepE is called ✓-semistable if ✓(M) = 0, and for every sub-

representation W 0 ✓ W , ✓(W 0) � 0.

(2) if W 2 RepE is ✓-semistable, and if, additionally, it satisfies the property

✓(W 0) = 0 =) W 0 = W or W 0 = 0

for all subrepresentations W 0 ✓ W , then we call W ✓-stable.

We call two ✓-semistable representations S-equivalent if they have identical composition

factors in the full abelian subcategory of ✓-semistable representations; the stable represen-

tations are the simple objects in this subcategory. We will not focus here on S-equivalence

except when it coincides with the usual notion of equivalence.
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In fact, as we pointed out in the introduction, we are mainly interested in families of

representations in which ✓-semistability implies ✓-stability. As connected families of rep-

resentations of finite-dimensional algebras have constant residual pseudorepresentation (by

Theorem 1.1.7.4(5), for example), this condition is dependent upon the semisimplification of

the representation. Semisimple representations amount to non-negative integer-valued linear

combinations of simple representations and simple representations are a basis for K
0

(RepE).

We recall that this is the dimension vector (Definition 1.3.4.5) of the representation. Note

that the condition ✓(W ) = 0 of semisimplicity depends only on its dimension vector ✓, and

can be expressed in terms of the dot product of the dimension vector with ✓, i.e.

h�, ✓i = 0.

Using this terminology, we will give a condition such that semistability will imply stability.

First, we require the following definition.

Definition 2.2.1.7. A standard projection operator on characters of K
0

(RepE) sends

✓ 2 K
0

(RepE) to its projection along the submodule spanned by a subset of the simple

representations of E. We say that a standard projection operator is non-trivial on the

support of � 2 K
0

(RepE) provided that P� 6= �.

Lemma 2.2.1.8. Let ✓ be a character of the Grothendieck group K
0

(RepE) of RepE, and

let � be a dimension vector such that h�, ✓i = 0. If for every standard projection P that

is non-trivial on the support of � we have a strict inequality hP�, P✓i 6= 0, then for every

representation W 2 RepE with dimension vector �, W is ✓-semistable if and only if it is

✓-stable.

Definition 2.2.1.9. If � and ✓ satisfy the conditions of Lemma 2.2.1.8, we say that � is

stabilizing with respect to ✓.

Example 2.2.1.10. Let ⇢
1

, . . . , ⇢n be simple representations of E, possibly with multi-

plicity except that we demand that ⇢n 6' ⇢i for 1  i < n. Let � be the dimension vector
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supported on the ⇢i, with these multiplicities. Later in Example 2.2.3.1, we will study this

dimension vector relative to the character ✓ on K
0

(E) sending

✓ :
⇢i 7! 1 1  i < n

⇢n 7! �(n� 1)

We see that � is stabilizing with respect to ✓. The only way to get a sum of zero out of

a projection to some subset of the isomorphism classes of the ⇢i is to choose the identity

projection.

Now we give a character of GL(�) associated to ✓.

Definition 2.2.1.11. For each v 2 Q
0

, write detv for the determinant of the vth com-

ponent of GL(�) ⇠= ⇥v2Q0GL(Wv). Then set �✓ to be the character

GL(�) �! Gm

(gv) 7!
Y
v2Q0

det
v
(gv).

This geometric notion of semistability (resp. stability) cuts out a subfunctor of Rep⇤
� ,

which geometric invariant theory implies is open. We write

Rep⇤,s
� (✓) ⇢ Rep⇤,ss

� (✓) ⇢ Rep⇤
�

for these open subschemes. Let

Rep⇤,ss
� (✓)⇥ L(⌘)

denote the total space of the trivial line bundle L over Rep⇤,ss
� (✓) with an action of GL(�)

extended to this space by acting on L by ⌘�1 with the character ��1

✓ . Then standard GIT

results give us that a quotient by GL(�) exists. This linearized GIT quotient space is

Rep⇤
� //(GL(�),�✓) := ProjF

 M
n�0

F[Rep⇤,ss
� (✓)⇥ L(�n

✓ )]
GL(�)

!
,
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and it is projective over the GIT quotient

Rep⇤
� //GL(�) ⇠= SpecF.

We write

Rep
ss

� (✓) := Rep⇤
� //(GL(�),�✓)

for this projective SpecF-scheme, and standard GIT theory gives an open F-subscheme

Rep
s

�(✓) ✓ Rep
ss

� (✓)

image of the �✓-stable locus in Rep⇤
� (✓).

This theorem summarizes the GIT content of King’s paper.

Theorem 2.2.1.12 ([Kin94, Propositions 3.1-3.2, Proposition 5.2-5.3]).

(1) A point in Rep⇤
� corresponding to a representation W of Q is �✓-semistable, i.e. lies

in Rep⇤,ss
� (✓) (resp. �✓-stable, i.e. lies in Rep⇤,s

� (✓)), if and only if W is ✓-semistable

(resp. ✓-stable).

(2) Two ✓-semistable representations correspond to points in Rep⇤,ss
� (✓) with GL(�)-

orbits with overlapping Zariski closures in Rep⇤,ss
� (✓) if and only if the representa-

tions are S-equivalent with respect to ✓.

(3) Rep
ss

� (✓) is a coarse moduli space for families of ✓-semistable modules up to S-

equivalence

(4) When the dimension vector � is indivisible, the stable quotient Rep
s

�(✓) is a fine

moduli space for families of ✓-stable modules.

Much the content of King’s paper works toward proving Theorem 2.2.1.12 in the context

of representations of a finite-dimensional F-algebra, using an equivalence between quiver

representations with a fixed dimension vector on one hand, and representations of a finite-

dimensional F-algebra E with induced pseudorepresentation D̄ on the other. However, we

need a more concrete realization of this equivalence than King provides. We are staying
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within the context of quiver representations for the moment so that we can carefully iden-

tify an ample line bundle on Rep
ss

� (✓). Our goal is to give an explicit translation between

representations of Q and representations of E, also translating conditions of semistability,

etc., so that under the resulting closed immersion

Rep
ss

E, ¯D(✓) ,! Rep
ss

Q,�(✓),

we can identify the pullback of the ample line bundle to the left side in terms of the moduli

problem there. Therefore, let us conclude our overview of King’s results by identifying this

ample line bundle on the right side in terms of the moduli problem there.

An ample line bundle on the linearized GIT quotient

Rep
ss

� (✓) = ProjF

 M
n�0

F[Rep⇤,ss
� (✓)⇥ L(�n

✓ )]
GL(�)

!

is the standard ample line bundle O✓(1) of this Proj construction,4 which consists of the

regular functions on Rep⇤,ss
� (✓) ⇥ L(�n

✓ ) such that GL(�) acts by �✓. By reviewing the

definition of �✓ and the explicit form of the coordinate ring for Rep⇤
� in (2.2.1.3), we observe

that this line bundle is the descent of the PGL(�)-equivariantly linearized line bundle

(2.2.1.13) Õ✓(1) :=
O
v2Q0

det(Wv)
⌦✓(v)

on Rep⇤
� to Rep

ss

� (✓). In saying that this bundle is PGL(�)-equivariantly linearized, we

are using the fact that the GL(�)-linearization of Õ✓(1) descends to a PGL(�)-linearization

(cf. the comments on the action of PGL(�) on Rep⇤
� at (2.2.1.3)). This is the case because

�✓(�) = {1}; indeed, this is a condition for (GIT) semistability, which, in the translation

between the representation theoretic and GIT notions of semistability for a representation

W , corresponds to the condition ✓(W ) = 0. Alternatively, we know that Õ✓(1) will descend

4It is not necessarily very ample.
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to Rep� by (2.2.1.5), and one can check that in terms of the intrinsic definition of Rep�,

(2.2.1.14) O✓(1) ⇠=
O

v,w2Q0

(^�v�wHvw)
⌦n(v,w)

for appropriate integers n(v, w) dependent on ✓ 2 ZQ0 and �. We derive these integers from

(2.2.1.13) by recalling that the natural association is Hvw = Hom(Wv,Ww), and

^�v�wHvw
⇠= (^�vWv)

⌦��
w ⌦ (^�wWw)

⌦�
v .

Indeed, the integers n(v, w) are specified by the following

Lemma 2.2.1.15. Let � = (�
1

, . . . , �n) 2 Zn be indivisible, and let ✓ = (✓
1

, . . . , ✓n) 2 Zn

such that the dot product � · ✓ is zero. Then ✓ is a Z-linear combination of the vectors eij

for 1  i < j  n, where eij = (eij
1

, . . . , eijn ) is given by

eijk =

8>>><>>>:
+�j if k = i

��i if k = j

0 otherwise

.

The integers n(v, w) are the coe�cients of evw in the expression for ✓. Of course, since

evw = �ewv for any v, w 2 Q
0

, we don’t lose anything by restricting to i < j. Also, note

that we are assuming that �v > 0 for each v 2 Q
0

.

Proof. We write Zn for the Z-module of n-tuples of integers. The standard dot product

defines a perfect pairing Zn ⇥ Zn ! Z, and pairing with � defines a Z-module morphism

µ = h·, �i : Zn ! Z. The indivisibility of � is equivalent to the surjectivity of µ. Therefore

if we let M represent the kernel of µ, we have an exact sequence

0 �!M �! Zn �! Z! 0

which admits a splitting. We observe that M must be free of rank n� 1 over Z. We want to

verify that the sub-Z-module of M generated by eij, 1  i < j  n, which we will denote by

N , is in fact equal to M . Let P denote the cokernel of N ,! M , so that we have an exact
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sequence

0 �! N �!M �! P �! 0.

Since e
1j, 2  j  n, are linearly independent over Q, N is free of rank n� 1 and P is finite

in cardinality. We will complete the proof by showing that P ⌦Z Fp = 0 for all rational

primes p, and we will do this by showing that eij span M modulo p for each p.

Fix a prime p. Because � is indivisible, there exists some v 2 Q
0

such that �v 6⌘ 0

(mod p). Without loss of generality, assume v = 1. Then the n� 1 elements e
1j are linearly

independent modulo p. This shows that the image of N⌦ZFp inM⌦ZFp is n�1-dimensional,

and therefore is equal to M ⌦Z Fp. ⇤

2.2.2. Finite Dimensional Algebras and Path Algebras. Now we prepare back-

ground material on finite-dimensional algebras to show that their representations can be

expressed as representations of quivers.

One step will be to show that given any algebra, its abelian category of representations

is equivalent to that of some basic algebra.

Definition 2.2.2.1. Let E be a finite-dimensional F-algebra.

(1) We call E basic provided that it has a complete set {e
1

, . . . , en} of primitive or-

thogonal idempotent such that Eei and Eej are not isomorphic as F-algebras for all

i 6= j.

(2) We call E connected provided that it cannot be written as a proper product of

algebras E ⇠= E
1

⇥ E
2

.

One can show (cf. [ASS06, Proposition I.6.2]) that the simple representations of a basic

algebra are all one-dimensional, or, equivalently, that if E is basic, then

(2.2.2.2) E/J(E) ⇠= Fn, some n � 0.

If {e
1

, . . . , en} are a complete set of primitive orthogonal idempotents for E, then each

simple representation into F is given by sending ei to 1 for a single i, and J(E) and the

remaining ej, j 6= i, to 0. Therefore, pseudorepresentations of a basic algebra E are in
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bijective correspondence with n-tuples of non-negative integers, where we have numbered a

complete set of n primitive idempotents correspondingly.

Next, we describe the path algebra FQ of a quiverQ. This is a basic algebra whose abelian

category of representations is naturally equivalent to the abelian category of representations

of a given quiver Q. We will describe this equivalence below.

Definition 2.2.2.3. Let Q
0

be a finite quiver.

(1) The path algebra FQ of Q is the quotient of the free algebra on the set Q
0

[ Q
1

where we write "v for v 2 Q
0

and ↵a for a 2 Q
1

, subject to the relations

"v"w = �vw"v, "v↵a = �vt(a)↵a,↵a"v = �h(a)v↵a,

↵a↵b = 0 if h(a) 6= t(b),X
v2Q0

"v = 1.

(2) Let J(FQ) be the Jacobson radical of FQ, which one can check is generated by the

arrows. We call I ⇢ FQ an admissible ideal provided that there exists m � 2 such

that J(Q)m ✓ I ✓ J(Q)2.

We observe that FQ is a basic algebra.

Remark 2.2.2.4. There is another sensible definition of FQ when Q is not finite, ex-

pressing FQ as ring graded by the lengths of paths. However, this definition does not have

a unit when Q
0

is infinite, and is equivalent to the definition given above when Q is finite.

Now we give a construction of a quiver from a connected basic algebra. This is an inverse

construction to the construction of the path algebra.

Definition 2.2.2.5 (cf. [ASS06, Definition II.3.1]). Let E be a basic connected F-algebra.

Number o↵ the complete set of primitive orthogonal idempotents {e
1

, . . . , en}. Now define

the (ordinary) quiver QE = (Q
0

, Q
1

) of E by Q
0

= {v
1

, . . . , vn} in correspondence with the

idempotents, and each arrow a in Q
1

consists of a head h(a) = vi, tail t(a) = vj, and an

element of a fixed F-basis of ei(J(E)/J(E)2)ej.
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The term “ordinary” is not standard notation, but we mention it as there are other

quivers associable to E such as its Auslander-Reiten quiver. We observe that if E is finite-

dimensional, then Q is finite. One can check that Q does not depend on the choices made in

order to construct it. Also, given a primitive idempotent e 2 E, we will often simply write

ve for the vertex of Q associated to e.

Theorem 2.2.2.6 (cf. [ASS06, Theorem II.3.7]). Let E be a basic connected F-algebra.

Then there exists a surjection of F-algebras from the path algebra of a connected quiver,

namely, from the path algebra of its ordinary quiver

FQE �! E,

inducing an isomorphism of E with the quotient QE/I of FQE by an admissible ideal.

Proof. Map the set Q
0

into FQE by sending v to "v. By definition, an arrow a 2 Q
1

such that t(a) = v and h(a) = w is an element of some basis for ew(J(E)/J(E)2)ev. Choose

a lift of this basis element to J(E) and map the set Q
1

to FQE according to the choices

above. This map is, in fact, surjective with admissible kernel [ASS06, Theorem II.3.7], and

we can already see that the kernel is contained in J(E)2. ⇤

Let us explicitly describe an equivalence between representations of Q = QE and repre-

sentations of the path algebra FQ. We will give the construction a representation of FQ out

of a representation of Q in terms of the algebraic stacks

RepQ,�
⇠�! RepFQ, ¯D

�

,

since we are interested in keeping track of the line bundle O✓(1) of (2.2.1.14) on RepQ,�

after its pullback to RepFQ or RepE. Here D̄� denotes a pseudorepresentation of FQ that

corresponds via Theorem 1.3.1.1 to the direct sum of representations

M
v2Q0

M��
v

v ,
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where Mv is the one-dimensional simple representation on which only ev acts as 1 and

ew, w 6= v and Q
1

act as 0. This is the semisimple representation of FQ associated to the

|Q
0

|-tuple (ev)v2Q0 , i.e. the direct sum with multiplicity (ev)v2Q0 over the |Q
0

| simple (1-

dimensional) representations of FQ corresponding to ev, cf. (2.2.2.2). For this construction

in the more usual framed setting (i.e. for elements of Rep⇤
Q,�), see e.g. [ASS06, Theorem

III.1.6].

Let (Hvw,�a) 2 Rep�(X) be a representation of Q over X 2 Sch
SpecF of dimension vector

�, as in Definition 2.2.1.4. Define

(2.2.2.7) E = E(Wv,�a) :=
M

v,w2Q0

Hvw.

The structure maps cvwx of Definition 2.2.1.4 endow E with the structure of an Azumaya

OX-algebra, where the OX-algebra structure map induced by the sum over v 2 Q
0

of the

maps OX ! Ev ⇠= Hvv. One can readily check that the map of sets

Q = Q
0

[Q
1

�! E

"v 7! idv 2 Ev ⇢ E

↵a 7! �a 2 Ht(a)h(a) ⇢ E .

extends to a homomorphism FQ⌦FOX ! E of OX-algebras. Here Ev and Ht(a)h(a) are being

considered as (OX-module) summands of E . Let D̄� : FQ! F be the pseudorepresentation

associated to the semisimplification FQ !
L

v2Q0
Ev, which one can check from the defini-

tions. We have constructed a map of SpecF-groupoids RepQ,� ! RepFQ, ¯D
�

; one can examine

the inverse construction (cf. [ASS06, Theorem III.1.6]) to see that this is an equivalence, and

use e.g. [Kin94, Proposition 5.2] to show that the map is algebraic.

Now let E be a basic connected F-algebra. Choose a (non-canonical) surjection FQE ⇣ E

described in the proof of Theorem 2.2.2.6. Choose also a Cayley-Hamilton pseudorepresen-

tation D̄� : E ! F, where we let � denote the dimension vector of Q corresponding to the

semisimple representation of FQ induced by the semisimple representation ⇢ss
¯D
�

. We have a
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closed immersion

Rep⇤
E, ¯D

�

,! Rep⇤
FQ, ¯D

�

⇠�! Rep⇤
Q,�,

where the maps are equivariant for the natural action of PGL(�). Therefore we have a closed

immersion of algebraic stacks

RepE, ¯D
�

,! RepFQ, ¯D
�

⇠�! RepQ,�,

and we observe that the line bundle O✓(1), expressed in terms of the data Hvw on RepQ,� in

(2.2.1.14), pulls back via the association (2.2.2.7) to a line bundle that can be constructed

out of appropriate sub-modules of the universal Azumaya algebra E on Rep
�
E, ¯D

�

receiving

the universal representation of E with pseudorepresentation D̄�.

Now, in the case of basic algebras, we have achieved our goal of identifying the line bundle

O✓(1). Let us extend this to the general case of a finite-dimensional algebra E.

First we explain how to associate a basic algebra to a general F-algebra.

Definition 2.2.2.8. Let E be a finite-dimensional F-algebra with a complete set of

primitive orthogonal idempotents {e
1

, . . . , en}. Partition these idempoents according to the

equivalence relation ei ⇠ ej if and only if there is a F-algebra isomorphism Eei
⇠! Eej, and

choose a representatives ej1 , . . . , ej
b

. Write eE for eE =
Pb

1

ej
i

. Then the F-subalgebra

Eb := eEEeE

as a basic algebra associated to E.

This subalgebra Eb of E is clearly not canonical, but one can show that the isomorphism

class of Eb does not depend on the choices above. For the time being, we fix such choices

and the resulting F-subalgebra Eb ✓ E.

Remark 2.2.2.9. For this association to work, we must have a complete set of orthogonal

idempotents as the definition above requires. When we apply this construction, we will

always work with finite-dimensional algebras E whose semisimple quotient E/J(E) by the

Jacobson radical is a product of matrix algebras. Such a set of idempotents clearly exists
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for a product of matrix algebras, and we then apply the well known fact that one can (non-

canonically) lift idempotents over a nilpotent ideal (the Jacobson radical of a finite dimension

algebra is nilpotent).

Here we see that we can reduce the study of representations of finite-dimensional algebras

to the study of the representations of basic algebras.

Theorem 2.2.2.10 (cf. [ASS06, Corollary I.6.10]). Let E be a finite-dimensional F-

algebra. Then E contains a basic F-subalgebra Eb := eEEeE as above, and the natural

restriction functor

res : RepE(F) �! RepEb

(F)

V 7! eEV

is an equivalence of abelian categories with quasi-inverse �⌦Eb EeE.

Now let us observe that this equivalence extends from representations with coe�cients F

to functors of families of representations over SpecF-schemes. Fix a choice of idempotents to

produce ◆ : Eb ,! E as above. We observe that the restriction functor res extends naturally

to families of representations over F-schemes X, via the natural transformations

res : RepE �! RepEb

,

V 7! eEV,

⇢ : E ⌦F OX ! EndO
X

(V ) 7! (x 7! ⇢(eE)x⇢(eE)) � ⇢ � (◆⌦OX).

of SpecF-scheme functors with a quasi-inverse as in the theorem above, so that it is an

isomorphism. The induced isomorphic functor res : RepE ! RepEb

is given by sending

⇢ : E ⌦F OX ! E to

(2.2.2.11) res(⇢) : Eb ⌦F OX �! eEEeE.

Now that we have given the association of representations, we are able to calculate the

line bundle Õ✓(1) on RepE, ¯D in terms of data native to the moduli problem for RepE, ¯D we

summarize this calculation and the choices involved in this

156



Proposition 2.2.2.12. Let E be a F-algebra. Fix a choice of

(1) a set of primitive idempotents {ej
v

} indexed by a finite set Q
0

, v 2 Q
0

, representing

the isomorphism classes of Definition 2.2.2.8, and the resulting idempotent eE =P
Q0

ej
v

and basic subalgebra Eb = eEEeE ✓ E,

(2) a F-basis for ej
v

(J(Eb)/J(Eb)2)ej
v

, which produces the F-algebra homomorphism

FQEb ⇣ Eb ,! E of Theorem 2.2.2.6,

(3) a Cayley-Hamilton pseudorepresentation D̄ : E ! F, the associated semisimple

representation ⇢ss
¯D
of E, the semisimple representation eE⇢

ss
¯D
of Eb, and the resulting

dimension vector � for Q corresponding to the induced semisimple representation of

FQ via FQ ⇣ Eb.

These choices define morphisms

RepE, ¯D
⇠�! RepEb, ¯D ,! RepFQ

E

, ¯D �! RepQ,�.

Let ✓ : K
0

(E) �! Z. Under these maps with the choices above, the line bundle O✓(1) pulls

back to

(2.2.2.13)
O

v,w2Q0

�
^�v�w (ej

v

Eej
w

)
�n(v,w)

,

where n(v, w) are a choice of integers as specified in (2.2.1.14).

Recall that Lemma 2.2.1.15 shows that there exist integers n(v, w) with the properties

demanded by (2.2.1.14).

Proof. On RepQ,�, we recall from (2.2.1.14) that we have a natural isomorphism

O✓(1) ⇠=
O

v,w2Q0

(^�v�wHvw)
⌦n(v,w).

We see in (2.2.2.7) that Hvw pulls back to RepF, ¯D
�

as a direct summand of E 0, namely "vE 0"w,

where E 0 is the universal Azumaya algebra on RepFQ, ¯D
�

. These idempotents "v 2 FQE

correspond to the chosen idempotents {ej
v

}v2Q0 of Eb; the homomorphism from FQE to E 0

factors through Eb, so that the data of E 0 and "vE"w still make sense on the closed substack
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RepEb, ¯D
�

✓ RepFQ, ¯D
�

. Finally, if we write E for the universal Azumaya algebra on RepE, ¯D,

we see in (2.2.2.11) that E 0 ' eEEeE. So the pullback of Hvw to RepE, ¯D from RepQ,�
D̄

is

expressible in terms of its universal Azumaya algebra E as

ej
v

eEEeEej
w

⇠= ej
v

Eej
w

. ⇤

By combining King’s Theorem 2.2.1.12 with this calculation, we have the following de-

duction. Recall the notation of ✓-(semi)stability of a representation of E from Definition

2.2.1.6.

Corollary 2.2.2.14. Let E be a F-algebra. Choose a character ✓ : K
0

(E) ! Z and a

pseudorepresentation D̄ : E ! F with associated dimension vector �
¯D 2 ZK0(E) such that

h�, ✓i = 0. If �
¯D is indivisible and h�, ✓i = 0, then the ✓-stable locus of representations

of E descends to a quasi-projective subscheme Rep
s

E, ¯D(✓) of Rep
�
E, ¯D. If, moreover, �

¯D is

stabilizing with respect to ✓, then the Rep
s

E, ¯D(✓) is a projective subscheme of the algebraic

stack Rep
�
E, ¯D, with ample line bundle given in terms of the universal Azumaya algebra on

RepE, ¯D by (2.2.2.13).

Note that while this subscheme is projective, it is not closed in RepE, ¯D in any non-

trivial case. The usual geometric situation is just like the standard construction of Pn as

An+1\{0}/Gm, lying inside [An+1/Gm].

Proof. By Theorem 2.2.1.12, the indivisibility of � implies that the ✓-stable locus

Rep
s

E, ¯D(✓) of the �✓-linearized GIT quotient of Rep⇤,�
E, ¯D

is a fine moduli space. As a result,

we have an immersion Rep
s

E, ¯D(✓) ,! Rep
�
E, ¯D. When �

¯D is stabilizing with respect to ✓, then

✓-semistability of representations of E is equivalent to ✓-stability by Lemma 2.2.1.8. There-

fore Rep
s

E, ¯D(✓) is projective and a subscheme of Rep
�
E, ¯D, and Proposition 2.2.2.12 identifies

a line bundle on Rep
�
E, ¯D that is ample on Rep

s

E, ¯D(✓). ⇤

2.2.3. Examples of Projective Moduli Spaces. We will give the motivating exam-

ple, suggested by Kisin, of a moduli space of representations that is projective relative to
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the moduli space of pseudorepresentations below. First we give an example of the projective

spaces constructed above.

Example 2.2.3.1. Let R be a finitely generated algebra over a field F. Choose n simple

representations ⇢
1

, . . . , ⇢n of R of dimension di < 1 over F. We stipulate that ⇢n 6' ⇢i for

1  i < n, but allow multiplicity among the ⇢i otherwise. Let ⇢ represent the d-dimensional

direct sum
Ln

1

⇢i. Let D⇢ be the pseudorepresentation of R associated to ⇢, i.e. D⇢ := det �⇢.

We will illustrate in this example that the moduli space of families of representations of R

whose semisimplification is ⇢ and whose unique simple quotient is ⇢n is in fact projective

over the point D⇢ 2 PsRd
R(F) with residue field FD

⇢

.

Let E be the universal Cayley-Hamilton representation of R over D⇢, i.e. E := R/CH(D).

By abuse of notation, we will write D for the factorization of D through E, and likewise

for the representations ⇢i. It is visible that D⇢ is split over F. We know that E is finite-

dimensional over F by Corollary 1.2.2.9, and we know from Theorem 1.4.3.1 that

RepR,D
⇠= RepE,D.

Consider now a character ✓ on K
0

(E) sending

✓ :
⇢i 7! 1 1  i < n

⇢n 7! �(n� 1)

Write � = �⇢ for the dimension vector of ⇢, which is essentially the image of ⇢ in K
0

(E).

Now let us consider the projective SpecFD
⇢

-scheme Rep
ss

E,D(✓). We want to show that the

conditions of Corollary 2.2.2.14 are satisfied. Here are the conditions:

• Since ✓ · � = 0, i.e. ✓(⇢) = 0, it is possible for this space to be non-empty (the first

condition of semisimplicity in Definition 2.2.1.6 is satisfied)

• � is indeed indivisible – this is guaranteed because ⇢n appears with multiplicity 1

as a factor of ⇢.

• It is also the case that � is stabilizing with respect to ✓ (see Definition 2.2.1.9).

Simply see Example 2.2.1.10.

159



With these conditions satisfied, Corollary 2.2.2.14 now tells us that

Reps
E,D(✓)

⇠! Rep
ss

E,D(✓)

is a fine moduli space for ✓-semistable (equivalently, ✓-stable) representations of E lying over

D 2 PsRd
E, i.e. it is naturally a subscheme of RepE,D. We also know from Corollary 2.2.2.14

that the restriction of  : Rep
d

E ! PsRd
E to Repss

E,D(✓) is projective.

Finally, we give a translation of the last bullet point above: a representation M with

dimension vector � is ✓-semistable (equivalently, ✓-stable) if and only if its unique simple

quotient is ⇢n. For if there exists some other simple quotient of M , then there exists a proper

subrepresentation M 0 of M with ⇢n as a Jordan-Hölder factor, implying that ✓(M 0) < 0 and

that M is not ✓-semistable. Conversely, if M is not ✓-semistable, there must exist some

subrepresentation M 0 ⇢ M such that ✓(M 0) < 0, which implies that ⇢n is a Jordan-Hölder

factor of M 0 and that M/M 0 (which must have some simple quotient) has a simple quotient

not isomorphic to ⇢n.

We were motivated to investigate these projective spaces of representations by an example

and suggestion of Kisin [Kis09a, §3.2, esp. Remark 3.2.7]. Kisin gives his construction and

suggestion in the context of continuous representations of a profinite group, but we will see

later (e.g. Theorem 3.2.4.1) that the continuous representations of a profinite algebra over

a fixed finite field-valued pseudorepresentation amounts to the representations of a certain

finite-dimensional algebra over the finite field. Therefore these constructions of projective

spaces apply to Kisin’s context. Then the next paragraph §2.2.4 shows that deformations of

these projective spaces are projective, as he suggests.

Definition 2.2.3.2. Let E be a finite-dimensional algebra over F with pairwise non-

isomorphic simple representations ⇢i, 1  i  n, each of dimension di. Write ⇢ =
Ln

1

⇢i and

let D⇢ (resp. �⇢) be the corresponding pseudorepresentation (resp. dimension vector). Let

Rep
0
D

⇢

⇢ RepD
⇢

be the full subgroupoid of families of representations E ⌦F OX ! E which
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locally in the Zariski topology are of the form

(2.2.3.3) ⇢ '

0BBBBBBB@
⇢
1

⇤ · · · · · ·

0 ⇢
2

⇤ · · ·

0 0
. . . ⇤

0 0 0 ⇢n

1CCCCCCCA
with the additional condition that follows. When we write

0 = L
0

⇢ L
1

⇢ · · · ⇢ Ln = M

for the filtration where Li/Li�1

' ⇢i, we stipulate that the extension class of M/Li�1

as an

extension of M/Li by ⇢i is non-trivial.
5

Remark 2.2.3.4. As Kisin notes, this condition guarantees that such representations

have no non-trivial automorphisms, making the isomorphism (2.2.3.3) unique. The unique-

ness only holds once one considers representations as maps into Azumaya algebras (an object

of Rep) instead of vector bundles with an action (an object of Rep). In the latter case, the

trivial (scalar) automorphisms are taken into account.

We immediately observe that this groupoid is a subgroupoid of the projective FD
⇢

-

subscheme Rep
ss

D
⇢

(✓) of RepD
⇢

described in Example 2.2.3.1 above, where ✓ is the character

of K
0

(RepE) with ✓ : ⇢i 7! 1 for 1  i < n and ✓(⇢n) = �(n � 1). Indeed, ⇢n is the unique

simple quotient of any object of Rep
0
D

⇢

, and this condition defines Rep
ss

D
⇢

(✓) in RepD
⇢

. We

claim that Rep
0
D

⇢

is a closed subscheme of Rep
ss

D
⇢

(✓), and is therefore projective over SpecFD
⇢

as well.

Proof. First we fix certain idempotents in E. We know from Lemma 1.2.3.1 that the

representation ⇢ has kernel precisely the Jacobson radical J(E) of E, and draws a surjection

⇢ : E ⇣
nY

i=1

Md
i

(F).

5Actuallly, Kisin uses the dual condition that the extension Li of ⇢i by Li�1 is non-trivial.
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Let ei represent a (non-canonical) lift to E of the idempotent of E/J(E) corresponding to

the identity element of Md
i

(F) via ⇢ (see Remark 2.2.2.9). One can quickly check that they

remain pairwise orthogonal.

Let Euniv be the universal Azumaya algebra over Repss
D

⇢

(✓), receiving the universal rep-

resentation ⌘univ from E ⌦F ORep

ss

D

⇢

(✓). These idempotents ⌘univ(ei) along with the standard

reduced trace on Euniv correspond to the additional structure of a generalized matrix algebra

of type (d
1

, . . . , dn) on the Azumaya algebra Euniv; we will use the notation of Lemma 2.3.1.4

describing generalized matrix algebras to o↵er additional clarity to the following calcula-

tions without requiring any additional theory of generalized matrix algebras. We have an

isomorphism

Euniv ⇠=

0BBBBBBB@
Md1(A1,1) Md1⇥d2(A1,2) · · · Md1⇥d

n

(A
1,n)

Md2⇥d1(A2,1) Md2(A2,2) · · · Md2⇥d
n

(A
2,n)

...
...

...
...

Md
n

⇥d1(An,1) Md2(An,2) · · · Md
n

(An,n)

1CCCCCCCA
,

where the Aij are line bundles on Repss
D

⇢

(✓) (with a canonical trivialization for Aii for each

i) and the algebra structure is determined by canonical isomorphisms

Md
i

d
j

(Aij)
⇠! eiRej.

Consider a representation (⌘ : E ⌦F OX ! E) 2 obRep
ss

D
⇢

(✓), so that ⌘ = ⌘univ ⌦
Rep

ss

D

⇢

(✓)

OX . It inherits the structure of a generalized matrix algebra from Euniv, which we denote

again with OX-line bundles Aij, abusing notation. The condition that ⌘ belongs to the

subgroupoid Rep
0
D

⇢

is equivalent to the triviality of the projection of the image of E in E to

Md
i

d
j

(Aij) via

x 7! ⌘(ei) · x · ⌘(ej)

for all pairs (i, j) such that 1  j < i  n. To illustrate this equivalence, notice that the

condition for the pair (n, n� 1) is equivalent to the condition (in the language of Definition

2.2.3.2) that the extension M/Ln�2

of M/Ln�1

by ⇢n�1

is non-trivial; following this, the
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condition that the extension M/Ln�3

of M/Ln�2

by ⇢n�2

is non-trivial is expressed by the

pairs (n, n� 1), (n, n� 2), (n� 1, n� 2); and so forth.

Notice in particular that the condition for pairs (n, j), 1  j < n, is what defines the

subscheme Rep
ss

D
⇢

(✓) ⇢ RepD
⇢

; this shows that Rep0
D

⇢

is contained in the ✓-semistable locus.

It remains to show that the locus cut out by the condition that

⌘(eiEej) ⇢Md
i

d
j

(Aij) is trivial for 1  j < i  n.

Let Nij ⇢ Md
i

d
j

(Aij) be the OX-submodule of Md
i

d
j

(Aij) generated by ⌘(eixej) for x 2

E. This submodule will be trivial over the locus of support for the quotient module

Md
i

d
j

(Aij)/Nij, which is a closed subscheme.

Now we can apply these constructions to the universal representation ⌘univ over Rep
ss

D
⇢

(✓).

The intersection of all of these support loci is therefore the closed subscheme Rep
0
D

⇢

⇢

Rep
ss

D
⇢

(✓). Consequently, Rep
0
D

⇢

is projective over SpecFD
⇢

. ⇤

We summarize what we have shown in the following theorem, confirming Kisin’s expec-

tation [Kis09a, Remark 3.2.7] that the space Rep0
D

⇢

is projective.

Theorem 2.2.3.5. Let ⇢i, 1  i  n be pairwise non-isomorphic simple representations

of E with sum ⇢, and let ✓ be a character of K
0

(RepE) sending ⇢i, 1  i < n to 1 and ⇢n

to �(n� 1) as in the example above. The subgroupoid Rep
0
D

⇢

⇢ RepD
⇢

defined by the condi-

tion (2.2.3.3) is a closed sub-SpecFD
⇢

-scheme of Rep
ss

D
⇢

(✓), and is consequently a projective

subscheme of RepD
⇢

with ample line bundle O✓(1).

2.2.4. Deformation of Ample Line Bundles. We conclude our discussion of the

fibers of  ̄ by giving conditions such that the projective subspaces Rep
s

E, ¯D(✓) ⇢ Rep
�
E, ¯D

identified in the previous paragraph are the special fiber of a projective morphism to a local

neighborhood on the base moduli space of pseudorepresentations. The question of which

condition we must impose has a fairly clear answer in light of the calculation of the ample

line bundle in Proposition 2.2.2.12: the idempotents on the fiber must be locally liftable to a
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neighborhood. By Lemma 2.1.3.2, this is true precisely for henselian local rings. To deform

the projectivity condition, we require that A is complete.6

Theorem 2.2.4.1. Let A be a complete local Noetherian ring with residue field FA and

maximal ideal mA. Let R be an A-algebra that is finite as an A-module, and write E for

R ⌦A FA. Let R be equipped with a d-dimensional Cayley-Hamilton pseudorepresentation

D : R! A such that its special fiber D̄ : E ! FA is split. For any indivisible character ✓ of

K
0

(RepE), the line bundle O✓(1) on the special fiber Rep
�
E, ¯D is the restriction to the special

fiber of a line bundle defined over all of RepR,D.

In particular, if D̄ is stabilizing with respect to ✓, the projective fine ✓-stable moduli space

Rep
�,s
E, ¯D(✓) of Corollary 2.2.2.14 is the special fiber of a projective subscheme Rep

s

R,D(✓) of

the moduli stack RepR,D arising as the algebraization of the completion of RepR,D along

Rep
�,s
E, ¯D(✓).

Proof. Firstly, we show that the ample line bundle O✓(1) is a specialization of an ample

line bundle that exists on all of RepD. This follows directly from the fact that we can lift

the idempotents defining O✓(1) according to (2.2.2.13) from E⌦A FA to E. We then use the

same formula.

Now we apply formal GAGA [Gro61b, Theorem 5.4.5] to draw the conclusion. ⇤

We thank Mark Kisin for comments leading to the following remark.

Remark 2.2.4.2. In fact, Theorem 2.2.4.1 can be extended to a henselian base. The line

bundle ample on the particular subspace certainly exists. Then, in place of the completion

of RepR,D along Rep�,s
E, ¯D

(✓), one can consider the henselization along this subscheme.

This theorem is especially significant in the context of continuous representations and

pseudorepresentations of a profinite algebra. Of course, it is necessary to show that we can

reduce the topological profinite case to the non-topological case under a finiteness condition

�
¯D, which we do in Chapter 3 (see e.g. Theorem 3.2.4.1). Then, firstly, the moduli space of

6See Remark 2.2.4.2.
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pseudorepresentations of a profinite algebra is a disjoint union of formal spectral of complete

local rings (Corollary 3.1.6.13). This allows Theorem 2.2.4.1 to be applied over the whole

moduli space of pseudorepresentations! Each component Spf B
¯D arises from the complete

local ring B
¯D, which is Noetherian upon the finiteness assumption �

¯D. These notions will

be defined and discussed in Chapter 3. For now we discuss the moduli of representations of

a Cayley-Hamilton B
¯D-algebra (R,D) where R is finite as a B

¯D-module.

This is the context in which Kisin proposed the projectivity of a moduli formal scheme

of representations of a profinite group with residually constant, split, multiplicity free pseu-

dorepresentation D̄, and a certain ordering of non-trivial residual extensions of the represen-

tation given in Definition 2.2.3.2 [Kis09a, Remark 3.2.7]. We verified in Theorem 2.2.3.5 that

the special fiber of  in this space Rep
0
E, ¯D is projective and is a closed subspace of the larger

projective subscheme Rep
ss

E, ¯D(✓) ⇢ RepE, ¯D. The ample line bundle O✓(1) on Rep
ss

E, ¯D(✓) is

therefore also ample on Rep
0
E, ¯D. Since this line bundle deforms to RepR,D as discussed in

Theorem 2.2.4.1, formal GAGA implies that the formal completion of Rep
0
E, ¯D in RepR,D

is projective. In particular, it is algebraizable and is a projective SpecB
¯D-subscheme of

RepR,D, which we denote by Rep
0
R,D. This completes the confirmation of Kisin’s suggestion

that the space of representations with reduction in Rep
0
E, ¯D is projective. We summarize this

in the following

Corollary 2.2.4.3. Let ⇢̄ss
¯D

: E ! Md(FA) be chosen as in Theorem 2.2.3.5, and

choose an ordering of its simple factors in order to define the subgroupoids Rep
0
R,D ⇢

RepR,D,Rep
0
E, ¯D ⇢ RepE, ¯D as above. Assume that the associated pseudorepresentation satis-

fies condition �
¯D. The formal completion of RepR,D along the projective subscheme Rep

0
E, ¯D

of the special fiber of  is projective over Spf B
¯D with ample line bundle O✓(1). Conse-

quently, this formal scheme is algebraizable with algebraization Rep
0
R,D, a projective SpecB

¯D-

subscheme of RepR,D.
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2.3. Multiplicity Free Pseudorepresentations

Chenevier showed that a Cayley-Hamilton algebra (R,D) over a henselian local ring A

which is residually split and absolutely irreducible is a matrix algebra (Theorem 2.1.3.3).

This corresponds to very tidy results in in the moduli theory of representations and pseu-

dorepresentations that locally satisfy these conditions: the deformations of representations

and pseudorepresentations are equivalent (Corollary 2.1.3.4).

Our goal in this section is to generalize these results to the case that a pseudorepresen-

tation is residually multiplicity free (see Definition 1.3.4.4). Here, the moduli of representa-

tions and pseudorepresentations are no longer equivalent. For example, over a multiplicity

free geometric point D̄ of PsRd
R, non-trivial extensions of the Jordan-Hölder factors Mi of

⇢ss
¯D
may form positive dimensional families of representations lying over this single pseu-

dorepresentation; for example, this often happens if there exists Mi,Mj, i 6= j, such that

dimF
A

Ext1R(Mi,Mj) � 2. What we want to show is that around multiplicity free points in

PsRd
R,  (resp.  ̄) is an adequate moduli space. This will mean that the multiplicity free

locus of pseudorepresentations is a universal scheme-theoretic quotient for representations of

R up to conjugation. This improves the results of GIT (Theorem 1.5.4.2), which only have

fine enough resolution to give a satisfactory theory for geometric points.

The main tool to accomplish this will be a generalized matrix algebra. The key result

generalizing Theorem 2.1.3.3 is Theorem 2.3.1.2, which shows that a Cayley-Hamilton alge-

bra (R,D) over a henselian local ring is a generalized matrix algebra. The linear structure

we can put on the moduli space of representations of a generalized matrix algebra, an “adap-

tation” of its representations, will allow us to show that the invariant functions on the space

of framed representations are exactly the coe�cients of the universal pseudorepresentation,

as desired (Theorem 2.3.3.7).

Remark 2.3.0.4. Currently, the notion of generalized matrix algebra that we use is meant

to work with pseudocharacters as opposed to pseudorepresentations (see §1.1.12). Therefore,

we state our main result here in the case that (2d)! is invertible in A (i.e. charFA > 2d),

which is a su�cient condition for pseudocharacters to be equivalent to pseudorepresentations
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according to Proposition 1.1.12.3(3). We expect to develop a theory of generalized matrix

algebras compatible with pseudorepresentations, which will allow us to remove the condition

on the characteristic (see Remark 2.3.3.6).

2.3.1. Generalized Matrix Algebras. We define generalized matrix algebras.

Definition 2.3.1.1 ([BC09, Definition 1.3.1]). Let A be a commutative ring and R an

A-algebra. We say that R is a generalized matrix algebra (GMA) of type (d
1

, . . . , dr) if R is

equipped with

(1) a family of orthogonal idempotents e
1

, . . . , er of sum 1

(2) for each i, an A-algebra isomorphism  i : eiRei !Md
i

(A),

such that the trace map T : R! A defined by

T (x) :=
rX

i=1

Tr( i(eixei)),

satisfies T (xy) = T (yx). The “data of idempotents” of the GMA is E = {ei, i}.

Here is the main result making possible our use of generalized matrix algebras to study

 : Rep ! PsR: given a henselian local ring A and a Cayley-Hamilton algebra (R,D) over

A, R must be a generalized matrix algebra.

Theorem 2.3.1.2 ([Che11, Theorem 2.22(ii)]). Let D : R ! A be a Cayley-Hamilton

pseudorepresentation over a henselian local ring A. If D̄ is split and multiplicity free, then

(R, TD) is a generalized matrix algebra.

We use the GMA structure on (R, E) to establish notation for elements of R analogous

to matrices with a single non-zero entry.

Definition 2.3.1.3. Let Ek,l
i 2 eiRei be the unique element mapping under  i to the

matrix in Md
i

(A) with 1 in the (k, l)th entry and 0 elsewhere. Write Ei = E1,1
i . For

1  i, j  r set Ai,j := EiREj. For 1  i, j, k  r we have Ai,jAj,k ⇢ Ai,k so that the

product in R induces maps

'i,j,k : Ai,j ⌦A Aj,k ! Ai,k.
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Belläıche and Chenevier use these elementary matrix-like elements to exhibit a matrix-

like structure on any given GMA (R, E).

Lemma 2.3.1.4 (Belläıche-Chenevier, §1.3.2). There is a canonical isomorphism of A-

algebras

R ⇠=

0BBBBBBB@
Md1(A1,1) Md1⇥d2(A1,2) · · · Md1⇥d

r

(A
1,r)

Md2⇥d1(A2,1) Md2(A2,2) · · · Md2⇥d
r

(A
2,r)

...
...

...
...

Md
r

⇥d1(Ar,1) Md2(Ar,2) · · · Md
r

(Ar,r)

1CCCCCCCA
,

where the A-algebra structure is determined by canonical isomorphisms

Md
i

d
j

(Aij)
⇠! eiRej.

In analogy to Definition 2.2.1.4, we take note of the conditions that the maps 'i,j,k must

satisfy (cf. [BC09, Lemma 1.3.5]) as a result of the construction above. Here we implicitly use

a canonical morphism for each i, Ai,i
⇠! A, that arises from the trace T , i.e. Ai,i ,! R

T�! A

is an isomorphism.

(UNIT) For all i, Ai,i
⇠= A and for all i, j, 'i,i,j : A⌦Ai,j ! Ai,j (resp. 'i,j,j : Ai,j⌦A! Ai,j)

is the A-module structure of Ai,j.

(ASSO) For all i, j, k, l, the two natural maps Ai,j ⌦Aj,k ⌦Ak,l ! Ai,l coincide.

(COM) For all i, j and for all x 2 Ai,j, y 2 Aj,i, we have 'i,j,i(x⌦ y) = 'j,i,j(y ⌦ x).

Belläıche and Chenevier note that specifying the data of A-modules Ai,j, 1  i, j  r with

maps 'i,j,k as above satisfying (UNIT), (ASSO), and (COM), then R := Md
i

,d
j

(Ai,j) is

uniquely a GMA of type (d
1

, . . . , dr) such that EiREj
⇠= Ai,j for all i, j. This completes a

satisfying structure theory for GMAs.

Remark 2.3.1.5. Compare these conditions (UNIT), (ASSO), (COM) with the groupoid

of families of quiver representations in Definition 2.2.1.4.

2.3.2. Trace Representations and Adapted Representations. Now we define the

notion of an adapted representation of a GMA (R, E). Adapted representations have extra
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linear structure that makes their moduli easier to handle than the general moduli problem

of representations.

Definition 2.3.2.1 ([BC09, Definition 1.3.6]). Let B be a commutative A-algebra and

let (R, E) be a generalized matrix A-algebra. A representation ⇢ : R ! Md(B) is said to

be adapted to E if its restriction to the A-subalgebra
Lr

i=1

eiRei is the composite of the

representation
Lr

i=1

 i by the natural “diagonal” map

Md1(A)� · · ·�Md
r

(A)!Md(B).

We define Rep⇤
Ad

(R, E) to be the functor associating an A-algebra B to the set of adapted

representations of (R, E) over B.

We also give a definition of a trace representation. This is nothing more than the ana-

logue, where pseudocharacters replace pseudorepresentations, of the functor of representa-

tions lying over a given pseudorepresentation.

Definition 2.3.2.2 ([BC09, §1.3.3]). If R is an A-algebra equipped with a d-dimensional

pseudocharacter T : R ! A and B is a commutative A-algebra, we will say that a map of

A-algebras ⇢ : R ! Md(B) is a trace representation if Tr � ⇢(x) = T (x)1B for any x 2 R.

We write Rep⇤
T for the functor of trace representations on AlgA.

Of course, this definition can be applied to Azumaya algebra valued representations as

well, to get a groupoid RepT analogous to the definition for pseudocharacters (Definition

1.4.1.1). We will assume that (2d)! is a unit in A so that we can consider pseudocharacters

and pseudorepresentations to be the same object (cf. Proposition 1.1.12.3).

The key result is that a trace representation can be made into an adapted representation

after base change and conjugation. This is the key result we require in order to compare the

moduli problem for adapted representations with our usual moduli problem for representa-

tions.
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Lemma 2.3.2.3 ([BC09, Lemma 1.3.7]). Let B be a commutative A-algebra and ⇢ : R!

Md(B) be a trace representation. Then there is a commutative ring C containing B and a

P 2 GLd(C) such that P⇢P�1 : R ! Md(C) is adapted to E . Moreover, if every finite type

projective B-module is free, then we can take C = B.

We omit the proof, since we will give a proof more precisely tailored to the situation we

are required to address in order to prove Proposition 2.3.3.5 below.

Adapted representations have a very concrete moduli functor.

Proposition 2.3.2.4 ([BC09, Propositions 1.3.9, 1.3.13]). When (R, E) is a GMA over

A, the functor Rep⇤
Ad

(R, E) : AlgA ! Set associating a commutative A-algebra B to the set

of homomorphisms R!Md(B) adapted to E is representable by a faithful A-algebra Bu with

an injective universal adapted homomorphism R ,!Md(Bu).

Proof. The proof shows that one can find a ring Bu with inclusions Ai,j ,! Bu (where

Ai,j are from Lemma 2.3.1.4 above) such that the isomorphism in Lemma 2.3.1.4 is precisely

the injection required. Bu is constructed as a quotient of the symmetric power algebra on

�i 6=jAi,j. For additional details, see [BC09]. ⇤

It follows from the existence of the universal adapted representation that the trace func-

tion on a GMA is Cayley-Hamilton (cf. [BC09, Corollary 1.3.16]), where Cayley-Hamilton

is defined for pseudocharacters in analogy with the definition for pseudorepresentations in

Definition 1.1.8.5 (see [BC09, §1.2.3]). We give this brief argument: the trace T of the

GMA data (R, E) is equal to the composition of the trace function Tr on Md(Bu) with the

universal adapted representation R ! Md(Bu) given by Proposition 2.3.2.4. Since Tr is

Cayley-Hamilton and R!Md(Bu) is an algebra homomorphism, so is T Cayley-Hamilton.

2.3.3. Invariant Theory of Adapted Representations. In this paragraph, our goal

is to naturally identify the GIT quotient of Rep⇤
Ad

(R, E) with the algebra of traces, which

is A. This will allow us to do for adapted representations what we have not yet done for

general representations: show that pseudorepresentations are an adequate moduli space for
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representations. After completing this paragraph, we will use the comparison of adapted

representations with trace representations to show that  (resp.  ̄) is an adequate moduli

space over the multiplicity free locus of PsRd
R.

Let (R, E) be a d-dimensional generalized matrix algebra of type � = (d
1

, . . . , dr). We

set up the notation for the following group schemes; the group Z(�) is made to act naturally

on the a�ne scheme Rep⇤
Ad

(R, E).

Definition 2.3.3.1. In analogy with automorphism groups of quiver representations,

define GL(�) := GLd1 ⇥ · · ·⇥GLd
r

as a subgroup

GLd1 ⇥ · · ·⇥GLd
r

⇢ GLd,

compatible with the maps  i : Md
i

! Md of Definition 2.3.2.1. Let Z(�) denote the center

of GL(�). Likewise, let PGL(�) denote the quotient of GL(�)/� of GL(�) by the diagonally

embedded central 1-dimentional torus � ⇠= Gm, and let PZ := Z(�)/�.

Because Z(�) commutes with �iMd
i

, its adjoint action preserves the adaptation. There-

fore we have a natural action of Z(�) on Rep⇤
Ad

(R, E), inducing a natural action of PZ(�).

There is a natural map

(2.3.3.2) Rep⇤
Ad

(R, E) ,! Rep⇤,d
R

given by forgetting the adaptation data. The map �iMd
i

,!Md induces a canonical injection

Z(�) ,! GLd (resp. PZ(�) ,! PGLd). In this lemma, we record the fact that (2.3.3.2) is

equivariant for the action of Z(�) (resp. PZ(�)). We also calculate the GIT quotient of the

action of Z(�) on Rep⇤
Ad

(R, E).

Lemma 2.3.3.3. Given (R, E) a GMA over A of type �. The map (2.3.3.2) is equivariant

for the action of Z(�) (resp. PZ(�)). The invariant regular functions on Rep⇤
Ad

(R, E) under

this action are precisely A ⇢ Bu.

Proof. The first claim can be checked by each of the embeddings of functors and groups

set up above. For the claim on the invariant functions, as we mentioned in the proof of
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Proposition 2.3.2.4, Bu is generated over A by Ai,j for i 6= j. As Z(G) ' Gr
m acts on Bu

(observe the form of the matrices in Lemma 2.3.1.4), it acts on each of Aij (i 6= j) by a

(distinct) non-trivial character, namely, through the roots of GLd. Since these modules Aij

generate the coordinate ring Bu of Rep⇤
Ad

(R, E), we see that (Bu)Z(�) ⇠= A, i.e.

Rep⇤
Ad

(R, E)//Z(�) ⇠= SpecA

as desired. ⇤

If as usual, we let (R, E) be a d-dimensional generalized matrix A-algebra of type �, the

lemma above shows that we have a morphism of stacks

[Rep⇤
Ad

(R, E)/Z(�)] �! RepR,T

[Rep⇤
Ad

(R, E)/PZ(�)] �! RepR,T ,

(2.3.3.4)

because of the equivariance of the adaptation-forgetting map (2.3.3.2) with respect to the

embedding Z(�) ,! GLd (resp. PZ(�) ,! PGLd).

Now we will show that (2.3.3.4) is an isomorphism when A is a henselian local ring! To

do this, we will find a quasi-inverse. We recall here that we are assuming that (2d)! is a

unit in A, so that pseudorepresentations and pseudocharacters are identical by Proposition

1.1.12.3, and we can apply our knowledge of pseudorepresentations to this problem.

Proposition 2.3.3.5. Let A be a henselian local ring and let (R,D) be a d-dimensional

Cayley-Hamilton A-algebra, so that (R, E) is a generalized matrix A-algebra with trace func-

tion T . Then the natural induced maps of SpecA-algebraic stacks (2.3.3.4) are isomorphisms.

Remark 2.3.3.6. We record an alternative notion of generalized matrix algebra, replac-

ing the notion relative to pseudocharacters with one for pseudorepresentations. Using the

notation of Definitions 2.3.1.1 and 2.3.1.3, we replace the trace map T with a “determinant

map” D : R ! A as follows: let the symmetric group Sd act on the complete set of d
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primitive orthogonal idempotents Ej,j
i 2 R.

D(r) :=
X
�2S

d

sgn(�)
Y

1ir

Y
1jd

i

Ej,j
i r�(Ej,j

i ).

This determinant map is compatible with tensor products, and defines a d-dimensional pseu-

dorepresentation. We expect to extend the theory of generalized matrix algebras of [BC09]

to this case. This would eliminate the complications with the characteristic of coe�cient

rings.

Proof. (Proposition 2.3.3.5) Let X be a SpecA-scheme. Choose (⇢, VX) 2 RepT (X).

The idempotents ei 2 R break VX into a direct sum of projective sub-OX-modules Vi := eiVB

of rank di,

VX
⇠=

rM
i=1

Vi.

Each Vi receives an A-linear action of eiRei ⇢ R, and therefore a OX-linear action of eiRei⌦A

OX . Using the GMA data  i : eiRei
⇠! Md

i

(A), we see that EndB(Vi) ⇠= Md
i

(OX). This

means that as a OX-module, Vi is isomorphic to a twist of a free rank di vector bundle Fi

by a line bundle Li.

Let Gi := IsomO
X

(Li,OX) be the Gm-torsor over X corresponding to Li. Then G :=

⇥r
i=1

Gi is naturally a Z(�)-torsor. Indeed, the base change of VX to G from X is a free

rank d OG-vector bundle with a canonical basis adapted to (R, E). This defines a map

G ! Rep⇤
Ad

(R, E), equivariant for the action of Z(�). We have therefore established a

morphism

RepT �! [Rep⇤
Ad

(R, E)/Z(�)].

We observe that this provides a quasi-inverse to (2.3.3.4). ⇤

We now replace pseudorepresentations with pseudocharacters, using the fact that they

are equivalent to each other; this is the case because we are assuming that (2d)! is invertible

in the base ring A (cf. Proposition 1.1.12.3).

We recall the notation of §1.5. S is an a�ne Noetherian scheme, and R is a quasi-coherent

finitely generated OS-algebra. The map ⌫ : Rep⇤,d
R //PGLd ! PsRd

R measures the di↵erence
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between the GIT quotient of the space of framed d-dimensional representations Rep⇤,d
R by

the action of PGLd and the moduli scheme PsRd
R of d-dimensional pseudorepresentations.

We showed in Theorem 1.5.4.2 that ⌫ is a finite universal homeomorphism, or “almost

isomorphism.” We showed in Corollary 2.1.3.4 that ⌫ is an isomorphism in the neighborhood

of points corresponding to absolutely irreducible representations of R. Now we will extend

this result, showing that ⌫ is an isomorphism in the neighborhood of points corresponding

to multiplicity free pseudorepresentations.

Theorem 2.3.3.7. Let A be a commutative Noetherian ring and let R be a finitely gen-

erated A-algebra. There exists a Zariski open subscheme U ⇢ PsRd
R with the following two

properties:

(1) the set U contains all points of residue characteristic greater than 2d corresponding

to multiplicity free pseudorepresentations of R, and

(2) ⌫ is an isomorphism onto U .

Proof. We will write X = Rep⇤,d
R //PGLd for convenience.

We already know that ⌫ is a finite universal homeomorphism of finite type SpecA-schemes

(Theorem 1.5.4.2 ). Therefore ⌫ is étale in the neighborhood of some point D 2 PsRd
R if

and only if it is an isomorphism in that neighborhood.7 Since being an isomorphism is a

local property on the base, in order to prove the theorem, it will su�ce to show that ⌫

is étale in a neighborhood of each of the specified points. Since ⌫ is finite type, it will

su�ce to show that the induced maps on complete local rings are étale; we will simply show

that they are isomorphisms. We may have to make an étale base change in order that the

pseudorepresentation may be assumed to be split; this is not a problem, since we can descend

the étale property along this morphism.

We apply Theorem 1.4.3.1 to replace Rep⇤,d
R (resp. Repd

R, resp. Rep
d

R) with Rep⇤,d
E,Du

(resp. Repd
E,Du

, resp. Rep
d

E,Du

) where E = E(R, d). We will think of  (resp.  ̄) as a

morphism out of Repd
E,Du

(resp. Rep
d

E,Du

).

7In fact, any étale universal homeomorphism is an isomorphism.
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Let D̄ be a point of PsRd
R of residue characteristic greater than 2d, and write x =

⌫�1(D̄) 2 X for the corresponding point of X. We have a canonical map

Ô
PsR

d

R

, ¯D �! ÔX,x

which we wish to show is an isomorphism. Write Û
¯D := Spec Ô

PsR

d

R

, ¯D, V̂x := Spec ÔX,x. Of

course, Û
¯D classifies the pseudodeformations of D̄ to Artinian A-algebras with residue field

F
¯D and has a universal pseudodeformation Du

¯D
, so we will just write PsRDu

D̄

in place of Û
¯D.

Because X and PsRd
R are Noetherian, the morphisms PsRDu

D̄

! PsRd
R, V̂x ! X are flat.

By the Artin-Rees theorem and the finitude of ⌫, they form a cartesian square

(2.3.3.8) V̂x
//

✏✏

X

⌫

✏✏
ˆPsRDu

D̄

// PsRd
R.

Now [Alp10, Proposition 5.2.9(1)] says that the flatness of the completion maps along with

the fact that the maps �, �̄ of (1.5.2.2) are adequate moduli spaces (Definition 1.5.1.1) will

imply that the maps �, �̄ of

Repd
E,Du

⇥
PsR

d

R

PsRDu

D̄

⇠
// Repd

E,Du

⇥X V̂x

 

✓✓

�

✏✏

V̂x

⌫

✏✏

PsRDu

D̄

PsRDu

D̄

V̂x

⌫

OO

Rep
d

E,Du

⇥
PsR

d

R

PsRDu

D̄

⇠
// Rep

d

E,Du

⇥X V̂x

¯ 

RR

¯�

OO

are also adequate moduli spaces. Since (2.3.3.8) is cartesian, we get an identical picture by

replacing Repd
E,Du

⇥X V̂x with Repd
E,Du

⇥
PsR

d

R

PsRDu

D̄

, as we have indicated with the horizontal

isomorphisms above.
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Write p
¯D for the prime ideal of �d

A(R)ab corresponding to D̄ 2 PsRd
R, and write B

¯D for

the p
¯D-adic completion of (�d

A(R)ab)p
D̄

. Now, unraveling definitions for the fiber product

Repd
E,Du

⇥
PsR

d

R

PsRDu

D̄

, using Lemma 1.1.8.6, and noting that the p
¯D-adic completion Ê

¯D

of E ⌦
�

d

A

(R)

ab (�d
A(R)ab)p

D̄

is isomorphic to E ⌦
�

d

A

(R)

ab B ¯D, we see that the fiber product is

isomorphic to

Repd
ˆE
D̄

,(Du⌦�B
D̄

)

,

the groupoid of representations of the Cayley-Hamilton B
¯D-algebra (Ê

¯D, D
u⌦B

¯D) compat-

ible with its pseudorepresentation. The universal pseudorepresentation also is compatible

with these completions and base changes; we write Du
¯D
: E

¯D ! B
¯D in place of Du⌦B

¯D. Of

course, the same things can be said with Rep in the place of Rep.

Because B
¯D is a henselian ring, we see that we are now in the situation of Proposition

2.3.3.5. Indeed, Theorem 2.3.1.2 implies that (Ê
¯D, T ¯D) is a generalized matrix algebra, where

we write T
¯D for the trace function ⇤

Du

D̄

1,B
D̄

associated to Du
¯D
. Then Proposition 2.3.3.5 gives

us isomorphisms of algebraic stacks

[Rep⇤
Ad

(E
¯D, T ¯D)/Z(�)]

⇠�! RepDu

D̄

,

[Rep⇤
Ad

(E
¯D, T ¯D)/PZ(�)]

⇠�! RepDu

D̄

Lemma 2.3.3.3 tells us that

�(O(Rep⇤
Ad

(R, E)))Z(�) ⇠= B
¯D.

This means that  (resp.  ̄) is an adequate moduli space with source [Rep⇤
Ad

(R, E)/Z(�)]

(resp. [Rep⇤
Ad

(R, E)/PZ(�)]), since this situation from GIT outlined in Example 1.5.1.3

is an example of an adequate moduli space. Theorem 1.5.1.4(5) implies that adequate

moduli spaces arising from a reductive group acting on an a�ne scheme have a unique base.

Therefore ⌫ induces an isomorphism V̂x
⇠! PsRDu

D̄

as desired. ⇤

Corollary 2.3.3.9. Over the base locus defined in Theorem 2.3.3.7,  (resp.  ̄) is an

adequate moduli space.
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This means that the pseudorepresentation scheme consists precisely of the invariant func-

tions of the framed moduli scheme under the action of conjugation. This sort of statement

on invariants is made clearly in Lemma 2.3.3.3.
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CHAPTER 3

Representations and Pseudorepresentations of Profinite Algebras

In this chapter, we apply the results on moduli spaces of representations of representations

and pseudorepresentations to the study of the moduli theory of continuous representations

of profinite algebras R. Our approach is to develop the topological theory of pseudorep-

resentations and prove (see e.g. Corollary 3.1.6.13) the representability of their moduli by

formal schemes that are disjoint unions of formal spectra PsR
¯D
⇠= Spf B

¯D of complete local

deformation rings B
¯D of residual pseudorepresentations D̄ (pseudodeformation rings). Up to

this point we will have been following Chenevier [Che11]. Then, we give conditions for the

Noetherianness of B
¯D, the most important being known as �

¯D (Definition 3.1.5.1). Then we

study the moduli space of representations more simply by studying the connected component

over each pseudodeformation spectrum. However, we will hold short of developing moduli

formal schemes/algebraic stacks of representations directly. Instead, upon the assumption

of �
¯D, we show that when the moduli problem of continuous representations is finitely pre-

sented over the moduli of pseudorepresentations. Then, the moduli formal scheme/stacks of

continuous representations on formal schemes arise, over Spf B
¯D, as completions of a natural

algebraic, finite type scheme/algebraic stack of representations.

We accomplish this by showing that under the condition �
¯D, the universal Cayley-

Hamilton representation E(R,Du
¯D
) of R over the universal deformation Du

¯D
of D̄ is finite as

a module over B
¯D. Then we simply observe that over coe�cient rings that are separated

continuous B
¯D-algebras, all (non-topological) representations of E

¯D lying over Du
¯D
|E are

automatically m
¯D-adically continuous. Now, any representation of E(R,Du

¯D
) is continuous,

and we can apply the theory of Chapters 1 and 2 directly to show that the functors of

continuous representations on formal schemes over Spf B
¯D are not only representable by

adic formal schemes, but are algebraizable over SpecB
¯D.
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Not only can we apply representability results from the previous chapters, but the results

of Chapter 3 overviewed above will allow us to apply all of the results of Chapters 1 and 2

to this profinite topological case (assuming condition �
¯D). We present these conclusions in

Theorem 3.2.5.1.

3.1. Pseudorepresentations of Profinite Algebras

In this section we introduce continuous pseudorepresentations, due to Chenevier [Che11],

and recall some basic topological facts about profinite rings and group algebras of profinite

groups. We assume that all topologies are Hausdor↵. We will focus on working with profinite

rings, and then pro-discrete rings.

Let A be a commutative topological ring and let R be a topological (continuous) A-

algebra. We establish notions of continuity for pseudorepresentations of R.

Definition 3.1.0.10. With A,R as above, a d-dimensional pseudorepresentation D :

R! A is said to be continuous provided that the following equivalent conditions hold.

(1) for each n � 1,↵ 2 In, the functions D[↵] : R ! A of Definition 1.1.2.14 are

continuous.

(2) the characteristic polynomial functions ⇤i = ⇤D
i : R! A, 1  i  d are continuous.

(3) For every commutative continuous A-algebra B, the function DB : R ⌦A B ! B is

continuous.

We will show that the notions of continuity in the definition are indeed equivalent.

Proof. The equivalence of (1) and (2) is immediate from Amitsur’s formula (Proposition

1.1.9.11(2)).

Recalling that a pseudorepresentationD : R! A consists of a functionDB : R⌦AB ! B

for every commutative A-algebra B, let us verify that (2) implies (3). When B is any

continuous topological A-algebra, this definition does indeed guarantee that each of the

induced homogenous functions

DB : R⌦A B ! B
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that make up the polynomial law are continuous. For we can write B as a continuous quotient

of a polynomial algebra C, where C is given its natural topology as a free A-module. The

D[↵] are coe�cient functions of DC by definitiion, and the functions DB are the composition

of DC with the continuous quotient map from C to B.

Conversely, using the case that B is a polynomial algebra B = A[t
1

, . . . , tn], we see that

(3) implies (1). A polynomial coe�cient D[↵] for ↵ 2 Idd is the composition of a continuous

map

Rn �! R⌦A A[t
1

, . . . , tn]

(ri) 7!
nX

i=1

riti

followed by DA[t1,...,tn], followed by the continuous function from A[t
1

, . . . , tn] to A given by

taking the ↵th coe�cient. Therefore D[↵] is continuous, as desired. ⇤

3.1.1. Pro-discrete Topological Notions. We will be interested exclusively in either

discrete or pro-discrete topologies. We begin by recalling some basic notions on profinite

topologies on rings, with an eye toward group algebras of profinite groups. We note that

rings are unital and associative but not necessarily commutative unless stated.

Lemma 3.1.1.1. Let R be a topological ring. The following conditions on R are equivalent.

(1) R is a profinite ring.

(2) R is Hausdor↵ and compact.

(3) R is Hausdor↵, compact, and totally disconnected.

(4) R is compact and has a fundamental system of neighborhoods of zero consisting of

open ideals of R.

(5) There is an inverse system of finite discrete rings with surjective maps such that R

is its limit.

Proof. This is [RZ10, Proposition 5.1.2]. ⇤

We will often denote by I a general open ideal of R.
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When A is a profinite (e.g. finite) commutative ring, we will be interested in the studying

continuous representations and pseudorepresentations of a profinite group �̂ with coe�cients

in A or in commutative A-algebras. The group algebra A[�̂] is clearly not a profinite A-

algebra. Therefore we discuss its natural topology and its profinite completion.

The topology on A[�̂] is defined by the fundamental system of neighborhoods of zero

given by the kernels of the canonical surjections

(3.1.1.2) (I, U) := ker(A[�̂] �! (A/I)[�̂/U ])

where I varies over open ideals of A and U varies over open normal subgroups of �̂. Each of

these ideals have finite index in A[�̂]. We then define the complete group algebra to be the

completion of A[�̂] with respect to this topology,

A[[�̂]] := lim �(A/I)[�̂/U ].

We see that this is a profinite ring, with open ideals

ker(A[[�̂]] �! (A/I)[�̂/U ]),

where we abuse notation by writing (I, U) for these ideals of A[[�̂]] as well. It is also possible

to express the complete group algebra as the limit

A[[�̂]] ⇠= lim �
U

A[�̂/U ].

Here are some basic facts about this construction.

Lemma 3.1.1.3. Let A be a commutative profinite ring and let �̂ be a profinite group.

(1) The intersection of all the ideals of the form (3.1.1.2) is zero.

(2) A[�̂] is densely embedded in A[[�̂]].

(3) �̂ 7! A[[�̂]] behaves functorially in �̂.

Proof. This is [RZ10, Lemma 5.3.5]. ⇤
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One more notion that remains before discussing continuous pseudorepresentations of

profinite algebras is that of the topology on the tensor product of pro-discrete algebras.

Let us therefore be explicit in explaining this topology on these tensor products and their

completions in the primary setting that we will require.

Definition 3.1.1.4. Let A be a profinite commutative ring. Let R be a profinite contin-

uous A-algebra with a fundamental system of finite index ideals (I�). Let B be a continuous

linearly topologized commutative A-algebra1 with fundamental system of ideals (J⌘). Then

a neighborhood of ideals of 0 in R⌦A B is given by the ideals

Image(I� ⌦A J⌘ �! R⌦A B)

as I�, J⌘ vary over elements of the fundamental systems of ideals mentioned above. The

completed tensor product is the limit

R⌦̂AB := lim �
�,⌘

R/I� ⌦A B/J⌘.

We observe that R⌦̂AB is profinite when R and B are profinite. The completed tensor

product is, of course, complete, even if B is not complete with respect to its topology. Also,

the natural map B ! R⌦̂AB factors through the completion B̂. See [RZ10, §5.5] for some

further discussion in the profinite case.

Remark 3.1.1.5. As discussed in Definition 3.1.0.10 and the proof the equivalence of the

definitions of continuity given theret, a continuous pseudorepresentation consists of continu-

ous functions DB : R⌦A B ! B for every A-algebra B. Because all of the topological rings

involved are Hausdor↵ and the targets are complete, DB will factor uniquely through the

completion map R ⌦A B ! R⌦̂AB. When we need to distinguish these two cases, we will

write DB for the map out of R⌦A B and D̃B for the map out of R⌦̂AB.

Now we would like to discuss continuous pseudorepresentations over profinite algebras.

First let us specify the data that we start with.

1See [Gro60, 0I, §7.1] for this definition.
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Conventions. Our general setup is the following: A is a commutative profinite ring,

and R is a profinite continuous A-algebra. It is important to note that if (Ii) are a set of

ideals of A forming a fundamental system of neighborhoods around 0 in A, then the induced

(Ii)-adic topology on R is not necessarily equivalent to the profinite topology on R. We will

always use the native profinite topology on R unless otherwise noted.

We are interested in continuous representations of R. We will generally use B to represent

a topological A-algebra of coe�cients for the representation, or X for a Spf(A)-formal scheme

of coe�cients. For most of our discussion, we will let B be an admissible A-algebra,2 where

we write AdmA for the category of admissible A-algebras. Sometimes B will be restricted to

certain subcategories of admissible A-algebras, such as local Artinian A-algebra with a fixed

residue A-field.

Any commutative profinite ring A is canonically a continuous Ẑ := lim �n
Z/nZ-algebra.

Since Ẑ ⇠=
Q

p Zp and the functors of representations over this base ring respect this de-

composition, we will assume that A is a continuous Zp-algebra for some rational prime p.

This means that p will be topologically nilpotent in the rings and algebras that we will be

concerned with.

3.1.2. Continuous Pseudorepresentations of Profinite Algebras. In this para-

graph, we provide more characterizations of continuous pseudorepresentations in the case

of profinite or prodiscrete topologies, and show that the Cayley-Hamilton ideal CH(D) of a

continuous pseudorepresentation is closed.

The following lemma, due to Chenevier, shows that the conventional notion that a ho-

momorphism from a profinite object to a discrete object is continuous if and only if it has

open kernel extends to the case of pseudorepresentations.

Lemma 3.1.2.1 (Following [Che11, Lemma 2.33]). Let A be a profinite commutative ring

and let R be a profinite A-algebra. Let B be a commutative continuous discrete A-algebra,

and choose a B-valued d-dimensional pseudorepresentation D of R. Let PD denote the

2See [Gro60, 0I, §7] for this and other notions for the topological coe�cient rings and formal schemes.
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corresponding degree d homogenous multiplicative A-polynomial law PD 2Md
A(R,B). Then

the following conditions are equivalent.

(1) D is continuous.

(2) PD is continuous.

(3) ker(D) is open.

(4) ker(PD) is open.

(5) D factors through a continuous discrete quotient ring of R⌦̂AB.

(6) PD factors through a continuous finite quotient ring of R.

Proof. The equivalences (3) () (5), (4) () (6) are clear.

If ker(PD) (resp. ker(D)) contains an open ideal, then it is continuous because the char-

acteristic polynomial coe�cient functions factor through a discrete space and have target a

discrete space. Therefore (3) =) (1), (4) =) (2).

Assume that PD is continuous; this means that each characteristic polynomial function

⇤i : R ! B is continuous. Since B is discrete and the topology on R is given by finite

index ideals, each ⇤i factors through R/Ii for some open ideal Ii. The intersection of these

ideals is open, so PD factors continuously through a finite discrete quotient. We have shown

(2) =) (4). The proof (1) =) (3) is identical, except that the ideals topologizing R⌦̂AB

are not necessarily finite index.

Since PD factors through D along the natural continuous map R ! R⌦̂AB, we have

(1) =) (2). Now assume (3); we will prove (4). Since the contraction of ker(D) along this

continuous map is an open (equivalently, finite index) ideal and contained in ker(PD), we see

that ker(PD) is also finite index and therefore open. ⇤

We prove this lemma in a more generality than the profinite case, although we only prove

the converse statement in the pro-discrete case.

Lemma 3.1.2.2. Let D : R ! A be a d-dimensional pseudorepresentation between topo-

logical rings. If D is continuous, then ker(D) ⇢ R is closed. If A,R are profinite as discussed

above and B 2 AdmA, then the converse is also true.
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Proof. The closure ker(D) of the two-sided ideal ker(D) is a two-sided ideal. Because

the characteristic polynomial functions ⇤i : R ! A are constant on cosets of ker(D) in R

and are also continuous, they are also constant on the closure of cosets. This means that D

factors through R ⇣ R/ker(D). According to Lemma 1.1.6.6, ker(D) is the largest two-sided

ideal K ⇢ R such that D factors through R/K. Therefore ker(D) = ker(D).

Now we prove the converse statement, assuming that A,R are profinite and B 2 AdmA.

Present B as a limit of A-algebras B = lim ��B�, where the system (B�) is composed of

finite discrete continuous A-algebras and the maps are surjective continuous A-algebra ho-

momorphisms. For each map ⇡� : B ⇣ B�, let P� denote the induced polynomial law

D� := ⇡� � D. Lemma 3.1.2.1 tells us that ker(D�) ⇢ R ⌦A B is open and closed, and

therefore ker(D) =
T
� ker(D�) is closed. ⇤

In the non-topological case discussed in Chapters 1 and 2, the notion of a Cayley-

Hamilton pseudorepresentation D : R! A and a Cayley-Hamilton A-algebra (R,D) played

a large role. This will be especially true as we consider the moduli of representations of

profinite algebras. Therefore the following lemma will be useful, showing that in the case

of profinite coe�cients, the Cayley-Hamilton ideal CH(D) is closed, so that the natural

surjection R ⇣ R/CH(D) is continuous.

Lemma 3.1.2.3. Let A be a complete Noetherian local ring, with finite residue field FA.

Let R be a profinite continuous A-algebra. Then CH(D) is a closed ideal. Consequently,

R/CH(D) is profinite, the natural map R ⇣ R/CH(D) is continuous, and is a continuous

A-algebra.

Proof. Freely using the notation of Definition 1.1.8.5, we recall that CH(D) is the two-

sided ideal of R generated by the image of �[↵](r
1

, . . . , rd) where ↵ varies over Idd and ri vary

over R. Let RId
d have its standard set-theoretic meaning, i.e. the set of tuples of elements of

R, each one corresponding to an element of Idd . Let Rl, Rr be copies of R distinguished for

notational purposes, and let (r↵r ) denote an element of R
Id
d

l , and (ri) denotes an element of
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Rd. Now define a function

R
Id
d

l ⇥Rd ⇥R
Id
d

r �! R

((r↵l ), (ri), (r
↵
r )) 7!

X
↵2Id

d

r↵l · �[↵]
D ((ri)) · r↵r .

The image of this map is precisely the two-sided ideal generated by the image of the �[↵]
D ,

i.e. CH(D).

Because R is profinite, it is compact Hausdor↵. And every map in sight is continuous.

Therefore the image CH(D) of the map above is closed by the closed map lemma. ⇤

3.1.3. The �p Finiteness Condition on Profinite Groups. When we consider the

case that R = A[[�̂]], we will often want to impose a condition on �̂ weaker than topological

finite generation, but strong enough to imply that the various functors of representations are

finite in the appropriate manner (e.g. finite type or Noetherian). This is the �p condition,

developed by Mazur [Maz89].

Definition 3.1.3.1. Let �̂ be a profinite group and let p be a prime number. We say

that �̂ satisfies the �p finiteness condition when one of the following equivalent conditions

holds, for every finite index (and therefore open) subgroup H ⇢ �̂.

(1) The maximal pro-p quotient of H is topologically finitely generated.

(2) For any finite dimensional Fp-vector space M with a continuous Fp-linear action of

H, the continuous cohomology group H1

c (H,M) is finite dimensional over Fp.

(3) There are only a finite number of continuous homomorphisms fromH to the additive

group Fp.

Example 3.1.3.2. When K/Q` is a finite field extension, �̂ = Gal(K̄/K) satisfies �p

because �̂ is topologically finitely generated.

Example 3.1.3.3. When F/Q is a finite field extension and S is a finite set of places

of F , let FS denote the maximal extension of F unramified outside S. Then by Hermite’s

theorem, Gal(FS/F ) satisfies �p.
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Given a finite index subgroup H ⇢ �̂, there exists a maximal quotient �̃ of �̂ with the

property that the image of H in �̃ is pro-p. If �̂ has property �p, then one can check that

�̃ (and of course the image of H in �̃) topologically is finitely generated. This quotient �̃ is

called the p-completion of �̂ relative to H. This notion will come up in the following sort of

example.

Example 3.1.3.4 (cf. [Maz89, p. 389]). Let �̂ satisfy condition �p, and let F be a finite

characteristic p field. Fix a continuous homomorphism ⇢̄ : �̂! GLd(F), where d � 0. Then

for any Artinian ring A with residue field F, the kernel of GLd(A) ⇣ GLd(F) is a pro-p

group. Therefore the action of �̂ through any deformation of ⇢̄ from F to A factors through

the p-completion of �̂ relative to ker(⇢̄).

3.1.4. Continuous Deformations of a Finite Field-Valued Pseudorepresenta-

tion. Let A be a Noetherian local commutative Zp-algebra with finite residue field FA, and

let R be a profinite A-algebra. Let F be a finite A-field (of characteristic p) and let

D̄ : R⌦A F �! F

be a continuous d-dimensional determinant. We are interested in continuous deformations

of D̄.

It will be useful in the sequel to apply Theorem 1.3.1.1 and write ⇢ss
¯D
for a representative

⇢ss
¯D : R⌦A F �!Md(F),

assuming that F is large enough so that D̄ is split and therefore ⇢ss
¯D
exists over F.

Remark 3.1.4.1. Applying Theorem 1.3.1.3 along with the fact that finite fields are

perfect, any finite field valued pseudorepresentation of R is automatically continuous, as is

⇢ss
¯D
, since the kernel of such D̄ must be finite index in R.

Artinian A-algebras with residue field F are the natural context to study deformations

of an object, such as D̄, defined over F. We reprise Definition 2.1.1.1.
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Definition 3.1.4.2. Let AF be the category of Artinian local A-algebras with residue

field F, where morphisms are local and continuous A-algebra homomorphisms. For B 2 AF

we write mB for its maximal ideal and endow it with the discrete (mB-adic) topology.

Let ÂF be the category of profinite local A-algebras with residue field F, where morphisms

are local continuous A-algebra homomorphisms. For B 2 AF we write mB for its maximal

ideal and endow it with the mB-adic topology.

The category ÂF includes AF as a full subcategory, and objects in ÂF consist of limits

(filtered projective limits with surjective maps) in AF.

We define the deformation functor PsR
¯D as follows.

Definition 3.1.4.3. With the data p, A,R, D̄, d and F as above, let PsR
¯D be the co-

variant functor on ÂF associating to each B 2 ob ÂF the set of continuous d-dimensional

pseudorepresentations

D : R⌦̂AB �! B

such that D⌦̂BF �! F ⇠= D̄. We call such deformations of D̄ pseudodeformations.

Remark 3.1.4.4. Let us clarify the notation D⌦̂AB where D : R ! A is a continuous

pseudorepresentation from a profinite A-algebra R to a profinite commutative continuous

A-algebra B. Let D ⌦A B : R⌦A B ! B be the non-topological version of the base change

of D from A to B. The tensor product has a profinite topology defined by the ideals used in

its profinite completion, although it is not complete with respect to this topology. Since the

characteristic polynomial coe�cient functions of D⌦A B are continuous and B is complete,

they factor through the completion with respect to this topology – a full argument along

these lines (but addressing a slightly di↵erent question) may be found in the proof of Lemma

3.1.6.4. We denote this pseudorepresentation by D⌦̂AB. We will extend this notion when

we allow B to be an admissible A-algebra.

We need to show that this definition of a functor is indeed functorial in ÂF and respects

surjective projective limits. It will su�ce to prove functorality on AF and that it respects

surjective projective limits. This is due to Chenevier.
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Lemma 3.1.4.5 ([Che11, Lemma 3.2]). The functor PsRd
R on ÂF is compatible with sur-

jective projective limits.

Proof. For a morphism (B ! B0) 2 ÂF and D 2 PsR
ˆD(B), we observe that D⌦̂BB

0 2

PsR
ˆD(B

0).

If R is any A-algebra, the functor of degree d homogenous multiplicative (not necessarily

continuous) A-polynomial laws Md
A(R,�) from A-algebras to sets is representable (Theorem

1.1.6.5), and therefore commutes with projective limits. For finite continuous A-algebras

Bi, a function R ! lim �i
Bi is continuous if and only if R ! Bi is continuous for every

i. Applying this to the characteristic polynomial coe�cient functions and recalling the

definition of continuity of a pseudorepresentation, we see that the same equivalence applies

to pseudorepresentations. This completes the lemma. ⇤

Now we will show that the functor of continuous pseudodeformations of D̄ : R⌦A F! F

is representable.

Theorem 3.1.4.6 ([Che11, Proposition 3.3]). The functor PsR
¯D : ÂF �! Sets is rep-

resentable, i.e. there exists a profinite local A-algebra B
¯D and a continuous d-dimensional

pseudorepresentation

Du
¯D : R⌦̂AB ¯D �! B

¯D

such that for any B 2 ÂF and any D 2 PsR
¯D(B), there exists a unique ÂF-morphism

B
¯D ! B such that Du

¯D
⌦̂B

D̄

B ⇠= D.

Proof. We will construct the representing algebra B
¯D as the profinite completion of the

representing object in the analogous non-topological case. By Theorem 1.1.6.5, there exists

a universal degree d multiplicative homogenous A-polynomial law

Du : R �! �d
A(R)ab

inducing the universal d-dimensional pseudorepresentation of Theorem 1.1.7.4 upon applying

⌦A�d
A(R)ab.
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Let  : �d
A(R)ab ! F be the A-algebra homomorphism corresponding to D̄. Call an ideal

I ⇢ �d
A(R)ab open if I ⇢ ker( ), �d

A(R)ab/I is a finite local ring, and the induced degree d

multiplicative A-polynomial law (called DI)

Du ⌦
�

d

A

(R)

ab �d
A(R)ab/I = DI : R �! �d

A(R)ab/I

is continuous. We must check that these ideals define a topology on �d
A(R)ab. We will call

this topology the D̄-adic topology on �d
A(R)ab.

As a union of ideals of I, I 0 of this type is a union of translates of I \ I 0, it will su�ce to

show that I \ I 0 is open. We consider the canonical A-homomorphism

(3.1.4.7) �d
A(R)ab/(I \ I 0) �! �d

A(R)ab/I ⇥ �d
A(R)ab/I 0.

It will su�ce to show that this map is a homeomorphism onto its image for the D̄-adic

topology. As this map is injective and induces the diagonal map F ! F ⇥ F after taking

the quotient of each of these three rings by their maximal ideals, we see that the properties

“finite” and “local” are preserved. It remains to show that the DJ for J = I, I 0, I \ I 0 are

topologically compatible with this map (we will specify what this means below).

Recall that the continuity of a multiplicative homogenous polynomial law is defined in

terms of its characteristic polynomial coe�cients. Write ⇤i/I for the reduction modulo I of

the universal characteristic polynomial functions ⇤i : R ! �d
A(R)ab. By assumption, ⇤i/I

and ⇤i/I
0 are continuous. Now consider the commutative diagram

R

⇤

i

/I⇥⇤

i

/I0

!!
⇤

i

/(I\I0) &&

⇤

i

// �d
A(R)ab

✏✏ ))

�d
A(R)ab/(I \ I 0)

(3.1.4.7)

// �d
A(R)ab/I ⇥ �d

A(R)ab/I 0

As (3.1.4.7) is a homeomorphism onto its image for the discrete topology, we have the

continuity of ⇤i/(I \ I 0). The fact that (3.1.4.7) is a homeomorphism onto its image for the

discrete topology implies that a quotient of its image will induce a continuous polynomial
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law if and only if a quotient of ⇤i/(I \ I 0) will. Since, as we noted above, the same claim

will hold true for the properties “finite” and “local,” we have shown that (3.1.4.7) induces a

homeomorphism onto its image for the topology on �dA(R)ab defined above, as desired.

Define B
¯D to be the completion of �d

A(R)ab with respect to this topology. This is a profi-

nite A-algebra, by definition of the topology. There is a universal continuous d-dimensional

pseudorepresentation which we will call Du
¯D
,

Du
¯D : R⌦̂AB ¯D �! B

¯D,

which we obtain from Du by the canonical map from �d
A(R)ab to its completion B

¯D. We

verify that this is an object of PsR
¯D(B ¯D) by applying Lemma 3.1.4.5:

PsR
¯D(B ¯D) = lim �

I

PsR
¯D(�

d
A(R)ab/I),

and DI for each D̄-adically open ideal I defines a projective system of continuous �d
A(R)ab/I-

valued homogenous degree d multiplicative A-polynomial laws whose limit is Du
¯D
.

Having constructed Du
¯D
, we now verify its universality. Let B 2 AF and choose D 2

PsR
¯D(B). By Theorem 1.1.6.5, there exists a unique A-algebra map f : �d

A(R)ab ! B such

that D = f �Du and f (mod mB) ⇠=  . Therefore ker(f) ⇢ ker( ). Also, �d
A(R)ab/ ker(f) ⇢

B is finite local. Finally, the continuity of D implies that ker(f) is open in the D̄-adic

topology on �d
A(R)ab. Therefore we have the universality of (B

¯D, D
u
¯D
) as a functor on AF;

Lemma 3.1.4.5 implies that it is universal on ÂF. ⇤

Remark 3.1.4.8. In the case that the profinite A-algebra R arises as the complete group

ring R = A[[�̂]] for some profinite group �̂, one can alternatively form B
¯D by replacing R

with A[�̂] and completing �d
A(R)ab with respect to the D̄-adic topology described above.

This is Chenevier’s approach [Che11, Proposition 3.3]. Because A[�̂] is dense in A[[�̂]], one

can check the functors and constructions amount to the same thing.

Remark 3.1.4.9. We note that just as �d
A(R)ab is generated by ⇤Du

i (r) for r 2 R and

1  i  d (this is the non-topological case), so is B
¯D topologically generated by ⇤

Du

D̄

i (r) for
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r 2 R and 1  i  d. This is a consequence of Amitsur’s formula (Proposition 1.1.9.11(2)).

This statement remains true when the choice of r 2 R is restricted to r in a dense subset

of R. For example, if � ⇢ �̂ is a dense subgroup of �̂, then a pseudodeformation of a

D̄ : A[[�̂]]⌦̂AF! F is determined by the characteristic polynomial coe�cients of the universal

pseudodeformation of D̄ evaluated at the elements of �.

Remark 3.1.4.10. Following on Corollary 2.1.3.4, the continuous deformations of an ab-

solutely irreducible residual pseudorepresentation are equivalent to continuous deformations

of the associated absolutely irreducible representation. Compare [Nys96, Theorem 2] in the

case of pseudocharacters.

3.1.5. Finiteness Condition �
¯D. Having defined the universal continuous pseudode-

formation of a finite field-valued continuous pseudorepresentation of a profinite A-algebra

R, we are interested in finiteness properties of this functor. The main finiteness property of

interest for the complete local continuous A-algebra representing this deformation functor is

the Noetherian property.

We recall Lemma 2.1.1.5, which gives equivalent conditions under which a complete local

ring is Noetherian. As in Chapter 2, we will aim to show the finiteness of the tangent space

in order to show that the pseudodeformation ring is Noetherian. Our strategy is to show that

the tangent space is finite-dimensional if one assumes �
¯D We have already developed the

non-topological notion of tangent spaces to a field-valued pseudorepresentation in §2.1.2, and

have given criteria for the finiteness of the dimension for this tangent space in Proposition

2.1.2.3. We will freely use the notation of §2.1.2, and aim to prove a topological version of

Proposition 2.1.2.3. As in §2.1.2, these are results of Chenevier, which we extend to arbitrary

characteristic.

If D
0

denotes a d-dimensional (possibly non-continuous) pseudorepresentation D : R !

A, we recall that TD0 denotes the non-topological tangent space at D0

2 PsRd
R(A). Assuming

now that D
0

is continuous, denote by T c
D0

the A-submodule of continuous lifts of D
0

. We
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can write this as a union of A-modules

T c
D0

=
[
I

T I
D0
,

where I varies in the set of all open two-sided ideals of R such that ker(D
0

) ◆ I, and T I
D0

is

defined to be the liftings P such that ker(P ) ◆ I.

Now assume that A is a finite field F and replace D
0

with a continuous d-dimensional

pseudorepresentation D̄ : R ! F. Then S
¯D := R/ ker(D̄) is finite dimensional by Theorem

1.3.1.3.

Definition 3.1.5.1. With D̄ : R ! F a continuous pseudorepresentation of a profinite

F-algebra R into a finite field F, we say that D̄ satisfies condition �
¯D or that �

¯D holds when

the set of continuous extensions Ext1R(S ¯D, S ¯D)
c is finite dimensional as a F-vector space.

The finiteness condition �
¯D on continuous extension is the finiteness condition we require

to give a topological generalization of Proposition 2.1.2.3.

Proposition 3.1.5.2 (Following [Che11, Proposition 2.35]). Let R be a profinite F-

algebra where F is a finite field. Let D̄ : R! F be a continuous d-dimensional pseudorepre-

sentation satisfying condition �
¯D. Then T c

¯D
is finite dimensional over F.

Proof. It will su�ce to show that there exists a bound on the dimension of T I
¯D
that

is independent of choice of finite index two-sided ideal I ⇢ R such that I ⇢ ker(D̄). Fix

such an ideal I. Also choose N such that ker(D̄) ⇢ CH(D̄); such an N exists by Lemma

1.2.3.1(4). By Lemma 2.1.2.2, we know that

T I
¯D ⇢ Pd

F(R/(ker(D̄)2N + I),F).

Therefore, it will su�ce to show that the right hand side has F-dimension bounded indepen-

dently of I.

Since I ✓ ker(D̄), we have for each n � 1 the natural surjection

(ker(D̄)/(ker(D̄)2 + I))⌦
n

F �! (ker(D̄)n + I)/(ker(D̄)n+1 + I),
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similar to the proof of Proposition 2.1.2.3. Because S
¯D is finite dimensional, it will be enough

to show that the F-dimension of ker(D̄)/(ker(D̄)2 + I) is bounded independently of I.

Because S
¯D is a semisimple F-algebra, it will su�ce to show that

dimF(HomR(ker(D̄)/(ker(D̄)2 + I), S
¯D))

is bounded independently of I. By noting that the action of R on ker(D̄)/(ker(D̄)2 + I)

factors through R/I and applying Lemma 1.3.3.1, we have

HomR(ker(D̄)/(ker(D̄)2 + I), S
¯D)

⇠�! Ext1R/I(S ¯D, S ¯D).

The right hand side is a sub-F-vector space of Ext1R(S ¯D, S ¯D)
c, i.e. the action of R on the

extension is continuous, since the action of R on any of these extensions factors through

the finite (cardinality) F-algebra R/I. Because of the assumption that the dimension of

Ext1R(S ¯D, S ¯D)
c is constant (and clearly independent of I), we are done. ⇤

Now we are ready to give some su�cient conditions on the continuous d-dimensional

pseudorepresentation D̄ : R ⌦A F ! F to guarantee that the deformation functor is repre-

sented by a Noetherian ring. We recall that with D̄ as specified above, ⇢ss
¯D
: R⌦A F̄!Md(F̄)

denotes a semi-simple representation associated to D̄ by Theorem 1.3.1.1, which is continu-

ous because the continuity of D̄ implies that ker(D̄) is closed (Lemma 3.1.2.2). We will also

use S
¯D to denote S

¯D := (R ⌦A F)/ ker(D̄), which is finite dimensional over F by Theorem

1.3.1.3.

Theorem 3.1.5.3 (Following [Che11, Proposition 3.7]). Let A be a Noetherian complete

local Zp-algebra and let R be a profinite continuous A-algebra. Let D̄ : R⌦̂AF ! F be a

continuous d-dimensional pseudorepresentation, where F is a finite continuous A-field. Then

the complete local profinite continuous A-algebra B
¯D is Noetherian if any of the following

conditions are true.

(1) R is topologically finitely generated as an A-algebra.

(2) D̄ satisfies condition �
¯D.

194



(3) �̂ is a profinite group, R = A[[�̂]], and the continuous cohomology H1

c (�̂, ad(⇢
ss
¯D
)) is

finite dimensional over F̄.

(4) �̂ is a profinite group satisfying Mazur’s �p-condition and R = A[[�̂]].

Proof. We will show that any of these conditions implies that the tangent space T
¯D

(Definition 2.1.2.1) to PsRd
R at D̄ is finite dimensional over F. This tangent space is nat-

urally dual to m
¯D/(mA,m2

¯D
), which is therefore finite-dimensional. Since A is assumed to

be Noetherian, this finiteness in turn implies that m
¯D/m

2

¯D
is finite-dimensional. Therefore,

PsR
¯D is Noetherian by Lemma 2.1.1.5.

That condition (2) is su�cient to prove that B
¯D is Noetherian is immediate from Propo-

sition 3.1.5.2. Condition (3) is the same condition as (2) in the case that R = A[[�̂]], after

tensoring by ⌦FF̄. Condition (4) is su�cient to imply condition (3), as discussed in Definition

3.1.3.1.

Assume condition (1). Let Rfg be a finitely generated dense sub-A-algebra of R. Then

PsRd
Rfg

is a finite type (hence Noetherian) A-scheme by Theorem 1.1.10.15. Upon observing

that PsR
¯D is the formal scheme arising from PsRd

Rfg

by completion at the maximal ideal of

PsRd
Rfg

corresponding to D̄, we are done. ⇤

3.1.6. Pseudorepresentations valued in Formal Schemes. So far we have dis-

cussed pseudorepresentations of a profinite A-algebra R, where A is a complete local Noe-

therian Zp-algebra with finite residue field F. We have found that the functor of deformations

of a given finite field valued pseudorepresentation is representable (Theorem 3.1.4.6), and

have given su�cient conditions for it to be Noetherian (Theorem 3.1.5.3). We have restricted

ourselves to profinite coe�cient rings, in particular Artinian local commutative rings with

finite residue field. However, in order to discuss algebraic families of representations of a

profinite algebra, we will need to consider coe�cient rings that are not profinite. For exam-

ple, a one-dimensional family of representations will be valued in a polynomial ring like Fp[t].

Our goal in this paragraph is to investigate the families of continuous pseudorepresentations

that arise in these larger coe�cient rings.
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Our main result, Theorem 3.1.6.11, tells us that the study above is su�cient: even on

larger appropriately topologized rings, the universal pseudorepresentations are valued in a

complete local profinite ring. The first task must be to specify what exactly these larger

coe�cient rings are.

EGA contains the basic facts and terminology to describe linearly topologized rings and

formal schemes. We will now freely use these terms, providing some references as we go. We

will introduce here, however, some terminology that we have not found universal agreement

upon, but which is an important distinction for our purposes.

Definition 3.1.6.1. Let A be a commutative adic Noetherian ring with ideal of definition

I. Let B be a linearly topologized commutative ring which is a continuous A-algebra.

(1) If B is topologically isomorphic over A to an admissible completion of a finitely

generated A-algebra, then we say that B is topologically finitely generated as an

A-algebra.

(2) If B is topologically isomorphic over A to the I-adic completion of a finitely gener-

ated A-algebra, then we say that B is formally finitely generated as an A-algebra.

Equivalently, B is a (continuous) quotient of a restricted power series over A.

We use this terminology in consonance with terminology established in [Gro60, 0
I

, §7;

1, §10]. We are allow following the definition of “topologically finitely generated” used in

[Che11, §3.9]: a completion of a finite type algebra. In particular, here are the corresponding

definitions in the category of formal schemes.

Definition 3.1.6.2 ([Gro60, §0
I

, §10.13]). Let Y be a locally Noetherian formal scheme

with ideal of definition K. Let f : X! Y be a morphism of formal schemes. Then if any of

the following equivalent conditions are satisfied, we say that f is formally finite type.

(1) X is locally Noetherian, f is an adic morphism, and if we write J := f ⇤(K)OX, then

the morphism f
0

: (X,OX/J )! (Y,OY/K) induced by f is finite type.

(2) X is locally Noetherian and is the inductive adic limit Xn over the inductive limit

Yn := Spec(OY/Kn) such that f
0

: X
0

! Y
0

is finite type.
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(3) Every point ofY is continued in an open formal a�ne Noetherian subschemes V ⇢ Y

such that f�1(V ) is a finite union of open formal a�ne Noetherian subschemes Ui,

such that the adic Noetherian ring �(Ui,OY) is formally finitely generated over

�(V,OY).

When the context is clear, we say that such a morphism of formal schemes is simply

“finite type.”

With these definitions in place, we can now specify the category of topological rings on

which we will define the functor of pseudorepresentations, and later the functor and groupoids

of representations. We write AdmA for the category of continuous admissible A-algebras.

Definition 3.1.6.3. Let A be a commutative local complete Noetherian Zp-algebra with

finite residue field F and its adic topology. Let R be a profinite continuous A-algebra, which

we assume to be complete and separated as an A-module. Let PsRd
R denote the functor

PsRd
R : AdmA �! Sets

sending B to the set of continuous B-valued d-dimensional pseudorepresentations of R,

D : R⌦A B ! B.

We will often use the equivalent formulation in terms of a continuous homogenous degree

d multiplicative A-polynomial law, which we will denote by P = PD, i.e. PD : R ! B such

that the induced multiplicative polynomial law R⌦̂AB ! B is equal to D. Let us confirm

that these notions are indeed equivalent in this topological setting. We will write Md
A(R,B)c

for the set of continuous degree d homogenous multiplicative A-polynomial laws from R to

B.

Lemma 3.1.6.4. With A,R,D, d as above and B 2 AdmA, the natural association

PsRd
R(B) �!Md

A(R,B)c

(D : R⌦A B ! B) 7! D � (R id⌦1�! R⌦A B)
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is a bijection.

Proof. Clearly the map exists. We will exhibit a two-sided inverse. For P 2Md
A(R,B)c,

we have by e.g. Corollary 1.1.3.10(1) an induced determinant

DP : R⌦A B ! B.

such that DP (r⌦ b) = bd ·DP (r). The characteristic polynomial functions ⇤P
i,A : R! B are

continuous by assumption. Recalling that the characteristic polynomial functions are in fact

polynomial laws ⇤P
i : R! B, we take the function associated to the A-algebra B,

⇤P
i,B : R⌦A B �! B ⌦A B,

which we concatenate with the A-algebra structure map B⌦AB ! B to get a characteristic

polynomial function. This function is continuous, and it is also identical to ⇤D
P

i,B . This shows

that DP is continuous. ⇤

The equivalence of Lemma 3.1.6.4 makes it clear that PsRd
R is a covariant functor: for

a morphism (◆ : B ! B0) 2 AdmA and P 2 Md
A(R,B)c, we have PsRd

R(◆)(P ) := ◆ � P 2

PsRd
R(B

0).

Remark 3.1.6.5. The equivalence P $ DP described in the lemma above shows that the

description of D⌦̂AB in Remark 3.1.4.4 extends to the case that B an admissible A-algebra,

and also for X a Spf(A)-formal scheme since pseudorepresentations on X will be defined as

a Zariski sheaf of algebra homomorphisms. The lemma above shows that one can simply

reduce to the underlying multiplicative A-polynomial law out of R in order to test continuity.

Example 3.1.6.6. The main example of A,R that we will concern ourselves with is the

case that A = Zp and R = Zp[[�̂]], where �̂ is a profinite group.

Lemma 3.1.6.7 (Following [Che11, Lemma 3.10]). Let B 2 AdmA, and let D : R⌦AB !

B be a continuous d-dimensional pseudorepresentation D 2 PsRd
R(B). Denote by C ⇢ B the
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closure of the sub-A-algebra generated by the characteristic polynomial coe�cients ⇤P
i (r) for

r 2 R of the associated continuous homogenous multiplicative A-polynomial law P : R! B.

(1) C is an admissible profinite sub-A-algebra of B. In particular, it is a finite product

of local A-algebras with finite residue field.

(2) Assume that ◆ : B ! B0 is a morphism in AdmA and let D0 : R ⌦A B0 ! B0

be the induced continuous d-dimensional pseudorepresentation. Let C 0 ⇢ B0 be the

sub-A-algebra associated to B0 as above. Then ◆ induces a continuous surjection

C ⇣ C 0.

Proof. Assume that B is discrete, so that admissibility means that mn
A ·B = 0 for some

n � 1. Let P : R ! B be the associated continuous multiplicative degree d A-polynomial

law associated to D as above. By Lemma 3.1.2.1, P factors through some finite index,

i.e. open two-sided ideal I ⇢ R containing mn
A · R. In particular, we can consider P to

be a polynomial law over the finite cardinality ring A/mn
A. Now �d

A/mn

A

(R/I)ab is a finite

cardinality commutative ring, and therefore so is the ring C of the statement of the lemma,

since C is, by Amitsur’s relations (Proposition 1.1.9.11(2)), the image of the A-algebra map

�d
A/mn

A

(R/I) �! B

canonically associated to P by Theorem 1.1.6.5.

Now we consider the general case. Since B is admissible as an A-algebra, there is a

topological A-algebra isomorphism B
⇠! limB�, where B� is a discrete A-algebra and the

maps of the limit have nilpotent kernel. Write ⇡� : B ! B� for the natural projection. Let

P : R ! B denote the continuous homogenous degree d multiplicative A-polynomial law

associated to D. Write P� for ⇡� � P .

Let C ⇢ B be the sub-A-algebra defined in the statement of the lemma. By the discrete

case above, the image C� ⇢ B� of C ⇢ B in B� is of finite cardinality, and therefore

C
⇠�! lim �C�
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is a profinite admissible A-subalgebra. The Jacobson radical of a profinite admissible ring

must include all ideals of definition. Therefore C/J(C) is finite, and part (1) follows.

For part (2), we simply note that the ring C ⇢ B is simply the closure of the induced

canonical map �d
A(R)! B; this is functorial for ◆ : B ! B0. ⇤

With this lemma controlling the characteristic polynomial coe�cients of pseudorepre-

sentations of R in place, we are going to show that the functor PsRd
R(A) of all continuous

d-dimensional pseudorepresentations of R into admissible A-algebras is represented by the

disjoint union of deformation functors of finite field valued pseudorepresentations. We now

establish the notation necessary to describe this result.

Definition 3.1.6.8. Denote by PsRd
R(F̄A) the set of closed points of Spec(�d

A(R)ab) with

finite residue field. We denote the associated pseudorepresentation by D̄ and the point of

PsRd
R by SpecF

¯D.

By Remark 3.1.4.1, such pseudorepresentations and their associated semisimple repre-

sentations are automatically continuous.

In the case that C is a local ring instead of being merely semi-local, then we know that

the B-valued continuous pseudorepresentation D : R⌦̂AB ! B induces a C/mC-valued

pseudorepresentation. This pseudorepresentation corresponds via representability of the

(non-topological) pseudorepresentation functor to the canonical surjective map

�d
A(R)ab ⇣ C

0

⇣ C
0

/mC0
⇠= C/mC ,

so C/mC is canonically isomorphic to F
¯D for some D̄ 2 PsRd

R(F̄A).

Definition 3.1.6.9. Let A,R,B,D, and C ⇢ B be as in the statement of Lemma

3.1.6.7. If C is local, and C/mC is canonically isomorphic to F
¯D as �d

A(R)ab-algebras as per

the discussion above, we call D residually constant, and say that it is residually equal to D̄.

Now we define subfunctors of PsRd
R on AdmA which are residually constant.
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Definition 3.1.6.10. Let D̄ 2 PsRd
R(F̄A). Let PsR

¯D be the subfunctor of PsRd
R on

AdmA defined by the following relation. For each B 2 AdmA, let PsR ¯D(B) ⇢ PsRd
R(B) be

the subset of d-dimensional pseudorepresentations that are residually constant and residually

equal to D̄.

Lemma 3.1.6.7(2) shows that PsR
¯D is indeed (covariantly) functorial in morphisms (B !

B0) 2 AdmA.

We have now defined two functors which we call PsR
¯D. We will temporarily distinguish

these functors in order to show that they correspond in a natural way. Write PsRAdm

A

¯D
for the

functor of residually constant pseudorepresentations of Definition 3.1.6.10. Write PsR
ˆAF

D̄

¯D

for the deformation functor of the residual pseudorepresentation D̄ : R⌦A F
¯D ! F

¯D defined

in Definition 3.1.4.3.

Theorem 3.1.6.11 (Following [Che11, Proposition 3.13]). Let A be a complete Noetherian

local Zp-algebra with finite residue field, and let R be a profinite continuous A-algebra. Let

D̄ 2 PsRd,Adm

A

R (F̄A). Then PsRAdm

A

¯D
is representable by a local admissible A-algebra B̃

¯D 2

obAdmA whose residue field is canonically isomorphic to F
¯D. Moreover,

(1) The W (F
¯D)-algebra B

¯D representing PsR
ˆAF

D̄

¯D
is canonically topologically isomorphic

to B̃
¯D.

(2) If �
¯D holds, then B̃

¯D is topologically finite type over A and Noetherian, and therefore

topologically finite type over Zp as well.

Proof. Lemma 3.1.6.7 implies that for any B 2 obAdmA and any (P : R ! B) 2

PsRd,Adm

A

R (B), P is the composite of a continuous multiplicative polynomial law P 0 : R! C

with C ! B, where C 2 AdmA is semi-local. If P 2 PsRAdm

A

¯D
(B), then by definition

of the subfunctor, C is canonically a complete local A-algebra with residue field canonical

A-isomorphic to F
¯D, i.e. C is canonically an object of ÂF

D̄

. Consequently, P 0 is naturally an

element of PsR
ˆAF

D̄

¯D
(C).

Now Theorem 3.1.4.6 gives rise to a canonical continuous A-algebra homomorphism

B
¯D ! C corresponding to P 0, and whose universal pseudodeformation of D̄ induces P 0.
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Composing this map with C ! B, we have the representability result, as well as the canon-

ical isomorphism B
¯D

⇠! B̃
¯D.

Part (1) following directly from the arguments above along with Theorem 3.1.5.3; (2)

follows directly from definitions. ⇤

It remains to address the representability of PsRd
R. This is best done over the category

FSA of Spf(A)-formal schemes.

Definition 3.1.6.12. Let PsRd
R = PsRd,FS

A

R denote the contravariant functor sending a

Spf(A)-formal scheme X to the set of continuous d-dimensional pseudorepresentations

R⌦
Spf A O(X)! O(X).

Likewise, for any D̄ 2 PsRd
R(F̄A), let PsR

FS
A

¯D
(X) ⇢ PsRd,FS

A

R (X) define a subfunctor cut out

by the condition on D 2 PsRd,FS
A

R (X) that for any open a�ne U ⇢ X, the restriction of D

to PsRd,Adm

A

R (�(OU)) belongs to PsRAdm

A

¯D
.

Clearly the restriction of PsRd,FS
A

R to (AdmA)op coincides with the opposite functor of

PsRd,Adm

A

R . Note that the D 2 PsRd,Adm

A

R (B) belongs to PsRAdm

A

¯D
(B) if and only if, for any

a�ne covering Spf(B) =
S

i(Ui), the image Di 2 PsRd,FS
A

R (Vi) of D belongs to PsRFS
A

¯D
for

all i; this follows directly from Lemma 3.1.6.7. Now the same statement can be made of

PsRFS
A

¯D
: its restriction to (AdmA)op coincides with the opposite functor of PsRAdm

A

¯D
.

Corollary 3.1.6.13 ([Che11, Corollary 3.14]). Assume that condition �
¯D holds for all

D̄ 2 PsRd
R(F̄A). Then PsRd,FS

A

¯D
is representable by the formal scheme

a
¯D2¯F

A

Spf(B
¯D).

In particular, the functor PsRd
R of continuous d-dimensional pseudorepresentations is locally

Noetherian and semi-local with local Noetherian component decomposition

PsRd
R
⇠=
a
¯D2¯F

A

PsR
¯D.
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As a result of the Theorem and Corollary, we will not bother to distinguish between

PsR
ˆAF

D̄

¯D
, PsRAdm

A

¯D
, and PsRFS

A

¯D
, and will simply denote these by PsR

¯D and make the source

of the functor clear. Generally, it will be the category of admissible continuous A-algebras

AdmA or the category of Spf(A)-formal schemes FSA. We will also denote the object of

AdmA representing PsR
¯D by B

¯D, or by Spf(B
¯D) 2 obFSA.

3.2. Moduli of Representations of a Profinite Algebra

In analogy to §1.4 in the non-profinite case, we will introduce moduli spaces of topological

representations of the profinite A-algebra R. While we could proceed along the same lines as

§1.4, defining functors and groupoids of representations fibered over the category of Spf(A)-

formal schemes, then proving representability, etc., we will follow a di↵erent strategy. Under

the assumption of �
¯D, we will show that the universal Cayley-Hamilton representation

E(R,Du
¯D
) of R over the universal pseudodeformation Du

¯D
of D̄ is finite as a module over B

¯D

and that its native profinite topology is equivalent to its m
¯D-adic topology. This will allow us

to deduce that the natural functor of continuous representations of R with constant residual

pseudorepresentation D̄ over Spf(A)-formal schemes can be found as the m
¯D-adic completion

of a finite type SpecB
¯D-scheme/algebraic stack of (non a priori continuous) representations

of E(R,Du
¯D
).

Throughout this section, A represents a complete Noetherian local ring with finite residue

field FA and maximal ideal mA. We write R for a profinite continuous A-algebra, not neces-

sarily commutative. Of course, the topology on R is not necessarily the mA-adic topology.

3.2.1. Groupoids of Representations. Here are the functors and groupoids of rep-

resentations of R that we will study on the category of Spf(A)-formal schemes FSA.

Definition 3.2.1.1. Let A and R be as specified above, and let d be a positive integer.

(1) Define the functor Rep⇤,d
R on FSA by

X 7! {continuous OX-algebra homomorphisms R⌦A OX �!Md(X)}.
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(2) Define the groupoid Repd
R, fibered over FSA, by

obRepd
R(X) = {V/X rank d vector bundle,

continuous OX-algebra homomorphism R⌦A OX �! EndOX
(V )}

and morphisms being isomorphisms of this data.

(3) Define the groupoid Rep
d

R, fibered over FSA, by

obRep
d

R(X) = {E a rank d2 OX-Azumaya algebra, with a

continuous OX-algebra homomorphism R⌦A OX �! E}

and morphisms being isomorphisms of this data.

The basic initial observations regarding these groupoids and the natural maps to PsRd
R

hold in direct analogy to the non-topological case discussed in §1.4, although we hold o↵ on

discussing representability of these groupoids until §3.2.4. Namely, there are canonical maps

(3.2.1.2) Rep⇤,d
R �! Repd

R �! Rep
d

R

in direct analogy to (1.4.1.2). Following §1.4.2, the reduced norm on Azumaya algebras,

which is étale locally the determinant of a matrix algebra, allows us to associate to any

object of these groupoids a d-dimensional continuous pseudorepresentation. We write these

maps as

 ⇤ : Rep⇤,d
R �! PsRd

R,

 : Repd
R ! PsRd

R,  ̄ : Rep
d

R ! PsRd
R.

Indeed, a pseudorepresentation induced by a continuous representation of R is continuous

(see Definition 3.1.0.10) because the characteristic polynomial coe�cient functions ⇤i : E !

B on an Azumaya B-algebra E are continuous. This shows that the maps  ⇤, ,  ̄ are well

defined.
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Just like (1.4.2.2), the canonical maps above form a commutative diagram

(3.2.1.3) Rep⇤,d
R

(1.4.1.2)

//

 ⇤

))

Repd
R

(1.4.1.2)

//

 

""

Rep
d

R

¯ 
✏✏

PsRd
R

This allows us to consider the Spf(A)-formal groupoids of representations as PsRd
R-formal

groupoids. Now we establish notation to decompose the representation groupoids into the

fiber of  ⇤ (resp.  , resp.  ̄) over each component PsR
¯D ⇢ PsRd

R, D̄ 2 PsRd
R(F̄A). Indeed, an

object of any of the representation groupoids over B 2 AdmA induces a map Spf(B)! PsRd
R

via the appropriate  -map, and the condition that this map correspond to a residually

constant pseudorepresentation will define a PsRd
R-sub-fibered-groupoid, since we observe that

the residually constant condition is stable under pullbacks in the category of PsRd
R-formal

schemes (cf. Corollary 3.1.6.13).

Definition 3.2.1.4. For any D̄ 2 PsRd
R(F̄A), we write Rep⇤

¯D
(resp. Rep

¯D, resp. Rep
¯D)

for the fiber of  ⇤ (resp.  , resp.  ̄) over the component PsR
¯D ⇢ PsRd

R.

Our next goal is to show that Rep⇤
¯D
is representable by a Spf(A)-formal scheme, and,

moreover, that condition �
¯D implies that Rep⇤

¯D
is formally finite type over PsR

¯D, i.e. that

Rep⇤
¯D
is a formally finite type Spf(B

¯D)-formal scheme. While this may be shown rather

directly, we will deduce it from the finiteness result of the next paragraph.

3.2.2. Finiteness Results. In this paragraph, our goal is to prove Proposition 3.2.2.1.

This proposition gives us the module-finiteness of the universal Cayley-Hamilton algebra

associated to R, whose definition we will recall below. This module-finiteness is the key

result we require to prove the algebraizability of the representation functors on AdmA.

Proposition 3.2.2.1. Let B be a admissible A-algebra and let D : R ⌦A B ! B be

a continuous d-dimensional residually constant pseudorepresentation D̄. Assume that D̄

satisfies �
¯D. Then
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(1) The B-algebra (R⌦A B)/CH(D) is finitely presented as a B-module.

(2) The native pro-discrete topology on (R⌦A B)/CH(D) given by open ideals is equiv-

alent to the topology induced by a fundamental system of ideals for B.

First we require some lemmas.

Lemma 3.2.2.2. Let F be a finite characteristic p field, let R be a profinite F-algebra,

and let D̄ : R! F be a continuous d-dimensional pseudorepresentation satisfying �
¯D. Then

R/CH(D̄) is finite dimensional as a F-vector space and, equivalently, CH(D̄) is open as a

two-sided ideal of R.

Proof. We first note that the equivalence of the conclusions is immediate from R having

the profinite topology.

Replace R with R/CH(D̄), so that (R, D̄) is a Cayley-Hamilton F-algebra. Let S :=

R/ ker(D̄), which we know from Theorem 1.3.1.3 to be a finite dimensional semisimple F-

algebra. It is naturally a quotient of R by Lemma 1.2.1.1. The proof of Proposition 2.1.2.3

shows that the assumption �
¯D is su�cient to imply that R/ ker(D̄)n is finite dimensional as

a F-vector space for any n � 0. Now by Lemma 1.2.3.1, ker(D̄) is nilpotent. This completes

the proof that R is finite dimensional. ⇤

Remark 3.2.2.3. We emphasize that in the proof above, we do not assume that CH(D̄)

is a closed ideal of R, nor, equivalently, that the natural surjection R/CH(D̄) is continuous.

This fact is a consequence of the proof.

Lemma 3.2.2.4 (Infinite Nakayama Lemma). Let A be a complete Noetherian local ring

with maximal ideal mA and residue field FA and let M be an A-module. Assume that M is mA-

adically separated, i.e.
T

i�0

mi
A ·M = 0, and assume that M/mA ·M is finite dimensional as

a FA-vector space. Then M is a finite A-module generated by any set of lifts for a generating

set for M/mA ·M . In particular, one can apply the (standard) Nakayama Lemma to M .

Proof. Choose a basis m̄
1

, . . . , m̄n for M/mA · M , and let m
1

, . . . ,mn be a choice of

lifts to M for the basis. Choose 0 6= x 2M , and let k � 0 be the greatest integer such that

206



x 2 mk
A · M ; write xk for x. Because (m̄i) is a basis and the Noetherianness of A implies

that mb
A/m

b+1

A is finite dimensional over FA for all b, there exists an A-linear combinationPn
1

aikmi such that aik 2 mk
A and

(3.2.2.5) xk �
nX

i=1

aikmi 2 mk+1

A ·M

Now set xk+1

to this di↵erence, and choose ai,(k+1)

2 mk+1

A , 1  i  n such that (3.2.2.5)

is satisfied with k + 1 in place of k; iterate this process for all j � k, generating xj, aij for

j � k, 1  i  n.

Now set, for each i, 1  i  n,

ai :=
1X
j=k

aij 2 A,

where the sum is convergent because A is mA-adically complete and aij 2 mj
A for any j � k.

Observe that

x�
nX

i=1

aimi 2 mj
A ·M

for any j � k. Therefore, by the separation hypothesis on M , x =
Pn

1

aimi. This shows

that (mi) is an A-basis for M , as desired. ⇤

Now we can prove Proposition 3.2.2.1

Proof. First, we will prove the result when B is discrete. We already know that CH(D)

is a two-sided ideal of R⌦A B, so we must show that it is open.

By Lemma 3.1.6.7 and the definition of residual constancy of D (Defintion 3.1.6.10), D

factors through a finite cardinality Artinian local sub-A-algebra C ⇢ B (C is the image of

the canonical continuous homomorphism B
¯D ! B) with residue field F

¯D, i.e. there exists a

continuous deformation

DC : R⌦A C ! C

of D̄ inducing D upon ⌦CB.

207



Consider the Cayley-Hamilton quotient (R⌦A C)/CH(DC). Using the canonical surjec-

tion C ! C/mC
⇠! F

¯D, we tensor DC by ⌦CF ¯D. Now Lemma 1.1.8.6 implies that we have

an isomorphism

(R⌦A C)/CH(DC)⌦C F
¯D

⇠�! (R⌦A F
¯D)/CH(D̄).

Applying our assumption that �
¯D holds, Lemma 3.2.2.2 tells us that the right hand side is

a finite dimensional F-vector space. Since the C-algebra (R⌦A C)/CH(DC) is trivially mC-

adically separated because C is Artinian, the “infinite Nakayama lemma” (Lemma 3.2.2.4)

implies that it is also finite as a C-module. Since all of the involved rings are profinite and

the maps factor through profinite completions, we may apply Lemma 3.1.2.3 so that we know

that the factor map

(R⌦A C) �! (R⌦A C)/CH(DC)

is continuous and CH(DC) is closed in R⌦A C. The target is also finite cardinality, showing

that CH(DC) is also an open ideal of R⌦A C. We have now completed the proof in the case

that B is a finite Artinian ring.

Now we deduce the general discrete case over B from the local discrete case completed

for C above. The natural map

(R⌦A C)/CH(DC)⌦C B �! (R⌦A B)/CH(D)

exists and is an isomorphism by Lemma 1.1.8.6; it is continuous and CH(D) ⇢ (R⌦A B) is

open, as the natural topology on both sides is discrete, proving part (2). Since the left hand

side is finitely presented as a B-module by the arguments above, so is the right hand side

proving part (1). This completes the argument.

Now we no longer assume that B is discrete. We may write B as a limit of discrete

continuous A-algebras B = lim ��B� where the maps are surjective with nilpotent kernel, and

write C� ⇢ B� for the algebra C in the discrete case above. Then C = lim ��C� is a complete

local Noetherian sub-A-algebra of B with residue field F
¯D, since we are assuming condition

�
¯D and may apply Theorem 3.1.5.3. Write ⇡� : B ! B� for the natural surjections. Write
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D� for ⇡� �D; it is a continuous d-dimensional pseudorepresentation

D� : R⌦A B� ! B�

that satisfies the conditions of the discrete pseudorepresentation called “D” above. Likewise,

we write DC
�

the pseudorepresentations called “DC” above.

Consider the C�-algebra homomorphism

(R⌦A C�)/CH(DC
�

) �! (R⌦A C�0)/CH(DC0
�

).

By Lemma 1.1.8.6, it becomes an isomorphism after applying ⌦C
�

C�0 to the left side. There-

fore, it is continuous and surjective; it has nilpotent kernel since the maps C� ! C�0 do too.

By the same reasoning, for every � there is a canonical surjection

(R⌦A C)/CH(DC) �! (R⌦A C�)/CH(DC
�

).

Therefore, the image of the natural map

(3.2.2.6) (R⌦A C)/CH(DC) �! (R⌦̂AC)/CH(D̃C)

is dense, since the right hand side surjects onto each (R⌦AC�)/CH(DC
�

) as well. The map

(3.2.2.6) is also injective, since CH(DC) is dense in CH(D̃C). We now aim to show that it is

an isomorphism.

We know that CH(D̃C) ⇢ R⌦̂AC is closed by Lemma 3.1.2.3, so we have

(R⌦̂AC)/CH(DC)
⇠�! lim �

�

(R⌦̂AC)/CH(DC
�

� ⇡�).

Now formal GAGA [Gro61b, Theorem 5.1.4] and the finiteness of (R⌦̂AC)/CH(DC
�

) as

C�-modules proved in the discrete case above, (R⌦̂AC)/CH(DC) is a finitely generated C-

module. Alternatively, we can apply the infinite Nakayama lemma again. We note that the

mC-adic topology on (R⌦̂AC)/CH(D̃C) is equivalent to its profinite topology arising from

the complete tensor product.

209



Now we observe that (3.2.2.6) is an isomorphism of finite C-modules. Indeed, the image

is a dense sub-C-module of a finite C-module. We have now completed the proof in the case

that B was a Noetherian complete local ring.

We now deduce the general case from what we have done. Lemma 1.1.8.6 shows us that

we have a natural isomorphism

(3.2.2.7) (R⌦A C)/CH(DC)⌦C B
⇠�! (R⌦A B)/CH(D),

since D arises from DC by ⌦CB. We conclude that the right hand side is finitely presented as

a B-module, since C is Noetherian, proving (1). The compatibility of (3.2.2.7) with ⌦BB�,

yielding the isomorphism of discrete algebras

(R⌦A C�)/CH(DC
�

)⌦C
�

B� �! (R⌦A B�)/CH(D�),

shows us that (2) is true. ⇤

3.2.3. Universality Results. Recall the (non-topological) notion of universal Cayley-

Hamilton representation of R (§1.2.4). This is a �d
A(R)ab-algebra

E(R, d) := (R⌦A �
d
A(R)ab)/CH(Du),

with the data of the universal pseudorepresentation Du |E: E(R, d) ! �d
A(R)ab and the

canonical quotient map from R⌦A�d
A(R)ab. We have shown in Theorem 1.4.3.1 that moduli

spaces of d-dimensional representations of R are equivalent to their counterpart moduli

spaces of d-dimensional representations of E(R, d). Our goal in this paragraph is to prove

this result in the profinite topological setting of this chapter.

We will carry out this task over each component PsR
¯D of PsRd

R. There is no significant

loss of generality in doing this. Let us establish the notation for these universal Cayley-

Hamilton algebras.
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Definition 3.2.3.1. Let D̄ 2 PsRd
R(F̄A). The universal Cayley-Hamilton representation

over PsR
¯D, denoted E(R,Du

¯D
), is the B

¯D-algebra

E(R,Du
¯D) := (R⌦A B

¯D)/CH(D
u
¯D),

often considered with its canonical factor map ⇢u
¯D
: R ⌦A B

¯D ! E(R,Du
¯D
). We establish

notation for the completed case as well,

Ẽ(R, D̃u
¯D) := (R⌦̂AB ¯D)/CH(D̃

u
¯D),

with the canonical factor map ⇢̃u
¯D
: R⌦̂AB ¯D ! Ẽ(R, D̃u

¯D
).

Before proving the universality theorem for the Cayley-Hamilton algebra E(R,Du
¯D
), we

point out the consequences of �
¯D for this algebra. This theorem follows directly from

Proposition 3.2.2.1, and the last part from Corollary 1.2.2.10.

Theorem 3.2.3.2. Assume that D̄ 2 PsRd
R(F̄A) satisfies � ¯D. Then

(1) The natural profinite completion map

E(R,Du
¯D) �! Ẽ(R, D̃u

¯D)

is an isomorphism.

(2) E(R,Du
¯D
) is finite as a B

¯D-module

(3) The native topology on E(Du
¯D
) is equivalent to the its m

¯D-adic topology as a B
¯D-

module.

(4) E(Du
¯D
) is finite as a module over its center and is a Noetherian ring.

Now we prove an analogous result in our profinite topological setting to the universality

of the Cayley-Hamilton algebra (Proposition 1.2.4.3) and the resulting equivalence of repre-

sentation categories between R and E(R, d) (Theorem 1.4.3.1). The non-topological results

produce universal maps, and we check that they are continuous.
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We require some notation. Following the convention that Rep⇤
¯D
denotes the fiber of

Rep⇤,d
R over PsR

¯D, denote by Rep⇤
¯D|

E

the fiber of Rep⇤,d
E(R,Du

D̄

)

over PsR
¯D|

E

⇢ PsRd
E(R,Du

D̄

)

.

Theorem 3.2.3.3. Let X be a Spf(A)-formal scheme. Any representation in the formal

groupoids Rep⇤
¯D
(X),Rep

¯D(X),Rep
¯D(X) factors uniquely continuously through the universal

Cayley-Hamilton representation ⇢u
¯D
⌦B

D̄

O(X). This factorization induces equivalences of

PsR
¯D-formal groupoids

Rep⇤
¯D

⇠�! Rep⇤
¯D|

E

,

Rep
¯D

⇠�! Rep
¯D|

E

,

Rep
¯D

⇠�! Rep
¯D|

E

.

Proof. It will su�ce to work formally Zariski-locally on X, so we may replace OX with

an admissible A-algebra B. As in the proof of Theorem 1.4.3.1, it will su�ce to work with

a continuous B-algebra homomorphism ⇢ : R⌦̂AB ! E in Rep
¯D(B), since objects of the

other groupoids amount to additional data on top of the rank d2 Azumaya B-algebra E and

the map ⇢.

Recall Definition 1.2.4.1, which is the notion of a Cayley-Hamilton representation of R.

Following Remark 1.2.4.2, we note that a the data of ⇢ induces a d-dimensional Cayley-

Hamilton representation of R over B, namely

(B, (E , det), ⇢),

where det : E ! B represents the reduced norm map for the Azumaya B-algebra E .

Proposition 1.2.4.3 shows that the universal d-dimensional Cayley-Hamilton represen-

tation (�d
A(R)ab, (E(R, d), Du|E), ⇢u) is initial in the category CHd(R) of Cayley-Hamilton

representations of R. Thus there exists a canonical CHd(R)-morphism

(�d
A(R)ab, (E(R, d), Du|E), ⇢u) �! (B, (E , det), ⇢).

We know that the map �d
A(R)ab ! B included in this data is continuous with respect to the

topology on �d
A(R)ab defined in Theorem 3.1.4.6 for the choice of D̄ 2 PsRd

R(F̄A), since B has
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residually constant pseudorepresentation D̄. The completion with respect to this topology

is B
¯D and B is complete, so that we have a map B

¯D ! B factoring �d
A(R)ab ! B.

Therefore the continuous B-algebra homomorphism E(R, d)⌦
�

d

A

(R)

abB ! E which is part

of the data of the morphism in CHd(R) factors through E(R, d)⌦
�

d

A

(R)

ab B ¯D. Recalling that

E(R, d) := (R⌦A �d
A(R)ab)/CH(Du), we have by Lemma 1.1.8.6 a canonical isomorphism

E(R, d)⌦
�

d

A

(R)

ab B ¯D
⇠�! (R⌦A B

¯D)/CH(D
u
¯D)
⇠= E(R,Du

¯D),

so that we now have a canonical continuous map E(R,Du
¯D
)⌦B

D̄

B ! E factoring ⇢.

We have now exhibited a PsR
¯D-groupoid morphism Rep

¯D ! Rep
d

E(R,Du

D̄

)

. We observe

that this lies inRep
¯D|

E

because �d
A(R)ab ! B factors through B

¯D. The map ⇢u
¯D
: R⌦AB ¯D !

E(R,Du
¯D
) induces an inverse morphism by composition. ⇤

Here is an interesting consequence of this universality. Once we show that the groupoids

are representable by formal algebraic stacks, this corollary says, essentially, that  ⇤, ,  ̄ are

adic morphisms.

Corollary 3.2.3.4. As usual, let A be a commutative Noetherian local profinite ring, let

R be a profinite A-algebra, and choose D̄ 2 PsRd
R(F̄A) satisfying �

¯D. Choose an admissible

A-algebra B along with a continuous d-dimensional representation ⇢ : R ⌦A B ! E of

residually constant pseudorepresentation D̄. Then ⇢ is still continuous with respect to the

finer m
¯D-adic topology on B.

Proof. Let B, ⇢ be as in the statement of the corollary. Theorem 3.2.3.3 implies that

we have a continuous map B
¯D ! B and a canonical continuous factorization of ⇢, and a

continuous B
¯D-algebra map E

¯D ! E , through which R! E factors. The fact that B
¯D ! B

is continuous means that the m
¯D-adic topology on B is (not necessarily strictly) stronger

than its native topology. Clearly if we topologize E with respect to m
¯D, the map E

¯D ! E

will remain continuous. ⇤

3.2.4. Representability Results. Now we will work toward showing that the for-

mal groupoids Rep⇤
¯D
, Rep

¯D, Rep
¯D are representable by PsR

¯D = Spf(B
¯D)-formal schemes.
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In fact, we will show much more, using the universality (Theorem 3.2.3.3) and finiteness

(Theorem 3.2.3.2) of the universal Cayley-Hamilton representation of R of residually con-

stant pseudorepresentation D̄. We will show that the d-dimensional representation groupoid

Rep⇤,d
E(R,Du

D̄

)

(resp. Repd
E(R,Du

D̄

)

, resp. Rep
d

E(R,Du

D̄

)

) for E(R,Du
¯D
) is formally finite type over

PsR
¯D and will prove this by showing that it is algebraizable with finite type algebraization

Rep⇤,d
E(R,Du

D̄

)

(resp. Repd
E(R,Du

D̄

)

, resp. Rep
d

E(R,Du

D̄

)

). This will show, by Theorem 3.2.3.3, that

the representation groupoids above are topologically finite type, Noetherian formal schemes

over Spf(A) that are formally finite type over PsR
¯D = Spf(B

¯D).

In order to prove algebraization of the formal PsR
¯D-groupoids of representations of

E(R,Du
¯D
), we need to find algebraic groupoids of continuous representations. In fact, what

we will show is that, after applying a natural topology to groupoids of non-topological rep-

resentations such as Repd
E(R,Du

D̄

)

, this non-topological groupoid of representations consists

entirely of continuous representations. This result depends critically on the finiteness condi-

tion �
¯D and the work done in the previous paragraphs.

Theorem 3.2.4.1. With A,R, d, D̄, and E(R,Du
¯D
) as above, assume that �

¯D is true.

Then the restrictions to admissible B
¯D-algebras of the non-topological SpecB

¯D-groupoids of

representations Rep⇤
E(R,Du

D̄

),Du

D̄

, RepE(R,Du

D̄

),Du

D̄

, and RepE(R,Du

D̄

),Du

D̄

of E(R,Du
¯D
) lying over

PsR
¯D are equivalent to their counterparts Rep⇤

¯D
, Rep

¯D, and Rep
¯D.

Proof. Because �
¯D is satisfied, Theorem 3.2.3.2 gives us that the B

¯D-algebra E(R,Du
¯D
)

is module-finite and its native topology as a quotient of R⌦̂AB ¯D is identical to its m
¯D-adic

topology. Choose B 2 AlgB
D̄

that is an admissible B
¯D-algebra, and choose a non-topological

representation ⇢ 2 Rep
d

E(R,Du

D̄

),Du

D̄

(B). This is the data

⇢ : E(R,Du
¯D)⌦B

D̄

B �! E

where E is a rank d2 B-Azumaya algebra and det �⇢ = (B
¯D ! B) � Du

¯D
. Rembering the

topology on B, we have a topology on both the source and the target of ⇢, and we observe that
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⇢ is a map of finitely presented B-modules, and is therefore continuous under the m
¯D-adic

topology. Therefore ⇢ 2 Rep
cont

E(R,Du

D̄

),Du

D̄

(B).

Likewise, one can start with ⇢ 2 Rep
d

E(R,Du

D̄

),Du

D̄

(B), and observe that forgetting the

topology gives us an object of Rep
d

E(R,Du

D̄

),Du

D̄

(B), providing a quasi-inverse morphism. ⇤

Remark 3.2.4.2. Let us note what may go wrong when �
¯D is not satisfied. The Cayley-

Hamilton ideal CH(Du
¯D
) ⇢ R ⌦A B

¯D is still closed by Lemma 3.1.2.3, so that E(R,Du
¯D
)

is a profinite B
¯D-algebra. However, E(R,Du

¯D
)/m

¯DE(R,Du
¯D
) ⇠= (R ⌦A F

¯D)/CH(D̄) is not

necessarily a finite F
¯D-vector space, and does not necessarily carry the discrete topology.

The former fact suggests that a non-topological moduli space of representations may not be

finite type over SpecB
¯D, and the latter fact implies that a non-topological moduli space of

representations may not correspond to continuous representations.

Let (�)^̄
D
denote m

¯D-adic completion of a B
¯D-scheme. This is the formal completion of

a B
¯D-scheme X at the subscheme X� := X ⇥

SpecB
D̄

SpecF
¯D.

Corollary 3.2.4.3. Assume �
¯D. The formal Spf(A)-groupoid of representations Rep⇤

¯D

(resp. Rep
¯D, resp. Rep

¯D) is naturally isomorphic over PsR
¯D to the m

¯D-adic completion of

Rep⇤
¯D|

E

(resp. Rep
¯D|

E

, resp. Rep
¯D|

E

). In particular, it is a formally finite type, Notherian

PsR
¯D-formal scheme (resp. a formally finite type Notherian PsR

¯D-formal algebraic stack).

Additionally, the map

 : Rep
¯D �! PsR

¯D, (resp.  ̄ : Rep
¯D ! PsR

¯D)

pushes forward coherent sheaves to coherent sheaves and is universally closed.

Remark 3.2.4.4. Note that once we know that the Rep groupoids are representable by

formal schemes/algebraic stacks, Corollary 3.2.3.4 can be used to deduce that they are adic

over Spf(B
¯D).

Proof. The isomorphism between these formal groupoids follows directly from Theorem

3.2.4.1.
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For the rest of the proof, we recall Corollary 1.5.4.7, which describes the properties of

 ̄ in the non-topological case. The properties in the statement of the corollary are stable

under adic completion. The finiteness of the pushforward of coherent sheaves involves a

bit of work. Modulo each power mn
¯D
of the maximal ideal of B

¯D, the map from Rep
¯D|

E

⇥

SpecB
¯D/m

n
¯D
to SpecB

¯D/m
n
¯D
is an adequate moduli space following by a finite morphism

by [Alp10, Proposition 5.2.9(3)]. Therefore the pushforward of a coherent sheaf is coherent.

The pushforward of a coherent sheaf on the whole formal scheme consists of the inverse limit

at each of these finite levels, and this is a finite B
¯D module by e.g. Lemma 3.2.2.4. ⇤

Remark 3.2.4.5. The result on coherent sheaves would be more straightforward if we

knew that formal GAGA holds over adequate moduli spaces. It has been recently proved in

the slightly narrower case of good moduli spaces [GZB12].

3.2.5. Consequences of Algebraization. We conclude our work on pseudorepresen-

tations by applying our best results from Chapter 1 and Chapter 2 to the moduli of contin-

uous representations and pseudorepresentations of a profinite algebra R over a Noetherian

profinite local ring A. In particular, we find pleasant conclusions as corollaries of

(1) the projective subspaces of ✓-stable representations in fibers of  ̄, and complete

local projective deformations of these spaces (Theorem 2.2.4.1), and

(2) the adequacy of  and  ̄ in the neighborhood of residually multiplicity free pseu-

dorepresentations (Corollary 2.3.3.9).

(3) the projectivity over complete local pseudodeformation rings of moduli spaces of

representations which have a certain ordering of extensions (Corollary 2.2.4.3), ver-

ifying a proposal of Kisin [Kis09a, Remark 3.2.7].

Theorem 3.2.5.1. Let A be a Noetherian profinite local ring with residue field FA and

let R be a continuous A-algebra. Choose a residual pseudorepresentation D̄ 2 PsRd
R(FA)

satisfying finiteness condition �
¯D. Then
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(1) All continuous representations of R over admissible A-algebras factor uniquely con-

tinuously through the Cayley-Hamilton algebra E(R,Du
¯D
), which is an algebra finite

as a module over the complete Notherian local A-algebra B
¯D.

(2) The Spf(A)-formal scheme (resp. formal algebraic stacks) of representations Rep⇤
¯D

(resp. Rep
¯D, resp. Rep

¯D) are the m
¯D-adic completion of the finite type, non-

topological SpecB
¯D-scheme (resp. algebraic stack) of representations Rep⇤

¯D|
E

(resp.

Rep
¯D|

E

, resp. Rep
¯D|

E

), which are also continuous representations when restricted to

admissible B
¯D-algebras. Consequently, Rep⇤

¯D
(resp. Rep

¯D, resp. Rep
¯D) are finite

type over Spf B
¯D.

(3) If the residual pseudorepresentation D̄ is split over FA and is stabilizing relative to

a character ✓ of the Grothendieck group of the abelian category of representations

of the finite dimensional FA-algebra E(R,Du
¯D
) ⌦B

D̄

FA, there is a PsR
¯D-projective

subscheme Rep
s
¯D(✓) of Rep ¯D parameterizing representations whose reduction modulo

m
¯D is ✓-stable.

(4) Assuming that D̄ is split and multiplicity free over FA, given an ordering of the

non-isomorphic simple representations ⇢̄i, 1  i  n of R over FA such that D̄ =

det �(�n
1

⇢̄i), there exists a PsR
¯D-projective subscheme Rep

0
¯D ⇢ Rep

¯D of represen-

tations which are residually a certain ordering of extensions given in Definition

2.2.3.2.

(5) If a d-dimensional residual representation D̄ of R is split and multiplicity free and

of characteristic greater than 2d, then  (resp.  ̄ is an adequate moduli space. In

particular, this means that PsR
¯D is precisely the GIT quotient of Rep⇤

¯D with respect

to the adjoint action.

Proof. Part (1) is Theorem 3.2.3.3. Part (2) is Corollary 3.2.4.3. For part (3), we

apply Theorem 2.2.4.1 to Rep
¯D, using the fact that the base B

¯D is complete. Part (4) is an

application of Corollary 2.2.4.3. Part (5) is Corollary 2.3.3.9, where we use the fact that B
¯D

is complete and therefore henselian. ⇤
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In particular, this theorem can take A to be the universal deformation ring B
¯D of a

residual pseudorepresentation of R over FA satisfying �
¯D.
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CHAPTER 4

p-adic Hodge Theory in Group-Theoretic Families

This chapter is a generalization of Mark Kisin’s Potentially Semistable Deformation

Rings [Kis08, §§1-2]. We also provide some additional expository content as we do this.

There, the constructions start given a continuous representation of the absolute Galois group

�̂ = �̂K := Gal(K̄/K) of K, a finite extension of Qp, on a free module over a complete Noe-

therian local Zp-algebra A with finite residue field. Then loci of SpecA[1/p] such that the

associated Galois representation satisfies conditions from p-adic Hodge theory are deter-

mined. Our goal is to generalize the arguments and constructions of [Kis08] to the case that

A is formally finitely generated over a complete Noetherian local ring R with finite residue

field, i.e. the quotient of a restricted power series ring Rhz
1

, . . . , zai. We know from Corol-

lary 3.2.4.3 that the moduli spaces of representations Rep
¯D of �̂ with a residually constant

d-dimensional pseudorepresentation D̄ : F[[�̂]]! F are formally finite type over the complete

local Noetherian pseudodeformation ring R
¯D with residue field F. Because the whole moduli

space of d-dimensional pseudorepresentations is semi-local with local components Spf R
¯D in

bijective correspondence with Fp-valued d-dimensional pseudorepresentations of �̂ (Corollary

3.1.6.13), the results of this chapter apply to the whole moduli space of representations of

�̂. This means, for example, that given the condition “semistable with Hodge-Tate weights

in [0, h],” there exists a Zariski closed subspace of Rep
d
ˆ

�

[1/p] parameterizing precisely these

representations. See Theorem 4.12.12 for the p-adic Hodge theoretic conditions for which we

prove such a result.

As a concrete example of the application of this theorem, consider two crystalline rep-

resentations ⇢
1

, ⇢
2

of �̂K over Qp. It is well known that the subset of the vector space of
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extensions of the form 0@⇢1 ⇤

0 ⇢
2

1A
that are crystalline form a sub-vector space of ExtQ

p

[

ˆ

�]

(⇢
2

, ⇢
1

). Our results show that for

a much wider set of conditions – e.g. potentially semi-stable of a certain Galois type, and

prescribed Hodge type – the locus of extensions fulfilling this representation will be Zariski

closed. This is a proper generalization of the results of Kisin [Kis08], since there is not

necessarily one finite field valued representation of �̂ such that the entire family of extensions

reduces to it. An example of such a case is when the mod p reductions ⇢̄i are absolutely

irreducible and dimF
p

ExtF
p

[

ˆ

�]

(⇢̄
2

, ⇢̄
1

) > 1.

We will not reference the moduli spaces and pseudorepresentations in what follows, but

will simply assume that A is a formally finite type R-algebra, where R is a complete Noe-

therian local Zp-algebra with finite residue field F and maximal ideal m. We will sometimes

use ↵ for an Artinian ring R/mn.

4.1. Changes in Notation from [Kis08]

For the reader familiar with the notation of [Kis08], we remark that we follow the notation

there with the following exceptions. For the most part, the changes come from generalizing

the coe�cient ring of the representation, as described above.

(1) We use � for the Galois group denoted as GK in [Kis08] and �1 for GK1 .

(2) For the portions of [Kis08] where A represents an Artinian local ring with residue

field F, and VA is a free A-module with an A-linear continuous action of �1, we let

A be a finitely generated over an Artinian local ring ↵. Here ↵ stands in for R/mn

for some n > 0. The topology on A is the discrete (m↵-adic) topology. In particular,

this means that A is finite type over Z. We let VA be a projective rank d A-module

with anA-linear action of �̂1 with open kernel.

(3) When in [Kis08] A represents a complete Noetherian local ring with finite residue

field F, in the analogous sections of our work A will represent a formally finite type

R-algebra, i.e. a quotient of a finitely generated restricted power series ring over
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R. The ring R is a complete Noetherian local ring with finite residue field F. This

makes A a topologically finite type Zp-algebra, where the topology on A is mR · A-

adic. We then use VA to denote a projective rank d A-module with an action of

�̂.

(4) When [Kis08] changes notation and uses A� in place of A, and then A = A�[1/p], we

do the same. We also require that A� be p-torsion free along with this transition,

i.e. A� is a flat continuous topologically of finite type Zp-algebra.

4.2. Background for Representations of Bounded E-height (§§4.3-4.5)

Let k be a finite field of characteristic p > 0 and W := W (k) its ring of p-typical Witt

vectors. W is the ring of integers of a finite unramified extension K
0

:= W (k)[1/p] of Qp.

Let K/K
0

be a totally ramified extension of degree e. Fix an algebraic closure K̄ of K, and

a completion Cp of K̄ and let �̂ := �̂K = Gal(K̄/K).

Our entire aim is to study the moduli of representations of �̂ with p-adic Hodge theoretic

properties. We recall the definitions of some p-adic period rings.

Let O
¯K be the ring of integers of K̄ and OC

p

the ring of integers of Cp. Let R = lim �O
¯K/p,

where each transition map is the Frobenius endomorphism of the characteristic p ring O
¯K/p.

This is a complete valuation ring which is perfect of characteristic p and whose residue field

is k̄ and is also canonically a k̄-algebra [FO, Proposition 4.6]. The fraction field FrR of R is a

complete nonarchimedean algebraically closed characteristic p field. The elements x of R are

in natural bijection with sequences of elements (x
(n))n�0

of OC
p

such that xp
(n+1)

= x
(n) for

all n � 0. A canonical valuation on R is given by taking the valuation v on Cp normalized

so that v(p) = 1 and setting vR((x(n))n�0

) = v(x
(0)

). Frobenius ' acts on R by the pth

power map also, or, equivalently, a single shift in the limit defining R or, in terms of the

presentation x = (x
(n))n�0

, '(x) = (xp
(n))n�0

.
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Consider the ring W (R), and write an element of W (R) as (x
0

, x
1

, . . . , xn, . . . ). There is

a unique continuous surjective W -algebra map

✓ : W (R) �! OC
p

(x
0

, x
1

, . . . ) 7!
1X
n=0

pnxn,(n)

lifting the projection to the first factor R ! O
¯K/p onto the 0th truncation W

0

(R) of the

limit of truncated Witt vectors defining W (R) (cf. [FO, Remark 5.10]). There is a Frobenius

action on the perfect, characteristic p ring R, and therefore also a Frobenius map ' on W (R)

which sends (x
0

, x
1

, . . . ) to (xp
0

, xp
1

, . . . ).

We fix the notation S := W [[u]], the power series ring in the variable u. We equip S

with a Frobenius map denoted ', which acts by the usual Frobenius map on W and sends u

to up. We think of these as the functions bounded by 1 on the open analytic unit disk over

K
0

, and S[1/p] as the ring of bounded functions on the open unit disk. Fix a uniformizer

⇡ 2 K, and elements ⇡n
1 for n � 0 such that ⇡

0

= ⇡ and ⇡p
n+1

= ⇡n. Write E(u) 2 W [u] for

the minimal, Eisenstein polynomial of ⇡. We note that 'n(E(u)) is a minimal, Eisenstein

polynomial for ⇡n for n � 0.

Write ⇡ := (⇡n)n�0

2 R, and let [⇡] 2 W (R) be its Teichmüller lift (⇡, 0, 0, . . . ). Because

the R is canonically a k̄-algebra, we have a canonical embedding W ,! W (k̄) ,! W (R).

We consider W (R) as a W [u]-algebra by sending u to [⇡]. Since ✓([⇡]) = ⇡, this embedding

extends to an embedding of S into W (R) (cf. the formulation of W (R) in [FO, §5.2.1]), and

we will consider W (R) and rings derived from W (R) as S-algebras via this map from now

on. From the discussion above, this map is visibly '-equivariant.

We define another important element ["] 2 W (R). Firstly define a sequence of pnth roots

of unity

(4.2.1) "
0

= 1, "
1

6= 1, and "pn+1

= "n 8n � 0.

1In the notation above, these would be ⇡(n).
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This sequence defines an element " in R. Let ["] 2 W (R) be its Teichmülller lift. Notice

that ✓(["]� 1) = 0.

Let OE be the p-adic completion of S[1/u]. Then OE is a discrete valuation ring

with residue field k((u)) and maximal ideal generated by p. Write E for its fraction field

FrOE = OE [1/p]. The inclusion S ,! W (R) extends to an inclusion OE ,! W (FrR), since

⇡ 2 FrR and W (FrR) is p-adically complete. Let Eur ⇢ W (FrR)[1/p] denote the maximal

unramified extension of E contained in W (FrR)[1/p], and OEur its ring of integers. Since FrR

is algebraically closed, the residue field OEur/pOEur is a separable closure of k((u)). If OdEur is

the p-adic completion of OEur , or, equivalently, the closure of OEur in W (FrR) with respect

to its p-adic topology, set Sur := OdEur \W (R) ⇢ W (FrR). All of these rings are subrings of

W (FrR)[1/p], and are equipped with a Frobenius operator coming from W (FrR)[1/p].

For n � 0 letKn+1

:= K(⇡n), and letK1 = [n�0

Kn and �̂1 := Gal(K̄/K1). Clearly the

action of �̂1 on W (R) fixes the subring S, since it fixes both W and ⇡n 8n � 0. Therefore

�̂1 has an action on Sur and Eur.

The discussion above provides the needed background and definitions for §§4.3-4.5, where

“representations of E-height  h” are discussed. Background and definitions for the rest of

the chapter are given in §4.6.

4.3. Families of Étale '-modules

In this section, let A denote an algebra of finite type over an Artinian local ring ↵ with

finite residue field F of characteristic p. Let VA be a finite projective constant rank A-module

with an A-linear action of �1 with open kernel, i.e. an object of the additive exact tensor

category

Rep
ˆ

�1
(A).

Write Mod
ˆ

�1
(A) for the category of finitely generated A-modules with an action of �1 with

open kernel.

Let OE,A denote OE ⌦Z
p

A, with an A-linear extension ' of the Frobenius on OE . We

note that this is a Noetherian ring, as OE is Noetherian and A is finitely generated over Zp.
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Write �0
M(A) for the category of OE,A-modules M with an isomorphism '⇤(M)

⇠! M , and

write �M(A) for the full subcategory of projective constant rank modules. These are known

as étale '-modules over A. This is also a additive exact rigid tensor category.

Much of p-adic Hodge theory has to do with equivalences between categories of Galois

representations and categories of linear algebraic data. We wish to prove an equivalence of

this sort between the categories above.

In the case that A = ↵ = Zp, this is due to Fontaine [Fon90, A.1.2.6], who proved that

the following functors are quasi-inverse and therefore define an equivalence of categories:

M : Mod
ˆ

�1
(Zp) �! �0

M(Zp)

VZ
p

7! (OEur ⌦Z
p

V ⇤
Z
p

)
ˆ

�1

V : �0
M(Zp) �! Mod(�̂1, A)

MZ
p

7! (OEur ⌦OE MZ
p

)'=1

By adding A-structure for A Artinian with residue field F (say A = ↵), it is immediate

that M,V extend to mutually quasi-inverse functors on the analogous abelian categories

with A-linear structure, Mod
ˆ

�1
(A) and �0

M(A). It is shown in [Kis09c, Lemma 1.2.7(4)]

that this equivalence of categories restricts to an equivalence of the respective additive exact

subcategories of projective, finite, constant rank objects, Rep
ˆ

�1
⇠= �M(A).

Our goal in this section is to extend this theorem to the case that A is finite type over ↵.

We make the following definitions in order to accomplish this, also reviewing the definitions

we made at the beginning of this section.

Definition 4.3.1. Let A be a finite type ↵-algebra, where ↵ is a local Artinian ring with

residue field F.

(1) Let Mod
ˆ

�1
(A) be the category of finite A-modules with a A-linear action of �̂1 with

open kernel. Let RepA
ˆ

�1
be the full subcategory whose objects are finite, projective,

and constant rank as A-modules.
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(2) Let �0
M(A) be the category of finite OE,A-modules M equipped with an A-linear

isomorphism '⇤(M)
⇠! M . Let �M(A) be the full subcategory whose objects are

finite, projective, and constant rank as OE,A-modules.

(3) Let M be the functor

M : Mod
ˆ

�1
(A) �! �0

M(A)

VA 7! (OEur ⌦Z
p

V ⇤
A)

ˆ

�1 .

(4) Let �
0
Gal

M (A) be the essential image ofMA in �0
M(A), and let �Gal

M (A) be the essential

image of M in �M(A).

(5) Let V be the functor

V : �
0
Gal

M (A) �! Mod
ˆ

�1
(A)

MA 7! (OEur ⌦OE MA)
'=1.

Of course, it remains to be confirmed that the definition above is valid, e.g. that M(VA)

is finite as a OE,A-module when VA 2 obMod
ˆ

�1
(A)

We note that V makes sense on all of �0
M(A), but we only confirm after restricting it to

the full subcategory �
0
Gal

M (A) of �0
M(A) that it yields an object of Mod

ˆ

�1
(A). There, we

confirm that it defines a quasi-inverse to M , making M fully faithful and exact. Therefore

it will define equivalences of categories

Mod
ˆ

�1
(A)

⇠�! �
0
Gal

M (A),

Rep
ˆ

�1
(A)

⇠�! �Gal

M (A).

In summary, this is what we want to prove.

Proposition 4.3.2 (Generalizing [Kis09c, Lemma 1.2.7]).

(1) The functor M : Mod
ˆ

�1
(A)! �0

M(A) is exact and fully faithful, and is an equiva-

lence onto the full subcategory �
0
Gal

M (A) with quasi-inverse V .

(2) If A0 is a finite A-algebra, then there is a functor �Gal

M (A) ! �Gal

M (A0) induced by

�⌦A A0.
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(3) For W a finite A-module and VA 2 Rep
ˆ

�1
(A), there is a natural isomorphism

M(VA ⌦A W ) ⇠= M(VA)⌦A W.

(4) M restricts to an equivalence of categories

M : Rep
ˆ

�1

⇠�! �Gal

M (A).

In particular, this means that

(a) if VA is projective as an A-module of constant rank d, then MA is a projective

OE,A-module of constant rank d, equipped with an isomorphism '⇤MA
⇠!MA.

(b) if VA is free as an A-module with rank d, then MA is a free rank d OE,A-module.

Remark 4.3.3. In the proof of this proposition, we will see that the obstruction to

proving that M and V are mutually quasi-inverse on all of �0
M(A) is that there may not be a

filtration ofMA 2 �0
M(A) into finite ↵-submodulesMi such that the structure '⇤(MA)

⇠!MA

is the limit of such maps on Mi. The analogous filtration always exists in Mod
ˆ

�1
(A) because

we demand that the action of �̂1 factors through a finite quotient.

First we assemble these facts on limits. We will append (�)1 to various categories to

indicate that the A-module finiteness condition has been dropped; however, it is important

that we do not drop the condition that the action of �̂1 has open kernel.

Fact 4.3.4. In a category of modules, tensor products commute with direct limits, since

tensor product operations are left-adjoint functors and therefore commute with colimits.

Lemma 4.3.5. If the maps of a filtered direct limit of finite modules in Mod1
ˆ

�1
(↵) (resp. in

�
01
M (↵)) are all injective, then the functor (�)ˆ�1 (resp. (�)'=1) commutes with this direct

limit.

Lemma 4.3.6. With A as specified above, both A and OE,A are commutative Jacobson

Noetherian rings.
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Proof. We know that A is a Noetherian ring because it is finitely generated over an

Artinian ring ↵ with a finite residue field, and it is Jacobson because it is finitely generated

as a Z-algebra. We observe that if pi = 0 in A, then

OE,A ⇠= (W (k)/piW (k))[[u]][1/u]⌦Z
p

A.

Since the left factor of the tensor product is a Noetherian ring and the right factor is finitely

generated over Zp, OE,A is Noetherian.

A commutative Noetherian ring B is Jacobson if and only if there are no primes p such

that B/p is 1-dimensional and semi-local (see Sublemma 4.5.8). Let p be a 1-dimensional

prime of OE,A. The factor map to OE,A/p factors through the quotient ring k((u))⌦Z
p

A. This

induces a prime pc of A by contraction along the map A! k((u))⌦F
p

A/pA, and we observe

that since OE,A/p is 1-dimensional, so is A/pc. Since A/pc is not semi-local and injects into

OE,A/p, neither is OE,A/p semi-local. ⇤

We also record this fact, which will be of use later.

Fact 4.3.7. Inverse limits in Mod
ˆ

�1
(↵) (resp. �0

M(↵)) commute with the invariant func-

tor (�)ˆ�1 (resp. (�)'=1), since an invariant functor is a right-adjoint functor and therefore

commutes with limits.

In order to prove the proposition above, our basic strategy will be to forget the A-linear

structure and write the objects of the categories above as direct limits of finite ↵-submodules

with the respective additional structure of ' or a group action.

Proof (Proposition 4.3.2). Let VA 2 obMod
ˆ

�1
(A). Because the action of �̂1 has

a finite index kernel, we have a canonical isomorphism as ↵[�̂1]-modules of VA with lim�!i
Vi,

where (Vi)i2I 2 obMod
ˆ

�1
(↵) are the ↵-module-finite ↵[�̂1]-submodules of VA. We note that

the functor M (resp. V ) commutes with injective direct limits in Mod
ˆ

�1
(↵) (resp. �0

M(↵)),

using the fact and lemma above and the fact that the tensor product⌦Z
p

OEur (resp.⌦OEOEur)

preserve injective maps.
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Therefore there are canonical isomorphisms of colimits of objects of �0
M(↵),

M(VA) = M(lim�!
i

Vi) = lim�!
i

M(Vi),

and the fact that M is an equivalence of categories out of Mod
ˆ

�1
(↵) commuting with the

necessary colimits implies that there is a canonical isomorphism respecting all structures

(4.3.8) VA ⌦Z
p

OEur

⇠

OEur ,↵,ˆ�1,'

// M(VA)⌦OE OEur

The A-linear structure on the left hand side then provides a canonical A-linear structure on

the right hand side, commuting with the action of OEur , �̂1, and '.

Let H be the open kernel of the action of �̂1 on VA. Since H acts trivially on VA, the

canonical isomorphism above induces a canonical isomorphism

(4.3.9) VA ⌦Z
p

(OEur)H
⇠�!M(VA)⌦OE (OEur)H .

Since �̂1/H is finite and (OEur)ˆ�1 = OE , we know that (OEur)H is finite as a OE -module.

Therefore the left hand side is finite as a OE,A-module, so that the right hand side is as well.

As M(VA) is a OE,A-submodule of the right hand side and OE,A is a Noetherian ring, M(VA)

is finite as a OE,A-module. This confirms that the target of M can be taken to be �0
M(A).

Since V commutes with the same limits as M does, we observe that V defines a quasi-inverse

on the essential image �
0
Gal

M (A) of M . This establishes (1). In particular, M is exact, since

lim�! over a direct limit with injective maps is an exact functor on a category of modules.

Part (2) is clear from the fact that (2) holds when A is replaced by ↵ (cf. [Kis09c, Lemma

1.2.7(2)]), along with the compatibility of tensor products with direct limits of modules.

For part (3), observe that this is clear for free A-modules W and then use the exactness

of M on a presentation for a general finite module W .

For part (4), first observe that the exactness of M implies that M(VA) is flat over OE,A

if and only if VA is flat over A. As these modules are finite over Noetherian rings, they

are projective. Therefore, it remains only to verify that the ranks are constant, as claimed.
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Since both VA and M(VA) are flat, the rank function is locally constant. At a maximal ideal

m, we know that the ranks dimA/m VA ⌦A A/m and rkOE,A/m
M(VA ⌦A A/m) are the same

since, by (2),

M(VA)⌦A A/m ⇠= M(VA ⌦A A/m)

and since A/m is a finite field, [Fon90, A.1.2.4(i)] tells us that the OE,A/m-rank of M(VA/m)

is constant and is the same as the A/m-dimension of VA/m. Any maximal ideal I of OE,A

contains the kernel of the factor map OE,A ! OE,A/m for some maximal ideal m of A.

Therefore the rank of M(VA) is constant and equal to the A-rank of VA at all maximal

ideals. Since OE,A is Jacobson and Noetherian by Lemma 4.3.6, this means that maximal

ideals are dense in SpecOE,A and M(VA) has constant rank. We conclude that M(VA) is a

finite, projective, constant rank OE,A-module with rank equal to rkA(VA).

We conclude by proving (4b): M(VA) is free when VA is free. The isomorphism (4.3.9)

shows that both VA ⌦Z
p

(OEur)H and M(VA) ⌦OE (OEur)H are free (OEur,A)H-modules. But

Spec(OEur,A)H ! SpecOE,A is a finite surjective étale morphism. Because vector bundles

are locally isotrivial (i.e. Hilbert theorem 90, or GLd is special in the sense of Serre [Ser58,

Exposé 1]), M(VA) must be free. ⇤

4.4. Functors of Lattices and A�ne Grassmanians

We recall that A denotes a discrete commutative ring, finitely generated over an Artinian

commutative ring ↵ with finite residue field F. Also, VA denotes a rank d projective A-module

with an A-linear action of �̂ with open kernel.

In the previous section, we established an equivalence between representations VA of

�̂1 over A and certain OE,A-modules M(VA) with a Frobenius semi-linear endomorphism.

Since p is nilpotent in A (say pi = 0 in A), OE,A ⇠= (Z/piZ)[[u]][1/u] ⌦Z
p

A. Therefore

SA[1/u] ⇠= OE,A, and we may considerSA-lattices withinM(VA) with a Frobenius semi-linear

endomorphism inducing that on M(VA). The functor of such SB-sublattices of M(VA)⌦AB,

for B a commutative A-algebra, is represented by an a�ne Grassmannian, as we will see
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below. An a�ne Grassmannian is an Ind-projective scheme, but a condition called “finite E-

height,” which we will describe below, cuts out a closed subscheme that turns out to be finite

type over A. It will turn out that the condition “E-height  h” corresponds to the condition

“Hodge-Tate weights in [0, h]” for representations of �̂. These lattices are generalizations of

the functor of finite flat group scheme models for VA in the case that h = 1. This was the

case studied initially in [Kis09c].

Recall that when R is a complete local ring and B is an R-algebra, RB denotes the

mR-adic completion of the tensor product R ⌦Z
p

B (so this completion will be discrete in

this section). Note also that the assumptions on A imply that A is a finitely generated

Zp-algebra. This implies that if R (for example R = S) is Noetherian and B is a finitely

generated A algebra, then RB is Noetherian as well. In particular, SA is Noetherian. We

write ŜB for the u-adic completion of SB, which is also Noetherian.

Definition 4.4.1. Where R ,! S is an injection of rings, we mean by a R-sublattice

of a projective rank d S-module M a R-submodule N of M that is projective rank d as an

R-module and spans M , i.e. the natural map N ⌦R S !M is surjective.

A�ne Grassmannians for inner forms of GLd are functors of sublattices of projective

constant rank modules. The local a�ne Grassmanian parameterizes these vector bundles

over the formal one-dimensional disk D which are trivialized on the punctured disk. The

global a�ne Grassmanian parameterizes these vector bundles over the a�ne line A1 which

are trivialized on the punctured line.

Definition 4.4.2. Let M be a projective rank d A-module. Then the a�ne Grassmani-

ans are the following functors.

(1) The local a�ne Grassmanian Grloc
GL(V

A

)

for GL(VA) is the functor associating to a

A-algebra B the set of pairs (PD, ⌘) where PD is a projective rank d B[[t]]-module

and ⌘ is an isomorphism

PD ⌦B[[t]] B((t))
⇠�!M ⌦A B((t)).
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(2) The global a�ne Grassmannian Grglob
GL(V

A

)

for GL(VA) is the functor assigning to an

A-algebra B the set of pairs (PA1 , ⌘), where PA1 is a projective rank d B[t]-module

and ⌘ is an isomorphism

PA1 ⌦B[t] B[t][1/t]
⇠�!M ⌦A B[t][1/t].

We observe that there is a natural functor

(4.4.3) Grglob
GL(V

A

)

�! Grloc
GL(V

A

)

given by restriction from a line to the disc. Remarkably,

Theorem 4.4.4 (Beauville-Laszlo [BL95]). The functor (4.4.3) is an isomorphism.

Therefore we can call the Ind-projective scheme which represents these functors “the”

a�ne Grassmanian. Let us overview this Ind-projective structure, and namely its canonical

ample line bundle, using the local a�ne Grassmanian for a free module.

Recalling the definition of the local a�ne Grassmannian, its B-points when VA is the free

module A�d amounts to the set of projective rank d B[[t]]-submodules L of B((t))�d which

are sublattices. For any such L, there exists some n � 0 such that

(4.4.5) tn · B[[t]]�d ✓ L ✓ t�n · B[[t]]�d.

We call these lattices ti for short. Now let L̄ be the image of L in the finite free rank 2dn B-

module t�n/tn. Therefore L̄ defines a point in some (conventional) projective Grassmannian

parameterizing submodules of t�n/tn:

L̄ 2
2dna
k=0

PGr(k, t�n/tn)(B),

where we write PGr(k, t�n/tn) for the Grassmannian PGr(k, 2dn) of rank k projective sub-

modules of a free rank 2dn B-module, identifying the lattice t�n/tn that the Grassmannian

is constructed from. The sublattice L̄ is a t-stable submodule, i.e. it is closed under the

natural action of t. The t-stability condition is a Zariski closed condition in this disjoint
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union of Grassmannians; we denote the resulting projective SpecA-scheme by

(4.4.6) PGr(t�n/tn)stable.

It turns out that any t-stable submodule L̄ of t�n/tn lifts to a well-defined sublattice L ⇢

B((t)), so that we can canonically identify PGr(t�n/tn)stable as a subfunctor of the local a�ne

Grassmannian for A�d. That is, we have for each n a canonical embedding

PGr(t�n/tn)stable ,! Grloc
GL(A�d

)

⇠= Grloc
GL

d

.

There are also natural closed immersions

(4.4.7) PGr(t�n/tn)stable ,! PGr(t�n0
/tn

0
)stable

for all n0 � n. Since, as we noted above, any L 2 Grloc
GL(A�d

)

belongs to one of these

PGr(t�n/tn)stable, we have written the local a�ne Grassmannian as an Ind-projective A-

scheme.

There is a canonical line bundle on Grloc
GL(A�d

)

which is very ample on every one of the pro-

jective subschemes PGr(t�n/tn)stable, and this is the determinant line bundle ^dO(Gr

loc

)

(L) =

detL of the universal lattice L. Strictly speaking, the canonical line bundle is the quotient

of the determinant by the determinant of the standard lattice which is, in the construc-

tion above, for any A-algebra B, the lattice B[[t]]�d ⇢ B((t))�d. One can check that this

line bundle is compatible with the maps (4.4.7), and that its restriction of detL to each

of the conventional Grassmannians PGr(k, t�n/tn)stable is canonically isomorphic to the the

restriction of the standard very ample line bundle on PGr(k, 2dn) to the t-stable locus.

As a result of the overview above, we can identify Ind-projective scheme Gr
GL(V

A

)

and

the canonical very ample line bundle on Gr
GL(V

A

)

even when VA is merely finite projective

and not free. Of course, this could be done directly, but we will accomplish this by gluing.

We may choose a Zariski cover of SpecA trivializing VA and then follow the construction of

the Ind-projective scheme representing the a�ne Grassmannian for GL(VA) on this cover,

along with its very ample line bundle. Since the very ample line bundle is canonical, it can
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be glued together along with the Ind-scheme. Projectivity of a morphism is local on the base

when the base is locally Noetherian and the very ample line bundle is considered to be part

of the data of a projective morphism. This fact, and a discussion of notions of projectivity

of morphisms, are discussed in Appendix A.

We summarize our discussion in the following

Theorem 4.4.8. Let S be a locally Noetherian scheme, and let V be a projective, coherent,

constant rank OS-module. Then the a�ne Grassmannian Gr
GL(V )

is an Ind-projective S-

scheme with a canonical very ample invertible sheaf arising from the determinant of the

universal lattice.

Remark 4.4.9. For a discussion of the universal very ample determinant line bundle for

the a�ne Grassmannian for SLd, see [Fal03, p. 42]).

In preparation to apply the Beauville-Laszlo theorem and the a�ne Grassmannian to the

functor of SA-sublattices of M(VA), we give the following proposition, which says that the

functors of sublattices that arise in our study are sandwiched between the global and local

a�ne Grassmanians via (4.4.3), and therefore are all isomorphic to the a�ne Grassmanian.

Some of these functors will not arise in the study below, but this proposition shows that

considering those functors would amount to the same thing.

Proposition 4.4.10. If VA is an object of Rep
ˆ

�1
(A), projective of rank d, and MA :=

M(VA) is the corresponding OE,A-module in �Gal

M (A), then there exist equivalences between

the following functors on A-algebras.

(1) The global a�ne Grassmanian Grglob
Res

W/Z
p

GL(V
A

)

for ResW/Z
p

GL(VA)/A.

(2) The functor associating to a finitely generated A-algebra B the SB-sublattices of

MB := MA ⌦A B

(3) The functor associating to a finitely generated A-algebra B the ŜA⌦A B-sublattices

of (MA ⌦S
A

ŜA)⌦A B.

(4) The functor associating to a finitely generated A-algebra B the ŜB-sublattices of

M̂B := MB ⌦S
B

ŜB.
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(5) The local a�ne Grassmanian ResW/Z
p

Grloc
GL(V

A

)

for ResW/Z
p

GL(VA)/A.

Remark 4.4.11. We will see in the proof that the equivalence between the a�ne Grass-

mannians and the functors (2), (3), (4) is not canonical. This is not a new phenomenon that

arises when A is no longer Artinian as it was in [Kis08]. There, both VA and MA were free

modules whenever they were projective of constant rank since their respective base rings

A and OE,A were semi-local, and the isomorphism between the functor of lattices of MA

and the a�ne Grassmannian for GLd rested on choosing non-canonical isomorphisms with a

standard free module, e.g. VA
⇠= A�d.

Proof. First let us assume that VA is free of rank d, so thatMA is as well, by Proposition

4.3.2(4). For simplicity we assume that W = Zp. Let B be a finitely generated A-algebra.

Since p is nilpotent in A (say pi = 0) we observe that OE,B ⇠= Z/piZ[[u]][1/u]⌦Z
p

B and

B[u][1/u] ⇢ OE,B ✓ OE,B ⌦S
B

(ŜA ⌦A B) ✓ OE,B ⌦S
B

ŜB ✓ B[[u]][1/u].

Likewise, we observe that

B[u] ⇢ SB ✓ ŜA ⌦A B ✓ ŜB ✓ B[[u]],

and that each member of the row above is obtained by adjoining [ 1
u
] to the corresponding

member of the row below.

Let M̄A be a free A[u][1/u]-module and choose an isomorphism M̄A ⌦A[u][1/u] OE,A
⇠!

MA. The functor associating to a finitely generated A-algebra B the set of B[u]-sublattices

of M̄A ⌦A B is naturally equivalent to the global a�ne Grassmannian Grglob
GL

d

. The local

a�ne Grassmannian is naturally equivalent to the functor (4). The natural transformations

between the functors (1) to (4) by tensoring factor the usual natural transformation from

the global a�ne Grassmannian to the local a�ne Grassmanian. Since this transformation

is known to be an equivalence by Theorem 4.4.4, all of the functors are equivalent. We note

that the choice of basis makes the equivalence between the a�ne Grassmannian and the

functors of lattices non-canonical.
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In the case that VA is a projective, rank d OE,A-module trivialized by a Zariski cover

Spec Ã ! SpecA, then Proposition 4.3.2(4) implies that the same cover trivializes MA.

Then one can apply descent (gluing) to the equivalences above to produce an Ind-projective

scheme parameterizing these lattices. Since finite étale morphisms induce equivalences of

categories of locally free coherent sheaves (Hilbert Theorem 90), the isomorphism (4.3.9)

shows that this Ind-projective scheme is isomorphic to Gr
GL(V

A

)

. ⇤

The functor of S-lattices of E-height at most h for VA is defined on the category of

A-algebras as follows. Recall that MA := M(VA).

Definition 4.4.12. For B an A-algebra, let MB = MA⌦AB; MB admits an extension of

' by linearity. Choose a positive integer h. A SB-lattice of E-height  h is a SB-submodule

MB ⇢MB such that

(1) MB is a finite projective SB-module of rank d which generates MB as a OE,B-

module, i.e. it is a sublattice.

(2) MB is stable by ' and the cokernel of '⇤(MB)!MB is killed by E(u)h.

We write Lh
V
A

(B) for the set of SB-lattices of E-height at most h in MA = M(VA).

Proposition 4.4.13 (Following [Kis09c, Proposition 2.1.7]). The functor Lh
V
A

sending a

commutative B algebra to the set of SB-lattices of MB of E-height at most h is represented

by a projective A-scheme Lh
V
A

. If A ! A0 is a finite map and VA0 = VA ⌦A A0, then there

is a canonical isomorphism Lh
V
A

⌦A A0 ⇠! Lh
V
A

. Moreover Lh
V
A

is equipped with a canonical

(functorial in A) very ample line bundle.

The proof is just the same as [Kis09c, Proposition 2.1.7], except that we need Proposition

4.4.10 to see that the set of SB-sublattices of MB ⇢ MB is parameterized by the a�ne

Grassmannian for ResW/Z
p

GL(MA) over A.

Proof. To show that Lh
V
A

is represented by an Ind-projective SpecA-scheme, we note

that it is naturally, by Proposition 4.4.10, a subfunctor of Gr
Res

W/Z
p

GL(V
A

)

. TheSB-sublattice

MB ⇢MB is an object listed under (2) in Proposition 4.4.10, and therefore these sublattices
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define points of the a�ne Grassmannian. The a�ne Grassmannian is an Ind-projective

SpecA-scheme by Theorem 4.4.8. One can check that this subfunctor is Zariski closed, the

condition coming from the finite E-height, and therefore Lh
V
A

is a Ind-projective scheme. It

remains to show that this scheme is in fact finite type over A.

Choose a SA-sublattice NA ⇢ MA (with no '-structure). In direct analogy with the

construction of the Ind-projective model for Grloc
GL

d

out of projective subschemes (4.4.6), the

condition

unNB ⇢MB ⇢ u�nNB

(which is analogous to (4.4.5)) is a projective subscheme of Gr
Res

W/Z
p

GL(V
A

)

. We will complete

the proof by showing that there exists an n such that all MB of E-height  h satisfy this

condition.

In this we follow the proof of [Kis09c, Proposition 2.1.7] directly. The only modification

we need to make is to remark that we can reduce to the case that VA and MA are free by

replacing SpecA with a Zariski cover. This reduction is possible because the a�ne Grass-

mannian can be canonical glued together, cf. the discussion immediately before Theorem

4.4.8. Let B be a finitely generated commutative A-algebra and choose MB 2 Lh
V
A

(B). Let

r be the least integer such that

urNB ⇢ (1⌦ ')'⇤(NB) ⇢ u�r,

and let i be the least integer such that NB ⇢ u�iBMB. Consider a matrix which transforms

a SB-basis of NB into a SB-basis of MB. From this we see that, as '(u) = up, the least

integer j such that

(4.4.14) (1⌦ ')'⇤(NB) ⇢ u�j(1⌦ ')'⇤(MB)

is equal to ip. Therefore we have inclusions

(4.4.15) (1⌦ ')'⇤(NB) ⇢ u�rNB ⇢ u�i�rMB = E(u)�hu�i�r(E(u)hMB).
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Recall that e denotes the degree of E and let s be the least integer such that ps = 0 in A.

Now because E(u) = ue + pf(u) for some f(u) 2 W [u] of degree e� 1,

E(u)�1 =
1

ue + pf(u)
=

u�e

1 + u�epf(u)
= u�e(1� pu�ef(u) + · · ·+ (�1)s�1u�e(s�1)f(u)s�1).

Therefore E(u)�h · N ⇢ u�ehsN for any S-lattice N . We also know that E(u)h · MB ⇢

(1⌦ ')'⇤(MB) because MB has E-height  h, by definition. Therefore (4.4.15) extends to

an inclusion

(1⌦ ')'⇤(NB)
(4.4.15)

⇢ E(u)�hu�i�r(E(u)hMB) ⇢ u�i�r�ehs(1⌦ ')'⇤(MB).

Combining this inclusion with the fact that ip is the least integer satisfying (4.4.14) means

that

ip  ehs+ i+ r, i.e. i  ehs+ r

p� 1
.

On the other hand, if i is the least integer such that MB ⇢ u�i(1⌦ ')'⇤(NB), then

(1⌦ ')'⇤(MB) ⇢MB ⇢ u�iNB ⇢ u�i�r(1⌦ ')'⇤(NB),

by definition of r. Then since ip is the least integer satisfying (4.4.14), we have

ip  i+ r, i.e. i  r

p� 1
.

To summarize, we first showed that if we set n = b ehs+r
p�1

c, then unNB ⇢ MB. Then

we showed that n is large enough so that MB ⇢ u�nNB, and in fact the lesser number

br/(p � 1)c would work in place of n. Therefore n has the desired property that for any

lattice MB of E-height  h in MB, unNB ⇢ MB ⇢ u�iNB. This shows that Lh
V
A

is finite

type and projective, as desired.

To get the equivalence Lh
V
A

⌦A A0 ⇠! Lh
V
A

, firstly we recall Proposition 4.3.2(2-3), which

implies that M(V ⌦A A0) ⇠= M(VA) ⌦A A0. Then the fact that the a�ne Grassmannian is

compatible with base change, i.e. Gr
GL(V

A

)

⇥
SpecA SpecA0 ⇠! Gr

GL(V
A

⌦
A

A0
)

, completes the

proof.
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Finally, the canonical very ample line bundle on Lh
V
A

arises by restriction from the canon-

ical very ample line bundle on the a�ne Grassmannian, cf. Theorem 4.4.8 and the discussion

preceding it. ⇤

Write ⇥A for the projective map ⇥A : Lh
V
A

! SpecA. Write M for the universal sheaf of

⇥⇤
A(SA)-modules on Lh

V
A

and M̂ for its u-adic completion.

Now we prove a generalization of [Kis08, Lemma 1.4.1], showing that the global sections

of the universal SA-lattice in MA, with its Frobenius semi-linear structure, can recover VA in

a similar fashion to the correspondence between VA and MA = M(VA) in Proposition 4.3.2,

but without simply recovering MA from its S-sublattice and using Proposition 4.3.2.

Lemma 4.4.16 (Following [Kis08, Lemma 1.4.1]). Set Ã := ⇥A⇤(OLh

V

A

). There is a

canonical Ã-linear �̂1-equivariant isomorphism

(4.4.17) V
˜A := VA ⌦A Ã

⇠�! HomS
Ã

,'(⇥A⇤(M),Sur

˜A
).

In the case that A is Artinian, this was proved in [Kis08, Lemma 1.4.1]. An important

input to this argument is the result of Fontaine [Fon90, B.1.8.4], showing that if N is a finite

S-module with a Frobenius semi-linear isomorphism of bounded E-height, then the natural

Zp[�̂1]-linear map

(4.4.18) HomS,'(N,Sur) �! HomS,'(N,OEur).

induced by the inclusion Sur ,! OEur is an isomorphism. When N has A-linear structure

then taking A-linear maps induces a canonical A[�̂1]-linear isomorphism

(4.4.19) HomS
A

,'(N,Sur

A )
⇠�! HomS

A

,'(N,OEur,A).

When A is Artinian with finite residue field and N is finite as a SA module, then N is finite

as a S-module. Our contribution is to generalize the argument of [Kis08, Lemma 1.4.1] when

this is not the case.
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Proof. Let M⇤
A denote the OE,A-dual of MA := M(VA), equipped with the induced

structure of an object of �Gal

M (A). Using the canonical isomorphism

HomOE,Ã

(M⇤
˜A
,OEur, ˜A)

⇠= M
˜A ⌦OE,Ã

OEur, ˜A

and applying (�)'=1 to the canonical isomorphism (4.3.8), we have a canonical isomorphism.

(4.4.20) V
˜A

⇠�! (M⇤
˜A
⌦OE,Ã

OEur, ˜A)
'=1

⇠�! HomOE,Ã

,'(M ˜A,OEur, ˜A)

We want to show that the rightmost factor of (4.4.20) and the rightmost factor of (4.4.17)

are canonically �̂1-equivariantly isomorphic.

Note that ⇥A⇤(M) is a finite ⇥A⇤⇥⇤
A(SA) = S⌦A Ã-module, and the '-semi-linear OLh

V

A

-

linear endomorphism of M descends to ⇥A⇤(M) with E-height  h: for upon applying ⇥A⇤

to a linear endomorphism '⇤(M)!M we have a SA-linear map

⇥A⇤('⇤(M) �! ⇥A⇤(M).

By pre-composing this map with the natural map '⇤(⇥A⇤(M)) ! ⇥A⇤('⇤(M)) (which is

an isomorphism because ' is finite and flat as a morphism SpecS! SpecS), we have the

required structure

'⇤(⇥A⇤(M))
⇠�! ⇥A⇤('⇤(M)) �! ⇥A⇤(M).

By the projection formula, we have

⇥A⇤(M)⌦S OE
⇠�! ⇥A⇤(⇥⇤

A(MA))
⇠�!MA ⌦A Ã = M

˜A

The SA-linear map ⇥A⇤(M) ! MA, x 7! x ⌦ 1 is injective because it is the global sections

of the canonical injection M ,!MA ⌦A OLh

V

A

.

Choose now some Vi ⇢ V
˜A, an ↵[�̂1]-submodule, finite as an ↵-module (i.e. an object of

Mod
ˆ

�1
(↵)), such that the natural map Vi ⌦↵ Ã ! V

˜A is an surjection. Clearly such a Vi

exists, since VA is finitely generated as an A-module and the action of �̂1 factors through

a finite quotient. Let Mi = M(Vi) ⇢ M(V
˜A) = M

˜A be the corresponding OE,↵-submodule,
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an object of �
0
Gal

M (↵); by Proposition 4.3.2, this is naturally a submodule and the canonical

�
0
Gal

M (A)-morphism Mi ⌦↵ Ã!M
˜A is surjective. Let N be the intersection

N := ⇥A⇤(M) \Mi ⇢M
˜A,

which we observe is a S↵-submodule of M
˜A. We have the natural surjection N ⌦↵ Ã ⇣

⇥A⇤(M).

Now the result of Fontaine (4.4.18) discussed above makes for the isomorphism (4.4.19),

which we repeat here:

HomS
↵

,'(N,Sur

↵ )
⇠�! HomS

↵

,'(N,OEur,↵).

Thinking of Ã as an ↵-module for a moment, applying ⌦↵Ã to this isomorphism induces an

isomorphism

HomS
↵

,'(N,Sur

˜A
)

⇠�! HomS
↵

,'(N,OEur, ˜A).

Then tensor-Hom adjunction results in an isomorphism

HomS
Ã

,'(N⌦↵ Ã,Sur

˜A
)

⇠�! HomS
Ã

,'(N⌦↵ Ã,OEur, ˜A).

Finally, because the map Sur

˜A
! OE, ˜A inducing this isomorphism may be checked to be

an injection, an element of the left hand side factors through the quotient ⇥A⇤(M) if and

only if its image on the right hand side factors through ⇥A⇤(M). As all of the maps in

this construction were canonical, this completes the construction of the desired canonical

Ã[�̂1]-linear isomorphism

HomS
Ã

,'(⇥A⇤(M),Sur

˜A
)

⇠�! HomOE,Ã

,'(M ˜A,OEur, ˜A). ⇤

Now, extending the results of [Kis08, §1.5] where A is taken to be a complete local ring

with finite residue field, we extend the above situation to mR-adic limits. Let A be a finite

type (in the sense of formal schemes) R-algebra, compatibly with the representation VA and

its induced determinant. This means that A is complete and separated with respect to the
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mRA-adic topology. As in [Kis08], for any Zp-algebra R we denote by RA for the mR-adic

completion of R⌦Z
p

A.

The functor M generalizes to this setting naturally from the above, since

(4.4.21) MA = (OEur⌦̂Z
p

V ⇤
A)

ˆ

�1 ⇠! lim �(OEur ⌦Z
p

V ⇤
A ⌦A A/(mRA)

i)
ˆ

�1

by Fact 4.3.7. This isomorphism follows from the fact that inverse limits commute with

invariant functors, and the ideal (p⌦A)+(OEur⌦mRA) (with which the left side is completed)

is equal to OEur⌦̂Z
p

mRA (with which the right side is completed). This means that MA is a

projective OE,A-module of rank d as expected.

For B an A-algebra such that mi
R · B = 0 for some i � 1, set Lh

V
A

(B) = Lh
V
A/(m

R

A)i
(B).

Corollary 4.4.22. The functor Lh
V
A

on A-algebras B such that mi
R · B = 0 for some

i � 1 is represented by a projective A-scheme Lh
V
A

.

Proof. By Proposition 4.4.13, this functor is represented by a projective formal scheme

with a very ample line bundle compatible with its limit structure. By applying formal GAGA

(perhaps locally and gluing) we conclude that Lh
V
A

is the mR-adic completion of a projective

A-scheme. ⇤

It will be useful later to know that SA is Noetherian. This is the main technical use of

the condition that A is finite type (in the sense of formal schemes) over R.

Lemma 4.4.23. The formal scheme Spf(SA) is Noetherian.

Proof. Firstly, we claim that SR is Noetherian. This is the case because of two facts:

the standard complete tensor product �⌦̂Z
p

� is the tensor product in the category of com-

plete Noetherian local rings with finite residue fields. Therefore S⌦̂Z
p

R is Noetherian (see

e.g. [Gro64, 0
IV

, Lemme 19.7.1.2]). It is also isomorphic as a ring (though not necessarily as

a topological ring) to SR, the mR-adic completion of S⌦Z
p

R, because the residue fields of

both S and R are finite, and therefore SR is Noetherian.

Now note that SA, defined to be the mR-adic completion of S ⌦Z
p

A, is isomorphic to

SR⌦̂RA, where this completed tensor product is taken in the category of adic R-algebras,
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i.e. this is the categorical dual of the fiber product of formal Spf(R) schemes. Because

Spf(A)/ Spf(R) is finite type and Spf(SR) is Noetherian, [Gro60, Proposition 10.13.5(ii)]

implies that Spf(SA) is Noetherian. ⇤

4.5. Universality of M in Characteristic 0

We now study the image of the map ⇥A : Lh
A ! SpecA in characteristic 0, i.e. after

inverting p, following [Kis08, §1.6]. We will study these properties through their points in

finite localW (F)[1/p]-algebras B, and therefore will need to studyS-modules or OE -modules

with coe�cients in such rings B. Therefore very little new is needed in addition to [Kis08]

to accomplish this. The main new content is Lemma 4.5.6, which is needed in order to draw

conclusions about ⇥A[1/p] by its behavior on finite W (F)[1/p]-algebras alone.

Remark 4.5.1. We are venturing outside the realm of linearly topologized rings in con-

sidering W (F)[1/p]-algebras. For example, there is no filtered set of ideals giving a basis of

the p-adic topology on Qp around 0 since all ideals are trivial!

However, even big rings like A[1/p] are still Noetherian. For A is the quotient of

Zp[[t1, . . . , ta]]hz1, . . . , zbi for some a, b � 0 by the Cohen structure theorem (see e.g. [MR10,

Theorem 3.2.4]), and this ring is Noetherian since is is the (p, t
1

, . . . , ta)-adic completion of

Z[t
1

, . . . , ta, z1, . . . , zb]. Then A[1/p] is Noetherian by the Hilbert basis theorem.

The preparatory Lemmas 4.5.2, 4.5.3, and 4.5.4 require no modification from [Kis08].

Lemma 4.5.2 ([Kis08, Lemma 1.6.1]). Let B be a finite Qp-algebra, and MB a finite

SB
⇠= S⌦Z

p

B-module, which is flat over S[1/p] and equipped with a map '⇤(MB)!MB

whose cokernel is killed by E(u)h. Suppose that E ⌦S[1/p] MB is finite free over E ⌦Q
p

B.

Then MB is a finite projective SB-module.

The statement proof is identical to that of [Kis08], so we have omitted the proof. The

same is true of the next two results.
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Lemma 4.5.3 ([Kis08, Lemma 1.6.2]). Let B be a finite Qp-algebra, and J ⇢ K
0

[[u]]B =

K
0

[[u]] ⌦Q
p

B be an ideal such that '(J)K
0

[[u]]B = J , where ' acts B-linearly. Then J is

induced by an ideal of B.

Corollary 4.5.4 ([Kis08, Corollary 1.6.3]). Let A be a finite flat Zp-algebra, and VA a

finite free A-module equipped with a continuous action of �̂1. Set MA := (OEur⌦̂Z
p

V ⇤
A)

ˆ

�1.

Suppose that VA, considered as a Zp[�̂1]-module, is of E-height  h, and let MA ⇢ MA be

the unique S-lattice of E-height  h.

Then MA is a SA-submodule of MA, and MA ⌦Z
p

Qp is finite projective over SA[1/p].

In the following proposition, we we work in characteristic zero, translating the uniqueness

of S-lattices of E-height  h into a statement about ⇥A (part (1)) and showing that the

scheme theoretic image of ⇥A has the property we expect (part (2)).

Proposition 4.5.5 (Following [Kis08, Proposition 1.6.4]). Let A and VA be as specified

above. Then

(1) The map ⇥A : Lh
V
A

! SpecA is a closed immersion after inverting p.

(2) If Ah is the quotient of A corresponding to the scheme-theoretic image of ⇥A, then

for any finite W (F)[1/p]-algebra B, a continuous A! B factors through Ah if and

only if VB = VA ⌦A B is of E-height  h.

Proof. Omitted. All of the elements of the proof of Proposition 4.5.5 are entirely local,

but depend on the fact that A[1/p] is Jacobson with residue fields of closed points finite over

Qp, and that the image of A lies in the ring of integers of the residue fields. This property

of S[1/p] when S is a complete Noetherian local Zp-algebra, and this is what is used in

[Kis08]. Lemma 4.5.6 will show that A[1/p] has this property even though A is no longer

local. Otherwise the proof requires no modification from that of [Kis08], so we omit it. ⇤

The following lemma is the main new content needed to generalize [Kis08, Proposition

1.6.4] to Proposition 4.5.5. It is well-known, and quoted and deduced from [Gro66, §§10.4-

10.5] in what follows.
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Lemma 4.5.6. Let A be a finite type (in the sense of formal schemes) R-algebra, where

R is a complete Noetherian local Zp-algebra. Then

(1) A[1/p] is Jacobson and Noetherian,

(2) all residue fields of maximal ideals are finite extension of Qp, and

(3) the image of A in any such residue field is contained in its ring of integers.

We develop some notation that will be used in the proof of Lemma 4.5.6 and record a

few basic facts about these notions in Sublemma 4.5.8.

Definition 4.5.7. Let R be a commutative ring.

(1) If R is a domain, we call it a Goldman domain if its fraction field is finitely generated

over itself.

(2) A prime ideal p ⇢ R is called a Goldman prime ideal provided that R/p is a Goldman

domain, i.e. provided that the residue field (p) of p is finitely generated over R/p.

(3) We call R a Hilbert ring provided that every Goldman prime ideal is maximal.

The following facts will be useful in proving Lemma 4.5.6.

Sublemma 4.5.8. Let R be a commutative ring.

(1) R is Jacobson if and only if R is Hilbert.

(2) A Noetherian Goldman domain that is not a field must be of height 1 and have

finitely many prime ideals.

(3) The fraction field of a Goldman domain R can be generated by one element over R.

Proof. Parts (1), (2), and (3) are proved in [Gro66, Proposition 10.4.5], [Gro66, Propo-

sition 10.5.1], and [Gro66, Proposition 10.4.4] respectively. ⇤

Proof. (Lemma 4.5.6) Invoking the Cohen structure theorem, we can write R as a

continuous quotient of Zp[[t1, . . . , ta]]. Then, as A is finite type over R, we can find a surjection

from Zp[[t1, . . . , ta]]hz1, . . . , zbi to A. We will replace A with Zp[[t1, . . . , ta]]hz1, . . . , zbi and show

that it has the desired property.
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First we show that all residue fields of all maximal ideals are finite extensions of Qp. Let

B = [[t
1

, . . . , ta]] ⇢ A. First we address the case that A = Zp[[t1, . . . , ta]]. Choose a maximal

ideal m ⇢ A[1/p], and let F = A[1/p]/m be the residue field with ! representing the quotient

map. Since A is complete with respect to the I-adic topology where I = (p, t
1

, . . . , ta), the

maximal ideals of A are contractions of the maximal ideals of A/I ⇠= Fp[z1, . . . , zb]. In

particular, these maximal ideals have finite, characteristic p residue fields. But since F

has characteristic zero, the image of !(A) ⇢ F must not be a field and the canonical map

Zp ! !(A) is injective. This means that F is generated by 1/p over !(A), so that !(A) is a

Goldman domain by definition. Therefore, by Sublemma 4.5.8(2), !(A) is a Krull dimension

one Noetherian domain containing Zp and having finitely many primes. This domain is also

complete with respect to !(I). As !(I) is not (0) and !(A) has dimension 1, its radical

r(!(I)) must be maximal. Therefore !(A) is a r(!(I))-adically complete local Noetherian

domain of dimension 1. By Noether’s normalization lemma for complete Noetherian mixed-

characteristic local rings [MR10, Theorem 3.2.4], !(A) is finite as a module over a subring

isomorphic to Zp[[s1, . . . , sd � 1]] where d = dim!(A). Therefore !(A) is finite over Zp and

is the ring of integers of F , a finite extension of Qp. This proves parts (2) and (3) of the

lemma.

Now we show that A[1/p] is Jacobson and Noetherian. Indeed, A[1/p] is Noetherian

(cf. Remark 4.5.1. Now, because p is in the Jacobson radical of A and A is Noetherian, we

may directly apply [Gro66, Corollaire 10.5.8] to say that A[1/p] is Jacobson. ⇤

Now we replicate [Kis08, Corollary 1.7]. Much of the work in [Kis08] goes through in the

same way, except the construction of MAh .

Proposition 4.5.9 (Following [Kis08, Corollary 1.7]). There exists a finite SAh-module

MAh such that

(1) MAh is equipped with a map '⇤(MAh)!MAh whose cokernel is killed by E(u)h.

(2) MAh ⌦Z
p

Qp is a projective SAh [1/p]-module.

245



(3) For any finite W (F)[1/p]-algebra B, any map h : Ah ! B and any C 2 IntB

through which h factors, there is a canonical, '-compatible isomorphism of S⌦Z
p

B-

modules

MAh ⌦Ah B
⇠!MC ⌦C B.

(4) There is a canonical isomorphism

VAh ⌦Z
p

Qp
⇠! HomS

A

h

[1/p],'(MAh ⌦Z
p

Qp,S
ur

Ah

[1/p]).

Proof. Recall that SA is the mR-adic completion of S ⌦Z
p

A and is Noetherian by

Lemma 4.4.23. Let L̂h
V
A

be the mR-adic completion of Lh
V
A

. Then

⇥̂S
A

: L̂h
V
A

⇥
Spf A SpfSA ! SpfSA

is a projective morphism of Spf(A)-formal schemes over a Noetherian formal scheme. The

mR-adic completion M̂ of M may be regarded as a formal coherent (further, locally free)

sheaf on L̂h
V
A

⇥
Spf ASpfSA. Applying formal GAGA to ⇥S

A

(which requires that SA be Noe-

therian), M̂ is the completion of a coherent (further, locally free) sheaf M on the projective

SA-scheme

⇥S
A

: SpecLh
V
A

⇥
SpecA SpecSA ! SpecSA.

The scheme theoretic image of ⇥S
A

is SAh . We set

MAh := ⇥S
A

⇤(M).

With this work done, the proofs of part (1), (2), (3) and (4) may be repeated from [Kis08,

Corollary 1.7].

Part (1) results from the fact that M has the desired map '⇤(MAh)!MAh , and that,

as ' is a flat map on S, '⇤ commutes with direct images. Part (2) follows from the fact

that ⇥A is the identity operator after p is inverted, and M is a locally free coherent sheaf on

Lh
A ⇥SpecA SpecSA. Part (3) builds on Proposition 4.5.5(2) and its proof. The statement

of Proposition 4.5.5(2) tells us that VC = VA ⌦A C is of E-height  h, which means that
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MC = M(VC) contains a unique S-lattice of E-height  h, MC . Now consider the image

of MAh ⌦Ah C in MC : this is a torsion free, '-stable SC-submodule of MC such that the

cokernel of '⇤(M0
C) ! M0

C is killed by E(u)h. Following the proof of Proposition 4.5.5(2),

this implies that OE ⌦S M0
C \M0

C [1/p] is a S-lattice of E-height  h in MC , and therefore

is equal to MC . This shows that M0
C ⌦C C[1/p] ⇠= MC ⌦C C[1/p], from which the statement

of part (3) follows.

For part (4), we use Lemma 4.4.16: Let Ã := ⇥̂S
A

⇤(O
ˆLh

V

A

). We observe that there is a

canonical isomorphism

V
˜A

⇠! HomS
Ã

,'(⇥̂S
A

⇤(M̂),Sur
˜A
)

by combining Lemma 4.4.16, which implies this statement for Ã replaced by Ã/mi
R, and

the theorem on formal functions. Applying formal GAGA, inverting p, and noting that

Proposition 4.5.5 implies that Ah[1/p]
⇠! Ã[1/p], we get a canonical isomorphism

VAh ⌦Z
p

Qp = V
˜A ⌦Z

p

Qp
⇠! HomS

Ã

,'(MAh ⌦Z
p

Qp,S
ur

˜A
[1/p]).

Since the map Ah ! Ã has p-torsion kernel and cokernel, the same is true of Sur
Ah

! Sur
˜A

and SAh ! S
˜A, completing the proof. ⇤

4.6. Background for Families of Filtered (', N)-modules (§§4.7-4.12)

Following [Kis08, §2], we change notation, now denoting with A� the adic R-algebra A

from above. We now assume that A� is p-torsion free, i.e. flat over Zp, and write A for

A�[1/p], which (Lemma 4.5.6) is Jacobson with residue fields of maximal ideals finite over

Qp.

For R a Zp-algebra we write RA := RA� [1/p], where we recall that RA� is the mRA-adic

completion of R⌦Z
p

A�. We extend ' to an A-linear endomorphism of SA. We will use the

canonical isomorphism SA/uSA
⇠! WA

⇠= W [1/p]⌦Q
p

A.

Let O := lim �n
(W [[u, un/p]][1/p]), which we may think of as the ring of rigid analytic

functions on the open disk of radius 1, including S[1/p] the dense subring of bounded
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functions. The Frobenius endomorphism ' has a unique continuous extension from S[1/p]

to each ring W [[u, un/p]][1/p], and therefore to O as well.

Let c
0

= E(0) be the constant coe�cient of the Eisenstein polynomial for ⇡, and set

� :=
1Y
n=0

'n(E(u)/c
0

) 2 O

Denote by Ŝ
0

the completion of K
0

[u] at the ideal (E(u)).

In order to study families over A of '-modules over O, we need to define the correct

notion of the ring of coe�cients. In fact, two candidate definitions end up being the same:

OA := lim �
n

(W [[u, un/p]]A)
⇠= lim �

n

(WA� [[u, un/p]][1/p].

While it is clear that these rings are isomorphic when A� is local, we prove the isomorphism

here in the general case.

Lemma 4.6.1. The natural inclusions

W [[u, un/p]]A ,! WA� [[u, un/p]][1/p]

induce an isomorphism

OA := lim �
n

(W [[u, un/p]]A)
⇠�! lim �

n

(WA� [[u, un/p]][1/p]).

Proof. Write Bn := W [[u, un/p]]A and Cn := WA� [[u, un/p]][1/p], with the canonical map

Bn ,! Cn that we get from considering an element of Bn as a power series in u. Since the

maps making up these limits are injective, it will su�ce to show for f 2 C
2n that its image

in Cn under the inclusions making up the limit lies in the image of Bn in Cn. With f 2 C
2n

chosen, write it as

f =
X
m�0

fm
um

pbm/2nc
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where fm 2 p�NA� ✓ A for some fixed N � 0. This expression also denotes the natural

image of f in Cn under inclusion. We rewrite it as

f =
X
m�0

fmp
bm/nc�bm/2nc um

pbm/nc .

We want to show that f lies in the image of Bn in Cn. This is the case because the coe�cient

fmp
bm/nc�bm/2nc of un/pbm/nc lies in mi(n)

A� where limn!+1 i(n) = +1; this is the case because

p 2 mA� . ⇤

We observe that SA ,! OA, and we extend ' to an A-linear endomorphism of OA as it

was for O above. Write bS
0,A for the completion of K

0

[u]⌦Q
p

A at the ideal (E(u)).

Now, following [Kis08, §2.3], we consider period rings over the base A. Firstly, we recall

the period rings themselves (the basic case A� = Zp). Let Acris

be the p-adic completion of the

divided power envelope of W (R) (see §4.2) with respect to ker(✓), and let B+

cris

:= A
cris

[1/p].

The action of ' on W (R) extends to an action on A
cris

[FO, §6.1.2]. The map S[1/p] ,! B+

cris

extends uniquely to an continuous inclusion O ,! B+

cris

, because S[1/p] is dense in O, and

the eth power of the image [⇡] of u in W (R) is in the divided power ideal (ker ✓, p) for A
cris

[FO, Proposition 6.5] (for more detail on the radius of rigid analytic functions appearing in

B+

cris

, see Lemma 4.6.6).

Define B+

dR

to be the ker(✓)-adic completion of W (R)[1/p], where ✓ is extended to a map

✓ : W (R)[1/p] ⇣ Cp, and let B
dR

be its fraction field. This is a discrete valuation ring

with residue field Cp and maximal ideal ker ✓ and B
dR

is its valuation field, but the topology

of B+

dR

as a (complete) discrete valuation ring does not agree with its topology induced by

the constructions we have made so far, and we use the latter topology. General theory of

characteristic zero complete local rings implies that ✓ has a section, but there is no choice of

section that is �̂-equivariant, nor is there a section which is continuous. The rings A
cris

, B+

cris

are canonically subrings of B+

dR

.

Recall from §4.2 the definition of [⇡], the image of u in W (R), and ["] of (4.2.1). The

“logarithms” of these elements are important elements of B+

dR

, which we now define.
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Write `u 2 B+

dR

for

`u = log [⇡] :=
1X
i=1

(�1)i�1

i

✓
[⇡]� ⇡
⇡

◆i

.

This series converges in B+

dR

because ✓([⇡] � ⇡) = ⇡ � ⇡ = 0, and B+

dR

is by definition

the ker ✓-adic completion of W (R)[1/p]. Because ✓(["] � 1) = 0 and B+

dR

is the ker(✓)-adic

completion of W (R)[1/p], the series

t = log["] :=
1X
i=1

(�1)i+1

(["]� 1)i

i

converges to an element in B+

dR

, which we call t. In fact, because the denominators in this

series are su�ciently bounded in terms of the powers of (["]� 1), one can show that t 2 A
cris

and tp�1 2 pA
cris

[FO, Proposition 6.6].

Using `u and t, we can define several more period rings: B
cris

:= B+

cris

[1/t] ⇢ B
dR

,

B+

st

:= B+

cris

[`u] ⇢ B+

dR

, and B
st

:= B
cris

[`u], which we can think of as a polynomial ring

because `u is transcendental over the fraction field of B
cris

[FO, Proposition 6.11]. As both

`u and t are “logarithms,” it is not hard to see that '(`u) = p`u and '(t) = pt, so we extend

' to these rings according to those rules.

Equip B+

st

with an endomorphism N , by formal di↵erentiation of the variable `u with

coe�cients in B+

cris

, i.e. so that N(B+

cris

) = 0. Extend ' to B+

st

as well, with '(`u) = p`u.

We note that ' and N define endomorphisms of the polynomial subring K
0

[`u] ⇢ B+

st

, with

N again acting by formal di↵erentiation with respect to the variable `u. We observe that

p'N = N' on B
st

. Neither ' nor N extend continuously to an action of B+

dR

(cf. [FO,

Remark 5.18(3)]); only the filtrations that we will now describe come from B+

dR

.

There is an exhaustive, decreasing filtration on each of A
cris

, B+

cris

, written

Fili A
cris

,Fili B+

cris
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where Fil0 A
cris

= A
cris

(resp. Fil0 B+

cris

= B+

cris

) induced by their inclusion in the filtered ring

B+

dR

. The filtration on B+

dR

is given by

Fili B+

dR

:= (ker ✓)i, i � 0.

In fact, t 2 Fil1 B+

dR

and t 62 Fil2 B+

dR

[FO, Proposition 5.19], so also t 2 Fil1 A
cris

, and t is

a generator for the maximal ideal of B+

dR

. We note that the associated graded ring of B+

dR

may be represented as Cp[t], and, when we naturally extend the filtration to B
dR

⇠= B+

dR

[1/t],

grB
dR

⇠= Cp[t, 1/t]. We also note that

(4.6.2) Fili A
cris

· Filj A
cris

✓ Fili+j A
cris

,

and similarly for B+

cris

.

Now we discuss the action of �̂ on these period rings. The action arises from the action

of �̂ on O
¯K/p, and extends from there to continuous actions on R, W (R), and all of the

subrings of B
dR

defined above. That B+

st

is stable under �̂ follows from Lemma 4.6.4 below,

where we calculate the action of �̂ on `u, finding that for � 2 �̂ that �(`u) di↵ers from `u by

a product of an element of Zp and t. It will also be useful to know the action of �̂ on t: we

see that

�("n) = "�n

(�)
n ,

where �n : �̂ ! Z/pnZ is the reduction modulo pn of the p-adic cyclotomic character

Zp(1) = � : �̂ ! Zp. We find that �(") = "�(�), and a calculation with the “logarithm”

defining t = log ["] tells us that

(4.6.3) �(t) = �(�) · t.

Now we calculate the Galois action on `u. For � 2 �̂, define �(�) 2 B+

cris

as

�(�) := �(`u)� `u.
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Lemma 4.6.4. The map � is a 1-cocycle with respect to the cyclotomic character, belong-

ing to the cohomology class associated to ⇡ by Kummer theory. When �(�) 6= 0, it generates

the maximal ideal of B+

dR

.

Proof. For � 2 �̂ and n � 1, define ⌘n(�) 2 Z/pnZ by the relation

�(⇡n) = "⌘n(�)n · ⇡n.

As ⇡p
n+1

= ⇡n and "pn+1

= "n, we see that ⌘n+1

(�) ⌘ ⌘n(�) (mod pn) and we have a well

defined map ⌘ : �̂ ! Zp. We observe that ⌘ is a cocycle for the cyclotomic character

� : �̂! Z⇥
p , because

"⌘n(⌧�)n =
⌧�(⇡n)

⇡n
=
⌧("⌘n(�)n · ⇡n)

⇡n
=
"
�
n

(⌧)⌘
n

(�)
n · "⌘n(⌧)n

⇡n
= "�n

(⌧)⌘
n

(�)+⌘
n

(⌧)
n .

A change in the choice of roots of unity ("n) amounts to a change in ⌘ by a coboundary for

�; the same is true for a new choice of pnth roots (⇡n) of ⇡. This ⌘ is the definition of the

“Kummer cocycle” in H1(�̂,Zp(1)) induced by ⇡ under the map

K⇥/(K⇥)p
n ⇠�! H1(�̂,Zp/p

nZp(1)), n � 1

coming from the long exact sequence in Galois cohomology, which is an isomorphism by

Hilbert’s Theorem 90.

We now see that �(⇡) = ⇡ ·"⌘(�). Therefore �([⇡]) = [⇡]·["]⌘(�), and one can quickly verify

that even though `u = log [⇡], t = log ["] are not standard logs, we still have the expected

identity

�(log [⇡]) = log [⇡] + ⌘(�) · log [⇡].

Now � is given in terms of ⌘:

�(�) = �(`u)� `u = log [⇡] + ⌘(�) · log [⇡]� log [⇡] = ⌘(�) · t.
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It is also clear that �(�) = 0 if and only if � 2 �̂1. Therefore we see that because t 2 A
cris

, we

have for any � 2 �̂ that �(�) 2 A
cris

, and when �(�) 6= 0, then �(�) generates the maximal

ideal ker ✓ of B+

dR

because t is a generator and ker ✓/(ker ✓)2 ⇠= Cp as a Zp-module. ⇤

As this maximal ideal generates the filtration on B+

dR

, if �(�) 6= 0 then

(4.6.5) �(�) 2 Fil1 B+

cris

, �(�) 62 Fil2 B+

cris

.

Having completed our summary of the period rings we will need, we now explain the

construction of period rings with coe�cients in A.

Define B+

cris,A := A
cris,A� [1/p], where A

cris,A� is, as usual, the mRA
�-adic completion of

A
cris

⌦Z
p

A�. For any A-algebra B, we write B+

cris,B for B+

cris,A ⌦A B. Set B+

st,A := B+

cris,A[`u]

and B+

st,B := B+

st,A ⌦A B. The map ' extends to each of these rings B-linearly, with N

again acting as formal di↵erentiation with respect to `u here. In particular, N(B+

cris,B) =

0. Analogous notation is used for the elements of the filtration on these rings: denote

by Fili A
cris,A� the mRA

�-adic completion of Fili A
cris

⌦Z
p

A�, and for any A-algebra B let

Fili B+

cris,B := Fili A
cris,A� ⌦A� B. Basic properties over Zp, mainly (faithful) flatness of both

period rings and graded pieces of their filtrations, are extended to these period rings and

filtrations with coe�cients in Lemmas 4.8.1 and 4.8.2.

It will be important to know in the construction of (4.9.4) that there is a canonical

inclusion OA ,! B+

cris,A extending the map O ,! B+

cris

discussed above, and also a map

Sur

A ,! B+

cris,A. By Lemma 4.6.1, it will su�ce to show that for large enough n,

W [[u, un/p]]A� ,! A
cris,A� .

In order to construct the map, it will su�ce to draw, for su�ciently large n, maps

W [[u, un/p]]⌦Z
p

A�/(mRA
�)j ,! A

cris

⌦Z
p

A�/(mRA
�)j

for each j � 1. We will get such maps if we show, for large enough n, the existence of maps

W [[u, un/p]] ,! A
cris

.
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Then Lemma 4.8.1 implies that this map will remain injective after tensoring with A� and

completing with respect to the mRA
�-adic topology. This same construction gives us a

canonical map Sur

A ,! B+

cris,A.

In fact we will show much more than this, which will be useful later (e.g. the proof of

Lemma 4.9.9).

Lemma 4.6.6. For r 2 (0, 1) let Or denote the coordinate ring of the open rigid analytic

disk over K
0

with radius r. Then for any r > (e(p � 1))�1, O ,! B+

cris factors through Or.

In particular, W [[u, un/p]] ,! Acris for n > e(p� 1).

Proof. Recall that u is sent to [⇡] in A
cris

, and A
cris

is the p-adic completion of the

divided power envelope of W (R) with respect to ker ✓. In fact, the kernel of ✓̄, which is

defined as the composition

A
cris

✓�! OC
p

⇣ OC
p

/p,

is also a divided power ideal of A
cris

[FO, Proposition 6.5]. Recall that ✓([⇡]) = ⇡ and that

⇡ is the uniformizer of an extension K of Qp with ramification degree e, so that [⇡]e is in

the divided power ideal. Since denominators m! may accompany the image of powers of u

as small as uem, and the p-adic valuation of m! satisfies vp(m!) ⇠ m/(p � 1) as m ! +1,

we see that A
cris

is a W [[u, ua/pb]]-algebra whenever a/b > e(p� 1). ⇤

4.7. Families of (', N)-modules over the Open Unit Disk

Following the conclusion of §4.5, we assume that we are given a finite projective SA-

module MA of constant rank d with a '-semilinear, A-linear endomorphism ' : MA !MA

such that the induced SA-linear '⇤(MA)!MA has cokernel killed by E(u)h. We write

MA := MA ⌦S
A

OA, DA := MA/uMA,

each of which have a natural induced action of '.

Lemma 4.7.1 ([Kis08], Lemma 2.2). There is a unique, '-compatible, WA-linear map

⇠ : DA !MA, whose reduction modulo u is the identity on DA.
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The induced map DA ⌦W
A

OA ! MA has cokernel killed by �h, and the image of the

map DA ⌦W
A

bS
0,A !MA ⌦O

A

bS
0,A is equal to that of

'⇤(MA)⌦O
A

bS
0,A !MA ⌦O

A

bS
0,A.

The proofs of [Kis08, Lemma 2.2 and Lemma 2.2.1] go through verbatim. None of

it depends on A� being local. They are a generalization of [Kis06, Lemma 1.2.6], where

A� = Zp.

Proof. Let s
0

: DA !MA be any WA-linear section of the projection MA ! DA. Our

candidate for the map ⇠ is the sum

s = s
0

+
1X
i=0

('i+1 � s
0

� '�i�1 � 'i � s
0

� '�i).

We claim that s converges to a well-defined WA-linear map from DA to MA. Accepting this,

we see immediately that s is equivalent to the identity modulo u and that ' � s = s � ', as

desired.

Let D�
A ⇢ DA be a finitely generated WA�-submodule which spans DA. Similarly, we

choose a finitely generated SA�-submodule M�
A ⇢ MA which spans MA. We may choose

M�
A so that

' � s
0

� '�1 � s
0

: DA �! uMA

takes D�
A into uM�

A. Acting on this map by ', we find that

'i+1 � s
0

� '�i�1 � 'i � s
0

� '�i : DA ! upiMA

as well. Choose j � 0 with the property that ' induces a map M�
A ! p�jM�

A and '�1

induces a map D�
A ! p�jDA. Then for each i � 0, we have

'i+1 � s
0

� '�i�1 � 'i � s
0

� '�i : D�
A ! p�2ijupiM�

A.
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Because the exponential outraces the polynomial, for arbitrarily large n � 0 this series

converges to a well defined map

D�
A �!M�

A ⌦S
A

� WA�W [[u, upn/p]]A,

and therefore to a map ⇠ : DA !MA.

To see the uniqueness of ⇠, we argue following [Kis06, Lemma 1.2.6]. Given another

map ⇠0 satisfying the stipulations of the statement of the lemma, we consider the image

X = (⇠ � ⇠0)(DA) of (⇠ � ⇠0). The image lies in uMA because both maps are sections of the

projection onto DA. Then because ' is an automorphism of DA, X ⇢ 'j(uMA) ✓ upjM

for all j � 0. Therefore X ⇠= 0 as desired.

Note that ⇠ reduces to the identity modulo u and that its determinant, being an element

of OA, may be safely said to belong to W [[u/p]]A. As a result, Lemma 4.7.4 tells us that for

su�ciently large n � 0, ⇠ induces an isomorphism

(4.7.2) DA ⌦W
A

W [[u/pn]]A
⇠�!MA ⌦O

A

W [[u/pn]]A.

Denote by ⇠s the map

DA ⌦W
A

W [[ups/pn]]A �!MA ⌦O
A

W [[ups/pn]]A.

induced by ⇠.

Consider the commutative diagram

'⇤(DA ⌦W
A

OA)
'⇤⇠
//

⇠
✏✏

'⇤MA

1⌦'
✏✏

DA ⌦W
A

OA

⇠
// MA

Let r be the least integer such that e < pr/n. Applying ⌦O
A

W [[u, ups/pn]]A to the diagram

above for s = 0, . . . , r� 1 yields a diagram where the right vertical arrow is an isomorphism,

because ⇡ 2 K⇥ lies outside the radius of convergence of some of the elements ofW [[u, ups/pn]]

when e � ps/n, and the cokernel of this map is supported at ⇡. Using the fact that the
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vertical arrows send u to up and ⇠ is '-equivariant, we see that if we tensor the top row by

W [[ups/pn]]A to get ⇠s, we may tensor the lower row by W [[ups+1
/pn]]A to get ⇠s+1

:

(4.7.3) DA ⌦W
A

W [[ups/pn]]A

⇠
✏✏

⇠
s

// MA ⌦O
A

W [[ups/pn]]A

1⌦'
✏✏

DA ⌦W
A

W [[ups+1
/pn]]A

⇠
s+1
// MA ⌦O

A

W [[ups+1
/pn]]A

We now have a visible argument by induction with base case (4.7.2) that ⇠s is an isomor-

phism for s = 0, 1, . . . , r � 1.

Now consider the case for s = r � 1, where the radius of convergence will contain ⇡ but

not ⇡1/p. Now the top row of (4.7.3) will be an isomorphism, but the right side vertical

arrow will may have non-trivial cokernel killed by E(u)h. We also see the final claim of the

lemma, which is that the image of the right vertical arrow coincides with the image of the

lower horizontal arrow formally locally around ⇡.

Repeating the argument as above shows, for any s � 0, that the cokernel of ⇠s is killed

by
Qs

i=r '
s�r((E(u)/c

0

)h). Therefore, recalling the definition of OA, we see that �h kills the

cokernel of ⇠ ⌦W
A

OA. ⇤

Lemma 4.7.4 ([Kis08, Lemma 2.2.1]). Let I ⇢ W [[u]] be a finitely generated ideal such

that IW [[u/p]]A/uW [[u/p]]A is the unit ideal. Then for n su�ciently large, IW [[u/pn]]A is the

unit ideal.

Proof. Suppose first that I is principal, equal to (f) for f 2 W [[u/p]]A. The assumptions

imply that the image of f in W [[u/p]]A/uW [[u/p]]A
⇠= WA is a unit. Because there is a natural

injection WA ,! W [[u/p]]A, f may be multiplied by a unit in W [[u/p]]A so that its image in

W [[u/p]]/uW [[u/p]]A = WA is 1. In particular, f 2 1 + uW [[u/p]]A. There exists some j � 0

such that f 2 1+p�jW [[u/p]]�A since W [[u/p]]A = W [[u]]A� [1/p] by definition. Therefore f has

an inverse in W [[u/pj+1]]A� . This is the desired n of the statement of the lemma.

In general, write I = (f
1

, . . . , fr) for f
1

, . . . , fr 2 W [[u/p]]A. Write f̄i for the image of

fi in W [[u/p]]A/uW [[u/p]]A. Then 1 =
Pr

i+1

ḡif̄i for some ḡi 2 W [[u/p]]A/u. Choose lifts
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gi 2 W [[u/p]]A of the ḡi. Then by the first part,
Pr

i=1

gifi is a unit in W [[u/pn]] for some

su�ciently large n. ⇤

4.8. Period Rings in Families

We will now record some lemmata to ensure that the large rings B+

cris

, A
cris

, and so forth

behave well in families. This will allow us to show later that, for example, (', N)-modules

in families behave as one would expect (cf. Theorem 4.10.9).

Lemma 4.8.1 ([Kis08], Lemma 2.3.1). For any A�-module M , denote by cM its mR-adic

completion. If M is a flat A�-module, then

(1) For any finite A�-module N , the natural map

N ⌦A� cM ! \N ⌦A� M

is an isomorphism.

(2) cM is flat over A�. If M is faithfully flat over A�, then so is cM .

(3) The functor M 7! cM preserves short exact sequences of flat A�-modules.

For completeness, we elaborate on the proof in [Kis08].

Proof. First we claim that the functor on finite A�-modules N 7! \N ⌦A� M is exact.

Say that we have an exact sequence of finite A�-modules

0! N
1

! N
2

! N
3

! 0.

The Artin-Rees Lemma implies that the filtrations (mRA
�)n · Ni have bounded di↵erence,

i.e. there exists k such that for all n � k,

(mRA
�)n ·N

1

✓ ((mRA
�)n ·N

2

) \N
1

✓ (mRA
�)n�kN

1

,

and the filtrations on N
2

and N
3

are easily seen to be equal. This implies that the na-

tive mRA
�-adic topologies on N

1

and N
3

are equivalent to the topologies induced by the

mRA
�-adic topology on N

2

. Therefore completion with respect to these topologies maintains
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exactness (AM Cor. 10.3). We claim that since M is flat, tensoring this exact sequence

and these adic filtrations by M preserves the bounded di↵erence of the filtrations. Indeed,

because M is flat, for any ideal I of A� and A�-module N , (I ·N)⌦A� M ⇠= I · (N ⌦A� M).

Therefore the composition of the �⌦A� M -functor with the (mRA
�)-adic completion functor

is exact as desired.

To see (1), let N be a finite A� module and observe that (1) is obvious when N is free.

For N a general finite A�-module, we take a presentation by free modules F↵ ,! F� and find

F↵ ⌦A� cM //

o
✏✏

F� ⌦A� cM //

o
✏✏

N ⌦A� cM
✏✏
✏✏

// 0

o
✏✏

0 // \F↵ ⌦A� M // \F� ⌦A� M // \N ⌦A� M // 0

The five-lemma shows that N ⌦A� cM ⇠! \N ⌦A� M as desired.

The first part of (2) follows from the fact that the injectivity of the map I ⌦A� M !M

is preserved under mRA
�-adic completion. For the second part, if M is faithfully flat over

A� if and only if Mm 6= 0 for all maximal ideals of the (formal scheme corresponding to) A�.

This property is clearly preserved under completion.

(3) follows from the same considerations on filtrations discussed above. If N
1

✓ N
2

are

flat A�-modules, then the native mRA
�-adic filtration on N

1

and the filtration induced from

the native filtration on N
2

are equal. ⇤

Lemma 4.8.2 (Following [Kis08, Lemma 2.3.2]).

(1) For i � 0, the ideal Fili Acris,A� of Acris,A� is a faithfully flat A�-module.

(2) For i � 0, Fili Acris,A� is a faithfully flat A�-module, which is isomorphic to the

mR-adic completion of (Fili Acris/Fil
i+1 Acris)⌦Z

p

A�.

(3) For any A-algebra B, i � 1, and � 2 �̂, B+

cris,B/(�(�)B + Fili B+

cris,B) is a flat

B-module. If �(�) 62 Fili B+

cris, then �(�) 62 Fili B+

cris,B.

(4) Let B� be a finite continuous A�-algebra with ideal of definition I. Then the I-adic

completion of Acris ⌦Z
p

B� is canonically isomorphic to Acris,A� ⌦A� B�.
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(5) The map

Acris,A� !
Y

A
cris,A�/q

is injective, where q runs over ideals of A� such that A�/q is a finite flat Zp-algebra.

(6) If 0 6= f 2 Acris, then f is not a zero divisor in Acris,A�.

Proof. For part (1), since Fili A
cris

is a faithfully flat Zp-module, Fili A
cris

⌦Z
p

A� is a

faithfully flat A�-module. Then Lemma 4.8.1(2) implies that Fili A
cris,A� is a faithfully flat

A�-module.

To demonstrate part (2), take the exact sequence of faithfully flat Zp-modules

0! Fili+1 A
cris

! Fili A
cris

! Fili A
cris

/Fili+1 A
cris

! 0,

apply the exact functor ⌦Z
p

A
cris

, and the mRA
�-adic completion functor. The latter functor

is exact by Lemma 4.8.1(3) and preserves the condition “fully faithful” by 4.8.1(3). The

desired result is then visible in the resulting exact sequence of faithfully flat A�-modules.

To prove part (3), first consider the case �(�) = 0. Using the logic of part (2) and applying

it by induction on i to A
cris

/Fili A
cris

, thinking of it as an extension of A
cris

/Fili�1 A
cris

by

Fili�1 A
cris

/Fili A
cris

, we find that A
cris,A�/Fili A

cris,A� is a flat A�-module. We may then

apply ⌦A�B for any A-algebra B to the exact sequence

0! Fili A
cris,A� ! A

cris,A� ! A
cris,A�/Fili A

cris,A� ! 0

to get the result.

Now allow �(�) 6= 0. Let j be the largest integer such that �(�)/pj 2 A
cris

/Fili A
cris

⇢

(A
cris

/Fili A
cris

)[1/p] ⇠= B+

cris

/Fili B+

cris

. Then A
cris

/(�(�)/pj · Zp + Fili A
cris

) will be Zp-flat

(cf. the argument after (4.12.4)). We then apply the reasoning of the proof of part (2) and

the first case of (3) found above to the exact sequence of flat Zp-modules

0! Zp
·�(�)/pj�! A

cris

/Fili A
cris

! A
cris

/(�(�)/pj · Zp + Fili A
cris

)! 0

in order to conclude that B+

cris,B/(�(�) · B + Fili B+

cris,B) is a flat B-module.
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It remains to prove the final statement in part (3). Because tensor products and direct

limits commute, we may assume that B is a finitely generated A-algebra. Then there exists

a map B ! B0, where B0 is a finite W (F)[1/p]-algebra. We show the contrapositive: If

�(�) 2 Fili B+

cris,B, then �(�) 2 Fili B+

cris,B0 as well, which implies that �(�) 2 Fili B+

cris

(because B0 is trivially a flat Qp-algebra).

For part (4), the fact that f : A� ! B� is finite and continuous implies that f is adic,

i.e. that f(mRA
�) · B�, like the ideal I of B�,, is an ideal of definition for B�. So we simply

take I to be f(mRA) · B�. Then because B� is a finite A�-algebra, the mRA
�-adic topology

on A
cris,A� ⌦A� B� is equivalent to its I-adic topology by the Artin-Rees lemma. Now we

apply Lemma 4.8.1(1) to conclude that the natural map

A
cris,A� ⌦A� B� ! lim �

n

(A
cris

⌦A� B�)⌦B� B�/In

is an isomorphism as desired.

Now we prove (5). Let M be the set of maximal ideals of Spf(A�) as a Spf(Zp)-formal

scheme, corresponding to maximal ideals of A�/mRA
�. For m 2 M , let A

cris,A�
m
denote the

completion of A
cris

⌦Z
p

A� at 1⌦m. First, we will reduce to the case that A� is a complete

local Noetherian ring by showing that the natural map

(4.8.3) A
cris,A� �!

Y
m2M

A
cris,A�

m

is injective. Therefore we may assume that the connected components of SpecA�/mRA
� are

positive-dimensional.

The map

(4.8.4) A� !
Y
m2M

A�
m
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is injective and flat, since A� is Noetherian and A�/mRA
� is Jacobson since it is finitely

generated over Z. Since A
cris

is a flat Zp-module, Lemma 4.8.1(2) implies that that the map

A
cris,A� �! A

cris,A� ⌦A�

Y
m2M

A�
m

is injective. To complete the proof that the map (4.8.3) is injective, we will show that for

any 0 6= f 2 A
cris,A� , there exists a finite subset Mf ⇢ M such that the image of f inQ

m2M
f

A
cris,A�

m
is not 0.

Having chosen a nonzero f 2 A
cris,A� , there exists some n � 1 such that the image of f ,

call it f̄ , in A
cris

⌦Z
p

A� is not 0. Write out f̄ in tensor form as

f̄ =
X
j

ḡj ⌦ h̄j

where ḡj 2 A
cris

/pnA
cris

(resp. h̄j 2 A�/(mRA
�)n) are Zp-linearly independent in A

cris

/pnA
cris

(resp. h̄j 2 A�/(mRA
�)n), i.e. such that this tensor product cannot be reduced. Let H ⇢

A�/(mRA
�)n be the Zp-linear span of {h̄j}. Because (4.8.4) is injective and we are assuming

that the connected components of SpecA�/mRA
� are positive dimensional, for each nonzero

h̄ 2 H, there exist infinitely many m 2 M such that there exists a power k = k(m, h̄) of

m such that the image of h̄ in A
cris

⌦Z
p

A�/((mRA)n + mk(m,¯h)) is not zero. Since there are

only finitely many h̄j, this means that there are finitely many powers of maximal ideals

mkm such that the images of {h̄j} in A
cris

⌦Z
p

A�/((mRA
�)n + \mkm) remain Zp-linearly

independent. We set Mf to be this finite set of maximal ideals. Since A
cris

is p-adically

complete, the corresponding statement for the ḡj is trivial: we need only make sure that

pn�1 remains nonzero, which we can do by increasing each km to at least n. Now we have

shown that the reduced tensor form of f̄ in A
cris

⌦Z
p

A�/((mRA)n +\mkm) remains reduced,

so that it cannot vanish. Therefore the image of f in
Q

M
f

A
cris,A�

m
has nonzero image inQ

M
f

A
cris,A�

m
/(mA

cris,A�
m
)km , and is nonzero as desired.

Now we prove (5) in the case that A� is a complete local Noetherian Zp-algebra with

maximal ideal m and finite residue field, simply adding more detail to the proof in [Kis08],

Lemma 2.3.2. First we deduce that for any n � 1, there exists q ⇢ A� such that A�/q is
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a finite flat Zp-algebra and q ✓ mn. For since A�[1/p] is Jacobson with maximal ideals a

and residue fields Ka being finite extensions of Qp with rings of integers Oa, there exists an

injective map

A� �!
Y
a

Oa

such that the kernel consists of nilpotents (recall the standing assumption that A� is a flat

as a Zp-algebra). Let N be the nilradical of A�. Choose a finite set S of maximal ideals of

A�[1/p] such that the induced map

(A�/N) �!
Y
a2S

Oa

is injective after tensoring with (A�/N)/((mn+N)/N). Such an S exists because of the finite

length of (A�/N)/((mn +N)/N). Now choose representatives in A� of the finite cardinality

set N/(N \mn). Then there exists a finite set of powers aka of maximal ideals a of A�[1/p]

such that the image of these representatives in
Q

a A
�[1/p]/aka does not vanish. Now we

observe that

A� �!
Y
a2S

A�/(A� \ aka)

is injective after tensoring with A�/mn, showing that the ideal

q := A� \
\
a2S

aka

of A� satisfies the desired condition: the quotient A�/q is a finite flat Zp-algebra, and q ✓ mn.

Now choose 0 6= f 2 A
cris,A� . Then there exists n � 1 such that the image of f in

A
cris

⌦Z
p

A�/mn is not zero. Using the ideal q constructed above, we see that the image of

f in A
cris

⌦Z
p

A�/mn is nonzero as desired.

To show (6), we use (5) to reduce to the case that A� is a finite flat Zp-algebra. Then

A
cris,A� ⇠= A

cris

⌦Z
p

A� because both rings have the p-adic topology. Now (6) follows from the

flatness of A� over Zp, considering that the injective map from A
cris

to itself by multiplication

by 0 6= f 2 A
cris

remains injective after tensoring with A�. ⇤
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Lemma 4.8.5 (Generalization of [Kis08, Lemma 2.3.3]). Let M be an A�-module and

x 2 Acris,A� ⌦A� M . The set of A�-submodules N ⇢ M such that x 2 Acris,A� ⌦A� N has a

smallest element N(x).

Here we cannot repeat the proof of [Kis08], for that proof only covers the case that A�

is local.

Proof. Assume that mn
R ·M = 0 for some n � 1. Therefore there is a natural isomor-

phism of A�-modules

A
cris,R ⌦R M

⇠! A
cris,A� ⌦A� M.

Applying [Kis08, Lemma 2.3.3] to the right hand side, there exists a smallest R-submodule

P of M such that x 2 A
cris,R ⌦R P . We claim that the image N of the natural map

P ⌦R A� !M

is the smallest A�-submodule of M with the required property. Clearly it contains x. If there

were a A� submodule N 0 with the property, then N 0 � P since N 0 is also a R-module with

the property. But then N 0 must contain N , which is the A�-span of P . This shows that N

is the smallest A�-submodule of M with the property.

Now we allow M to be any finite A�-module. Now the proof may be completed according

to [Kis08, Lemma 2.3.3]. The same is true for the generalization to an arbitrary A� module

M . ⇤

4.9. Period Maps

Following [Kis08, §2.4], recall our situation: A� is an adic and finite type R-algebra,

where the structure map is compatible with the action of �̂ on a projective, rank d A�-

module VA� . Suppose that (A�)h = A�. Write MA� for the finite projective SA�-module

of given by Proposition 4.5.9, with a map '⇤(MA�) ! MA� with cokernel killed by E(u)h.

Also set MA := MA� ⌦Z
p

Qp. Write VA := VA� ⌦A� A, so that Proposition 4.5.9(4) provides
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a canonical, �̂1-equivariant isomorphism

(4.9.1) ◆ : VA
⇠! HomS

A

,'(MA,S
ur

A ).

We will follow [Kis08, §2.4] in deducing a period map from the data above. This gives us

a �̂1-equivariant comparison with coe�cient ring A between the Galois representation VA

and the periods of MA. We will then discuss additional data needed in order to extend this

to a �̂-equivariant map, although this additional data ends up simply being a restriction

(Proposition 4.9.11). In what follows, B is an arbitrary A-algebra.

We deduce from the map ◆ a SA-linear, '-equivariant map

(4.9.2) MA ! HomA(VA,S
ur

A ); m 7! (v 7! hm, ◆(v)i).

Tensoring this map by ⌦S
A

OA and using the map ⇠ : DA ! MA from Lemma 4.7.1, we

have a '-equivariant map

(4.9.3) DA
⇠!MA ! HomA(VA,S

ur

A )⌦S
A

OA ! HomA(VA, B
+

cris,A).

Tensoring the composition of these maps by ⌦AB for B our chosen A-algebra, there is a

B+

cris,B-linear map

(4.9.4) DB ⌦W
B

B+

cris,B ! HomA(VA, B
+

cris,A)⌦A B ⇠= HomB(VB, B
+

cris,B).

We see that the right hand side has an action of �̂, and the left hand side has an action of

�̂1 through the action on B+

cris,B. This map is �̂1-equivariant because �̂1 acts equivariantly

on the inclusions S ,! O ,! B+

cris

and that ◆ above is �̂1-equivariant. In order to extend

the action of �̂1 on the left hand side of (4.9.4) to an action of �̂, we suppose that there is

a WB-linear map

N : DB ! DB
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which satisfies the identity p'N = N'. Then the action of �̂ on DB ⌦W
B

B+

cris,B is

(4.9.5) �(d⌦ b) =

 1X
i=0

N i(d)⌦ �(�)i
i!

!
�(b) = exp(N ⌦ �(�)) · d⌦ �(b)

for � 2 �̂. Then we observe that such an action of �̂ commutes with ', using the fact that

'(�(�)) = p�(�). Here is the calculation:

�'(d⌦ b) = exp(N ⌦ �(�))'(d)⌦ �('(b))

=

 1X
i=0

N i('(d))⌦ �(�)i
i!

!
'(�(b))

=

 1X
i=0

pi'(N i(d))⌦ �(�)i
i!

!
'(�(b))

=

 1X
i=0

'(N i(d))⌦ '(�(�)i)
i!

!
'(�(b))

= '�(d⌦ b).

Now we set up a theory for semistable representations, recalling that we adjoin `u to

B+

cris,B to get B+

st,B = B+

cris,B ⌦K0 K0

[`u], naturally extending the actions of ' and N to the

tensor product, with N acting as d
d`

u

on K
0

[`u]. Consider the composite of the isomorphisms

(4.9.6) DB ⌦K0 K0

[`u]
⇠! (DB ⌦K0 K0

[`u])
N=0 ⌦K0 K0

[`u]
(`

u

7!0)⌦1�! DB ⌦K0 K0

[`u]

where the first map is the inverse to the natural isomorphism

(DB ⌦K0 K0

[`u])
N=0 ⌦K0 K0

[`u]
⇠! DB ⌦K0 K0

[`u]

induced by polynomial multiplication in K
0

[`u]. Tensoring (4.9.6) by B+

cris,B over WB and

tensoring (4.9.4) by K
0

[`u] over K0

, we obtain the composite map

(4.9.7) DB ⌦W
B

B+

st,B

(4.9.6)�! DB ⌦W
B

B+

st,B

(4.9.4)�! HomB(VB, B)⌦B B+

st,B.
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We claim that (4.9.4) is �̂-equivariant if and only if (4.9.7) is equivariant when �̂ is

regarded as acting trivially on DB. A key observation is that the an inverse to the bijection

(D⌦K0 K[`u])N=0

`
u

7!0�! D is given by d 7! exp(�N ⌦ `u) · d. We give the calculations in the

form of this lemma.

Lemma 4.9.8. The map

DB ⌦W
B

B+

st,B �! DB ⌦W
B

B+

st,B

given by tensoring (4.9.6) by ⌦W
B

B+

cris,B is �̂-equivariant, when �̂ is given the trivial action

on DB on the left side and the action of (4.9.5) on the right.

Proof. We write f, g for the isomorphisms

g : D �! (D ⌦K0 K0

[`u])
N=0

d 7! exp(�N ⌦ `u) · d.

f : (D ⌦K0 K[`u])
N=0 �! D

`u 7! 0

To see that g is an inverse to f note that any element of (D ⌦K0 K[`u])N=0 has the form

X
i�0

di`
i
u, where idi +N(di�1

) = 0 8 i � 1,

so that it is determined by the coe�cient d
0

, i.e. f is an injection. Now observe that

g(d
0

) =
X
j�0

(�1)jN i(d
0

)`ju
j!

,

which certainly has the correct form with constant coe�cient, so that f and g are inverse.

Now we wish to show that g ⌦K0 B
+

st,B is �̂-equivariant with �̂-actions defined in the

statement of the lemma. Since this map is clearly equivariant on elements of B+

st,B, it will

su�ce to show for d
0

2 D (letting B = Qp for simplicity) that

g � �(d
0

) = � � g(d
0

),
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where � acts according to (4.9.5)on the left side and with the trivial action on the right side.

First we calculate the left hand side. We will use the fact that that N(�(�)) = 0 for all

� 2 �̂, since �(�) 2 B+

cris

. Or one can use the chain rule: since N commutes with the action

of �̂,

N((�(`u)� `u)i) = i(�(`u)� `u)i�1(�(N(`u))�N(`u)) = 0

since N(`u) = 1. Now here is the calculation:

g � �(d
0

) := g

 X
i�0

N i(d
0

)⌦ �(�)i
i!

!

=
X
i,j�0

(�1)jN j(N i(d
0

))⌦ �(�)i`ju
i!j!

,

which is sent by f to d
0

, since f kills `u and �(�) = �(`u)� `u. We observe that this result,

namely f � g � �(d
0

) = d
0

, is exactly the same as f � � � g(d
0

), where � is given the trivial

action in this second expression. Since f and g are mutually inverse, we have completed the

proof. ⇤

Lemma 4.9.9 (Following [Kis08, Lemma 2.4.6]). For each A-algebra B, the maps (4.9.4)

and (4.9.7) are injective, and their cokernels are flat B-modules.

As usual our proof follows the proof in [Kis08], adding some additional exposition and

making the points of generalization clear.

Proof. First we note that it su�ces to prove the assertions only for (4.9.4), and for

B = A. For if there is an exact sequence of A-modules 0! N 0 ! N ! N 00 ! 0 and N 00 is

flat, then this sequence remains exact after applying � ⌦A B for any A-algebra B. It also

su�ces to prove the statement for (4.9.4) alone, since (4.9.6) is an isomorphism.

Recall Lemma 4.8.2(5), which states that

A
cris,A� !

Y
q

A
cris,A�/q

is injective, where q varies over ideals of A� such that A�/q is a finite flat Zp-algebra. Applying

this lemma, we may confine ourselves to the case that A� is a finite flat Zp-algebra.
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We are remanded to the case that A� is local, so we can repeat the proof of injectivity

from [Kis08, Lemma 2.4.6]. Recall that (4.9.4) as defined in (4.9.3): it is the composition of

the map ⇠ constructed in Lemma 4.7.1 with the map (4.9.2), tensored up through the maps

SA ,! OA and OA ,! B+

cris,A.

Consider the commutative diagram

Sur

A ⌦S
A

MA

✏✏

// HomA(VA,Sur

A )

✏✏

OEur,A� [1/p]⌦S
A

MA
// HomA(VA,Our

E,A� [1/p])

where the top map is obtained from (4.9.2). From (4.4.21), we know that the bottom row

is an isomorphism. The left arrow is injective, because the finiteness of A� over Zp gives us

that this arrow is obtained by applying �⌦SMA to the canonical inclusion Sur ,! OEur , and

MA is flat as a S-module. This means that the top map must be injective. Furthermore,

it is an injective map of finite free Sur

A -modules of equal rank and remains injective after

tensoring by �⌦Sur B+

cris

. Therefore the map

MA ⌦O
A

B+

cris,A

⇠!MA ⌦S
A

B+

cris,A ! HomA(VA, B
+

cris,A)

obtained from (4.9.2) by tensoring up to B+

cris

is injective.

It remains to address the map ⇠ : DA !MA, which induces the first factor in (4.9.4).

From the first part of Lemma 4.7.1, we know that the determinant of

(4.9.10) DA ⌦W
A

B+

cris,A

⇠⌦1�!MA ⌦O
A

B+

cris,A

is a divisor of �s for some positive integer s. However, the image in B+

cris

of each of the factors

'n(E(u)/c
0

, n � 1 of � are units in B+

cris

because the p-adic radius of convergence of these

functions with respect to u is (e(p � 1))�1 (Lemma 4.6.6). Since the zeros of 'n(E(u)/c
0

)

have p-adic valuation (epn)�1, they lie outside this radius of convergence for n � 1. Therefore

the determinant of (4.9.10) is supported at the ideal (E([⇡])) is a divisor of E([⇡])s. Now as
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E([⇡]) is not a zero divisor in A
cris

, neither is it a zero divisor in B+

cris,A. This completes our

proof of the injectivity statement.

It remains to show that the cokernel of (4.9.4), appearing in the exact sequence

0! DA ⌦W
A

B+

cris,A

(4.9.4)�! HomA(VA, B
+

cris,A) �! coker! 0,

is flat as an A-module. Because an A-module M is flat if and only if TorA
1

(A/I,M) = 0

for all ideals I of A and TorR
1

(A/I,HomA(VA, B
+

cris,A)) = 0 for all finitely generated ideals

I ⇢ A because HomA(VA, B
+

cris,A) is flat, the cokernel will be flat if and only if (4.9.4) remains

injective after tensoring with A/I for any finitely generated ideal I of A. This is what we

will now prove.

If we had started our proof with A/I in the place of A, we would still have the injectivity

statement for A/I, just as we proved it for A above. This almost completes our proof, for

we want to show that

DA ⌦W
A

B+

cris,A ⌦A A/I
(4.9.4)⌦

A

A/I�! HomA(VA, B
+

cris,A)⌦A A/I

is injective, and we know that

DA/I ⌦W
A/I

B+

cris,A/I

(4.9.4)�! HomA/I(VA/I , B
+

cris,A/I)

is injective.

One can check that there is a natural isomorphism DA⌦AA/I
⇠! DA/I , with an implicit

choice of I� ⇢ A� such that A�/I�[1/p] ⇠= A/I needed to draw the map. It remains to show

that that natural map B+

cris,A ⌦A A/I ! B+

cris,A/I is an isomorphism. This is precisely what

Lemma 4.8.2(4) tells us, completing the proof. ⇤

Proposition 4.9.11 (Following [Kis08, Proposition 2.4.7]). The functor which to an A-

algebra B assigns the collection of WB-linear maps N : DB ! DB which satisfy p'N = N'

and such that (4.9.4) is compatible with the action of �̂ is representable by a quotient Ast of

A.

270



This proof requires very little modification from that of [Kis08].

Proof. Since we will require a basis for VA, we replace A with the coordinate ring of a

trivialization of VA if necessary, and note that the constructions to produce Ast can be glued

together.

We consider the functor sending an A-algebra B to the set of WB-linear maps

N : DB ! DB

satisfying p'N = N'. This is a closed condition on the representable functor B !

EndB(DA ⌦A B). Write AN for the representing A-algebra, which is of finite presentation

over A.

Write  B for the map of (4.9.4). Let B = AN with the universal map N : DAN ! DAN ,

and let �̂ act on DAN ⌦W
A

N

B+

cris,AN

according to (4.9.5). For any d 2 DAN and � 2 �̂, let

��(d) measure the failure of  AN to commute with the action of �̂ as follows:

��(d) :=  AN (�(d))� �( AN (d)).

Then ��(d) 2 Q := HomAN (VAN , B+

cris,AN

). Fix a B+

cris,AN

-basis for Q, and let x
1

, . . . , xr

denote the coordinates of ��(d) with respect to this basis. Applying Lemma 4.8.5 with

M = AN and x = xi for i = 1, . . . , r, we obtain A� submodules N(xi) ⇢ AN . Let I�,d ⇢ AN

be the ideal generated by the N(xi), so that I�,d is the smallest ideal I ⇢ AN such that

��(d) 2 IQ. We take

Ast := AN/
X
�,d

I�,d,

where d runs over all elements of DAN and � over �̂. Clearly if B = Ast with the induced N

from AN , then  Ast is Galois -equivariant. We must show that this property holds functorially

on A-algebras.

If B is an A-algebra, then a map AN ! B factors through Ast if and only if the kernel K

contains I�,d for each � 2 �̂, d 2 DAN . Since Q is faithfully flat over AN by Lemma 4.8.1(2),

it is the same to ask that for all �, d that I�,dQ ⇢ KQ, or equivalently that ��(d) 2 KQ for
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all �, d. As noted above, this last condition amounts to saying that  B is compatible with the

action of �̂. Hence Ast represents the functor as claimed in the statement of the proposition.

Now we must show that SpecAst is a closed subscheme of SpecA, which we will accomplish

by showing that it is a proper monomorphism. This remaining work is no di↵erent than

what was done in [Kis08, Proposition 2.4.7], so we include it only for convenience.

To show that SpecAst ! SpecA is a monomorphism, we show, given two maps N,N 0 :

DB ! DB satisfying the conditions of the proposition, that they are equal. Since Lemma

4.9.9 provides a canonical injection into a Galois module, the Galois action on DB⌦W
B

B+

cris,B

induced byN in (4.9.5) is identical to that ofN 0. Thus for � 2 �̂, d 2 DB, we have an equality

d = exp(N ⌦ �(�)) · exp(�N 0 ⌦ �(�)) = exp((N �N 0)⌦ �(�))d

of elements of DB ⌦W
B

B+

cris,B. Recall from (4.6.5) that �(�) 2 Fil1 B+

cris,B. Recalling also

the multiplicativity of the filtration (4.6.2), we see that

(N �N 0)(d)�(�) ⇠= 0 modulo Fil2 B+

cris,B.

Then by (4.6.5) and the second part of Lemma 4.8.2, �(�) 62 Fil2 B+

cris,B whenever � 62 �̂1,

so N = N 0 as desired.

Now we will check the valuative criterion of properness. Suppose that the A-algebra

B is a discrete valuation ring with uniformizer ⇡B. Let N : DB[1/⇡
B

]

! DB[1/⇡
B

]

be an

endomorphism satisfying the conditions of the proposition. Let � 2 �̂ be such that �(�) 6= 0.

If d 2 DB, then

(4.9.12) exp(N ⌦ �(�)) · d 2 DB ⌦W
B

B+

cris,B[1/⇡B] \ HomB(VB, B
+

cris,B),

using (4.9.4) to consider both DB ⌦W
B

B+

cris,B[1/⇡B] and HomB(VB, B
+

cris,B) as a subset of

HomB[1/⇡
B

]

(VB[1/⇡
B

]

, B+

cris,B[1/⇡
B

]

). Since the cokernel of (4.9.4) is flat over B by Lemma

4.9.9, it has no ⇡B-torsion so that the intersection in (4.9.12) is the isomorphic image of

DB ⌦W
B

B+

cris,B.
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Therefore, modulo the ideal Fil2 B+

cris,B ⇢ B+

cris,B,

d� exp(N ⌦ �(�))d ⇠= �N(d)⌦ �(�) 2 DB ⌦W
B

B+

cris,B/Fil
2 B+

cris,B.

The first part of Lemma 4.8.2(3) may be used to show that N(d) 2 DB as follows: in

this diagram, (where we use Fil2 as an abbreviation for Fil2 B+

cris,B or Fil2 B+

cris,B[1/⇡
B

]

as

appropriate, write F = B[1/⇡B], and we assume � 62 �̂1)

0

✏✏

0

✏✏

DB

·�(�)
✏✏

// DF

·�(�)
✏✏

DB ⌦W
B

B+

cris,B/Fil
2

✏✏

// DF ⌦W
F

B+

cris,F/Fil
2

✏✏

DB ⌦W
B

B+

cris,B/(�(�) · B + Fil2) //

✏✏

DF ⌦W
F

B+

cris,F/(�(�) · F + Fil2)

✏✏
0 0

where both columns are exact and all of the horizontal maps are injective, with Lemma

4.8.2(3) being used to show that the lowest horizontal map is injective. Now we know that

N(d)⌦�(�) lies in the image of the middle horizontal map. Since all of the horizontal maps

are injective, N(d) 2 DB. Therefore we see that N induces a map N : DB ! DB as desired.

This endomorphism will satisfy the conditions of the proposition because it does so after

extending scalars to F = B[1/⇡B]. ⇤

4.10. Moduli Space of Semistable Representations

Because this section deals entirely with coe�cient rings being finite Qp-algebras, there is

no fundamentally new content. We simply reprise [Kis08, §2.5].

Our goal here is to show that Ast is the maximal quotient of A over which the represen-

tation VA is semistable with Hodge-Tate weights in [0, h], in the sense that for any A-algebra
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B which is finite as a Qp-algebra, the representation VA ⌦A B is semi-stable if and only if

A! B factors through Ast. In order to prove this, we recall the following relations between

weakly admissible filtered (', N)-modules and S-lattices of finite E-height, due to Kisin

[Kis06].

Theorem 4.10.1 ([Kis06], e.g. Corollary 1.3.15). Let D be a weakly admissible filtered

(', N)-module with Fil0 D = D and Filh+1 D = 0. Then there is a finite free S[1/p]-module

M and a map '⇤(M)!M whose cokernel is killed by E(u)h such that

(1) There is a canonical '-equivariant isomorphism M/uM
⇠! D.

(2) If M := M⌦S[1/p] O, then M admits a unique logarithmic connection

r : M!M⌦O ⌦1

O[1/u�]

such that r � ' = ' � r and induces a di↵erential operator

Nr : M! cM, m 7! hr(m),�u� d

du
i

such that Nr|u=0

= N .

(3) M admits a lattice, i.e. there exists a finite free S-module M� which spans M and

such that the cokernel of 1⌦ ' : '⇤(M�)!M� is killed by E(u)h.

There is also a �̂1-equivariant isomorphism

(4.10.2) HomS[1/p],'(M,Sur[1/p])
⇠�! Hom

Fil,',N(D,B+

st

)

which is constructed using some maps that have already appeared in this text (see [Kis08,

p. 18] for the recipe). There is also an isomorphism

(4.10.3) HomB+
cris,Fil,'

(D ⌦K0 B
+

cris

, B+

cris

)
⇠�! Hom

Fil,'(D,B+

cris

)
⇠�! Hom

Fil,',N(D,B+

st

)

and an isomorphism

(4.10.4) HomS[1/p],'(M,Sur[1/p])
⇠�! Hom

Fil,'(D,B+

cris

)
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constructed as in [Kis08, p. 18].

We now show that the candidate Ast of Proposition 4.9.11 for the moduli space of semi-

simple representations satisfies this property.

Proposition 4.10.5 ([Kis08, Proposition 2.5.4]). Assume that A� = (A�)h. Let B be

a finite Qp-algebra, ⇣ : A ! B a map of Qp-algebras, and VB := VA ⌦A B. Then ⇣ factors

through Ast if and only if VB is semistable as a representation of �̂ over Qp.

Proof. Suppose that ⇣ factors through Ast. Then Proposition 4.9.11 implies that (4.9.7)

is a �̂-equivariant map

DB ⌦Q
p

B+

st

⇠= DB ⌦W
B

B+

st,B �! V ⇤
B ⌦ B+

st,B
⇠= VB ⌦Q

p

B+

st

.

which is injective according to Lemma 4.9.9. We get an injection of Galois invariants

DB ,! (VB ⌦Q
p

B+

st

)
ˆ

�

so that the dimension of the right side as a K
0

-vector space is at least as much as that of the

left side. But dimK0 DB = dimQ
p

VB. Therefore dimQ
p

VB � dimK0(VB⌦Q
p

B+

st

)ˆ�, so that VB

is semistable.

Now suppose that VB is semistable. Let

D̃B := HomB[

ˆ

�]

(VB, B
+

st

⌦Q
p

B)

be the weakly admissible filtered (', N)-module associated to V ⇤
B. Denote by M̃B theS[1/p]-

module attached to D̃B according to the discussion at the beginning of §4.10. Let MB :=

MA ⌦A B as usual, where MA� was produced in Proposition 4.5.9 and MA := MA� ⌦A� A.

Composing the map ◆�1⌦AB of (4.9.1) with (4.10.2) and taking B-linear maps, we find that

(4.10.6) HomS
B

,'(MB,S
ur

B )
⇠! VB

⇠! HomB,Fil,',N(D̃B, B
+

st,B)
⇠! HomS

B

,'(M̃B,S
ur

B ).

Because S-lattices of height  h are unique in MB = (cEur ⌦Q
p

V ⇤
B)

ˆ

� by [Kis06, Propo-

sition 2.1.12], we may identify MB and M̃B. Using this identification and the maps in
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(4.10.6), Theorem 4.10.1 allows us to identify D̃B with DB = MB/uMB (WB-linearly and

'-equivariantly), and then endow DB with an operator N coming from the operator on D̃B.

We then have a commutative diagram, where the top right horizontal arrow comes from

(4.10.4).

(4.10.7)

VB

⇠
//

id

✏✏

HomS
B

,'(M̃B,Sur

B [1/p])

⇠
✏✏

⇠
// HomB+

cris,B ,Fil,'(D̃B ⌦W
B

B+

cris,B, B
+

cris,B)

✏✏

VB

⇠
// HomS

B

,'(MB,Sur

B [1/p]) // HomB+
cris,B ,Fil,'(DB ⌦W

B

B+

cris,B, B
+

cris,B)

The maps in the top horizontal row are �̂-equivariant. Observing the diagram, it follows

that the same holds for the maps in the bottom row. The composite of the bottom row maps

induces a �̂-equivariant map

(4.10.8) DB ⌦W
B

B+

cris,B ! HomB(VB, B
+

cris,B).

We claim that this map is identical to that of (4.9.4). Since (4.9.4) is �̂-equivariant, it follows

by Proposition 4.9.11 that ⇣ factors through Ast. ⇤

Theorem 4.10.9. As is standard in this section, let A� be an algebra formally finitely

generated over R, with a continuous action of �̂ on a projective rank d A� module VA�. If h

is a non-negative integer, then there exists a quotient Ast,h of A such that

(1) If B is a finite Qp-algebra, and ⇣ : A ! B a map of Qp-algebras, then ⇣ factors

through Ast,h if an only if VB = VA ⌦A B is semistable with Hodge-Tate weights in

[0, h].

(2) There is a projective WAst,h-module DAst,h of rank d equipped with a Frobenius semi-

linear automorphism ' and with a WAst,h-linear automorphism N such that for all

⇣ : A! B factoring through Ast,h, there is a canonical isomorphism

DB = DAst,h ⌦Ast,h B
⇠�! HomB[

ˆ

�]

(VB, B
+

st ⌦Q
p

B)

276



respecting the action of ' and N .

Proof. Assume that VB is semistable with Hodge-Tate weights in [0, h]. Then VB is

of E-height  h: for we call VB of E-height  h when the cokernel associated map of SB-

modules '⇤(MB)!MB of Proposition 4.5.9(1) is killed by E(u)h. The proof of Proposition

4.10.5 identifies this S-module with another one, denoted M̃B, created from the (', N)

module associated to VB. Now [Kis06, Lemma 1.2.2] associates the Hodge-Tate weights of

the (', N)-module with the cokernel in the way that we require.

Because VB is of E-height  h, we know that A ! B factors through (A�)h[1/p].

Therefore we may replace A� by the quotient (A�)h defined in Proposition 4.5.5. Let Ast,h

be the ring Ast of Proposition 4.9.11 and set DAst := MA/uMA ⌦A Ast. If VB is semistable

then ⇣ factors through Ast by Proposition 4.10.5.

Conversely, if ⇣ factors through Ast then Proposition 4.10.5 implies that VB is semistable

of E-height  h. If D̃B := (V ⇤
B⌦Q

p

B+

st

)ˆ� and M̃B is theS[1/p]-module associated to D̃B as in

the proof of Proposition 4.10.5, then the uniqueness of S-lattices of finite E-height [Kis06,

Proposition 2.1.12] implies that M̃B has E-height  h, and the claim about Hodge-Tate

weights once more follows from [Kis06, Lemma 1.2.2].

To see (2), concatenate the �̂-equivariant isomorphisms

(4.10.10) VB
⇠�! HomB+

cris,B ,Fil,'(D̃B ⌦W
B

B+

cris,B, B
+

cris,B)
⇠�! HomB,Fil,',N(DB, B

+

st,B),

where the first isomorphism appears on the top line of (4.10.7) and is deduced from in

(4.10.3) by taking B-linear maps. Now (2) follows from applying HomB[

ˆ

�]

(�, B+

st,B) and the

fact that this functor is inverse to HomB,Fil,N,'(�, B+

st,B). ⇤

4.11. Hodge Type

In this section we follow [Kis08, §2.6] and the erratum [Kis09b, §A.4] to construct a

quotient of Ast,h corresponding to semistable representations with a specified p-adic Hodge

type. First we recall the notion of p-adic Hodge type. For this, we fix an finite extension

field E of Qp and suppose that A admits the structure of an E-algebra.
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Definition 4.11.1. Suppose we are given a finite dimensional E-vector space DE with

a filtration of DE,K := DE ⌦Q
p

K by E ⌦Q
p

K-submodules such that the associated graded

is concentrated in degrees [0, h]. Let v := {DE,Fil
i DE,K , i = 0, . . . , h}.

If B is a finite E-algebra and VB 2 Repd
ˆ

�

(B) such that VB is a de Rham representation,

then we say that VB is of p-adic Hodge type v if the Hodge filtration on the associated

filtered (', N)-module has the same graded degrees as v. That is, VB has all its Hodge-Tate

weights in [0, h] and for i = 0, . . . , h there is an isomorphism of B ⌦Q
p

K-modules

gri HomB[

ˆ

�]

(VB, BdR

⌦Q
p

B)
⇠�! griDE,K ⌦E B.

Theorem 4.11.2 ([Kis08, Corollary 2.6.2]). With v as above, there exists a quotient

Ast,v of Ast corresponding to a union of connected components of SpecAst with the following

property. If B is a finite E-algebra and ⇣ : A ! B is a map of E-algebras, then ⇣ factors

through Ast,v if and only if VB = VA ⌦A B is semistable of p-adic Hodge type v.

Proof. To begin with, we establish some notation. Let

(4.11.3) Fili '⇤(MA) = (1⌦ ')�1(E(u)iMA) ⇢ '⇤(MA).

The second part of Lemma 4.7.1 identifies DB ⌦W
B

OB and '⇤(MB ⌦S
B

OB in a formal

neighborhood of the ideal (E(u)) ⇢ OB. In particular, we have a '-compatible identification

DB ⌦K0 K
⇠�! '⇤(MB)/E(u)'⇤(MB).

From here we equip DB ⌦K0 K with a filtration, setting

(4.11.4) Fili(DB ⌦K0 K) := Fili '⇤(MA)/(E(u)'⇤(MA) \ Fili '⇤(MA))⌦A B.

Next we check that this filtration on DB ⌦K0 K coincides with the one induced by the

isomorphism of Theorem 4.10.9(2), namely

DB
⇠�! HomB[

ˆ

�]

(VB, B
+

st

⌦Q
p

B.
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Write D̃B for DB equipped with the filtration from Theorem 4.10.9(2). This is the standard

weakly admissible (', N) module over B attached to V ⇤
B. Now let M̃B be the S[1/p]-module

attached to D̃B as summarized in Theorem 4.10.1. The uniqueness of lattices of E-height

 h implies that MB may be identified with MA ⌦A B. We conclude the proof by recalling

[Kis06, 1.2.6-1.2.7], which reconstructs the filtration on D̃B⌦K0 K from M̃B as the preimage

filtration on DB ⌦W
B

OB the filtration defined in (4.11.3) (with M̃B in the place of MA)

under the map ⇠ of Lemma 4.7.1, specialized at OB/E(u)OB. This is precisely the same as

the filtration of (4.11.4), as desired.

Notice that we have identified Fili '⇤(MA)/(E(u)'⇤(MA)\Fili '⇤(MA))⌦AB, which was

originally used to define the filtration on DB ⌦K0 K, with the a priori projective WB ⌦K0 K-

module Fili(D̃B⌦K0 K). Since this is valid for all finite local E-algebras B, this implies that

Fili '⇤(MA)/(E(u)'⇤(MA)\Fili '⇤(MA)) is a projective A-module. Moreover, the discussion

above shows that, over A-algebras B that are finite E-algebras, the graded components

of these modules determine the Hodge type of the associated Galois representation VB =

VA⌦A B. Since projective modules have locally constant rank, this shows that the points of

SpecA corresponding to a given hodge type v form a union of connected components, whose

coordinate ring we will denote by Av. Namely, these are points p of SpecA such that for

i = 0, 1, . . . , h, there is an isomorphism of WAp ⌦K0 K-modules

Fili '⇤(MA)/(E(u)'⇤(MA) \ Fili '⇤(MA))⌦A Ap
⇠�! Fili DE,K ⌦E Ap.

Let Ast,v := Ast,h ⌦A Av. ⇤

4.12. Galois Type

In this section we further stipulate that B is local with residue field E, so that it is a

finite, local E-algebra with residue field E. Let VB 2 Repd
ˆ

�

(B). Following [Fon94], set

D⇤
pst

(VB) = lim�!
K0

HomB[

ˆ

�

K

0 ](VB, Bst

⌦Q
p

B),

where K 0 runs over finite field extensions of K.

279



Let K̄
0

⇢ K̄ denote the maximal unramified extension ofK
0

, and let �̂
0

⇢ �̂ be the inertia

group of �̂. Then D⇤
pst

(VB) is a B ⌦Q
p

K̄
0

-module with a Frobenius semi-linear Frobenius

automorphism ', a nilpotent endomorphsm N such that p'N = N', and a B⌦Q
p

K̄
0

-linear

action of �̂
0

which has open kernel and commutes with ' and N .

We claim that D⇤
pst

(VB) is finite and free as a B⌦Q
p

K̄
0

-module. We will show this using

the fact that ' is an automorphism and following the line of reasoning of [Kis09c, Lemma

1.2.2(4)]. Firstly, we know that this module is finite and flat over B ⌦Q
p

K̄
0

by definition

of the functor. To check that D⇤
pst

(VB) is free, we need only check that the fibers over the

residue fields, i.e. the points of SpecE ⌦Q
p

K̄
0

, are of constant rank. This module arises by

⌦K0
0
K̄

0

from a free, rank d (', N)-module D over E⌦Q
p

K 0
0

, where K 0/K is a finite extension

making VB semistable as a representation of �̂K0 . Since an unramified base change cannot

make “potentially semistable” into “semistable,” we may assume that K 0
0

= K
0

. For any

unramified extension L
0

/K
0

, now let K 0
0

(resp. L0
0

) denote K
0

\ E (resp. L
0

\ E), and also

let E
0

be the maximal subfield of E unramified over Qp. We observe that ' permutes the

factors labeled by µ of the decomposition

E ⌦Q
p

L
0

⇠=
Y
µ

E ⌦Q
p

K
0

,

where µ runs over the set of embeddings {µ : E
0

,! L0
0

fixing K 0
0

}. This shows that ' will

permute the factors of D⌦K0 L0

under this decomposition by {µ}, and each of these factors

is free of rank d. Therefore D⇤
pst

(VB) is free of rank d as a B ⌦Q
p

K̄
0

-module, as desired.

Since the action of �̂
0

commutes with the action ', the traces of elements of �̂
0

are

contained in B, and D⇤
pst

descends to a representation of �̂
0

on a finite free B-module P̃B.

Because characteristic zero representations of finite groups are rigid, i.e. the deformations

of an action of a finite group on a vector space over a characteristic zero field E to artinian

E-algebras arise by extension of scalars, this representation must be an extension of scalars

from a representation PB of �̂
0

over E.
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We have associated to a potentially semistable d-dimensional representation VB of �̂ over

B a representation of the inertia group of K over E which reflects the failure of VB to be

semistable. We will call this the “Galois type” of VB, as follows.

Fix an algebraic closure Q̄p of Qp.

Definition 4.12.1. Let T : �̂
0

! GLd(Q̄p) be a representation with open kernel. We

say that VB is potetially semistable of type T provided that PB defined above is isomorphic

to T .

Because we are working over a characteristic 0 field, it is equivalent to say that for any

� 2 �̂
0

, the trace of T (�) is equal to the trace of � on D⇤
pst

(VB).

Our goal is to find a moduli space for Galois representations that are both potentially

semistable and have Galois type T . Before we give a supporting lemma, we recall that the

element t 2 A
cris

⇢ B+

dR

, which generates the maximal ideal of B+

dR

, is used in the definitions

B
st

= B+

st

[1/t] and B
st,A = B+

st,A[1/t] (see §4.6).

Lemma 4.12.2 (Following [Kis08, Lemma 2.7.1]). For i � 0 there is an isomorphism

WA · ti ⇠! HomA[

ˆ

�]

(A(i), B+

st,A)

induced by multiplication by p�r
i for ri a positive integer defined below, where A(i) denotes

A with �̂ acting via the ith power of the p-adic cyclotomic character �. In particular, if

B
st,A := B+

st,A[1/t], then B
ˆ

�

st,A = WA.

This proof was done for local A� in [Kis08], based on the well known case when A� is a

finite flat Zp-algebra. The general case requires additional notions, much along the lines of

Lemma 4.8.2(5).

Proof. First we will show, following [Kis08], that any element x 2 B+

st,A such that �̂

acts on x via �i lies in B+

cris,A. We may represent x as x =
Pn

i=0

ai`
i
u where ai 2 B+

cris,A. As

the lemma is well known for A� finite over Zp, one can apply Lemma 4.8.2(5) to conclude

that ai = 0 for i > 0. Therefore, replacing x with a multiple of itself by a power of p, we see
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that it su�ces to prove that x 2 A
cris,A� such that �̂ acts on it via �i lies in

(4.12.3) WA� · ti

pri
⇢ A

cris,A� ,

where ri is the largest non-negative integer such that ti/pri 2 B+

cris

lies in A
cris

.

In the case that A� is a complete local Noetherian Zp-algebra with finite residue field, this

Lemma was proved in [Kis08]. We will reduce the proof to this case, and then recapitulate

the proof from [Kis08] afterwards.

First we note that if ri is the integer defined for (4.12.3), then the cokernel of the map

of Zp-modules

(4.12.4)

W �! A
cris

x 7! x · ti

pri

is torsion-free, and therefore also flat as a Zp-module. Since ri is chosen to saturate the

sub-Zp-module W · ti ⇢ A
cris

, this is clear enough: choose a representative y 2 A
cris

of a

nonzero element of the cokernel of this map. If y is a torsion element of the cokernel, then

there exists some positive integer n such that pn · y ⇠= x · ti

pri
for some x 2 W but pn�1 · y

does not lie in W · ti

pri
. But since A

cris

is a flat Zp-module, this would imply that x is a unit

in W , and without loss of generality x = 1. But then pn�1y ⇠= ti

pri+1 2 A
cris

, a contradiction.

Secondly, we note that the image of (4.12.3) lies in the submodule A
cris

⌦Z
p

A� of A
cris,A� .

Recall that since A
cris

is p-adically complete, the natural map A
cris

⌦Z
p

A� ! A
cris,A� is indeed

an inclusion. Also observe that the natural map W ⌦Z
p

A� ! WA� is an isomorphism: since

W/Zp is finite, W ⌦Z
p

A� is mRA-adically complete. Therefore we can factor the inclusion

(4.12.3) as the composition of natural inclusions

(4.12.5)

W ⌦Z
p

A� ,! A
cris

⌦Z
p

A�

x⌦ y 7! x · ti

pri
⌦ y
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followed by the inclusion

A
cris

⌦Z
p

A� ,! A
cris,A� .

Recall from the proof of Lemma 4.8.2(5) the following notions: let M be the set of

maximal ideals of Spf(A�) as a Spf(Zp)-formal scheme, corresponding to maximal ideals of

A�/mRA
�. In the proof, we showed that the natural maps

(4.12.6) A� !
Y
m2M

A�
m, A

cris,A� !
Y
m2M

A
cris,A�

m

are injective. Of course, everything in the discussion about (4.12.5) applies to A�
m in the

place of A�, so that for each m 2M there are maps

(4.12.7) W ⌦Z
p

A�
m ,! A

cris

⌦Z
p

A�
m

factoring WA�
m
⇠= W ⌦Z

p

A�
m ,! A

cris,A�
m
. Therefore, assuming the result of this lemma when

A� is a complete local ring with finite residue field, we can deduce the general case (i.e.

A� not necessarily local) from the truth of the result over complete local rings A�
m of A� as

follows.

Consider the inclusions

W ⌦Z
p

A� //

(4.12.5)

✏✏

Q
m2M W ⌦Z

p

A�
m

(4.12.7)

✏✏

A
cris

⌦Z
p

A� (4.12.6)

//
Q

m2M A
cris

⌦Z
p

A�
m

We will be done if we can show that the image of W ⌦Z
p

A� in the bottom right is the

intersection of the images of (4.12.7) and (4.12.6). Using the fact that the cokernel of

(4.12.4) (and therefore the cokernel of the vertical maps as well) is flat, we apply Lemma

4.12.8 to draw this conclusion and finish the proof.

We have finished the deduction of the proof of the lemma in the general case from the

proof in the case that A� is local. It remains to prove the case that A� is local, reprising

[Kis08].
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Let A� be a complete local Noetherian Zp-algebra with finite residue field F and maximal

ideal m. Let x 2 B+

st,A such that �̂ acts on it by �i. The beginning of this proof has reduced

our remaining work to the case that x 2 A
cris,A� ; we must show that x is in the image of

(4.12.3).

Let q
1

� q
2

� · · · be a decreasing sequence of ideals of A such that \1j=1

qj = {0} and

A/qj is a finite W (F)[1/p]-algebra. Let q�j := A� \ qj. Then for each m � 0, it follows that

we have q�j ⇢ mm
A� for large enough j. Since A� is m-adically complete, A� ⇠! lim �j

A�/q�j .

Moreover, (q�j) is a sequence of ideals of definition for the topology on A�. Therefore

A
cris,A�

⇠! lim �
j

A
cris,A�/q�

j

.

The same is true with W in place of A
cris

.

Using the integer ri defined for (4.12.3), then for all j � 1, the image of x in A
cris,A�/q�

j

is contained in the image of WA� · ti

pri
in A

cris,A�/q�
j

because the lemma is known for A� finite

over Zp. This property is stable under taking the inverse limit indexed by j, so that we

conclude that x 2 WA� · ti

pri
as desired. ⇤

Lemma 4.12.8. Let R be a commutative ring and let M,N, S, and T be flat R-modules.

Fix injective maps M ,! N , S ,! T such that M is a pure submodule of N , i.e. the cokernel

of the inclusion is flat. Consider N ⌦R S, M ⌦R T , and M ⌦R S as submodules of N ⌦R T

under the natural inclusion maps. Then

N ⌦R S \M ⌦R T = M ⌦R S.
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Proof. Let L be the cokernel of M ,! N , which is a flat R-module. Let U be the

cokernel of S ,! T . Then we have the following diagram of exact sequences:

0

✏✏

0

✏✏

0 // M ⌦R S

✏✏

// M ⌦R T

✏✏

// M ⌦R U

✏✏

// 0

0 // N ⌦R S

✏✏

// N ⌦R T

✏✏

// N ⌦R U

✏✏

// 0

0 // L⌦R S

✏✏

// L⌦R T

✏✏

// L⌦R U

✏✏

// 0

0 0 0

Let x be an element of N ⌦R S which is in the intersection described in the statement of

the lemma. Then the image of x in L⌦R T is 0, so that the image of x in L⌦R S is also 0.

Therefore x is in the image of M ⌦R S in N ⌦R S, as desired. ⇤

Now we show that the theory of (', N)-modules with coe�cients functions as expected.

Proposition 4.12.9 (Following [Kis08, Proposition 2.7.2]). Suppose that A = Ast,h.

Then the map

(4.12.10) DA ⌦W
A

B
st,A �! HomA(VA, Bst,A)

induced from (4.9.7) by setting B = A and tensoring by ⌦B+
st,A

B
st,A is an isomorphism. In

particular,

(4.12.11) DA
⇠�! HomA[

ˆ

�]

(VA, Bst,A).

This proof requires small modifications from that of [Kis08].

Proof. Lemma 4.9.9 tells us that (4.12.10) is an injection. Furthermore, because A =

Ast,h, Theorem 4.10.9 tells us that the right hand side and left hand side of (4.12.10) are
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finite free B
st,A-modules of the same rank. Therefore it will su�ce to show that this map

induces an isomorphism on top exterior powers, and we freely restrict ourselves to the case

that VA� is free of rank 1 over A�. We note that in either of these cases, VA� arises by

extension of scalars from a complete local Noetherian ring. This is the case because the

universal moduli space of 1-dimension representations of �̂ is semi-local, and in particular,

the underlying scheme is the disjoint union of spectra of finite fields. Therefore, once we

show that (4.12.10) is stable under extension of coe�cients in a sense we will define in a

moment, we can resort with no concern to the arguments of [Kis08], which are working in

the case that A� is a complete Noetherian local ring with finite residue field.

We will now show that the property that (4.12.10) is an isomorphism is preserved by

extension of coe�cients which are adic R-algebras, in a sense we now define. This extends

an observation made at the beginning of the proof of [Kis08, Proposition 2.7.2]. Let A� ! A0�

be a map in the category of adic R-algebras, and write A0 := A0�[1/p] as usual. We claim

that the map (4.12.10) for VA0 , i.e. the representation arising by extension of scalars from

VA0� := VA� ⌦A� A0�, is obtained from (4.12.10) by extending scalars by ⌦Bst,ABst,A0 . To see

this, we observe that each of the factors of the map (namely (4.9.6), (4.9.2), which arises from

Proposition 4.5.9, and the map ⇠ of Lemma 4.7.1) are compatible with the scalar extension

process.

1-dimensional semistable representations are crystalline and crystalline characters are the

product of an unramified character and a Lubin-Tate character2 determined by the Hodge

filtration. Therefore, VA|ˆ
�0

is locally constant on SpecA because, according to Theorem

4.11.2, the Hodge type is constant on connected components of SpecA. Replacing SpecA

with one of its connected components, we may assume that VA|ˆ
�0
⇠ ✓|

ˆ

�0
, where ✓ is the

product of conjugates of Lubin-Tate characters. It will su�ce to prove the proposition in

two cases, VA ⇠ ✓ and VA an unramified character. This is the case because we may tensor

the factors in (4.12.10) for VA ⇠ ✓ with the factors for VA unramified to derive the general

case.

2See e.g. [Ser68, III.A.4] for a discussion of Lubin-Tate characters.
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If VA ⇠ ✓, then VA arises by extension of scalars from a representation valued in the

ring of integers of a finite extension of Qp. The observation about extension of scalars given

above now allows us to assume that A� is such a ring of integers. Therefore this case follows

directly from Theorem 4.10.9(2), as A is finite as a Qp-algebra.

Now for the unramified case, the filtration on DA is trivial so h = 0. Let k̄ be the residue

field of K̄. As a result (cf. [FO, §7.2.2]), the slope of DA is zero so that (4.9.4) arises by

extension of scalars ⌦AB
+

cris,A from an isomorphism

DA
⇠�! HomA[

ˆ

�]

(VA,W (k̄)A),

and therefore is an isomorphism as well.

Now we come to the second statement of the proposition. Lemma 4.12.2 gives us that

B
ˆ

�

st,A = WA, so that the usual regular G-ring formalism (e.g. [FO, §2]) will apply, and allow

us to conclude that

DA
⇠�! HomA[

ˆ

�]

(VA, Bst,A).

As elements of the image of DA under (4.12.10) have image in B+

st,A ⇢ B
st,A, (4.12.11)

follows. ⇤

Recall that we have fixed E as a finite extension of Qp such that A admits the structure

of a E-algebra. Let v be a p-adic Hodge type as in Definition 4.11.1. We fix a representation

T : �̂
0

! EndE(DE)
⇠�! GLd(E).

Theorem 4.12.12 ([Kis08, Theorem 2.7.6]). There exists a quotient AT,v of A such that

for any finite E-algebra B, a map of E-algebras ⇣ : A! B factors through AT,v if and only

if VB = VA ⌦A B is potentially semistable of Galois type T and p-adic Hodge type v.

Proof. Let L/K be a finite Galois extension such that the inertia subgroup IL ⇢ IK

is contained in kerT . The group change map along with Theorem 4.11.2 give us a quotient

Apst,v of A such that ⇣ factors through Apst,v if and only if VB|ˆ
�

L

is semistable of p-adic

Hodge type v. Assume A = Apst,v from now on.
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Let WL denote the ring of integers of L
0

, the maximal unramified subfield of L. Set

WL,A := (WL)A. Proposition 4.12.9 gives us an isomorphism of finite free WL,A-modules

DA
⇠�! HomA[

ˆ

�

L

]

(VA, B
+

st,A)

that is compatible with the natural action of '. The Galois group Gal(L/K) acts L
0

-semi-

linearly on HomA[

ˆ

�

L

]

(VA, B
+

st,A), and the inertia group IL/K ⇢ Gal(L/K) acts L
0

-linearly

(cf. [FO, Prop. 6.58]). Since the action of Gal(L/K) commutes with ', if � 2 IL/K , then the

trace Tr(�) is in (WL,A)'=1 = A. Because characteristic 0 representations of finite groups

are rigid, Tr(�) is a locally constant function on SpecA. Denote by AT,v the quotient of

A corresponding to the union of components of SpecA where Tr(�) = Tr(T (�)) for all

� 2 �̂
0

. ⇤

Corollary 4.12.13 ([Kis08, Corollary 2.7.7]). There exists a quotient AT,v
cr

of A such

that for any finite E-algebra B, a map of E-algebras ⇣ : A! B factors through AT,v
cr

if and

only if VB = VA ⌦A B is potentially crystalline of Galois type T and p-adic Hodge type v.

Proof. Theorem 4.10.9 provides for us a finite projective WAT,v-module DAT,v equipped

with a linear endomorphism N . We know that VB is potentially crystalline if and only if the

specialization of N by ⇣ to B vanishes. Therefore we may take AT,v
cr

to be the quotient of

AT,v defined by the relation N = 0. ⇤

4.13. Final Remarks

Combining the results of Chapter 3 (see Theorem 3.2.5.1) with Chapter 4, we have

several the following results. Let �̂ is the absolute Galois group of a finite field extension

K of Qp, and choose a residual pseudorepresentation D̄. Recall that PsR
¯D = Spf B

¯D is the

deformation space of D̄, which is Noetherian since �̂ is finitely generated. Also recall that

Rep
¯D denotes the groupoid of Azumaya algebra-valued continuous representations of �̂ with

constant residual pseudorepresentation D̄. The natural map

 ̄ : Rep
¯D ! PsR

¯D
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is universally closed, formally of finite type, and is the algebraization of a finite type SpecB
¯D-

algebraic stack RepE(R,Du

D̄

), ¯D, where E(R,Du
¯D
) is the universal Cayley-Hamilton B

¯D-algebra

E(R,Du
¯D) := (Zp[[�̂]]⌦Z

p

B
¯D)/CH(D

u
¯D),

which is finitely generated as a B
¯D-module.

Here are a few observations regarding the implications of what we have proved.

Observation 4.13.1. Combining the algebraicity of Rep
ˆ

�

over PsR
ˆ

�

with the projec-

tivity of the moduli of Kisin modules Lh over Rep
ˆ

�

, the moduli of Kisin modules is alge-

braizable over PsR
ˆ

�

and universally closed, with projective PsR
ˆ

�

-subschemes.

Observation 4.13.2. Let A� denote the admissible coe�cient Zp-algebra of a continuous

A�-Azumaya algebra-valued representation

⇢ : Zp[[�̂]]⌦Z
p

A� �! E

of �̂ with constant residual pseudorepresentation D̄, which we can assume to be formally

finitely generated over B
¯D (i.e. the quotient of a restricted power series over B

¯D in finitely

many indeterminates). For example, one can think of A� as the universal coe�cient sheaf

of rings ORep

D̄

. Chapter 4 constructs closed subspaces Xcond = Spec(A�[1/p])/Icond of the

Noetherian Jacobson schemeX := SpecA�[1/p], which are precisely the loci of specializations

of ⇢ to A-algebras, finite as Qp-algebras, satisfying certain conditions from p-adic Hodge

theory. Now consider the algebraization statement over PsR
¯D. It implies that there exists

a universal finite type SpecB
¯D-algebraic stack RepE(R,Du

D̄

), ¯D such that ⇢ arises from the

universal representation of E(R,Du
¯D
) over RepE(R,Du

D̄

), ¯D by pullback along some morphism

f⇢ : SpecA
� �! RepE(R,Du

D̄

), ¯D.
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(We have set R := Zp[[R]].) Therefore there is a finitely generated B
¯D-subalgebra Afg of A�

with a (B
¯D-typically) continuous representation

⇢fg : E(R,Du
¯D)⌦B

D̄

Afg ! Efg

such that ⇢ ' ⇢fg ⌦Afg A�. We can now consider the closed subscheme of SpecAfg[1/p]

corresponding to the condition “cond” from p-adic Hodge theory: it is cut out by the ideal

that is the quotient of the composite map

Afg[1/p] �! A�[1/p] �! A�[1/p]/Icond.

This is an example of finite type SpecB
¯D[1/p]-schemes which are universal moduli spaces

for representations of the module finite B
¯D[1/p]-algebra E(R,Du

¯D
)[1/p] which are required

to satisfy a p-adic Hodge theoretic condition.

Observation 4.13.3. One can make sense of the notion of a K-valued pseudorepresen-

tation D of �̂ satisfying or not satisfying certain conditions from p-adic Hodge theory, where

K is a finite field extension of Qp. After a finite extension of K, D is realizable as the

determinant of a semisimple K-valued representation ⇢ssD . Then one can say that D has a

p-adic Hodge theoretic property if ⇢ssD does. Of course, this does not imply that all represen-

tations of �̂ with semisimplification ⇢ssD (i.e. representations in the fiber of  ̄ over D) have

this property.

Observation 4.13.4. Since �̄ is universally closed, the constructions above give a closed

subspace of PsR
¯D[1/p] corresponding to certain p-adic Hodge theory conditions, say cut out

by an ideal Icond
PsR

⇢ B
¯D[1/p]. As a result, one can construct a quotient

E(R,Du
¯D)

cond := E(R,Du
¯D)[1/p]⌦B

D̄

[1/p] B ¯D[1/p]/I
cond

PsR

through which all representations satisfying this condition must factor. Conversely, it seems

that its semisimple, p-adic field-valued representations must satisfying the condition, as long

as they induce pseudorepresentations parameterized by SpecB
¯D[1/p]. This construction may
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even be able to be refined if representations satisfying this condition are shown to cut out

appropriately linear subspaces of the projective spaces of extensions described in §2.2. In

this case, there should exist a quotient algebra of E(R,Du
¯D
)cond whose representations (given

that they are parameterized by SpecB
¯D[1/p]) are precisely those satisfying the condition.

We are curious if there is any useful application of these observations.
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APPENDIX A

A Remark on Projective Morphisms

There are several notions of projectivity of a morphism of schemes. We will use the

following terminology.

Definition A.1 ([Sta, Definition 01W8]). Let f : X ! S be a morphism of schemes.

(1) We say f is projective if X is isomorphic as an S-scheme to a closed subscheme of

a projective bundle P(E) for some quasi-coherent finite type OS-module E .

(2) We say that f is H-projective if there exists an integer n and a closed immersion

X ! Pn
S over S.

(3) We say that f is locally projective if there exists an open cover of S such that the

restriction of f to each element of the cover is projective.

Example A.2. A finite morphism is always projective, but is not always H-projective.

Local projectiveness and local H-projectiveness are equivalent. Though H-projectivity is

preserved under composition using the Segre embedding ([Sta, Lemma 01WE]), this property

of projectivity requires quasi-compactness of the base [Vak12, Exercise 18.3.B]. Projectivity

is not a local property on the base. However, given a (very) ample line bundle for a projective

morphism, one can check projectivity locally when the base is locally Noetherian [Vak12,

Exercise 18.3.G].

We will use “projective” morphisms so that we can prove projectivity of a morphism

locally on the base (as long as we can glue together the ample line bundle).
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[Fro96] G. Frobenius, Über die Primfactoren der Gruppendeterminante., Berl. Ber. 1896
(1896), 1343–1382 (German).
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Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Math-
ematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Mod-
ern Surveys in Mathematics], vol. 39, Springer-Verlag, Berlin, 2000. MR 1771927
(2001f:14006)

[Maz89] B. Mazur, Deforming Galois representations, Galois groups over Q (Berkeley, CA,
1987), Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 385–437.
MR 1012172 (90k:11057)

[MR01] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, revised ed.,
Graduate Studies in Mathematics, vol. 30, American Mathematical Society, Prov-
idence, RI, 2001, With the cooperation of L. W. Small. MR 1811901 (2001i:16039)

[MR10] Javier Majadas and Antonio G. Rodicio, Smoothness, regularity and complete in-
tersection, London Mathematical Society Lecture Note Series, vol. 373, Cambridge
University Press, Cambridge, 2010. MR 2640631 (2011m:13028)

[Mum65] David Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer
Grenzgebiete, Neue Folge, Band 34, Springer-Verlag, Berlin, 1965. MR 0214602
(35 #5451)

296



[Nag52] Masayoshi Nagata, On the nilpotency of nil-algebras, J. Math. Soc. Japan 4 (1952),
296–301. MR 0053088 (14,719g)

[Nag60] , On the fourteenth problem of Hilbert, Proc. Internat. Congress Math. 1958,
Cambridge Univ. Press, New York, 1960, pp. 459–462. MR 0116056 (22 #6851)

[Nys96] Louise Nyssen, Pseudo-représentations, Math. Ann. 306 (1996), no. 2, 257–283.
MR 1411348 (98a:20013)

[Pro67] Claudio Procesi, Non-commutative a�ne rings, Atti Accad. Naz. Lincei Mem. Cl.
Sci. Fis. Mat. Natur. Sez. I (8) 8 (1967), 237–255. MR 0224657 (37 #256)

[Pro73] , Rings with polynomial identities, Marcel Dekker Inc., New York, 1973,
Pure and Applied Mathematics, 17. MR 0366968 (51 #3214)

[Pro76] C. Procesi, The invariant theory of n⇥ n matrices, Advances in Math. 19 (1976),
no. 3, 306–381. MR 0419491 (54 #7512)

[Pro87] Claudio Procesi, A formal inverse to the Cayley-Hamilton theorem, J. Algebra 107
(1987), no. 1, 63–74. MR 883869 (88b:16033)

[Raz74] Ju. P. Razmyslov, Identities with trace in full matrix algebras over a field of char-
acteristic zero, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 723–756. MR 0506414
(58 #22158)

[Ric88] R. W. Richardson, Conjugacy classes of n-tuples in Lie algebras and algebraic
groups, Duke Math. J. 57 (1988), no. 1, 1–35. MR 952224 (89h:20061)

[Rob63] Norbert Roby, Lois polynomes et lois formelles en théorie des modules, Ann. Sci.
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