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Evolution of Bivalvia: Multi-level phylogenetic and phylogenomic 

reconstructions within Bivalvia (Mollusca) with emphasis on resolving familial 

relationships within Archiheterodonta (Bivalvia: Heterodonta) 

 

Abstract 

 

With an estimated 8,000-20,000 species, bivalves represent the second largest 

living class of molluscs (Bieler et al. 2013). Revived interest in molluscan phylogeny has 

resulted in a torrent of molecular sequence data from phylogenetic, mitogenomic, and 

phylogenomic studies. Despite recent progress, basal relationships of the class Bivalvia 

remain contentious, owing to conflicting hypotheses often between morphology and 

molecules.  

In Chapter 1, the utility of four nuclear protein-encoding genes—ATP synthase β, 

elongation factor-1α, myosin heavy chain type II, and RNA polymerase II— were 

evaluated for their adequacy in resolving the basal relationships within Bivalvia.  Marked 

insensitivity of the basal tree topology to dataset manipulation was indicative of signal 

robustness in these four genes, but resolution was missing in some key areas. 

Subsequently, a phylogenomic study using transcriptomic data was designed to re-

evaluate the bivalve Tree of Life. 

In Chapter 2, I provide the first phylogenomic analysis of Bivalvia in an attempt 

to resolve deep divergences within this group. All six major lineages of bivalves 

(Archiheterodonta, Anomalodesmata, Inaequidonta, Palaeoheterodonta, Protobranchia, 

and Pteriomorphia) were sampled resulting in 31 newly sequenced Illumina-based 
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bivalve transcriptomes. This constitutes the most comprehensive phylogenomic dataset to 

date for inferring deep relationships within Bivalvia. Subsequent analyses obtained robust 

resolution of major bivalve lineages, largely corroborating classical taxonomic 

relationships based mostly on paleontological and morphological data.  

In Chapter 3, a multi-locus phylogeny of archiheterodont bivalves was 

constructed to resolve relationships among constituent families; the relationships and 

internal phylogeny of Archiheterodonta remain poorly understood. By virtue of the 

contentious placement within Bivalvia and lack of internal phylogenic work, 

Archiheterodonta (including Astartidae, Carditidae, Crassatellidae, and 

Condylocardiidae) remain an enigmatic clade of phylogenetic interest. Here I investigate 

relationships within Archiheterodonta using molecular information from six genes (28S 

rRNA, 18S rRNA, histone H3, cytochrome c oxidase subunit I, internal transcribed 

spacer 2, and cytochrome b), including the first molecular sequence information for 

Condylocardiidae. 

 Lastly, in Chapter 4, I investigated the potential cryptic speciation within a 

complex of carditid bivalves from the Gulf of California (Archiheterodonta, Carditidae). 

Carditamera bajaensis, new species, is described from semi-infaunal specimens collected 

in the intertidal zone in the Gulf of California, Baja California Sur, Mexico. This species, 

overlapping in distribution with the congeneric C. affinis, yet subsequently found to be 

genetically distinct, was differentiated initially due to life mode and shell morphology. 
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INTRODUCTION 
  
     

The molluscan class Bivalvia consists of mostly laterally compressed animals 

with a shell made of calcium carbonate, which are enclosed in a bilaterally symmetrical, 

dorsally hinged shell composed of two distinct valves held together by a single or a pair 

of adductor muscles (Giribet & Distel 2003). To date, there are approximately 8,000 to 

20,000 extant described bivalve species, characterized by the presence of a foot for 

locomotion and siphons used in feeding (Bieler et al. 2013). This ancient lineage of 

molluscs is both economically important as source of animal protein and ecologically 

important, where large assemblages of suspension feeding bivalves can be major 

contributors to ecosystem function (Newell 2004; Drumbauld et al. 2009).  

Taxonomic classifications of Bivalvia have been subject to many revisions and 

reorganizations owing to the discordant phylogenetic signal from previously analyzed 

morphological, paleontological and molecular datasets. Morphologically, bivalves have 

been placed in higher-level taxonomic groups based on single character systems such as 

hinge dentition patterns, structure of ctenidia (used in respiration and feeding), and 

stomach organization, or complex characteristics of external shell morphology, shell 

ultrastructure and paleontological data; yet no consensus has been reached on a 

classification due to marked discordance between taxonomic hypotheses. The lack of 

stability in taxonomic classifications of bivalves has impeded the identification of higher-

level bivalve lineages. Nonetheless, within the class many classically recognized clades - 

Pteriomorphia, Protobranchia, Palaeoheterodonta, Heterodonta and Anomalodesmata - 

have been used to describe members of the Bivalvia, though relationships among these 

groups have yet to be further tested (Bieler et al. in press).  
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Protobranchia is a group of exclusively marine bivalves having small thin shells 

that are characterized by varying degrees of hinge dentition and simple ctenidial structure 

(Giribet & Distel 2003). Pteriomorphia are found in both freshwater and marine habitats, 

and includes, among other groups, the oysters and mussels (Giribet & Wheeler 2002). 

Morphologically, they are characterized by relatively large, thin, compressed shells, 

which can be smooth or ribbed and are predominantly anchored to substrates using byssal 

threads or valve cementation (Bieler & Mikkelsen 2006). Palaeoheterodonta are both 

marine and limnic, with larger, often grooved shells that can be ribbed or smooth and the 

group includes the freshwater mussels and pearl mussels (Giribet and Wheeler 2002). 

Heterodonta includes groups such as clams, cockles, and comprises two clades: 

Archiheterodonta, whose members share the presence of a unique hemoglobin, and 

Euheterodonta. Inaequidonta has been recently recognized as a clade based on molecular 

data and constitutes a diverse subclade of Euheterodonta, found both in marine and 

limnic environments, and including the widest range of shell sizes among all bivalve 

groups. Euheterodonts can have smooth or sculptured valves and have well developed 

siphons (Giribet & Distel 2003; Taylor et al. 2007). Lastly, comprising Euheterodonta 

along with Inaequidonta, Anomalodesmata, was formerly treated as its own class (e.g., 

Newell 1965) having a highly variable shell shape and size, yet united by reduced hinge 

dentition and the clade includes the carnivorous bivalves (Bieler & Mikkelsen, 2006; 

Harper et al. 2006). 

Bivalves first appear in the fossil record in the lower Cambrian and along with 

gastropods, became the dominant benthic fauna through the Mesozoic and Cenozoic after 

the Permian mass extinction, prior to which the fossil record is dominated by brachiopod 
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taxa (Fraiser & Bottjer 2007). Of the six lineages, Protobranchia includes the earliest 

bivalves found in the lower Cambrian, whereas fossil Palaeoheterodonta are found in the 

Late Paleozoic but dominate in the Mesozoic. The earliest fossil Heterodonta 

(Archiheterodonta + Euheterodonta) are found in the Paleozoic (Anderson 1998). During 

the Paleozoic, retention of the byssus and cementation allowed for the colonization of 

hard substrates and harsher environments, concurrently the Pteriomorphia and 

Archiheterodonta diversified (Giribet 2008).  Subsequent lineages diversified throughout 

the Paleozoic, though were diminished following the Permo-Triassic mass extinction 

(Slack-Smith 1998). The diverse and relatively complete fossil record provides thus 

beneficial paleobiological information to reconstruct divergence times for ancient rapid 

radiations in this group.  

Early molecular phylogenetic analyses had failed to recover the monophyly of 

Bivalvia. However, latter studies employing next-generation sequencing (NGS) 

techniques including phylogenomic reconstructions with large molecular datasets recover 

the monophyly of bivalves and place bivalves as the sister group to gastropods (Kocot et 

al. 2011) or to a gastropod + scaphopod clade (Smith et al. 2011), but conflicts in 

morphological and molecular datasets persist within major molluscan lineages, 

particularly Bivalvia. The mutual monophyly of Protobranchia and Autobranchia 

(Pteriomorphia + Paleoheterodonta + Archiheterodonta + Euheterodonta) is recovered, 

yet key taxa imperative to the phylogenetic structure within Bivalvia were not sampled, 

as the aim of these studies was not to resolve the internal relationships of each molluscan 

class (Kocot et al. 2011; Smith et al. 2011). Moreover, mitogenomic analyses using full 

mitochondrial genomes recovered the diphyly of Bivalvia, by virtue of Solemya velum 
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nesting within Gastropoda (Plazzi et al. 2013), suggesting that a mitogenomic framework 

was unable to resolve relationship within Bivalvia or to delineate basal molluscan 

relationships among the eight classes (Plazzi et al. 2013). Incongruence among 

mitogenomic, mitochondrial and nuclear gene datasets has been attributed to multiple 

characteristics within the mitochondrial genome; such discrepancies include degrees of 

recombination, modes of inheritance, incidence of introns, and in proportion of 

mitochondrial genome to haploid nuclear genome (Sharma et al. 2012).  

Despite recent general congruence of the phylogenetic placement of major bivalve 

lineages, support for several critical basal nodes is lacking, especially in light of recent 

molecular data analyses using mitochondrial (e.g., Plazzi and Passamonti 2010; Plazzi et 

al.  2011, 2013) versus nuclear (e.g., Sharma et al. 2012) genes. Particularly two major 

clades of the “backbone” of bivalve evolution have yet to converge on robust 

phylogenetic placement: Protobranchia and Archiheterodonta (Bieler et al. 2013). Recent 

molecular investigations have recovered the once contentious monophyly of 

Protobranchia (Kocot et al. 2012; Smith et al. 2011; Sharma et al. 2012, 2013).  

Relationships within Protobranchia have not yet stabilized and every iteration of 

relationships between the three superfamilies: Solemyida, Nuculida, and Nuculanida have 

been proposed based on morphological information, paleontological data or have been 

recovered based on molecular sequence information (e.g., Opponobranchia [Nuculida + 

Solemyida] and a clade of Nuculanida + Autobranchia) (Giribet & Wheeler 2002; Giribet 

& Distel 2003; Giribet 2008; Wilson et al. 2010). As of late, reconstructions of internal 

protobranch phylogeny favor the clade (Nuculida + Nuculanida) as the sister group to 

Solemyida (Sharma et al. 2013). In addition to molecular sequence information, several 
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morphological synapomorphies unite this clade, including: “primitive” eponymous 

protobranch gill; the palp proboscides (absent in the solemyoids, likely a consequence of 

obligate chemosymbiosis, as with reductions of the alimentary system); and characteristic 

taxodont dentition (Coan et al. 2000).   

Likewise, recent reconstructions of relationships of Bivalvia have yet to converge 

on the phylogenetic placement of Archiheterodonta (Giribet & Wheeler, 2002; Wilson et 

al. 2010; Plazzi & Passamonti 2010; Carter et al. 2011; Plazzi et al. 2011; Sharma et al. 

2012). Phylogenetic evidence for a sister group relationship between Archiheterodonta 

and Euheterodonta (Anomalodesmata + Inaequidonta) is prevalent (e.g., Campbell 2000; 

Park & Ó Foighil 2000; Giribet & Wheeler 2002; Dryer et al. 2003; Giribet & Distel 

2003; Taylor & Glover 2006; Harper et al. 2006; Taylor et al. 2007). Archiheterodonta 

has been recovered in the traditional placement as the sister group to the remaining 

Heterodonta (Giribet & Wheeler 2002; Carter et al. 2011), closely related to members of 

Pteriomorphia (Plazzi et al. 2011), or related to a derived group, Anomalodesmata (Plazzi 

& Passamonti 2010)—the latter relationships based solely on mitochondrial gene 

sequence information, recovering vastly different evolutionary histories for this group. 

Nevertheless, recent molecular and combined molecular and morphological phylogenies 

have begun to converge on the placement of Archiheterodonta, forming a clade with an 

ancient lineage of bivalves, Paleoheterodonta, which in turn constitutes the sister group to 

Euheterodonta (Wilson et al. 2010; Sharma et al. 2012; Bieler et al. in press).  

This dissertation aims to contribute to the understanding of bivalve systematics 

and phylogeny using both phylogenetic and phylogenomic approaches; identify stable 

taxonomic groups within this lineage; test the position of Archiheterodonta using a 
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phylogenomic framework, and investigate the internal phylogeny and species 

delimitations within Archiheterodonta. 

 In Chapter 1, the utility of four nuclear protein-encoding genes—ATP synthase 

β, elongation factor-1α, myosin heavy chain type II, and RNA polymerase II— are 

evaluated for resolving the basal relationships of Bivalvia.  Marked incongruence of 

phylogenetic signal in datasets heavily represented by nuclear ribosomal genes versus 

mitochondrial genes has also impeded consensus on the type of molecular data best 

suited for investigating bivalve relationships. Despite the stability of the basal tree 

topology to dataset manipulation, indicative of signal robustness in these four genes, 

support for several imperative basal nodes was lacking. To combat this, in Chapter 2, I 

employed a phylogenomic approach to help resolve relationships of Bivalvia. All five 

major lineages of bivalves (Archiheterodonta, Euheterodonta [including 

Anomalodesmata], Palaeoheterodonta, Protobranchia and Pteriomorphia) were sampled, 

resulting in 31 newly sequenced bivalve transcriptomes and subsequent analyses obtained 

robust and stable resolution of bivalve lineages. Analyses of resultant supermatrices 

constitute the most comprehensive phylogenomic dataset to date for any animal group. 

In Chapter 3, I undertake the phylogenetic reconstruction of Archiheterodonta 

using a multi-locus dataset to resolve relationships among constituent families, one of the 

remaining bivalve clades whose internal phylogeny has not been resolved. This is in 

striking contrast to commensurate undertakings of taxonomic revisions throughout 

Bivalvia, where phylogenetic reconstructions have been published focusing on internal 

relationships of Protobranchia (Sharma et al. 2012), Pteriomorphia (Healy et al. 2000, 

Temkin 2006), Palaeoheterodonta (Graf & Cummings 2006) and for members of the 
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Euheterodonta (Harper et al. 2006, Mikkelsen et al. 2006, Taylor et al. 2007). 

Archiheterodonta contains some of the oldest known bivalve fossils, dating back to the 

Silurian or even the Ordovician and is comprised of four families: Astartidae, Carditidae, 

Crassatellidae, and Condylocardiidae. These bivalves are exclusively marine, 

predominantly infaunal (though some byssate forms occur), suspension feeders that lack 

siphons. Astartidae includes 11 living genera (ca. 50 species) that inhabit arctic to 

temperate waters. Crassatellidae includes 9 living genera (ca. 40 species) and have a 

global distribution, though most are found predominantly in tropical and subtropical 

regions. Carditidae includes 16 living genera (ca. 50 species), distributed globally with 

the exception of the polar regions. Condylocardiidae includes 21 living genera (ca. 65 

species) distributed globally, though little is known about the biology of these species. 

Here I investigate relationships within Archiheterodonta using molecular information 

from six genes (28S rRNA, 18S rRNA, histone H3, cytochrome c oxidase subunit I, 

internal transcribed spacer 2, and cytochrome b) to assess the phylogenetic placement and 

validity of constituent families. All four families were sampled, including the first 

molecular sequence information for Condylocardiidae.  

 Lastly in Chapter 4, I identified cryptic speciation in a Carditid bivalve from the 

Gulf of California (Mollusca, Bivalvia, Archiheterodonta, Carditidae). Where, 

Carditamera bajaensis, a new species, is subsequently described from semi-infaunal 

specimens collected in the intertidal zone in the Gulf of California, Baja California Sur, 

Mexico. The new species resembles Carditamera affinis (G. B. Sowerby I, 1833), the 

only valid Carditamera species known from within the Gulf of California, with which it 

has been mistaken, but it differs in shell structure and most conspicuously in life mode – 



   

 8 

semi-infaunal for C. bajaensis versus byssally attached to hard substrata for C. affinis. I 

constructed haplotype networks from two mitochondrial genes (16S rRNA and 

cytochrome b) and one nuclear gene (internal transcribed spacer 2) which indicate a clear 

genetic break between C. affinis and C. bajaensis, as suspected initially due to their 

different modes of life and shell morphology. This pair of species, C. affinis and C. 

bajaensis, overlapping in distribution yet genetically distinct, possibly indicates 

ecological speciation. 
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Abstract 

Revived interest in molluscan phylogeny has resulted in a torrent of molecular sequence data 

from phylogenetic, mitogenomic, and phylogenomic studies. Despite recent progress, basal 

relationships of the class Bivalvia remain contentious, owing to conflicting morphological 

and molecular hypotheses. Marked incongruity of phylogenetic signal in datasets heavily 

represented by nuclear ribosomal genes versus mitochondrial genes has also impeded 

consensus on the type of molecular data best suited for investigating bivalve relationships. To 

arbitrate conflicting phylogenetic hypotheses, we evaluated the utility of four nuclear protein-

encoding genes—ATP synthase b, elongation factor-1a, myosin heavy chain type II, and 

RNA polymerase II—for resolving the basal relationships of Bivalvia. We sampled all five 

major lineages of bivalves (Archiheterodonta, Euheterodonta [including Anomalodesmata], 

Palaeoheterodonta, Protobranchia, and Pteriomorphia) and inferred relationships using 

maximum likelihood and Bayesian approaches. To investigate the robustness of the 

phylogenetic signal embedded in the data, we implemented additional datasets wherein length 

variability and/or third codon positions were eliminated. Results obtained include (a) the 

clade (Nuculanida + Opponobranchia), i.e., the traditionally defined Protobranchia; (b) the 

monophyly of Pteriomorphia; (c) the clade (Archiheterodonta + Palaeoheterodonta); (d) the 

monophyly of the traditionally defined Euheterodonta (including Anomalodesmata); and (e) 

the monophyly of Heteroconchia, i.e., (Palaeoheterodonta + Archiheterodonta + 

Euheterodonta). The stability of the basal tree topology to dataset manipulation is indicative 

of signal robustness in these four genes. The inferred tree topology corresponds closely to 

those obtained by datasets dominated by nuclear ribosomal genes (18S rRNA and 28S 

rRNA), controverting recent taxonomic actions based solely upon mitochondrial gene 
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phylogenies. 
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Introduction 

Bivalvia is the second largest class of mollusks after Gastropoda and is comprised of aquatic 

(predominantly marine), bilaterally symmetrical animals characterized by a laterally 

compressed body enclosed in a bivalved shell and the lack of a radular apparatus. Extant 

bivalves are abundantly represented from intertidal to hadal marine environments and many 

species have significant commercial importance. Five distinct groups of bivalves are often 

recognized: the protobranchs (solemyoids, nuculoids, and nuculanoids); the pteriomorphians 

(mussels, scallops, oysters, and arks); the palaeoheterodonts (most freshwater mussels and 

trigoniids); the archiheterodonts (which include members with hemoglobin); and the 

euheterodonts, including Anomalodesmata (the most speciesrich and widely distributed group 

of bivalves) (Bieler and Mikkelsen, 2006; Giribet, 2008). 

The monophyly of Bivalvia is supported by numerous morphological apomorphies, 

but has historically proven elusive to demonstrate based on molecular sequence data, owing 

to early limitations in sampling of molecular loci and/or taxa (e.g., Steiner and Müller, 

1996; Adamkewicz et al., 1997; Campbell et al., 1998; Giribet and Carranza, 1999; Giribet 

and Wheeler, 2002; Giribet and Distel, 2003; Giribet et al., 2006; but see Wilson et al., 2010). 

Recent application of second-generation sequencing techniques to outstanding questions of 

molluscan systematics has corroborated the monophyly of bivalves and their sister 

relationship to either Gastropoda (Kocot et al., 2011; based on 308 genes) or the clade 

(Gastropoda + Scaphopoda) (Smith et al., 2011; based on 1185 genes). Similarly, 

morphological cladistic analyses in concert with molecular phylogenies have elucidated 

relationships of many internal bivalve clades, such as within Pteriomorphia (Canapa et al., 

2000; Matsumoto and Hayami, 2000; Steiner and Hammer, 2000; Matsumoto, 2003; Tëmkin, 
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2006, 2010; Waller, 2006), Unionida (Hoeh et al., 1999; Graf, 2000; Graf and Ó Foighil, 

2000; Huff et al., 2004; Graf and Cummings, 2006), Anomalodesmata (Dreyer et al., 2003; 

Harper et al., 2006), and other Heterodonta (Canapa et al., 1999, 2001, 2003; Park Ó Foighil, 

2000; Campbell et al., 2004; Williams et al., 2004; Taylor et al., 2005, 2007, 2009, 2011; 

Mikkelsen et al., 2006; Taylor and Glover, 2006). 

Following decades of dispute concerning the position of major bivalve lineages (Fig. 

1.1;  reviewed by Giribet and Wheeler, 2002; Giribet, 2008), certain aspects of basal bivalve 

phylogeny have begun to stabilize. For example, although protobranch monophyly has long 

been contentious (Campbell et al., 1998; Giribet and Wheeler, 2002; Giribet and Distel, 2003; 

Wilson et al., 2010), the mutual monophyly of Protobranchia (Nuculanida + Opponobranchia 

sensu Giribet, 2008) and Autobranchia—the group comprised of all bivalves with ctenidia 

modified for filter-feeding—was obtained in a recent phylogenomic analysis sampling all 

three protobranch superfamilies (Smith et al., 2011; although Archiheterodonta and 

Anomalodesmata were not sampled). Similarly, the monophyly of Heteroconchia 

(Palaeoheterodonta + Archiheterodonta + Euheterodonta [including Anomalodesmata]) was 

obtained previously (Giribet and Wheeler, 2002; Wilson et al., 2010), with phylogenetic 

studies corroborating either a sister relationship of Archiheterodonta and Euheterodonta 

(Giribet and Wheeler, 2002; Taylor et al., 2007), or of Archiheterodonta and 

Palaeoheterodonta (Wilson et al., 2010). A noteworthy commonality of these phylogenetic 

studies is the use of datasets heavily or exclusively represented by nuclear ribosomal genes 

(18S rRNA and 28S rRNA). 

A notable exception to this accruing consensus was a molecular phylogeny based on 

four genes (18S rRNA, 28S rRNA, histone H3, and cytochrome c oxidase subunit I) that  
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recovered a sister relationship of Nuculanida and Archiheterodonta, and a more basal 

divergence of Palaeoheterodonta (Giribet and Distel, 2003). Part of the discrepancy may have 

been attributable to the analytical treatment of the gene histone H3, which was newly 

sequenced for Bivalvia at the time. In that study, the optimal parameter set selected for 

parsimony analysis assigned all substitutions the same weight. Reexamination of histone H3 

performance across various invertebrate taxa has demonstrated the suppression of 

phylogenetic signal of this gene given equal weighting of transversion and transition events—

typically caused by the disproportionate influence of the nuclear ribosomal genes—and 

ensuing false topological incongruity (Sharma et al., 2011). Nevertheless, certain aspects of 

the topology of Giribet and Distel (2003) were corroborated by subsequent analyses (e.g., 

Wilson et al., 2010), specifically with respect to derived relationships and the monophyly of 

Euheterodonta (including Anomalodesmata). 

In spite of these advances toward a stable bivalve phylogeny, basal relationships have 

once again come into question owing to topologies obtained using mitochondrial genes and 

genomes. One such study, examining doubly uniparental inheritance (DUI) of the 

mitochondrial genome (which has heretofore been documented in Mytilida, Unionida, and 

Venerida; reviewed by Breton et al., 2007), constructed a 12-mitochondrial gene phylogeny 

sampling only unionoids, veneroids, and three groups of pteriomorphians (Pectinida, 

Ostreida, and Mytilida) (Doucet-Beaupré et al., 2010). Although this sampling was deemed 

sufficient for the purposes of that study (i.e., mapping gains and losses of DUI in 

Autobranchia), the omission of several major groups could have engendered the unusual 

sister relationship of Pteriomorphia and Euheterodonta (not including Anomalodesmata) to 
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the exclusion of Palaeoheterodonta. Furthermore, two recent phylogenetic analyses, both 

based exclusively on four mitochondrial genes (12S rRNA, 16S rRNA, cytochrome c oxidase 

subunit I, and cytochrome b), recovered highly counterintuitive topologies. In the first case, 

bivalves were recovered as polyphyletic owing to the placement of Solemyida and Nuculida, 

and the remaining relationships obtained included polyphyly of Anomalodesmata, and 

Nuculanida clustering with Pteriomorphia (Fig. 1.1I; Plazzi and Passamonti, 2010). A 

subsequent rendition with increased taxonomic sampling obtained the monophyly of 

Bivalvia, but a markedly different topology (Fig. 1.1L; Plazzi et al., 2011). The authors 

proposed the name ‘‘Amarsipobranchia’’ for all bivalves except Nuculida, Solemyida, and 

Unionida, based upon a gill character that does not in fact occur in all Archiheterodonta, 

Euheterodonta, or Pteriomorphia—but ‘‘has most probably to be considered as a 

symplesiomorphy of this group’’ (Plazzi et al., 2011, p. e27147). The authors concluded that 

mitochondrial genes should not be discarded a priori from phylogenetic analysis and that 

sophisticated analytical treatment, particularly with respect to third codon positions in 

protein-encoding genes, can reveal underlying phylogenetic signal (Plazzi et al., 2011). 

We concur with Plazzi et al. (2011) that mitochondrial genes can be highly 

informative markers, particularly with respect to shallow nodes. Empirical phylogenetic 

studies of bivalves already actively sample mitochondrial genes (both ribosomal and protein-

encoding) in addition to their nuclear counterparts, and for resolving various taxonomic ranks 

(e.g., Giribet and Wheeler, 2002; Giribet and Distel, 2003; Campbell et al., 2005; Giribet et 

al., 2006; Kappner and Bieler, 2006; Mikkelsen et al., 2006; Wood et al., 2007; Tëmkin, 

2010; Wilson et al., 2010). However, the second claim, that sophisticated analytical treatment 

of mitochondrial genes can unearth phylogenetic signal among deep divergences, is dubious 
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for two reasons. First, the approach taken by Plazzi et al. (2011) with respect to evaluating 

phylogenetic utility is to test complex models and an assortment of partitioning schemes for 

describing their dataset, and to obtain an optimal set of model parameters. But they do not 

evaluate phylogenetic utility in the context of previous phylogenetic studies, particularly 

those that have implemented both nuclear and mitochondrial genes together. Consequently, it 

is clarified neither why the mitochondrial data are so markedly discordant with respect to 

other multilocus data, nor how reconciliation is possible. As a corollary, it is also not clarified 

why exclusive use of mitochondrial data should be preferred over nuclear data, given the 

significant topological discord that they engender. 

Second, a number of studies has previously demonstrated topological incongruence 

between mitochondrial and nuclear datasets (e.g., Degnan, 1993; Slade et al., 1994; reviewed 

by Ballard and Whitlock, 2004). Although algorithmic approaches can elucidate phylogenetic 

signal, over-parameterization of nucleotide and codon models can reduce their predictive 

power, or even engender problems of non-identifiability, in addition to artificially inflating 

nodal support (Chang, 1996; Steel, 2005). This could partially explain why the approach of 

analyzing the same four mitochondrial genes yielded radically different topologies upon the 

addition of taxa, with almost flawless nodal support values in the more recent study (Plazzi 

and Passamonti, 2010, contra Plazzi et al., 2011). 

Phylogenomic assessments of molluscan relationships shed little further light on basal 

relationships, beyond favoring the mutual monophyly of Protobranchia and Autobranchia. 

This is a consequence of limitations in sampling of Autobranchia, whose internal 

relationships were not the focus of these studies. For example, Kocot et al. (2011) did not 

include representatives of Nuculanida, Archiheterodonta, or Anomalodesmata. Similarly,  
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Figure 1.1. Phylogenetic hypotheses of higher bivalve relationships proposed by different authors. (A) Purchon 
(1987) based on phenetic analysis of morphological data. (B) Waller (1990, 1998) based on non-numerical 
cladistic analyses of morphology. (C) Proposed evolutionary tree of Morton (1996). (D) Salvini-Plawen and 
Steiner (1996), parsimony analysis of morphological data. (E) Suggested evolutionary tree of Cope (1997). (F) 
Giribet and Wheeler (2002), based on the parsimony analysis of morphology and three molecular markers (18S 
rRNA, 28S rRNA, COI). (G) Giribet and Distel (2003), based on parsimony analysis of four molecular markers 
(18S rRNA, 28S rRNA, COI, histone H3). (H) Synoptic classification of Bieler et al. (2010). (I) Plazzi and 
Passamonti (2010), based on Bayesian analysis of four molecular markers (12S rRNA, 16S rRNA, COI, CytB). 
(J) Wilson et al. (2010), based on Bayesian analysis of five molecular markers (16S rRNA,18S rRNA, 28S 
rRNA, COI, histone H3). (K) Synoptic classification of Carter et al. (2011). (L) Plazzi et al. (2011), based on 
Bayesian analysis of four molecular markers (12S rRNA, 16S rRNA, COI, CytB). Colors in tree topology 
correspond to major lineages (red: Protobranchia; green: Pteriomorphia; orange: Palaeoheterodonta; indigo: 
Archiheterodonta; purple: Anomalodesmata; blue: remaining Euheterodonta). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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Smith et al. (2011) did not sample Archiheterodonta or Anomalodesmata, and both studies 

used a previously published small EST data set for a single exemplar of Palaeoheterodonta. 

This may in part explain the counterintuitive sister relationship of Pteriomorphia and. 

Euheterodonta (to the exclusion of Palaeoheterodonta) obtained by Smith et al. (2011), 

although this result was not supported under some algorithmic treatments  

To redress the topological conflict caused by the use of exclusively mitochondrial 

datasets versus datasets that include nuclear genes, as well as to test hypotheses of basal 

relationships, we investigated the phylogeny of bivalves using four nuclear, pro- 

tein-encoding loci: ATP synthase b, elongation factor-1a, myosin heavy chain type II, and 

RNA polymerase II. The study included representatives of all major bivalve lineages. We 

performed a phylogenetic analysis of nucleotide sequence data, manipulating the treatment of 

length variability and/or third codon positions to investigate phylogenetic robustness. From 

the topologies obtained, we reexamined hypotheses of basal relationships and evaluated these 

four molecular markers as predictors of bivalve phylogeny. 

 

Materials and methods 

 

Taxon sampling 

Specimens for the study were obtained as part of the Bivalve Tree of Life (BivAToL) project 

(where most will also serve as exemplar species in separate analyses of other molecular loci, 

as well as morphological characters); additional sequence data were obtained from the 

Protostome Tree of Life project (see project information in Acknowledgments), or accessed 
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from GenBank. The 45 ingroup taxa sampled consisted of 5 Protobranchia, 14 Pteriomorphia, 

3 Palaeoheterodonta, 2 Archiheterodonta, 3 Anomalodesmata, and 18 other Euheterodonta. 

Outgroup taxa for the study consisted of 7 gastropods, 1 chiton, 1 scaphopod, and 2 

cephalopods. However, we observed that the highly divergent sequences of all outgroups 

except Gastropoda resulted in non-monophyly of the ingroup (Supplementary Fig. 1.S1). 

Given that bivalve monophyly has been demonstrated recently using phylogenomic 

approaches (Smith et al., 2011) and this study is concerned only with internal relationships, 

we limited  the outgroup sampling to a subset of gastropods for our principal analyses. The 

full list of taxa included in our study is provided in Supplementary Table 1.S1. 

 

Molecular methods 

Total RNA was isolated from tissues preserved in RNAlater® (Ambion) or frozen at -80 °C, 

using TRIzol® reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s 

instructions. cDNA synthesis was performed with 1–2 mg of total RNA using the 

RETROscript™ kit (Ambion). Sequence data were obtained using degenerate PCR primers, 

whose sequences and original references are provided in Table 1.1. 

Fragments of the head portion of myosin heavy chain type II and elongation factor-1a 

were amplified from template cDNA following nested PCR reaction protocols, described by 

Aktipis and Giribet (2010). Fragments of RNA polymerase II were amplified following 

protocols described by Regier and Shultz (2000). ATP synthase b fragments were amplified 

from cDNA following touchdown PCR reaction protocols modified from Sperling et al. 

(2007). Initial touchdown reactions amplified fragments using the external primers ATPbF 

and ATPbR, in a 25 lL reaction (1 lL cDNA template, 20.5 lL ddH2O, 2.5 lL AmpliTaq™ 
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10x PCR buffer, 0.5 lL dNTPs [10 lmol L-1], 0.25 lL of each primer [100 lmol L-1], 

and 0.625 U AmpliTaq™ enzyme) with the following parameters:1 min of denaturation at 94 

°C, 45 s of annealing at 52 °C for two cycles, then annealing temperature was lowered one 

degree every two cycles, terminating at 40 °C for a total of 26 cycles, followed by 

Table 1.1. List of primer sequences used for PCR amplification and sequencing with original references.  
Myosin heavy chain 
      

 
 

 
      mio3 5’ -GGN GTN YTN GAY ATH GC-3’ Ruiz-Trillo et al. (2002) 

     mio4 5’ -GGR AAN CCY TTN CKR CAD AT-3’ Ruiz-Trillo et al. (2002) 
     mio6 5’ -CCY TCM ARY ACA CCR TTR CA-3’ Ruiz-Trillo et al. (2002) 
     mio7 5’ -TGY ATC AAY TWY ACY AAY GAG-3’ Ruiz-Trillo et al. (2002) 

ATP synthase subunit B   

     ATPbF  5’ -GTN GAY GTN CAR TTY GAY GA-3’ Sperling et al. (2007)  
     ATPbR 5’ -CYA TYT TGG GTA TGG ATG AA-3’ Sperling et al. (2007)  

      ATPb200F 5’ -NCC NAC CAT RTA RAA NGC-3’ 
 

This study 
     ATPb1088R 5’ -RTW GGD GAM CCA ATT GAY GA-3’ This study 
Elongation factor-1a 
     RS2F (52.4F) 

 
50 TCN TTY AAR TAY GCN TGG GT-30 

 
Regier and Shultz (1997) 

     RS4R (52RC) 5’-CCD ATY TTR TAN ACR TCY TG-3’ Regier and Shultz (1997) 
     RS3F (45.71F) 5’ GTN GSN GTI AAY AAR ATG GA-3’ Regier and Shultz (1997) 
     RS6R (53.5RC) 5’ ATR TGV GMI GTR TGR CAR TC-3’ Regier and Shultz (1997) 

RNA polymerase II   
     15F 5’ -ACW GCH GAR ACH GGK TAY ATY CA-

3’ 
Shultz and Regier (2000) 

     14F 5’-YTK ATH AAR GCT ATG GA-3’ Shultz and Regier (2000) 
     17R 5’ -TTY TGN GCR TTC CAD ATC AT-3’ Shultz and Regier (2000) 

    

 

45 s of annealing at 52 °C for 10 cycles, and a 2 min extension at 72 °C, with a final 7 min 

extension at 72 oC. This initial PCR product was then amplified in a second PCR reaction 

using the internal primers ATPb200F and ATPb1088R, in a 50 lL reaction (2 lL touch-down 

template, 41 lL ddH2O, 5.0 lL AmpliTaq™ 10x PCR buffer, 1 lL dNTPs [10 lmol L-1], 0.5 

lL of each primer [100 lmol L-1], and 1.25 U AmpliTaq™enzyme, Applied Biosystems, 

Carlsbad, CA, USA) with the following parameters: initial 2 min denaturation at 94 °C, then 

35 cycles of 30 s of denaturation at 94 °C, 45 s of annealing at 52 °C, and 2 min extension at 
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72 °C, with a final 7 min extension at 72 °C. Annealing temperatures for ATP b ranged 

between 46 °C and 55 °C. 

All amplified samples were purified using an Eppendorf vacuum (Hamburg, Germany) and 

Millipore Multiscreen® PCRl96 cleanup filter plates (Billerica, MA, USA) following the 

manufacturers’ instructions. Sequencing was performed in a GeneAmp® PCR system 9700 

(Perkin Elmer, Waltham, MA, USA) using ABI PRISM™ BigDye™ v.3 Terminator Cycle 

Sequencing Ready Reaction kit (Applied Biosystems) and following the manufacturer’s 

protocol. The BigDye-labeled PCR products were cleaned with Performa® DTR v3 96-well 

short plates (Edge BioSystems, Gaithersburg, MD, USA) and directly sequenced using an 

automated ABI Prism® 3730 Genetic Analyzer. 

Chromatograms obtained from the automatic sequencer were analyzed using the sequence 

editing software Sequencher™4.8 (Gene Codes Corporation, Ann Arbor, MI, USA). External 

and internal primer regions were removed from these edited sequences. The lengths of the 

amplicons for each gene are provided in Supplementary Table 1.S2. 

 

Phylogenetic analysis 

Bayesian inference (BI) and maximum likelihood (ML) analyses were conducted on static 

alignments, which were inferred as follows. Length variable sequences (elongation factor-1a 

and myosin) were converted to amino acid sequences, which were aligned using 

MUSCLE ver. 3.6 (Edgar, 2004) with default parameters. The resulting amino acid 

alignments were used to guide the alignment of the corresponding nucleotide sequences. 

Length invariable sequences (ATP synthase b and RNA polymerase II) were confirmed using 

amino acid sequence translations to ensure that no treatment with MUSCLE ver. 3.6 was 
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required. These four data partitions constituted the full dataset (henceforth Dataset 1). 

Length variable data partitions (elongation factor-1a and myosin) were subsequently treated 

with GBlocks v. 0.91b (Castresana, 2000) to cull positions of ambiguous homology from 

amino acid sequence alignments. We allowed less strict flanking positions for both genes, as 

use of this feature retains the conserved positions at the beginnings and ends of each dataset 

(disuse of this feature affected only the termini of the amino acid alignments). Together with 

the length invariable data partitions, these formed a second dataset free of length variability 

entirely (henceforth Dataset 2). 

We removed the third codon positions of the full dataset to form a third dataset, 

wherein only first and second codon positions were retained in addition to some length 

variability (henceforth Dataset 3). Finally, we also removed the third codon positions of 

Dataset 2 to form the smallest dataset, wherein only 1st and 2nd codon positions, but no 

length variable regions, were retained (henceforth Dataset 4). The lengths of the aligned 

datasets in each treatment are indicated in Supplementary Table 1.S2. Aligned datasets are 

available upon request from the authors. 

BI analyses were performed using MrBayes ver. 3.1.2 (Huelsenbeck and Ronquist, 

2005) on 12 CPUs of a cluster at Harvard University, FAS Research Computing 

(odyssey.fas.harvard.edu), with a unique model of sequence evolution with corrections for a 

discrete gamma distribution and/or a proportion of invariant sites specified for each partition, 

as selected in jModeltest ver. 0.1.1 (Posada, 2008; Guindon and Gascuel, 2003) under the 

Akaike Information Criterion (Posada and Buckley, 2004). Model recommendations for each 

dataset are indicated in Supplementary Table 1.S2. Default priors were used starting with 

random trees, and three runs, each with three hot and one cold Markov chains, were 
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performed for all four datasets until the average deviation of split frequencies reached <0.01 

(107 generations). Stationarity was checked using Tracer ver. 1.5 (Rambaut and Drummond, 

2009). After burn-in samples were discarded, sampled trees were combined in a single 

majority-rule consensus topology, and the percentage of trees in which a node was recovered 

was taken as the posterior probability for that node. 

ML analyses were conducted using RAxML ver. 7.2.7 (Stamatakis, 2006) on 24 CPUs 

of a cluster at Harvard University, FAS Research Computing (odyssey.fas.harvard.edu). For 

the maximum likelihood searches, a unique GTR model of sequence evolution with 

corrections for a discrete gamma distribution (GTR + C) was specified for each data partition, 

and 250 independent searches were conducted. Nodal support was estimated via the rapid 

bootstrap algorithm (250 replicates) using the GTR-CAT model (Stamatakis et al., 2008). 

Bootstrap resampling frequencies were thereafter mapped onto the optimal tree from the 

independent searches. 

A Shimodaira–Hasegawa (SH) test was conducted using RAxML ver. 7.2.7. We 

enforced an ingroup topology consistent with the Amarsipobranchia hypothesis (sensu Plazzi 

et al., 2011) and compared it to the ML topology obtained using Dataset 1. To generate the 

null distribution, 500 resampling replicates were conducted. 

 

Results 

 

Runs of MrBayes ver. 3.1.2 generally reached stationarity in ca.106 generations; 2 x 106 

generations (20%) were hence discarded as burn-in. One of the three runs for Dataset 4 

became trapped on a local optimum and was therefore abandoned after the remaining two 
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runs converged. BI analysis of all datasets recovered the monophyly of all six major lineages 

except Palaeoheterodonta, and basal relationships as follows: (Protobranchia (Pteriomorphia 

((Archiheterodonta + Palaeoheterodonta) (Euheterodonta)))) (Fig. 1.2). Datasets 1–3 also 

recovered a basal dichotomy between Anomalodesmata and the remaining Euheterodonta, but 

Dataset 4 recovered Anomalodesmata nested within Euheterodonta (with a lineage of 

Cardioidea as sister to the remaining Euheterodonta). Derived relationships within 

Pteriomorphia and Euheterodonta were generally unstable, with numerous superfamilies 

recovered as non monophyletic (Fig. 1.3). 

ML analysis using RAxML ver. 7.2.7 resulted in tree topologies with ln L = -

44419.380, ln L = -42102.014, ln L = -15746.721, and ln L = -14510.373 for Datasets 1–4, 

respectively. ML topologies of each dataset were almost identical to those obtained by 

corresponding BI analyses. However, Dataset 1 recovered the monophyly of all six major 

lineages, whereas Datasets 2–4 favored the paraphyly of Palaeoheterodonta with respect to 

Archiheterodonta. All analyses recovered a sister group relationship of Palaeoheterodonta and 

Archiheterodonta, and therefore non-monophyly of Heterodonta. As in the BI topologies, the 

sister relationship of Anomalodesmata to the remaining Euheterodonta was obtained by all 

datasets except Dataset 4 (Fig. 1.2). 

Removal of the variable third codon positions is expected to limit phylogenetic 

inference among shallow nodes. Accordingly, Datasets 3 and 4 resulted in non-monophyly of 

one or more congeneric species pairs (Modiolus and Mytilus) in both BI and ML analyses. 

There is also a trend toward declining posterior probabilities among BI topologies upon 

removal of both third codon positions and length variability. Bootstrap resampling 

frequencies across all four ML topologies were limited. A strict consensus of all tree 
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topologies obtained, underscoring those nodes consistently found across the analytical space, 

is shown in Fig. 1.4. Salient points are the monophyly of Protobranchia, Autobranchia, 

Pteriomorphia, Heteroconchia, Palaeoheterodonta + Archiheterodonta, Euheterodonta and 

Anomalodesmata. 

The SH test comparing the ML topology (obtained with Dataset 1; ln L = -44419.380) 

to the topology consistent with the Amarsipobranchia hypothesis (ln L = -44653.593) 

recovered a difference in log likelihood of 234.20 (standard deviation of 30.19), and rejected 

the null hypothesis of equal likelihood of the two topologies. 

 

Discussion 

 

Exclusive use of phylogenetic data from one source—nuclear, mitochondrial, plastid, or any 

other—can engender biases in tree topology. These biases can only be tested by comparing 

topological congruence from other data sources. Topological discordance between 

mitochondrial and nuclear datasets was observed early in the history of molecular 

phylogenetics (e.g., Degnan, 1993; Slade et al., 1994) and is attributable to multiple 

idiosyncrasies of the mitochondrial genome. For example, the length of the mitochondrial 

genome constitutes only a minuscule fraction of the length of the nuclear haploid genome—

approximately 0.0073% in the case of the gastropod Lottia gigantea G.B. Sowerby, I, 1834 

(rv26,400 bp in the mitochondrial genome, compared to ca. 359.5 Mbp in the nuclear 

genome). Mitochondrial and nuclear genomes also differ in degree of recombination, modes 

of inheritance, and incidence of introns—differences that can affect inferences of 

evolutionary history. Additionally, mutation rates of mitochondrial DNA are generally higher 
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Figure 1.2. Phylogenetic relationships of Bivalvia based on maximum likelihood analysis of four nuclear 
protein-encoding genes (ln L = -44419.380). Colors in tree topology correspond to major lineages (as in Fig. 1). 
Navajo rugs correspond to 10 nodes of interest. Colors in Navajo rugs correspond to each dataset; numbers in 
Navajo rugs indicate posterior probabilities from Bayesian analysis (top row) or bootstrap resampling frequency 
(bottom row). Failure to retrieve a node is indicated as a white entry (without a number indicating nodal 
support). Filled circles at the right of each taxon indicate representation by the gene of interest, from left to right: 
ATP synthase b, elongation factor-1a, myosin heavy chain type II, and RNA polymerase II. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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than those of nuclear DNA, with typical estimates ranging from two to over tenfold with 

respect to nuclear genes (Brown et al., 1979; Moriyama and Powell, 1997; Denver et 

al.,2000; Lambert et al., 2002; Howell et al., 2003), limiting inference of deep phylogenetic 

events, namely, the origin and early diversification of bivalves. Strand-specific substitution 

biases have also been shown to occur in mitochondrial genomes (Ballard, 2000; Haag-

Liautard et al., 2008). Consequently, a number of reviews have critiqued the role of 

mitochondrial DNA in phylogenetics, suggesting caution in their use, simultaneous 

deployment with nuclear genes, and/or omission from phylogenetic study altogether (e.g., 

Ballard and Whitlock, 2004; Rubinoff and Holland, 2005; Fisher-Reid and Wiens, 2011). 

These concerns weigh heavily upon recent inferences of bivalve basal relationships based 

solely on mitochondrial genes (Plazzi and Passamonti, 2010; Plazzi et al., 2011). As 

proponents of the total evidence approach, we do not countenance in principle or in practice 

the omission of mitochondrial genes from assessment of phylogenetic relationships. Previous 

studies have demonstrated the utility of mitochondrial genes for resolving shallow nodes in 

bivalve phylogenies, a property stemming from the variability and increased mutation rate of 

the mitochondrial genome (e.g., Giribet and Wheeler, 2002; Giribet and Distel, 2003; Wilson 

et al., 2010)— the very property that discourages their use for resolving deep nodes. 

Moreover, as algorithms and models are improved, especially for analyzing mitochondrial 

gene order and amino acid sequence data, the utility of mitochondrial genes is anticipated to 

increase with improved taxonomic sampling. For this reason, we continue to advocate the 

inclusion of mitochondrial genes in concert with nuclear ones in order to resolve relationships 

of various phylogenetic depths. Accordingly, we regard with skepticism a topology of basal 

bivalve relationships that is derived exclusively from a particular genomic source with a high  
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Figure 1.3. Phylogenetic relationships of Bivalvia based on Bayesian inference analysis of four nuclear protein-
encoding genes. Colors in tree topology correspond to major lineages (as in Fig. 1.1). Numbers on nodes 
indicate posterior probabilities, with asterisks indicating a value of 100%. Superfamilies of Pteriomorphia and 
Euheterodonta (not including Anomalodesmata) are as indicated, with a broken line symbol indicating non-
monophyletic groups. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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mutation rate and concomitant complex algorithmic treatment that yields uniformly high 

nodal support. The topology supporting Amarsipobranchia (sensu Plazzi et al., 2011) is based 

on four mitochondrial genes and suggests radical reorganization of bivalve higher-level 

systematics. In addition, the use of multiple protein-encoding sequences with single 

nucleotide indels among the datasets of Plazzi et al. (2011) is particularly suspect; the authors  

admitted to being unable to rule out sequencing errors or numts as potential explanations, but  

nevertheless favored the functionality of their sequenced amplicons. 

Separately, we observe that the contending hypotheses of basal bivalve relationships  

 (Giribet and Wheeler, 2002; Wilson et al., 2010) are based on multilocus datasets, but those 

dominated by nuclear ribosomal genes. These datasets have previously employed the 

‘‘workhorses’’ of molecular phylogenetics: the mitochondrial genes 16S rRNA and 

cytochrome c oxidase subunit I; the nuclear ribosomal genes 18S rRNA and 28S rRNA; and a 

small (327-bp) fragment of the nuclear protein-encoding gene histone H3. This combination 

of nuclear and mitochondrial genes was anticipated to be capable of resolving relationships of 

various depths, by sampling both slow (e.g., 18S rRNA) and fast evolving sites (e.g., 16S 

rRNA). However, the amplicons of these genes are not uniformly distributed in length; the 

two nuclear ribosomal genes alone typically constitute ca. 70% of the entire dataset (e.g., 

Wilson et al., 2010). Therefore, evidence of misleading signal stemming from 

disproportionate representation of nuclear ribosomal genes must also be tested independently 

of mitochondrial gene signal. 

Here we have reevaluated basal bivalve relationships using a separate set of genes 

altogether to redress the topological conflicts in early bivalve phylogenies. Our four 

molecular loci are not inherited as a linked or structurally dependent unit, as are the 
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Figure 1.4. Strict consensus of all eight topologies obtained (two from each dataset). Bivalve exemplars 
photographed are: (A) Solemya velum (Protobranchia); (B) Nucula expansa Reeve, 1855 (Protobranchia); (C) 
Scaeoleda caloundra (Protobranchia); (D) Pinna rudis Linnaeus, 1758 (Pteriomorphia); (E) Aequipecten 
opercularis (Linnaeus, 1758) (Pteriomorphia), detail of simple eyes; (F) Modiolus proclivus (Pteriomorphia); 
(G) Neotrigonia lamarckii (Palaeoheterodonta); (H) Eucrassatella cumingi (Archiheterodonta); (I) Cuspidaria 
latesulcata (Tenison-Woods, 1878) (Anomalodesmata); (J) Hemidonax pictus (Euheterodonta); (K) Scintillona 
cryptozoica (Euheterodonta); (L) Solen vaginoides (Euheterodonta). 
 
 
mitochondrial genes. The tree topologies that we obtained are remarkably congruent with the  

traditional classification of bivalves (sensu Bieler and Mikkelsen, 2006). Although bootstrap 

resampling frequencies were low in ML analyses, all topologies examined recovered the 

monophyly of Protobranchia, Autobranchia, Heteroconchia, Pteriomorphia, 

Archiheterodonta, and Euheterodonta (including a monophyletic Anomalodesmata) (Figs. 
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1.2–4). Within Euheterodonta, we obtained a sister relationship of Anomalodesmata to the 

remaining Euheterodonta in the majority of topologies examined. A basal position of 

Anomalodesmata among Euheterodonta accords with previous hypotheses based on 

morphological and molecular characters (e.g., Giribet and Wheeler, 2002; Harper et al., 2006; 

Taylor et al., 2007). 

Among derived Euheterodonta, we observe with interest the clade consisting of 

Corbicula fluminea, Cyrenoida floridana, and Glauconome rugosa (Figs. 1.2 and 1.3), insofar 

as exemplars of the same three genera were found to cluster in a separate phylogenetic 

analysis using nuclear ribosomal markers (Taylor et al., 2009). This clade, comprising the 

superfamilies Cyrenoidea and Cyrenoidoidea, was used to justify the further dismantling of 

Lucinoidea by Taylor et al. (2009), wherein Cyrenoididae had been placed previously. Our 

analyses thus corroborate the exclusion of cyrenoidids from Lucinoidea, with support (PP = 

99.0%, 98.1%, 95.4%, and 97.0% in Datasets 1–4, respectively), but places Cyrenoididae as 

sister group to Cyrenidae (formerly Corbiculidae), with Glauconomidae as their sister family, 

therefore making Cyrenoidea paraphyletic with respect to Cyrenoidoidea. 

Palaeoheterodonta was obtained as monophyletic in only one of eight topologies 

examined. The recovery of a paraphyletic Palaeoheterodonta with respect to 

Archiheterodonta appears to stem from missing data for the taxon Aspatharia pfeifferiana, 

which is represented here by only two gene partitions (Fig. 1.2, Supplementary Table 1.S1). 

We observe similar sensitivity to analytical treatment among other taxa that are represented 

by fewer sequence data, visualized as little structure within Pteriomorphia and Euheterodonta 

subsequent to strict consensus across all topologies examined (Fig. 1.4). The monophyly of 

Palaeoheterodonta is contentious (Purchon, 1987; Morton, 1996; Salvini-Plawen and Steiner 
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1996;  Waller, 1998; Cope, 2000) and we are as yet unable to test it, given our present 

sampling of only two of the 175 extant palaeoheterodont genera (Roe and Hoeh, 2003). 

Similarly, we observe extensive non-monophyly among the constituent superfamilies of 

Pteriomorphia and Euheterodonta that were sampled in this study (Fig. 1.3), but the internal 

relationships of these diverse subclasses is beyond the scope of the present study. 

We also uniformly obtain the monophyly of the curious clade (Archiheterodonta + 

Palaeoheterodonta), a result obtained by a previous phylogenetic analysis (using the 

aforementioned ‘‘workhorses’’; Wilson et al., 2010) (Figs. 1.2–4). In addition to phylogenetic 

support and stability based on molecular data, this sister relationship is potentially supported 

by morphological synapomorphies, namely the hind end of the ctenidia unattached to the 

mantle (Purchon, 1990), or the presence of Atkin’s type D ciliary currents, although both 

characters require further scrutiny. Members of Carditida (i.e., Cyclocardia ventricosa and 

Astarte sulcata—see Yonge, 1969; but see Saleuddin, 1965, for a different view on Astarte) 

and Unionida show Atkin’s type D ciliary currents (see Atkins,1937). Tevesz (1975) also 

considered the ctenidial ciliation of Neotrigonia to be of type D, as in Unionida, but this was 

disputed by Morton (1987). Further phylogenetic study is anticipated to test the monophyly of 

this clade using separate molecular loci, in addition to morphological characters. 

In general, the removal of length variable regions and/or third codon positions from 

the alignment had no effect on the relationships obtained (nodes 1–7, 9 in Fig. 1.2). Bootstrap 

resampling frequencies were very low across all topologies, possibly as a consequence of the 

degree of character conflict, missing data, the short length of the combined dataset, or some 

combination of these. In any case, we cannot assess the effects of analytical treatment based 

on the bootstrap values. However, posterior probabilities in Bayesian analyses marginally 
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increased upon removal of length variable regions and tended to decrease for some nodes 

upon removal of both length variability and third codon positions. These data suggest that 

complexity of algorithmic treatment is not required to elucidate phylogenetic signal among 

these nuclear protein-encoding genes, particularly with respect to treatment of third codon 

positions, as suggested for mitochondrial genes (Plazzi et al., 2011). 

Comparison of the consensus topology obtained in the present study to previous 

hypotheses of bivalve relationships indicates significant congruence with a topology using 

five genes (Wilson et al., 2010) with respect to relationships among Autobranchia, and with 

the topology recovered by second-generation sequencing techniques (Smith et al., 2011) with 

respect to the monophyly of Protobranchia. These results favor the traditional classification of 

Bivalvia (Bieler and Mikkelsen, 2006), albeit with the emended relationship of 

(Archiheterodonta + Palaeoheterodonta). None of these results is consistent with a group 

uniting Nuculanida, Pteriomorphia, Archiheterodonta, Anomalodesmata, and the other 

Euheterodonta, i.e., Amarsipobranchia (sensu Plazzi et al., 2011). We therefore reject the 

putative homology of the gill character that supposedly unites this clade, given (a) the 

homoplastic mapping engendered by this character upon superimposition on either our 

consensus topology or the topology obtained by Wilson et al. (2010)—congruent with ours 

but derived from a completely nonoverlapping set of genes; (b) the enforced homoplasy of 

other morphological characters traditionally considered synapomorphies for various groups of 

bivalves, if the topology of Plazzi et al. (2011) were accepted; and (c) the results of the SH 

test, which indicates that the Amarsipobranchia hypothesis is significantly worse than the 

maximum likelihood topology obtained using either the ‘‘workhorses’’ or the four genes 

analyzed in this study. 
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The robustness of the phylogenetic signal embedded in these four protein-encoding 

genes, in addition to the marked congruence observed between these markers and the 

‘‘workhorses’’ of molecular phylogenetics (see Aktipis and Giribet, 2010, 2012, for a similar 

case in gastropods), strongly favors their continued use in the study of molluscan 

phylogenetics specifically, and invertebrate systematics generally. Regrettably, we were 

unable to sample more broadly the diversity of both Euheterodonta and Pteriomorphia, which 

would have enabled an assessment of the utility of these markers for elucidating relationships 

within diverse subclasses (Fig. 1.3), but consistent amplification across taxa can prove 

difficult, even when using freshly collected tissue. The utility of these markers for elucidating 

shallow relationships is beyond the scope of this study. However, comparable use of one or 

more of these loci in studies of other invertebrate taxa (e.g., Regier and Shultz, 1997, 2000; 

Sperling et al., 2007; Aktipis and Giribet,  2010) offers promising prospects for the 

applicability of these markers in multilocus datasets, albeit with the added challenge of 

traditional RT-PCR techniques. We additionally observe that widespread proliferation of 

phylogenomic data for non-model invertebrate taxa (e.g., Dunn et al., 2008; Hejnol et al., 

2009; Meusemann et al., 2010; Kocot et al., 2011; Smith et al., 2011) heralds access to an 

unprecedented stockpile of efficacious molecular loci for phylogenetic study of diverse 

invertebrate groups. 

 

Conclusion 

 

Concordance between topologies based on the ‘‘workhorses’’— the five traditionally used 

molecular loci that include nuclear and ribosomal genes (e.g., Wilson et al., 2010)—and the 
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four nuclear protein-encoding markers employed here suggest that robust assessment of 

phylogenetic relationships of various depths is best achieved by sampling markers spanning a 

spectrum of evolutionary rates. 
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Abstract 

 

Bivalves represent the second largest living class of molluscs, following gastropods, and their 

internal phylogenetic relationships have been debated for decades.  Although recent 

investigations have revealed general agreement on the phylogenetic placement of the major 

bivalve lineages, support for several critical basal nodes is lacking, and strong incongruence has 

been shown between mitochondrial and nuclear gene-based phylogenies. Phylogenomic 

approaches have recently been employed to obtain robust resolution of molluscan relationships, 

but conflict in morphological and molecular datasets persists within some major molluscan 

lineages, particularly Bivalvia. Here we provide the first phylogenomic analysis of Bivalvia 

aimed at resolving deep divergences within this group to have a better framework for 

understanding this diverse and fossil-rich group of animals. All six major lineages of bivalves 

(Archiheterodonta, Anomalodesmata, Inaequidonta, Palaeoheterodonta, Protobranchia, and 

Pteriomorphia) were sampled resulting in 31 newly sequenced Illumina-based bivalve 

transcriptomes, in addition to six transcriptomes from representatives of other molluscan 

lineages. This constitutes the most comprehensive phylogenomic dataset to date for inferring 

deep relationships within Bivalvia. Subsequent analyses obtained robust resolution of bivalve 

major lineages, largely corroborating classical taxonomic relationships based mostly on 

paleontological and neontological morphological data. This includes the monophyly of 

Autobranchia, Pteriomorphia, Heteroconchia, Palaeoheterodonta, Heterodonta, 

Archiheterodonta, Euheterodonta and Inaequidonta. Although protobranchians remain sensitive 

to analytical treatment, our main clade of interest, Archiheterodonta is well supported as the 

sister group of Euheterodonta.  
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Introduction 

 

Recent phylogenomic approaches have been employed to explore deep molluscan 

relationships (Kocot et al. 2011; Smith et al. 2011), but conflicts between morphological and 

molecular datasets, and especially, between types of molecular data, persist within major 

molluscan lineages, particularly Bivalvia. The former studies employing next-generation 

sequencing (NGS) techniques, which include phylogenomic reconstructions with large molecular 

sequence datasets, recover the monophyly of bivalves and place bivalves as sister group to 

gastropods (Kocot et al. 2011) or to a gastropod + scaphopod clade (Smith et al. 2011), but do 

not really address internal bivalve relationships. 

 Taxonomic classifications of Bivalvia have been subjected to many revisions and 

reorganizations owing to the discordant phylogenetic signal from previously analyzed 

morphological, paleontological and molecular datasets. Notwithstanding  that some molecular 

analyses have failed to recover the monophyly of Bivalvia, recent reconstructions recover the 

once ambiguous clade with robust support (Giribet & Wheeler 2002; Wilson et al. 2010; Kocot 

et al. 2011; Plazzi et al. 2011; Smith et al. 2011). Though taxonomic ranking and stability have 

not been established for all bivalve lineages, six major clades are now recognized. Protobranchia 

comprises a group of exclusively marine bivalves having small shells characterized by varying 

degrees of hinge dentition and simple ctenidial structure (Giribet & Distel 2003). Pteriomorphia 

are found in both freshwater and marine habitats, and include the commercially important oysters 

and mussels (Giribet & Wheeler 2002). Morphologically they are characterized by relatively 

large, compressed shells, which can be smooth or ribbed and are predominantly anchored to 

substrates using byssal threads or valve cementation (Bieler & Mikkelsen 2006). 
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Palaeoheterodonta are both marine and limnic, with larger, often grooved shells that can be 

ribbed or smooth and includes freshwater mussels (Giribet & Wheeler 2002). Heterodonta 

includes groups such as clams, cockles, and comprises two clades: Archiheterodonta, whose 

members share the presence of a unique hemoglobin, and Euheterodonta, divided into 

Anomalodesmata and Inaequidonta. Inaequidonts, the most diverse subclade of Euheterodonta, 

are found both in marine and limnic environments, have the widest range of shell sizes among all 

bivalve groups, can have smooth or sculptured valves, and have well developed siphons (Giribet 

& Distel 2003; Taylor et al. 2007). Lastly, comprising Euheterodonta along with Inequidonta, 

Anomalodesmata was formerly treated as its own subclass (e.g., Newell 1965) having a highly 

variable shell shape and size, yet united by reduced hinge dentition and include the carnivorous 

bivalves (Bieler & Mikkelsen 2006; Harper et al. 2009). 

Taxonomic relationships have been investigated for many internal bivalve clades, as in 

Protobranchia (Sharma et al. 2013), Pteriomorphia (Canapa et al. 2000; Matsumoto & Hayami 

2000; Steiner & Hammer 2000; Matsumoto 2003; Tëmkin 2006, 2010; Waller 2006), Unionoida 

(Hoeh et al. 1999; Graf 2000; Graf & Ó Foighil 2000; Huff et al. 2004; Graf & Cummings 

2006), Anomalodesmata (Harper et al. 2000; Dreyer et al. 2003; Harper et al. 2006), and the 

broader Heterodonta (Canapa et al. 1999, 2001, 2003; Park & Ó Foighil 2000; Campbell et al. 

2004; Williams et al. 2004; Taylor et al. 2005, 2007, 2009, 2011; Mikkelsen et al. 2006; Taylor 

& Glover 2006). Recent investigations reveal general congruence in the phylogenetic placement 

of most major bivalve lineages, with the exception of Protobranchia and Archiheterodonta. In 

addition, recent molecular data based on mitochondrial genes (e.g., Plazzi et al. 2010, 2011, 

2013) have proposed relationships that are at odds with previously published work based on 

ribosomal genes and morphology, and with more recent phylogenetic work based on nuclear 



 66 

genes (e.g., Sharma et al. 2012). Insofar, two major clades of the “backbone” of bivalve 

evolution have yet to converge on robust phylogenetic placement: Protobranchia and 

Archiheterodonta (Fig. 2.1; Bieler et al. 2013).  

Recent molecular investigations have consistently recovered the once contentious 

monophyly of Protobranchia (Kocot et al. 2012; Smith et al. 2011; Sharma et al. 2012, 2013).  

Relationships within Protobranchia have not yet stabilized and every iteration of relationships 

between Solemyida, Nuculida, and Nuculanida has been proposed based on morphological 

information, paleontological data, or molecular sequence information (e.g., Opponobranchia 

[Nuculida + Solemyida] and a clade consisting of Nuculanida + Autobranchia) (Giribet & 

Wheeler 2002; Giribet & Distel 2003; Giribet 2008; Wilson et al. 2010). As of late, 

reconstructions of internal protobranch phylogeny recover the clade (Nuculida + Nuculanida) as 

the sister group to Solemyida (Sharma et al. 2013). In addition to molecular sequence 

information, several morphological synapomorphies unite this clade, including: “primitive” 

eponymous protobranch gill; the palp proboscides (absent in the solemyoids, likely a 

consequence of obligate chemosymbiosis, as with reductions of the alimentary system); and 

characteristic taxodont dentition (Coan et al. 2000).   

Likewise, recent reconstructions of relationships of Bivalvia have yet to converge on the 

phylogenetic placement of Archiheterodonta (Giribet & Wheeler, 2002; Wilson et al. 2010; 

Plazzi & Passamonti, 2010; Carter et al. 2011; Plazzi et al. 2011; Sharma et al. 2012). 

Phylogenetic evidence for a sister group relationship between Archiheterodonta and 

Euheterodonta is prevalent (e.g., Campbell 2000; Park & Ó Foighil 2000; Giribet & Wheeler 

2002; Dryer et al. 2003; Giribet & Distel, 2003; Taylor & Glover, 2006; Harper et al. 2006;  
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Taylor et al. 

2007). 
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Archiheterodonta has been recovered in the traditional placement as the sister group to the 

remaining Heterodonta (Giribet & Wheeler, 2002; Carter et al. 2011). 

Representatives of Archiheterodonta have also been proposed to be closely related to members 

of Pteriomorphia (Plazzi et al. 2011) or related to a derived group, Anomalodesmata (Plazzi & 

Passamonti, 2010)—these relationships were based solely on mitochondrial gene sequence 

information, recovering vastly different evolutionary histories for this group. Nevertheless, 

recent molecular and combined molecular and morphological phylogenies have begun to 

converge on the placement of Archiheterodonta, forming a clade with an ancient lineage of 

bivalves, Palaeoheterodonta, which in turn constitutes the sister group to Euheterodonta (Wilson 

et al. 2010; Sharma et al. 2012; Bieler et al. in press).  

Phylogenomic reconstructions of molluscan relationships recover the mutual monophyly 

of Protobranchia and Autobranchia (Pteriomorphia + Palaeoheterodonta + Archiheterodonta + 

Euheterodonta), yet taxon sampling is limited as the aim of these studies was not to resolve the 

internal relationships of the molluscan classes (Kocot et al. 2011; Smith et al. 2011). Monophyly 

of Autobranchia in both phylogenomic reconstructions was not fully tested as Nuculanoida, 

Archiheterodonta, or Anomalodesmata, were not sampled in Kocot et al. (2011) and 

Archiheterodonta or Anomalodesmata were not sampled in Smith et al. (2011), key taxa 

imperative to the phylogenetic structure within Bivalvia. Furthermore, a recent analysis using 

full mitochondrial genomes recovered the diphyly of Bivalvia, by virtue of Solemya velum 

nesting within Gastropoda (Plazzi et al. 2013). These results thus suggest that mitochondrial 

genome information fails to tease apart basal molluscan relationships among the eight classes 

and no robust phylogenetic signal for the monophyly of Bivalvia can be found (Plazzi et al. 

2013). Discordance between mitochondrial and nuclear gene datasets is not a novelty as it has 
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been noted previously (Slade et al. 1994). Incongruence among datasets has been attributed to 

multiple characteristics within the mitochondrial genome; such discrepancies include degrees of 

recombination, modes of inheritance, incidence of introns, and in proportion of mitochondrial 

genome to haploid nuclear genome, where length of the mitochondrial genome is far less than 

length of the nuclear haploid genome (Sharma et al. 2012).  

Discordant reconstructions have been recovered based on paleontological information, 

morphological information and molecular sequence data (Fig. 2.1), and these need to be resolved 

before continuing using bivalves as a preferred model to understand deep evolutionary patterns 

of paleoecology and biogeography. Empirical studies on patterning extinction and diversification 

as well as investigations on evolution of species ranges have relied on the bivalve fossil record 

(Valentine et al. 2006; Roy et al. 2009). Evaluations of large-scale biological diversity patterns, 

where there is a dramatic increase in the number of species and higher taxa from the poles to the 

tropics, was implicitly investigated using the first occurrences of bivalve genera in 

paleontological record (Jablonski et al. 2006). Recent analyses of diversification rates and 

divergence times for Protobranchia, demonstrate the signature of the end-Permian mass 

extinction in the phylogeny of extant protobranchs (Sharma et al. 2013). Bivalves are 

predonminant macrofauna in the deep sea, where members of Anomalodesmata and 

Protobranchia persist and thrive. Bivalves have been used as model systems to investigate 

colonization, diversification, connectivity and evolutionary processes in the deep sea (Etter et al. 

2005, 2011; Zardus et al. 2006; Stuart et al. 2008). 

Here we provide the first phylogenomic reconstruction of Bivalvia toward resolving deep 

divergences within this group. All six major lineages of bivalves (Archiheterodonta, 

Euheterodonta [divided into Anomalodesmata and Inaequidonta sensu Bieler et al. in press], 
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Palaeoheterodonta, Protobranchia, and Pteriomorphia) were sampled resulting in 31 newly 

sequenced bivalve transcriptomes, in addition to six transcriptomes from representatives of all 

other molluscan lineages. This constitutes the most comprehensive phylogenomic dataset to date 

for inferring deep relationships within Bivalvia. Subsequent analyses obtained robust resolution 

of bivalve lineages, which corroborates traditional taxonomic relationships based on non-

numerical cladistic analyses of paleontological and morphological data (Newell, 1965; Waller, 

1990, 1998). 

   

Methods 

Taxon Sampling 

Transcriptome data were obtained for 38 molluscan taxa, including 31 newly sequenced bivalve 

transcriptomes that had been selected to maximize the diversity of living bivalve lineages (Table 

2.1). Full genome data were included for two taxa, Lottia gigantea (Simakov et al. 2013) 

(outgroup: Gastropoda) and Pinctada fucata (Takeuchi et al. 2012) (ingroup: Pteriomorpha). All 

six major bivalve lineages were represented with at least two species: Protobranchia (3), 

Pteriomorphia (6), Palaeoheterodonta (3), Archiheterodonta (3), Anomalodesmata (2) and 

Inaequidonta (17).  

 Tissues were preserved in three ways for RNA work: (1) flash-frozen in liquid nitrogen 

and immediately stored at -80 ºC; (2) immersed in at least 10 volumes of RNAlater® (Ambion) 

and frozen at −80  °C or −20  °C; (3) transferred directly into TRIzol® reagent (Invitrogen, 

Carlsbad, CA, USA) and immediately stored at -80 ºC.  
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RNA Isolation 

 Tissue excisions were always performed with sterilized razor blades rinsed in 

RNAseZap® (Ambion, Texas, US). All cleaning procedures were operated as quickly as possible 

to avoid RNA degeneration in an RNAse-free and cold environment using liquid nitrogen. 

 

mRNA extraction 

Total RNA was isolated from tissues preserved as described above. Total RNA extraction 

followed by mRNA purification for following published protocols (Regier et al. 2005). 

Following mRNA purification, samples were treated with Ambion® TURBO DNA-free™ 

DNase following manufacturer’s protocol to remove residual genomic and rRNA contaminants.  

 Quantity and quality (purity and integrity) of mRNA were assessed by three different 

methods. We measured the absorbance at different wavelengths using a NanoDrop ND-1000 UV 

spectrophotometer (Thermo Fisher Scientific, Wilmington, Massachusetts, USA). Quantity of 

mRNA was also assessed with the fluorometric quantitation performed by the QubiT® 

Fluorometer (Invitrogen, California, USA). Also, capillary electrophoresis in an RNA Pico 6000 

chip was performed using an Agilent Bioanalyzer 2100 System with the “mRNA pico Series II” 

assay (Agilent Technologies, California, USA). Integrity of mRNA was estimated by the 

electropherogram profile and lack of rRNA contamination (based on rRNA peaks for 18S and 

28S rRNA given by the Bioanalyzer software). 

Next-Generation Sequencing (NGS) 

NGS was carried out using the Illumina HiSeq 2000 platform (Illumina Inc., San Diego, 

California, USA) at the FAS Center for Systems Biology at Harvard University. Protocols used 
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for subsequent cDNA synthesis from extracted mRNA were modified from Regier et al. (2005), 

where SuperScript® III Reverse Transcriptase (RT) was used to amplify cDNA gene products. 

cDNA was ligated to Illumina TruSeq RNA multiplex adaptor sequences using the TruSeq RNA 

Sample Prep Kit (Illumina). No more than 6 adaptors were used per individual multiplexed 

sequencing run. Size-selected cDNA fragments of 250-350 bp excised from a 2% agarose gel 

were amplified using Illumina PCR Primers for Paired-End reads (Illumina) and 18 cycles of the 

PCR program 98 ºC-30 s, 98 ºC-10 s, 65 ºC-30 s, 72 ºC-30 s, followed by an extension step of 5 

min at 72 ºC.  

 The concentration of the cDNA libraries was measured with the QubiT® dsDNA High 

Sensitivity (HS) Assay Kit using the QubiT® Fluoremeter (Invitrogen, Carlsbad, California, 

USA). The quality of the library and size selection were checked using the "HS DNA assay" in a 

DNA chip for Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, California, USA). 

cDNA libraries were considered successful when the final concentration was higher than 1 ng/µL 

and the Bioanalyzer profile was consistent with prior size selected cDNA fragmentation ranges. 

Successful libraries were sequenced using normalized concentrations of 10 nM or 7nM. 

Concentrations of sequencing runs were normalized based on final concentrations of fragmented 

cDNA. Illumina sequenced paired-end reads were 101 bps.   

 

Bioinformatic pipeline – including: data processing; de novo assembly; orthology assignment 

and matrix construction; and phylogenetic analysis – is outlined in Fig. 2.2.  
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Data processing 

Illumina HiSeq 2000 pair-end reads obtained per taxon ranged from 7 867 647 to 51 464 822 per 

taxon (Table 2.1). Data (unprocessed reads) obtained from the Sequence Read Archive (SRA) 

database (http://www.ncbi.nlm.nih.gov/sra) were downloaded as raw reads and processed in the 

same manner as the newly generated transcriptome data. Quality of reads was visualized with 

FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/).  Initial removal of low quality 

reads and TruSeq multiplex index adaptor sequences (Illumina) was performed with Trim 

Galore! v. 0.3.1 (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), setting the 

quality threshold to minimum Phred score of 30. Illumina TruSeq multiplex adaptor sequences 

were trimmed, specific to the adaptor used in sequencing with the paired-end data flag. A second 

round of quality threshold filtering (minimum Phred 35) as well as removal of rRNA sequence 

contamination was conducted in Agalma v.0.3.2 using the “pre-assemble” pipeline (Smith et al. 

2012). The “pre-assemble” pipeline filters rRNA sequences, after first randomizing input 

sequences for both pairs of reads, creating a subassembly and annotates rRNA sequences based 

on a subassembly of the data, then remove clusters in which one or both reads map to rRNA 

sequences.  

 

De novo Assembly 

Quality filtered and sanitized high quality reads (Table 2.1) were assembled with the Trinity de 

novo Assembler (release 2011-07-13) with 100g of job memory and a path reinforcement 

distance of 50. The number of contigs, the mean contig length, the N50, and the maximum contig 

length were reported for each de novo assembly (Table 2.1). Contigs were mapped against the 

Swissprot database using the blastx program of the BLAST suite and the number of contigs  
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Figure 2.2. Bioinformatics pipeline, including: data processing; de novo assembly; orthology assignment and matrix 
construction; and phylogenetic analysis. 
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returning blast hits were quantified (Table 2.1). Nucleotide sequences were translated with 

Transdecoder using default parameters (Grabherr et al. 2011). Subsequent peptide translations 

were filtered for redundancy and uniqueness using CD-Hit v.4.6.1 under default parameters, and 

a 95% similarity threshold (Fu et al. 2012). Genome data from Lottia gigantea and Pinctada 

fucata were incorporated using predicted peptide sequences obtained from public sources. 

 

Orthology assignment and matrix construction 

Orthology assessment was conducted using OMA standalone v.0.99t (Roth et al. 2008), on 64 

CPUs of a cluster at Harvard University, FAS Research Computing (odyssey.fas.harvard.edu), 

using default parameters, except with a minimum alignment score of 200, Length tolerance ratio 

of 0.75, and a minimum sequence length of 100. A total of 68 828 parsimony informative 

putative orthogroups (>4 taxa) were obtained; from here on orthogroups and genes are referred to 

interchangeably. Resultant gene clusters were aligned with MAFFT (Katoh & Toh 2008) prior to 

concatenation.  

We constructed six phylogenetic matrices from the translated amino acid sequences. 

Three supermatrices were constructed based on gene occupancy threshold filters—meaning that 

a gene was selected if found in more than or equal to the established threshold; a 50% threshold 

would select all genes present in 50% or more of the included taxa. The 37.5, 50, and 75 percent 

gene occupancy matrices were then trimmed with Gblocks (Castresana 2000) to cull regions of 

dubious alignment, to generate three more data matrices to be used in downstream phylogenetic 

reconstructions. 
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Phylogenetic analysis 

Two optimality criteria were employed to reconstruct bivalve relationships, maximum likelihood 

and equal weights parsimony, the latter as a fast but simplistic method, as no amino acid 

transformation step matrices are readily available for parsimony analyses. Maximum likelihood 

tree searches on the three data matrices treated with Gblocks were conducted with RAxML 

version 7.2.7 (Stamatakis 2006). Concomitantly, tree searches were conducted for all 6 data 

matrices (3 treated with Gblocks and 3 untreated matrices) under equal weights parsimony in 

TNT - Tree analysis using New Technology (Goloboff et al. 2008).  

Maximum likelihood analyses in RAxML specified a protein model of sequence 

evolution with corrections for a discrete gamma distribution with the Le and Gascuel (LG) model 

(Le & Gascuel 2000) to conduct the tree searches, with 100 independent replicates. Bootstrap 

resampling was conducted for 1000 replicates specifying a protein model of sequence evolution 

with corrections for a discrete gamma distribution using the WAG model (Wheelan & Goldman 

2001) and were thereafter mapped onto the optimal tree from the independent searches. The 

three untreated matrices were too large to analyze with these tools.  

TNT searches of each of the 6 matrices were conducted using 100 replications, 10 rounds 

of tree fusing (Goloboff 1999) and ratcheting (Nixon 1999). Bootstrap resampling consisted of 

1000 replications; resampling frequencies of recovered clades were summarized on the optimal 

parsimony or strict consensus of most-parsimonious trees.  
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Results 

Supermatrices  

Concatenated matrices were compiled using percent gene occupancy, and concomitantly, either 

treated to cull regions of dubious (or with a substantial amount of missing information) 

homology in the alignment, or left untreated. The largest matrix with 3 253 genes was compiled 

with a 37.5 percent gene occupancy threshold (≤ 15 taxa) for each cluster. The 37.5 percent gene 

occupancy matrix resulted in 1 609 099 aligned amino acid (AA) sites. The intermediate matrix 

was compiled with 50 percent gene occupancy (≤ 20 taxa) and resulted in 649 533 aligned AA 

sites from 1 581 genes. The smallest matrix, with the densest percent gene occupancy of 75 

percent (≤30taxa), consisted of 331 genes, corresponding to 104 135 aligned AA sites. The 

number of genes present in the matrices varied by taxon, with the most genes being represented 

by two protobranch taxa, Ennucula tenuis and Solemya velum (Fig. 2.3a). All six matrices 

contain data for all of the 40 species included in the study, though taxa varied in gene 

representation (Table 2.2).  Terminals with the least amount of total parsed characters, were 

Cerastoderma edule and  

Yoldia limatula, with only 22.78% and 23.7% of the total genes present in the largest matrix 

(37.5%, 7 998 genes) (Table 2.2).   

Untreated datasets resulted in larger matrices, with respect to character count, compared 

to those of the treated datasets. The treated datasets resulted in matrices of 202 218 aligned sites 

(37.5% occupancy matrix); 99 633 aligned sites (50% occupancy matrix); 23 898 aligned sites 

(75% occupancy matrix) aligned amino acid sites, for the three respectively. Character 

occupancy was slightly higher than the gene occupancy threshold for all treated datasets (e.g. the 
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50% gene occupancy treated with Gblocks resulted in 65% character occupancy for the 

respective dataset) (Table 2.3, Fig. 2.3b). 

 

Table 2.2. List of number and ratio of genes sampled per taxa, for each minimum gene occupancy threshold used 
for super-matrix construction: 37.5%, 50% and 75 %.  
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Table 2.3. Comparisons of all nine constructed super-matrices based on data partition size, prior and subsequent to 
treatment for length variability and summary statistics.  Bootstrap values shown for all nine analyses for each 
corresponding matrix using equal weights parsimony analyses in TNT, with 100 independent starts and 1000 
bootstrap replicates.   

 

Phylogenetic analyses – maximum likelihood (ML) 

RAxML resulted in tree topologies with a lnL= -3 349 188.52, lnL= -1 807 910.03, and lnL= 30 

479.037 for the Gblocked datasets of 37.5, 50, and 75 percent gene occupancy matrices 

respectively (Fig. 2.4). ML tree topologies of each data set recovered highly congruent 

topologies throughout Bivalvia. All but one dataset recovered the monophyly of all six major 

lineages with high support (BS = 100), with the exception of Protobranchia. Protobranchia was 

recovered in all but one analyses (75% gene occupancy matrix), in which Yoldia limatula falls 

outside of the clade sister to the remaining Autobranchia, while in the 50% gene occupancy 

matrix analysis it recovered monophyly of Protobranchia with low support (BD=57).  

The smallest dataset (75% gene occupancy; 331 genes) was topologically incongruent 

with respect to relationships within the outgroup taxa, however monophyly of Bivalvia was 

recovered in all analyses with high support (BS=100).  Monophyly was recovered with high 
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support (BS=100) for most higher-level bivalve relationships: Heteroconchia, Heterodonta and 

Euheterodonta. Autobranchia was recovered in all datasets, though moderately supported in two 

analyses: 50% gene occupancy (BS = 89) and 75% gene occupancy (BS=82) and highly 

supported in the 37.5% gene occupancy matrix (BS = 100).  

All three analyses recovered highly congruent and highly supported interfamilial 

relationships throughout, with the exception of the placement of Yoldia limatula in 

Protobranchia—this species is one of the poorest represented in all the matrices (Table 2.2). 

Though all tree topologies were congruent in the three analyses among Euheterodonta, several 

relationships were not robustly supported in all analyses (Fig. 2.4).  

 

Phylogenetic analyses – equal weights parsimony (TNT) 

All major bivalve lineages were recovered as monophyletic in all analyses with the exception of 

the Protobranchia and the subsequent mutual monophyly of Autobranchia (Fig. 2.5). Higher-

level taxonomic groups were also recovered in a majority of the analyses with high support. All 

reconstructions made with both Gblocked and untreated datasets for the largest matrix (37.5% 

gene occupancy; 3253 genes) recovered monophyly of Protobranchia (BS = 97; BS = 96), and 

Autobranchia (BS = 99; BS = 100). All analyses recovered Bivalvia, Heteroconchia and 

Euheterodonta with maximum nodal support for all matrices (BS = 100). Heterodonta was 

recovered as monophyletic with high support in all analyses (BS = 100-87). The smallest 

datasets (331 genes), both untreated and treated, favored the non-monophyly of Protobranchia, 

where the treated dataset also favored the mutual non-monophyly of Autobranchia, as Yoldia 

limatula nested within this clade. For the 50% gene occupancy matrix, analyses for the treated an 

untreated datasets were congruent with the exception of the mutual monophyly of Protobranchia  
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Figure 2.4. Phylogenetic relationships of Archiheterodonta based on maximum likelihood analysis of three treated 
super-matrices. Numbers on nodes indicate bootstrap resampling frequencies. Colors in tree topology correspond to 
the six major linages (red: Protobranchia; green: Pteriomorphia; orange: Palaeoheterodonta; indigo: 
Archiheterodonta; purple: Anomalodesmata; light blue: Inaequidonta).  
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Figure 2.5. Phylogenetic relationships of major lineages of Bivalvia based on equal weights parsimony in TNT. 
Navajo rugs correspond to three nodes of interest. Colors in Navajo rugs correspond to each dataset; numbers in 
Navajo rugs indicate bootstrap resampling frequencies from treated dataset analyses (top row) or the untreated 
dataset (bottom row). Nodes with 100 Bootstrap support in all analyses are indicated by a filled circle. Failure to 
retrieve a node is indicated as a white entry (without a number indicating nodal support). Colors in tree correspond 
to the six bivalve lineages (as in Figure 2.3). 
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and Autobranchia which was recovered with high support (BS = 94; BS = 99, respectively) in 

only the untreated dataset.   

 Matrix occupancy and culling for areas of ambiguity in the alignment produced differing 

interfamilial tree topologies (Fig. 2.6). Relationships within Protobranchia of the relationships of 

Nuculida + Nuculanida sister to Solemya was contingent on the recovery of the monophyly of 

the clade, if Protobranchia was recovered, this relationship was always found. Internal 

relationships of Pteriomorphia were congruent (Fig. 2.6), with the exception of the analyses 

using the largest treated matrix (37.5% gene occupancy – Fig. 2.5). Arca noae was sister to 

Neocardia sp. in all analyses (BS = 100) and likewise, Atrina rigida was always recovered as 

related to Pictada fuctada (BS = 100). Mytilus edulis and Placopecten magellanicus formed a 

clade sister to the A. rigida + P. fuctada clade in all analyses except the analyses on the treated 

37.5% gene occupancy matrix, where M. edulis was recovered in the A. noae + Neocardia sp. 

clade, though this topology was not supported. Within Euheterodonta, basal relationships were 

stable and were recovered in all topologies (BS = 100), while derived relationships in 

Euheterodonta were not as consistent.  The lucinid representative, Phacoides pectinata, was 

recovered at  the base of Inaequidonta followed by a grade of Lamychaena hians, and 

Galeommatoidea (Galeomma turtoni +  Lasaea adansoni) in all analyses (BS = 100). 

 

Discussion 

Transcriptomic-scale analyses obtained robust resolution and stable relationships of bivalve 

lineages, corroborating most traditional relationships based on non-numerical cladistic analyses 

of paleontological and morphological data (e.g., Newell 1965; Waller 1990, 1998) and many  
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Figure 2.6. Inter-familial phylogenetic relationships of Bivalvia based on equal weights parsimony inference of nine 
analyses. Tree topology shown is for the untreated 37.5% gene occupancy matrix. Numbers in Navajo rugs indicate 
bootstrap resampling frequencies from treated dataset analyses (top row) or the untreated dataset (bottom row). 
Failure to retrieve a node is indicated as a white entry (without a number indicating nodal support). Nodes with 100 
bootstrap support in all analyses are indicated by a filled circle on node. Colors in tree correspond to the six bivalve 
lineages (as in Figure 2.3). 
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recent phylogenetic analyses of bivalves. Supermatrices comprised between 20 452 (Gblocked, 

331 gene regions) and up to 1 609 099 (untreated, 3253 gene regions) aligned AA sites for the 

smallest and largest datasets, respectively. This constitutes the most comprehensive 

phylogenomic dataset to date for inferring deep relationships within Bivalvia, and the largest 

molecular data set assembled for a group of animals in both, number of genes and number of 

characters. Robust support for higher-level taxonomic relationships was obtained in all analyses 

for Bivalvia, Autobranchia, Heteroconchia and Heterodonta (Fig. 2.7).  

 Monophyly of Protobranchia is supported in previous phylogenomic analyses (Kocot et 

al. 2011; Smith et al. 2011), and recent Sanger-based molecular analyses (Sharma et al. 2011; 

Bieler et al. in press). Tree topologies obtained in this study recovered incongruent relationships 

of Protobranchia among analyses based on different optimality criterion.  It should be noted that 

probabilistic approaches used datasets which discarded highly variable regions, while equal 

weights parsimony included the same datasets without hypervarible regions as well as datasets 

comprised of all sequence information, but lack of appropriate transformation cost matrices for 

amino acids.  Tree topologies recovered all iterations of relationships among the protobranch 

lineages, where parsimony analyses favored Solemyida sister to a clade of Nuculida + 

Nuculanida (as in Sharma et al. 2012, 2013, both studies based on maximum likelihood and 

Bayesian methodologies), maximum likelihood analyses recovered Nuculanida sister to 

Solemyida + Nuculida (as in e.g., Giribet & Wheeler 2002, based on parsimony). Both 

relationships have thus been hypothesized based on morphological and molecular analyses (Fig. 

2.1) and using different methodologies for data analysis. Previously, studies on bivalve 

phylogenetics recovered Opponobranchia, including Nuculida + Solemyida, and a clade 
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consisting of Nuculida + Autobranchia (Giribet 2008). Here this relationship is recovered in one 

analysis based on the smallest treated dataset (75%, 331 genes), though not supported. Our 

results are thus not sufficient to resolve the phylogenetic relationships of Protobranchia, and we 

 

 
 
 
Figure 2.7. Consensus of all none topologies obtained. Navajo rugs correspond each node of interest; Navajo rugs 
indicate recovery of monophyly in RAxML analyses of treated datasets (top row) or TNT analyses of treated 
datasets (middle row) and untreated datasets (bottom row). Black entries indicate support for monophyly; failure to 
retrieve a node is indicated as a white entry. 
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suspect that the low gene representation of Yoldia limatula (not generated for this study) and the 

sparse taxon sampling within Protobranchia (all obtained from the study of Smith et al. 2011) 

may be responsible for the lack of substantial improvement at the base of the bivalve tree. 

Further work is thus required to assess the final relationships of Protobranchia, where sampling 

should increase to mirror known diversity in this group (see Sharma et al. 2013). 

 Results for Autobranchia and its main constituent lineages (Pteriomorphia, 

Palaeoheterodonta, Archiheterodonta, Anomalodesmata and Inaequidonta) are however well 

resolved and supported in virtually all analyses (Figs. 2.4-6). A remaining contentious issue is 

however the position of Archiheterodonta with respect to Palaeoheterodonta or Euheterodonta. In 

contrast to recent phylogenetic analyses which favor the sister relationship of Archiheterodonta + 

Palaeoheterodonta and the subsequent non-monophyly of Heterodonta (Wilson et al. 2010; 

Sharma et al. 2012; Bieler et al. in press), the more traditional monophyly of Heterodonta is 

recovered in all analyses with robust support, closing this debate in the recent bivalve literature. 

This is not without some controversy, as the traditional Heterodonta hypothesis did not include 

Anomalodesmata (e.g., Waller 1990, 1998; Cope 1997), while virtually all modern studies, 

molecular or morphological, group Anomalodesmata with the non-archiheterodont heterodonts 

(i.e., Inaequidonta; e.g., Giribet & Wheeler 2002; Giribet & Distel 2003; Carter et al. 2011; 

Sharma et al. 2012; Bieler et al. in press; but see the mitochondrial papers of Plazzi & 

Passamonti 2010 and Plazzi et al. 2011). We thus corroborate these modern studies in finding 

monophyly of Euheterodonta, which divides into Anomalodesmata and Inaequidonta. 

 Euheterodonta was thus recovered in all analyses with strong support, as was the sister 

group relationship of Anomalodesmata and Inaequidonta. Internal relationships of Inaequidonta 

are for the first time well supported and congruent with respect to the basalmost lineages across 
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analyses. Phacoides pectinata (Lucinidae), a species characterized by chemosymbiotic sulphide-

oxidizing bacteria housed in the ctenidial, was unambiguously recovered as the sister group to 

the remaining Inaequidonta (BS = 100), a relationship supported previously (e.g., Giribet & 

Distel 2003; Taylor et al. 2007; Wilson et al. 2010; Bieler et al. in press). Gastrochaenidae 

(Lamychaena hians), a group difficult to place phylogenetically in most previous studies (see a 

discussion in Bieler et al. in press), appears as the next branch, sister group to the remaining 

inaequidonts. Monophyly of Galeommatoidea (Galmeommatidae + Lasaeidae), raised in 

taxonomic rank to superfamilial status by Taylor et al. (2007), is also supported, and constitutes 

the sister group to the remaining inaequidonts. Neoheterodontei (sensu Taylor et al. 2007) was 

recovered as a highly supported clade. This previously unranked clade, contains a majority of 

inaequidont lineages, and is congruent with recent molecular analyses (Sharma et al. 2012; 

Bieler et al. in press). Some of the most derived lineages of Inaequidonta were not robustly 

supported, though Ungulinidae and a clade comprising Cyrenoididae + Corbiculidae was 

recovered as well supported in all analyses. Within the Cyrenoididae + Cordibulidae clade, a 

counterintuitive placement of Rangia cuneata (Mesodesmatidae) as the sister group to these 

lineages, renders Mactroidea (Mactridae + Mesodesmatidae) not monophyletic, while this clade 

is well supported in other molecular analyses (Taylor et al. 2007; Bieler et al. in press).  

 The relationships among the inaequidont families remain somehow controversial, but 

this study does not sample all families and was designed exclusively to test the deep divergences 

among the main lineages of bivalves. This phylogenomic approach resolves several controversial 

aspects of bivalve phylogeny and unambiguously places our clade of interest, Archiheterodonta 

as the sister group to Euheterodonta. It proves successful at resolving other problematic nodes, 
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especially at the base of Inaequidonta, but addition of key families, such as Thyasiridae, would 

be desirable to refine that part of the tree. 

 Where discordance of traditional taxonomic relationships of Bivalvia has persisted in the 

literature between hypotheses based on morphological, paleontological and molecular datasets, 

here we provide robust resolution of bivalve lineages, which corroborates many traditional 

taxonomic groups, based on disparate sources of data, from fossils to molecules, and highlights 

that historical discordance among bivalve classification is often not due to the choice of 

paleontological versus neontological; or molecular versus morphological sets of characters 

proper, but were contingent on basing taxonomic decisions on single character systems. 

Although some discrepancies persist, as for example within Protobranchia or for the derived 

Inaequidonta, there has been a marked stability of taxonomic groups, demonstrating concordant 

evolutionary signal in vastly different sources of phylogenetic data.  
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Abstract 

 The subclass Heterodonta (Mollusca: Bivalvia) encompasses more than half of the extant 

bivalve species and is presently considered a derived group of the modern bivalves (Newell 

1965; Waller 1998). Heterodonta is subdivided into two major groups, the hyperdiverse 

Euheterodonta and Archiheterodonta. The latter comprises four relatively small extant families: 

Astartidae, Carditidae, Condylocardiidae and Crassatellidae, whose relationships and internal 

phylogeny are poorly understood. We assessed the phylogeny of archiheterodont bivalves using 

a multilocus dataset comprised of molecular sequence data from six loci (18S rRNA, 28S rRNA, 

cytochrome c oxidase subunit I, cytochrome b, internal transcribed spacer 2 and histone H3). 

Resultant datasets of ~4Kb of concatenated molecular sequence data were analyzed using 

probabilistic approaches (maximum likelihood and Bayesian inference). We recovered strong 

support for the monophyly of Archiheterodonta, within which Astartidae is the sister group of 

Crassatellidae, and these two constitute the sister clade of Carditidae, which is paraphyletic with 

respect to Condylocardiidae. The relationships amongst the constituent species groups were 

evaluated in the context of the archiheterodont fossil record through the estimation of divergence 

times. Diversification times of archiheterodont families were congruent with bounded estimates 

of origins based on paleontological data: Archiheterodonta, 373.1 Ma (95% highest posterior 

density interval [HPD] 325.8-428.2); Crassatelloidea, 330.1 Ma (95% HPD 291.0-372.7); 

Crassatellidae, 224.0 (95% HPD 140.6-320.2); Astartidae, 288.2 Ma (95% HPD 269.2-307.3); 

Carditoidea, 178.8 Ma (95% HPD 120.9-228.3); Condylocardiidae, 65.0 Ma (36.5-108.7). 
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Introduction 

With an estimated 8,000-20,000 species, bivalves represent the second largest living class of 

molluscs. The subclass Heterodonta (Mollusca: Bivalvia) encompasses the majority of extant 

bivalve diversity and is presently considered a derived group of the so-called “modern bivalves” 

(Bieler et al. 2013). According to Huber (2010), Heterodonta contains ca. 5,600 species out of 

the total 9,200 recent species of bivalves. Heterodonta is subdivided into two major groups, the 

hyperdiverse Euheterodonta and putatively related Archiheterodonta (Giribet 2008). 

Phylogenetic evidence for a sister group relationship between Archiheterodonta and 

Euheterodonta is prevalent (Campbell 2000; Park & Ó Foighil 2000; Giribet & Wheeler 2002; 

Dryer et al. 2003; Giribet & Distel 2003; Taylor & Glover 2006; Harper et al. 2006; Taylor et al. 

2007); notwithstanding, recent reconstructions of relationships in Bivalvia have yet to converge 

on the exact phylogenetic placement of Archiheterodonta (Wilson et al. 2010; Plazzi & 

Passamonti 2010; Carter et al. 2011; Plazzi et al. 2011; Sharma et al. 2012).  

Insofar, the monophyly of Archiheterodonta is supported by molecular sequence 

information (Giribet & Distel 2003; Taylor et al. 2007; Wilson et al. 2010; Plazzi et al. 2011; 

Sharma et al. 2012), in addition to several morphological and biochemical characters, including 

unique sperm ultra-structure (Healy 1995) and presence of high-weight hemoglobin (Terwilliger 

& Terwilliger 1985); the internal phylogenetic relationships within this clade are however poorly 

understood (Giribet 2008). Internal phylogenies have been established for all six major lineages 

of similar taxonomic rank within Bivalvia; many on the basis of molecular sequence data: 

Protobranchia (Sharma et al. 2013); Pteriomorphia (e.g., Tëmkin et al. 2010), Paleoheterodonta 

(e.g., Graf & Cummings 2006), Anomalodesmata (e.g., Harper et al. 2006) and Heterodonta 
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(including Anomalodesmata) (e.g., Taylor et al. 2007, 2009). Owing to the contentious 

placement of Archiheterodonta within Bivalvia as well as the lack of internal phylogenic 

resolution, Archiheterodonta remains an enigmatic clade of phylogenetic interest.  

Comprising four families, Astartidae, Carditidae, Condylocardiidae and Crassatellidae, 

Archiheterodonta species are exclusively marine, predominantly infaunal (though some byssate 

forms occur) suspension feeders that lack siphons. Astartidae includes four extant genera with 

approximately 40 species that inhabit Arctic to temperate waters (Huber 2010). Crassatellidae 

includes 13 living genera containing approximately 85 species and has a global distribution, 

though most crassatellids are found in tropical and subtropical regions (Huber 2010). Carditidae 

includes 16 living genera (ca. 140 species) distributed globally with the exception of the polar 

regions (Huber 2010). Condylocardiidae, the largest family, includes 21 extant genera and about 

150 species distributed globally, though little is known about the biology of its members, as most 

specimens are known only from dead shells (Middelfart 2002). Though no condylocardiid 

species has been yet included in a molecular phylogenetic analysis, morphologically it has been 

placed within this clade (e.g., Middelfart 2002). 

Among Archiheterodonta, Astartidae is usually placed with Crassatellidae in the 

superfamily Crassatelloidea (Chavan in Cox et al. 1969) on the basis of shell microstructure 

(Taylor et al. 1973) and hinge structure (Slack-Smith 1998), although the elevation of Astartidae 

to superfamilial status based on differences in ligament structure has been previously proposed 

(Bernard 1983; Coan et al. 2000; Huber 2010). The remaining families have been placed in 

Carditoidea (sensu Férussac 1822; Carditacea sensu Dall 1902), which unites Carditidae with 

Condylocardiidae on the basis of distinguishing characteristics that include strong radial 

sculpture and crenulated valve margins (Slack-Smith 1998). Evaluated solely on the basis of 
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morphological characters, the putatively related Condylocardiidae was revised to include two 

clades, Condylocardiinae and Cuninae, each of which once was regarded as having familial rank 

(Middelfart 2002).  

Here we investigate relationships within Archiheterodonta using molecular information 

from six loci (28S rRNA, 18S rRNA, internal transcribed spacer 2, histone H3, cytochrome c 

oxidase subunit I, and cytochrome b) to assess the phylogenetic placement and validity of the 

constituent families. All four families were sampled, including the first molecular sequence 

information for members of the family Condylocardiidae.  

 

Materials and Methods 

Taxon Sampling 

Collected specimens were preserved in 96% EtOH and stored at -80 °C. The list of specimens, 

including voucher numbers, GenBank accession codes and collection details, is found in Table 

3.1. The 45 ingroup taxa sampled consisted of eight Crassatellidae, 15 Astartidae, 20 Carditidae 

and four Condylocardiidae. Exemplars of archiheterodont specimens used in subsequent analyses 

are shown in Figure 3.1. Outgroup taxa for the study consisted of six Palaeoheterodonta and four 

Euheterodonta, to represent the remaining diversity of Heteroconchia.  

 
 
Molecular Methods 

Total DNA was extracted from either mantle or muscle tissue using Qiagen’s DNEasy tissue kit 

(Valencia, CA, USA). Purified genomic DNA was used as a template for PCR amplification. 

Molecular markers consisted of two nuclear ribosomal genes and one of the ribosomal spacers 

(18S rRNA, 28S rRNA and internal transcribed spacer 2 [ITS2]), one nuclear protein-encoding  
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Figure 3.1. Exemplars of Archiheterodonta used in this study. Astartidae: (a) Astarte castanea (b) Astarte montagui 
(c) Digitaria digitaria; Crassatellidae: (d) Eucrassatella cumingi (E) Crenocrassatella cf. sowerbyi (F) Crassinella 
lunulata; Condylocardiidae (G) Carditopsis rugosa (H) Carditella capensis; Carditidae: (I) Cardites antiquata (J) 
Carditamera affinis (K) Megacardita pressi (L) Cardita distorta. 
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Table 3.1. List of species of extant archiheterodonts sampled and gene fragments included in the 
phylogenetic analyses. 
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gene (histone H3), and two mitochondrial protein-encoding genes (cytochrome c oxidase subunit 

I [COI] and cytochrome b [CYTB]). Primer sequences are listed in Table 3.2. 

PCR amplifications (25 mL) were conducted using 1 mLof the template DNA, 1 mLof 

each primer, 2.5 mL of EconoTaq 10X PCR buffer containing 15 mM MgCl2 (Lucigen), 0.25 

mL of dNTP’s 100 mM, and 1.25 U of EconoTaq DNA polymerase (Lucigen). The PCR 

reactions were carried out using an Eppendorf Mastercycler epgradient thermal cycler. The 

thermal cycle program consisted of an initial denaturation step at 95 °C for 2 min, followed by 

36 cycles of denaturation at 95 °C (45 s), annealing at 43 – 53 °C (1 min) and elongation at 72 

°C (90 s). The final elongation step at 72 °C (8 min) and a rapid thermal ramp for 4 °C were 

applied to finalize the process. 

 The double-stranded PCR products were visualized by agarose gel electrophoresis (1.5% 

agarose), cleaned with 2 mL of diluted (1:3) ExoSAP-IT (USB Corp., Cleveland, OH, USA) in a 

volume of 22 mLPCR product and performed at 37 °C for 30 min followed by enzyme 

inactivation at 80 °C for 15 min. Sequencing reactions were performed in a 10-mL reaction 

volume using 3.2 mL of primer (1 mM), a 1 mL of ABI BigDye™ Terminator v. 3.0 (Applied 

Biosystems), 0.5 mL BigDye 5 Sequencing Buffer (Applied Biosystems) and 3.3 mL of cleaned 

PCR product. The sequencing reaction, performed by using the thermal cycler described above, 

involved an initial denaturation step for 3 min at 95 °C, 25 cycles (95 °C for 10 s, 50 °C for 5 s 

and 60 °C for 4 min) and a rapid thermal ramp to 48 °C. The BigDye-labeled PCR products were 

cleaned using Performa DTR Plates (Edge Biosystems, Gaithersburg, MD, USA). The 

chromatograms were visualized, edited and assembled using Sequencher™ (Gene Codes 

Corporation #1991 – 2006). External primers were cropped and discarded from the edited 
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sequences.  

 

Table 3.2. List of primer sequences used for amplification and sequencing with original references. 
  

  

 

 

 

 

 

 

 

 

 

 

 

 

Phylogenetic Analysis 

Model-based (maximum likelihood, Bayesian) approaches were used to infer phylogenetic 

relationships. Maximum likelihood (ML) and Bayesian inference (BI) analyses were conducted 

on static alignments. Static alignments were generated with MUSCLE ver. 3.6 (Edgar 2004) with 

default parameters. Length invariable sequences (COI, CYTB) were confirmed using amino acid 

sequence translations to ensure that no treatment with MUSCLE ver. 3.6 was required. Static 

alignments for length variable datasets were treated with GBlocks v. 0.91b (Castresana 2000) to 
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eliminate hypervariable regions from the nucleotide sequence alignments. Sequence lengths prior 

and after treatment with Gblocks are listed in Table 3.3.  

 

Table 3.3. Alignment sizes prior to and after treatment for length variability in GBlocks. 

  

 

 

 

 

 

ML analyses were conducted using RAxML ver. 7.2.7 (Stamatakis 2006) on 96 CPUs of 

a cluster at Harvard University, FAS Research Computing (odyssey.fas.harvard.edu). For the 

maximum likelihood searches, a unique GTR model of sequence evolution with corrections for a 

discrete gamma distribution (GTR + Γ) was specified for each data partition, and 100 

independent searches were conducted. Nodal support was estimated via the rapid bootstrap 

algorithm (1000 replicates) using the GTR model (Stamatakis et al. 2008). Bootstrap resampling 

frequencies were thereafter mapped onto the optimal tree from the independent searches. 

BI analyses were performed using MrBayes ver. 3.1.2 (Huelsenbeck & Ronquist 2005) 

on 96 CPUs of a cluster at Harvard University, FAS Research Computing 

(odyssey.fas.harvard.edu), with a unique model of sequence evolution with corrections for a 

discrete gamma distribution and/or a proportion of invariant sites on each partition, as selected in 

jModeltest ver. 0.1.1 (Posada 2008; Guindon & Gascuel 2003) under the Akaike Information 

Criterion (Posada & Buckley 2004). Default priors were used starting with random trees, and 
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three runs, each with three hot and one cold Markov chains, were conducted until the average 

deviation of split frequencies reached < 0.01 (109 generations). Stationarity was checked using 

Tracer ver. 1.5 (Rambaut & Drummond 2009). After burn-in samples were discarded, a 

majority-rule consensus topology was generated from the sampled trees.  

 

Estimation of divergence times 

Ages of clades were inferred using BEAST ver. 1.6.1 (Drummond et al. 2006; Drummond & 

Rambaut 2007). We specified a unique GTR model of sequence evolution with corrections for a 

discrete gamma distribution and a proportion of invariant sites (GTR + G + I) for each partition.  

Three fossil taxa were used to calibrate divergence times. The diversification of 

Astartidae was constrained with the early Permian fossil (Pennsylvanian stage, 298.9 ± 0.8 Ma) 

Astartella vera Hall, 1958, placed originally in Crassatelloidea, comprised of Astartidae and 

Crassatellidae (Cox et al. 1969), and later revised to Astartidae on the basis of shell morphology 

(Nicol 1955). To account for uncertainty we applied a normal distribution prior to this node with 

a mean of 298.9 and a standard deviation of 10 Myr.  Identifying suitable constrains for stem 

group members of Carditidae was problematic.  Chavan (in Cox et al. 1969) placed 

Permophorus Chavan, 1954 as a lower Carboniferous to Permian genus of Carditoidea (Cox et 

al. 1969; Slack-Smith 1998) in the family Permophoridae van de Poel, 1959. While 

permophorids were once considered to be members of Carditidae (e.g., Cox et al. 1969; Slack-

Smith 1998), current classifications place them in Anomalodesmata (Kelley et al. 2000). 

The minimum age for the split of Anomalodesmata from Inaequidonta was constrained using a 

normal distribution prior spanning 478.6-488.3, based on Ucumaris conradoi Sánchez & 

Vaccari, 2003 (from the Tremadocian). The minimum age for the diversification of Unionoidea 
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was constrained with the Late Jurassic fossil Hadrodon jurassicus Yen, 1952, whose date has 

been inferred as the base of the Tidwell Member at 154.9 Mya (Kowallis et al. 1998). To account 

for uncertainty we applied a normal distribution prior to this node with a mean of 152 and a 

standard deviation of 5 Myr. Divergence time calibration for the root node drew upon a previous 

study of the class Bivalvia, wherein molecular dating was conducted using the same 

methodology and constrained using fossil taxa (Bieler et al. in press). Here, we employed 

transitive dating and took the 95% HPD intervals to constrain the root node (95% HPD 509.5-

521.7).  A normal distribution prior was used to calibrate this node with a mean of 515.9 and a 

standard deviation of 3 Myr. An uncorrelated lognormal clock model was inferred for each 

partition, and a Yule speciation process was assumed for the tree prior (Drummond et al. 2006). 

Markov chains were run for 50,000,000 generations, sampling every 5000 generations. 

Convergence diagnostics were assessed using Tracer ver. 1.5 (Rambaut & Drummond 2009). 

 

Results 

Maximum likelihood 

Maximum likelihood analysis of the six-gene, 45-ingroup taxon dataset resulted in an optimal 

tree topology with lnL = -36729.78 (Figure 3.2). The recovered topology showed monophyly of 

Archiheterodonta (BS = 100); monophyly of Crassatelloidea (BS = 99) and the mutual 

monophyly of its constituent sister clades, the strongly supported Astartidae (BS = 100) plus 

Crassatellidae (BS = 75).  Monophyly of Carditoidea (Carditidae + Condylocardiidae) was also 

strongly supported (BS =100), however, monophyly of Carditidae was not recovered, as it 

includes the four representative condylocardiids. Condylocardiidae, represented by exemplars of 

Carditellinae (Carditella) and Condylocardiinae (Carditopsis), was monophyletic (BS =100).  
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Figure 3.2. Phylogenetic relationships of Archiheterodonta based on maximum likelihood analysis of six genes (ln L 
= -38412.02). Numbers on nodes indicate bootstrap resampling frequencies. Colors in tree topology correspond to 
the four traditional families (red: Astartidae; green: Crassatellidae; blue: Carditidae; purple: Condylocardiidae). 
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Within Astartidae, Astarte, the only genus represented by multiple specimens, was 

paraphyletic, as it includes Digitaria; Goodallia is the sister group to the paraphyletic Astarte. 

All Astarte species represented by multiple specimens were recovered as monophyletic.  

Among Crassatellidae, genera represented by multiple specimens were monophyletic 

with the exception of the Crassatella, which included Crenocrassatella sowerbyi. Crassinella is 

the sister group to the remaining representatives of the family, and Eucrassatella is the sister 

genus to the Crassatella—Crenocrassatella assemblage. 

Within Carditidae several genera were recovered as monophyletic (Cardites, 

Carditamera, Megacardita, Thecalia), but Cardita was polyphyletic. Likewise, Cardita 

calyculata, represented by multiple individuals, was not monophyletic, however some specimens 

were missing fragments of the six loci (see discussion below; Table 3.1).  

 

Bayesian inference 

The Bayesian inference recovered a topology highly congruent at the familial level with that of 

the ML analysis, with monophyletic Archiheterodonta (PP = 1.00), Crassatelloidea (PP = 1.00), 

Astartidae (PP = 1.00), Crassatellidae (PP = 1.00), Carditoidea (PP = 1.00) and Condylocardiidae 

(PP = 1.00) (Figure 3.3). Topological differences with the ML analysis are prevalent within 

Carditidae. The Cardita distorta + Centrocardita aculeata clade differ from the maximum 

likelihood topology, which recovers this lineage in a derived placement sister to Carditamera, 

while it is sister to all other species in the Bayesian analysis. Generally, nodes that are highly 

supported in both topologies were congruent.  
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Figure 3.3. Phylogenetic relationships of Archiheterodonta based on Bayesian inference analysis of five genes. 
Numbers on nodes indicate posterior probabilities. Colors in tree correspond to the four traditional families (as in 
Fig. 3.2). 
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Estimation of divergence times 

The tree topology recovered differed from congruent nodes recovered from those both previous 

analyses. Diversification of major lineages using BEAST was estimated as follows: 

Archiheterodonta, 373.1 Ma (95% highest posterior density interval [HPD] 325.8-428.2); 

Crassatelloidea, 330.1 Ma (95% HPD 291.0-372.7); Crassatellidae, 224.0 (95% HPD 140.6-

320.2); Astartidae, 288.2 Ma (95% HPD 269.2-307.3); Carditoidea, 178.8 Ma (95% HPD 120.9-

228.3); Condylocardiidae, 65.0 Ma (36.5-108.7) (Figure 3.4).  

 

Discussion 

This study represents the first comprehensive molecular phylogenetic analysis of 

Archiheterodonta. Previous molecular phylogenies included representatives of no more than two 

species per family and from only three families, Astartidae, Carditidae and Crassatellidae. For 

the first time molecular sequence information was included for members of Condylocardiidae, 

whose placement within Archiheterodonta is strongly supported in all analyses. However, the 

validity of the family is questionable, as Condylocardiidae nests within the Carditidae (Figures 

3.2-4), but no member of the nominal genus Condylocardia was sampled, and until this is done, 

no taxonomic action will be taken.  

Prior molecular analyses have highlighted a close relationship of Astartidae and 

Carditidae (e.g., Giribet & Wheeler 2002; Giribet & Distel 2003), Astartidae and Crassatellidae 

(e.g., Sharma et al. 2012) and Astartidae, Carditidae and Crassatellidae (e.g., Taylor et al. 2007).  

Dall (1902) also hypothesized these families were related based on paleontological history,  
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anatomy and development. Within Archiheterodonta, interfamilial relationships recovered 

confirm previous taxonomic hypotheses based on morphology, that Crassatelloidea (Astartidae + 

Crassatellidae) and Carditoidea (Carditidae + Condylocardiidae) are closely related (e.g., Cox 

1960; Yonge 1969; Healy 1995). These results thus corroborate the suggested union of 

Crassatelloidea (including Astartidae) and Carditoidea proposed by Yonge (1969) and Healy 

(1995) and supported by Taylor et al. (2007), among other recent analyses including multiple 

heterodont groups.  

Additionally, the occurrence of lineage specific hemoglobin within Archiheterodonta is a 

captivating synapomorphy of this group (Terwilliger & Terwilliger 1985). The presence of 

hemoglobin in tissues is found throughout the Mollusca and has been documented in several 

protobranch and heterodont species (Alyakrinskaya 2003) as well as in species of Pteriomorphia 

(Terwilliger & Terwilliger 1983). Hemoglobins have been found to be predominantly 

concentrated in the gills and the adductor muscle, though can be present in the mantle, foot, 

nervous tissue, heart and exhalant siphon (Alyakrinskaya 2003). Within Bivalvia, hemoglobins 

are usually small and intracellular (Lieb et al. 2006). However, hemoglobins characteristic of 

Astarte (Astartidae) and Cardita (Carditidae) are known to be large 14 to 24 domain rod-like 

hemoglobins (Terwilliger & Terwilliger 1983; Lieb et al. 2006), and have been observed in 

Eucrassatella (Crassatellidae) and Crassinella (Crassatellidae) (Taylor et al. 2007). Although 

present in all archiheterodont families assessed, further evaluation is required to establish 

functional significance of these archiheterodont specific hemoglobins (Taylor et al. 2007). 
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Crassatelloidea, Férussac 1822 

All inferences of tree topology recover a clade comprised of Astartidae and Crassatellidae (the 

traditional Crassatelloidea sensu Férussac, 1822), which is supported morphologically by several 

features: similar ctenidial structure, in that two non-plicate demibranchs comprised of simple 

filaments are present; similarity of the labial palps, ridged and triangular; and the degree of 

mantle fusion, where the mantle in these families is only fused at the exhalant siphon (Saleuddin 

1965). Differences in ligament structure have been used to justify the elevation of Astartidae and 

Crassatellidae as separate superfamilies (Bernard 1983; Coan et al. 2000), something that seems 

unnecessary under the current phylogenetic results. Here, all analyses support the mutual 

monophyly of these families (Figures 3.2-4) and as such, results do not corroborate the elevation 

of taxonomic rank of these families.  

 

Carditoidea, Férussac 1822 

All phylogenetic analyses unambiguously recover Carditoidea (Carditidae + Condylocardiidae: 

sensu Férussac, 1822; Carditacea sensu Dall, 1902), which is supported by the distinguishing 

shell characteristics including strong radial sculpture, crenulated valve margins and the absence 

of the sinus in the pallial line (Slack-Smith 1998).  Huber (2010) recognizes a third family placed 

within Carditoidea, Cardiniidae – an mostly fossil family with a sole extant member, Tellidorella 

cristulata Berry, 1963 - a small species resembling Crassinella. This species was previously 

postulated to be related to Crassatellidae, despite having an external ligament (Berry 1963) and 

was then revised to be included in Astartidae (Ollson 1964). While, Chavan (in Cox et al. 1969) 

resurrected this otherwise extinct family Cardiniidae to be represented by a small unique 

Panamic species, a so called "living fossil."  Since then, it has been discovered to actually be 
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more closely related to the Lucinidae where it was recently transferred (Taylor et al. 2011; see 

also Coan & Valentich-Scott 2012). Though Cardiniidae is identified as a valid extant family of 

Carditidae (Huber 2010; Bieler et al. 2010), we follow the more recent work of Taylor et al. 

(2007) and do not consider it as a member of Archiheterodonta.  

Molecular sequence information for members of Condylocardiidae has never been 

included in a published work, and here we recover Condylocardiidae nested within Carditidae. 

Condylocardiidae are distinguished morphologically by the absence of an outer demibranch, 

solid ovate shells and umbones with a large prominent prodissoconch (Middelfart 2002; Huber 

2010), but anatomical data are missing for most named species. The placement of two 

condylocardiid genera, Carditella and Carditopsis, within Carditidae was recovered regardless of 

algorithmic treatment.  Güller & Zelaya (2013) found both genera Carditella and Carditopsis, 

here studied, as well as Cyclocardia species (Carditidae), to have both inner and outer 

demibranchs. The absence of an outer demibranch, a synapomorphy of Condylocardiidae used to 

distinguish these super-families, may actually be correlated to small size, and not restricted to 

Condylocardiidae (Güller & Zelaya 2013). Though no taxonomic action is proposed for the 

family Condylocardiidae, results from the analyses here presented support members of 

Carditella and Carditopsis to be nested within Carditidae. Condylocardiidae is currently divided 

up into three subfamilies, Carditellinae Kuroda, Habe & Oyama, 1971, Condylocardiinae 

Bernard, 1886 and Cuninae Lamprell & Healy, 1998, and we include representatives of 

Carditellinae (Carditella) and Condylocardiinae (Carditopsis), finding Carditopsis nested within 

Carditella, rendering the latter genus and the subfamily Carditellinae paraphyletic. Although 

further evaluation including the type genus of the family is needed before taking taxonomic 
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action, our data strongly suggest that Condylocardiidae is not a valid family, as it is deeply 

nested within Carditidae.   

 

Intrafamilial relationships 

Intrafamilial congeneric relationships were evaluated for each of the four families, however no 

taxonomic action has been proposed here due to limited sampling within each clade. 

Forthcoming systematic revisions within Archiheterodonta are imperative for establishing new 

generic classifications based on natural, monophyletic groups. For genera represented by 

multiple specimens, relationships recovered in our analyses are consistent with traditional 

hypotheses based on morphological studies, but there are some unexpected results, which are 

discussed here. 

Astartidae are distinguished by their solid, think triangular to elliptical shells, weak to 

strong commarginal sculpture with prominent co-marginal ridges, as in Astarte (Figures 3.1a,b), 

or of oblique sculpture as in Digitaria (Figure 3.1c), thick periostracum and hinge dentition with 

two or three prominent cardinals in each valve; laterals weak or absent (Huber 2010).  The genus 

Astarte was paraphyletic in all analyses as it includes Digitaria; Astarte comprises 32 species, 

being the largest genus in the family, while the genera Digitaria and Gonilia include two species 

each, and Goodallia includes five (see Giribet & Peñas 1999). Goodallia, represented in our 

analyses by a single species, constitutes the sister group of the Astarte-Digitaria clade. Difficulty 

in identifying species of Astarte has been attributed to ambiguous morphological characters used 

to delimit taxa within this genus (Petersen 2001). However, here we recover all Astarte species 

represented by multiple individuals monophyletic, with Digitaria closely related to A. undata.  
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Within Crassatellidae, each species represented by multiple individuals was found 

monophyletic. Eucrassatella was also monophyletic, but Crassatella was paraphyletic by virtue 

of Crenocrasatella sowerbyi nesting within this clade. It is unclear if our phylogenetic 

relationships reflect the distribution of morphological apomorphies as this group is largely 

understudied and little is known of the anatomy and biology of most Crassatellidae, with the 

exception of Crassinella lunulata (Taylor et al. 2007).  

Within Carditidae, the monophyly of Cartidamera and Megacardita were recovered with 

strong support. These genera along with Cardita were represented by multiple species, but 

Cardita was polyphyletic. Species of Cardita are distinguished by the degree of presence or 

absence of hinge teeth and external shell morphology, where the Cardita hinge has two left and 

three right cardinals and obsolete laterals; which differs from Carditamera in the laterals are well 

developed and the right anterior cardinal is obsolete (Dall 1902). Though species-level 

delimitations are well established, assigning species to genera within this family is difficult as 

morphological definitions of these genera overlap (Coan & Valentich-Scott 2012).  

Condylocardiidae are small in size, whose genera are distinguished by hinge teeth, 

external ornamentation and the possession of an internal ligament. Within Condylocardiidae, 

Carditella was paraphyletic with respect to Carditopsis rugosa, nesting within this clade. Recent 

redescriptions of the type species of Carditella and Carditopsis highlight the need for a revision 

of species attributed to these genera, as consistency of distinguishing morphological 

characteristics was not observed (Güller & Zelaya 2013). Specifically, differences in the 

extension and location of the resilifer were noted for Carditella and differing hinge morphology 

of species described in Carditopsis by multiple authors (Güller & Zelaya 2013).  
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Divergence Times 

The origin of Archiheterodonta is postulated to be as early as the Ordovician or at least in the 

Devonian, where diversification of each of these major clades occurred during the Permian (Cox 

et al. 1969). Dates recovered place the origin of Archiheterodonta in the Ordovician at 482.2 

±75.4 Ma (BS = 88). A gap of 160 Ma between the origin and diversification of the clade is 

present, suggesting that the diversification of this group was not constant throughout 

evolutionary time. The split between Crassatelloidea and Carditoidea is in the Devonian at 373.1 

Ma (BS = 100). The diversification of extant lineages pre-date those suggested through 

paleontological records of each of the four families, which could be attributed to sampling 

artifacts, as the diversity of all extant lineages was not included in these analyses. Although 

Crassatellidae are not very diverse at the present day, they have been postulated to be a 

prominent component of benthic communities in the Cretaceous (Taylor et al. 2007), which is 

concordant with the results presented here. Diversification of Condylocardiidae supports 

suggested origins in the Eocene (Cox et al. 1969).  

 

Conclusions 

The present study robustly recovers the monophyly of Archiheterodonta, including molecular 

sequence information from all four families for the first time. Of principal interest are the 

phylogenetic placement of Condylocardiidae, clearly nested within Carditidae, and the 

systematic validity of the included superfamilies. Many of the relationships recovered in our 

analyses are consistent with traditional hypotheses, as all phylogenetic analyses based on 

molecular sequence data unambiguously recover with significant support the division of 

Archiheterodonta into two clades, corresponding to Crassatelloidea (Astartidae + Crassatellidae) 
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and Carditoidea (Carditidae + Condylocardiidae) (Figures 3.2−4). Finally, estimated divergence 

times are concordant with established diversification times based on the fossil record of 

Archiheterodonta.  
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Abstract 

Carditamera bajaensis, new species, is described from semi-infaunal specimens collected in the 

intertidal zone in the Golfo de California, Baja California Sur, Mexico. The new species resembles 

Carditamera affinis (G. B. Sowerby I, 1833), the only valid Carditamera species known from 

within the Golfo de California, with which it has been mistaken, but it differs in shell structure 

and most conspicuously in life mode – semi-infaunal for C. bajaensis versus byssally attached to 

hard substrata for C. affinis. Haplotype networks constructed from two mitochondrial genes (16S 

rRNA and cytochrome b) and one nuclear gene (internal transcribed spacer 2) indicate a clear 

genetic break between C. affinis and C. bajaensis, as suspected initially due to their different 

modes of life and shell morphology. This pair of species, C. affinis and C. bajaensis, overlapping 

in distribution yet genetically distinct, possibly indicate ecological speciation. 

 

Key words: Cryptic species, Carditidae, Carditamera, Baja California, Archiheterodonta, 

haplotype networks. 
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Introduction 

Western North America has a particularly species-rich marine bivalve fauna (Coan et al., 2000; 

Coan & Valentich-Scott, 2012), especially with regard to members of Carditidae. Carditid bivalves 

are exclusively marine, predominantly infaunal (though some byssate forms occur), suspension-

feeders that lack siphons. Carditids are one of the neglected larger families of bivalves; the last 

genus-level systematic treatment of the Carditidae was given by Chavan (1969), and only 50 

species were ascribed to this group by Boss (1982). Recently, 92 species were illustrated by 

Huber (2010), who recognized approximately 140 species in the family. 

Carditidae are postulated to have originated in the Ordovician and have been recorded as 

early as the Devonian (Chavan, 1969), though the lineage diversified much later in the Cretaceous 

(Slack-Smith, 1998). The development and reproductive biology of Carditidae was examined by 

Dall (1902). Most species are brooders, in which juveniles are retained within the body cavity of 

the female until the process of secretion of the calcified shell has commenced, along with the 

complete formation of the prodissoconch (Mikkelsen & Bieler, 2008). Though carditids 

predominantly inhabit shallow water, several members, such as the mainly Arctic and boreal 

Cyclocardia, have been collected at depths of up to 1,707 m (Dall, 1902). 

Phylogenetically, Carditidae clusters with three other basal heterodont bivalve 

families – Astartidae, Crassatellidae, and Condylocardiidae – constituting the well-

supported clade Archiheterodonta (Taylor et al., 2007; Giribet, 2008). Though no 

condylocardiid species has been yet included in a molecular phylogenetic analysis, 

morphologically is has been placed within this clade (Middlefart 2002). The Astartidae, a 

smaller family, includes four living genera with approximately 40 species that inhabit 

Arctic to temperate waters (Huber, 2010). The Crassatellidae, a moderately sized family, 
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includes 13 living genera containing approximately 85 species and has a global 

distribution, though most crassatellids are found in tropical and subtropical regions 

(Huber, 2010). Condylocardiidae, a larger family, includes 21 living genera and about 150 

species distributed globally, though little is known about the biology of its members 

(Middlefart, 2002). Phylogenetic evidence for a sister relationship between 

Archiheterodonta and the remainder of Heterodonta (Euheterodonta) is commonly 

recovered (Campbell, 2000; Park & Ó Foighil, 2000; Giribet & Wheeler, 2002; Dryer et 

al., 2003; Giribet & Distel, 2003; Taylor & Glover, 2006; Harper et al., 2006; Taylor et 

al., 2007, 2009), but a sister group to Palaeoheterodonta has also been suggested (Sharma et 

al., 2012). The relationships within Archiheterodonta remain however unresolved (Giribet, 

2008) but its monophyly is further supported by several morphological character systems, 

such as sperm ultrastructure (Healy, 1995). Hemoglobin has also been reported in several 

members of this clade (e.g., Taylor et al., 2005; Terwilliger & Terwilliger, 1985). Within 

Carditidae, extracellular hemoglobin has been reported in the blood of Carditamera affinis 

(G. B. Sowerby I, 1833). 

The genus Carditamera Conrad, 1838, originally described from fossil specimens, can be 

distinguished from other members of Carditidae by an equivalve, oblong shell as well as hinge 

morphology, in which both strong cardinals and well-developed laterals are present, and is known 

to the Eocene (Conrad, 1838). As part of an ongoing systematic revision of Carditidae (VLG, 

work in progress) analysis of the phylogenetic breadth of this group was undertaken. Specifically, 

in examining species delimitations within Carditidae, molecular information elucidated species-

level divergences within Carditamera, and thus, we report data that support the discovery of a 

new species. 
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Carditamera affinis was originally described from the Golfo de Nicoya, Costa Rica, but its 

distribution is said to extend north through Baja California and as far south as Peru (Huber, 

2010). The morphological variability ascribed to Carditamera affinis is uncharacteristic of other 

species in the genus and was therefore reexamined for the possibility of additional species. Here, 

a new species of Carditidae belonging to the genus Carditamera is described from specimens 

previously considered Carditamera affinis (Figs. 4.1–4.3). 

 

Materials and Methods  

Abbreviations 

Specimens are housed in the following institutions: 

 

MCZ  Museum of Comparative Zology, Harvard University, Cambridge, 

Massachusetts, U.S.A. 

NHMUK  The Natural History Museum, London, England, U.K. 

 

Identification 

Carditamera includes six species, but only C.affinis (Fig. 4.2) and C. radiata (G. B. Sowerby I, 

1833) (Fig. 4.4) are known from tropical western Mexico. Carditamera affinis overlaps in 

distribution range with the new species reported here. Carditamera affinis can be distinguished 

by very thin-to-broad radial ribs, with scales or small spines on the posterior ends of the larger 

ribs. Carditamera radiata is not known from the Golfo de California, however is does overlap 

with described distribution of C. affinis (Coan & Valentich-Scott, 2012). Carditamera radiata has 

smooth broad ribs, a short anterior end, a strongly tapering posterior end and has a maximal size  
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Figure 4.1−4.3. Shells of Carditamera spp. FIG. 4.1: Carditamera bajaensis, sp. nov. (MCZ DNA106146_1) 
collected in La Paz, Baja California Sur, Mexico; FIG. 4.2: Carditamera affinis (G. B. Sowerby I, 1833) s 
syntype (NHMUK) from the Golfo de Nicoya; FIG. 4.3: Cardita californica Deshayes, 1854, syntype 
(NHMUK) from the Golfo de California. 
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of 56 mm. Huber (2010: 252) illustrated the new species under the name 

Carditamera affinis; Coan & Valentich-Scott (2012) used a illustrations of the new 

species for both C. affinis and C. radiata. 

 

 
 

Figure. 4.4 Carditamera radiata (G. B. Sowerby I, 1833), syntype (NHMUK) collected in Salango, western 
Colombia and Panama from muddy sand from 11 to 18 m depth. 

 
 
 
 
Anatomy 

All specimens were preserved in ~ 96% ethanol for molecular work, as they were originally were 

thought to be Carditamera affinis. No specimens suitable for histological study are thus available 

(Table 4.1). 

 
 
Molecular Analysis 

A total of 11 specimens were used in the molecular analysis (Table 4.1): nine Carditamera 

specimens collected in February 2009 from Bahía Balandra (24°19.019’N, 110°19.27’W) near 



	  

	   149	  

MCZ Accession 
No. 

Collection Site ITS 2 16S rRNA CYT B 

103800_1 Golfo de California, Puerto Peñasco, **
* 

**
* 

JX230961 
 G. Giribet, T. Hardy, M. K. 

Nishigushi 
27.III.2003 [31°20’37’’N, 

   

103800_2 " JX230972 JX230955 JX230962 
 

La Paz, Baja California Sur (six from a sandy bottom substratum and three bysally attached to 

rocks); and two specimens collected in March 2003 from Bahía la Choya (31°20’37’’N, 

113°38’38’’W), Puerto Peñasco, Sonora, Golfo de California, found in the intertidal zone, buried 

in sand. Specimens and subsequent DNA extractions were retained as vouchers and are deposited 

in the Museum of Comparative Zoology, Department of Invertebrate Zoology DNA collection. 

 
 
Table 4.1. List of MCZ accession numbers, collecting localities, and GenBank accession numbers for 
specimens used in molecular analysis. 

 
 
 
 
 

       Bahía la Choya, Sonora, Mexico, 
 
 
 

106146_1 Golfo de California, Bahía 
Balandra, La Paz, Baja California 
Sur, Mexico, V. González & G. 
Kawauchi, 
28.XII.2009 [24°19.019’N, 
10°19.27’W] 

*** *** JX230963 

106146_2 " *** *** JX230964 
106146_3 " *** *** JX230965 
106146_4 " JX230973 JX230956 JX230966 
106146_6 " JX230974 JX230957 JX230967 
106146_7 " JX230975 JX230958 JX230968 
106147_1 " JX230976 JX230959 JX230969 
106147_2 " JX230977 JX230960 JX230970 
106147_3 " *** *** JX230971 

 
 
 
 
Total DNA was extracted from a small tissue sample from the mantle or foot using 

the DNeasy Tissue Kit (Qiagen) and the protocol provided by the manufacturer. The 

purified DNA was used as a template for PCR amplification of fragments of two 

mitochondrial genes (16S rRNA, and cytochrome b) and one nuclear gene (internal 

transcribed spacer region 2; ITS-2). The 16S rRNA gene was amplified and 
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Table 4.2. List of specimens examined for morphological comparisons, including MCZ accession 
numbers, collecting localities, species, and number of specimens. 

 
 

MCZ 
Accession No. Collection Site Species 

No. of 
Specimens 

 
 
DNA 103800 Golfo de California, Puerto Peñasco, Bahía la Choya, Sonora, 

Mexico, G. Giribet, T. Hardy, M. K. Nishigushi 27.III.2003 
[31°20’37’’N, 113°38’38’’W] 

 
 
C. bajaensis 2 

DNA 106146 Golfo de California, Bahía Balandra, La Paz, Baja California Sur,         C. bajaensis 7 
Mexico, V. González & G. Kawauchi, 28.XII.2009 
[24°19.019’N, 110°19.27’W] 

DNA 106147 Golfo de California, Bahía Balandra, La Paz, Baja California Sur, 
Mexico, V. González & G. Kawauchi, 28.XII.2009 
[24°19.019’N, 110°19.27’W] 

96 Golfo de California, N. W. Lermond Collection Acc. 665, C. 
R. Orcutt, collection date unknown 

C. affinis 3 
 
 
C. affinis 1 

1300 Mazatlán, Mexico, W. J. Eyerdam, 14.XIII.1938 C. affinis 3 
21674 Panama, E. R. Mayo, collection date unknown C. affinis 4 
29602 Collection locality unknown, Cal. Geol. Survey, collection date unknown         C. affinis 2 
45084 Ciudad de Panamá, Panama, J. Zetek, collection date unknown C. affinis 2 
68798 Guaymas, Sonora, Mexico, C. R. Orcutt, collection date unknown        C. bajaensis 1 
79238 San Felipe, Baja California, Mexico, J. M. Reed, 12.II.1928   C. bajaensis 3 
100077 Ciudad de Panamá, Panama, J. Zetek, collection date unknown C. affinis 3 
110492 La Libertad, Sonora, Mexico, H. N. Lowe. II.1935 C. bajaensis 3 
140875 Guaymas, Sonora, Mexico, H. R. Turner, 11.I.1942 C. bajaensis 2 
148839 Bahía de San Carlos, Sonora, Mexico, F. Baker & L. G. Hertlein, 1921           C. bajaensis 10 
148839 Bahía de San Carlos, Sonora, Mexico, F. Baker & L. G. Hertlein, 1921         C. affinis 2 
174438 Puerto Peñasco, Sonora, Mexico, R. C. Beck, 30.IX.1948 C. bajaensis 2 
176271 West Coast of Panama, C. M. Dumbauld, collection date unknown C. affinis 1 
198526 San Felipe, Baja California, Mexico, J. E. Fitch, 2.IV.1953 C. bajaensis 2 
215636 Guaymas, Sonora, Mexico, C. Field, 1957 C. bajaensis 2 
221093 Puertecitos, Baja California, Mexico, E. P. Chace. 11.II.1925 C. bajaensis 1 
233102 Sandy Cove, Lagoon, Guayamas, Sonora, Mexico, J. W. R. & A. H. 

R., II.1940 
245090 SW side of Bahía de las Ánimas, Gulf of California, Mexico, 

R. H. Parker, 1.IV.1959 [28°55’N, 113°31’W] 

C. affinis 4 
 
C. bajaensis 2 

245125 Sargento (Sargent’s Point), Sonora, Mexico, W. Emerson, III−IV.1962             C. bajaensis 2 
263736 Venado, Panama, T. Dranga, XII. 1938 C. affinis 1 
302867_DRY   El Requesón, 17 mi S of Mulegé, Baja California Sur, Mexico, S. P. 

& H. H. Kool, XII.1992 
302867_WET        El Requesón, 17 mi S of Mulegé, Baja California Sur, Mexico, S. P. 

& H. H. Kool, XII.1992 
302932 Small Bay, 15 mi S of Mulegé, Baja California Sur, Mexico, S. P. 

& H. H. Kool, 31.XII.1992 

C. bajaensis 6 
 
C. bajaensis 11 
 

C. affinis 2 

339587 San Felipe, Baja California, Mexico, J. Q. Burch, III.1938 C. bajaensis 2 
339589 Guaymas, Sonora, Mexico, J.Q. Burch, 1947−1948 C. bajaensis 4 
339589 Guaymas, Sonora, Mexico, J. Q. Burch, 1947−1948 C. affinis 11 

 
                                                                              (continues) 



	  

	   151	  

 
Table 4.2. List of specimens examined for morphological comparisons, including MCZ accession 
numbers, collecting localities, species, and number of specimens (continued).  

 
MCZ 

Accession No. Collection Site Species 
No. of 

Specimens 
 

339592 Guaymas, Sonora, Mexico, J. Q. Burch, I.1948 C. bajaensis 3 
339593 Bahía la Choya, Puerto Peñasco, Sonora, Mexico,T. & B. Burch, 

25.XII.1966 
C. bajaensis 1 

339594 Guaymas, Sonora, Mexico, Mrs. H. R. Turver, II.1940 C. bajaensis 1 
339595 Mazatlán, Mexico, J. Q. & R. Burch, XII.1960 C. affinis 4 
339596 Mazatlán, Sinaloa, Mexico, collector and collection date unknown C. affinis 4 
339605 Carrizal Bay, Colima, Manzanillo, Mexico, L. & C. Shy, 1973−1974         C. affinis 1 
339607 San Carlos, Guaymas, Sonora, Mexico, B. L. Burch, 6.I.1963 C. affinis 1 
339608 San Carlos, Guaymas, Sonora, Mexico, B. L. Burch, collection date 

unknown 
C. affinis 2 

339609 San Carlos, Guaymas, Sonora, Mexico, J. Q. Burch, 3.XIII.1962 C. affinis 1 
339610 Bahía la Choya, Puerto Peñasco, Sonora, Mexico, B. L. Burch, 

I.1967 [31°21’N, 113°41.2’W] 
C. affinis 1 
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sequenced using primer pair 16Sa – 16Sb (Xiong & Kocher, 1991; Edgecombe et al., 2002). 

ITS-2 was amplified and sequenced using primer pair UCYTB144F and UCYTB272R (Merritt et 

al., 1998). The cytochrome b (CYT B) gene was amplified and sequenced using primer pair 

COBF and COBR (Passamonti, 2007). 

PCR amplifications (25 µl) were conducted using 1 µL of the template DNA, 1 µL of each 

[100 µM] primer, 2.5 µL of EconoTaq 10X PCR buffer containing 15 mM MgCl2 (Lucigen), 

0.25µL of dNTP’s 100 mM, and 1.25 U of EconoTaq DNA polymerase (Lucigen). The PCRs were 

carried out using an Eppendorf Mastercycler epgradient thermal cycler. The thermal cycle 

program consisted of an initial denaturation at 95°C for 2 min, followed by 36 cycles of 

denaturation step at 95°C (45 s), annealing at 43–48°C (CYT B) or 48–53°C (16S rRNA and 

ITS 2) (1 min) and elongation at 72°C (90 s). A final elongation step at 72°C (4 min) and a rapid 

thermal ramp for 4°C were applied to finalize the process. 

The double-stranded PCR products were visualized by agarose gel electrophoresis (1.5% 

agarose), cleaned with 2 µl of diluted (1:3) ExoSAP-IT (USB Corp., Cleveland, Ohio, U.S.A.) in a 

volume of 22 µL PCR product and performed at 37°C for 30 min followed by enzyme inactivation 

at 80°C for 15 min. Sequencing reactions were performed in a 10-µL reaction volume using 3.2 

µL of primer (1 mM), 1 µL of ABI BigDye™ Terminator v. 3.0 (Applied Biosystems), 0.5 µL of 

BigDye 5 Sequencing Buffer (Applied Biosystems) and 3.3 µL of cleaned PCR product. The 

sequencing reaction, performed by using the thermal cycler described above, involved an initial 

denaturation step for 3 min at 95°C, 25 cycles (95°C for 10 s, 50°C for 5 s and 60°C for 4 min) and 

a rapid thermal ramp to 48°C. The BigDye-labeled PCR products were cleaned using Performa 

DTR Plates (Edge Biosystems, Gaithersburg, Maryland, U.S.A.). The chromatograms were 

visualized, edited and assembled using Sequencher™ (Gene Codes Corporation, 1991–2011). 
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Amplification primers were cropped and discarded from the edited sequences.  

Multiple sequence alignment of molecular data (Table 4 .1) was performed using 

MAFFT v. 6 using the default strategy (Katoh et al., 2008) for each individual gene region. 

Haplotype networks were inferred using the statistical parsimony procedure implemented in the 

program TCS v. 1.21 (Clement et al., 2000), under default settings and assumptions (at 95% 

confidence interval), with indels treated as a fifth state. 

 

Morphometric Analysis 

Three morphological variables were measured following Soares et al. (1998): shell 

length (anterior-posterior), height (ventrodorsal), and width (left-right) to 0.01 mm with 

Mitutoyo Absolute™ digital read calipers. Only specimens with complete and intact valves 

were measured; all single valve specimens were excluded (Table 4. 2). Variance ratio tests (p 

= 0.7565), Shapiro-Wilk W test for normal data (W/H, p = 0.39339; H/L, p = 0.13913), and 

oneway ANOVA on morphological comparisons between width vs. height (W/H) and 

height vs. length (H/L) were performed in StataMP 12.0 (StataCorp, 1985–2011).  

 

Results  

Molecular Analyses 

Specimens collected in two contrasting habitats (sandy and rocky substrata) from two 

locations (Puerto Peñasco and La Paz) show habitat-specific morphological variation 

(Figs. 4.1, 4.5–8) and comprise two genetically distinct groups. Based on descriptions by 

G. B. Sowerby I (1833), specimens from La Paz (byssally attached to rocks) have been 

identified as Carditamera affinis. Morphologically, the specimens found in sandy sediments  
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Figure. 4. 5−4.8. Representative morphologies of alcohol-preserved specimens used in the 
molecular analysis. FIG. 4.5: Carditamera  bajaensis,  sp. nov. (MCZ DNA103800_1) 
collected near Puerto Peñasco in exposed sand during low tide; FIGS. 4.6−8: Carditamera 
affinis specimens (MCZ DNA106147_1-3) collected off the coast of La Paz in and under 
rocks. 
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Table 4.3. List of Carditamera bajaensis, sp. nov. MCZ accession numbers, collecting localities, and 
number of specimens examined for species description. 

 
 

MCZ 
Accession No. Collection Site 

No. of 
Specimens 

 

79238 San Felipe, Baja California, Mexico, J. M. Reed, 12.II.1928 3 
110492 La Libertad, Sonora, Mexico, H. N. Lowe, II.1935 3 
140365 Golfo de California, San Juan, Baja California Sur, collector and collection date 

unknown 
31 

140875 Guaymas, Sonora, Mexico, H. R. Turner, 11.I.1942 2 
148839 San Carlos Bay, Sonora, Mexico, F. Baker & L. G. Hertlein, 1921 12 
174438 Puerto Peñasco, Sonora, Mexico, R. C. Beck, 30.IX.1948 2 
198526 San Felipe, Baja California, Mexico, J. E. Fitch, 2.IV.1953 2 
221093 Puertecitos, Baja California, Mexico, E. P. Chace, 11.II.1925 1 
245090 SW side of Las Animas Bay, Gulf of California, Mexico, R. H. Parker, 1.IV.1959 

[28°55’N, 113°31’W] 
2 

245125 Sargento (Sargent’s Point), Sonora,Mexico, W.k. Emerson, III-IV.1962 2 
254091 SW side of Las Animas Bay, Gulf of California, Mexico, R. H. Parker, 1.IV.1959 

[28°55’N, 113°31’W] 
2 

302867_DRY El Requeson, 17 mi S of Mulege, Baja California, Mexico, S. P. Kool & H. H., 
XII.1992 

6 

302867_WET El Requeson, 17 mi S of Mulege, Baja California, Mexico, S. P. & H. H. Kool, 
XII.1992 

11 

339587 San Felipe, Baja California Norte, Mexico, J. Q. Burch, III.1938 3 
339589 Guaymas, Sonora, Mexico, J. Q. Burch, 1947−1948 4 
339592 Guaymas, Sonora, Mexico, J. Q. Burch, I.1948 3 
339593 Cholla Bay, Puerto Peñasco, Sonora, Mexico,T. & B. L. Burch, 25.XII.1966 1 
339594 Guaymas, Sonora, Mexico, Mrs. H. R. Turver, II.1940 2 
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at both locations are narrower and lack spines on the posterior ribs. 

Haplotype analysis shows disconnected networks for all loci (ITS-2, 16S, CYT B) 

(Figs. 4.9–11). All three gene regions show a clear distinction between the haplotypes 

collected in the sandy substrata (Puerto Peñasco [sand] + La Paz [sand]) versus haplotypes 

collected on rocky substrata [La Paz (rocks)]. Small byssally attached individuals have also been 

observed intertidally in rocks at La Paz, but the specimens were not collected (G. G., March 

2003). After relaxation of the 95% confidence interval, 69 mutational steps are required to 

connect the sandy versus rocky haplotypes, while only two steps separate the sandy substratum 

haplotypes for the ITS-2 gene region (Fig. 4. 9). CYT B and 16S rRNA gene information require 41 

and 29 mutational steps to connect the haplotypes, respectively (Figs. 4.10, 4.11). No haplotypes 

are shared between rocky (C. affinis) and sandy (C. bajaensis, sp. nov.) forms for any marker. 

 

Morphometric Comparisons 

Morphological comparisons between width vs. height (W/H) and height vs. length (H/L) 

revealed a significant difference in shell shape between C. affinis and C. bajaensis, sp. 

nov., which further corroborates morphological distinctiveness (One-way ANOVA, p = 

0.0419). Carditamera affinis specimens were wider and rounder, whereas C. bajaensis  

specimens were thinner and flatter (Fig. 4. 12). 
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Figure 4.9−11. TCS networks. FIG. 4.9: Network based on ITS-2 data; FIG. 4.10: Network based on 
CYT B data; FIG. 4.11: Network based on 16S rRNA data. Representative haplotypes from the three 
localities are indicated above. The size of the circle is proportional to the number of represented 
haplotypes. Solid lines connect haplotypes with a single step (inferred intermediate haplotypes are 
indicated by a hash mark); a dashed line represents relaxation of 95% confidence limit. 
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Figure 4.12. Morphometric comparisons of C. bajaensis, sp. nov. (Triangles) and C. affinis (Diamonds). 
Measurements of W/H plotted against H/L; Means of W/H and H/L for C. bajaensis,  sp. nov. (filled square) and C. 
affinis (filled circle) are 0.78 and 0.43; and 0.84 and 0.51, respectively. 

 
 

Systematics  

Taxonomy 

Carditidae Férussac, 1822 

Type genus: Cardita Bruguière, 1792 

Type species: C. variegata Bruguière, 1792, by subsequent designation of Gray, 1847 

Types: Carditamera  bajaensis,  sp. nov. Figs. 4.1, 4.5, 4.13, 4.14 
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Additional Material Studied: Eighteen lots, both dry shell collections (n = 17 lots) and one 

alcohol-preserved lot (MCZ 302867), totaling 92 specimens housed in the Museum of 

Comparative Zoology, Department of Malacology (Table 4.3). Holotype: (MCZ DNA106146_1) 

(41 mm long x18 mm high x 13 mm wide) from Bahía Balandra (24°19.019’N, 110°19.27’W), La 

Paz, Baja California Sur, Mexico, depth 1 m, collected 28 February 2009 by V. L. González & G. 

Y. Kawauchi (on sandy bottom substratum). Paratypes :  Six  specimens  (MCZ  DNA 

106146_2-7), same collecting data as holotype; two specimens (MCZ DNA103800_1-2) (78 mm 

long x 32 mm high x 26 mm wide) collected from Bahía la Choya (31°20’37”N, 113°38’38”W), 

Golfo de California, Puerto Peñasco, Sonora, Mexico, depth 1 m, collected 27 March 2003 by G. 

Giribet (in exposed sand); and two specimens (MCZ 245090), collected from the southwest side 

of Bahía de las Ánimas (28°55’N, 113°31’W), Golfo de California, Baja California Sur, Mexico, 

collected 1 April 1959 by R. H. Parker. 

 

Material Examined for Comparison Carditamera affinis (G. B. Sowerby I, 1833): three 

syntypes (NHMUK) collected in the Bahía de Montejo and Golfo de Nicoya, Costa Rica. 

Carditamera cf. affinis (formerly Cardita californica Deshayes, 1854): 3 syntypes 

(NHMUK) from the collection of Hugh Cuming, collected in the Golfo de California. 

 

Etymology 

The specific epithet refers to the state where the type locality of the holotype specimen is 

found, Baja California Sur, Mexico. 
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Diagnosis 

Moderately sized Carditamera, 41 to 85 mm long in measured specimens, narrow,

ribbed, thick-shelled bivalve. Shell elongate, quadrangular, twice as long as high, with 

approximately 15 smooth flat prominent ribs of equal distinctness over the whole shell; longer 

posteriorly. Color white, banded with brown; lacking spinose posterior ribs like those of C. 

affinis. Pilose thick periostracum; brown coloration. 

 

Description 

Posteriorly elongate shell with hinge line parallel to straightened ventral margin (Fig. 4.1). 

Interior color whitish with brown coloration, non-nacreous. Shell equivalve and inequilateral. 

Umbones anterior, prosogyrate. Lunule small and deep; escutcheon weakly distinct. Shell margin 

crenulate, both in the interior and exterior of the valves, following the radial ribs. Pilose 

periostracum only apparent around margins (Fig. 4.13).  

Hinge plate wide. Hinge structure with strong lateral teeth, 2 right anterior laterals 

(la1 and la2) and one right anterior cardinal (3a) and two corresponding left anterior cardinal 

teeth (2a and 2b) (Fig. 4.14). External ligament present, opisthodetic, parivincular. Pallial line 

complete, without pallial sinus. Papillate posterior mantle margin present, with the posterior 

mantle folds fused to form posterior excurrent aperture; mantle margins not fused 

ventrally. Carinate foot pointed posteriorly. Byssal groove present and with byssus 

occasionally present in adult stage [2 of N = 8], yet rare. Anterior and posterior pedal 

retractors muscles present. 
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Figure 4.13 & 4.14. Alcohol-preserved specimen of Carditamera  bajaensis, sp. nov. (MCZ 
DNA106146_1). FIG. 4.13: Animal with left mantle and valve removed; FIG. 4.14: Left valve 
showing hinge and cardinal teeth. Abbreviations: aa, anterior adductor muscle; me, mantle edge; ct, 
ctenidium; f, foot; li, ligament; pa, posterior adductor muscle; pp, posterior papillae; 2a, left anterior 
cardinal tooth; 2b, left middle cardinal tooth. 
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Figure 4.15. Map of the Golfo de California showing known localities for Carditamera bajaensis, sp. nov. Exact 
collecting localities represented by a black square; approximate collecting localities indicated by a black triangle 
based on Table 4.3. 
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Heteromyarian, with a slightly larger posterior adductor; the smaller anterior adductor attached to 

an antero-ventral extension of the valves. Eulamellibranch ctenidia, homorhabdic, with outer 

demibranch slightly smaller than inner demibranch. Labial palps small, triangular in shape. Stomach 

structure not elucidated, with a spiral typhlosole. Midgut uncoiled. 

 

Habitat 

Semi-infaunal; specimens have been collected buried in exposed and intertidal sandy beach 

environments. 

 

Distribution 

Known from several collecting localities within the Golfo de California (Fig. 4.15). 

 

Discussion 

 

The three syntypes of Carditamera affinis (NHMUK) (one specimen pictured in Fig. 4.2) are 

large elongate shells, in which the length is about twice the height, and have 15 or more ribs 

present. Prominent posterior scales are present on the exterior of the shell and specimens have 

coloration ranging from brownish white to brown. Carditamera affinis is more globose than C. 

bajaensis, and the shell is slightly broader than deep. Compared with C. affinis, C. bajaensis is 

more elongate, less globose, has a more linear ventral margin and lacks prominent large posterior 

scaly projections. Carditamera affinis is epifaunal, found in crevices or under rocks, usually 

byssally attached to the substratum, sometimes exposed in the intertidal zone; Carditamera 
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bajaensis is semi-infaunal and has been collected in  

exposed sandy beach environments at low tide. To evaluate the validity of C. bajaensis, all five 

known synonyms of C. affinis – Cardita californica Deshayes, 1854; Cardita incerta 

Clessin,1888; Cardita petunculus Reeve, 1843; Cardita picta Clessin, 1888; Cardita volucris 

Reeve,1843 – were investigated and each original description was checked. 

As indicated by Keen (1971: 107), Carditamera cf. affinis (formerly Cardita californica 

Deshayes, 1854) was described as a smoother northern subspecies of Carditamera affinis (one 

specimen pictured in Fig. 4 .3). However, upon reexamination of the syntypes of Cardita 

californica (NHMUK) (Fig. 4.3), the specimens have globose elongate shells with distinct 

posterior scales, and are similar is shape and periostracum color to those of the C. affinis 

syntypes, unlike the smooth exterior and narrower width of C. bajaensis, further indicating that 

Cardita californica and C. affinis are conspecific. 

Clessin (1888) described two species that have subsequently been synonymized with C. 

affinis. Both Cardita picta Cleissin, 1888, and Cardita incerta Clessin, 1888, were described as 

having wide rounded shells with a total of 19 radial ribs, differing from the narrow shell and 15 

ribs of C. bajaensis.  Reeve (1843) also described two species that have been synonymized with 

Carditamera affinis: Cardita petunculus Reeve, 1843, is a large form from Madagascar that 

lacks banding and spotted coloration characteristic of C. bajaensis, and Cardita volucris Reeve, 

1843 (type locality unknown), which has an elongate, globose, and scaly shell, and appears to be a 

true synonymy of C. affinis. 

Haplotypic networks and phylogenetic analyses have been recently used to elucidate 

cryptic species of marine invertebrates (e.g., Baker et al., 2007; Duran & Rützler, 2006; 

Kawauchi & Giribet, 2010), including molluscs (e.g., Marko & Moran, 2009;  Kawauchi & 
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Giribet, 2011; Zamborsky & Nishiguchi, 2011), as they have the power to  

compare the degree of within species and among species genetic diversity. The case of 

Carditamera bajaensis is clear, as all characters, from shell anatomy (little data are available for 

the internal anatomy of related Carditamera spp.), ecological niche, and haplotypes, support the 

reciprocal monophyly of the sampled populations. Furthermore, the specimens here described as 

Carditamera bajaensis cannot be assigned to any of the previously described species now 

considered synonyms of Carditamera affinis or any other Carditamera described from this 

region. This, in addition to the molecular sequence data that distinguish the two life forms for 

every examined marker, but that unite populations of the infaunal species separated by about 800 

km, confirms a distinct and new species, Carditamera bajaensis. Ongoing revision of Carditidae, 

in concert with molecular tools, is anticipated to contribute significantly to the systematics and 

known diversity of constituent genera. 

Evidence for cryptic speciation in the light of phenotypic plasticity has been 

investigated within several molluscan groups (Richter et al., 2008; Kawauchi & Giribet, 2011). 

Traditionally, taxonomy within Bivalvia has relied heavily on characters of shell  

morphology. However, reliance on shell morphological characters alone, which has a propensity 

in conchiferans for both cryptic speciation (e.g., Won et al., 2003b; Lee & Ó Foighil, 2004; 

Johnson et al., 2009; Lorion et al., 2010) and environmental plasticity (Yeap et al., 2001; 

Wullschleger & Jokela, 2002; Baker et al., 2003, 2004; Hollander et al., 2006; Pfenninger et al., 

2006; Lorion et al., 2010), can belie the estimation of diversity within these groups. 

 Convergence and parallelism are rampant within Bivalvia, not only with respect to 

morphology, but also mode of life (Alejandrino et al., 2011), and more integrated  

approaches are necessary to delimit species (Harper et al., 2000). This approach is exemplified 
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by the study of Ritcher et al. (2008), in which morphological, in concert with genetic and 

ecological data, were used to describe a distinct new species of Tridacna in the Red Sea; 

previously, large phenotypic plasticity had mistakenly been ascribed to a single taxon. 

Evolutionary plasticity of life habitat has played an important role in bivalves, both in 

response to environmental changes (Soares et al., 1998) and for driving diversification (Marko & 

Jackson, 2001). Environmental plasticity may have facilitated colonization of new habitats by 

Carditamera, followed by niche partitioning and ecological speciation (e.g., in habitats with 

varying substrata). The sympatric distributions of C. affinis and C. bajaensis, and the 

segregation of their respective substrate type is suggestive of a role for evolutionary plasticity as 

a driver for the diversification within the genus in the Golfo de California. Testing this 

hypothesis utilizing morphological, ecological, and population genetic data requires denser 

sampling of Carditamera than is currently available, and therefore remains an objective for 

future investigations. 
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