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Despite the ongoing “war on cancer,” cancer remains one of the major causes of human
morbidity and mortality. A new paradigm of targeted therapies holds the most promise for
the future, making identification of tumor-specific therapeutic targets of prime importance.
ERBB2/HER2, best known for its role in breast cancer tumorigenesis, can be targeted
by two types of pharmacological manipulation: antibody therapy against the extracellular
receptor domain and small molecule compounds against the intracellular tyrosine kinase
domain. Aberrant activation of ERBB2 by gene amplification has been shown to partici-
pate in the pathophysiology of breast, ovarian, gastric, colorectal, lung, brain, and head
and neck tumors. However, the advent of next-generation sequencing technologies has
enabled efficient identification of activating molecular alterations of ERBB2. In this review,
we will focus on the functional role of these somatic mutations that cause ERBB2 recep-
tor activation. We will additionally discuss the current preclinical and clinical therapeutic
strategies for targeting mutationally activated ERBB2.

Keywords: ERBB2/HER2, activating somatic mutation, reversible and irreversible tyrosine kinase inhibitors,
targeted therapies, resistance, lung cancer, breast cancer

INTRODUCTION
Rising incidences of neoplasia worldwide are estimated to translate
into 13 million cancer deaths by 2030 (World Health Organi-
zation, 2012). In order to develop more effective and less toxic
targeted cancer therapies, we must utilize our knowledge of malig-
nant cell biology and design tailored antineoplastic compounds
against diverse biological targets to supplement current standard
treatment modalities, such as surgical resection, chemotherapy,
and radiation therapy, to eradicate this frequently fatal disease.
Although encouraging response rates are achieved in a few types
of cancer with these standard treatment options, the majority of
patients lack sufficient therapeutic options for long-term survival,
especially those with advanced disease. Hence, additional therapies
are urgently needed.

Because neoplastic cells frequently show “addiction” to muta-
tionally activated oncogenes (Weinstein, 2002; Sharma and Settle-
man, 2010), such oncogenes comprise the most promising group
of drug targets discovered to date. In the mid 1980s, the recep-
tor tyrosine kinase (RTK) ERBB2 (also known as HER2 – Human
Epidermal Growth Factor Receptor (EGFR) 2) was identified to
be an oncogenic driver (Padhy et al., 1982; Bargmann et al., 1986;
Di Fiore et al., 1987; Slamon et al., 1987). ERBB2 was first targeted
with the monoclonal antibody, trastuzumab, which was approved
by the Food and Drug Administration (FDA) in 1998. Although the
addition of trastuzumab to chemotherapy significantly prolonged
survival in patients with ERBB2-overexpressing breast or gastric

cancers (Piccart-Gebhart et al., 2005; Romond et al., 2005; Joensuu
et al., 2006; Bang et al., 2010), these clinical benefits failed to trans-
late in improved survival of patients with ERBB2-overexpressing
non-small cell lung cancers (NSCLCs) (Gatzemeier et al., 2004;
Langer et al., 2004).

Oncogenic signaling by RTKs can also be abrogated by inhi-
bition of tyrosine kinase activity with small molecules. Imatinib
mesylate demonstrated proof of principle by successfully inhibit-
ing constitutive signaling through the BCR-ABL fusion protein in
chronic myelogenous leukemia (Druker et al., 2001). Additional
tyrosine kinase inhibitors (TKIs) targeting various cellular sig-
naling pathways have entered the clinic since imatinib mesylate
was approved by the FDA in 2001, including inhibitors target-
ing ERBB2 in breast cancer (Geyer et al., 2006) and the related
RTK, EGFR, in lung adenocarcinomas (Ku et al., 2011). The
emergence of sophisticated genomic methodologies like next-
generation sequencing enabled high-throughput detection of
known and novel oncogenic mutations, and in particular revealed
the presence of activating mutations of ERBB2 in a variety of
tumor types. These novel oncogenic alterations of ERBB2 poten-
tially offer unique therapeutic opportunities to a broader range of
patients than previously anticipated by analysis of ERBB2 ampli-
fication alone. However, it appears that it may be more difficult
to successfully target ERBB2 mutation than ERBB2 amplification
or EGFR mutation. Translation of this discovery to the clinic thus
remains a major challenge.
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THE ERBB/HER RECEPTOR FAMILY
The proto-oncogene ERBB2 is a member of the ERBB/HER RTK
family, additionally comprised of EGFR (EGFR/HER1/ERBB1),
HER3/ERBB3, and HER4/ERBB4 (Hynes and Lane, 2005). Upon
extracellular ligand binding, these four receptors mediate nor-
mal cell proliferation and cell survival via two major signaling
pathways: Ras-Raf-MAPK and PI3K/Akt/mTOR. Whereas EGFR
and ERBB4 have known extracellular ligands and possess active
tyrosine kinase domains, no direct high-affinity ligand has been
identified for ERBB2 (Carraway et al., 1994; Sliwkowski et al., 1994;
Burgess et al., 2003). Furthermore, ERBB3 binds several different
ligands, but has little or no tyrosine kinase activity, and is possibly
able only to weakly autophosphorylate (Shi et al., 2010).

ACTIVATION OF ERBB2
Signaling specificity of each ERBB receptor is transmitted
through unique patterns of C-terminal autophosphorylation sites
(Olayioye et al., 2000; Yarden and Sliwkowski, 2001). Further com-
plexity is added by receptor dimerization, which can occur either
between two identical (homodimerization) or two different (het-
erodimerization) ERBB receptors. Under resting conditions, these
cell surface receptors are found as monomers folded in a so-called
“closed/tethered” autoinhibited conformation to prevent dimer-
ization (Ferguson et al., 2003). Conformational rearrangement
into an “open/extended” state occurs upon ligand binding to the
extracellular domain. This process exposes the dimerization arm to
establish the core of the dimer interface with a homologous region
of a partner molecule. The extracellular dimeric structure facili-
tates reciprocal transactivation of the intracellular tyrosine kinase
portions of each receptor. The uniqueness of ERBB2 among its
family members is not only characterized by its inability to directly
bind any known EGF family ligand, but also by being permanently
fixed in the active conformation. Consequently, kinase autoinhi-
bition to prevent uncontrolled receptor activation is not mediated
by the ectodomain, but by a loop connecting the αC helix and β4
sheet within the kinase domain (Fan et al., 2008).

At least in part due to its constitutively active conformation,
ERBB2 is the preferred dimerization partner for other ERBB family
members. Although the existence of four receptors allows several
different pairings and subsequently distinct patterns of down-
stream pathway engagement, ERBB2 heterodimers demonstrated
increased potency in conveying extracellular signals (Yarden and
Sliwkowski, 2001). It comes as no surprise that the most powerful
signaling heterodimer – composed of ERBB2 and ERBB3 – func-
tions as an oncogenic unit (Holbro et al., 2003; Hsieh and Moasser,
2007; Lee-Hoeflich et al., 2008). Lack of catalytic kinase activity
does not prevent ERBB3 from heterodimerizing with other ERBB
molecules. In fact, the primary oncogenic signaling apparatus of
ERBB2-ERBB3 is crucial for activation of the PI3K/Akt pathway
(Soltoff et al., 1994). Although ERBB2 possesses no direct dock-
ing sites for PI3K, ERBB3 mediates this process with six tyrosine
binding sites for the regulatory subunit of PI3K (Prigent and Gul-
lick, 1994; Soltoff et al., 1994). Indeed, clinical data by Tokunaga
et al. (2006) shows positive correlation of ERBB2-expressing breast
cancers and increased activation of Akt.

Three principal mechanisms of oncogenic activation of ERBB2
have been identified to date: (i) amplification and overexpression,

(ii) molecular alterations of the receptor, and (iii) inhibition of
phosphatase activity (Ocana and Pandiella, 2013). Increased num-
bers of receptor molecules populating the cell surface increase the
likelihood of dimerization and receptor tyrosine phosphorylation,
even in the absence of ligand binding (Zhang et al., 2006; Endres
et al., 2011). ERBB2 overexpression or amplification was initially
discovered in approximately one third of human breast cancers
and is associated with more aggressive tumors and poorer out-
come (Slamon et al., 1987). Other human tumor types have also
been reported to harbor ERBB2 amplification or overexpression,
including lung cancers (Pellegrini et al., 2003; Langer et al., 2004),
gastric cancers (Tanner et al., 2005; Bang et al., 2010), ovarian can-
cers (Tuefferd et al., 2007; Vermeij et al., 2008), prostate cancers
(Minner et al., 2010), salivary gland tumors (Cornolti et al., 2007),
and bladder cancers (Lae et al., 2010).

Mutational activation of ERBB2 can result from three types
of somatic molecular alterations: small insertions and missense
mutations in the kinase domain (Figure 1A), missense mutations
in the extracellular domain (Figure 1B), or large deletions of the
extracellular domain that yield the truncated form of ERBB2,
p95HER2 (Figure 1C). The molecular characteristics, treatment
opportunities, and potential mechanisms of resistance of these
three classes will be discussed in the next sections.

Constitutive ERBB2 activation can also be achieved by insuf-
ficient dephosphorylation of the receptor. Although in rare cases
ERBB receptors may transphosphorylate each other in the absence
of ligand, overexpression, or mutations, intracellular phosphatases
rapidly act as a fail-safe mechanism to dephosphorylate the recep-
tor and terminate signaling (Ullrich and Schlessinger, 1990).
Recently, studies by two different groups provided the first evi-
dence that phosphatase activity is essential to control oncogenic
ERBB2 signaling. Sun et al. (2011) demonstrated that muta-
tional inactivation of the phosphatase PTPN12 caused activation
of ERBB2 in triple negative breast cancer cell lines. Similarly,
Vermeer et al. (2012) analyzed breast cancer cell lines to under-
stand the correlation between decreased PTPN13 expression and
poorer overall survival. The authors found a novel signaling com-
plex consisting of ERBB2 and EphrinB1 which is regulated by
transient association with PTPN13 and Src. In absence of the phos-
phatase PTPN13, activated Src associates with the ERBB2 kinase
domain and phosphorylates EphrinB1, which induces Erk1/2
phosphorylation (Vermeer et al., 2012).

ERBB2 MUTATIONS IN CARCINOGENESIS
The clinical success of gefitinib, an inhibitor of EGFR, in a subset
of lung cancers harboring activating mutations within the kinase
domain of EGFR led to the investigation of analogous mutations of
ERBB2. ERBB2 kinase domain mutations were found to occur in
2–4% of lung adenocarcinomas (Stephens et al., 2004; Shigematsu
et al., 2005; Buttitta et al., 2006) and cause increased survival, inva-
siveness, and tumorigenicity in cell-based transformation assays
(Wang et al., 2006). Similarly to NSCLC driven by EGFR muta-
tion, the clinical and pathological characteristics of patients with
ERBB2 mutations have been attributed to patients of the female
sex, Asian ethnicity, never-smoker status, and adenocarcinoma
subtype. However, a recent study of 1,478 U.S. patients with lung
adenocarcinomas found no association of ERBB2 mutation with
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FIGURE 1 | Somatic activating mutations in ERBB2. Depicted is a
simplified schematic of three known subclasses of ERBB2-mutants. (A) and
(B) Activating mutations in the full-length protein. A star indicates the position

of the activating mutation (A in the kinase domain, B in the extracellular
domain). (C) Large deletions of the extracellular domain that yield the trucated
form of ERBB2, p95HER2.

sex and race, but confirmed that mutations of the kinase domain
of ERBB2 are mutually exclusive with EGFR, KRAS, and ALK
mutations (Arcila et al., 2012).

The most prevalent alteration of ERBB2 involves the in-frame
insertion/duplication A775_G776insYVMA within exon 20, a
sequence also present in exon 20 of the EGFR gene (Stephens et al.,
2004). Similar in-frame insertion mutations were also identified
in ovarian cancers (Anglesio et al., 2008). These insertions induce
a conformational change of the autoinhibitory αC-β4 loop, thus
narrowing the ATP-binding cleft and promoting enhanced kinase
activity (Gazdar et al., 2004; Fan et al., 2008). In vitro studies
have shown that this ERBB2-mutant potently transphosphorylates
EGFR in the absence of ERBB ligands rendering EGFR susceptible
for dimerization (Wang et al., 2006). Single nucleotide missense
substitutions of this region of ERBB2 have also been reported
in breast cancer, gastric cancer, and colorectal cancer (Lee et al.,
2006b).

Although oncogenic tyrosine kinase mutations frequently alter
the ATP-binding pocket, we recently identified an alternate mech-
anism of ERBB2 activation resulting from extracellular domain
mutations that cause reduction-sensitive covalent dimerization
(Greulich et al., 2012). These missense substitutions cluster in
subdomain II, a region characterized by 11 disulfide bonds (Cho
et al., 2003), and impact intramolecular disulfide bond forma-
tion (Greulich et al., 2012). Mutation of cysteine residues in this
region that participate in intramolecular disulfide bonds, such
as S335C (Greulich, unpublished observation), or mutation of
residues important to stabilization of disulfide-bonded loops, such
as G309E, can both promote intermolecular disulfide bond for-
mation, resulting in constitutively dimerized and activated ERBB2
(Greulich et al., 2012).

Reduction-sensitive dimerization is not the only mechanism by
which ERBB2 extracellular domain mutations constitutively acti-
vate enzymatic activity; ERBB2 S310F and S310Y mutations, found
in 1–2% of lung cancers and breast cancers, behave more similarly
to the ERBB2 kinase domain mutants in that they cause elevated
C-terminal tail phosphorylation without evidence of covalent
dimerization. Of note, the S310F lesion was also detected in 1/316
ovarian cancers (Cancer Genome Atlas Research Network, 2011)
and in a bladder cancer cell line, 5637 (Barretina et al., 2012).

Whereas activating mutations within the kinase domain of
ERBB2 show close homology to their counterparts within EGFR,
the extracellular domain mutations are not as closely mirrored.
Oncogenic mutations affecting the ectodomain of EGFR have been
identified in subdomain I, II, and IV (Lee et al., 2006a). Although
the mechanism of receptor activation has not yet been character-
ized for these EGFR extracellular domain mutations, it is tempting
to speculate that the underlying tumorigenic mechanism is caused
by a less tethered conformation of the extracellular domain as
most amino acid substitutions localize to interdomain interfaces
(Lee et al., 2006a).

The third type of mutant ERBB2 is structurally different from
the first two, as these derivatives lack substantial parts of the
extracellular domain and are termed p95HER2 or HER2 carboxyl
terminal fragments (CTF) (reviewed in Arribas et al., 2011). These
truncated ERBB2 proteins have been predominantly found in
breast cancers and cause resistance to trastuzumab (Molina et al.,
2002; Scaltriti et al., 2007). Only a few cases of lung adenocarci-
noma were reported to harbor these mutations (Cappuzzo et al.,
2012). Two distinct mechanisms yield p95HER2 fragments: alter-
native mRNA translation from internal initiation codons (posi-
tions 611 and 678, respectively) and proteolytic shedding of the
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ectodomain of the full-length receptor (Christianson et al., 1998;
Anido et al., 2006). Strikingly, in vitro studies of the membrane-
anchored p95HER2 fragment known as 611-CTF (100–115 kDa)
revealed more rapid and acute activation of different signaling
pathways compared with the full-length receptor and the 648-CTF
fragment (Pedersen et al., 2009). Additionally, this hyperactive
p95HER2 fragment was shown to promote more aggressive and
metastatic breast cancer progression by induction of a specific gene
set (Pedersen et al., 2009). The pathological features attributed to
overexpression of 611-CTF are postulated to be a result of its short
extracellular domain, which contains five cysteines. Thus again,
constitutive generation of activated homodimers is assumed to
be maintained by intermolecular disulfide bonds (Pedersen et al.,
2009).

ERBB2 AS A THERAPEUTIC TARGET
Two different strategies for targeting ERBB2 have successfully
entered the clinic: antibodies directed against the extracellular
domain of the receptor, and small molecule TKIs acting on the
intracellular kinase domain.

The mechanism of action of monoclonal antibodies toward
ERBB2-overexpressing cancer cells include removal of ERBB2
from the cell surface by endocytosis to diminish intracellular
signaling, and induction of an immune system-mediated anti-
tumor response. Several ERBB2-directed monoclonal antibodies
have been developed, including trastuzumab and pertuzumab.
Whereas trastuzumab interacts with subdomain IV of the extra-
cellular domain (Cho et al., 2003), pertuzumab binds subdomain
II, which harbors the dimerization arm and thus inhibits recep-
tor dimerization (Franklin et al., 2004). Trastuzumab can also
be conjugated to DM1, an inhibitor of tubulin polymerization
derived from maytansine, to efficiently deliver DM1 to ERBB2-
overexpressing cancer cells (Lewis Phillips et al., 2008). Despite
promising preclinical data, clinical development of ertumaxomab,
a bispecific antibody capable to bind mature T cells and ERBB2,
was discontinued (Kiewe et al., 2006).

Small molecule TKIs are typically competitive inhibitors, pre-
venting ATP from binding to its natural site within the kinase
region due to the higher affinity of the TKI for the ATP-binding
pocket. ERBB family TKIs fall into two categories: reversible
inhibitors, like erlotinib, gefitinib, and lapatinib, that can be
released from the receptor; and irreversible inhibitors, such as afa-
tinib, neratinib, pelitinib, and dacomitinib, that covalently modify
the receptor. Although the in vitro efficacy of the irreversible
inhibitors was demonstrated to be superior to that of reversible
inhibitors, irreversible ERBB blockade requires biosynthesis for
receptor recovery, both a benefit and a drawback (Sanchez-Martin
and Pandiella, 2012).

From the oncologist’s point of view, irreversible inhibition is
highly desired for tumor control. However, ERBB signaling is also
vital to non-malignant tissues, and inhibition of ERBB2 is asso-
ciated with unwanted toxicities. For instance, trastuzumab can
provoke cardiotoxicity, especially when administered in combi-
nation with anthracyclines (Slamon et al., 2001). Thus, careful
evaluation is required prior to utilization of more potent irre-
versible inhibitors, which may result in increased toxicity. It is
possible that non-competitive inhibitors could serve as a valuable

alternative, particularly to combat eventual resistance to current
TKIs (Ocana and Pandiella, 2013).

Despite robust preclinical and encouraging clinical data in vari-
ous cancer types, a third class of antineoplastic agents active against
ERBB2, HSP90 inhibitors, has still not been approved by the FDA.
HSP90 is a chaperone that governs the conformational maturation
and folding of ERBB2. Inhibition of HSP90 leads to ubiquitylation
and proteasomal degradation of ERBB2 and its downstream sig-
naling partners. In a Phase II study, combination treatment with
trastuzumab and the HSP90 inhibitor tanespimycin (also known
as 17-AAG) was demonstrated to be active in patients with breast
cancer who had progressed on trastuzumab therapy (Modi et al.,
2011).

Given our current knowledge of the biology of activating
mutations of ERBB2, single agent antibody-based treatment
strategies may be of limited clinical relevance. In particular,
truncated p95HER2 fragments naturally evade antibody binding
due to the absence of the extracellular domain and binding of
trastuzumab to ectodomain- or kinase domain-mutated ERBB2
forms presumably fails to prevent ligand-mediated ERBB3-ERBB2
signaling (Agus et al., 2002). Our in vitro data furthermore indi-
cates that, whereas survival of Ba/F3 cells expressing mutants of
G309 and S310 was effectively inhibited upon trastuzumab treat-
ment, other ectodomain-mutants were less responsive (Greulich
et al., 2012). Further in vivo investigation will be required to deter-
mine response in a more physiological setting. Additionally, it
would be of interest to evaluate whether pertuzumab is able to
bind and impact survival of cancer cells expressing ectodomain-
mutants. It remains unclear whether combinatorial treatment of
trastuzumab and pertuzumab would be effective, given recent data
obtained from ERBB2-positive metastatic breast cancer (Baselga
et al., 2012).

Importantly, tissue-specific properties may hamper thera-
peutic success of antibody-based treatment schedules. Whereas
trastuzumab has recently been approved for the treatment
of metastatic gastric cancer in combination with cytotoxic
agents (Bang et al., 2010), similar studies targeting overex-
pressed/amplified ERBB2 in NSCLC (Gatzemeier et al., 2004;
Langer et al., 2004; Lara et al., 2004b; Zinner et al., 2004; Krug
et al., 2005; Herbst et al., 2007) and prostate cancer (Morris et al.,
2002; Lara et al., 2004a; Ziada et al., 2004) have reported mod-
est or disappointing results. It remains to be determined whether
this primary resistance to trastuzumab results from inaccessi-
bility of the receptor. For example, Nagy et al. (2005) found
that MUC4, a membrane-associated mucin, masked the extra-
cellular domain of ERBB2. In light of this finding, evaluation of
MUC4 overexpression as a possible mechanism for primary resis-
tance to trastuzumab in NSCLC should be done. Indeed, 80–85%
of NSCLCs express MUC4, and adeno- and adenosquamous-
carcinomas are characterized by high levels of MUC4 expression
(68 and 75%, respectively) (Kwon et al., 2007). Further analyses
by Karg et al. (2006) suggest that MUC4 and ERBB2 expression
are positively correlated and might be involved in the repression
of apoptosis and differentiation. However, primary resistance to
trastuzumab in prostate cancer may involve other mechanisms, as
MUC4 expression was not detectable in malignant prostate tissue
(Cozzi et al., 2005).
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The identification of activating mutations within the kinase
domain of ERBB2 offered an additional therapeutic possibility
(Stephens et al., 2004). EGFR-TKIs were shown to be ineffective
against ERBB2 mutations (Wang et al., 2006; Cappuzzo et al., 2007;
Engelman et al., 2007). By contrast, several ERBB2-directed TKIs
showed effective anti-proliferative properties. Despite promising
preclinical data with neratinib (HKI-272; an irreversible ERBB
inhibitor of EGFR and ERBB2) in the ERBB2-mutant NCI-H1781
cell line (Shimamura et al., 2006), clinical evaluation in patients
with EGFR-driven lung adenocarcinomas does not support use
of this inhibitor as a single agent (Wong et al., 2009; Sequist
et al., 2010). However, three of four patients harboring the rare
EGFR mutation G719X (X indicates substitution of glycine by
either serine, cysteine, or alanine) were found to respond to nera-
tinib (Sequist et al., 2010). Strikingly, neratinib showed promising
activity in ERBB2-overexpressing breast cancers and could poten-
tially be approved as a first-line therapy in locally advanced or
metastatic ERBB2-overexpressing breast cancers (Chow et al.,
2009; Limentani et al., 2009; Burstein et al., 2010; Awada et al.,
2013).

Preclinical activity for afatinib (BIBW2992), a second irre-
versible inhibitor of EGFR and ERBB2, was demonstrated in Ba/F3
cells expressing an ERBB2-mutant with an insertional mutation
at codon 776 and in transgenic lung cancer models (Li et al.,
2008). De Greve et al. (2012) recently provided the first evidence
of clinical benefit from treatment with afatinib. In this study,
patients were initially diagnosed with lung adenocarcinoma har-
boring exon 20 ERBB2 mutations and had progressed under var-
ious antineoplastic regimes. Three of five such identified patients
were eligible for treatment response evaluation and two patients
showed rapid metabolic response within 1–2 weeks. Although sin-
gle agent afatinib did not extend overall survival in patients with
advanced, metastatic NSCLC after failure of other therapeutic
options (Miller et al., 2012), it did prolong progression-free sur-
vival and it appears rational to investigate the synergistic effects
of afatinib and paclitaxel in this patient population. Furthermore,
our preclinical data utilizing an inducible mouse model of mutant
ERBB2 (A775_G776insYVMA) in lung epithelium revealed that
the combination of afatinib and an mTOR inhibitor (rapamycin)
were effective in mediating tumor shrinkage (Perera et al., 2009).
Thus, combinatorial treatment approaches are likely to positively
influence clinical outcome.

Dacomitinib (PF00299804), a third irreversible pan-ERBB
inhibitor, is currently under clinical investigation due to promis-
ing preclinical studies (Engelman et al., 2007; Janne et al., 2011).
The rationale for irreversible TKI development to fight ERBB2-
activating mutations originates from experience with reversible
TKIs targeting EGFR-activating lesions. Despite their initial
response, almost all of these cancers rapidly develop resistance and
result in little overall survival benefit (Maemondo et al., 2010). In
about half of these resistant cancers, a secondary mutation within
the catalytic cleft of the kinase domain is responsible for ineffective
reversible drug activity and subsequent oncogenic proliferation
(details in Section Mechanisms of Resistance).

Following discovery of activating mutations within the ERBB2
extracellular domain, we analyzed the growth inhibitory effects
of neratinib, afatinib, and lapatinib in Ba/F3 cells expressing

the variant mutants (Greulich et al., 2012). Effective abro-
gation of cell survival was observed for all three inhibitors;
however, the reversible inhibitor lapatinib was 5- to 10-fold
less effective than neratinib and afatinib. Cells expressing the
ectodomain-mutants were consistently more sensitive to these
inhibitors than cells expressing the kinase domain mutant,
A775_G776insYVMA.

Thus far, we focused our review on preclinical and clinical
studies evaluating the existing anti-ERBB2 agents on cancers har-
boring activating mutations of ERBB2 as single agents with or
without adjacent chemotherapy. However, the ERBB2 signaling
cascade plays a pivotal role in oncogenesis and obviously affects
a multitude of other key signaling nodes. Thus, combination of
different ERBB2-directed agents (antibody + TKI) or with other
targeted therapies (HSP90 inhibitors, MEK inhibitors, mTOR
inhibitors, etc.) present valid options to combat ERBB2-driven
oncogenesis.

Recent clinical data showed a significant overall survival ben-
efit of patients with heavily pretreated metastatic ERBB2-positive
breast cancer upon dual ERBB2 blockade through trastuzumab
and lapatinib (Blackwell et al., 2012). Further studies are war-
ranted to confirm the superiority of this cytotoxic agent-free
regiment in earlier clinical settings. Another interesting treatment
approach of synergistic efficacy was presented by Garcia-Garcia
et al. (2012). The authors analyzed five different cell lines resis-
tant to trastuzumab and lapatinib. The combination treatment
of lapatinib and INK-128, an mTOR inhibitor, induced increased
apoptosis in both in vitro and in vivo experiments (Garcia-Garcia
et al., 2012). Along the same line, a Phase I study of neratinib
and temsirolimus, an mTOR inhibitor, demonstrated encour-
aging antitumor activity in patients with ERBB2-overexpressing
NSCLCs and breast cancers (Gandhi et al., 2011).

Although activating mutations of ERBB2 were identified in var-
ious tumor types and several potential therapeutic options are at
hand, specific screening for these lesions has not been translated
into clinical routine yet.

MECHANISMS OF RESISTANCE
Despite the plethora of ERBB2 targeted compounds, we currently
lack a sound understanding why tumor shrinkage is short-lived
and only a relatively small percentage of patients benefit from
these therapies. Major mechanisms of primary and acquired resis-
tance to anti-ERBB therapeutics include (reviewed in Tortora,
2011): (1) alteration of the extracellular domain, including mis-
sense substitutions to impede epitope recognition, masking of epi-
topes, or expression of ectodomain-truncated ERBB2 fragments;
(2) second-site mutations in the RTK domain; (3) overexpres-
sion of alternative ERBB ligands or receptors to counteract for
receptor inhibition; (4) alternative signaling from other receptors
such as the insulin-like growth factor-1 receptor (IGF1R) or MET;
(5) aberrant signaling caused by downregulation (p27) or loss
(PTEN) of downstream controllers; and (6) aberrant activation
of secondary downstream growth and survival pathways, such as
Ras-Raf-MAPK, PI3K/Akt/mTOR.

Retrospective studies on tumors expressing truncated
p95HER2 fragments revealed that these tend to be resistant to any
current therapeutic antibody approach as the required epitopes
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are missing (Scaltriti et al., 2007; Sperinde et al., 2010). However,
two independent groups recently generated monoclonal antibod-
ies that specifically recognize 611-CTF (Parra-Palau et al., 2010;
Sperinde et al., 2010). Conceivably, this novel diagnostic tool
is of valuable clinical relevance because it allows discrimina-
tion of which patients will benefit from antibody-based therapies
and which will be resistant. As the studies performed by Scal-
triti et al. (2010) convincingly demonstrated that treatment with
lapatinib effectively inhibits p95HER2, improved treatment strat-
ification is available for patients harboring this particular activat-
ing ERBB2 mutation. Regardless, caution is still warranted since
experiments by Xia et al. (2011) revealed that chronic lapatinib
treatment is capable of inducing nuclear expression of truncated
ERBB2, thereby escaping further therapeutic effectiveness. Addi-
tionally, formation of nuclear lapatinib-induced p95HER2 was
blocked upon proteasome inhibition (Figure 2) (Xia et al., 2011).
It remains to be tested whether this phenomenon is also rel-
evant if: (1) full-length ERBB2 is targeted, or (2) any of the
irreversible TKIs employs a similar strategy to evade antitumor
control.

Analogous to a commonly observed event during TKI treat-
ment of EGFR-driven lung adenocarcinomas, lapatinib appli-
cation was shown to induce secondary mutations within the
ERRB2 kinase domain consequently leading to TKI resistance.

In vitro analyses identified three point mutations, L755S, L755P,
and T798M to confer resistance to lapatinib (Kancha et al., 2011).
Threonine 798 is the ERBB2 “gatekeeper” residue that is located
at the periphery of the nucleotide-binding site of ERBB2 kinase
(Aertgeerts et al., 2011), and regulates access to a deep hydropho-
bic pocket in the active site (Schindler et al., 2000). This event
is analogous to replacement of threonine 790 with methionine
(T790M) in erlotinib-resistant lung adenocarcinoma. The gate-
keeper mutation enhances the affinity of the oncogenic form of
the receptor for ATP, allowing continued proliferation in the pres-
ence of the drug (Yun et al., 2008). The potential of irreversible
EGFR/ERBB2 inhibitors to overcome drug resistance due to gate-
keeper mutations was recently demonstrated in vitro and in vivo
(Kobayashi et al., 2005; Engelman et al., 2007; Minami et al., 2007;
Li et al., 2008; Zhou et al., 2009).

CONCLUDING REMARKS
During the past decades, the ERBB2 signaling cascade gained sig-
nificant importance in the oncogenesis of many tumor types.
The discovery of primary activating mutations and the emer-
gence of acquired secondary mutations represent sophisticated
challenges for effective treatment approaches. Our next steps
in evaluating potential ERBB2-directed therapeutics clearly rely
on: adequate diagnostic properties for specific patient selection

FIGURE 2 | Mechanism of resistance upon continuous lapatinib
treatment. Depicted is a simplified schematic of lapatinib-induced resistance
toward current anti-ERBB2 therapeutics as identified by Xia et al. (2011).
Continuous inhibition of 611-CTF with lapatinib induces nuclear p95HER2L

expression (1). Trastuzumab and lapatinib are ineffective in targeting nuclear
p95HER2L, thereby failing to control oncogenic proliferation (2). As formation
of p95HER2L potentially depends on proteasomal processing, proteasome
inhibition effectively prevents p95HER2L emergence (3).
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and identification of tissue-specific mechanisms of resistance to
initiate well-designed clinical trials of combinational treatment
strategies.
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