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Abstract

In materials systems with flat energy bands and limited disorder, interactions among

electrons dominate and can dramatically alter physical behavior. Two-dimensional electron

gases (2DEGs) offer excellent platforms to study these effects because the kinetic energy of

the electrons is effectively quenched by a perpendicular magnetic field. The recent discovery

of graphene, a two-dimensional form of carbon, has opened the door for further exploration

into many-body phenomena. Graphene, unlike conventional 2DEGs, has fourfold degenerate

electronic states due to its spin and valley degrees of freedom. This thesis describes several

experiments that show how these underlying symmetries combine with electron-electron

interactions to produce novel and tunable correlated electronic phases of matter.

We perform transport measurements of bilayer graphene flakes that are suspended

above the substrate to minimize disorder. The data reveal full lifting of the degeneracy of the

lowest Landau level (LL) due to electron-electron interactions as well as insulating behavior

at the charge neutrality point. Using a scanning single-electron transistor (SET) to mea-

sure the local electronic compressibility, we quantitatively explore these broken-symmetry

quantum Hall states as a function of magnetic field. Surprisingly, the measurements also

reveal a correlated phase at zero electric and magnetic field.

When applied to suspended monolayer graphene, the high SET sensitivity and low

disorder afforded by local measurements combine to reveal a multitude of fractional quantum
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Hall (FQH) states whose sequence differs from that in conventional 2DEGs. This unique

pattern reflects the spin and valley degeneracies in graphene, and changing the magnetic

field leads to a series of phase transitions between FQH states with different spin and/or

valley polarization. We also perform compressibility measurements of a bilayer graphene

sample on boron nitride that show an electron-hole asymmetric pattern of FQH states.

Finally, we conduct local compressibility measurements that reveal changes in behavior

near a monolayer-bilayer graphene interface. These preliminary findings suggest that the

energy gap at the charge neutrality point closes where the two sides meet, and they highlight

the possibility of locally tuning the band structure in graphene systems.
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Chapter 1

Introduction

Although there are relatively few fundamental constituents of matter, the diversity of

physical behavior observed in condensed matter systems is staggering. Many of these dif-

ferences can be explained in terms of the interaction between an individual electron and the

surrounding lattice of atoms, and the tight binding model provides a straightforward pre-

scription to determine the resulting band structure. However, some of the most surprising

and remarkable physical phenomena, ranging from magnetism to superconductivity to the

fractional quantum Hall effect (FQHE), originate from interactions among electrons. Pre-

dicting the consequences of electron-electron interactions is very difficult, and many-body

effects can profoundly influence physical properties. This is especially true in systems with

flat energy bands and very little disorder, because electron-electron interactions provide the

dominant energy scale.

Historically, two-dimensional electron gases (2DEGs) have provided excellent platforms

to explore many-body effects. Subjecting electrons moving in two dimensions to a perpen-

dicular magnetic field leads to flat energy bands known as Landau levels (LLs), and mea-

suring these systems resulted in the discovery of the integer [1] and fractional [2] quantum

1
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Hall effects. Recently, a new class of 2DEG based on atomically thin sheets of carbon atoms

has been experimentally realized [3], leading to a number of surprises and reinvigorating

the study of quantum Hall physics. This thesis describes several experiments that probe

how electron-electron interactions influence the behavior of carbon-based 2DEGs.

1.1 The Physics of Graphene

A wide variety of carbon allotropes are known to exist in nature: in addition to three-

dimensional diamond and graphite crystals, zero-dimensional fullerenes and one-dimensional

carbon nanotubes have also generated significant interest. Although graphite is composed

of atomically thin layers of carbon known as graphene, individual crystalline sheets were not

expected to be physically stable [4], and the concept of graphene was originally used only as

a theoretical tool to understand the band structure of graphite and carbon nanotubes. In

2004, however, Kostya Novoselov and Andre Geim discovered a method to isolate individual

graphene layers on Si substrates capped with SiO2 [3].

Graphene is made up of carbon atoms arranged in a hexagonal lattice with a two-atom

basis (Fig. 1.1), resulting in a honeycomb structure with a nearest-neighbor separation

of 1.42 Å and a lattice constant a = 2.46 Å. Although the carbon atoms are physically

indistinguishable, it is convenient to label the two sublattices A and B. Each carbon atom

has sp2-hybridized bonds with three nearest neighbors of the opposite sublattice. The fourth

valence electron of each atom occupies a pz orbital orthogonal to the graphene plane, and

these electrons are connected in a delocalized network of π bonds.

1.1.1 Band structure

Performing a tight-binding calculation on the graphene lattice that only takes into

account the π bonds and assumes nearest neighbor hopping γ0 ≈ 3 eV leads to the dispersion

2
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1.42 Å

a1

a2

Figure 1.1: Graphene schematic, with the red and blue spheres representing sublattices A
and B, respectively, and the black lines representing the bonds between atoms. The distance
between carbon atoms and lattice vectors a1 and a2 are also labeled.

E = ±γ0

√
3 + 2cos[pya] + 4cos[

1

2
pya]cos[

√
3

2
pxa], (1.1)

where p is the momentum and px, py are its components [5]. The graphene first Brillouin

zone is hexagonal, and the band structure associated with Eq. 1.1 is shown in Fig. 1.2. It is

characterized by low-energy cones, known as Dirac cones, with linear dispersion E = h̄vF |k|,

where h̄ is Planck’s constant divided by 2π, vF ≈ 106 m/s is the Fermi velocity of the charge

carriers, and k is the momentum relative to the K or K’ points, which occur at the corners

of the first Brillouin zone. The valence and conduction bands meet at exactly the Fermi

energy and are electron-hole symmetric. Although there are six Dirac cones, only two are

inequivalent (the others are related by reciprocal lattice vectors), and they are time-reversed

counterparts known as valleys K and K’.

The low-energy Hamiltonian of graphene can be conveniently written as

H = h̄vF

⎛
⎜⎝ 0 kx − iky

kx + iky 0

⎞
⎟⎠ = h̄vFσ · k. (1.2)
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Figure 1.2: (a) First Brillouin zone of graphene, with high symmetry points labeled and
reciprocal lattice vectors bi shown. (b) The band structure of graphene. At low energies,
the dispersion is linear and electron-hole symmetric, with the valence and conduction bands
meeting at the Fermi energy.

Above, σ is a vector of the σx and σy Pauli matrices, and the Hamiltonian is expressed in

the basis Ψ = (ψA, ψB) of the sublattices for valley K (their order is reversed for valley K’).

Eq. 1.2 has the same form as the Dirac equation for relativistic spin-1/2 particles, except

that the Fermi velocity replaces the speed of light and the sublattice ‘pseudospin’ replaces

real spin. The charge carriers in graphene therefore behave as massless Dirac fermions.

Graphene also has the special property that the momentum of its charge carriers relative

to the K and K’ points is linked to the sublattice degree of freedom, as illustrated in Fig.

1.3. The pseudospin relation is apparent from the wavefunction (again, for valley K)

Ψ =
1√
2

⎛
⎜⎝e−iθ/2

±eiθ/2

⎞
⎟⎠ , (1.3)

where θ is the angle of the momentum and ± refers to electrons (holes) [6]. Rotating θ by

2π adds an overall minus sign to Ψ, and this corresponds to a Berry’s phase of π, which has

important consequences in a magnetic field.
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Valley K Valley K’

Figure 1.3: Dirac cones, with color representing the sublattice pseudospin. The colored
arrows point in the direction of pseudospin, which is parallel (antiparallel) to the momentum
for electrons in valley K (K’). The relation between pseudospin and momentum is opposite
for electrons and holes.

1.1.2 Bilayer graphene

Bilayer graphene is a close relative of monolayer graphene, but it nonetheless exhibits

starkly different physical properties. Its most common form is made by stacking two in-

dividual graphene sheets with 3.35 Å separation such that the atoms of one sublattice in

the upper layer sit directly above atoms belonging to the other sublattice in the lower layer

(Fig. 1.4). Because bilayer graphene has a four-atom basis, there are four energy bands

to consider. However, only two are relevant at low energies because the nearest neighbor

atoms in opposite layers hybridize to form bonding and antibonding states which are pushed

away from the Fermi energy by the interlayer hopping energy scale γ1 ≈ 0.4 eV. Figure 1.5a

shows a linecut of the resulting four-band dispersion around the K point.

To lowest order, the low-energy Hamiltonian of bilayer graphene is given by

H =

⎛
⎜⎝ U/2 h̄2(kx − iky)

2/2m∗

h̄2(kx + iky)
2/2m∗ −U/2

⎞
⎟⎠ , (1.4)

where m∗ ≈ 0.042me is the effective mass of the charge carriers, me is the electron mass,

and U is the interlayer potential difference (U = 0 for intrinsic bilayer graphene) [7]. Like
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Figure 1.4: Schematic representation of Bernal-stacked bilayer graphene. Red and blue
spheres represent the two sublattices of each layer, and the black lines are the nearest-
neighbor in-plane bonds. Several hopping parameters γi are labeled.
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Figure 1.5: The band structure of bilayer graphene to lowest order, with layer symmetry
(a), or including an interlayer potential difference equal to γ1 (b). The low-energy (hy-
bridized) bands are shown in red (blue). (c) Like monolayer graphene, there is a pseudospin-
momentum relation, but it winds twice as quickly as in monolayers. Color represents the
pseudospin, whose direction is marked with arrows at a few points.

6



Chapter 1: Introduction

monolayers, the low-energy states of bilayer graphene are centered around the K and K’

points of the first Brillouin zone, and there is a twofold valley degeneracy. However, the

dispersion is parabolic to lowest order at low energies, and although the charge carriers are

chiral, the pseudospin rotates twice as fast as for monolayers (Fig. 1.5c), yielding a Berry’s

phase of 2π. The charge carriers in bilayer graphene are massive Dirac fermions.

Higher-order hopping terms (Fig. 1.4) slightly modify the band structure described

above. Incorporating γ3 ≈ 0.3 eV generates so-called trigonal warping, which adds a term

to the Hamiltonian similar to that of monolayer graphene [7]. This introduces four Dirac

cones at low energies, one centered at the K (or K’) point, and the other three offset in

momentum so that the angles between them are 120◦. Trigonal warping is relevant at carrier

densities below about 1011 cm−2 [7]. The γ4 hopping is expected to be about an order of

magnitude smaller, but it leads to a slight increase in the mass of holes relative to that of

electrons [8].

Even more interesting is the ability to modify the band structure of bilayer graphene

by applying a perpendicular electric field [9–11]. This leads to a tunable band gap (Fig.

1.5b) whose magnitude is controlled by the magnitude of the electric field, which breaks

layer (pseudospin) symmetry.

1.2 2DEGs in a Magnetic Field

When a perpendicular magnetic field B is applied to a 2DEG, the band structure

changes dramatically. The effect of the magnetic field can be incorporated by making the

transformation p → p+ eA, where A is the vector potential and e is the absolute value of

the electron charge. For non-relativistic 2DEGs with parabolic dispersion, this leads to a

Hamiltonian analogous to a quantum harmonic oscillator [12]. The resulting energy levels
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Figure 1.6: Landau levels in the limit of vanishing disorder (a) and including disorder (b).
Dark blue regions correspond to extended states, which carry current across the sample.
The cyan regions represent states that are localized in potential hills and valleys induced by
disorder. (c) Schematic of the Hall conductivity and longitudinal resistivity in the quantum
Hall regime. Plateaus in σxy and zeros in ρxx occur as the localized states are populated.

EN = h̄ωc(N + 1/2), known as Landau levels (LLs) (Fig. 1.6a), each have a degeneracy of

eB/h per unit area, where N is the orbital index and ωc = eB/m∗ is the cyclotron frequency.

The nonrelativistic LL wavefunctions are given by a Gaussian prefactor multiplied by a

Hermite polynomial.

1.2.1 Quantum Hall effect (QHE)

In contrast to the classical Hall effect known in three-dimensional materials, von Klitz-

ing [1] found that for a 2DEG, the transverse (Hall) conductivity exhibits quantized plateaus

of σxy = νe2/h around integer filling factors ν = nh/eB, where n is the carrier density, and

that concomitant dips occur in the longitudinal resistivity ρxx (Fig. 1.6c). This surprising

behavior can be understood by considering the effect of (a small amount of) disorder on

the LLs described above, pictured in Fig. 1.6b. Electrons perform fast cyclotron motion

while drifting along equipotential contours. Near the center of a given LL, the electrons

populate extended states which percolate through the bulk of the sample and contribute to

conduction. In contrast, the broadened tails of the LLs involve electronic states localized

to the hills and valleys of the disorder potential. As these states are populated, conduction

only occurs through one-dimensional edge states formed when the confining potential at the
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sample boundary causes the Fermi energy to intersect LLs that are fully populated in the

bulk. No change in conductivity occurs as localized states are populated, giving rise to the

pleateaus in σxy, and the conductivity of each edge mode, G0 = e2/h, sets the value of the

quantization. Moreover, there are no low-energy states available for edge states to scatter

into, so the current flow is dissipationless in the longitudinal direction, producing ρxx = 0.

It is worthwhile to note that one electronic state is filled (per LL) for each flux quantum

φ0 = h/e of the applied field. Naively, one might expect that the size of the localized

states and the order in which they are populated is dictated solely by the single-particle

disorder potential landscape. However, in practice, the population of localized states is

strongly influenced by many-body screening [13]. As a consequence, localized states appear

as diagonal lines in the n-B plane with a slope that is identical to their parent quantum

Hall state. The density offsets of these states from their parents do not differ with magnetic

field or filling factor, provided that the energy gaps and quasiparticle charge associated with

the quantum Hall states have comparable magnitude.

1.2.2 QHE in Graphene

The quantum Hall effect in graphene is markedly different from that observed in con-

ventional 2DEGs. In graphene, each electronic state has an additional fourfold degeneracy

due to the spin and valley degrees of freedom. The Berry’s phase of π adds to the phase ac-

cumulated by an electron performing cyclotron motion in a magnetic field, so the sequence

of quantum Hall states is shifted by a half integer, and there is a LL at zero energy. Taken

together, this means that the most prominent quantum Hall states in graphene occur at

ν = ±4(M + 1/2), where M is a non-negative integer [14, 15], as illustrated in Fig. 1.7a.

The linear dispersion in graphene also leads to different LL energies compared to those

in conventional 2DEGs. In graphene, the LL spectrum is given by EN = ±vF
√
2eh̄BN
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Figure 1.7: Quantum Hall effect in monolayer (a) and bilayer (b) graphene. Electron (blue)
and hole (orange) density of states are shown as shaded regions. Quantum Hall plateaus
occur at ν = ±4(M +1/2) for monolayers and ν = ±4(M +1) for bilayers. Figure adapted
from ref. [16].

[14, 15]. Because the LL separation scales as
√
B, the ratio between LL separation and

Coulomb energy is independent of magnetic field, unlike in conventional 2DEGs, where

increasing the magnetic field can be used to minimize LL mixing. The
√
N factor is also

distinct from conventional 2DEGs, whose LL spacing does not depend on orbital index.

Finally, it is worth noting that the lowest LL in graphene is special. It is made up of both

electrons and holes, and for valley K (K’), the wavefunction is localized only on sublattice

A (B). This is a specific case of the more general relation that for a particular valley, the

N th orbital wavefunction is given by ΨN = (ψN , ψN−1), where ψN is the N th nonrelativistic

LL orbital wavefunction. Similar to the zero-field case, the wavefunction components are

reversed for the opposite valley.
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1.2.3 QHE in Bilayer graphene

Bilayer graphene also supports a unique quantum Hall effect that is different from that

of both monolayers and conventional 2DEGs. In bilayer graphene, the Berry’s phase of

2π leads to the quantum Hall spectrum EN = h̄ωc

√
N(N − 1), and the most prominent

quantum Hall features occur at ν = ±4(M + 1) (Fig. 1.7b), where the factor of four is

again due to spin and valley symmetry [16]. As in monolayers, the lowest LL in bilayer

graphene is also centered at zero energy and contains both electrons and holes. It serves

as an especially rich area for exploration because it includes both the N = 0 and N = 1

orbital states, yielding an overall eightfold degeneracy [7].

Also similar to monolayer graphene, the wavefunctions of each layer have different

character for a given orbital index [7]. In the absence of an interlayer potential difference,

the wave function of the N th orbital state in a particular valley is given by ΨN = (ψN , ψN−2)

for N ≥ 2 (again, switching the valley reverses the components). In the lowest LL, the

wavefunctions are Ψ0 = (ψ0, 0) and Ψ1 = (ψ1, 0); the sublattice, valley, and layer degrees

of freedom are therefore all equivalent for this LL.

1.2.4 Symmetries in graphene

Compared to other 2DEGs, graphene possesses multiple underlying and intertwined

symmetries, and it is worthwhile to summarize them here. In real space, it has a sublattice

symmetry, which is typically referred to as pseudospin. In reciprocal space, there is a twofold

valley (sometimes called isospin) symmetry between the K and K’ points. Finally, electrons

also have an SU(2) spin symmetry, and this combines with the valley degeneracy to form

an approximate SU(4) symmetry. Bilayer graphene also hosts the same symmetries, except

that the sublattice pseudospin corresponds to the layer degree of freedom. In addition,
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the lowest LL in bilayer graphene exhibits an eightfold degeneracy because it includes the

lowest two orbital states.

Several different physical effects can lift the symmetries described above to varying

degrees. Perhaps the most straightforward is the Zeeman effect, which leads to a splitting

EZ = gμBBtot, where g ≈ 2 is the g factor and μB is the Bohr magneton. Sublattice

symmetry is robust in monolayer graphene (this is what protects the crossing bands at the

Dirac points), but it can be lifted by a perpendicular electric field in bilayer graphene. An

electric field also slightly breaks the N = 0, 1 orbital degeneracy by the amount Δorbit =

Uh̄ωc/γ1 [17]. Finally, electron-electron interactions can also introduce symmetry-breaking

terms, and these effects will be described in the following section.

1.3 Electron-Electron Interactions

Beyond the exotic single-particle behavior, graphene systems also provide a rich play-

ground in which to explore many-body effects due to their many inherent symmetries. In

this section, we explore the consequences of direct (Hartree) Coulomb repulsion

Edir =
1

2

∫
drdr′VC |φ1(r)|2|φ2(r

′)|2, (1.5)

and the exchange (Fock) energy

EX = −1

2

∫
drdr′VCφ

∗
1(r)φ1(r

′)φ∗
2(r

′)φ2(r), (1.6)

which is proportional to the overlap between electron wavefunctions for electrons with the

same internal degrees of freedom [18]. Here, VC = e2/4πε|r − r′| is the Coulomb potential,

ε is the dielectric constant of the environment, and φi are the single-particle wavefunctions

[18].

At zero field, wavefunction overlap can be loosely approximated to be proportional to

the distance between particles, given by n−1/2 [19]. Therefore, it becomes increasingly im-
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portant as particle density is decreased. The non-vanishing density of states at the charge

neutrality point in bilayer graphene make it especially susceptible to electron-electron in-

teractions at zero field, and various types of correlated states have been studied theoreti-

cally [20–29]. These states and their experimental signatures are described in more detail

in Chapter 3. In a magnetic field, the magnetic length lB =
√

h̄/eB is the relevant distance

to consider, and the Coulomb interaction energy scale is instead given by Ec = e2/4πεlB.

In general, electron-electron interactions therefore scale as
√
B and become increasingly

important as the magnetic field increases.

1.3.1 Quantum Hall ferromagnetism

In systems with at least two degenerate LLs, spontaneous symmetry breaking can

occur due to an exchange-driven phenomenon known as quantum Hall ferromagnetism [30].

When an integer number of LLs in the degenerate subspace are occupied, and in the limit of

vanishing disorder, it becomes favorable to polarize the electronic degree(s) of freedom. For

concreteness, we neglect Zeeman splitting below and use the electron spin as an example,

but the conclusions are valid for any degree of freedom and for multicomponent systems.

At its most basic level, quantum Hall ferromagnetism can be understood as a conse-

quence of the Pauli exclusion principle and Coulomb repulsion. Pauli exclusion guarantees

that two electrons with the same spin must have a fully antisymmetric spatial wavefunction.

Therefore, electrons with identical spin states will have minimal wavefunction overlap when

compared to unpolarized electrons, and they will experience less Coulomb repulsion. If the

corresponding gain in energy is larger than the cost in kinetic energy from occupying only

one spin in the disorder-broadened LL, then the spins will all spontaneously polarize and an

energy gap will develop. It is also worthwhile to note that the direction of polarization of the
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Figure 1.8: (a) Schematic diagram of the energy gaps that can arise in graphene from
electron-electron interactions. The order of splitting depends on both intrinsic parameters
and external fields; the canted antiferromagnet (CAF) ν = 0 phase is shown. (b) The
experimental signature of LL splitting is additional quantum Hall features at all integer
filling factors (red curve). The blue curve shows the single-particle behavior in graphene.

broken-symmetry state may be chosen by single-particle effects, but exchange enhancement

can still significantly increase the magnitude of the energy gap.

In graphene, any polarization in the SU(4) spin-valley subspace is possible (in princi-

ple), and for clean enough systems, quantum Hall states occur at all integer filling factors

(Fig. 1.8). The order parameters of these states have been the subject of intense theoreti-

cal [30–33] and experimental [34–41] study, with special focus placed on the insulating ν = 0

state at the charge neutrality point. In bilayer graphene, the N = 0 and N = 1 orbital

states can also spontaneously polarize, fully lifting the eightfold degeneracy and producing

quantum Hall plateaus at all integer multiples of e2/h. The nature of each broken-symmetry

state is discussed in more detail in Chapters 2, 3, and 6.

1.3.2 Valley anisotropy in graphene

Graphene systems are special in large part due to their approximate SU(4) spin and

valley symmetry. This is distinct from GaAs-based 2DEGs, which only have a spin de-

gree of freedom, and from other multicomponent 2DEGs such as Si and AlAs, where the
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large g factor and effective mass lead to spin polarization at the single-particle level. Al-

though Coulomb interactions in graphene are insensitive to spin and valley to first order,

there are terms, known as valley anisotropies, which arise from short-range electron-electron

[31,42–44] and electron-phonon interactions [43–46] and lead to symmetry-breaking effects

with important consequences for the nature of the ν = 0 state. The valley anisotropies

have characteristic energy scales given by e2a/l2B, so their magnitude scales linearly with

magnetic field, and they are significantly smaller than the SU(4)-symmetric Coulomb inter-

actions. Depending on the sign and magnitude of each of the anisotropy terms, which can

be strongly renormalized by LL mixing, several different broken-symmetry phases can be

realized. Experimentally, recent measurements indicate that the canted antiferromagnet is

favored at ν = 0 in monolayer and bilayer graphene [47, 48], in contrast to the expectation

of spin polarization in the absence of anisotropy terms.

1.3.3 Fractional quantum Hall effect (FQHE)

Incompressible quantum Hall states have also been observed at certain fractional filling

factors in especially clean 2DEGs [2]. This behavior is known as the fractional quantum

Hall effect (FQHE), and the strongest states follow the pattern

ν =
p

2mp± 1
, (1.7)

where m and p are integers. Soon after its experimental discovery, theoretical explanations

of the FQHE in terms of interacting electrons were put forward [49, 50]. Remarkably, the

quasiparticles associated with these states carry fractional charge [51], even though they

arise due to correlations between electrons.

An intuitive mean-field framework with which to understand the FQHE is the compos-

ite fermion (CF) model [52]. The basic idea is to transform a system of strongly interacting
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electrons into one of weakly interacting quasiparticles known as CFs. Within composite

fermion theory, electrons capture an even number 2m of flux quanta (strictly speaking,

vortices rather than flux quanta; the magnetic field is homogeneous), and these composite

particles feel a reduced magnetic field given by B∗ = B − 2mnφ0. CFs experience zero

effective magnetic field at ν = 1/2m, and any deviation from this filling factor acts as an

effective magnetic field B∗. Like electrons in a magnetic field, the CFs form a sequence of

flat energy bands separated by energy gaps. These are called Λ levels (ΛLs), and they are

CF analogues of LLs that can each hold nh/eB∗ CF states. As density or magnetic field

changes, the number of occupied ΛLs changes, and if the CF filling lies between ΛLs, a

quantum Hall state emerges. Integer numbers of ΛLs are occupied at exactly the fractional

filling factors from Eq. 1.7. Therefore, the FQHE of electrons can be understood to arise

from the integer quantum Hall effect of CFs.

Like electrons, composite fermions have internal degrees of freedom. In monolayer and

bilayer graphene, the spin, valley, and orbital index of CFs play an important role in both

the sequence and nature of the observed FQH states [53–55]. These effects are explored in

detail in Chapters 4-6.

1.4 Electronic Compressibility

Most studies of quantum Hall physics have focused on electronic transport due to the

simplicity of the measurements and their unambiguous experimental signatures. However,

transport is dominated by the extended states that carry electronic current, and sample in-

homogeneity can obscure underlying behavior in the presence of moderate disorder. Many

of the experiments in this thesis instead rely on locally measuring a different quantity, the

inverse electronic compressibility κ−1 = n2dμ/dn. Inverse compressibility (hereafter, we
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Figure 1.9: Schematic showing the relationship between disorder-broadened LLs, the chem-
ical potential, and the inverse compressibility. Incompressible peaks occur any time there
is an energy gap or a decreased density of states. Figure adapted from the original version
created by Jens Martin.

drop the prefactor and use this term to mean dμ/dn) provides a thermodynamic measure-

ment of the behavior in the bulk of the sample. It is especially well-suited to the study

of quantum Hall systems, where the bulk is insulating when the Fermi energy lies between

LLs, resulting in incompressible peaks, as shown in Fig. 1.9. Electronic compressibility

measurements serve as a powerful tool because the strongest signals occur when there is

an energy gap or decreased density of states, and the technique is sensitive to both single-

particle and many-body effects. Below, we describe the physics of single-electron transistors

(SETs) and the experimental implementation that we use to measure the local electronic

compressibility.

1.4.1 Single-electron transistor (SET)

A single-electron transistor consists of a quantum dot (the ‘island’) separated by tunnel

junctions to source and drain electrodes. The energies of the electronic states on the island

can be controlled by capacitive coupling Cg to a nearby gate. Their spacing is determined by

two factors: the energies of the quantum dot eigenstates, and the charging energy Echg =

e2/2C, where C = Cs + Cd + Cg is the total capacitance to the source, drain, and gate

electrodes [56]. For metallic islands (this is the regime of the experiments in this thesis),

17



Chapter 1: Introduction

a b

c

1

-1

0

10.8

V
sd

 (m
V

)

Vg (V)
0.60.4

20-2 ISET (nA)

1

0.5
I S

E
T (

nA
)

1.5

d

10.8
Vg (V)

0.60.4

Figure 1.10: (a) Blockaded regime, in which the Fermi energy of the leads does not allow
electrons to hop onto or off of the island (black arrows) at low temperature. (b) Conducting
regime, in which an electron can hop onto the island from the source and off of it onto the
drain. (c) Current as a function of source-drain bias Vsd and gate voltage Vg. Coulomb
diamonds of low current are visible at low Vsd. (d) Current through the SET at Vsd =
0.55 V as a function of gate voltage showing Coulomb blockade oscillations. Each oscillation
corresponds to changing the charge on the island by one electron.

the energy levels of the quantum dot can be ignored, and the behavior is dominated by the

charging energy associated with adding or removing an electron from the island.

If the temperature is lower than the charging energy, then the passage of current from

source to drain is either allowed or blocked, depending on the relative Fermi energies of

each component. The two key cases are schematically illustrated in Figs. 1.10a,b. When an

electronic state is aligned with the Fermi energies of the electrodes such that an electron

can both hop from the source to the island and from the island to the drain, the SET is

conducting. In contrast, if the temperature and source-drain bias are too small to allow one

of these steps, current is blocked, a phenomenon known as Coulomb blockade.

18



Chapter 1: Introduction

Alternatively, if we assume that charge is quantized, this behavior can be described in

terms of the free energy of electrons on the island, a parabola given by

E(Q) = (Q)2/2C −QV, (1.8)

where V is the external potential felt by the SET [56]. The minimum of this parabola

occurs when Q = CV ; when this charge corresponds to an integer number of electrons,

the charge on the island is fixed and current cannot flow. In contrast, if Q corresponds

to a half-integer, both Q − e/2 and Q + e/2 are degenerate in energy, so the number of

electrons on the island can fluctuate, and current can flow. The current through the SET is

therefore an oscillatory function of the external voltage (Figs. 1.10c,d), and each full period

corresponds to adding an extra electron to the island. Measuring the current through the

SET then acts as an especially sensitive measure of the local electrostatic potential.

1.4.2 Measurement setup

The measurement configuration that we use to determine inverse compressibility is

based on a technique originally developed by Eisenstein [19, 57]. In contrast with earlier

capacitive techniques, which suffered from a comparatively small and difficult-to-quantify

signal due to the background geometric capacitance, we use a field-penetration technique

in which a third component (the SET) is used to measure the electric field that penetrates

through a 2DEG of interest in response to a change in gate voltage.

We hold the electrochemical potential Φ = μ+ eV of the sample fixed. In equilibrium,

this means that any changes in the chemical potential μ of the sample induce corresponding

changes in the electrostatic potential V , and we can therefore use the SET to measure the

chemical potential. Changing the gate voltage controls the charge density of the sample,

and monitoring the response of current through the SET as a function of gate voltage allows

us to determine the inverse compressibility dμ/dn.
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The detailed measurement schematic is illustrated in Fig. 3.1a, as well as several other

figures throughout the thesis, so it is not reproduced here. We apply a small (few mV) bias

VSET across the SET, and monitor the output current ISET after it goes through a current

amplifier. We control the carrier density of the sample using a dc voltage applied to the back

gate Vbg, and we also add a small ac excitation to mitigate low-frequency noise. Monitoring

the SET current response Ibg to the the ac back gate excitation and normalizing it by the

slope of the Coulomb blockade oscillation allows us to extract the inverse compressibility,

dμ/dn. We simultaneously measure this slope by monitoring the current response I2D of

the SET to an ac excitation V2D between tip and sample. Finally, in order to minimize

doping of the sample caused by the tip, we also apply a dc tip-sample bias to account for

the work function difference between the two materials. Taken together, this scheme probes

dμ/dn:

dIbg
dVbg

/
dI2D
dV2D

=
C

e

dIbg
dn

dV2D

dI2D
= −C

e2
dμ

dn
(1.9)

We use a feedback circuit to maintain the current at the maximum sensitivity point of

the Coulomb blockade oscillation. This involves changing V2D to compensate any change in

μ while maintaining (Vbg−V2D). Monitoring V2D therefore provides a direct dc measurement

of μ(n). While noisier than the ac technique, the higher frequency associated with the latter

causes artificial enhancement of dμ/dn if the sample is very resistive, because the sample

cannot fully charge.

The measurements presented in this thesis were performed in a scanning SET micro-

scope in which an SET is evaporated on a quartz rod and is mounted on a scanning probe

microscope head. Tip fabrication details, as well as other tips and tricks for operation are

provided in Appendix B.
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1.5 Outline of This Thesis

The remainder of this thesis is grouped into several major themes. Chapters 2 and 3

describe electronic transport and compressibility measurements of broken-symmetry integer

quantum Hall states in suspended bilayer graphene. Chapter 3 also presents evidence for

a correlated electronic state at zero electric and magnetic field. Chapters 4 and 5 discuss

scanning SET measurements that illustrate the impact of spin and valley symmetry on

FQH states in suspended monolayer graphene. In Chapter 6, we describe compressibility

measurements of FQH states in bilayer graphene on boron nitride. Finally, Chapter 7

presents preliminary results regarding the behavior at the interface between monolayer and

bilayer graphene. Sample and SET fabrication details are included as Appendices A and B.
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Chapter 2

Broken-Symmetry States and

Divergent Resistance in Suspended

Bilayer Graphene

Monolayer and bilayer graphene have generated tremendous excitement, owing to their

unique and potentially useful electronic properties [6]. Suspending single-layer graphene

flakes above the substrate [58,59] has been shown to greatly improve sample quality, yielding

high-mobility devices with little charge inhomogeneity. Here we report the fabrication of

suspended bilayer graphene devices with very little disorder. We observe quantum Hall

states that are fully quantized at a magnetic field of 0.2 T, as well as broken-symmetry

states at intermediate filling factors ν = 0,±1,±2, and ±3. In the ν = 0 state, the devices

show extremely high magnetoresistance that scales as magnetic field divided by temperature.

This resistance is predominantly affected by the perpendicular component of the applied

field, and the extracted energy gap is significantly larger than expected for Zeeman splitting.
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These findings indicate that the broken-symmetry states arise from many-body interactions

and underscore the important role that Coulomb interactions play in bilayer graphene.

2.1 Introduction

The linear dispersion of graphene near its Fermi energy gives rise to low-energy excita-

tions that behave as massless Dirac fermions [6]. These quasiparticles show an anomalous

integer quantum Hall effect [14, 15] in which the Hall conductivity is quantized at values

of σxy = νe2/h for filling factors ν = ±4(M + 1/2). Here, M is a non-negative integer,

e is the electron charge, h is Planck’s constant, and the factor of four is due to spin and

valley degeneracy. Recent measurements [38, 39] of graphene monolayers in high magnetic

field B have revealed broken-symmetry quantum Hall states at ν = 0,±1, and ±4, which

have been proposed to arise from quantum Hall ferromagnetism [30, 31] or the formation

of excitonic energy gaps [32, 33]. The ν = 0 state has received particular attention owing

to contradictory experimental observations. Some samples show large magnetoresistance

of ∼105 − 107 Ω near the charge-neutrality point [34–37], and this behavior has been as-

cribed to the opening of a spin gap [34], the approach of a field-induced Kosterlitz-Thouless

transition to an insulating state [35,36] or the formation of a collective insulator [37]. Oth-

ers, however, report resistance of only ∼104 Ω [38–40], and attribute their findings to the

existence of spin-polarized counterpropagating edge modes [38, 40].

Although experimental investigations of broken-symmetry quantum Hall states have

so far focused only on graphene monolayers, recent theoretical studies have investigated

excitonic condensation [60] and quantum Hall ferromagnetism [17] in bilayer graphene and

the resultant ground states at intermediate filling factors [61]. The physics is richer in

bilayers owing to an extra twofold orbital degeneracy in the Landau level (LL) spectrum [16],
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which leads to an eightfold-degenerate LL at zero energy and a corresponding step of 8e2/h

in σxy. It has been shown both theoretically [7] and experimentally [10,11] that a potential

difference between the two layers opens an energy gap, leading to a plateau in σxy at

ν = 0, but no other broken-symmetry states have been observed. Here we report the

fabrication of high-quality suspended bilayer graphene devices (Figs. 2.1a,b) that show full

splitting of the eightfold-degenerate zero-energy LL. The ν = 0 state emerges at B ≈ 0.1 T

and is characterized by an extremely large resistance that increases exponentially with the

perpendicular component of B. The |ν| = 2 states emerge at B = 0.7 T, and all symmetries

are broken for B > 3 T.

2.2 Zero-Field Electronic Transport

We focus first on the behavior of the samples in zero magnetic field. Figure 2.1c shows

the resistivity ρ of two suspended bilayers as a function of carrier density n. Each sample

shows a sharp peak in ρ with a full-width at half-maximum on the order of 1010 cm−2,

comparable to that of suspended monolayer devices [58, 59] and an order of magnitude

smaller than that of unsuspended bilayers [62]. In all samples, the peak lies close to zero

back-gate voltage (|Vpeak| < 0.5 V), indicating that there is little extrinsic doping in our

devices. As a measure of sample cleanliness, we can estimate the magnitude of carrier-

density fluctuations δn on the basis of the carrier-density dependence of the conductivity

σ(n), shown in Fig. 2.1d. Near the charge-neutrality point, local variations in potential lead

to the formation of electron-hole puddles [63], and σ(n) is expected [64] to remain constant

in this regime because |n| < δn. In our suspended bilayers, δn is typically on the order of

1010 cm−2, and it reaches as low as 109 cm−2 in sample S3.
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Figure 2.1: Characterization of suspended bilayer samples S3 (blue) and S4 (red) at zero
magnetic field. (a) False-color scanning electron micrograph of a typical suspended bilayer
graphene flake. (b) Optical microscope image of several two-terminal suspended bilayer
samples in series. The scale bars are 1 μm. (c) Two-terminal resistivity ρ as a function
of carrier density n. Both samples show a pronounced peak in ρ with full-width at half-
maximum of 1.5× 1010 cm−2 and 2× 1010 cm−2, respectively, at temperature T = 450 mK.
(d) Electron and hole branches of the conductivity σ. The width of the plateau in σ,
marked by the arrows, indicates the magnitude of carrier-density fluctuations due to disor-
der. (e) Temperature dependence of the minimal conductivity σmin. Inset: Zoom-in on the
low-temperature behavior. For sample S4, disorder causes σmin to saturate for T < 2 K.
The decrease of σmin for sample S3 down to 450 mK indicates that it is cleaner, consistent
with the findings in (c) and (d). (f) Conductivity at T = 450 mK. For n > 2× 1011 cm−2,
the mobility is about 7,500 cm2 V−1 s−1. The pronounced dip in the conductivity at very
low densities may be enhanced by a disorder-induced gap.
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The temperature dependence of the minimum conductivity σmin (Fig. 2.1e) provides

a second method to estimate δn. At low temperatures, σmin is dominated by transport

through the electron-hole puddles rather than thermal effects, so we expect strong tem-

perature dependence only for kBT > Epud, where kB is Boltzmann’s constant and Epud is

the typical magnitude of the screened potential fluctuations responsible for electron-hole

puddles. For bilayer graphene, we can estimate Epud ≈ h2δn/8πm∗, where m∗ ≈ 0.042me

is the effective mass in bilayer graphene [7] (me is the electron mass). In sample S3,

σmin shows temperature dependence down to 450 mK, providing an upper bound of δn <

1.33 × 109 cm−2. In contrast, σmin saturates at approximately 2 K in sample S4, corre-

sponding to δn ≈ 6×109 cm−2. Both estimates are consistent with the estimate of disorder

obtained from σ(n). In both samples, σmin at 450 mK is a few times the conductance

quantum, in good agreement with theoretical predictions for its intrinsic limit [65, 66].

In contrast to the typically reported linear behavior in bilayer graphene, σ(n) is sub-

linear in suspended samples (Fig. 2.1f). If we assume mobility μ = (1/e)dσ/dn, then μ

typically ranges from 10,000 to 15,000 cm2 V−1 s−1 in our suspended bilayers at carrier

densities of 2-3 × 1011 cm−2. These numbers represent a modest improvement of approxi-

mately a factor of two over unsuspended bilayers, but it remains unclear why the mobility

is this low given the indications of sample quality discussed above, the low magnetic field

at which we observe quantum Hall plateaus and the high mobilities observed in suspended

monolayers [58,59]. It is predicted [64] that the mobility of bilayer graphene should be more

than an order of magnitude smaller than that of monolayer graphene. This discrepancy was

not observed in unsuspended samples [62], but mobility in such samples may be limited by

disorder associated with the substrate. It is also worthwhile to comment on the possibility

that the sharp dip in conductivity at low n is enhanced by a small energy gap that opens

owing to disorder-induced differences in carrier density between the top and bottom layers
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of the flake [17]. Differences in density of a few times 109 cm−2 would lead to an energy

gap of approximately 0.05 meV [10].

2.3 Broken-Symmetry Quantum Hall States

We next discuss the magnetic-field-dependent behavior of the samples. Figures 2.2a,b

show the conductance of sample S1 as a function of magnetic field and carrier density

G(n,B), and Fig. 2.3a highlights traces of G(n,B) at several representative magnetic fields.

The devices show the expected quantum Hall conductance plateaus at 4(M + 1)e2/h for

bilayer graphene, corresponding to filling factors ν = ±4(M + 1). Full quantization for

ν = ±4 occurs at very low B, indicative of the cleanliness of the devices. In sample S3, the

ν = ±4 plateaus are fully quantized at 0.2 T (Fig. 2.3b, inset).

As well as the expected behavior highlighted above, we observe quantum Hall plateaus

corresponding to intermediate filling factors ν = 0,±1,±2, and ±3. The |ν| = 2 (1) state

becomes apparent at 0.7 (2.7) T, and fully develops into a conductance plateau of 2e2/h

(e2/h) at 2.7 (7.3) T on the hole side (Figs. 2.2a and 2.3b). The |ν| = 3 state emerges at a

similar magnetic field to the |ν| = 1 state, but leaves the experimentally accessible regime

before it is fully quantized. Near the charge-neutrality point, a ν = 0 state with a very

large resistance that increases exponentially with B emerges at B ≈ 0.1 T. Measurements of

Hall bar devices show a corresponding plateau at σxy = 0 and rule out the possibility that

the large resistance arises from contact resistance between the graphene and the electrical

leads. We focus, however, on two-terminal devices because they are more homogeneous (see

Section 2.6).

The appearance of quantum Hall states at ν = 0,±1,±2, and ±3 indicates that the

eightfold degeneracy of the zero-energy LL in bilayer graphene is completely lifted. The
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Figure 2.2: Splitting of the eightfold-degenerate Landau level in suspended bilayers.
(a) Carrier-density and magnetic-field dependence of the two-terminal conductance G(n,B)
in sample S1 at T = 100 mK. Lines indicate filling factors |ν| = 8 and 4 (black), 3 (blue), 2
(purple), 1 (red) and 0 (green). The conversion between back-gate voltage and density for
each sample was calibrated using this type of measurement. (b) 3D rendering of G(n,B) in
sample S1. The numbers indicate filling factor. Broken-symmetry states at ν = 0,±1,±2,
and ±3 are clearly visible.

28



Chapter 2: Broken-Symmetry States and Divergent Resistance in Suspended Bilayer
Graphene

n (1011 cm-2)
2��

a
0.6 T
1.2 T
2.5 T

  5.0 T
10.0 T

3

2

1

4

8

0
0

3

2

1

4

0

B (T)
0 102 4 6 8

b

4.0

4.2

3.8
0 0.40.2

G
 (e

2 /h
)

Figure 2.3: Quantization of states as a function of magnetic field. (a) Line traces of G(n,B)
at various magnetic fields. Quantum Hall plateaus associated with the broken-symmetry
quantum Hall states are apparent. (b) Conductance traces taken along the dotted lines in
Fig. 2.2a. For sample S1, full quantization is observed at B = 0.4 T for ν = 4, B = 2.7 T
for ν = 2 and B = 7.3 T for ν = 1. Inset: For sample S3, quantization of the ν = 4 state is
reached for B = 0.2 T at T = 450 mK.
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magnetic field at which these effects emerge is over an order of magnitude smaller than

has been reported for monolayers [34–40]. Broken-symmetry states could arise from sev-

eral causes, including spin splitting due to the Zeeman effect [34], strain-induced lifting of

valley degeneracy [67], the opening of an energy gap due to a potential difference between

the two layers, or Coulomb interactions [17, 60]. In our samples, the proximity of Vpeak to

zero back-gate voltage makes it unlikely that we observe an energy gap due to chemical

doping [10]. It has recently been shown [68] that large-scale ripples appear in suspended

graphene membranes when they are cooled from 600 to 300 K, but room-temperature scan-

ning electron micrographs of our suspended flakes do not show prominent corrugations (Fig.

2.1a). The interaction energy due to Coulomb effects in bilayer graphene is expected to be

two orders of magnitude stronger than spin splitting caused by the Zeeman effect [17,60], so

the observed broken-symmetry states are unlikely to be associated with Zeeman splitting.

We therefore tentatively attribute the symmetry breaking to Coulomb interactions. The

order in which broken-symmetry states emerge in our samples is indeed consistent with the

expectations of Barlas et al., who predict [17] the largest energy gap for a spin-polarized

state at ν = 0, followed by spin- and valley-polarized states at |ν| = 2 and finally spin-,

valley- and LL-index-polarized states at |ν| = 1 and |ν| = 3.

2.4 Resistance at ν = 0

We now discuss in more detail the large magnetoresistance of the ν = 0 state. Figure

2.4 shows the maximum resistance of sample S3 in a small carrier density range around the

charge neutrality point as a function of magnetic field and temperature, Rmax(B, T ) at var-

ious temperatures between 450 mK and 24.5 K (see also Section 2.6). Rmax(B, T ) increases

by more than four orders of magnitude to 108 Ω (the de facto limit of our measurement
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Figure 2.4: Maximum resistance of sample S3 at the charge-neutrality point as a function
of magnetic field and temperature. Inset: Zoom-in on the low-temperature curves. We do
not observe saturation of the resistance for temperatures down to 450 mK.

capabilities) within a few Tesla for T < 5 K. This increase is significantly steeper than in

monolayers, where the reported [36] resistance reached only 40 MΩ at 30 T. The data do

not fit a Kosterlitz-Thouless-type transition, nor do the flakes show activated behavior over

the full temperature range of the measurements.

One of the main findings of this report is that Rmax(B, T ) scales as B/T , as plotted

in Fig. 2.5a. For T ≥ 1.9 K, the data collapse rather nicely onto one curve. At lower

temperatures, Rmax(B, T ) continues to increase with decreasing T , but it does not do so

as quickly as expected for B/T dependence (Fig. 2.5a, inset). This can be explained if we

assume that the LLs are broadened by disorder. In such a scenario, a constant offset in

magnetic field Boff is needed to resolve distinct quantum Hall states. Using Boff = 0.14 T,

in reasonable agreement with the field at which the |ν| = 4 states become fully quantized
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Figure 2.5: Scaling of the maximum resistance in the ν = 0 state. (a) Rmax(B, T ) of sample
S3 plotted versus B/T . The data collapse onto one curve for temperatures T > 1.9 K. Inset:
B/T scaling does not succeed for T < 1.9 K. (b) Rmax(B, T ) versus (B − Boff )/T . All
data collapse using Boff = 0.14 T, which arises owing to disorder in the bilayer. Inset:
Two-terminal conductance as a function of density and magnetic field. Boff coincides with
quantization of the ν = ±4 plateaus and the emergence of the ν = 0 state. (c) Rmax(B, T ) of
sample S2 as a function of total applied magnetic field for several angles α between sample
and field. Inset: Schematic showing the relative orientation between field and sample.
(d) Rmax(B, T ) as a function of the perpendicular component of the magnetic field for the
same angles as in (c). The resistance depends primarily on Bperp, contradicting the expected
behavior for a Zeeman gap.

32



Chapter 2: Broken-Symmetry States and Divergent Resistance in Suspended Bilayer
Graphene

and the ν = 0 resistance begins to diverge (Fig. 2.5b, inset), the Rmax(B, T ) data collapse

onto one curve for the entire temperature range when plotted against (B − Boff )/T (Fig.

2.5b).

We infer that an energy gap Δ/2 ≈ 0.3−0.9(B[T]) meV develops in an applied magnetic

field. The gap is several times larger than expected for Zeeman splitting, and tilted-field

experiments provide further evidence that the broken-symmetry states probably arise from

many-body effects rather than Zeeman splitting. Rmax(B, T ) is primarily dictated by the

perpendicular component of field Bperp (Figs. 2.5c,d), in stark disagreement with the be-

havior expected for a Zeeman gap. Moreover, at fixed Bperp, an increase in the parallel

component of the field reduces Rmax(B, T ) (Fig. 2.5d), indicating that the low-energy exci-

tations of the ν = 0 state are not skyrmionic spin flip in nature [61]. The linear dependence

of Δ on B is qualitatively different from what is expected for quantum Hall ferromagnetism

and magnetic catalysis, which both predict [17, 60, 69, 70] a gap that scales as B1/2. It is

worth noting, however, that early studies [71] of the exchange-enhanced spin gap at ν = 1

in GaAs samples also showed an energy gap that was linear in B. Coulomb interactions

are predicted [17,60] to generate Δ ∼ 100 meV for magnetic fields of a few Tesla, far larger

than we observe, but this discrepancy is probably due to disorder in our samples.

Acknowledgements

We would like to acknowledge discussions with L. S. Levitov, R. Nandkishore, D.

A. Abanin, A. H. Castro Neto, A. H. MacDonald, M. S. Rudner and S. Sachdev. We

acknowledge support from Harvard NSEC, the ONR MURI program and Harvard CNS, a

member of the NNIN, which is supported by the NSF.

33



Chapter 2: Broken-Symmetry States and Divergent Resistance in Suspended Bilayer
Graphene

0 10 150

2

4

6

8

n (109 cm-2)

B
 (T

)

3
5
7

9

Log(R	�
�

5-5

Figure 2.6: Resistance on a log scale as a function of magnetic field and carrier density at
4.5 K for sample S3 in a small density range around the charge neutrality point. Oscillations
in resistance that are several orders of magnitude are visible as carrier density n is varied.
These features occur at constant n as magnetic field is varied.

2.5 Methods

Fabrication of suspended bilayer graphene is described in Appendix A. Electronic trans-

port measurements were made on multiple samples using standard ac lock-in techniques with

excitation voltages below 100 μV, in either an ultrahigh-vacuum 3He cryostat or a dilution

refrigerator. The Si substrate serves as a global back gate, which is used to vary the carrier

density in the bilayer. Back-gate voltage is limited to |Vbg| < 10 V to avoid structural

collapse of suspended devices.

2.6 Supplementary Discussion

2.6.1 Resistance in the ν = 0 State

Figure 2.6 shows log[R(n,B, 4.5 K)] for sample S3 in a narrow range of carrier den-

sity around the charge neutrality point. For B > 4 T, R(n,B, 4.5 K) changes by several

orders of magnitude as n is varied within the highly resistive region. These oscillations are
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repeatable, and we find that the regions of relatively low and high resistance are approx-

imately constant in n. It is also apparent from Fig. 2.6 that the highly resistive region is

asymmetric: it extends to higher densities for electrons than for holes. Both the oscilla-

tions in R(n,B, 4.5 K) and the electron-hole asymmetry have been observed in multiple

samples. Their origin is unclear but disorder and/or systematic effects from the fabrication

process remain likely candidates. We also note that the position of the peak resistance

Rmax(B, T ) shifts slightly (< 50 mV) in back gate voltage Vbg as B is varied. We therefore

use Rmax(B, T ) rather than the resistance at a constant value of Vbg to follow the evolution

of the ν = 0 state.

In addition to the gap size Δ that we obtain from the behavior of Rmax(B, T ), we can

obtain an independent estimate by measuring the width in carrier density of the highly

resistive region and converting to energy according to E = h2n/8πm∗. As shown in Fig.

2.2a, the width of this region is approximately linear in B, as expected from the behavior of

Rmax(B, T ). Further, we obtain an estimate that Δ ≈ 0.7(B[T]) meV, in good agreement

with our prior findings from the measurements of Rmax(B, T ). We note, however, that this

second estimate of Δ is not fully rigorous because Landau level formation must be accounted

for at large magnetic fields, changing the effective conversion between energy and density.

2.6.2 Hall Bar Devices

In addition to two-terminal devices, we have also fabricated and measured samples in

the Hall bar geometry (Fig. 2.7a), which exhibit broken symmetry states at ν = 0,±1, and

±2. The ν = 0 state displays a large magnetoresistance in four-terminal measurements,

so we conclude that this behavior is due to the graphene and is not caused by contact

resistance. The longitudinal conductance σxx of sample S5 is plotted in Fig. 2.7b as a

function of ν. Zeros in σxx are clearly visible for ν = 0 and ν = ±4, and local minima
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Figure 2.7: Broken symmetry states in a Hall bar device. (a) Scanning electron micrograph
of a typical suspended bilayer graphene flake in the Hall bar geometry. Scale bar is 1 μm.
(b) Longitudinal conductance σxx as a function of filling factor ν at magnetic field B of
3 T (red), 6 T (green), and 12 T (blue). Zeros are apparent for ν = 0 and ±4, and local
minima occur at ν = ±1 and ±2. (c) Hall conductance σxy as a function of ν at the same
magnetic fields as in panel (b). The ν = 0 and ±4 plateaus are fully quantized. Other
broken symmetry quantum Hall states at ν = ±1 and ±2 are apparent, but their Hall
conductance is not quantized.
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(b)Two-terminal resistance of the outer two contacts as a function of B for sample S5 when
different pairs of inner contacts are shorted together. Differing behavior as a function of
shorted contact indicates sample inhomogeneity. Inset: schematic diagram of the Hall bar
device, with a highly resistive region labeled that is consistent with the data. Colors in the
main panel correspond to shorting of the pins connected by the same color in the inset.

are apparent for ν = ±1 and ±2. Figure 2.7c shows σxy vs. ν for the same flake. Again,

the ν = ±4 plateaus are well developed, and a plateau at σxy = 0 is also apparent at

ν = 0. Quantum Hall plateaus at other intermediate filling factors, however, do not reach

their fully quantized values for B < 6 T. We therefore conclude that devices in the Hall

bar geometry are more disordered than two-terminal devices, likely due to doping from the

closely spaced contacts.

The decrease in cleanliness is also evident in the resistance of sample S5 as a function

of magnetic field B, which shows a spike at B ≈ 4.5 T (Fig. 2.8a). By measuring the

two-terminal conductivity between the outer electrical contacts of the Hall bar design while

shorting different pairs of inner contacts, we are able to determine that this spike is caused
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by inhomogeneity between different portions of the flake. Shorting some pairs of inner

contacts does not affect the measured resistance, whereas shorting others allows the current

to bypass the highly resistive region of the flake so that the resistance at 6 T drops from

more than 108 Ω to less than 1 MΩ (Fig. 2.8b). This not only shows that the flake in

inhomogeneous, but also that the contact resistance of the electrical leads (at least that of

the two outer contacts) is small compared to the resistances that we measure, providing

further evidence that the highly resistive behavior is a fundamental property of the graphene

itself.
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Chapter 3

Local Compressibility

Measurements of Correlated States

in Suspended Bilayer Graphene

Bilayer graphene has attracted considerable interest due to the important role played

by many-body effects, particularly at low energies. Here we report local compressibility

measurements of a suspended graphene bilayer. We find that the energy gaps at filling

factors ν = ±4 do not vanish at low fields, but instead merge into an incompressible region

near the charge neutrality point at zero electric and magnetic field. These results indicate

the existence of a zero-field ordered state and are consistent with the formation of either

an anomalous quantum Hall state or a nematic phase with broken rotational symmetry. At

higher fields, we measure the intrinsic energy gaps of broken-symmetry states at ν = 0,±1,

and ±2, and find that they scale linearly with magnetic field, yet another manifestation of

the strong Coulomb interactions in bilayer graphene.
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3.1 Introduction

The low-energy dispersion of bilayer graphene can be described to first order by para-

bolic valence and conduction bands that meet at the Fermi energy [7]. The charge exci-

tations of this band structure are massive chiral fermions whose quantum Hall signature

differs from that of both monolayer graphene [14,15] and conventional two-dimensional elec-

tron gases. In the absence of interactions, the Landau level (LL) energy spectrum of bilayer

graphene is given by EN = ±h̄ωc

√
N(N − 1), where N is the orbital index, h̄ = h/2π (h

is Planck’s constant), ωc = eB/m∗ is the cyclotron frequency, e is the electronic charge, B

is the magnetic field, and m∗ is the effective mass [16]. Plateaus occur in Hall conductivity

at σxy = (M +1)e2/h, where the factor of four is due to spin and valley degeneracy and M

is a non-negative integer.

When magnetic field is large enough or disorder is sufficiently low, interaction effects

such as quantum Hall ferromagnetism [17] or magnetic catalysis [60] are predicted to open

energy gaps and give rise to additional Hall plateaus at intermediate filling factors. Recent

transport measurements have indeed revealed signatures of many-body effects in bilayer

graphene [72–75] and the dependence of resistance on temperature and magnetic field was

used to determine the magnitude of the corresponding energy gaps [72, 73]. More recently,

it has been theoretically predicted that spontaneously broken symmetries will occur in

bilayer graphene at zero magnetic field. The nature of the zero-field interacting phase

is still under intense theoretical debate, with suggestions of spontaneous transfer of charge

between layers [20,21], ferroelectric domains [22], nematic ordering [23,24], or the formation

of an anomalous Hall insulator [20, 21,25–28].

One way to distinguish between the various interacting states is to determine whether

an energy gap is present at B = 0. Transport measurements can provide an indication of
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gap size, but it is known that disorder can decrease the apparent transport gap relative to

the true intrinsic gap [11,76]. Therefore, it is desirable to directly probe electronic properties

in a thermodynamic measurement. Here, we report the use of a scanning single-electron

transistor (SET) [63, 77–79] to measure the local compressibility of a suspended bilayer

graphene flake. Investigations into the compressibility of bilayer graphene were recently

reported on unsuspended samples [8, 80] with particular attention paid to the gap induced

by an electric field, but disorder in these systems was too large to observe the broken-

symmetry states discussed above. Our measurement combines the high sensitivity afforded

by an SET with the low disorder of suspended devices, allowing us to study electronic

states that arise from Coulomb interactions and revealing the existence of an ordered state

at zero field. A schematic illustration of the measurement system is shown in Fig. 3.1a;

for a full description of the measurement technique, see refs. [77, 78] and Section 3.4. The

SET is capable of measuring changes in local electrostatic potential Φ with μV sensitivity.

As carrier density n is varied, changes in Φ directly reflect the changes in local chemical

potential μ of the bilayer flake, so the scanning SET tip can be used as a local probe of

inverse compressibility dμ/dn.

3.2 Energy Gaps and Widths of Quantum Hall States

In order to establish the measurement technique, we first describe the sample behavior

in the high-field regime. Figure 3.1b shows a typical measurement of inverse compressibility

taken at B = 2 T and a temperature of 450 mK. Peaks in dμ/dn, caused by the low density

of states between neighboring LLs, are apparent at filling factors ν = 0,±2, and ±4. The

observation of incompressible regions at ν = 0 and ±2 is indicative of broken symmetries

in the zero-energy LL, consistent with recent transport measurements [72–75]. The widths
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Figure 3.1: (a) Schematic illustration of the measurement setup. (b) Inverse compressibility
as a function of carrier density at B = 2 T, showing incompressible peaks at ν = 0,±2,
and ±4. (c) Chemical potential as a function of carrier density at B = 2 T, obtained by
integrating the data in (b). Steps in chemical potential occur at ν = 0,±2, and ±4 as
electrons begin to occupy the next Landau level. In panels (b) and (c), experimental data
are shown in blue and fits, based on a Lorentzian at each filling factor, are shown in red.
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electrons, circles to holes. Gap size at all filling factors is well described by linear scaling
with magnetic field, with fits given by the solid lines. (b) Incompressible peak width as a
function of magnetic field for ν = 0, ±2, ±4, and ±8 [same colors as in (a)]. Peak width
does not strongly depend on magnetic field.

of the incompressible regions provide a measure of disorder [79], and the full width at half

maximum at ν = 4 is on the order of 1010 cm−2. This is more than ten times smaller than

in unsuspended devices [62], and is consistent with estimates from transport measurements

of similar suspended bilayers [72].

Chemical potential as a function of carrier density, shown in Fig. 3.1c for B = 2 T,

is obtained either by direct measurement or by integrating curves similar to that shown in

Fig. 3.1b. The steps in μ(n) at each filling factor provide a measure of the energy gaps Δν

between neighboring LLs. We have measured gap size at ν = 0,±1,±2,±4, and ±8 as a

function of magnetic field, and the resulting data are shown in Fig. 3.2a. Consistent with the
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expected behavior of EN ,Δ4 and Δ8 scale linearly with magnetic field, with magnitudes

of 3.9 and 2.8 meV/T, respectively. This linear dependence confirms that the range of

carrier densities probed in our experiment lies within the energy regime where the bilayer

graphene band structure is well approximated by parabolic bands. It should be contrasted

with cyclotron resonance and compressibility studies performed at higher densities where

the hyperbolic nature of the dispersion was apparent from the sublinear dependence of gap

size on magnetic field [8, 81].

It is apparent from Fig. 3.2a that the energy gaps Δ0 and Δ2 corresponding to broken-

symmetry states at ν = 0 and ±2 also increase proportionally with B, and have gap sizes

of 1.7 and 1.2 meV/T, respectively. For ν = 0, the data show good agreement with the

activation energy Ea = Δ0/2 ≈ 0.3-0.9 meV/T measured in transport experiments [72],

as well as recent theoretical predictions [22, 82, 83]. For ν = 2, activation experiments

on unsuspended flakes [73] yielded significantly smaller gap sizes and suggested a B1/2

dependence for the gap, which seems to conflict with our measurement. However, the error

bars from the transport measurement are large enough that a linear fit to the data which

passes through the origin is not inconceivable. Linear scaling with B for interaction-driven

LLs is reasonable if one considers screening from higher orbital LLs, whose energy separation

is much smaller than the Coulomb energy for all experimentally relevant fields [22]. The

linear scaling of Δ0 and Δ2 can therefore be understood to result from the very strong

Coulomb interactions in bilayer graphene. Finally, the sample exhibits energy gaps of less

than 1 meV at ν = ±1 in high magnetic fields. Linear scaling with a slope of approximately

0.1 meV/T provides a reasonable fit to these data, but the gap sizes are too small to

conclusively rule out B1/2 dependence.

We can use the measured gap sizes to determine the effective mass of bilayer graphene.

Using the measured energy gaps for |ν| = 4 and 8 at each magnetic field and comparing

44



Chapter 3: Local Compressibility Measurements of Correlated States in Suspended Bilayer
Graphene

with the expression for EN , we obtain an estimate that m∗ = (0.042 ± .002)me, in good

agreement with Shubnikov de Haas measurements [10]. It is also important to note that for

samples with a single gate, density and electric field cannot be controlled independently, so

all gaps at nonzero filling factors are measured in an electric field. Changes in the effective

mass could result from deviations from the parabolic band structure or from an electric

field applied perpendicular to the flake [9, 10].

Figure 3.2b shows the widths of the incompressible regions at each filling factor as a

function of magnetic field. The peak at ν = 0 is significantly narrower than the others

(see also Fig. 3.1b), which may indicate that higher filling factors are subject to additional

sources of disorder that do not affect the ν = 0 state. One possible explanation for this

finding is the existence of variations in the effective magnetic field, which can be caused by

ripples or strain [84–86].

3.3 Correlated State at Zero Field

We now discuss the behavior of the sample at small magnetic fields. Figures 3.3a,b

show inverse compressibility as a function of density and magnetic field. We observe distinct

incompressible peaks corresponding to quantum Hall states at ν = ±4 that extend all

the way down to B = 0, where they merge into an incompressible region at the charge

neutrality point (Figs. 3.3a-c). Surprisingly, the ν = ±4 gaps do not vanish at low fields; in

fact, they increase with decreasing field below 0.2 T, as shown in Fig. 3.3d. The zero-field

incompressible peak has a width of approximately 1010 cm−2, and integration yields a step

in chemical potential of nearly 2 meV. This increase in chemical potential is too large to

be explained by a disorder-induced electric field, which would only lead [10] to gaps on the

order of 0.1 meV for charge inomogeneity of 1010 cm−2. We observe qualitatively similar
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Figure 3.3: (a) Inverse compressibility as a function of carrier density and magnetic field.
Incompressible peaks occur at ν = 0 and ±4. Below about 0.2 T, peak height along
ν = ±4 increases with decreasing field, culminating in an incompressible peak at zero field.
(b) Zoom-in on the low-field behavior of the sample, taken at a different location on the
flake from that in (a). (c) Line cuts of inverse compressibility along the red arrows shown
in panel (b) for magnetic fields between B = 0 and 0.175 T in steps of 0.035 T. Curves are
offset for clarity. Data are shown in blue, and the red curves are two-Lorentzian fits, except
for the zero-field fit, which is composed of only one Lorentzian. (d) Gap size at |ν| = 4
for electrons (green), holes (red), and their sum (cyan). Data for |B| > 0.03 T is based on
a two-Lorentzian fit. The blue circles at low field describe the jump in chemical potential
across the charge neutrality point, as modeled by a single Lorentzian fit. Solid black lines
correspond to Δ4 = 3.9(B[T]) meV.
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behavior at all positions along the flake (see Section 3.5). It is worthwhile to note that

the measurements give no indication of negative compressibility [87] at zero field, but are

consistent with more recent predictions [88].

To further elucidate the origin of the low-field incompressible behavior, we have per-

formed transport measurements on the same flake. Two-terminal resistance as a function

of carrier density and magnetic field is shown in Fig. 3.4a. Despite the relatively large jump

in chemical potential that we observe in compressibility measurements, the resistance near

the charge neutrality point at B = 0 is only a few kΩ. For comparison, we note that the

gap size of the ν = 0 state at B = 0.5 T is less than 1 meV, but even for this small gap, a

marked decrease in conductance is already apparent (Fig. 3.4c). Therefore, the formation

of an energy gap with conduction mediated by activation is an insufficient explanation for

the zero-field behavior that we observe. The derivative of conductance with respect to car-

rier density is plotted in Fig. 3.4b. Several sharp lines with the same slope as the ν = 4
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state are apparent, and these conductance fluctuations are caused by localized states in the

bilayer [89]. The localized states, which indicate the presence of an energy gap, persist all

the way to zero field.

The incompressible behavior and transport characteristics at B = 0 indicate the pres-

ence of an interacting state, in agreement with recent studies of dual-gated bilayers [90]. In

the limit of parabolic bands, the non-vanishing density of states at the charge neutrality

point means that even infinitesimally small electron-electron interactions can lead to corre-

lated states [20–28]. The existence of a zero-field incompressible peak and the fact that gap

size along ν = ±4 does not vanish at low fields are consistent with two proposed interacting

states, which we discuss below.

One proposal that is consistent with our measurements is the formation of an anomalous

Hall insulator at low electric and magnetic field [20,21,25–28]. In such a state, time-reversal

symmetry is spontaneously broken and domains form where the flake is at either ν = 4 or

ν = −4. It is reasonable that we observe incompressible behavior at both filling factors if we

assume that the SET is too large to resolve individual domains. In this scenario, the B = 0

conductance is dominated by edge state transport and should therefore remain at a few kΩ

per square, consistent with our findings. The fact that gap size along ν = ±4 increases

with decreasing field below about 0.2 T can be understood to arise from the competition

between the anomalous Hall phase and the standard quantum Hall gap [27,28].

So far, we have assumed parabolic bands and neglected trigonal warping. Trigonal

warping modifies the band structure of bilayer graphene so that four Dirac cones emerge

at low energies, leading to a 16−fold degenerate LL at zero energy for low magnetic fields.

Effects of trigonal warping should be apparent [7] at densities as high as 1011 cm−2, which

is well within the experimentally accessible regime due to the low disorder in the sample.

The results, however, cannot be explained by trigonal warping in the single-particle picture
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because the incompressible peaks at low magnetic field in Fig. 3.4a follow ν = ±4 rather

than ν = ±8. Recently, however, it was theoretically predicted [23,24] that electron-electron

interactions can break rotational symmetry and modify the dispersion into a nematic phase

that is characterized by two Dirac cones. In this scenario, one would expect incompressible

peaks along ν = ±4, with energy gaps that scale as Δν ∼ B1/2. This means that gap

size would remain relatively large at low fields, as we observe. In this picture, the zero-field

incompressible peak that we measure can be ascribed to the vanishing density of states, and

because of the gapless nature of the spectrum, the conductance should remain relatively

high, also consistent with our observations.
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3.4 Methods

Sample fabrication is described in Appendix A. The sample was measured in an ultra-

high vacuum scanning probe system with a 3He refrigerator. All measurements were per-

formed at 450 mK. Back gate voltage was limited to ±15 V to avoid collapse of the device.

Scanning probe tips were fabricated according to the procedure outlined in Appendix

B. The SET leads and island were all 19 nm thick. For the measurements described in

this chapter, tip size was approximately 150-200 nm and the tip was held between 50 and

200 nm above the flake. Compressibility measurements were performed using the ac and

dc techniques described in subsection 1.4.2, with the carrier density modulated by about

1.5× 109 cm−2.

Due to the finite sample size, the SET is also affected in both schemes by fringing

fields from the back gate [63,79], which give rise to a constant offset in dμ/dn. We account

for this parasitic capacitance by subtracting a constant value so that dμ/dn = 0 within

each LL. This is necessarily an overestimate, because it corresponds to a delta-function

representation of the LL, whereas real LLs are broadened by disorder. Therefore, the gap

sizes should be taken as lower limits. Incompressible peaks at each filling factor are fit with

a single Lorentzian, with amplitude and width as fitting parameters. The uncertainty in

effective mass is calculated by adding in quadrature the uncertainty at each filling factor,

as obtained by a linear regression.

3.5 Supplementary Discussion

3.5.1 Zero-field compressibility at large densities

Figure 3.5 shows the inverse compressibility of the sample at zero magnetic field, taken

over a larger density range and at a slightly different position along the flake. Similar to the

50



Chapter 3: Local Compressibility Measurements of Correlated States in Suspended Bilayer
Graphene

n  (1011 cm-2)

j
-1

0
2

m
/j

n 
 (1

0
 m

eV
 c

m
)

B = 0

0 1 2-1-2
0

0.2

0.4

0.6

0.8

Figure 3.5: Inverse compressibility as a function of carrier density at zero magnetic field. A
sharp peak near the charge neutrality point is apparent, consistent with the measurements
presented in the main portion of the paper. There is little variation in compressibility
outside the central peak.

measurements presented in the main portion of the paper, a sharp incompressible peak is

apparent at the charge neutrality point. As electron density is increased beyond this central

peak, little change in compressibility occurs over the entire measurement range. For holes,

inverse compressibility increases slightly as density is increased. The origin of this behavior

is unclear, and the change is an order of magnitude smaller than the negative compressibility

predicted by Kusminskiy et al. [87]. It also appears that the compressibility is somewhat

larger for holes than for electrons. Such behavior is consistent with the inclusion of the

γ4 hopping parameter, which increases the density of states for holes and decreases it for

electrons [8]. However, a non-negligible γ4 would also be expected to cause an asymmetry

between the energies of electron and hole Landau levels, which we do not observe.

3.5.2 Spatial scans at low magnetic field

It is apparent in Fig. 3.3 that the incompressible peak height and the gap sizes are

larger for holes than for electrons along |ν| = 4 at low magnetic fields. Figures 3.6a,b
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Figure 3.6: (a) Inverse compressibility as a function of carrier density and position along the
flake at 0.1 T. The incompressible peaks at ν = ±4 (centered at approximately ±1010 cm−2)
are consistently apparent, independent of position. The incompressible peak on the hole
side is consistently stronger than that on the electron side. Some variations in the density at
which the peaks occur is visible, providing an estimate of disorder. (b) Inverse compressibil-
ity as a function of carrier density and position along the flake at 0.2 T. The incompressible
peaks at ν = ±4 (centered at approximately ±2× 1010 cm−2) are again apparent along the
entire flake. The electron-hole asymmetry is also apparent at this field, and the ν = 0 peak
is just beginning to emerge.

show compressibility measurements taken as a function of density and position along the

flake at B = 0.1 and 0.2 T, respectively. These measurements show that the electron-hole

asymmetry is consistent across the entire width of the sample. It is also worthwhile to

note that the fluctuations in density at which the incompressible peaks occur can provide

another measure of the disorder in the sample. Consistent with estimates made by other

means, it appears that the charge inhomogeneity is less than 1010 cm−2.

3.5.3 Additional measures of ν = ±4 gap magnitude

Figures 3.7a,b show ‘slanted’ scans of inverse compressibility which follow a fixed carrier

density range surrounding filling factors ν = −4 and 4, respectively, at magnetic field

between 0 and 1 T. At low fields, the second |ν| = 4 peak and the ν = 0 peak are visible
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Figure 3.7: Inverse compressibility taken over a constant density range centered around
ν = −4 (a) and ν = 4 (b) as a function magnetic field. Data was taken at a slightly
different position and height compared to that presented in the main paper. In each case,
at low fields, the other |ν| = 4 peak is visible as well. Gap size along ν = −4 (c) and ν = 4
(d) as a function of magnetic field, as fit by a single Lorentzian. For B < 0.1 T, the gap
size may be an overestimate due the effect of the other |ν| = 4 incompressible peak.
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as well. These measurements were performed at slightly different positions and heights

compared to those presented in the paper. Figures 3.7c,d show the extracted gap size at

each respective filling factor as a function of magnetic field. We again observe that the gap

size along ν = ±4 does not vanish at low field, but increases with decreasing field below

0.2 T. For B > 0.2 T, gap size increases linearly with field, as expected. The qualitative

agreement between this dataset and that presented in the main paper provides a second

indication that our findings are not strongly dependent on position.

3.6 Epilogue

The nature and tunability of the broken-symmetry quantum Hall states and the zero-

field behavior discussed above have continued to attract significant theoretical and exper-

imental attention from many groups over the past several years. Concurrently with the

measurements described in this chapter, a suspended bilayer graphene sample with a sus-

pended top gate was fabricated to enable independent control of carrier density and electric

field [90]. Transport measurements on these dual-gated devices showed evidence for a phase

transition between two different types of insulating ν = 0 states, one stabilized at high

magnetic field, and the second favored by a large electric field. The strengths of other

broken-symmetry quantum Hall states also varied with electric field, and subsequent mea-

surements by other experimental groups showed similar behavior [91, 92].

Initially, Weitz et al. [90] identified the ν = 0 state at high electric field as layer-

polarized and the state at high magnetic field as spin-polarized. However, subsequent

theoretical calculations mapped out the phase diagram of possible order parameters, and

suggested that the experimental observations were best fit by a canted antiferromagnet at

low electric field rather than a spin-polarized state [44]. Recent experiments on dual-gated
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bilayer graphene indeed provide evidence for a canted antiferromagnet at large perpendicular

magnetic field that undergoes a second order phase transition to a spin-polarized state with

counter-propagating spin-polarized edge modes in a large parallel magnetic field [48].

In addition to the high-field broken-symmetry ν = 0 states, transport measurements

showed evidence of a third distinct weakly resistive phase at the charge neutrality point

in zero electric and magnetic field [90], similar to the low-field behavior described in this

chapter. Since these first observations, many other groups have also found evidence of a

state at zero magnetic field in bilayer graphene. However, the experimental signature has

varied from weakly resistive [90, 93, 94] to fully insulating [92], and some samples do not

show a phase transition as magnetic field is increased. Moreover, based on these different

observations, the zero-field state has been identified as a nematic state [93] or a layer

antiferromagnet [92], with other groups [90, 94] allowing for multiple possible candidate

states. Beyond the theoretical explanations discussed above, mechanical strain has been

suggested as a possible cause of the observed behavior [95], and others have sought to

explain the experimental differences in terms of different screening in different samples [29].

To date, the detailed nature of the zero-field state at the charge neutrality point in bilayer

graphene has not been resolved, and remains an active and exciting area of research.
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Chapter 4

Unconventional Sequence of

Fractional Quantum Hall States in

Suspended Graphene

Graphene provides a rich platform to study many-body effects, owing to its massless

chiral charge carriers and the fourfold degeneracy arising from their spin and valley degrees

of freedom. We use a scanning single-electron transistor to measure the local electronic

compressibility of suspended graphene, and we observe an unusual pattern of incompress-

ible fractional quantum Hall states that follows the standard composite fermion sequence

between filling factors ν = 0 and 1 but involves only even-numerator fractions between

ν = 1 and 2. We further investigate this surprising hierarchy by extracting the correspond-

ing energy gaps as a function of the magnetic field. The sequence and relative strengths

of the fractional quantum Hall states provide insight into the interplay between electronic

correlations and the inherent symmetries of graphene.
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4.1 Introduction

Application of a strong perpendicular magnetic field B to a two-dimensional electron

gas (2DEG) gives rise to flat energy bands called Landau levels (LLs), which normally

contain a total of eB/h states, where e is the electron charge and h is Planck’s constant. In

graphene, each of these states has an additional fourfold degeneracy resulting from the spin

and valley degrees of freedom, and the LLs possess an approximate SU(4) symmetry [30].

Incompressible quantum Hall states are formed when the Fermi energy lies between LLs.

In graphene, LLs are filled at filling factors ν = nh/eB = ±4(N + 1/2) in the absence of

electron-electron interactions [14,15,79], where n is the charge-carrier density and N is the

orbital index. In this expression, the quantum Hall sequence is shifted by a half-integer, a

distinctive signature that reflects the sublattice pseudospin of graphene.

When disorder is low and at high magnetic fields, Coulomb forces between electrons

become important, and many-body effects emerge. One example is the fractional quantum

Hall effect (FQHE), in which correlations between electrons generate excitations with frac-

tional charge at certain rational filling fractions [2,49,50,52]. Recently, the FQHE of Dirac

fermions has attracted considerable attention [33, 96–108]. In graphene, the low dielectric

constant and unusual band structure lead to FQH states with energy gaps that are larger

than in GaAs at the same field, particularly in the N = 1 LL [97, 101, 102]. Moreover, the

SU(4) symmetry of charge carriers in graphene could yield FQH states without analogs in

GaAs [98, 99, 105]. The FQHE was recently observed [58, 109, 110] in suspended graphene

samples at ν = 1/3 and 2/3, and transconductance fluctuations also showed evidence of a

state at ν = 2/5 [111]. Measurements of graphene on hexagonal boron nitride substrates [53]

revealed further FQH states at all multiples of ν = 1/3 up to 13/3, except at ν = 5/3. The

absence of a FQH state at ν = 5/3 might result from low-lying excitations associated with
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SU(2) or SU(4) symmetry, but alternate scenarios associated with disorder could not be

ruled out in earlier studies [53].

Here, we report local electronic compressibility measurements of a suspended graphene

flake performed with a scanning single-electron transistor (SET) (Fig. 4.1a) [77, 78]. By

modulating the carrier density and monitoring the resulting change in SET current, we

measure both the local chemical potential μ and the local inverse electronic compressibility

of the graphene flake (inverse compressibility κ−1 = n2dμ/dn, but hereafter we drop the

prefactor and use the term to mean dμ/dn). Therefore, our local technique provides a direct

thermodynamic measurement of bulk sample properties and is sensitive to weak effects that

may be obscured by disorder in global transport studies.

4.2 Fractional Quantum Hall (FQH) States

The inverse compressibility as a function of carrier density and magnetic field is shown

in Fig. 4.1b. At zero magnetic field, we observe an incompressible peak that arises from the

vanishing density of states at the charge neutrality point in graphene. For B > 0, strong

incompressible behavior occurs at ν = ±4(N + 1/2), confirming the monolayer nature of

our sample. In addition to the expected single-particle quantum Hall features, we observe

incompressible states at intermediate integer filling factors ν = 0, 1, 3, 4, 5, 7, 8, and 9.

These integer broken-symmetry states arise from interactions among electrons [39, 53, 110,

112] and are visible at fields well below 1 T, indicating the high quality of our sample. Most

intriguing, however, is the appearance of incompressible peaks at fractional filling factors,

the strongest of which emerge around B = 1 T. It is straightforward to distinguish FQH

states from oscillations in compressibility caused by localized states. Localized states occur

at a constant density offset from their parent quantum Hall state and are therefore parallel
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Figure 4.1: Measurement setup and Landau fan. (a) The SET is about 100 nm in size and
is held 50 to 150 nm above the graphene flake. The red arrow indicates the path of the
spatial scans in Fig. 4.4. V , voltage; I, current. (b) Inverse compressibility dμ/dn as a
function of carrier density n and magnetic field B. (c) Data from (b) plotted as a function
of filling factor ν. Vertical features correspond to quantum Hall states, whereas localized
states curve as the magnetic field is changed. Principal integer and FQH states are labeled
in (b) and (c). These panels share the same color scale.
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to lines of constant filling factor in the n-B plane [79]. When inverse compressibility is

plotted as a function of filling factor (Fig. 4.1c), localized states curve as the magnetic field

is changed, whereas any incompressible behavior caused by an integer or FQH state appears

as a vertical feature (see Section 4.7).

4.3 Unconventional Sequence of FQH States

Figure 4.2a shows a finer measurement of the inverse compressibility as a function

of filling factor and magnetic field for ν < 1. Incompressible peaks occur at ν = 1/3,

2/3, 2/5, 3/5, 3/7, 4/7, and 4/9, reproducing the standard composite fermion sequence

observed in GaAs. We resolve the strongest incompressible states, ν = 1/3 and 2/3, down

to B ≈ 1 T, although ν = 2/3 weakens considerably below 4 T. As the filling factor

denominator increases, the field at which the corresponding state emerges also increases,

with ν = 4/9 only apparent above B ≈ 9 T.

Between ν = 1 and 2, we observe a different pattern of incompressible behavior (Fig.

4.2b). Surprisingly, no FQH states with odd numerators occur in this regime. Instead, the

system condenses into incompressible states only at ν = 4/3, 8/5, 10/7, and 14/9. The

incompressible peaks at ν = 4/3 and 8/5 are the most robust, persisting down to about 1

and 1.5 T, respectively. In graphene, ν = 2 corresponds to a filled LL (N = 0), so it is

natural to label FQH states with the filling fraction ν∗ = 2 − ν. Doing so reveals a clear

pattern of incompressible peaks at ν∗ = 2p/(4p±1) for integer p ≤ 2, which is similar to the

composite fermion sequence, except that only filling fractions with even numerators lead to

incompressible states.

The absence of odd-numerator fractions indicates that a robust underlying symme-

try enables low-lying excitations, preventing the formation of incompressible states. One
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Figure 4.2: (a) Finer measurement of dμ/dn as a function of filling factor and magnetic
field. Incompressible states follow the standard composite fermion sequence between ν = 0
and 1. (b) Finer measurement of dμ/dn between ν = 1 and 2. Incompressible states occur
only at filling fractions with even numerators. (c) dμ/dn between ν = 0 and 1 (blue), and
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possible explanation is that the Zeeman effect lifts spin degeneracy, but valley symmetry

remains intact, allowing large valley skyrmions to form with a minimal energy penalty at

odd-numerator filling factors. The behavior we observe between ν = 1 and 2 is reminiscent

of results from strained Si and AlAs 2DEGs, which also have a valley degree of freedom

and exhibit weakened odd-numerator states [113–116]. However, the analogy is not perfect.

The large effective mass and g factor in these semiconducting materials lead to fully spin-

polarized LLs due to single-particle effects; in contrast, the Zeeman energy is substantially

smaller than the LL separation in graphene. In valley-symmetric AlAs, the energy gap

at ν = 1/3 is large compared with that at ν = 5/3 [115], opposite from the behavior we

observe at ν∗ = 1/3 and 5/3 when we account for the half-integer shift of LLs in graphene.

This suggests that the total electron density, and not just the filling fraction, may play an

important role in electronic interactions in the lowest LL, a topic that has only recently

been explored [117]. Moreover, whereas the incompressible behavior we observe between

ν = 1 and 2 is consistent with SU(2) symmetry, it is evident that this symmetry does not

persist between ν = 0 and 1, where the full composite fermion sequence is present. The dif-

fering behavior above and below ν = 1 suggests an intriguing interplay between the inherent

symmetries of graphene and electronic correlations in the lowest LL. This is different from

strained Si, in which odd-numerator states are weakened both above and below ν = 1 [113].

In the valley-symmetric AlAs data from [115], both ν = 7/5 and 3/5 states are absent,

whereas ν = 8/5 and 2/5 are visible. At higher magnetic fields, however, the ν = 3/5 state

is apparent [117], similar to the behavior in graphene.

Averaging over a range of magnetic fields helps to reduce fluctuations from localized

states because they do not occur at constant filling factor as the magnetic field is varied.

Figure 4.2c shows the inverse compressibility between ν = 0 and 1, averaged over 9 to 11.9 T

(blue), and between ν = 1 and 2, averaged over 4.9 to 6.4 T (red). These curves reveal clear
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incompressible peaks centered at the filling fractions discussed above, as well as negative

contributions to the inverse compressibility immediately surrounding each FQH state, which

can be ascribed to interactions among the quasiparticles and quasiholes involved in the

FQHE [57]. A slight incompressible peak occurring at ν = 1.65 (Fig. 4.2c) may indicate the

emergence of a FQH state at ν = 5/3; however, it is much weaker than all other multiples of

ν = 1/3 and is therefore consistent with the conclusion that all odd-numerator FQH states

are suppressed for ν > 1.

4.4 Steps in Chemical Potential and Widths of FQH States

Integrating the inverse compressibility with respect to carrier density allows us to ex-

tract the step in chemical potential Δμν associated with each FQH state and thereby

determine the corresponding energy gap Δν . Figure 4.3a displays the chemical potential

as a function of carrier density at B = 11.9 T. We define Δμν as the difference between

the local maximum and minimum in the chemical potential, and the values for each FQH

state as a function of magnetic field are plotted in Figs. 4.3b,c. We define the zero of dμ/dn

based on its value at ν = 1/2 to accurately determine Δμν at each field (see Section 4.7).

Because the chemical potential is defined with respect to electrons, the step in chemical

potential must be multiplied by the ratio of the quasiparticle charge to the electron charge

to obtain the energy gap of fractionally charged quasiparticles.

The steps in chemical potential at each multiple of ν = 1/3 have comparable magni-

tudes (Fig. 4.3b), and they scale approximately linearly with the field. The linear depen-

dence of the FQH energy gaps on the magnetic field is surprising because states driven by

electronic interactions are expected to scale as B1/2; the origin of this behavior is unclear.

The steps in chemical potential at ν = 2/5, 3/5, and 8/5 are smaller and also depend
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Figure 4.3: (a) Chemical potential relative to its value at ν = 1/2 as a function of carrier
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magnetic field. (c) Steps in chemical potential of FQH states at measured multiples of
ν = 1/7 and 1/9 as a function of magnetic field. (d) Incompressible peak width of the FQH
states as a function of magnetic field. Colors are same as in (b).

approximately linearly on the magnetic field, although we cannot rule out a B1/2 scaling.

The steps in chemical potential at ν = 3/7, 4/7, 10/7, 4/9, and 14/9 are even smaller (Fig.

4.3c), and their extracted magnitudes fluctuate substantially as a function of the magnetic

field, presumably because of localized states at the measurement point.

The energy gaps obtained from compressibility, which yield the cost of adding charged

quasiparticle excitations to the system, have a slightly different physical meaning from those

obtained in activation measurements, which probe the energy separation between the ground

state and lowest excited state at a given filling factor. Nonetheless, the energy gaps that we

extract (Fig. 4.3) are comparable to results from activation studies [53,109], which yielded
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Δ1/3 ≈ 1.4 to 1.8 meV at 12 T and Δ4/3 ≈ 1.4 meV at 35 T. A comparison to Δ4/3 at 35 T is

difficult because of the discrepancy in field strength; however, extrapolating the linear slope

we measure in Δ4/3 yields a value of ∼2.8 meV at 35 T. At the highest available magnetic

fields, our measured energy gaps are only slightly smaller than theoretical predictions at

ν = 1/3 but are 3 to 10 times smaller than those theoretically predicted at ν = 2/3, 4/3,

2/5, and 8/5 (see Section 4.7) [96,97,99,101,102,107]. This discrepancy probably results in

part from sample disorder, which smears out the cusps in μ(n) and therefore decreases the

apparent step in chemical potential. The effects of disorder can be partially mitigated by

linear extrapolation of the negative slope in μ(n) surrounding each fractional quantum Hall

state (see Section 4.7) [118]. The widths δn of the most robust FQH states (Fig. 4.3d) were

determined by fitting a Gaussian to the incompressible peak at each filling factor. They are

only weakly dependent on magnetic field, suggesting that δn reflects the amount of local

disorder in our device [79]. The exceptionally small peak widths provide another indication

that the sample is especially clean.

Together, the unconventional sequence and relative strengths of the FQH states pro-

vide insight into the interplay between electronic interactions and symmetry in graphene.

Between ν = 0 and 1, the compressibility is approximately symmetric about ν = 1/2,

suggesting that the fourfold spin and valley degeneracy is fully lifted. In contrast, the

missing odd-numerator states indicate that one symmetry persists between ν = 1 and 2.

Nonetheless, the behavior in each regime exhibits some surprising similarities. Notably, the

incompressible states that we observe above and below ν = 1 have comparable energy gaps.

Further study is necessary to elucidate the exact spin and valley ordering of each state; for

example, tilted field measurements decouple Zeeman splitting from orbital effects and could

provide insight into spin polarization.

65



Chapter 4: Unconventional Sequence of Fractional Quantum Hall States in Suspended
Graphene

X
 (�

m
)

0 42��
d�/dn (10-10 meV cm2)

0

1

0.5

1.5

X
 (�

m
) 1

0.5

1.5

B = 6 T

B = 12 T

a

b

�
-1 0-2/3 -1/3 1/3 2/3

�
-1 0-2 1

Figure 4.4: dμ/dn as a function of filling factor and position X along the flake (red arrow in
Fig. 4.1) at B = 6 T (a) and 12 T (b). At both fields, we observe density fluctuations and
variations in the strength of the FQH states as a function of position. States at ν = 2/3
and 4/3 appear more susceptible to disorder than does ν = 1/3.

4.5 Spatial Dependence

All of the measurements described above were taken at one position. Line scans of

the inverse compressibility as a function of filling factor and position at B = 6 and 12 T

are shown in Figs. 4.4a,b, respectively. The gate voltages at which the incompressible

peaks occur vary with position, which can be explained by local density fluctuations. The

magnitude of these fluctuations is similar to the width of the FQH states and may explain

why the FQHE has been so difficult to observe in transport studies: Different regions of the

sample form a given FQH state at different back-gate voltages. Figure 4.4 also shows that

incompressible peak magnitude fluctuates substantially as a function of position. Although

some incompressible states, such as those at ν = 1/3, persist at virtually all positions, others

are more susceptible to disorder. Both ν = 2/3 and 4/3 fully disappear in some locations,

which seem to be correlated with the areas where the integer quantum Hall states are
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wider, a sign that local disorder is comparatively large. Despite the existence of disordered

regions, the ability to perform local measurements reveals a multitude of FQH states in the

cleanest areas. The observation of incompressible behavior at multiples of ν = 1/9 indicates

a substantial improvement in sample quality; together with the unconventional pattern of

FQH states, this shows that graphene provides an especially rich platform in which to

investigate correlated electronic states and their interplay with underlying symmetry.
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4.6 Methods

The sample and tip fabrication procedures are outlined in Appendices A and B. The

sample was measured in a 3He cryostat, and was cleaned by current annealing. All mea-

surements were performed at approximately 450 mK. The back gate voltage was limited to

±10 V to avoid structural damage to the device. The sample whose data appears in this
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paper is a monolayer-bilayer hybrid. Its size is 3.5 μm in width (the monolayer portion is

2 μm), and 1 μm in length (i.e. distance between contacts). All the local measurements

reported in the main text were conducted on the monolayer side of the flake, approximately

1.3 μm from the monolayer-bilayer interface and 500 nm from the electrical contacts. The

electrical leads of the tip were 16 nm thick, and the island was 7 nm. The SET diameter

was approximately 100 nm, and it was held 50-150 nm above the graphene flake during

measurements.

4.7 Supplementary Discussion

4.7.1 Electronic transport

The sample discussed in this paper is a hybrid consisting of monolayer and bilayer

graphene regions in parallel. Figure 4.5 shows the two-terminal resistance of the device
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as a function of carrier density n and magnetic field B. We observe several quantum Hall

features, with resistance maxima occurring at ν = 0, 1, 2, 3, 4 and 6. This sequence includes

the strongest monolayer and bilayer states, consistent with previous measurements [119].

Conductance plateaus at approximately the expected quantized value occur at filling factors

ν = 1 and 2 suggesting that both the monolayer and bilayer sides are simultaneously in a

fully developed quantum Hall state. Conductance is also suppressed strongly at the charge

neutrality point, with resistance reaching approximately 1 MΩ. However, no oscillations in

resistance occur at fractional filling factors. This likely reflects the charge inhomogeneity

in the sample, as discussed in the main text. It is worthwhile to note that in transport, the

resistive region at ν = 0 is so wide that it envelops ν = 1/3, even though ν = 1/3 is visible

at virtually all positions along the monolayer in local compressibility measurements.

4.7.2 Effects of current annealing

The data presented in the main text were taken after two rounds of current annealing,

and the sample changed substantially as a result of each current annealing step. Below, we

discuss the progression of flake behavior associated with these cleaning procedures. Figures

4.6-4.9 show data prior to current annealing, and Figs. 4.10 and 4.11 display data taken

after gentle current annealing. Even before current annealing the device, incompressible

fractional quantum Hall (FQH) states were visible. FQH states are clearly distinguishable

in Fig. 4.6 above 5-6 T, although the incompressible peaks are not nearly as pronounced,

and localized states significantly modulate their apparent strength. The increased disorder

is particularly evident in the breadth of localized states surrounding ν = 2, which obscure

all FQH states above ν = 4/3. Figures 4.7a,b show spatial maps at B = 8 and 12 T,

respectively, and the average compressibility over these spatial regions is plotted in Fig.

4.7c. Incompressible behavior is only evident at multiples of ν = 1/3, but the data reveal
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relatively homogeneous strength of each FQH state as a function of position, particularly

compared to that presented in Fig. 4.4.

Finer measurements which reveal FQH states at ν = 1/3, 2/3, 4/3, 2/5, 3/5 and 4/7

are shown in Figs. 4.8a,b. A three-dimensional rendering of the high-field data is plotted

as a function of filling factor in Fig. 4.8c, and the average of inverse compressibility over

this field range can be seen Fig. 4.8d. Interestingly, the incompressible behavior at ν = 2/3

persists to lower fields than ν = 1/3, and the same is true for ν = 3/5 with respect

to ν = 2/5. This is the opposite behavior from that observed after current annealing.
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The data presented in Fig. 4.8 are actually an average over measurements performed at

six different locations, each separated by about 200 nm. Spatial averaging mitigates the

fluctuations in compressibility caused by localized states to some degree. Nonetheless, the

incompressible peaks at ν = 1/3 and 2/5 are still strongly modulated by localized states,

which may explain why they disappear at higher fields than their counterparts near ν = 1

with the same denominator.

The steps in chemical potential Δμν and incompressible peak widths δn associated

with each FQH state prior to current annealing are shown in Fig. 4.9. The extracted values

of Δμν were smaller before annealing for all states, with Δμ1/3 and Δμ2/3 reaching only

1 meV at 12 T. Moreover, the steps in chemical potential depended primarily on filling

factor denominator, with no differences evident over the fluctuations caused by localized

states. All incompressible FQH peaks had similar widths, but they were slightly wider than

after current annealing, indicating increased charge inhomogeneity.

We next gently current annealed the sample, applying only 1 V between contacts. This

had no effect on electronic transport, but dramatically improved sample quality. The data

reveal additional incompressible FQH states at ν = 8/5, 3/7 and 10/7, and a large increase
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Figure 4.10: Inverse compressiblity as a function of filling factor and magnetic field after
gentle current annealing. Clear incompressible peaks occur at ν = 1/3, 2/3, 2/5, 3/5,
3/7, 4/7, 4/3, 8/5 and 10/7. Few localized states are visible due to the decreased sample
disorder and the relatively large excitation in density: approximately 1.5×109 cm−2, which
is identical to that used to take the data in Figs. 4.6-4.8, but 2.5 times larger than was used
in the measurements presented in the main text.

in the magnitude of the incompressible peaks associated with other FQH states (Fig. 4.10).

Each incompressible state persists to lower field as well, with ν = 1/3, 4/3 and 8/5 all

visible at 2 T. It is worthwhile to note that ν = 2/3 is less robust, disappearing around

4 T, consistent with the diminished gap observed around 3.5 T after the second round of

current annealing. The step in chemical potential associated with each FQH state increased

as a result of current annealing as well, with Δμ1/3 reaching 2.5 meV and Δμ3/5 reaching

0.7 meV at 12 T (Fig. 4.11a). Moreover, the incompressible peak magnitude remained

approximately independent of position, as illustrated in Fig. 4.11b.

We then current annealed the sample a second time, applying 1.32 V between contacts.

Although we did not record the exact resistance or current through the device during

this process, we can estimate a flake resistance of about 1 kΩ, and use this to obtain an

approximate current density of 0.38 mA/μm. The data in the main text were taken after
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Figure 4.11: (a) Steps in chemical potential of each FQH state as a function of magnetic
field after gentle current annealing. (b) dμ/dn as a function of filling factor and position
X along the flake at B = 8 T after gentle current annealing. Incompressible peaks are
visible at ν = 1/3, 2/5, 3/5, 2/3 and 4/3, and sample behavior varies only moderately with
position.

this current annealing step. For completeness, we show in Fig. 4.12 the spatial average of

inverse compressibility from Figs. 4.4a,b.

4.7.3 Determination of the offset in inverse compressibility

Due to the finite size of the sample, some fringing fields from the back gate directly affect

the SET, giving rise to a constant positive offset in the measured inverse compressibility.

To accurately extract Δμν of each FQH state, this parasitic capacitance must be taken into

account. Determining the zero of dμ/dn is further complicated because interactions among

charge carriers produce a negative contribution to the inverse compressibility that depends

on magnetic field [57]. Figure 4.13 shows the average inverse compressibility as a function of

magnetic field for the filling factor ranges 0.45 < ν < 0.55 and 1.45 < ν < 1.55. The inverse

compressibility in both ranges is similar, and is fit well by dμ/dn ∼ −B−1/2 dependence,

as expected for interacting particles with density n ∝ B. The fit to these curves is used to

define dμ/dn = 0 at each field for the extraction of Δμν . Figures showing linecuts of dμ/dn

as a function of density also follow the convention that dμ/dn = 0 at Δμν = 1/2. However,
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dence, as shown by the black fit. The black fit is used to determine dμ/dn = 0 for the
purpose of FQH gap size extraction at each field.

the inverse compressibility in color plots is defined so that dμ/dn = 0 in the compressible

regions associated with Landau levels at filling factors ν > 2 (e.g. at ν = 3.5).

4.7.4 Comparison with theoretically predicted energy gaps

Table 4.1 lists the theoretically predicted energy gaps Δν of several FQH states, and

compares our measurements with the predicted values at the highest experimentally acces-

sible field. To the best of our knowledge, no quantitative predictions are available for the

other FQH states that we observe. In Table 4.1, the theoretically predicted values assume
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Table 4.1: Summary of FQH energy gaps. Theoretical predictions for energy gap size at
the highest experimentally accessible magnetic field are compared with the corresponding
measured and extrapolated values. Experimental and extrapolated values assume that
the charge of the quasiparticles involved is given by the electron charge divided by the
denominator of the filling factor.

ν
Theoretically
predicted Δν

Predicted Δν

at largest B
(meV)

Experimental Δν

at largest B
(meV)

Extrapolated Δν

at largest B
(meV)

1/3

(0.03-0.1)e2/εlB
[96, 97, 99,101]

[102,104,107]

1.3-4.3
(at 12 T) 1.2 1.5

2/3
(0.08-0.11)e2/εlB

[102]
3.5-4.8

(at 12 T) 1 1.5

4/3
(0.08-0.11)e2/εlB

[102,107]
2.8-3.9
(at 8 T) 0.5 0.75

2/5
(0.04-0.051)e2/εlB

[97, 102,107]
1.7-2.2

(at 12 T) 0.2 0.4

8/5
(0.02-0.051)e2/εlB

[97, 102,107]
0.7-1.7
(at 7 T) 0.15 -

14/9
0.019e2/εlB

[107]
0.6

(at 7 T) 0.02 -
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Figure 4.14: Steps in chemical potential at ν = 1/3 (blue), 2/3 (red), 2/5 (cyan) and 3/5
(orange) obtained by linearly extrapolating the negative compressibility surrounding each
FQH state, as illustrated in red in Fig. 4.3a. Lines between data points are guides to the
eye.

a dielectric constant of 4.5 in suspended graphene [120] and the extracted experimental

values assume that the quasiparticle charge is given by the electron charge divided by the

filling factor denominator. As stated in the main text of the manuscript, the energy gaps

that we extract from our measurements are smaller than theoretically predicted. Even if

we linearly extrapolate the negative slope in μ(n) surrounding each state (red lines in Fig.

4.3a) to mitigate the effects of disorder [118], the discrepancy persists for all FQH states

except ν = 1/3. The extrapolated steps in chemical potential at select magnetic fields are

summarized for ν = 1/3, 2/3, 2/5 and 3/5 in Fig. 4.14.

From Fig. 4.3b, we extract an energy gap Δ1/3 ≈ 1.2 meV at B = 12 T, only slightly

below the range specified by theoretical predictions. From the extrapolated values in Fig.

4.14, we obtain an estimate Δ1/3 ≈ 1.5 meV, which is within the range spanned by theoreti-

cal predictions. In contrast, even the extrapolated Δ2/3 ≈ 1.4 meV is still 2-3 times smaller

than theoretically predicted. Similarly, the estimated value of Δ2/5 from the extrapolation

in Fig. 4.13 is only about 0.4 meV at B = 12 T, approximately 4-5 times smaller than
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theoretically predicted. Although the extrapolated steps in chemical potential at ν = 4/3

are not shown in Fig. 4.14, Δ4/3 ≈ 0.75 meV at 8 T, about 4-5 times smaller than the theo-

retical prediction. Finally, we note that linear extrapolation was not possible at ν = 8/5 or

14/9, but the energy gaps at these filling factors are also significantly smaller than expected.

4.7.5 Reproducibility and ruling out extrinsic effects

The results described in the main text are reproducible, independent of tip position or

amount of current annealing, and they cannot be explained by extrinsic effects. Although

disorder is present and we see local variations in quality, this only changes the behavior we

observe quantitatively and not qualitatively. Below, we present additional measurements

from several locations and rule out spurious effects associated with the monolayer-bilayer

interface, the electrical contacts, current annealing, and strain.

Although all measurements were performed on a single device, the local nature of our

technique allows us to effectively probe multiple independent samples simply by moving

the tip to different locations. This helps distinguish localized states, whose spectrum varies

with position, from FQH states, which are robust, and also provides corroborating evidence

for the overarching picture we observe. We use three key metrics to determine whether a

given incompressible peak should be labeled as a FQH state. First, we require that the

incompressible peak should appear vertical in a plot vs. filling factor over a large (at least

3 T) range in magnetic field. Over smaller field ranges, the curvature of a localized state

may not be apparent. Second, we only label incompressible peaks as FQH states if they are

reproducible in multiple locations. Finally, we check if the slope of an incompressible peak

in the n-B plane can be reasonably matched to a nearby quantum Hall state, and if so, we

ascribe these features to localized states.
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The measurements presented in Figs. 4.2, 4.6 and 4.10 were all performed at different

positions. Additional measurements at different locations are shown in Fig. 4.15. The data

in these figures reveal different patterns of localized states, but qualitatively similar behavior

to that presented in the main text. Specifically, odd-numerator FQH states are absent or

significantly suppressed between ν = 1 and 2, and the compressibility is approximately

symmetric about ν = 1/2 for 0 < ν < 1.

We can rule out that the bilayer portion of the device affects the behavior that we

observe. First, the measurements presented in the main text were performed far (1.3 μm =

50-175 magnetic lengths between 1 and 12 T) from the monolayer-bilayer interface. Band

bending associated with the interface is only expected to persist a few magnetic lengths into

the monolayer side [121], and therefore would not affect the local measurements in Figs. 4.1

and 4.2. Moreover, the spatial scans in Figs. 4.4, 4.7 and 4.11 show that sample behavior

is not sensitive to distance from the interface, which sits at approximately X = -100 nm.

We can also eliminate doping from the contacts as a potential influence on the behavior

that we observe. Measurements in the main text were performed approximately 500 nm from

the contacts, whereas contact doping is only found to extend 200-300 nm into the flake [122].

Although we have not imaged within 200 nm of the contacts because it jeopardizes the

scanning SET tip, we have performed measurements in which we vary the distance between

tip and contact, and we do not observe systematic differences in sample behavior (Fig.

4.16). These measurements span the entire width of the flake, and approximately 600 nm

in length (i.e. distance between contacts). For all locations we have imaged, the charge

neutrality point occurs within 0.5 V of zero back gate voltage. This suggests that there is

practically no doping of the sample, which also excludes doping from the contacts.

We can also explicitly rule out that current annealing had unintended consequences.

We have imaged the entire sample after each current annealing step, and no portions of the
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Figure 4.15: Measurements at additional positions. (a)-(c) dμ/dn in several positions as a
function of magnetic field over the filling factor range between |ν| = 1 and 2. The spectra
of localized states changes, but the pattern of FQH states is robust. In panel (b), only
states at ν = 4/3 and 8/5 are visible, indicating decreased sample quality, but the absence
of odd-numerator states remains. Panel (c) shows a measurement on the hole side after a
third current annealing step. Odd-numerator FQH states are absent, except a small peak
around ν = −1.65, which may indicate a weak state at ν = −5/3. (d) dμ/dn as a function
of magnetic field and filling factor for ν < 1. The spectra of localized states is different
from Fig. 4.2a, but the pattern of FQH states is robust. The incompressible peak just to
the right of ν = 4/9 does not occur at the same filling factor as in Fig. 4.2a.
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Figure 4.16: dμ/dn at ν = 0 as a function of X and Y position, as illustrated in the
schematic on the right. Sample behavior is independent of distance to the electrical contacts
and distance from the monolayer-bilayer interface (which sits at X ≈ −100 nm). The dips
in dμ/dn correspond to the population of individual electrons into localized states confined
to disorder puddles. Units are not given for dμ/dn because the high ν = 0 resistance
artificially enhances the measured inverse compressibility.

flake have been removed or destroyed. The qualitative picture we observe is also insensitive

to the amount of cleaning performed. Even before current annealing the flake, we observed

several FQH states, and their sequence was consistent with absent odd-numerator states

between ν = 1 and 2, but full symmetry breaking between ν = 0 and 1. Upon subsequent

current annealing steps, we saw additional FQH states, and their energy gaps increased, but

the overarching pattern remained unchanged. Based on the continuity of our observations

throughout many current annealing steps, including those before any cleaning, we exclude

current annealing as an explanation for the behavior we observe.

Finally, we discuss the effects of strain, which is another form of disorder. Though we

cannot explicitly rule out that strain may be present in the device, we note that it likely

varies from one location to another, whereas the picture we observe is robust. Moreover,

heating during current annealing is likely to cause strain to relax, heighten, or otherwise

change, whereas the qualitative behavior we observe is insensitive to the amount of current

annealing that we perform. Finally, we note that we can probe height variations in the
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sample. We observe ripples of about 1 nm peak-to-peak amplitude and 400 nm wavelength.

These are relatively small, indicating that out of plane strain is small. Moreover, these fea-

tures do not appear to be correlated with sample behavior. Based on all these observations,

we conclude that strain is not a likely explanation for the behavior that we observe. It is

also worthwhile to note that even if strain breaks valley symmetry, it is not clear why it

would have different effects above and below ν = 1.
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Chapter 5

Fractional Quantum Hall Phase

Transitions and Four-Flux States

in Graphene

Graphene and its multilayers have attracted considerable interest because their four-

fold spin and valley degeneracy enables a rich variety of broken-symmetry states arising

from electron-electron interactions and raises the prospect of controlled phase transitions

among them. Here we report local electronic compressibility measurements of ultraclean

suspended graphene that reveal a multitude of fractional quantum Hall states surrounding

filling factors ν = −1/2 and −1/4. Several of these states exhibit phase transitions that

indicate abrupt changes in the underlying order, and we observe many additional oscilla-

tions in compressibility as ν approaches −1/2, suggesting further changes in spin and/or

valley polarization. We use a simple model based on crossing Landau levels of composite

fermions with different internal degrees of freedom to explain many qualitative features of

the experimental data. Our results add to the diverse array of many-body states observed
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in graphene and demonstrate substantial control over their order parameters, establishing

graphene as an excellent platform to study correlated electron phases of matter.

5.1 Introduction

When a two-dimensional electron gas is subject to a perpendicular magnetic field B,

the electronic spectrum forms a sequence of Landau levels (LLs), which can accommodate

one electron per flux quantum for each internal electronic state. Generally, this gives rise

to incompressible quantized Hall states at integer values of the filling factor ν = nh/eB,

where n is the carrier density, h is Planck’s constant and e is the electron charge. In very

clean samples at high magnetic field, Coulomb interactions become important and produce

additional quantized Hall states at certain fractional filling factors [2, 49, 50, 52]. These

fractional quantized Hall (FQH) states can be understood in terms of so-called composite

fermions (CFs), which may be described as an electron bound to an even number m of

magnetic flux quanta. CFs with m = 2 (2CFs) experience a reduced effective magnetic

field proportional to (ν − 1/2), and FQH states at ν = p/(2p ± 1) are understood to

arise when an integer number p of 2CF LLs are occupied. In CF theory, FQH states of

electrons are therefore interpreted as the integer quantized Hall effect of these new composite

particles [52].

Like electrons, CFs can have internal quantum numbers such as spin or valley index

(isospin). When more than one CF LL is occupied, ground states with different polarizations

of these degrees of freedom are possible at a given filling factor, and transitions between

different phases may occur when system parameters are varied. Phase transitions between

FQH states with differing spin polarization have been observed in GaAs by tuning the

magnitude of the magnetic field [123–126], its direction [127–132], or the applied pressure
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[133]. In AlAs 2DEGs, strain has been used to induce phase transitions between valley-

polarized and unpolarized states [114,115,117].

In graphene, the electronic Hamiltonian has an approximate SU(4) symmetry arising

from the spin and valley degrees of freedom. This symmetry is weakly broken due to the

Zeeman effect and electron-electron scattering between valleys, which may be enhanced by

(or compete with) effects of the dominant Coulomb interactions. Electron-electron interac-

tions were recently shown to produce surprising patterns of symmetry breaking and phase

transitions in the integer quantum Hall regime [41, 48, 90–92]. Theoretical proposals sug-

gest that the strengths of FQH states can also be tuned in monolayer and bilayer graphene,

and that transitions between different ordered phases are possible [106,134,135]. However,

despite the observation of robust FQH states in graphene [53, 109–111, 136, 137], their rich

phase diagram has yet to be fully explored.

Here we report local electronic compressibility measurements of suspended graphene,

performed using a scanning single-electron transistor (SET) [77,78], which reveal a succes-

sion of FQH phase transitions as well as four-flux CF (4CF) states. A schematic of the

measurement setup is shown in Fig. 5.1a (see also Section 5.6). Modulating the carrier

density with a back gate and monitoring the resulting change in SET current allows us to

measure both the local chemical potential μ and the local inverse compressibility of the gra-

phene flake with a spatial resolution of approximately 100 nm. The inverse compressibility

κ−1 is properly defined as n2dμ/dn, but hereafter we drop the prefactor and use the term

to mean dμ/dn. The data presented below were taken at one location, but similar behavior

was observed at multiple positions (see Section 5.7).
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Figure 5.1: (a) Schematic of the measurement setup. (b) Inverse compressibility dμ/dn as
a function of filling factor ν and magnetic field B. Phase transitions occur for all fractional
quantum Hall (FQH) states except ν = −1/3. (c) Finer measurement around ν = −4/7
showing the negative compressibility and peak splitting associated with the phase transition.
Panels (b) and (c) have identical color scales. (d) and (e) dμ/dn as a function of B and
composite fermion Landau level (CF LL) index p. Panels (d) and (e) have identical color
scales, and both show oscillations in compressibility that persist very close to ν = −1/2.
Principal FQH states are marked by black lines and are labeled. The dashed lines in panel
(b) mark where higher-denominator FQH states in the standard CF sequence would be
expected to occur.
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5.2 FQH Phase Transitions

Figure 5.1b shows the inverse compressibility as a function of filling factor and magnetic

field. FQH states appear as vertical incompressible peaks at ν = −1/3, −2/3, −2/5,

−3/5, −3/7, −4/7, −4/9, −5/9 and −5/11, consistent with the standard CF sequence

observed for |ν| < 1 in previous measurements [137] (we focus on ν < 0 because the QH

features are slightly better developed than for ν > 0) . Surprisingly, every FQH state except

ν = −1/3 exhibits a narrow magnetic field range over which the incompressible behavior is

strongly suppressed and the energy gap decreases. The critical field at which this occurs

increases with filling fraction denominator, and the suppression is associated with regions of

sharply negative compressibility that cross each FQH state, often generating two coexisting

incompressible peaks at slightly different filling factors over a small range in magnetic field

(Fig. 5.1c). Interestingly, the negative compressibility, which indicates a decrease in the

electron chemical potential as electrons are added, has an especially large amplitude that

is similar (but opposite in sign) to the incompressible peaks of the actual FQH states.

The interruptions in each incompressible peak suggest phase transitions in which the

spin and/or valley polarization of electrons changes abruptly. The behavior is similar to

that observed in GaAs, where transport measurements showed FQH states splitting into

doublets near phase transitions [124,125,129,132]. However, no dramatic features of negative

compressibility were present in GaAs [126], and the inverse compressibility did not display

a strong asymmetry between filling factors just above and below the FQH states [19, 126].

Several less prominent modulations in compressibility that occur close to ν = −1/2 are

also visible in Fig. 5.1b. We emphasize that they are not caused by localized states, which

occur near the strongest FQH states such as ν = −2/3, but not around high-denominator

states, such as ν = −4/7 (see Section 5.7). Further insight can be gained by plotting the
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inverse compressibility as a function of p rather than ν (Figs. 5.1d,e). Doing so more clearly

illustrates the behavior near ν = −1/2 and reveals oscillations in inverse compressibility

that persist to values of p as large as 20 and magnetic fields as low as a few Tesla. We note

that this behavior cannot be explained by Shubnikov de Haas oscillations of CFs, because

variations in compressibility occur even at constant filling factor. The oscillations become

stronger and more vertical as the magnetic field is increased, suggesting that they are

associated with developing FQH states. Moreover, they seem to extend from the negative

compressibility features of the phase transitions, suggesting that they result from changes

in spin and/or valley polarization as magnetic field and filling factor are varied.

Signatures of phase transitions have previously been observed in compressibility mea-

surements only at ν = 2/3 in GaAs [126], although optical and transport studies of GaAs

and AlAs have revealed evidence of changes in spin or isospin polarization for filling fractions

with larger denominators [116,127]. We observe clear phase transitions up to ν = −5/9 and

−5/11, and additional compressibility oscillations are apparent much closer to ν = −1/2.

Similar oscillations have not been reported in GaAs; their existence in graphene suggests a

rich array of ordered electronic states and hints at a delicate energetic competition among

them. Graphene therefore offers an excellent platform to study electronic interactions and

their dependence on underlying symmetry.

5.3 Model and Numerical Simulation

To gain further insight into the phase transitions, we introduce a simple model to

describe CFs with internal degrees of freedom [99,100,107,138] (see Section 5.7 for details).

Due to graphene’s peculiar band structure, the lowest LL is already half-full at ν = 0,

and experiments suggest that the ν = 0 state has no net spin polarization [41]. For 0 >
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ν > −1, we assume that the ground state is obtained by putting holes in the ν = 0 state,

which we convert to CFs by attaching two flux quanta to each hole. The CFs have two

possible spin states (±) and we consider many-body states where there may be different

particle densities for the two spins. Single-particle energies of the two spin states will

be split by an amount proportional to B due to the Zeeman effect, which favors a state

where all the spins are aligned with the field. However, the SU(4)-invariant part of the

Coulomb interaction will typically favor states with more equal occupation [107]. Because

the Coulomb interaction energies scale as B1/2, then for fixed ν, varying the magnetic field

will change the relative importance of the two terms, which suggests that the experimentally

observed phase transitions may be associated with changes in spin polarization, as in GaAs.

Our model applies most directly to the situation where all electrons in the ground

state of ν = 0 have the same valley configuration, as in the Kekule or the charge-density-

wave states [43]. The antiferromagnetic state is more complicated because the constituent

electron states differ in valley index as well as spin, but we expect that results for this case

should be at least qualitatively similar to the case we consider [54]. Future studies in which

a tilted magnetic field is applied to the sample may help determine the spin and valley

ordering of the FQH states.

Within our model, effects of the SU(4)-invariant Coulomb interaction are modeled by

a sum of the “kinetic energies” of the occupied states in the CF LLs, which scale as B1/2

for fixed orbital index N∗. A schematic diagram of CF LL energies E±
N∗ and their scaling

with magnetic field is shown in Fig. 5.2a. At certain critical magnetic fields, CF LLs with

different spin and orbital degrees of freedom cross, leading to phase transitions.

Based on this model, we have numerically simulated the inverse compressibility. In

our simulation, we broaden the CF LLs by a fixed amount of disorder δn and calculate the

occupation of each CF LL, which ultimately yields the inverse compressibility as a function
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Figure 5.2: (a) Schematic of CF LL energies E±
p divided by and plotted against B1/2.

Crossings (black circle) between spin-up and down CF LLs (colored arrows) correspond to
phase transitions. (b) and (c) Numerical simulations of dμ/dn as a function of B and p
assuming either minimal charge inhomogeneity (b), or more realistic density fluctuations
(c). Black ovals correspond to the black circle in panel (a). Both panels use the same color
scale.
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of density and magnetic field. The results, which assume either a small amount of disorder

or more realistic density fluctuations based on the widths of the FQH peaks, are shown in

Figs. 5.2b,c, respectively.

The simulations in Fig. 5.2 share many characteristics with the experimental data.

Most striking are the breaks in the incompressible peaks of FQH states with p ≥ 2, and the

reasonably good agreement between the critical fields of these transitions in the simulation

and their experimental counterparts. In addition, the simulations show regions of negative

compressibility that cross from one side of the FQH state to the other as the phase tran-

sition occurs. This is qualitatively similar to the behavior that we observe, although the

experimental features are much narrower. Finally, we note that the oscillations in inverse

compressibility become less robust and start to curve at low magnetic field and high p,

similar to the experimental data. The values used for parameters in the simulation agree

well with expectations based on other experimental metrics. By matching the simulation

to the experimental critical fields and assuming Zeeman splitting with a g factor of 2, we

extract an effective mass m∗ = 0.18me(νB[T])1/2, the same order of magnitude as for CFs

in GaAs [123]. In addition, the density fluctuations δn = 1.5 × 108 cm−2 assumed in Fig.

5.2c are comparable to the widths of the FQH states we observe. Given the simplicity of

the model, the agreement with experiment is remarkable, suggesting that it provides a basic

framework to understand the underlying physics.

The critical fields of the phase transitions vary slightly with position, and a much

smaller critical field at ν = 2/3 was observed before the final current annealing step (see

Section 5.7). The change after current annealing suggests that disorder is relevant, but the

exact mechanism is not clear. Disorder that breaks valley symmetry could preferentially

support one FQH phase over the other if the ν = 0 state is a canted antiferromagnet. It
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Figure 5.3: (a) dμ/dn as a function of ν at B = 11.9 T. (b) Chemical potential relative to
its value at ν = −1/2 as a function of ν at 11.9 T. (c) and (d) Steps in chemical potential
Δμν [green labels in panel (b)] of FQH states as a function of B at measured multiples of
ν = 1/3 and 1/5 (c), and ν = 1/7 and 1/9 (d). The non-monotonic dependence visible for
several FQH states results from the phase transitions that they undergo.

is also possible that the level of disorder affects the dielectric constant. The origin of the

spatial dependence merits further study.

5.4 Steps in Chemical Potential

Integrating the inverse compressibility with respect to carrier density allows us to ex-

tract the steps in chemical potential Δμν of each FQH state; multiplying Δμν by the

quasiparticle charge then yields the corresponding energy gaps. Figures 5.3a,b show inverse

compressibility and chemical potential, respectively, as a function of filling factor at 11.9 T.

In Figs. 5.3c,d, we plot Δμν as a function of magnetic field. The complex non-monotonic

behavior of the energy gaps exhibited by several FQH states (Fig. 5.3d) is similar to the
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behavior in GaAs near phase transitions [131]. This behavior becomes increasingly pro-

nounced and the field range over which incompressible behavior is suppressed widens as

filling factor denominator increases. A similar pattern occurs in the simulations of Fig. 5.2,

and it likely results from the increasing effects of density fluctuations on CF LL width as p

increases.

The step in chemical potential at ν = −1/3 scales linearly with B over the entire field

range that we study. This behavior is consistent with prior studies [137], but the linearity

is surprising because interaction-driven states typically scale as B1/2. The behavior also

contradicts the B1/2 dependence expected from our model, although we note that the

model does not include interactions among CFs, LL mixing, finite temperature effects, or

the possibility of other excitations such as skyrmions. Linear scaling with magnetic field

at ν = 1/3 has been theoretically predicted to arise from spin-flip excitations over an

intermediate field range [104].

5.5 Four-Flux Composite Fermion States

In addition to the phase transitions discussed above, the exceptional sample quality

reveals several FQH states belonging to the 4CF sequence ν = p/(4p± 1) and its analogue

around ν = −1 for the first time in graphene. We observe incompressible behavior at ν =

−1/5,−2/7,−2/9,−3/11,−5/7 and −6/5 (Figs. 5.4a-c). An additional weak incompressible

peak occurs between ν = −9/7 and −14/11, but the experimental uncertainty in filling

factor prevents a more precise assignment (see Section 5.7). No other 4CF states are visible;

FQH states at ν = −4/5,−9/5 and −12/7 are conspicuously absent, despite the robust

appearance of their counterparts near ν = 0. This may reflect interesting patterns of

symmetry-breaking in the lowest LL [137,139], but could also be caused by differing degrees
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labeled. (d) Δμν of the 4CF states as a function of B.

of disorder at different filling factors, or by competition with other quantum Hall states,

particularly near ν = −2.

The extracted steps in chemical potential for several 4CF FQH states are plotted as

a function of magnetic field in Fig. 5.4d. The fluctuations caused by localized states near

ν = −1/5 and −2/9 prevent an accurate determination of Δμν for these states, but all

other states except for ν = −5/7 scale approximately linearly with magnetic field. Further

study is required to determine whether the non-monotonic behavior of Δμ−5/7 reflects a

phase transition or whether the state is simply competing with ν = −2/3. Regardless, the

appearance of 4CF states and phase transitions represents an important advance in sample

quality that enables further study of and control over the delicate many-body states arising

from interacting Dirac fermions in graphene.
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5.6 Methods

Both tip and sample were the same as those used in Chapter 4. The data presented

in this paper was taken after one more current annealing step with a source-drain bias

Vsd = 1.56 V. All the local measurements reported in the main text were conducted on the

monolayer side of the flake, approximately 300 nm from the monolayer-bilayer interface and

500 nm from the electrical contacts.

5.7 Supplementary Discussion

5.7.1 Detailed explanation of model and simulation

Below, we describe in detail the method used to numerically simulate the inverse com-

pressibility shown in Fig. 5.2. The simulation is based on a model of composite fermion

Landau level (CF LL) energies E±
N∗ , where N∗ is the CF orbital index and ± corresponds

to spin-down (up) states. E±
N∗ contains two terms, the first of which is an effective kinetic
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energy arising from Coulomb interactions

EN∗ = (N∗ − 1

2
)h̄ω∗

c . (5.1)

In the above expression, ω∗
c = eB∗/m∗ is the CF cyclotron frequency, B∗ = |B − 2nΦ0|

is the reduced magnetic field felt by CFs, e is the absolute value of the electron charge,

n is the carrier density, B is the magnetic field (in Tesla), Φ0 = h/e is the flux quantum,

and h = 2πh̄ is Planck’s constant. Because the fractional quantum Hall effect (FQHE) is

driven by electron-electron interactions, we assume that the CF effective mass m∗ ∝ √
n.

Furthermore, we can define filling factor ν = nh/eB, which implies that B∗ = |1− 2ν| and

m∗ ∝ √
νB (this expression for mass is similar to that proposed by Park and Jain [138],

except for an additional factor of
√
ν, which is a small factor of order unity and does not

dramatically change the qualitative simulated behavior). Substituting these results into Eq.

5.1 and using the ν = p/(2p − 1) branch (we use this throughout the derivation because

that is what is shown in Fig. 5.2):

EN∗ = α(N∗ − 1

2
)(2ν − 1)

√
B/ν. (5.2)

Both panels in Fig. 5.2 were generated using fit parameter α = 1.03× 10−22 J/T1/2, which

we determine by matching the phase transitions in our model to the experimental data.

The second term in our model is an energy splitting that scales linearly with magnetic

field E± = ±βB. In the simplest case, this splitting can arise from the Zeeman effect;

then β = 0.5gμB, where g ≈ 2 is the g factor of electrons in graphene and μB is the Bohr

magneton. For concreteness, we consider this case below. However, our model applies

equally well to any form of spin and/or valley energy splitting that scales linearly with

magnetic field. The final expression for the energy of CF LLs therefore reads

E±
N∗ = EN∗ + E± = α(N∗ − 1

2
)(2ν − 1)

√
B

ν
± 1

2
gμBB. (5.3)
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If we assume that there is no disorder and define ν∗ as the CF filling factor (identical to

p, except that ν∗ can take on non-integer values), then we can write the following relation:

ν∗ =

μ∫
−∞

∑
N∗,±

δ(μ′ − E±
N∗)dμ

′ (5.4)

However, in real samples, disorder is always present. We therefore modify Eq. 5.4 to include

finite smearing of the CF LLs:

ν∗ =
∑
N∗,±

[
1

π
arctan(

μ− E±
N∗

Δ
) +

1

2
] =

ν

2ν − 1
. (5.5)

In the above expression, we have introduced Lorentzian disorder broadening. This

represents an arbitrary choice among several possible functional forms that can be used

to account for disorder, but using other types of smearing does not alter the qualitative

expectations from the model. In Eq. 5.5, the parameter Δ can be thought of as the width

of the CF LL that arises from disorder, and if we assume a constant density inhomogeneity

δn in the sample, Δ is a function of ν. We can relate Δ to δn by taking derivatives of Eq.

5.3 as well as the expressions ν∗ = ν/(2ν − 1) and ν = nh/eB, yielding:

Δ =
dE±

N∗

dN∗ δν∗ = [α(2ν − 1)
√
B/ν][

(δn)h

eB(2ν − 1)2
] =

(δn)αh

e
√
Bν(2ν − 1)

. (5.6)

We use δn = 3× 107 and 1.5× 108 cm−2 to produce Figs. 5.2b,c, respectively.

In Eq. 5.5, the last equality follows from the relation between electron filling factor

and the number of occupied CF LLs. Given the expression for E±
N∗ from Eq. 5.3, we can

numerically solve Eq. 5.5 for μ as a function of ν, and use simple algebra to recover dμ/dn.

Strictly speaking, the quantity μ in Eqs. 5.4 and 5.5 is the chemical potential for a CF, that

is the energy to add an electron plus two quanta of the fictitious (Chern-Simons) magnetic

field. We expect that this will differ from the chemical potential to add an electron by

at most a factor of order unity, and within the level of approximation incorporated in our

model of non-interacting CFs, we neglect the difference between these quantities.
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We observe only one phase transition in the data at each filling factor, which we

believe corresponds to the highest-field one. This likely reflects the level of disorder in the

sample, and is consistent with our theoretical model (Fig. 5.2c). The model predicts that

further improvements in cleanliness would allow us to observe multiple phase transitions

in a given filling factor over the available experimental range (Fig. 5.2b). We note that

there are already some low-field oscillations in compressibility (e.g. in Fig. 5.1e, starting

from B = 7 T, just to the right of p = 5) that are reminiscent of the diamond-shaped

compressibility modulations between incompressible peaks in Fig. 5.2; this behavior may

be a precursor to the more delicate low-field features.

5.7.2 Measurements at additional locations

Although all the data presented in the main text were taken at a single location, the

qualitative behavior and phase transitions that we observe are independent of position.

Figure 5.5 shows inverse compressibility as a function of filling factor and magnetic field at

two additional positions that are 300 and 600 nm, respectively, further from the monolayer-

bilayer interface than the original measurement position. The phase transitions occur at

slightly different critical fields at each location, but the qualitative behavior is unchanged:

they are still marked by sharply negative compressibility that cuts across the FQH state,

and the critical field increases with filling factor denominator. We emphasize that due to

the local nature of the measurement technique, moving the tip to different locations on the

flake allows us to effectively probe multiple independent samples.

The variation in the critical fields of the phase transitions suggests that the stability

of the FQH states is influenced by the details of the disorder at each location. This is

further supported by measurements taken prior to the final current annealing step, when

the sample had significantly more disorder. These measurements revealed a ν = 2/3 phase
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transition around B = 3.5 T at multiple locations (Fig. 5.6); the large change in critical

field likely reflects the large discrepancy in disorder.

5.7.3 Localized states and compressibility oscillations near ν = –1/2

As stated in the main text, localized states are clearly visible near the strongest FQH

states (Fig. 5.1a). Localized states are easy to identify because they run parallel to their

parent QH state in the n-B plane [13], and therefore appear as curved compressibility

oscillations in the ν-B plane. Although the modulations in compressibility near ν = −1/2

also curve in the ν-B plane, their origin is distinct. For FQH states with high denominators

(i.e. between ν = −4/7 and −5/11), no localized states are visible (Fig. 5.1c). This is likely

because the small quasiparticle charge associated with these states enables efficient screening

of the underlying disorder potential as quasiparticles are added to the system. Due to the

absence of localized states associated with high-denominator FQH states, and because the

oscillations in compressibility near ν = −1/2 do not match the slope of low-denominator

FQH states in the n-B plane, we conclude that these oscillations are not caused by localized

states.

Moreover, localized states, as their name suggests, are confined to a particular region in

space. They are visible when a small area being sensed by the SET does not have the same

carrier density as the bulk of the sensed area. Because the localized states are spatially

isolated, little crosstalk is expected with other regions, and their strengths should not be

affected when they intersect a FQH state at a different spatial location.

5.7.4 Zoom-ins on phase transitions

Finer measurements of various phase transitions are depicted in Fig. 5.7. The pattern

of localized states changes above and below several of the phase transitions, indicating that

101



Chapter 5: Fractional Quantum Hall Phase Transitions and Four-Flux States in Graphene

d�/dn (10-16 eV m2)

B
 (T

) 4

3

5.5

3.5

2.5

2

�n2/3 (109 cm-2)
0-2-4 2 4

5

4.5

c

0-1 1

B
 (T

)

0-4-8 4 8

4

3

4.5

3.5

2.5

0-1-2 1 2
d�/dn (10-16 eV m2)

0-4-8 4 8

4

3

4.5

3.5

2.5

2

0-4-8 4 8
d�/dn (10-17 eV m2)

4

3

1.5

3.5

2.5

2

�n2/3 (109 cm-2)
0-2-4 2 4

0-2 2
d�/dn (10-17 eV m2)

a b

d

Figure 5.6: (a)-(d) dμ/dn as a function of the carrier density offset from ν = 2/3 (Δn2/3)
and magnetic field, taken at different locations. The ν = 2/3 incompressible peak splits
into a doublet and weakens considerably between 3 and 3.5 T, but then strengthens again
at lower field, indicating a phase transition. The measurement positions in panels (a)-(c)
were all separated by at least 300 nm, and the region probed in panel (d) is near that in
(a).

102



Chapter 5: Fractional Quantum Hall Phase Transitions and Four-Flux States in Graphene

a b

d�/dn (10-16 eV m2)
-2 20

-0.67 -0.65
�

-0.69

4

7

3

B
 (T

)

8

6

c

5

-0.6 -0.595
�

-0.605

8

7

10

9

-0.59 -0.4 -0.38
�

-0.42
4

7

6

5

� = -2/3 � = -3/5 � = -2/5
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the phase transitions at ν = −2/3,−3/5 and −2/5, respectively.

the screening changes, as was observed in GaAs [126]. In some cases, multiple narrow

curved negative compressibility features are visible (Figs. 5.7a,b and 5.4a); this behavior

cannot be explained by localized states, and its origin remains unclear. For ν = −2/5,

the phase transition appears to occur virtually instantaneously in magnetic field at the two

measurement locations (Figs. 5.5a and 5.7c). However, in the third measurement position,

the phase transition reverts back to the more typical behavior observed at other filling

factors (Fig. 5.5b). The differences in behavior may be related to the level of disorder at

each location; further study is required to fully understand the origin of this behavior.

5.7.5 Carrier density at large back gate voltage

At large back gate voltage Vbg, the incompressible peaks of the FQH states curve slightly

in the Vbg-B plane. This likely reflects a small change in the capacitance between the back

gate and the sample that occurs because the graphene sags slightly at large back gate

voltages. To account for this effect, we use the relationship n =
Cg

e [1 + γ(Vbg)
2]Vbg, where

Cg/e = 3.02 × 1014 m−2 is proportional to the gate capacitance without any flake sagging

and γ = 1.67× 10−4 is an empirical factor that accounts for the deflection of the sample as
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the gate voltage is increased (it corresponds to about 3 nm of sagging at Vbg = 10 V). This

correction is used for all figures in the paper, but the impact is only significant for Fig. 5.4c.

The procedure does, however, contribute some uncertainty in the filling factor, particularly

at large filling factors (|ν| > 1) and high magnetic field.
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Chapter 6

Electron-Hole Asymmetric

Fractional Quantum Hall Effect in

Bilayer Graphene

The nature of fractional quantum Hall (FQH) states is determined by the interplay be-

tween the Coulomb interaction and the symmetries of the system. The unique combination

of spin, valley, and orbital degeneracies in bilayer graphene is predicted to produce novel and

tunable FQH ground states [55,102,106,134,135,140,141]. Here we present local electronic

compressibility measurements of the FQH effect in the lowest Landau level (LL) of bilayer

graphene. We observe incompressible FQH states at filling factors ν = −10/3,−4/3, 2/3,

and 8/3, with hints of additional states appearing at ν = −17/5,−7/5, 3/5 and 13/5. This

sequence of states breaks particle-hole symmetry and instead obeys a ν → ν +2 symmetry,

which highlights the importance of the orbital degeneracy for many-body states in bilayer

graphene.
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6.1 Introduction

The charge carriers in bilayer graphene obey an electron-hole symmetric dispersion at

zero magnetic field. Application of a perpendicular magnetic field B breaks this dispersion

into energy bands known as LLs. In addition to the standard spin and valley degeneracy

found in monolayer graphene, the N = 0 and N = 1 orbital states in bilayer graphene are

also degenerate and occur at zero energy [7]. This results in a sequence of single-particle

quantum Hall states at ν = ±4(M + 1)e2/h, where M is a non-negative integer [16].

When the disorder is sufficiently low, the eightfold degeneracy of the lowest LL is lifted

by electron-electron interactions, which results in quantum Hall states at all integer filling

factors [72, 73]. The nature of these broken-symmetry states has been studied extensively

both experimentally and theoretically, with particular attention given to the insulating

ν = 0 state. The filling sequence was initially predicted to first maximize spin polarization,

then valley ordering, and finally orbital polarization [17]. It has been shown, however,

that the ground state at ν = 0 in bilayer graphene in certain samples is actually a canted

antiferromagnet, which maximizes neither spin nor valley polarization [44, 48]. Multiple

groups have also been able to induce transitions between different spin and valley orders of

the ground states using external electric and magnetic fields [48,90–92]. It is clear that the

interplay between Zeeman energy, layer asymmetry, valley anisotropy terms, and SU(4)-

symmetric electron-electron interactions produces a rich phase diagram in bilayer graphene

not found in any other system.

Knowledge of the ground state at integer filling factors is especially important for

investigating the physics of partially filled LLs, where in exceptionally clean samples, the

charge carriers condense into FQH states. The above-mentioned degrees of freedom as well

as the strong screening of the Coulomb interaction in bilayer graphene are expected to result
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in an interesting sequence of FQH states in the lowest LL [55, 102, 106, 134, 135, 140, 141].

Indeed, partial breaking of the SU(4) symmetry in monolayer graphene has already resulted

in sequences of FQH states with multiple missing fractions [53, 110, 111, 136, 137]. Phase

transitions between FQH states with different polarizations have also been observed in

monolayer graphene [142].

Experimental observation of FQH states, however, has proven to be difficult in bilayer

graphene. Hints of a ν = 1/3 state were first reported in transport by Bao et al. [74].

Very recently, Ki et al. observed robust FQH states at ν = −1/2 and ν = −4/3 in a

current-annealed suspended bilayer sample [143]. Here, we report local compressibility

measurements of a bilayer graphene device fabricated on hexagonal boron nitride (h-BN),

performed using a scanning single-electron transistor (SET). Our technique allows us to

directly probe the thermodynamic properties of the bulk of the sample [77,78]. We measure

the local chemical potential μ and the local inverse compressibility dμ/dn by changing the

carrier density n with a proximal graphite gate located 7.5 nm from the graphene and

monitoring the resulting change in SET current. An optical image of the contacted device

is shown in Fig. 6.1a.

6.2 FQH states in Bilayer Graphene

Figure 6.1b shows a measurement of the inverse compressibility as a function of filling

factor at B = 2 T. Incompressible features are present at all nonzero multiples of ν = 4,

indicating that we are measuring bilayer graphene. The full width at half maximum of

the ν = 4 peak provides a measure of the disorder in the system and is on the order

of 1010 cm−2, similar to that observed in suspended bilayers [72, 144]. Broken-symmetry

states at ν = 0 and ±2 are also visible at B = 2 T, which further indicates the cleanliness
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Figure 6.1: (a) Optical image of the device with colored overlays showing the graphite
(blue), boron nitride (purple), and monolayer-bilayer graphene hybrid (red). The black
dashed line marks the interface between monolayer and bilayer. The scale bar is 2 μm.
(b) and (c) Inverse compressibility dμ/dn as a function of filling factor ν at magnetic field
B = 2 T and 12 T, respectively.

of the sample. Most interesting, however, is the appearance of additional incompressible

peaks at B = 12 T, shown in Fig. 6.1c. At this field, all of the broken-symmetry states

between ν = ±4 have fully developed. In addition, we observe incompressible features at

ν = −10/3,−4/3, 2/3, and 8/3, suggesting the presence of FQH states.

To confirm the origin of the incompressible peaks, we measure the inverse compress-

ibility as a function of filling factor and magnetic field. Figures 6.2a,b show the behavior

for −4 < ν < 0 and 0 < ν < 4, respectively. Quantum Hall states appear as vertical

features when plotted in this form, while localized states, which occur at a constant den-

sity offset from their parent states, curve as the magnetic field is changed [13, 137]. We

can then unambiguously identify the features at ν = −10/3,−4/3, 2/3, and 8/3 as FQH

states. The FQH states closer to the charge neutrality point are more incompressible than

those at higher filling factors, and they persist to fairly low magnetic fields, with the last
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Figure 6.2: (a) and (b) Inverse compressibility as a function of filling factor and magnetic
field. The color scales are the same in both panels. (c) Average inverse compressibility
between B = 9.9 and 11.9 T as a function of filling factor. The red curve (electron side) is
offset by 7× 10−18 eV m2 for clarity.

hints disappearing around 6 T. At B > 10 T, we also see evidence of developing states at

ν = −17/5,−7/5, 3/5, and 13/5.

Averaging the inverse compressibility over a range of magnetic fields reduces the fluc-

tuations created by localized states and clarifies the underlying behavior. Figure 6.2c shows

the average inverse compressibility from B = 9.9 to 11.9 T, which clearly shows the FQH

states identified above. Figure 6.2c also reveals that the background inverse compressibil-

ity is markedly lower between the integer filling factors where we observe the FQH states.

This correlation is consistent with previous experiments where a negative background com-
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pressibility was attributed to Coulomb interactions between charge carriers [57]. We also

note that the background inverse compressibility in higher LLs, where no FQH states were

observed, was much higher than in the lowest LL (see Section 6.6).

6.3 Electron-Hole Asymmetric Sequence of States

Interestingly, the sequence of FQH states that we observe does not obey particle-hole

symmetry but rather seems to follow a ν → ν + 2 symmetry. This indicates that the

orbital degeneracy uniquely present in bilayer graphene is playing an important role in

determining the sequence of observed fractions. Recent theoretical work on the FQH effect

in the lowest LL has predicted the presence of FQH states with a ν → ν + 2 symmetry in

bilayer graphene based on a model that incorporates the strong screening and LL mixing

present in the lowest LL of bilayer graphene [55]. We do not see any fractions between

ν = −3 and −2, nor between ν = 1 and 2, nor their ν+2 symmetric counterparts. At these

filling factors, one might expect to have a filled N = 0 LL and be partially filling an N = 1

LL. The absence of states in these ranges suggests a difference between partial filling when

both the N = 0 and N = 1 LLs are empty and partial filling of the N = 1 LL when the

N = 0 LL is full. The increased LL mixing present when the N = 0 LL is full [145] may be

weakening the strength of FQH states in the N = 1 LL.

Our observed FQH sequence also suggests possible orbital polarization of the FQH

states. The FQH states we observe at ν = 2p + 2/3, where p = −1, 0, or 1, could be

singlet states of N = 0 and N = 1 orbitals, or could arise from a 2/3 state with full orbital

polarization. The next strongest FQH states we observe occur at ν = 2p + 3/5, which

must have some nonzero orbital polarization. It is worthwhile to note that the strongest
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FQH states at multiples of ν = 1/5 do not have even numerators, in contrast with recent

theoretical predictions [55].

The strongest FQH states that we observe are different from those seen in previous ex-

periments on bilayer graphene, which may point to different patterns of symmetry-breaking

in the different systems. Ki et al. observed FQH states at ν = −4/3, and −1/2, with

hints of an additional feature at ν = −8/5 [143]; the only FQH state that we also observe

is ν = −4/3. It is also possible that the effective interactions present in the two sam-

ples may be different due to differences in screening between a suspended bilayer and a

bilayer on a substrate. The fact that different sample preparations result in different FQH

states is a sign of the theoretically predicted tunability of the FQH effect in bilayer gra-

phene [106,134,140]. Beyond the changes in polarization observed in monolayers, it appears

possible to experimentally tune the relative strengths of various incompressible FQH states

in bilayer graphene. Future experiments in which a perpendicular electric field and/or a

parallel magnetic field are applied to the sample will provide insight into the conditions

under which different FQH states are favored.

6.4 Steps in Chemical Potential of FQH States

We can integrate the inverse compressibility as a function of density to obtain the

energy cost of adding an electron to the system, as discussed in ref. [137]. This quantity

must be divided by the quasiparticle charge associated with each state to determine the

corresponding energy gap Δν . The most likely quasiparticle charge for states at multiples

of ν = 1/3 is e/3, but the nature of the FQH states in bilayer graphene is not yet fully

understood, so we plot the extracted steps in chemical potential Δμν in Fig. 6.3a. For

ν = −4/3 and ν = 2/3, Δμν is about 0.75 and 0.6 meV, respectively, at B = 12 T.

111



Chapter 6: Electron-Hole Asymmetric Fractional Quantum Hall Effect in Bilayer Graphene

-10/3
2/3
8/3

-4/3

��
��(

m
eV

)

6 108 12
B (T)

0

0.5

1

0.25

0.75

a

� �
 (m

eV
)

0 4 8 12
B (T)

0

20

10

30

�valley

�spin

�orbit

K  0

K  0
K  1

K  1

K’  1
K’  0

K’  1
K’  0

b c

������

�����

�����

������

-1
2

0
-2

3

1

-3

Figure 6.3: (a) Steps in chemical potential of the fractional quantum Hall (FQH) states as
a function of magnetic field. (b) Energy gaps of the integer broken-symmetry states in the
lowest Landau level (LL). (c) Schematic diagram showing the order of symmetry breaking
in the sample.

Assuming a quasiparticle charge of e/3, the energy gap we find at ν = −4/3 is comparable

with, if somewhat larger than, that found in ref. [143] at similar magnetic fields. The

gaps of FQH states farther away from charge neutrality are smaller; Δμ−10/3 and Δμ8/3

are only about 0.5 and 0.3 meV at B = 12 T. All of the extracted gaps appear to scale

approximately linearly with B. Previous measurements of broken-symmetry integer states

in suspended bilayers also found a linear-B dependence of the gaps, which was attributed

to LL mixing [22,144].

The energy gaps of the integer filling factors |ν| < 4 are shown in Fig. 6.3b. All of the

gaps increase with B, except for ν = 0, which is fairly constant around 23-25 meV over

almost the full range in magnetic field. The size of the gap and its persistence to zero field

lead us to conclude that the ground state at ν = 0 is layer-polarized. If we assume that the

ν → ν + 2 symmetry arises from the orbital degree of freedom, we can fully determine the

sequence of symmetry-breaking in the sample: valley polarization is first maximized, then

spin polarization, and finally orbital polarization, as illustrated in Fig. 6.3c. The large valley

polarization in our sample relative to other bilayer devices may be caused by interactions

with the substrate. A large band gap has been observed in a monolayer graphene sample

on h-BN with a proximal graphite gate, which was attributed to the breaking of sublattice
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Figure 6.4: Inverse compressibility as a function of filling factor and position X (a) and Y
(b). The sequence of FQH states does not vary with position.

symmetry by h-BN [146]. It is also possible that the difference in distance between the top

layer to the graphite gate and the bottom layer to the graphite gate is creating a potential

difference in the two layers [9], or that the different environments experienced by each layer

play a role. Even if the ν = 0 gap is caused by single-particle effects, its constancy over the

entire field range is somewhat surprising because both the potential difference between the

layers and the Coulomb energy are expected to contribute to the gap [147].

All of the measurements described above were performed at a single location on the

sample. Local measurement allows us to find the cleanest regions and study the properties

of FQH states in those areas. In addition, the local nature of our probe allows us to, in

effect, measure multiple independent samples by measuring at different locations. Figure

6.4 shows linescans of inverse compressibility as a function of filling factor and position. The

net level of doping remains fairly constant over the entire range of the spatial scans, but

there are fluctuations in the strengths of the broken-symmetry and FQH states, likely due

to differences in the amount of local disorder. Despite these fluctuations, the overarching

pattern of FQH states is consistent across the entire sample, and also did not change with

current annealing (see Section 6.6). The electron-hole asymmetric sequence of FQH states
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can therefore be attributed to the intrinsic properties of bilayer graphene, rather than

disorder. The observation of an unconventional sequence of FQH states in bilayer graphene

indicates the importance of its underlying symmetries and opens new avenues for exploring

the nature and tunability of the FQH effect.
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6.5 Methods

Graphite was mechanically exfoliated onto an O2-plasma-cleaned doped Si wafer capped

with 285 nm of SiO2. Suitable graphite pieces were found using a combination of optical

microscopy and atomic force microscopy (AFM). A 7.5-nm-thick piece of hexagonal boron

nitride (h-BN) was then transferred onto the graphite using the process detailed in ref. [146].

A hybrid monolayer-bilayer graphene flake was then transferred onto the h-BN using the

same method. Contacts were defined to the graphene and graphite using electron-beam

lithography before thermal evaporation of Cr/Au (1 nm/85 nm) contacts and liftoff in warm

acetone. The sample was cleaned in a mixture of Ar/H2 at 350 ◦C before each transfer step

and after liftoff. The sample was further cleaned using an AFM tip. Measurements were

made in a 3He cryostat at approximately 450 mK. The sample was cleaned in the cryostat

using current annealing. The sample measures 8 μm from contact to contact and is 4 μm

wide. All measurements presented here were made on the bilayer side of the flake.

The fabrication of the SET tip was performed according to the procedure outlined in

Appendix B. Electrical leads were 16 nm thick and the island was approximately 7 nm.
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Figure 6.5: Inverse compressibility over a larger range in filling factor showing the lowest
LL has more negative background compressibility than higher LLs.

The diameter of the SET was approximately 100 nm, and it was held 50-100 nm above the

graphene flake during measurements.

6.6 Supplementary Discussion

6.6.1 Higher Landau levels in bilayer graphene

Figure 6.5 shows the inverse compressibility as a function of filling factor for −8 < ν <

8. Despite theoretical predictions of robust FQH states in the N = 2 LL [102, 140] and

experimental hints in other samples [48], we do not observe any FQH states between |ν| = 4

and 8. The background inverse compressibility at 4 < |ν| < 8 is considerably higher than

at 0 < |ν| < 4, which is consistent with lower background compressibility corresponding to

Coulomb interactions between quasiparticles, as discussed in the main text.

6.6.2 Effects of current annealing

The data presented in the main text were taken after multiple current anneals, with a

maximum source-drain voltage Vsd = 10 V. Figure 6.6 shows the progression of the behavior

upon current annealing. Prior to current annealing the sample, we observed all the integer
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Figure 6.6: (a) Inverse compressibility as a function of filling factor and magnetic field after
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ν = 2/3 and 8/3. (b) and (c) Inverse compressibility as a function of filling factor and
magnetic field after annealing to Vsd = 8 V. The FQH states become sharper and more
incompressible, and they persist to lower magnetic field. (d) Steps in chemical potential of
the FQH states after annealing to 8 V. (e) Energy gaps of the integer quantum Hall states
after annealing to 8 V.

broken-symmetry states between ν = ±4, but no FQH states were apparent. After current

annealing to 4 V, we observed hints of incompressible states at ν = 2/3 and 8/3 (Fig.

6.6a). These states became more robust after annealing to 8 V (Figs. 6.6b-e) and additional

FQH states appeared at ν = −4/3 and −10/3. Throughout all current annealing steps, the

sequence of incompressible FQH states did not change; current annealing appears to only

increase their strength. It is worthwhile to note that the steps in chemical potential were

slightly larger for ν = 2/3 and 8/3 after annealing to only 8 V than the data presented in

Fig. 6.3a.
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6.6.3 Conversion of gate voltage to filling factor with large geometric

capacitance

The proximity of the graphite gate resulted in a large geometric capacitance, CG, to

the sample, causing the total capacitance, CT , to depend strongly on the compressibility

of the sample. Incompressible states dramatically alter CT because quantum capacitance

dominates over geometric capacitance in this regime. Figure 6.7 shows the compressibility

as a function of back-gate voltage, Vbg, and the very wide integer quantum Hall states clearly

demonstrate the filling-factor dependent change in the total capacitance.

In order to assign filling factor, we use the distance between ν = 2/3 and 1 to find CT

in the ν = 0 to 1 range. The equation

1

CT
=

1

CG
+

1

e2
dμ

dn
, (6.1)

where dμ/dn is the average background inverse compressibility between ν = 0 and 1, allows

us to determine CG. The extracted CG corresponds to a back-gate to density conversion

ratio of 2.7 × 1016 cm−2/V, which is reasonable given a h-BN thickness of 7.5-8 nm and a

dielectric constant a bit less than 4.
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To find CT in a different filling factor range, we then use Eq. 6.1, the average compress-

ibility in this new filling factor range, and CG, which we assume is constant. The extracted

CT then provides the conversion between the back-gate voltage and density. Throughout

the manuscript, we use the same CT for −4 < ν < −3, 0 < ν < 1, and their ν → ν + 2

analogues. We also use a single CT for filling factors between ν = −3 and −2, ν = 1 and 2,

and their ν → ν + 2 counterparts. For |ν| > 4, we use the geometric capacitance.
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Chapter 7

Electronic Compressibility at a

Monolayer-Bilayer Graphene

Interface

Adjoining monolayer and bilayer graphene flakes provide an intriguing system to study

because the charge carriers evolve from massless to massive Dirac fermions as they cross the

interface. Here we present local electronic compressibility measurements of a monolayer-

bilayer hybrid graphene device subject to a perpendicular magnetic field. At the charge

neutrality point, both sides of the sample are incompressible due to the formation of broken-

symmetry states at filling factor ν = 0, but we observe increased compressibility where they

meet. This suggests that the ν = 0 energy gap weakens or closes at the interface, a conclu-

sion further supported by the absence of localized states centered at the monolayer-bilayer

boundary. The behavior of several other quantum Hall states also changes as they approach

the interface, suggesting that graphene samples with different numbers of layers in adjoining

regions may provide an attractive method to locally engineer novel band structures.

119



Chapter 7: Electronic Compressibility at a Monolayer-Bilayer Graphene Interface

7.1 Introduction

Stacking two graphene sheets to form a bilayer dramatically alters the electronic prop-

erties of the system. Whereas charge carriers in monolayers have linear dispersion and act

as massless Dirac fermions [5], bilayers have parabolic bands at low energy that support

massive Dirac fermions [7]. In a perpendicular magnetic field B, the respective Berry’s

phases of π and 2π in each material lead to single-particle quantum Hall features that are

out of phase: in monolayers, states occur at ν = ±4(M + 1/2) [14, 15], whereas bilayers

exhibit them at ν = ±4(M + 1) [16], with M a non-negative integer. In addition, the

characteristic energy scales of the two systems are very different. Graphene has a much

smaller density of states near the charge neutrality point due to its linear dispersion, so the

Fermi energy is larger in monolayers for all experimentally relevant carrier densities n.

These striking differences raise the question of how electronic properties evolve near

the interface of a monolayer-bilayer hybrid made from one continuous layer that extends

throughout the entire sample and a second Bernal-stacked layer that overlaps with only

part of the first sheet (Fig. 7.1a). The different energy scales of each side could lead

to local charge transfer at the interface. In addition, theoretical studies predict angle-

dependent transmission of electrons across the interface at zero magnetic field, with opposite

dependence for each valley and corresponding valley polarization of the transmitted wave

[148, 149]. In a magnetic field, the Landau levels (LLs) are predicted to disperse as they

cross from monolayer to bilayer, leading to regions with flat energy bands near the boundary

[121, 149]. This effect occurs within a few magnetic lengths lB =
√

h̄/eB of the boundary,

irrespective of the edge termination at the interface, which can take on an armchair or two

different zigzag forms. Above, h̄ is Planck’s constant divided by 2π and e is the electron

charge. Moreover, because the quantum Hall sequences are out of phase, the LLs of a given
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Figure 7.1: (a) Schematic illustration of a monolayer-bilayer hybrid with a zigzag edge
termination in which the B2 atoms extend closest to the monolayer region. The bilayer
region has Bernal stacking, with A2 atoms directly above B1 atoms in the lower layer.
Here, the letter refers to sublattice and the number refers to the layer. (b) Optical image
of the measured device, overlaid with a schematic illustration of the measurement setup.
The single-electron transistor (SET) is held approximately 50-100 nm about the graphene
device and is approximately 100 nm in diameter. (c) Landau level (LL) dispersion near the
monolayer-bilayer boundary shown in (a), with negative X corresponding to the monolayer
side. The color plots show the density of states (white, high; black, low) as a function of
distance to the interface for each sublattice of the monolayer and bilayer sides. Panel (c)
reproduced from ref. [121] with minor relabeling of variables.
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degenerate orbital quartet in the monolayer split according to their valley degree of freedom

and connect to different orbital states in the bilayer (Fig. 7.1c).

Despite the richness of the system, hybrid devices have received little experimental

attention. Magnetotransport measurements conducted on a monolayer-bilayer hybrid de-

vice showed conductance oscillations consistent with parallel transport through both re-

gions [119]. Quantum oscillations were also strongly modified at certain gate voltages in

devices with a narrow monolayer strip at the edge of a large bilayer flake, suggesting that the

LLs of the monolayer were influential, even though the bulk of the sample was bilayer gra-

phene [119]. These results suggest that further exploration is warranted, but drawing firm

conclusions about the local behavior at the interface from global transport measurements

is difficult.

7.2 Changes in Quantum Hall States

To directly explore the electronic properties of a monolayer-bilayer interface, we con-

ducted local electronic compressibility measurements of a suspended hybrid device using

a scanning single-electron transistor (SET) [77, 78], schematically illustrated in Fig. 7.1b.

The data presented in this chapter were taken on the same sample as was used in Chapters

4 and 5, but we focus here on the compressibility near the interface.

Figure 7.2 shows inverse compressibility as a function of position as the tip is moved

from the monolayer to the bilayer side at various magnetic fields. Far from the inter-

face, the expected single-particle quantum Hall sequences occur in each region, with addi-

tional incompressible peaks also visible at intermediate integer filling factors due to broken-

symmetry states [39,72,73]. Near the interface, however, the behavior qualitatively changes.

The strengths of incompressible peaks associated with single-particle quantum Hall states
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Figure 7.2: (a) Inverse compressibility dμ/dn as a function of filling factor ν and position
X at B = 0.75 T (a), 1 T (b), and 4 T (c). Near the interface, the single-particle incom-
pressible quantum Hall states weaken and broaden. The ν = 0 state also weakens where
the monolayer and bilayer meet, but the ν = ±2 states get stronger and sharper on the
bilayer side. In contrast to Fig. 7.1c, positive X corresponds to the monolayer side in this
and subsequent experimental figures.
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weaken as they approach the interface, whereas the opposite happens in the compressible

regions, with additional incompressible behavior developing near the interface over certain

ranges in filling factor (Figs. 7.2a,b). The spatial extent of these changes increases as filling

factor increases, qualitatively consistent with theoretical predictions [121]. Although the

differences in compressibility that we observe extend beyond a few magnetic lengths from

the interface, this may be caused in part by the relatively large area sensed by the SET.

Changes to broken-symmetry states also occur near the monolayer-bilayer boundary.

The ν = ±2 incompressible peaks of the bilayer strengthen and narrow considerably near

the interface (Fig. 7.2c). This behavior likely reflects the continuation of only one layer

onto the monolayer side of the sample, which locally breaks layer symmetry. The ν = ±2

states in bilayer graphene were shown to be stabilized by an electric field that breaks layer

symmetry [90], and similar effects are may be at play near the interface.

At the charge neutrality point, the sample becomes more compressible near the interface

(Figs. 7.2b,c). Whereas both monolayer and bilayer regions exhibit strong incompressible

peaks associated with broken-symmetry ν = 0 states, the boundary between these regions

shows a marked increase in compressibility. This behavior is not limited to individual

linescans; a similar effect is also visible in a two-dimensional spatial map of the inverse

compressiblity at the charge neutrality point (Fig. 7.3). On both the monolayer and the

bilayer sides, very incompressible behavior is again apparent. However, near the boundary

between the two, the sample is more compressible.

7.3 Absence of Localized States at ν = 0

In addition to the increased compressibility that is evident near the interface at ν = 0,

Fig. 7.3 shows that no localized states (visible as dark blue rings) are centered at the
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Figure 7.3: Inverse compressibility at ν = 0 as a function of X and Y position at B = 12 T.
Incompressible behavior occurs on both the monolayer and bilayer sides of the sample, but
the interface is more compressible. Localized states are visible as dark blue ovals. None
are centered at the interface, which occurs at approximately X = 0. The measured inverse
compressibility is artificially enhanced due to the large resistance of the flake.

monolayer-bilayer boundary. Localized states only form in the presence of an energy gap

[13], so their absence suggests that no energy gap is present at the interface. The same

behavior also occurs in a linecut across the boundary taken at B = 1 T (Fig. 7.4). Although

a spectrum of localized states (dark blue arcs) are clearly apparent in both the monolayer

and the bilayer regions, none occur at the interface, which is compressible.

These findings suggest that the energy gap of the ν = 0 broken-symmetry state weakens

or closes at the interface. Such behavior could be caused by a band crossing and correspond-

ing edge mode along the interface, which could arise if the nature of the broken-symmetry

states in the monolayer and bilayer regions is different. Alternatively, recent experiments

indicate that the ν = 0 state is likely a canted antiferromagnet in both monolayer and bi-

layer graphene [47,48]. At the physical edge of monolayer and bilayer samples in this state,

the energy gap is predicted to partially close, as well as form interesting spin textures [150].

If similar behavior also occurs at the monolayer-bilayer boundary, it could account for the

experimental findings described above. Finally, increased compressibility could also arise if

the interface is dirty, e.g. because the edge termination attracts chemical adsorbates. Fur-
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Figure 7.4: Inverse compressibility at B = 1 T as a function of carrier density n and
position along the sample. The incompressible ν = 0 state is visible on both the monolayer
and bilayer sides of the sample, but the interface is compressible. No localized states, which
appear as dark blue arcs, are centered at the interface, which occurs at approximately
X = 0. The inverse compressibility at ν = 0 is artificially enhanced due to the large
resistance of the flake. Data were taken after current annealing the sample.

ther study is required to pinpoint the dominant cause of the compressible behavior around

ν = 0 at the interface.

7.4 Reproducibility and Outlook

The qualitative behavior described above was unchanged by current annealing the flake

to remove disorder, as illustrated by the analogous measurements in Fig. 7.5. The sample

became even cleaner, leading to fewer localized states and sharper incompressible peaks,

as well as more broken-symmetry states. The changes of the ν = 0 and ±2 states at the

boundary were still apparent, providing further evidence for the behavior described above.

Nonetheless, the measurements were performed on only one sample, and therefore should

be corroborated before sweeping conclusions can be made.
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Figure 7.5: (a) Inverse compressibility as a function of filling factor and position X at
B = 2 T after current annealing. As was the case before annealing, the interface is more
compressible at the charge neutrality point, and the ν = ±2 states are sharper and stronger
at the monolayer-bilayer boundary. (b) Inverse compressibility at ν = 0 as a function of X
and Y position. Fewer localized states are present than before, indicating a cleaner sample,
but the qualitative behavior is unchanged. The monolayer and bilayer sides are both more
incompressible than the boundary between them, and no localized states are centered at
the interface.
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Figure 7.6: Inverse compressibility as a function of filling factor and position y at B = 12 T
in a sample on boron nitride. Although the states do not occur at exactly the same gate
voltage, the sample appears to be more compressible at the monolayer-bilayer boundary
for both ν = 0 and 2. The differences in the positions of the incompressible peaks may
be caused by differences in doping and also by the different densities of states on each
side, an effect exacerbated by the large geometric capacitance of the nearby gate. Weaker
incompressible FQH states are also visible.

We have also fabricated a monolayer-bilayer hybrid device on a Si/SiO2/graphite/boron

nitride stack (the same sample whose bilayer properties are discussed in detail in Chapter 6).

As for the suspended sample, the interface appears to show an increase in compressibility

at the charge neutrality point (Fig. 7.6). However, the comparison is made more difficult

because the ν = 0 states on either side do not occur at exactly the same gate voltage.

Moreover, the nature of the ν = 0 state on the bilayer side is likely different in the boron

nitride sample due to the strong asymmetry in the environment of each layer; the energy

gap is approximately constant in magnetic field, suggesting valley polarization rather than a

canted antiferromagnet [44]. Despite the limited number and nature of the samples explored,

the data suggest that interesting effects may occur at the boundary between monolayer and

bilayer graphene, and further exploration of these phenomena represents an exciting avenue

to pursue.
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Fabrication of Suspended

Graphene Samples

Many of the experimental findings described in this thesis were apparent only because

the devices were exceptionally clean. This appendix describes the fabrication of suspended

graphene flakes, which follows a method similar to that presented in ref. [58].

A.1 Fabrication of Suspended Devices

Mechanical exfoliation of highly oriented pyrolytic graphite (grade ZYA, SPI Supplies)

is used to deposit few-layer graphene flakes on a Si substrate coated with 300 nm of SiO2.

Deposition is carried out at 180 ◦C to minimize the amount of water present on the substrate.

Suitable flakes are identified using an optical microscope, on the basis of contrast between

the flake and the surrounding substrate. Electrical leads are then patterned using electron-

beam lithography, followed by thermal evaporation of 3 nm of Cr and 100 nm of Au, and

subsequent liftoff in warm acetone. The entire substrate is then immersed in 5:1 buffered

oxide etch for 90 s, which etches approximately 40% of the SiO2, including the area under
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the graphene [58], but not the area under the metal contacts, which extend across the

entire width of the flake to improve structural integrity. Finally, samples are transferred

to methanol and dried using a critical point dryer. Finished devices are inserted into the

measurement system as quickly as possible.

A.2 Current Annealing

Although some measurements were performed without further cleaning, more recently

we have current annealed the samples by applying a source-drain voltage Vsd ≈ 1-3 V

across the graphene. Graphene can sustain about 0.7 mA per μm width before the sample

is destroyed, and we typically start with Vsd ≈ 0.5-1 V, and gradually increase it until the

Dirac peak is sharp. Current annealing can be performed in liquid helium or in vacuum at

low temperatures.
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Scanning Single-Electron

Transistor Microscope

The fabrication process for preparing the single-electron transistor (SET) tips used in

Chapters 3-7 is described below. Some additional tips and tricks for running the scanning

SET microscope are also provided. Additional information about operation and mainte-

nance of the microscope is detailed in ref. [151].

B.1 SET Fabrication

Scanning probe tips are fabricated using a fiber puller to generate a conical taper at the

end of a quartz rod. Al (16-19 nm) is thermally evaporated onto either side of the quartz

rod to generate the two leads of the SET. Following a brief oxidation step, another thin

(6-19 nm) layer of Al is evaporated onto the end of the conical tip to serve as the island of

the SET. A second oxidation step completes the fabrication process. Tip size ranges from

approximately 100 to 200 nm, and the tip is held between 50 and 200 nm above the flake

during measurement.
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B.2 Tips and Tricks for Running the Microscope

The scanning SET microscope functions exceptionally well given the many parts that

must all work in concert. However, certain problems arise fairly frequently, and some

potential solutions are detailed below. A few software improvements that were implemented

over the past few years are also described.

B.2.1 Fixing a noisy SET tip

Several different methods can be used to try and fix a noisy SET tip without go-

ing through the painstaking process of preparing and inserting a new one. Perhaps most

straightforward is applying a large source-drain bias across the SET. The rationale behind

this approach is that the large electric field in the tunnel junctions will push any trapped

charges onto either the island or one of the leads. Applying as much as 15-20 mV is fairly

routine, and should not damage the SET. We once applied 100 mV at room temperature

overnight, and the SET not only survived, but also behaved exceptionally well afterward.

A second method is to apply a large bias between the tip and the sample. This produces

a large electric field, and in principle, should also push any trapped charges away from the

oxide barriers near the island. Moving as many as 40 electrons out of flat band is perfectly

safe. Typically, we increase the electric field over a timescale of several minutes, and the

maximum electric field can be maintained anywhere from several minutes to several hours.

Finally, there have been several occasions where a noisy tip was heated to room tem-

perature by raising the microscope rod, usually associated with sample changes such that

the high temperature was maintained for hour-long timescales. This always seems to im-

prove the noise level of the tip dramatically. The one time that we did it without changing

or moving the sample, the tip drifted only slightly out of the previous fine scan range

(∼10 μm).
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B.2.2 Sticky coarse motors

Coarse positioning of the SET tip is accomplished at 3He temperatures using slip-stick

motion of piezoelectric stacks. Unfortunately, this motion can often get stuck for the X

and Y directions, and it is least reliable in the −Y direction. Several techniques can be

used to unstick the SET. First, while cooling down the microscope from room temperature

immediately after inserting a new tip or sample, it can be helpful to periodically take

approximately 100 coarse steps in a particular direction. This is meant to avoid water or

other molecules freezing around the piezoelectric stacks and creating barriers.

If the motion is still stuck, increasing the coarse step frequency or power can help,

although this introduces more crosstalk with other wires, and can also make the SET

noisier. You should never use 100% power, as this will destroy the SET. This is an effect

which has been reproduced at both Weizmann and Harvard, so don’t waste your time.

Sometimes, the coarse motion can be jump-started by taking steps in continuous mode

for some amount of time. The friction can heat the sapphire stage locally and unstick the

piezos so that they perform slip-stick motion. Start slowly (at most 0.5 s), because the tip

moves very quickly once it starts to move at all; three bouts of continuous mode in quick

succession, for 30 s each, once unstuck a stubborn tip in the −Y direction, but further

time increases are probably not worthwhile. Note that this can also make the tip noisier.

Once the tip has moved after the initial cooldown, motion often becomes easier from then

onward. As a last resort, the microscope rod can be raised, and the tip can be repositioned

at room temperature, which is particularly useful if one direction is especially problematic

and you know where the tip sits relative to the sample.
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B.2.3 Matching positions after system warmup

Long scans will often require more time to complete than the helium hold time allows.

For delicate position-sensitive measurements, such as n-B sweeps, one must therefore match

the position of the current scan to the previous one. This is often more difficult than it

might seem because walking in the microscope room during helium transfers can shift the

position of the tip.

As a starting point, use the relative positions indicated by the XY maps. The easiest

way to match position is to look at the pattern of localized states and the magnitudes of

any steps in chemical potential. If you are close to the correct position, moving in 0.05 V

steps in X or Y can produce a meaningful change in behavior. Otherwise, you might want

to save time by changing position in 0.1 V increments. It is also worth noting that the

scanner seems to have some hysteresis, so that moving 0.1 V in +X followed by 0.1 V in

−X does not always cause the behavior to revert back exactly. This type of discrepancy is

often fixed simply by resuming the ramping of magnetic field, so a good strategy is to start

at a magnetic field where you already have data, and simply throw out the first line of the

new data. The VTOP setpoint can also affect behavior.

Changing X and Y position significantly can also cause the position to shift slightly

when you start ramping the field. So if you have had to move around a lot to find the

perfect position match, be wary and watch the second line of the data as well. If you simply

cannot match the position, it is worthwhile to try the position where you ended the previous

scan, even if it seems far from ideal based on the XY map. Empirically, we have found that

this sometimes works, which might be an indication of imperfect position correction with

magnetic field, or might simply reflect some hysteresis or uncertainty in the XY map.
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B.2.4 Hardware and software updates

Various improvements to the measurement software and hardware have been made over

the past few years, and some important ones are described below. For Matlab functions,

further comments are also given in the m-file code.

Perhaps the most important and often used improvements relate to single-step coarse

motor control through the Special Measure software. The coarse motors have a dedicated

Special Measure instrument, and @smcCoarseStep is the control function. The number of

steps to be taken at a time is defined in smdata.inst(4).data.stepnum (4 should be replaced

by the coarse motor instrument number if the rack is changed). The basic workflow is that

Special Measure software sends a signal to the measurement hardware that it should first

zero the SET bias, followed by other user-defined channels, typically back gate and sample

voltages. The DecaDac channel that controls the field-effect transistor in the microscope

then supplies −10 V to ground the SET, and after a 2 s wait time, a 0.25-second 5 V square

pulse is applied to the relay box using the relevant DecaDac channel. This then triggers a

short pulse that mimics a button being pressed on the remote box for coarse motion. Finally,

the coarse motor will perform a step (accompanied by an audible click in the control room).

After the specified number of steps has been taken, the SET is ungrounded, and after

another 2 s of wait time, the SET and other voltages are returned to their original values.

The magnet and its power supply have also changed because we are using a compen-

sated magnet to avoid interfering with TEM focusing on the basement floor. The new

magnet power supply has a control function @smcCS410V. It can be used in either FIELD

mode, for normal operation, or RAMP mode, in which a long ramp is started and data is

taken as the field is swept. For the latter, the field should be recorded at each data point.

Some minor changes have been made to the @smcLinearCombination instrument orig-

inally written by Vivek Venkatachalam. To make it safe for controlling fine X ′ and Y ′
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motion, the ramp time in each direction is the same so that the tip will move in a straight

line. This avoids inadvertently crashing into a contact in cases where ΔX is much larger

than ΔY , or vice versa. The setfeedback function has also been tweaked slightly. It can be

used to allow for feedback on both sides of the Coulomb blockade oscillations, or it can ac-

cept only one slope. The latter is useful for obtaining the energy gaps of very incompressible

integer quantum Hall states.
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