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Thesis advisor: Vinothan N. Manoharan Jerome Fung

Measuring the 3D Dynamics of Multiple Colloidal Particles with
Digital Holographic Microscopy

ABSTRACT

We discuss digital holographic microscopy (DHM), a 3D imaging technique capable
of measuring the positions of micron-sized colloidal particles with nanometer precision
and sub-millisecond temporal resolution. We use exact electromagnetic scattering solu-
tions to model holograms of multiple colloidal spheres. While the Lorenz-Mie solution
for scattering by isolated spheres has previously been used to model digital holograms, we
apply for the first time an exact multisphere superposition scattering model that is capable
of modeling holograms from spheres that are sufficiently close together to exhibit optical
coupling.

We apply the imaging and analysis techniques we develop to several problems. We image
static colloidal clusters clusters containing up to 6 particles, which can be modeled as ap-
proximately rigid bodies. We also measure 6 degrees of freedom — three-dimensional trans-
lation, rotation about two axes, and vibration - in a two-sphere cluster bound by depletion
forces. We also track multiple particles moving on the surface of an emulsion droplet. Fi-
nally, we perform precision measurements of the anisotropic diffusion of sphere clusters.
We measure all the non-zero elements of the diffusion tensor D to ~1% precision or bet-
ter for sphere dimers and trimers, and make one of the first single-cluster observations of
anisotropic rotational diffusion for a sphere trimer. Our measurements even allow us to
resolve the effects of weak symmetry breaking due to slight (~3%) particle polydispersity
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Introduction

This thesis describes two principal scientific results. First, we have developed methods for
performing rapid, precise, three-dimensional (3D) imaging of multiple colloidal particles
using a technique called digital holographic microscopy (DHM). Secondly, we have used
these techniques to make new measurements of a fundamental physical phenomenon, the
anisotropic Brownian motion of clusters of colloidal spheres. These results are described
in detail in Chapters 4 and s, respectively. In this Chapter, we provide a broader scien-
tific context for these results. We begin by discussing colloidal suspensions and colloid
physics (Section 1.1). Next, we discuss the crucial role that microscopy has played in col-
loid physics, along with mature techniques that have been developed for 3D microscopy of
colloids, (Section 1.2). We then give a brief; historically-driven overview of the 3D imaging

technique at the heart of this thesis, DHM (Section 1.3)



1.1 COLLOIDAL SUSPENSIONS, PARTICLES, AND CLUSTERS

We will define colloids as suspensions of solid particles, ~ 10 nm - § ym in size, in flu-
ids. We refer to the particles themselves as colloidal particles and the fluid as the solvent,
even the particles are not, strictly speaking, dissolved. The length scales of the particles
are important: we consider here particles that are large enough to behave as classical, non-
quantum objects', and we also require the particles to be small enough to undergo Brow-
nian motion. The size of colloidal particles, many of which are close to the wavelengths
of visible light, mean that individual colloidal particles as well as aggregates can interact
strongly with light, something we will subsequently exploit. That said, the particles can be
made from inorganic materials such as silica or from polymers such as polystyrene (PS) or
polymethyl methacrylate (PMMA). The solvents can also either be aqueous or organic, as
in the seminal work of Pusey & van Megen studying PMMA particles in decalin that had
nearly hard-sphere interactions [ 1].

Colloidal particles find practical applications in rheology control as well as optical con-
trol. One example may be found in Figure 1.1.1: an scanning electron micrograph of titania
particles used to control the optical properties of cosmetics. Further discussion of practical
applications of colloids, however, is outside the scope of this thesis.

Rather, our interest in colloids is primarily motivated by their utility as tools to study
fundamental physics questions. In many senses, colloidal particles can act as model atoms.
Many synthesis routes exist for making macroscopic quantities of monodisperse spheri-
cal particles® Interactions between colloidal particles, such as electrostatics, van der Waals
forces, and depletion interactions are generally short-ranged and mostly well-understood.
Consequently, colloids in many ways behave like atoms — with the exception that they are
easily visualized and manipulated with light, and can be handled without specialized vac-

uum or low-temperature facilities.

"There is one key exception: a rigorous computation of van der Waals forces does require quantum
field theory.

*For example, see [2] for a straightforward route for synthesizing cross-linked polystyrene spheres
that the author has carried out. Monodisperse colloidal particles are also readily available for commercial
purchase, which is how we obtained most of the particles used in this work.



Figure 1.1.1: Scanning electron micrograph of rutile titania (TiO,) particles; these
are not monodisperse spheres. Scale bar, 200 nm. Image courtesy of W. Benjamin
Rogers.

We cannot give a full review of the progress that has been made by using colloids as
model atomic systems, but we give a few highlights. Phase behavior in bulk hard-sphere
systems was one of the first statistical mechanical problems with which computer simula-
tion techniques were pioneered in the 1950’ [3]. Thirty years later, Pusey & van Megen’s
work with hard sphere colloids allowed experimentalists to access phenomena in the labo-
ratory that had previously been the purview of theory and computation [ 1]. Studies using
colloids as model atoms have subsequently become widespread; phenomena such as the
glass transition [4] and crystal melting [ 5] have been studied. In these works, the size of
colloidal particles has allowed structure and dynamics to be observed directly in real space
with microscopy, as opposed to techniques based on scattering that probe reciprocal space.

Our primary focus in this thesis, however, is on small number of colloidal particles, and
in particular, on clusters of colloidal spheres (which we frequently refer to as colloidal clus-
ters.) Some of the first work in this field came from Manoharan et al., who showed that
emulsion drops with a given number of particles N bound to their surface always form
the same densely packed structure when the contents of the emulsion droplet are leached
out [6]. Further numerical and analytical work [7] suggested how this process might be

governed by geometrical constraints arising when the droplets are leached. This work was



important for several reasons: it ignited interest in colloidal clusters as a means to study the
statistical mechanics of small numbers of particles, and it also suggested a means by which
such clusters could be readily produced.

It was, however, the work of Meng et al. on the self-assembly of colloidal clusters from
particles interacting via depletion interactions [ 8 ] that more fully showed how clusters can
give insight into statistical mechanics and stimulated my own interest in imaging such clus-
tersin 3D. With the short range of the depletion interaction (close to being a contact force),
all rigidly packed clusters with the same number of inter-particle contacts have the same
energy. There are two possible rigidly packed clusters that can be formed by six particles:
an octahedron and a polytetrahedron®. Surprisingly, the octahedron and polytetrahedron
do not form with equal probability: rather, the octahedron only forms with about a 4%
probability. Meng et al. found that the entropy of the clusters must also be taken into ac-
count, and that the symmetry of the octahedron results in its having less entropy and a
higher free energy as compared to the polytetrahedron. Moreover, Meng observed with
conventional microscopy a transition between the two 6-particle free-energy-minimizing
states, but the 3D details of the transition were not observable. This observation motivated
my own interestin 3D microscopy, and some of the work described in this thesis eventually
led to the observation of such a transition using DHM [9].

We have thus suggested some of the physical questions, particularly regarding the statis-
tical mechanics of self-assembly, that can be addressed using colloidal clusters. Colloidal
clusters, if rigid, are also non-spherical colloids. There has been much recent interest in
such non-spherical clusters, for non-spherical particles might exhibit directional interac-
tions, much as many real atoms do*. Colloidal clusters have also generated interest for
their optical properties and the potential they offer for creating fluidic metamaterials [11].
We now turn to ways through which such clusters, and colloidal systems in general, can be

studied through microscopy.

3See Meng [ 8] or Figure 4.1.2 for an illustration of the polytetrahedron.
*See Glotzer & Solomon [ 10] for an excellent review.



1.2  Microscory AND CoLLOID PHYSICS

1.2.1 MICROSCOPY: ELUCIDATING STRUCTURE, DYNAMICS, AND INTERACTIONS

Microscopy is far from the only useful experimental toolin colloid physics, but it is arguably
one of the most important. We will not here discuss the relative capabilities and limitations
of tools such as static and dynamic light scattering, rheology, and the surface forces appa-
ratus, but will instead discuss how microscopy has enabled studies of real-space structure,
dynamics, and interactions in colloidal systems. We do not seek to be comprehensive here,
but instead refer the interested reader to the references in Crocker and Grier [12] and to
the reviews of Habdas and Weeks [13] and Prasad et al. [14].

In bulk colloidal suspensions, microscopy allows the location of every particle in the
field of view. It is thus straightforward to observe structure qualitatively. The microscopy
of bulk colloidal suspensions can be traced back to Kose and co-workers, who imaged the
low-volume fraction crystals formed by 341 nm-diameter charged spheres in a solvent with
a very low ionic strength [15]. Due to the difficulty of imaging through many layers of a
crystal of densely packed, strongly scattering spheres, other workers focused on imaging
structures that were two-dimensional or thin, such as colloids bound to the surface of a
flat fluid-air interface [ 16]. Other early work on structure dealt with the crystallization of
nearly-hard spheres confined to narrow gaps. In particular, Pieranski et al. showed how
the the crystal structure of nearly-hard spheres confined to a wedge changed as the wedge
thickness increased: the structure evolved from a triangular monolayer, to two layers with
square symmetry, and eventually to two layers with triangular symmetry [17] *. Van Win-
kle and Murray later found different phase behavior in further studies using charged parti-
cles [18]. In general, in studies like these, structure can be quantified through the pair cor-

relation function g(r), which can be directly computed from microscopy via a histogram of

>The evolution of the crystal symmetry can be explained by a packing argument. When the wedge
thickness is comparable to 2a, where a is the sphere radius, it is clearly impossible for more than one layer of
particles to form. But the height of the second plane in a close-packed system exhibiting square symmetry
(such as the (100) plane of a maximally dense bcc lattice) is \/2a & 1.41a, while for a triangular lattice
(e.g. the spacing between (111) planes in an fcc lattice) the height is (24/6/3)a ~ 1.63a. Consequently,
as the wedge thickness increases to allow the formation of a second layer, a square symmetry is initially
favored.



interparticle separations. This stands in contrast to scattering techniques which typically
measure the structure factor S(q), the Fourier transform of g(r).

Time-resolved microscopy, particularly video microscopy, is also capable of tracking
how the structure of a colloidal suspension evolves in time, particularly during phase tran-
sitions. Examples of the physical situations that have been explored this way include the
melting of colloidal crystals [19], the formation of colloidal crystals [20], the movement
of crystal defects [21], and how defects can serve as nucleation sites for melting [ 5 ]. These
are but a few examples of works that examine particle trajectories, or correlation functions
from those trajectories, obtained through microscopy. Crocker and Grier [12] were par-
ticularly instrumental in establishing particle tracking techniques and software.

Another aspect of dynamics that has been successfully probed with microscopy, and
which is particularly relevant to this thesis, is diffusion. We will defer a more detailed dis-
cussion of Brownian motion to Chapter s, but qualitatively, it consists of the continuous
random motion of small particles dispersed in a fluid as they are buffeted by molecular
motions. The quantitative study of Brownian motion using microscopy can be traced to
Jean Perrin, who in 1909 experimentally confirmed Einstein’s theory of Brownian motion
[22]. Perrin quantified the displacements of monodisperse, submicron emulsion droplets
of natural rubber latex; his work helped to definitively establish the existence of atoms °.
The Stokes-Einstein relation that Perrin’s work helped establish related mean-squared dis-

placements of spheres in n dimensions over a lag time 7 to a diffusion constant D:
(Ar*(1)) = 2nD7 (1.1)

where

kgT
D=2 (1.2)
67na

Here kg is Boltzmann’s constant, T the absolute temperature, 7 the solvent viscosity, and

a the sphere radius. This relation allows the unknown viscosity of a fluid to be determined

®The author commends Jean Perrin’s original work to any reader with a reading knowledge of French,
despite its length. An English translation, entitled “Brownian Movement and Molecular Reality,” was
made by Frederick Soddy and published by Taylor and Francis in 1910. Perrin’s descriptions of his ex-
perimental details, including matters such as his preparation of a monodisperse emulsion through a serial
centrifugation process, are fascinating.



by measuring trajectories of particles of known size undergoing Brownian diffusion, or al-
ternately (as is usually the case in dynamic light scattering [23]) for spheres diffusing in a
fluid of known viscosity to be sized.

In recent years research in this vein has been revitalized in two ways. First, in 1995,
Mason and Weitz developed microrheology and the use of a generalized Stokes-Einstein
relation not solely to measure the viscosity 77 of a Newtonian fluid, but rather the frequency-
dependent complexmodulus G*(w) of a viscoelastic material [24]. Here, G*(w) = G'(w)+
iG" (w), where the storage modulus G’ (w) describes the elastic component of the material’s
stress and the loss modulus G”(w) describes the viscous component. While the earliest
work in microrheology was based on light scattering rather than microscopy [24], it was
not long before microscopic tracking of individual particles was used to calculate mean-
square displacements and thence G* via alaser deflection scheme [ 25 ]. Later, workers such
as Apgar et al. [26] and Valentine ef al. [27] realized that particle-tracking microrheology
via video microscopy allowed the motion of many particles to be observed simultaneously,
allowing for better statistics, particularly in inhomogeneous environments. Microrheology
continues to be a useful tool in biophysics, in part because it allows in situ measurements
of the mechanical properties of living cells [28]. Secondly, the more complex Brownian
dynamics of non-spherical particles has begun to have been explored; the work of Han and
co-workers in Arjun Yodh's group on the 2D Brownian diffusion of ellipsoidal polystyrene
particles hasbeen of particularimportance [ 29 ]. We will explore this topic further in Chap-
ter s.

Another important use of microscopy in colloid physics lies in measuring colloidal in-
teractions. All such techniques are based on observing in some manner the statistics of the
relative motion of interacting colloids. For a pair of particles that experience an interaction
potential U(r), the Boltzmann distribution states that the probability p(r) of finding the
particles separated by r is

) xemp |~ (1)

For a system with many particles, a similar relation holds for the pair correlation function



g(r) [30]7:

g(r) = exp [— IIZB(;)] : (1.4)

The various techniques, which we review here, differ in how they probe p(r) or g(r).

One approach is to observe motions and fluctuations that are entirely driven by natu-
ral thermal motion. One example of such a technique is the work of Kepler and Fraden
[31], who studied the attractions between like-charged colloidal particles confined be-
tween two plates. Kepler and Fraden measured g(r) for an dilute ensemble of particles
via video microscopy. They sought to measure a pair potential U, (r) , but except in the
limit of an infinitely dilute suspension, the U(r) extracted from Equation 1.4 will be sub-
ject to many-body contributions. Thus, Kepler and Fraden had to combine their experi-
ments with iterative Monte Carlo simulations to extract U,(r). A more recent example of
an approach based on natural fluctuations is the measurement by Nikolaides et al. of the
still-mysterious like-charge attractions experienced by charged particles on a droplet [32].
But, it might be argued, Kepler and Fraden’s techniques do not result in a direct measure-
ment of a pair potential. Moreover, Nikolaides’s measurement hinged on the particles on
the droplet forming a symmetric structure and on the particles being pinned to the quasi-
2D droplet surface. In a bulk suspension, particles would likely move out of the focal plane
of the microscope, at which point measuring particle separations would be difficult.

A related technique that enables strictly 2-body measurements and overcomes the prob-
lem of particles moving out of the focal plane uses line optical tweezers. Optical trapping
was introduced by Ashkin [33 ], who trapped colloidal particles in the focus of a laser beam.
If such a focused beam is rastered in a horizontal line, a particle in the trap can be confined
to the line but left essentially free to move along the line. If two particles are trapped in
this way, their separation distance will be governed by Equation 1.3, and the particle sep-
aration can be monitored via microscopy. This approach was taken by Crocker et al. [34],
who used a scanning line trap to measure an oscillatory depletion interaction between two
large spheres in a bath of smaller spheres at high volume fraction. Similar techniques were

subsequently used to explore other interactions, such as the interaction potential between

"Here, as is generally the case in colloid physics, U(r) is not strictly the interaction energy between
two particles in vacuum, but is an effective interaction that coarse-grains over the solvent.



particles coated with complementary DNA sequences [35]. The scanning line trap tech-
nique does require the measurement and subtraction of the potential induced by the scan-
ning trap, and it does not account for optical forces which may be induced between the
trapped particles. Finally, in all of these techniques based on natural thermal motion, the
interactions that were measured were primarily attractive. Techniques like these are ill-
suited for measuring strong interactions, or strongly repulsive interactions, for the simple
reason that particles are highly unlikely to be found at distances where U(r) is more than a
few kg T higher than the minimum.

A complementary technique uses blinking optical traps to manually place particles in
positions (even at separations where the particles experience a strong repulsion) and then
let them go. The particle trajectories are subsequently governed by a combination of the
interaction forces and random thermal forces. This was first introduced by Crocker and
Grier for measuring the interaction forces between charged colloids [36]. Subsequently
this technique was also used to study long-ranged attractions between charged particles
induced by confinement [37]. Related analysis techniques were introduced by Sainis et
al. [38], who used blinking holographic optical traps to measure many-body electrostatic
interactions between particles in a nonpolar, oily solvent [39]. The use of optical traps to
manipulate particles, and not merely to confine them as in line optical tweezer techniques,
allows repulsive interactions with strengths of tens of kg T to be measured. In all cases here,
microscopy plays the key role of enabling the position of two or more particles to be tracked

with precisions of tens of nm [34].

1.2.2 3D MICROSCOPIES

We have discussed how microscopy is useful to colloid physics. Thus far, we have focused
on conventional microscopy, albeit perhaps with video recording.

Much physics, however, happens in not 2 but 3 spatial dimensions. While there are many
systems, such as particles at fluid-fluid interfaces or on very large emulsion droplets, where
the particles are at least locally two-dimensional, this is not true for most bulk suspensions.
Confining particles to 2D, such as with glass walls, can introduce complications relating to

charge or hydrodynamics [37]. Moreover, much interesting self-assembly happens in 3D.



A particular promise of colloidal self-assembly is the possibility of building inherently 3D
structures, and microscopic tools that can observe this in real time and with high spatial
resolution would be of value. Obtaining quantitative 3D information, similar to that which
can be obtained from 2D particle detection and tracking techniques [12], is challenging.
In particular, depth estimation is difficult as no micrograph image is formed only by light
coming from the focal plane. As an example, we might for instance want quantitative 3D
information about the emulsion-based self-assembly of clusters pioneered by Manoharan
[6].

‘We do mention that there are some circumstances under which 3D information can be
gained from conventional 2D microscopy. Several workers [ 40, 41] have reported schemes
in which, essentially, the amount of defocus or blur in micrographs of spheres are used to
quantify their axial distance from the microscope focal plane. Also, Colin et al. recently
reported a means for quantifying the orientation of large aspect ratio nanowires by mea-
suring their projections onto the microscope focal plane [ 42 ]. These techniques, however,
are not particularly general. In particular, it is difficult to observe motions beyond a ~10
um range [41], and Colin’s techniques would be difficult to apply to objects with aspect
ratios near unity.

We thus briefly discuss two specialized microscopies that are capable of giving quan-
titative 3D information: total internal reflection microscopy (TIRM) and confocal mi-
croscopy. We focus on these techniques because they have been used widely and effec-
tively in colloidal systems; we do not discuss, for instance, the multiphoton microscopies
that have proven especially useful for live-cell biological imaging.

Total internal reflection microscopy is capable of detecting the position of spheres sev-
eral ym in diameter or larger with nm precision in the axial direction. TIRM was intro-
duced by Prieve and colleagues [43], and its operating principle is illustrated in Figure
1.2.1(a). When a plane wave reflects from an optical interface, such as that between glass
and water, and the angle of incidence 6; exceeds a critcal angle, the wave is totally inter-
nally reflected. The critical angle 6, is given by sin 6, = n,/n,, where n, is the index of the
medium from which the wave is incident. However, an evanescent wave (which transports
no energy on average) is present in medium 2. The evanescent wave propagates parallel to

the interface and decays exponentially away from the interface. This evanescent wave can
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Figure 1.2.1: Schematic illustrations of (a) total internal reflection microscopy and
(b) confocal microscopy. (a): When the angle of incidence 6; of an incident wave ex-
ceeds the critical angle 8, = Sin_l(nwater/nglass)v where fyater and nglass denote the
refractive indices of water and glass, the incident wave is totally internally reflected.
An evanescent wave propagates from left to right in the water and decays exponen-
tially in the vertical direction. The evanescent wave can scatter from a particle in a
manner that is highly sensitive to the height of the particle. (b): Working principle of
confocal detection. A pinhole prior to the detector enables light to be detected from
only a small spot in the sample (solid red lines). Light from nearby planes (lighter red
lines), which would contribute to out-of-focus intensity in a conventional microscope,
gets blocked by the pinhole. For clarity, we do not show the optics needed in a real
confocal microscope to excite fluorescence.

scatter light. A theory of the scattering of an evanescent wave from a sphere was worked
out by Chew et al. [44]. Critically, the amount of light scattered by a sphere due to the
evanescent field also varies exponentially with the height of the sphere from the interface.
This allows nanometer-scale changes in the height of a particle to be detected [43, 45, 46].

TIRM has been used to measure colloidal interactions, including the depletion interac-
tion between a sphere and a flat plate [ 47], as well as the hydrodynamically hindered diffu-
sion of a particle near a wall [46]. However, TIRM’s greatest strength, the exponential de-
caying evanescent field which enables precision axial tracking, is also its greatest weakness:
typical decay lengths are around 100 nm [46]. Particles much further from the interface
will not appreciably scatter the evanescent wave. The weak scattering cross section from
evanescent waves also requires the use of particles at the upper end of the colloidal length
scale, at least several ym in diameter.

Confocal fluorescence microscopy is probably the most widely used 3D microscopy in

colloid physics today. Confocal microscopes combine point-source fluorescence excita-
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tion with point-like detection to build up 3D image volumes. In a confocal microscope,
images can be recorded wherein all the detected light comes from a narrow ~ 100 nm op-
tical section [48]. When multiple such images, each corresponding to a different axial dis-
tance, are recorded, this z-stack can be reconstructed to create a full 3D volumetric image.
We illustrate the principle behind confocal detection in Figure 1.2.1. In a confocal micro-
scope, a pinhole effectively allows light to be collected from a single point in the sample®.
The pinhole blocks out-of-focus light.

Several features of confocal microscopy are relevant to colloid physics. First of all, ef-
fective 3D confocal microscopy places significant limitations on the samples used. The
colloidal particles themselves need to be index-matched to the solvent; otherwise, scatter-
ing will make it impossible to image deep into a sample. The most common system consists
of polymethyl methacrylate (PMMA) spheres in a mixture of decalin and cyclohexyl bro-
mide [48], although other systems involving silica spheres are possible. Moreover, all of
these systems need to incorporate a fluorescent dye, most commonly inside the particles.
Most importantly, the approximately point-like detection of confocal microscopy requires
scanning both within a lateral plane and in the z direction. It can therefore take on the or-
der of seconds for a confocal microscope to fully image a 3D volume several microns on a
side. This necessarily restricts confocal microscopes to studying systems that exhibit rela-
tively slow dynamics. Much excellent work has been done using confocal microscopy to
study colloidal glasses and gels; see Prasad et al. for a review [ 14]. But as we will discuss in
Chapter s, the slow speed of confocal microscopes can be a serious disadvantage in some

situations.

1.3 DiGcitaL HOLOGRAPHIC MICROSCOPY

1.3.1  ENCODING 3D INFORMATION

Digital holographic microscopy (DHM), the focus of this dissertation, can overcome some

of the limitations of other 3D microscopy techniques. We argue that DHM complements

8This discussion ignores the effects of the point spread function and the finite size of the pinhole in a
real confocal microscope.
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Figure 1.3.1: (a) Schematic overview of in-line DHM. A coherent plane wave from a
laser illuminates scatterers in a sample. A camera records the interference pattern, or
hologram, formed between scattered light and unscattered incident light. (b) Typical
hologram of a 1 um diameter polystyrene sphere in water. Center of circular fringes
encodes particle x and y position (perpendicular to the optical axis). Fringe spacing
encodes particle position along z (along optical axis).

techniques such as confocal microscopy. As we will subsequently discuss, the rapid tem-
poral resolution of DHM makes it particularly useful for observing rapid colloidal dynam-
ics or rare events. Appendix D describes the use of DHM to perform 3D location and
single-shot particle velocimetry for polystyrene spheres flowing at high speed (~ 1m/s)
in a microfluidic channel; such measurements would be impossible using confocal mi-
croscopy. At the same time, we will also discuss how DHM is challenging to perform in
dense colloidal suspensions, such as those near the glass transition, but in which confocal
microscopy works well.

Figure 1.3.1(a) illustrates the working principle of in-line DHM, the technique we use.
In DHM, instead of illuminating a sample of colloidal suspension with an incoherent white
light source (or, in the case of fluorescence microscopy, with approximately monochro-
matic but incoherent light), we use a coherent laser for illumination. As we will describe
in further detail in Chapter 3, we collimate the laser beam so that the illumination can be
approximated as a plane wave. Some of this incident light scatters from particles in the sam-
ple, but in a dilute suspension most of the incident light is not scattered. Subsequently, we

record the interference pattern, or hologram, formed between the scattered light and un-
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Figure 1.3.2: Simulated holograms of a 1 ym-diameter polystyrene sphere in water.
z is the distance along the optical axis between the particle and the hologram plane.
As z increases, the spacing between the hologram fringes increases. Holograms are
simulated using the Lorenz-Mie formalism described in Chapter 2.

scattered incident light. A typical sample hologram formed by a colloidal sphere is shown
in Figure 1.3.1(b). One of the key advantages of DHM, namely rapid acquisition rates,
stems from holograms being 2D images that are straightforward to record with conven-
tional CMOS cameras. While the work described in this thesis uses research-grade cam-
eras with frame grabbers or high-speed cameras, it is even possible to perform DHM using
commercial digital cameras [49].

DHM is useful as a 3D imaging technique because 2D holograms encode 3D infor-
mation. The sample hologram in Figure 1.3.1(b) illustrates this. The concentric circular
fringes have a center whose position corresponds to the particle position in the lateral (x
and y) directions, perpendicular to the optical axis. The spacing of the fringes encodes the
position of the particle in z, along the optical axis. This is further illustrated by the series of
simulated holograms in Figure 1.3.2. As the distance z between the particle and the holo-
gram recording plane increases, two effects are readily noticeable. First, the spacing of the
fringes increases. This may be understood by thinking of the scattered waves from the par-
ticles as being approximately spherical. In the limit of infinitely large z, a spherical wave
will look planar, and there will be no phase variations leading to inteference fringes as one
traverses the hologram plane. Secondly, the contrast in the hologram fringes decreases as
zincreases. This is entirely due to the approximate 1/r dependence of the scattered electric
field, as we will discuss in Chapter 2.

In addition to particle positions, holograms also encode information about the scatter-
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ers themselves. As is apparent in Figure 1.3.2, the amplitude of the hologram fringes is not
constant, but rather decreases towards the edges (or equivalently, as the scattering angle
increases). This is because the amplitude of the hologram fringes is modulated by the an-
gular dependence of the scattered light from the particle: the same quantity that is probed
in static light scattering experiments. The angular dependence of the scattering from a par-
ticle will depend, in general, on its size and refractive index. We illustrate this effect in
Figure 1.3.3, where we show simulated holograms of a weak scatterer, a 200 nm diameter
polystyrene sphere, and of a stronger scatterer, a 2 ym diameter polystyrene sphere. The
plots of the intensity across the horizontal dashed lines clearly indicate that the fringes of
the two holograms have very different envelopes, even though they have approximately
the same fringe spacing away from the center. The envelope of the fringes is approximately
set by the amplitude of the scattered electric field, as shown by the dotted lines. Note that
this breaks down near the center of the hologram of the strongly scattering sphere in Fig-

ure 1.3.3(b), for reasons we will soon discuss.

1.3.2 HisTORICAL DEVELOPMENT OF DIGITAL HOLOGRAPHIC MICROSCOPY

Holography can be traced back to the 1948 work of Dennis Gabor, who at the time was
working on electron microscopy and was seeking ways to avoid the problems caused by
primitive electron lenses that suffered from spherical aberration [ s0]. Specifically, Gabor’s
proposal avoided lenses entirely and was based on a diverging incident wave. Figure 1.3.4
illustrates Gabor’s proposal, which today we would refer to as point source in-line holographic
microscopy. Gabor recognized that his proposal would apply to light as well, and indeed
demonstrated hisidea by usinga mercury arc lamp and a pinhole to create an approximately
monochromatic, coherent source of spherical waves [ 50, 51]. Gabor recorded holograms
of 2D test images and recovered his original images from the holograms by illuminating
the holograms in reverse, which is known as reconstruction. We discuss reconstruction in
more detail in Section 1.3.3.

Despite Gabor’s seminal work, holographic microscopy did not become practical until
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Figure 1.3.3: Amplitude of scattered field sets envelope of hologram fringes. Simu-
lated holograms shown of 100 nm radius (a) and 1 ym radius (b) polystyrene spheres
in water. Solid lines in plots show hologram intensity along horizontal dashed lines.
Dotted lines show amplitude of in-plane components of scattered electric field com-
puted in simulations. The dotted lines have been shifted vertically for clarity.
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Figure 1.3.4: Schematic illustration of point source in-line holographic microscopy
as proposed by Gabor. A spherical incident wave emanates from a pinhole and illumi-
nates a scatterer. Because the scatterer is downstream from the pinhole, the phase
difference between the scattered and incident waves will vary over the detector, which
will consequently record a fringe pattern.

the development of digital holographic microscopy in the 1990’s °. Even after lasers became
readily available sources of intense, coherent light, recording holograms generally required
finely grained photographic films, which were difficult to handle and time-consuming to
process prior to optical reconstruction. The development of CCD cameras, along with
improvements in computing, eventually made it possible to record holograms digitally and
to simulate the optical reconstruction process numerically [52].

One of the earliest works demonstrating both digital recording and numerical hologram
reconstruction was that of Schnars and Juptner [53]. This was not microscopy: Schnars
and Juptner were imaging an ordinary gaming die. The size of the die, large enough to
block a substantial amount of incident light, required the use of an off-axis rather than in-
line configuration. Schnars and Juptner recognized at this stage one of the limitations of
CCD’s as opposed to the specialized photographic films previously used for holography:

the large (~10 pm) pixel size, almost 2 orders of magnitude larger than the resolution of

“We refer the reader interested in the intervening historical development, as well as to the development
of related applications of holography, to Kreis’s book [ 52] and the references therein.
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holographic films. The resulting loss of high-spatial frequency information necessarily de-
graded the imaging resolution. Still, the convenience of digital recording and numerical re-
construction, when compared with the tedium of wet-processing photographic films, was
substantial.

Schnars and Juptner were not the only workers to recognize the limitations posed by the
pixel sizes of CCDs. One solution to this problem was to use lenses to magnify holograms.
This approach was taken by a variety of workers, including Cuche and coworkers [54], as
well as Zhang and Yamaguchi [ 55]. The approach of combining magnifying lenses and an
off-axis holographic configuration led to some beautiful results, particularly in the area of
biological microscopy [ 56]. However, off-axis holographic setups have the disadvantage of
a much more challenging setup and alignment, and quantitatively precise reconstruction
can also be more difficult.

An alternative approach to overcome the problem of large CCD pixel sizes was intro-
duced by Kreuzer and colleagues. Kreuzer opted to use an in-line configuration with il-
lumination by a point source, much as in Gabor’s original proposals and in Figure 1.3.4
[57, 58]. In particular, the since the reference wave from the point source diverges as it
propagates, it is possible to magnify the hologram fringe pattern without any lenses what-
soever, simply by placing the detector further away. This approach allowed Xu ef al. to
image both colloidal [58] as well as biological samples [57]. The comparatively straight-
forward setup of this approach, with no lenses that might introduce optical aberrations,
was clearly advantageous over off-axis configurations. But Kreuzer’s lensless, point-source
configuration is arguably not ideal. In particular, once the detector is moved far away from
the point source and the scatterers (to enhance the magnifying effect of free-space prop-
agation), the price paid by having detectors that might only be ~ 2 cm on a side is poor
coverage of scattering angles. As we have seen in Figure 1.3.3, coverage of scattering angles
encodes information about the size and contrast of scatterers.

The optical configuration we use in this thesis, which has been adopted by other work-
ers (in particular David Grier’s group [59]), combined the magnifying optics first used by
Cuche et al. [ 54] with the simplicity of Kreuzer’s in-line setup [ 57]. This configuration, in-
troduced by Sheng, Malkiel, and Katz [ 60], was similar to the schematic in Figure 1.3.1(a),

with the insertion of a microscope objective lens between the scatterer and the detector.
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This lens, as in prior work, served to magnify the hologram, or equivalently, to effectively
minify the detector pixels. This setup allowed the effective hologram plane to remain rela-
tively close to the scatterers (within tens of ym), allowing for good scattering angle cover-
age with high numerical aperture immersion objectives, while making the hologram fringes

large enough that finite pixel size effects were basically negligible.

1.3.3 HoOLOGRAPHIC FORMATION AND RECONSTRUCTION

We now examine in greater detail the formation of a hologram and how reconstruction
works. Reconstruction techniques generally model light as a scalar wave. To understand
hologram formation, we will adopt the following physical picture. We will assume that
a scatterer is illuminated by an incident wave E;,,.. This incident wave scatters from the
particle to create a scattered wave, E,,; both of these waves illumine a detector, which
records an interference pattern. To model this mathematically, throughout this section we
will assume and suppress a harmonic time dependence, e *“*.

In general, detectors (such as the pixels of a camera, or the human eye) are sensitive not
to electric fields directly, but to intensity I. In particular, because the detector in an in-line

configuration records both the scattered wave as well as the unscattered incident wave, the

intensity recorded for a hologram will be

I= ’Einc + Escat|2
= ’Einc‘z + EincE:cat + Ei*ncEscat + ’Escat‘z . (15)

This relation holds true (within the limitations of scalar wave optics) regardless of any as-
sumptions made by a reconstruction technique. The first term is a DC term: for plane wave
illumination, | Es,|” gives a constant background intensity across the detector.

The essential physical nature of reconstruction is illustrated in Figure 1.3.5. The fringes
of arecorded hologram essentially act as a zone plate and can focus light when illuminated.
In particular, by shining light backwards through the hologram, it is possible to reconstruct
the field scattered by the particle, as we will show.

We now make this qualitative picture more rigorous, and it is here that the reconstruc-
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Figure 1.3.5: Schematic illustration of hologram reconstruction. A film hologram,
whose fringes act like a zone plate, is illuminated (a). The fringes cause the illumi-
nating light to be focused to the location of the source of the spherical waves that
originally formed the hologram (b). Under suitable approximations, this is the location

of the scatterer.



tion approach begins to make approximations. First of all, one assumes that scattering is
weak: |Egeat| < |Einc|- Consequently, the last term in Equation 1.5 may be neglected rel-

ative to the remaining terms. Illuminating the hologram backwards is akin to multiplying

*

* . (if we had an incident plane wave, ¢*?, a backwards-propagating wave

Equation 1.5 by E
would have the form e~ ). Thereafter, we obtain

E;kncI = E;knc |Ein5‘2 + E:cat + E;ancEscat (1'6)

*

at the hologram plane. The second term here is E_,,

, a backwards-propagating version of
the scattered wave. In particular, if E,; is a spherical wave with amplitude A outgoing from
the origin,

eikr

—ikr

where r is the distance between the particle and a point on the hologram plane, then

Eit = A

(1.7)

—ikr
* R—
Escat =A lk?’ .

(1.8)

This is a spherical wave converging at the origin, where the particle was. It is in this sense
that reconstruction recovers the wave scattered by the particle.

It is clear, however, that E

veat 18 not the only component when a hologram is illuminated

in reverse, in Equation 1.6. The first term, arising from the DC background, will once again
be constant '°. But the third term, proportional to E,, will give rise to the twin image:
a wave that converges on the opposite side of the hologram plane as the real image from
E*

* - This twin image problem was recognized early on by Gabor [51], and eliminating

it was a motivation for developing off-axis techniques. In-line reconstruction approaches
generally ignore the twin image; it is assumed that the field due to the twin image near the
focal point of the real image is small.

Once we have E_, at the hologram plane (from Equation 1.6, neglecting DC and twin

image contributions), it is then necessary to propagate this field from the hologram plane.
The field E;

scat

(+,y', ) at an arbitrary point (x', ), 2') is related to the field E;_, ,,, at the

19Tf necessary; it is also possible to measure and subtract off the DC background term prior to recon-
struction.
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hologram plane via the Fresnel-Kirchoff diffraction formula [52]:

scat 7y Z // scat,hp g ’7 dg d’7 (19)

Here 2 is the wavelength of the illuminating light, £ and 7 are coordinates in the hologram

E!

plane, the integrals run over the entire hologram plane, and

p= =)+ (=) 2 (1.10)

We have here neglected the obliquity factor z’/p. Since the integrand in Equation 1.9 de-

pends only on the differences { —«’ and n—), we may write E'__, (x, ', z') as a convolution:

Escat( 7)’ Z) scathp*h (1'11)

where h, is the impulse response function of free space:

W —n—y) = 2. (1.12)

Recalling the convolution theorem, thanks to the fast Fourier transform it is computation-
ally faster to compute E!_ («',y’,Z') using the transfer function H = F{h}, where F

denotes the Fourier transform:

Escat( 7}’ Z) F_I{I{E:cat,hp}'H}' (1'13)

The actual computational implementation is somewhat less straightforward than this; in
particular, experimentally recorded holograms are not continuous functions. Since recon-
struction is not the focus of this thesis, we refer the interested reader to Kreis [61] for de-

tails.

1.3.4 FITrING TECHNIQUES

Despite the relative simplicity and above all generality of analyses of digital holograms

based on reconstruction, it eventually became clear to other workers in the field that recon-
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Figure 1.3.6: Reconstructions of simulated holograms. (a) and (b) are for a weakly
scattering sphere suspended in water, with refractive index n = 1.4 and radius a = so
nm. (c) and (d) are for a strongly scattering polystyrene sphere in water, n = 1.59
and a = 2 ym. Left column: slices in the x — y plane. Right column: slices in the

x — z plane. x — y slices are computed at the white dashed lines, and x — z slices
are computed at the vertical midplane of the x — y slices. Green dashed lines denotes
actual z position of scatterer. Scale bars, 2 ym.

struction techniques had their limitations. It had long been known, as early as Xu’s work in
lensless holography [ 58], that reconstructions of spherical particles tended to appear elon-
gated by an order of magnitude or more in the axial direction. We illustrate this effect in
Figure 1.3.6, where we display reconstructions of simulated ideal holograms. The elonga-
tion is particularly noticeable for the 4 ym-diameter polystyrene sphere in Figure 1.3.6(c)
and (d); it is markedly less severe for the weak scatterer in Figure 1.3.6(a) and (b). While
it would be straightforward to detect the lateral (x — y) positions of the particles with
sub-voxel precision, the precision for detecting the axial position of the particle in Fig-
ure 1.3.6(d) might be an order of magnitude worse — hundreds of nm or more.

The physical origin of this effect was first studied carefully by Pu and Meng [ 62]. Build-

ing on work about conventional microscopy by Ovryn and Izen [63], Pu and Meng used
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an exact scattering solution, the Lorenz-Mie solution for the scattering of a plane wave
by isolated spheres, to model the formation of holograms. By reconstructing these mod-
eled holograms, as we did in Figure 1.3.6, Pu and Meng demonstrated that the elongation
arose from the waves scattered by large (particle radius a being comparable to or larger than
the incident wavelength 1), strongly scattering particles being far from spherical. Pu and
Meng also discovered another effect, which we also demonstrate in Figure 1.3.6: the in-
tensity maxima are displaced along the optical axis from the true position of the scatterers.
Figure 1.3.6(d) shows that this displacement can be as large as a particle diameter. Sub-
sequent workers have shown that models can be created to account for this displacement
[64], and that the maxima in the reconstructed volume correspond to the focal caustics of
the particles [65 ].

Pu and Meng’s studies demonstrated both how the challenges of reconstruction tech-
niques largely stemmed from neglecting the details of how particles scattered light, and
how an exact scattering solution could be used to model hologram formation. A seminal
step was then taken in 2007 when Sang-Hyuk Lee and colleagues in David Grier’s group at
New York University used a model based on the Lorenz-Mie scattering solution not simply
to model hologram formation, butalso to extract physical information from experimentally
recorded holograms through a fitting procedure [59]. Using the fitting procedure, Lee et
al. were not only able to measure the 3D position of micron-sized spheres with ~10 nm or
better precision in all directions, but they were also able to measure the size and refractive
index of the particles.

We must briefly digress into the Lorenz-Mie scattering solution in order to explain the
model used by Lee et al.; we will postpone a more detailed discussion to Chapter 2. The
Lorenz-Mie scattering solution is a vector field solution to Maxwell’s equations for scat-
tering of a plane wave by a sphere. We will assume the incident wave to be a plane wave

propagating in the positive z direction and to have polarization vector &:
Ei. = Ei, e c. (1.14)

Akey feature is that the Lorenz-Mie scattered field, E,,, dependslinearly on the amplitude
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of the incident field E;,.:
Escat = Eincf(r)- (1.15)

Here, f(r) is the vector scattering amplitude of the sphere. It depends not only on the sep-
aration vector r between the sphere and a detector point, but also on the polarization and
wavelength of the incident light, the sphere radius g, and the relative index m = n,/fpeq,
where n, is the particle refractive index and 1,4 is the refractive index of the surrounding
medium. With this in mind, we may re-express Equation 1.5 for the measured hologram

intensity I in vector form:

I= |Einc + Escat|2
= |Einc|2 + Einc : E;kcat + E;knc : Escat + |Escat|2
- |Einc|2 + Zm{Ez{nc . Escat} + |Escat|z . (1'16)

Lee et al. normalized their measured holograms by dividing by a background image of an
empty field of view, which measured |E;,|:

1 o 2%{]5* : Escat} |Escat|2

mc

2 T 1 2 2 (1'17)
|Einc | |Einc | |Einc ’
=1+ 2R{f-ee ™} + |f)? (1.18)

The models fitted by Lee et al. (as well as by us throughout this thesis) to normalized holo-
grams follow this general form, with one exception: a scaling factor a; for every power of

Eqcat:
I .
Liorm = =1+ 2aR{f-ee ™} + a2 |f]. (1.19)

orm — 2
| Einc |

The nature of a, is still a matter of active debate and research; we will not discuss it further
at this time.

Analyzing holograms by fitting scattering solutions to them had several clear advantages
over reconstruction techniques. First, the ~10 nm tracking precisions attained [59] in the
axial direction surpassed what could easily be attained by analyzing reconstructed volumes.

The problem of intensity maxima in the reconstructed volumes being offset (Figure 1.3.6
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and [64, 65]) was also totally eliminated. Fits of scattering models also allowed reliable in-
formation about the size and optical contrast of the scatterers to be obtained directly from
holograms. The fitting techniques developed by the Grier group also had a certain advan-
tage of convenience as compared to reconstruction techniques. Whereas reconstruction
methods required computations to back-propagate light to many focal planes, and particle-
finding analysis on the resulting reconstructed volume was needed to obtain particle po-
sitions, fitting allowed particle positions to be precisely determined from holograms in a
single processing step. For these reasons, it seemed that fitting techniques might play an
important role in studies of colloids using DHM. Indeed, the Grier group quickly applied
DHM with fits to the Lorenz-Mie solution to studies of the size distribution of fat globules
in milk [ 66], quantifying the binding of neutravidin to biotinylated spheres [ 67], and mon-
itoring the optical fractionation of spheres based on their size and refractive index [68].
One limiting aspect of Lee et al.’s seminal work was readily apparent: since the Lorenz-
Mie solution strictly applies only to single spheres in an infinite, perfectly homogeneous
medium, it was not clear how (or whether) fitting techniques could be applied to holo-
grams formed by either by nonspherical particles, or by multiple particles in close prox-
imity. Given the examples described in Section 1.1 of the rich physics exhibited by non-
spherical colloids and dense suspensions, the stage was ripe for efforts to extend this fitting
paradigm to new types of scattering models. These efforts, and the scientific results there-

from, will be the subject of the remainder of this thesis.

1.4 OVERVIEW

The remainder of this thesis is structured as follows. In Chapter 2, we describe the mod-
els based on exact and approximate multiple sphere scattering solutions with which we
model holograms. We describe the details of our implementation of DHM and fitting in
Chapter 3. We describe some of the results we have obtained from imaging sphere clus-
ters containing up to six spheres as well as particle-laden emulsion droplets in Chapter 4,
and discuss the anisotropic Brownian diffusion of sphere dimers and trimers in Chapter .

Finally, we summarize our results and discuss the outlook of DHM in Chapter 6.
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Modeling Holograms from Colloidal Spheres
and Clusters With Scattering Solutions

Recall that the fundamental equation with which we model holograms is
Lnorm = 1+ 2a,R{f - ee ™} 4+ a* |f]*. (2.1)

Recall that fis a dimensionless scattered electric field: E.,; = E,f, where E, is the ampli-
tude of the incident electric field. It follows that understanding the formation of holograms
from any object, and being able to model holograms, requires a detailed understanding of
how those objects scatter light. We therefore turn our attention in this chapter to scatter-
ing theory as applied to the colloidal objects considered in this thesis: spheres and sphere

clusters. We begin by discussing the Lorenz-Mie solution for scattering by a sphere (also
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known as Mie theory") both because of its experimental importance and because it will al-
low us to introduce ideas that will be needed for the more complex case of sphere clusters.
We will then consider techniques for calculating scattering by multiple spheres, and finally

briefly consider scattering from other colloidal objects.

2.1 SCATTERING FROM [SOLATED SPHERES

2.1.1 LORENZ-MIE SOLUTION: SCATTERED FIELDS

We begin by qualitatively outlining the process of obtaining the Lorenz-Mie solution for
the scattering of a plane wave by a sphere. While we tend to treat the Lorenz-Mie solu-
tion as the paradigmatic model for hologram formation by colloidal spheres, we should
recognize that there are some inherent assumptions. First, we assume that the particles
are spherical: we neglect any surface roughness (polystyrene spheres, in particular, are not
atomically smooth) or asphericity. We also assume that the particle are optically homo-
geneous. Finally, we assume that the incident beam is sufficiently well-collimated that it
may be regarded as a plane wave, even though it is in actuality a Gaussian beam 2. This is
not to undermine the importance of the Lorenz-Mie solution, but to emphasize that some
physical assumptions underlie its use.

We will not work out the detailed derivation of the Lorenz-Mie solution, but we will give
an overview and highlight a few aspects that are important for our research. The general

plan is as follows:

1. Determine the eigenfunctions of the Helmholtz equation V?E + k’E = o for a

The term “Mie theory” is a personal pet peeve of the author. As Kerker [69] argues, Ludvig Lorenz
certainly had priority over Gustav Mie in publishing the solution for scattering of a plane wave by a sphere.
Moreover, in the author’s opinion, the Lorenz-Mie solution is a purely mathematical solution, with no in-
herent physical content, within the framework of Maxwell’s electrodynamics. In contrast, there is consid-
erable physical content in the theory of special relativity, or Maxwell’s theory of electromagnetism, or in
a quantum field theory like quantum electrodynamics.

?A formalism known as generalized Lorenz-Mie theory (see [70] for a review) can handle Gaussian
beams, essentially by regarding them as a suitable superposition of plane waves. We do not consider the
matter further here.
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spherical geometry®. These will be vector spherical harmonics (VSHs), which we

will describe.
2. Expand the incident plane wave in VSH.
3. Write the internal and scattered fields as an expansion in VSH.

4. Apply boundary conditions: the components of the total electric field E and the
total magnetic field H tangent to the sphere must be continuous. The boundary

conditions determine the scattering expansion coefficients.

5. Formulate computationally useful (in particular, numerically stable) algorithms for

calculating the scattering expansion coefficients.

Our treatment and notation here will generally follow that of Bohren & Huffman [71], a
standard reference on the subject, whose notation finds wide acceptance.

Step 1 of this program is to find the VSH. The natural coordinate system to use is spheri-
cal coordinates with origin at the center of the scattering sphere. Manipulating vector fields

is cumbersome, so the trick is to define vector fields M and N in relation to a scalar field v

M=V x (yr) (22)

and T x M
X
= T (2.3)

It can be shown that M and N will satisfy the vector Helmholtz equation if y satisfies the
scalar Helmholtz equation. Subsequently, we separate variables* to determine y. The end

product, the VSH in Bohren & Huffman’s notation, is:

Gy — M . m ()
MU, = ——— sin(mp)P] (cos 6)z{ (p)®
dP™(cos ) .
ng%wzg)(f))$7 (2-4)

*We remind the reader that the Helmholtz equation arises from assuming a harmonic time dependence
e "“* for the fields.

*The problem of determining v is highly analogous to the infinite square well in spherical coordinates
in quantum theory.

— cos(mg)
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M), = — cos(mg) P (cos 0)z0) ()0
sin 6
dP7(cos0)
—sin(mp) TED 008, (a.5)

‘ )
N, = (p cos(me)n(n + 1)P*(cos )t
p
i coslmp) =L L o )0
P (cosf)1 d ,
- msin(mg) DL L0 )8, )
. ()
Nt()]er — o (p) sin(me)n(n 4 1)P (cos 0)
p
+sinfmg) L 1o )1

a9  pdp

 meos(ng) 2 0Ll )8 )
This notation may seem intimidatingly cambersome. The P (cos 0) are the associated
Legendre functions defined in the usual way *. The indices e and o denote either an even az-
imuthal angle dependence for y (~ cos(m@) or an odd dependence (~ sin(mp)). p = kr
is a dimensionless radial variable. z/)(p) denote solutions to the radial equation obtained
by separating the Helmholtz equation for ¥. From Sturm-Liouville theory, there are two
families of solutions: the spherical Bessel functionsjj, (p) and the spherical Neumann func-
tions y, (p). Alternately one may use linear combinations of the spherical Bessel and Neu-

mann functions, the spherical Hankel functions:

W (p) = j,(p) + iy, (p) (2.8)

SThere is a good argument for indexing the VSH with azimuthal quantum number £ instead of n. Alex

Small points out that this makes explicit the connections to the quantum theory of angular momentum for
photons. The author is inclined to agree, but here with some reluctance retains # because of its widespread
use in scattering literature.
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W2 (p) =, (p) — iv,(p) (2.9)

The most useful of these are j_(p) and h{")(p). Unlike y (p), j, (p) is finite at p = o. More-
over, the h,(f) (p) asymptotically behave like outgoing spherical waves for large p:

hfﬂ(P) ~ (=i)"— (2.10)

and so these are physically meaningful for scattering. We use j = 1 to denote VSH with
20 (p) = j,(p) andj = 3 to denote VSH with 20 (p) = hs) (p). Note that the M have no
radial components while the N do. It can be proven that these form a mutually orthogonal
eigenbasis; see [71] for some of the details.

The next step in the Mie solution is to expand the incident plane wave in VSH. To best
make use of spherical symmetry, we assume that the incident wave propagates in the z
direction. Without loss of generality, we also assume that the wave is x polarized. Bohren

and Huffman then show that the expansion of E;,. = E, ¢**% in VSH is

Eye = Y E, (M), —iNG)) (2.11)
where
E, = Eoi"m—ﬂ. (2.12)
n(n+1)

There are several important physical implications along the way. First, from the geometry

of spherical coordinates,
ﬁ:sin9cos<pf+c059cos<p0 — sin ¢, (2.13)

which combined with the orthogonality of sines and cosines kills off two of the four pos-
sibilities in Equations 2.4-2.7 and requires m = 1. The limitation to m = 1 has significant
implications for the design and performance of Mie codes as Equation 2.11 and all other
field expansions contain a single sum over n as opposed to double sums over both n and m.

Finally, we use only a radial dependence on j, (p) because a plane wave at the origin must
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clearly be finite.

Next, we denote the field inside the particle as E;,;, and the scattered field as E,;. The
field outside the particle is thus SE,, + Eq 4. We write both E;,; and E,; as expansions
in the VSH. For E,,;, the form of the plane wave expansion (Equation 2.11) along with the

requirement for finiteness at the origin requires

oo
Epi = ) En (M), — id,N)) . (2.14)
n=i
Meanwhile, since we know that scattering results in outward-going waves, we require that

the scattered wave E,,; have radial dependence on h,(f) (p):

Eo ot = ZE” (ianNgzl — bnM‘(jz,) . (2.15)

n=i1

The a,, b,, c,, and d,, are unknown coeflicients. For each order n there are 4 unknowns, but
also 4 boundary conditions: equality of 8 and ¢ components of E and H across the spher-
ical interface. In particular, a, and b, are termed scattering coefficients. These coefhicients
depend only on two dimensionless parameters: the relative index m = npgicle [ omedium
and the size parameter x = ka where a is the sphere radius, k = 271,,.4/2,, and A, is the
vacuum wavelength.

Application of the boundary conditions give expressions for a, and b,. The expressions

for these use the Riccati-Bessel functions, which we will rely on extensively later:

¥, = pin(p) (2.16)

£, = phY(p) (2.17)

®This is a standard assumption in scattering theory. It is certainly valid in the far field for an incident
plane wave of infinite extent. Whether this truly applies for DHM is currently the subject of research
related to the nature of a;..
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With these in hand, we get

_ my, (ma)y, (%) — v, ()9, (mx)
t my, (m)g,(x) = £,(0)9,(x)

(2.18)

¥, (mx)y, (x) — my,, (x)y,, (mx)
¥, (m)§, (x) — mE, (x)y, (x)

where the primes denote differentiation with respect to the argument.

b, =

(2.19)

Thus the Lorenz-Mie problem is essentially solved; the special functions appearing in
the expressions above for a, and b, are all well-known. However, it must be noted that the
forms above for a, and b, are ill-suited to computation. In particular, j, (z) tends to diverge
for large complex arguments (as might arise for large, strongly absorbing particles). The

problems are avoided by rewriting the expressions in terms of logarithmic derivatives:

(2.20)

Care must also be taken in the computation of the logarithmic derivatives and other special
functions to avoid numerical instability. We refer the reader to the discussions in Bohren
& Huftman for further details. We mention that in our implementation of the Lorenz-Mie
solution in HoloPy, we use the recommended forms based on D). Any computed solution
must also truncate the infinite series expansion at some point; we use the widely accepted

criteria of Wiscombe to determine the number of terms to keep, Ny, [72]:
Npor = x + 4.05%3 + 2. (2.21)

2.1.2 STANDARD APPROXIMATIONS AND DHM

We have just described the relatively easy part of computing the Lorenz-Mie solution: ob-
taining the scattering coefficients. This need only be done once for any given particle; the
more time-consuming part comes from calculating E,,; at many points to model a holo-
gram. To discuss this, we must first introduce some scattering geometry and the concept

of the scattering plane.
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Figure 2.1.1: Geometry of scattering plane showing incident and scattered wavevec-
tors ki, and ke,:. We consider components of the incident and scattered electric
fields parallel to and perpendicular to the scattering plane.

We will assume the laboratory system to consist of a fixed set of axes, as usual with z
being the direction of propagation of the incident wave. As illustrated in Figure 2.1.1, it is
useful to consider scattering not with respect to the laboratory coordinates but with respect
to a plane defined by the wavevectors of the incident and scattered electric fields.

Most scattering experiments are performed in the far field, where kr > 1. Since for
visible light, k &~ 107 m ™, for a detector located at a macroscopic distance (such as in a
goniometer-based light scattering instrument), the far-field approximation will be a good
one. In this approximation, one may write the incident and scattered fields in terms of a

complex 4 X 4 amplitude scattering matrix:

ik
Einc,H . e’ S, S3 Escut,”

Einc,J_ —ikr 84 81 Escat,J_

(2.22)

In the far-field limit, the waves are assumed to be purely transverse, the radial components
of N fall offas 1/ p> and are neglected. The radial dependence is to be asymptotically that of
a spherical wave, and the amplitude scattering matrix § depends only on angles and the par-
ticle properties. For the Lorenz-Mie problem, symmetry requires the off-diagonal terms

S, and S, to be o ”. It may be shown by considering the forms of the VSH that

. o +1
S, = Z n—(anﬂ:n + b,7,) (2.23)

(n+1)

’See van de Hulst [73] as well as the chapter by Hovenier and van der Mee in [74] for a much more

n=1

extensive discussion on symmetries and their consequences for S.
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S, = Z 20 (a7 + by7,) (2.24)

n(n+1)
where
ma(0) = % (2.25)
and
7.(0) = w- (2.26)

We note that the scattered waves are not spherical waves because S, and S, depend on 6.
Thisrecipe, unfortunately, does not quite work out for the case of DHM. We often record

holograms at a z distance of as low as ~ 10 ym. For 660 nm light in water, this amounts to

kz ~ 100, which is large but not quite in the far-field limit. In particular, if we examine the

next-to-leading order asymptotic expressions for for hﬁl) (p), we find [75]:

R e ) (227)
ip 2p

Given that for micron-sized spheres, the expansions may go up to order n = 15 or more,
it is clear that the next-to-leading order term is comparable to the leading term. We have
found it necessary, therefore, to incorporate the full radial dependence on hfl‘) (kr), making
S dependent on both kr and 6. We obtain the following modified expressions for S, and S,
by looking at the VSH expansion for E,,,; (Equations 2.15, 2.6, and 2.5):

n(n+1) p

n=i

. 41 W (p))/
$.(p.0) = (—ipe ) 3 P2t (mmxm@ﬁiﬁi—bJAmw%m) (228)

n(n+1)

n=—1

. an+1 W ()]
S.(p,0) = (—ipe ®) Y 1" i (m,,fn(e)M—bnnn((a)h,gl)(p)). (2.29)

These expressions “undo” the radial dependence assumed by Equation 2.22 so that they
may be substituted in for the conventional expressions. They reduce to the conventional

forms (Equations 2.23 and 2.24) if the asymptotic expressions for h,(f) (p) are substituted.
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Figure 2.1.2: Difference between holograms simulated using full A (kr) radial de-
pendence and asymptotic " /ikr radial dependence. Hologram computed for a parti-
cle with m = 1.2 41073, x = 10, at z = 15 ym.

Using the full radial dependence can significantly affect calculated holograms as well
as fits to data. Figure 2.1.2 shows the difference between a hologram computed with the
full radial dependence and with asymptotic radial dependence. Both holograms have a
DClevel of 1, so the differences between them are up to 10%, particularly near the forward
direction. Comparing best-fit parameters obtained by fitting models to experimental holo-
grams shows that there can be differences of tens of nm in the best-fit z position. All the
holograms we model in this thesis therefore include the full radial dependence.

Recently we have also incorporated the radial components of E;,; into our Lorenz-Mie
calculations. Near normal incidence, the radial components point nearly in the z direction,
and thus cannot be responsible for depositing energy into a detector (since the Poynting
vector E X H is perpendicular to E). This may not be true, however, at very large scattering
angles, or for detectors that are not oriented perpendicular to k;,.. Noting that only the
terms in E.,; proportional to a, will have any radial component, and recalling that the

initial assumption of x polarization in the plane wave expansion (Equation 2.11) means
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that E;,. | = E, cos ¢, we have

Eatr = E,-,,c,”ani"“(zn + 1) sin 07, (0) (2.30)
While the inclusion of the radial component of E,; is currently included in HoloPy, we
find that it does not make much difference in hologram modeling, resulting in differences
in best-fit z of several nm at most, which are comparable or smaller than the typical particle

tracking uncertainty.

2.1.3 RADIOMETRIC QUANTITIES

We pause to attend to certain radiometric quantities that are of some importance for our
work — these are quantities that involve integration of scattered power in some way. We
imagine surrounding our spherical particle with a large imaginary surface (such that we
are in the far field) and integrate the Poynting vector due to the external fields (incident

and scattered) over this surface. The rate at which energy is lost inside the surface is

Wa:—/S-da. (231)

If we divide this by the incident irradiance I;, which for a z-propagating incident field is
the z component of its Poynting vector, we get something with units of area. This is the
absorption cross section, Cgp. In a similar way, considering the scattered power, we can

define the scattering cross section:

Cscat - Ii/sscat - da (2-32)

where S is calculated with the scattered field. The extinction cross section C,,; is given
by the sum of the scattering and absorption cross sections: Ceyt = Ciycat + Capsj Cent 18
related to the total energy removed from the incident beam, by absorption and scattering.
One also frequently encounters these cross sections non-dimensionalized as efficiencies Q,
where the non-dimensionalization comes from dividing by some geometric cross sectional

area of the particle. For a sphere this is naturally 7a*, but for more complex particles (such
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as sphere clusters) conventions can vary.

We can also characterize how homogeneously a sphere scatters light. Recall that the
electric field radiated from a point dipole scatterer is (for polarization perpendicular to
the scattering plane) independent of 6. A large particle, by contrast, tends to scatter most
strongly in the forward direction. We can quantify this with the asymmetry parameter
(cosB). If we define a dimensionless vector scattering amplitude X such that E.,; =
(¢* /(—ikr))E,X, then it can be shown that a suitable integral over 47 of solid angle gives

the scattering cross section:
X[
Cscat = /FdQ (2’33)

Consequently | X|*/k*Cy.¢ is normalized with respect to integration over solid angle, and

the asymmetry parameter is defined such that

(cos ) = / X cos 0dQ. (2.34)
k*Cocat

For a dipole scatterer, (cos §) = o, whereas for a very large sphere scattering mainly in the

forward direction, (cos 0) approaches 1.

Light carries not only energy but momentum p. Light can therefore exert forces on ob-
jects, such as in optical tweezers [33]. One such effect that will matter in our experiments
is radiation pressure, which can be qualitatively thought of as incident photons pushing
a scatterer in the direction of propagation. Our discussion here of the radiation pressure
cross section follows van de Hulst [73]. From our previous discussion, the rate at which
energy is removed from the incident beam is I;C,,;. The momentum of any such photons
that are absorbed will clearly be transfered to the particle. But photons that scatter from a
particle with scattering angle 0 still carry forward momentum proportional to cos 6. Aver-
aging over all of solid angle, I;C,.,;(cos 0) will be proportional to the power emitted in the
forward direction by the scattered photons. Therefore, the momentum lost by the incident
light is will be proportional to C,xt — Cyet(cos 0). Consequently, we define the radiation

pressure cross section C,, as

Crp = Cext - Cscat<cos 9> (2’35)
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I,C,, has units of power. Since the energy and momentum of light are related by 1/c, the
change in momentum per unit time, or radiation pressure force F,,, is given by
I,C,,

F,, = . (2.36)
c

Another important result related to radiometry is the optical theorem, which relates C,,;
to the far-field scattering amplitude in the forward direction. We mention it here because
we will need it in our discussion of Mie superposition. For the case of Lorenz-Mie scatter-
ing,

Cot = —Re[S(o)] (2.37)

where S is either nonzero element of the amplitude scattering matrix S, which are identical
at@ = o.

Expressions for Cey, Cyqr, and the asymmetry parameter (cos 0) for the Lorenz-Mie
problem are given in standard references like Bohren & Huffman [71]. They all involve
summations over the scattering coefficients a,, and b,; we do not discuss them further ex-

cept to say that they are implemented in the standard ways in HoloPy.

2.1.4 LAYERED PARTICLES

A closely related problem to that of scattering by a homogenous sphere is that of scattering
by layered particles. These codes in general work by expanding the scattered field in each
layer of the particles. Bohren & Huffman give a code for two layers, BHCOAT [71]. Algo-
rithms that can accomodate multiple layers are considerably more general, however, as any
refractive index profile for a sphere that depends only on the radius n(r) can be approxi-
mated with many uniform layers. One of the first such algorithms was due to Bhandari
[76]; further developments were made by Mackowski et al. [77], whose code was report-
edly stable for particles containing up to 100 layers. Another key work, which used the idea
of using Taylor expansions to compute ratios of Riccati-Bessel functions in adjacent layers,
was that of Kai and Massoli [78]. We here briefly describe the algorithm we have adopted,
due to Yang [79]. Yang showed that his algorithm could be stably applied to larger particles
with more layers than the Kai and Massoli algorithm [79].
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Yang’s code is based on expanding the electric fields inside the layers in the same vector
spherical harmonics that apply in the Mie solution. A different set of coefficients apply
inside each layer, which we index by I. For the innermost layer, containing r = o, the wave
functions must be regular at the origin, so the radial dependence of field E, is on spherical

Bessel functionsj :
E = B (M, - id?NG)) (238)

where E,, is defined as in the Mie problem. For layers beyond the first, recall that there
two solutions to the radial equation. Normally, we have physical grounds for eliminating
one: either regularity at the origin, or in the case of the scattered field, that the waves be
outgoing spherical waves with h,(f) (kr) radial dependence. For ! > 1, we must include both

solutions of the radial equation. Thus, the internal field E; is given by

Ei= Y B, ()M, — VNG + NG~ 60M3, ) (29)
Note that the basis i, strictly speaking, not linearly independent, since WY (kr) = j, (kr) +
iy, (kr); the coefficients are nonetheless unique. Expansions of the incident and scattered
fields proceed as in the Mie problem, and boundary conditions provide four equations to
be solved for the unknown coefficients a'", b,(ll) , ¢!V, and df,l) for each n and I. In Yang’s
algorithm, a recursive procedure is used to determine ratios of the coeflicients at layer [ + 1
from those at layer . We refer the reader to the original paper for the rather notationally
and algebraically involved details. In the end, the relevant coeflicients are written in terms

of logarithmic derivatives of ¥, and £,, for which there are stable recursion relations [77],

¥.(z) §i(z)
§u(z1) ¥,(z1)

which can be stably calculated by upwards recursion.

and the ratio

(2.40)

Qn(zuZ?-) -

Note that Yang’s algorithm results in external scattering coefficients a, and b, that are
exactly identical in form to those of the Lorenz-Mie problem. Consequently, all results de-

pending only on the scattering coefficients for the Lorenz-Mie problem (such as formulae
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for radiometric quantities) can be applied without modification.

We have developed code based on Yang’s algorithm and incorporated it into HoloPy.
The code allows the calculation of differential scattering cross sections as well as holo-
grams and radiometric quantities. We have used this code, in conjunction with turbidime-
try measurements, to characterize core-shell particles consisting of a polystyrene core sur-
rounded by a shell of poly(N-isopropylacrylamide-co-acrylic acid) hydrogel (PNIPAM)
[80]. When these particles are dispersed in water, the shells are highly swollen and nearly
index-matched. By comparing C;.,; for the core-shell particles and the cores alone, we de-
termined that the refractive index mismatch between the shells and the solvent was at most
of order 1073.

These particles, which have a much smaller C;.,; than homogenous polystyrene spheres
of the same radius, may be particularly useful for studies of the self-assembly of colloidal
clusters. It is hoped that the greater separation of their scattering cores will ease the task
of determining initial particle positions through reconstruction. We note here that the lay-
ered sphere code may be important for analyzing holograms of such particles because dif-
ferences in scattering due to a nearly-matched shell will be most apparent in the forward
direction, where DHM is particularly sensitive. Figure 2.1.3 shows differential scattering
cross sections (polarization perpendicular to the scattering plane) for a 170 nm diameter
polystyrene core alone and surrounded by uniform layers. For near-perfect index match-
ing, differences between the scattering intensity for the core only (blue line) and the core-
shell particle (green) are most apparent for 6 < 20°. For a larger index mismatch (red),
the scattering of the shell dominates that of the core.

It has recently come to our attention that we are not the only workers aside from Yang to
have written code based on his algorithm and made it publicly available. Pefia and Pal have
released a code in C, scattnlay, that uses this method [81]. Our implementation in HoloPy
has some advantages in terms of usability, but scattnlay may be useful if maximum speed
is a priority. We are moreover heartened to find someone else agreeing with us about the

superiority of Yang’s algorithm.
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Figure 2.1.3: Angular dependence of scattering for incident polarization perpendicu-
lar to scattering plane for a 170 nm diameter polystyrene shell surrounded by uniform
shells. For a n index mismatch of 1072, the shell scattering dominates the core, while

for near-perfect matching, differences are most apparent near the forward direction.

2.2 SCATTERING FROM MULTIPLE SPHERES: MIE SUPERPOSITION

The simplest approach to calculating the fields scattered by multiple spheres is a technique
we will call Mie superposition. This merely involves superposing the fields calculated from
the Lorenz-Mie solution for each of the spheres, taking into account the phase differences
arising from the displacement of the spheres along the optical axis. Mie superposition as-
sumes that only a plane wave illuminates each sphere. It completely neglects electromag-
netic coupling, including multiple scattering, between the spheres. E,; calculated from
Mie superposition is the lowest-order approximation to the exact multisphere superposi-
tion approach we will discuss next.

To quantify the validity of Mie superposition for calculating E;,, we propose a dimen-
sionless figure of merit. Mie superposition assumes that the exciting field at any sphere,
E.,, is approximately equal to the incident plane wave E,,.. E,, for any given sphere i will

be equal to the sum of the incident plane wave and the scattered waves from every other
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sphere at i:

N
E..i = Eie + Z Egcatj- (2.41)

i
For Mie superposition to be valid, | Eq. ;| must be much smaller than |E;,|. This requires
the particles to be far enough apart that their near fields do not couple. Then, \Emt,j | scales
approximately as |E;,.|S/kR, where R is a typical interparticle distance and S denotes the
magnitude of the amplitude scattering matrix of sphere jin the Lorenz-Mie solution. Recall
from the optical theorem (Equation 2.37) that the forward scattering amplitude is given
byRe[S(0)] = k*Cext/4m = x*C,yt/ 4, where x is the size parameter. Thus, we propose the

criterion that if

Q.. /kR < 1, (2.42)

|Eqcat j| < |Einc| and Mie superposition should be valid.

2.3  SCATTERING FROM MULTIPLE SPHERES: MULTISPHERE SUPERPOSITION

Clearly, the Mie superposition approach will not be valid in many cases, particularly when
particles are close together. We now describe an alternate approach that lets us compute
E,.,; exactly in such cases; this multisphere superposition (also known as T-matrix) ap-
proach underlies most of the results in this thesis.

We begin once again by describing the basis functions used. Since we are once again
dealing with spheres, the natural bases are once again vector spherical harmonics. How-
ever, workers who have implemented these techniques (in particular Mackowski [ 74, 82])
use a different convention for VSH than the one we described for Lorenz-Mie scattering.
Our conventions will follow those in the users’ guide for SCSMFOQ, as our work relies on

that code. Mackowski’s VSH are of the form N, (r). Specifically,

mnp

an+1 (n—m)!

NE:r)n(r) = \/11(11 + 1) (1’! + m)|v X (I'WE:Z(I‘)) (2-43)

N (r) = V x NJ)(x) (2.44)

mni
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where
\kf:’z (r) = z,(r)P"(cos Q)eim“’ (2.45)

with radial dependence given by z, = j forv = 1andz, = hfl‘) forv = 3. The N,,,,,
are roughly equivalent to Bohren & Huffman’s M, and Mackowski’s VSH with p = 1 are
roughly equivalent to the B&H N. Note that the ¢ dependence is now in complex expo-
nentials (with m allowed to run from —n to n) instead of in sines and cosines. The angular
dependence of 1//51;")[ is almost identical to the spherical harmonics Y}"(6, ¢) familiar from
quantum mechanics, differing only by a factor of 1/,/47 and the Condon-Shortley phase
factor.

Akey step in the multisphere superposition method involves relating the scattered fields
of one sphere, in a basis of VSH centered at that sphere, to a basis of VSH centered on
another sphere. This is accomplished via translation theorems that express VSH centered
about origin ¢’ in terms of a sum of VSH centered about origin ¢, which is possible because

any set of VSH form a complete basis:

Nr(':np 1‘4/ Z Z ZAqumnkalq I'g) (2'46)

I=1 k=—1 qg=1

The coefficients A%’

kigmny depend onry — rp, as does the type of radial dependence v to be

summed over. The coeflicients are tedious to write out, and their derivation is a mathe-
matical four de force. So we merely give the references here [ 83, 84].
Armed with the VSH and the translation theorems, we may proceed. We assume as

before that E;,. may be expanded in VSH:

Bu = 30 S NG (47)

n=1 m=—n p=1

We gain some necessary insight from revisiting the Lorenz-Mie problem. In that problem,
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we expressed E ., as a sum over VSH:

00 n 2
Esot = Z Z Z am'ﬂPNErﬁp

n=1 m=—n p=1

- Z Z Z anppmner(:r)tp' (248)

n=1 m=—n p=1

Here the a,, are the traditional Lorenz-Mie coefficients (Equations 2.18 and 2.19). We do
not rehash the proofs here®, but the key physical insight is that Lorenz-Mie scattering can
be viewed as a process where some exciting wave hits a sphere, generating some scattering
response. The plane wave p,  coefficients describe the excitation, and the Lorenz-Mie
coefficients a,, give the response to incident VSH of order n and type p. If we now imagine

a different exciting field (the physical nature of which we have not yet specified):

Ee =) > > frmNoow: (2.49)

n=1 m=—n p=1

from the linearity of Maxwell’s equations it follows that the coeflicients for the scattering

response will be given by f,

mnp

dyp, with the boundary conditions on the sphere implicitly
taken care of automatically.

This is precisely the idea that underlies multisphere superposition. The fundamental
assumption is that the total scattered field from N spheres, E;.,;, can be written as a sum

of scattered fields from each sphere /:

Ng
Escat - ZEscat,E (2'50)
=1

8There are some subtle differences here extending beyond a different convention for VSH; in particular,
the Prnp plane wave coefficients can be formulated for a plane wave propagating in any direction and with
arbitrary polarization. The conventions used in our discussion of the Lorenz-Mie solution simplify matters
greatly.
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where E,; ¢ can be written as a sum of VSH centered about sphere /:

scat@ Z Z Z mnp mnp (2"51)

n=1 m=—n p=1

We will consider the exciting field E,, ¢ at sphere £ to be the sum of the incident field and
the scattered fields from every other sphere at ¢

exf - menp mnp l‘g + Z Z mnp mnp ) (2'52)

nm,p ¢/=1 n,m,p
=,
The first term is just the incident field at sphere ¢ (there may be phase differences between
different spheres), and the second term contains a sum over Ns—1 expansions over different
VSH. This is a mess, but one that can be rectified using the translation theorems. It turns
out that translating type v = 3 VSH beyond the center-to-center distance between origins

turns them into type v = 1:

Eex/ = Z pmnp + Z ZAmnpquak/lq Ngzlp (2'53)

n,m,p =1 kzlvq
O'#0
We remark that this breaks down if any of the spheres overlap; thus multisphere superpo-
sition cannot apply in this case (though the spheres need not touch.) Our exciting coeffi-
cientsf,  areinthe big parentheses. It follows that the scattering response coefhicients for

sphere { w111 bef, ., np, where the superscript £ denotes the Mie coefficients for sphere ¢:

£ 0
Bnp = pmnp + Z ZAmnpquaqu Ap (2.54)

=1 kvlzq
=y

where we already dealt with detailed boundary conditions in solving the Lorenz-Mie prob-
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lem and are now reaping the fruits of linearity. Algebraic rearrangement then leads to

= E E 174 -t !
mnp np Amnpquaqu anppmnp : (2'5 S )

'=1 k)l,q
0£0

On the left hand side, the scattering coefficients a’,, are all unknown. But on the right

np
hand side, the plane wave and Mie coefficients are known. Therefore, provided that all
expansions are truncated to some upper limit, this expression is a linear system that can be
solved for the unknown coefhicients.

There are several ways to solve this system. The one that is most physically meaningful
is the Born approximation, also known as order-of-scattering. We assume that the scat-
tering coefficients are given, to lowest order, by the Mie scattering coefficients, with some

correction:

A AR
Dpnp ™ APy T By - - (2.56)

where we explicitly show the first-order correction. If we substitute this into Equation 2.54,
we can show that the first-order correction comes from the right side approximated to ze-
roth order:
mnp = a,, ZAfn{;pqu_l{; ﬁq (257)
kg
This can be continued to higher orders. Note that the zeroth order is precisely Mie super-
position.
Once the scattering coefficients for each sphere are determined, it is possible to apply the
translation theorems once more to calculate two final set of expansion coeflicients ;|
and a1 corresponding to incident polarization parallel to or perpendicular to the scat-

tering plane’. Some further manipulation (and observation of the VSH) allows us to write

®This is especially confusing in the users’ guide to SCSMFO, scsmfo.ps. SCSMFO returns coefficients
of the type dyunp,» (Equation 19 in the users’ guide) which get turned into the parallel and perpendicu-
lar coefficients via Equations 20 and 21. But the angles in those two equations should be ¢ + 7 rather
than y. Here 7 is an Euler angle for rotating the cluster and ¢ is the lab frame spherical coordinate to
the detector point relative to the cluster center of mass, with incident propagation in the z direction. The
added complexity in SCSMFO comes from letting it handle multiple orientations of the cluster with as
little computational redundancy as possible.
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down expressions for the amplitude scattering matrix S in terms of these coefficients and
angular functions, much as in the Lorenz-Mie solution. This time, due to the lack of spher-
ical symmetry, there are off-diagonal elements in S as well. This translation of coeflicients
makes the code more efficient for dense clusters of spheres, but may be disadvantageous
for widely separated clusters, since the further away a VSH is translated, the more terms
are needed to represent it to the same level of precision.

We must once again incorporate the exact radial dependence on hfll) (kr). Working this
out requires us to work out the explicit vector components of NE,?,ZP (something not in
Mackowski’s papers). Neglecting the non-radiative radial field components for the mo-

ment, one can show after considerable but straightforward algebra and vector calculus that

Nfg}lp = ¢™m? (irmnp(e) 06— Tony—p(0) $) R,y (2.58)
where -
l 1
Run(p) = b (p), (2.60)
1 dP(cos@
Tmm(B) = \/E_ Ele >7 (2.61)
and P (cos 0)
1 mP™(cos
»(0) = n .6
7 (0) VE, sin@ (2.62)
with ‘
B = n(n+1) (n+ m).‘ (2.63)

wn+1 (n—m)!

We quote the modified results'® for the elements of S:

Se=ipe > Y > Rup(p)Gunp, 1 Trn(s—p) (0)€™ (2.64)

n=1 m=—n p=1

9These differ slightly from the versions in Ref. [85] by including the factors to “undo” the assumed
asymptotic radial dependence in Equation 2.22.
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S, =pe Z Z ZRnp(P)“nmpvllfnmp(e)eim (2.65)

n=1 m=—n p=1

83 = Peiip Z Z Z Rnp(P)amnp,J_Tmnp(e)eim(P (2'66)

n=1 m=—n p=1

Se=ipe Y D D Rup(P)amp Tnisp) (0. (2.67)

n=1 m=-—n p=1

For completeness’ sake, we also address the radial dependence of the VSH. Only N®®) has
a radial component. The derivation of this involves calculating the curl of Equation 2.58.
There is once again much tedious algebra; the only tricky bit is that one needs to use the
associated Legendre differential equation to eliminate second derivatives with respect to

cos 6. When the dust clears, we are left with

1)
(Ngsr)u)r — Meimq) sin GTmm(@) h,) (P) ‘ (2.68)
m p

From this, we can conclude that the radial scattered field is

= alnt) W (p)
Esca = mniy- e si 6 mn2 0 n—Einc Ve .6
(Bacat), = D D> ym, ——¢"™? 5in 07,1, (6) ; , (2.69)

v:HJ_ n—=1 m=—n

We briefly remark on radiometric quantities for multisphere superposition as imple-
mented in HoloPy. This is somewhat trickier than in Lorenz-Mie scattering since all these
quantities depend the relative orientation between the sphere cluster and the incident po-
larization state. The polarization-dependent forward scattering amplitude is easy to calcu-
late, so we obtain C,,; via the optical theorem. We obtain C,.,; by summing up the a,,,,
coefhicients, much as we do in the Mie solution, except that there is a polarization depen-
dence. There is no closed-form solution for C,;, so we just compute C,yt — Cyeqr. Finally,
there being no closed form for (cos 0) for polarized illumination, we have no alternative
but to use numerical quadrature. The original Mackowski code implements a closed-form

calculation for unpolarized incident illumination, but we have not implemented this in

49



HoloPy.

2.4 OTHER APPROACHES

We have gone through a considerable amount of labor in this chapter, but in a sense our
portfolio of scattering techniques is still quite limited. We can calculate anything we want
forisotropic, isolated spheres, or spheres that have a radially varying refractive index. Using
multisphere superposition, we can also calculate holograms from multiple spheres or from
sphere clusters. Though this has not been done, it would be straightforward to extend the
multisphere superposition code to layered spheres — we would just change the response
coefficients a,, from the Lorenz-Mie coefficients to the output of Yang’s algorithm. But
we are still stuck with spherical objects.

Exact scattering solutions are possible for symmetric scatterers not composed of spheres
using what are called T-matrix methods, or extended boundary condition methods. See
[74, 86] for good reviews. These codes in general require numerically computing integrals
of expressions involving VSH inside a particle. They are therefore most readily applied to
axisymmetric particles such as ellipsoids and circular cylinders; a publicly available code
is [87]. Numerical issues make such codes impractical, however, for either very large par-
ticles (size parameters >~ 50) or particles with extreme aspect ratios (such as very long,
thin cylinders).

A completely different approach is to avoid trying to compute a scattered field expansion
over some set of basis functions. One of the most useful such approaches is the discrete
dipole approximation (DDA). The DDA models completely arbitrary scatterers (which
need not have any regular geometric shape, and whose composition can vary arbitrarily)
as an array of point dipoles. These dipoles respond to an incident field as well as to the
fields produced by all the other dipoles. By solving self-consistently for all the dipole po-
larizations, the scattered field can be computed. We refer the reader to the seminal review
by Draine and Flatau [88] and to a more recent review by Yurkin and Hoekstra [89]. A
DDA code, ADDA (Amsterdam Discrete Dipole Approximation) has been incorporated
into HoloPy [90]. While the DDA is extremely general, it requires tremendous computa-

tional resources. Fitting models based on the DDA to holograms of particles much larger
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than 1 ym is at present impractical, but since DDA calculations are parallelizable, it may be

possible to improve on this in the future.

S1



Performing Digital Holographic Microscopy

In this chapter we describe some of the experimental methods by which we record and an-
alyze digital holograms. We pay particular attention to features that enable the experiments

to be described in subsequent chapters.

3.1 INVERTED HOLOGRAPHIC MICROSCOPE

We perform all the DHM experiments in this thesis on a holographic microscope built on
the body of a Nikon TE-2000 inverted microscope (Figure 3.1.1). We describe here the

main features of this microscope.
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Figure 3.1.1: Diagram of digital holographic microscope.

3.1.1  IMAGING OPTICS

We must provide a collimated, clean incident beam for holographic imaging. In our appa-
ratus, light from a 658 nm laser diode (Opnext HL6535MG with Stanford Research Sys-
tems LDC 501 current and temperature controller) is coupled to the microscope through
a single-mode fiber. The fiber circularizes the elliptical diode beam and spatially filters it.
Light is then collected by a 10x, 0.25 NA Newport objective, and collimated by a 0.59 NA
long working distance condenser (Nikon). For imaging, we use either a 60x, 1.20 NA Plan
Apo water immersion objective (Nikon) for experiments in aqueous samples, or a 100x,
1.40 NA Plan Apo VC oil immersion objective (Nikon) for experiments with emulsions.
We choose the objective and immersion liquid to minimize spherical abberations due to
the index mismatch between the glass coverslip and the medium in the sample. Images are
captured by a Photon Focus MVD-1024E-160 camera.

Our microscope is also capable of conventional bright-field imaging, as the mirror which

steers the imaging beam into the condensor is on a flip mount and can swing out of the way.

3.1.2 OprTIiCcAL TRAPPING

Our holographic microscope also contains an optical tweezer. Light from a fiber-coupled
830 nm laser diode (Sanyo DL-8142-201, with Thorlabs TCM1000T temperature con-
troller and LD 1255 current controller) is collected by another 10x, 0.25 NA Newport ob-
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jective. The light then passes through the back aperture of the 6ox Nikon objective used
for imaging and is focused in the sample. We use the trap only to isolate particles and form

clusters in our samples; it remains off during the measurements.

3.1.3 MINIMIZING RADIATION PRESSURE FORCES: LASER PULSING

The incident illumination system has received custom adaptations for studying the diffu-
sion of colloidal clusters. In Chapter 2 we discussed radiation pressure forces and the radi-
ation pressure cross section C,,. As it turns out, radiation pressure from the imaging laser
can create measurable perturbations that affect DHM measurements.

The first experimental evidence for radiation pressure being a concern came from qual-
itative observations of particle diffusion. Polystyrene spheres appeared to sediment while
being observed with DHM - particles, and especially larger clusters, tended to consistently
sink towards the imaging plane in a manner inconsistent with a Brownian process. Inade-
quate density matching seemed like the most obvious culprit, but the effect persisted de-
spite the addition of increased amounts of D,O. We observed the sedimentation in a sam-
ple containing 64% v/v D,O. Subsequently, upon centrifuging a macroscopic volume of
the sample at (1.4 X 10*)g rcf, we found that the particles had creamed to the top of the
sample.

We show through an order-of-magnitude estimate that radiation pressure forces may be
comparable to gravitational forces on polystyrene spheres in water. Recall from Chapter 2
that the radiation pressure force on a sphere of radius a is given by

nmedIi Crp

F,, = i .
» ; (3.1)

where C,, is the radiation pressure cross section, and we have accounted for the increase in
momentum of a photon propagating with an increased wavevector k in a medium of index
Nmed- Imaging studies suggest that the 1/e radius of our imaging beam may be as small as
100 pm; with 60 mW of power, using this as an estimate on the beam size gives an intensity
of roughly 2 X 10° W/m. For a 1.3 micron polystyrene sphere in water illuminated by 660
nm light, we find (cos §) ~ 0.926 and Q,,, ~ 3.39, giving a radiation pressure efficiency

Q,, ~ o.25. Consequently, the force on such a particle is on the order of 3 X 107 N.
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In contrast, the same particle suspended in water (with a density mismatch of 5o kg/m?)
would experience a net force due to gravity and buoyancy of 5.6 x 10 *® N. Clearly, the
radiation pressure forces can be problematic.

An intense laser is helpful for acquiring enough photons such that exposure times can be
kept short, which minimizes motion blur. Typical frame times for diffusion measurements
might be 40 ms, with an actual exposure time of 15 ys. It was obvious that decreasing the
duty cycle of the imaging laser would straightforwardly provide a thousandfold decrease
in the time-averaged radiation pressure force.

We decrease the duty cycle by using a laser diode current controller (LDCso1, Stanford
Research Systems) that accepts a modulation input with up to 1 MHz bandwidth. The
PhotonFocus camera has a “camera strobe” feature that can output a square wave pulse,
with polarity and width controlled by software, when the shutter is activated. We use this
strobe signal as the master timing signal. The effective output circuit is shown in Figuer
3.1.2. The camera contains an opto-coupler driving the base of a transistor switch. The
user needs to supply a pull-up resistor to a voltage rail. This was accomplished via a custom
cable built by D. Kaz, who used the same 12.5 V rail that powers the camera with a 3.3 kQ
pull-up resistor; the strobe output signal comes across a BNC-terminated coaxial cable.
We built a box containing the 1.5 k€ resistor shown in the diagram, which acts as a voltage
divider, reducing the strobe signal to a ~ 4 V TI'L-level signal’.

The strobe signal then triggers a single square wave pulse from a Tektronix AFG 3022B
arbitrary waveform generator (AWG) operating in “burst” mode. By adjusting the period
of this square wave, we control the amount of time in each exposure during which the laser
is on. The peak-to-peak amplitude of the AWG pulse is typically 6 V. This pulse then drives
the modulation input of the LDC 501, where the laser current increases by 25 mA per volt
supplied. By operating the laser at a current of 20 mA (below lasing threshhold), this signal
causes the current to rise to 170 mA (full power). One critical detail is that the modulation

input ofthe LDC 501 has alow input impedance near 2 k() — a discussion with an engineer

'Kaz’s cable wiring reverses the polarity of the signal (such that the signal is active high when set in
software to be active low.) One could argue that this is dubious electronics practice, especially given that
there is a real likelihood of ground loops, but in practice we have not observed any problems, and the TTL
trigger input of our AFG 3022B function generator appears to be differential.
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Figure 3.1.2: Schematic diagram of camera strobe circuit.

at SRS revealed that this was to keep the RC time constant associated with the input low.
We performed measurements of the imput impedance at DC by supplying known voltages
from an Agilent E3630A DC power supply and measuring the output across a voltage di-
vider formed by a known 2k resistor and the unknown input impedance. The calibration
curve is shown in Figure 3.1.3; its slope shows that the unknown impedance is 1.9 kQ. It
is critical to correctly set this load impedance in the AWG controls.

Figure 3.1.4 shows the results of this system in an oscilloscope capture with three traces:
the camera strobe signal (yellow, set for a width much longer than the exposure time, so
that its falling edge is not seen); a 15 ys-wide pulse from the AWG (blue), and the output
laser power as measured by a photodiode (purple). Some roll-on and roll-of is noticeable
in the photodiode signal, but in practice this is not problematic. Since using this pulsing

system, we have not observed perturbations due to radiation pressure .

3.1.4 VALIDATION OF PULSING SYSTEM

Subsequent to the design of the pulsing system, and its widespread use in experiments

(including the work discussed in Chapter 5 ), we performed further experiments to validate

2One might remark that a disadvantage of this system is that the laser duty cycle is slaved to the frame
rate. This could cause unwanted thermal fluctuations if the frame rate needs to be changed during a mea-
surement. We have not found this to be a problem, most likely due to the very short duty cycle when
operating at typical frame rates of 25-100 fps.
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DC characterization of LDC501 modulation input impedance
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Figure 3.1.3: Output of a voltage divider formed by a known 2k resistor and the
unknown input impedance. The slope of the best-fit line is 0.4871, from which we
obtain an input impedance of 1.9k.
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Figure 3.1.4: Timing of laser pulses captured by a Tektronix TDS 2024B storage os-
cilloscope. Channel 1 (yellow) shows the TTL-level strobe signal; its width is 100 ys.
Channel 2 (blue) shows the 6V signal sent to the LDC 501 modulation input. Channel
3 (magenta) shows the output laser power, in arbitrary units, detected by a Thorlabs
PDA 36A amplified silicon photodetector, where the laser has been attenuated with
an ND 3 filter.
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the following: that the pulsing system changes the Brownian dynamics in a measurable
way, and that the anomalous drifts we observed were in fact due to radiation pressure forces.
While the measurements we discuss in Chapter 5 indirectly validate the system, we wanted
to check these points directly.

To verify these points, we observed the Brownian dynamics of an aqueous suspension
of colloidal spheres with and without pulsing the imaging laser. We studied 2 ym-diameter
sulfate polystyrene spheres (Invitrogen). We chose to study spheres because their radia-
tion pressure cross section is independent of the particle orientation, which is not the case
for clusters of spheres, and chose the particle size such that the drift we posited was due
to radiation pressure was observable, but such that the particles remained Brownian. We
suspended the particles in a 10 mM NaCl solution containing 47.5% D, O v/v, and verified
the density matching through centrifugation for 20 minutes at 1.4 X 10*grcf.

While performing the experiments, the presence of the drift when the imaging laser was
continuously on and its absence when the laser was pulsed was manifestly evident. Figure
3.1.5 illustrates a typical z trajectory with continuous illumination and indicates that fitting
a line allows us to measure an average drift velocity. We further quantified the drift by
computing (Az(7)) for a 75 s trajectory on two different particles, during one of which
the laser was continuously on (Figure 3.1.6). For continuous (cw) illumination, for all 7,
(Az) is negative and differs from o by several standard deviations. Moreover, (Az) scales
linearly with 7, as expected for Brownian motion in a uniform force field. The datain 3.1.5
also facilitate a more precise measurement of the average drift velocity (v,): we measure
(Av,) = —0.267 £ 0.019 ym s~ . In contrast, we do not observe a downward drift with
pulsedillumination. The data suggest a small upwards drift, but (Az) lies close to a standard
deviation from o forall 7. Clearly, the dynamics change significantly when the imaginglaser
is pulsed.

The average drift velocity (v,) is the most directly accessible manifestation of the force
we attribute to radiation pressure. We now show that the drift velocity we measure is in rea-

sonable agreement with expectations. By balancing the radiation pressure force F,, against
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Figure 3.1.5: =z position of a 2 ym-diameter polystyrene sphere under continuous

wave illumination. The particle exhibits a downwards drift (in the direction of imaging
laser propagation) from which we extract an average drift velocity.
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Figure 3.1.6: Average z displacement (Az(r)) for two 2 ym-diameter spheres, one
illuminated with continuous wave (cw) illumination and the other with pulsed illumi-
nation. Solid line for cw data is a linear fit that allows the average drift velocity (v,)
to be determined.
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Stokes drag, we conclude that the magnitude of the average drift velocity is given by

()] = (32)

6m1a'

Here as usual a is the sphere radius and # the fluid viscosity. As discussed in Chapter 2,
F,, = @ , where I; is the incident intensity assuming a uniform plane wave and C,, is
the sphere’s radiation pressure cross section >.

The incident intensity I; requires experimental determination. We know the power P;
incident on the sample through measuring the power of the imaging laser (~50 mW), but
the intensity will depend on the beam size. Our imaging laser beam is by design a TEM oo

Gaussian beam, with an intensity profile I(r) at the waist taking the form

r2

I(r) = I, exp (— 2) (3.3)
20

where o describes the beam radius *. Integrating I(r) over area to determine the total power

in the beam gives P = 27],0*. We will assume that the particles being imaged are roughly

in the center of the beam and take I, as the intensity incident on them. Consequently, we

conclude that the expected drift velocity is

”medpi Crp

[(vz)| = py— (3.4)
where ¢ is to be determined by an experimental measurement.

Figure 3.1.7 shows an experimental determination of the beam profile: we image the
beam using the same objective as in the holographic experiments, but with 1x rather than
1.5x magnification, and fit a 2D Gaussian. We determine ¢ = 85 ym. Given that our 2
um-diameter spheres have C,, = 8.847 X 10™** m?, and assuming an approximate solvent

viscosity of 1 cP, we find from Eq. 3.4 that we expect |(v,)| = 0.23 ym s™*. This is within

*There is a tricky question of whether the factor fo 7,,.4 should be included or not, concerning the
definition of momentum for light in a medium. See the review article by Milonni and Boyd [ 91 ] for further
details.

*Note that our ¢ differs from the traditional waist diameter w, in the theory of Gaussian beams by a
factor of 2: w, = 20.
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Figure 3.1.7: Experimental determination of beam radius o: experimental image of
beam, best-fit Gaussian, and residuals. We determine o = 85 ym.

about 10% of the experimentally determined value; we are therefore confident that the drift

is indeed due to radiation pressure.

3.1.5 DATA ACQUISITION

We acquire data from the Photon Focus camera using a frame grabber (EPIX PIXCI E4)
connected to a compute using a CameraLink bus. The frame grabber is controlled by a
custom application programmed in Visual Studio. It is impossible for data to be written to
hard disk rapidly enough; images are therefore stored in RAM and subsquently writen to
hard disk. We can acquire up to about 12,000 512X 512 images before filling the memory
buffer.

As the user interface of the custom control program leaves much to be desired, an over-

haul is currently under way.

3.2 SAMPLE PREPARATION

We image our samples in glass cells made from a standard microscope slide and a #1 cover
slip. Because the high NA objectives we use for DHM have a short working distance, we
use #1 cover slips to enable us to image as deep as possible. We typically use 76-ym strips

of Mylar A (DuPont Teijin) as spacers between the glass surfaces. The strips allow us to
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make relatively thick sample chambers (so that particles or clusters can undergo Brownian
motion with minimal perturbations due to boundaries) while keeping the refracting glass
surfaces as parallel as possible. We clean the glass surfaces either with a pyrolysis oven or
a plasma cleaner to make the surfaces hydrophilic. We carefully rinse them with Millipore
water and dry them with compressed ultra-high purity nitrogen to minimize dust, which
can be a huge problem due to the large depth of field of DHM. We typically also heat the
Mylar strips slightly their glass transition temperature T, at 100 °C in an oven, under com-
pression with weights, to flatten them and any cut edges as much as possible.

We usually prepare a “sandwich” with the slide on the bottom, the Mylar spacers, and
then the coverslip, and pin this together along the top and bottom edges with binder clips.
Then, we apply Norland 6o UV-curing epoxy to the corners where the slide, Mylar strips,
and coverslip meet. We cure this briefly under a UV lamp to pin the corners and sub-
sequently seal the top edges (parallel to the Mylar strips) with Norland epoxy; the sides
remain open. It is subsequently easy to fill these cells with aqueous solutions via capillary
action; they typically hold ~ 20 yL of fluid. After we fill the sample holders, we seal the
side edges with Devcon s-minute epoxy. Figure 3.2.1 shows a typical sample holder, the
only difference being that the chamber has been filled with a solution of red food coloring
(Allura Red AC).

As we will discuss in the next chapter, we study some systems where a depletion force
due to PNIPAM hydrogel particles binds clusters together. In these experiments, we pre-
vent depletion interactions between the PS particles and the glass surfaces by coating both
the slides and cover slips used with PNIPAM. This is done by first silanizing the glass
surfaces by immersion in a 1% w/w solution of 3-methylacryloxypropyl-trimethoxysilane
(989%, Sigma) in anhydrous ethanol for 24 hours at room temperature. Next, the surfaces
are rinsed with ethanol, dried with compressed nitrogen, and heated in an oven at 110° C
for one hour. Finally, the slides and coverslips are immersed in an aqueous suspension of
10o-nm-diameter PNIPAM particles for at least 24 hours at room temperature. After this

procedure, the PNIPAM particles do not desorb from the surfaces.
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Figure 3.2.1: Photograph of a typical sample holder. The chamber has been filled
with red food coloring for visualization. The Mylar strips run horizontally, and the
sample holder is filled either from the right or the left.

3.3 FririnGg MobDELS TO HoLoGrRAMS wiTH HOLOPY

3.3.1 GENERAL DESIGN oF CODE

Our hologram analysis code is publicly available as the package HoloPy in Launchpad:
https://launchpad.net/holopy. HoloPy contains certain core modules for image
input/output, basic image processing, and visualization. HoloPy relies on Python and
NumPy/SciPy; there are also extensions in Fortran 77 and 9o that are needed to perform
scattering computations.

The scientific bulk of HoloPy consists of three main portions: code for optical propaga-
tion, scattering computations, and fitting. The propagation code (which performs recon-
structions as a special case) uses the convolution approach to the Fresnel-Kirchoff integral.
The scattering module performs Lorenz-Mie (including layered sphere and Mie superpo-
sition calculations), multisphere superposition, and DDA calculations. The fitting mod-
ule provides a default Python-based Levenberg-Marquardt fitter, nmpf i t, based on Craig
Markwardt’s IDL code [92]. It is also possible to use other fitters with HoloPy.
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3.3.2 PARAMETERIZING MULTI-PARTICLE CONFIGURATIONS

There are several ways to parameterize hologram models that contain multiple particles.
The obvious way is to fit for the 3N coordinates of N particles. This is necessary when
the particles are far apart and move freely, as they do in the emulsion system. Fitting with
all 3N coordinates is necessary in clusters where the particle position fluctuations are large
enough that they cannot be described as perturbations from some reference (such as when
clusters rearrange [9]), but can require numerical tricks like allowing the particles to pass
through each other. Thus, when the particles have manifest constraints, we find it more
effective to reduce the number of degrees of freedom in the fit by explicitly incorporating
the constraints.

In particular, we can treat colloidal clusters as (essentially) rigid bodies. Instead of fit-
ting for 3N coordinates, we can fit for three center-of-mass coordinates and at most 3 Euler
angles. In some cases we can also incorporate internal degrees of freedom for small per-
turbations away from a rigid reference structure. For every cluster we consider, we define
a reference orientation; the exact orientation of the reference orientation is irrelevant and is
chosen for convenience.

Our Euler angle convention requires some discussion. We define Euler angles in an ac-
tive, zyz picture. A cluster forming a given hologram is in some configuration in the labo-
ratory frame, and the Euler angles define an active rotation of the cluster from its reference
orientation to its actual orientation. Specifically, we rotate the cluster first by an angle a
about the laboratory z axis, second by f about the laboratory y axis, and lastly by y about

the laboratory z axis. The rotation matrix R that describes this is

R = R,R;R,
cosy —siny o cosp o sinf cosa —sina o
= | siny «cosy o o 1 o sina cosa o |- (3.5)
0 0 1 —sinff o cosf 0 o 1
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Multiplying this out, we obtain

cosacosfcosy —sinasiny —sinacosfcosy —cosasiny sinfcosy
R = | cosacosfsiny +sinacosy —sinacosfsiny + cosacosy sinfsiny
— cosasin f sin a sin f3 cos f3

(3.6)

We define this rotation matrix as acting from the left on a column vector (which in practice,
describes the coordinates of a particle relative to the cluster COM). The angles are defined
such that a positive rotation is clockwise if viewed from the origin looking along the positive
direction of the associated axis®.

Note that usual definitions for the Euler angles constrain f8 to the interval [0, 7], which if
a and 7 are constrained to [0, 27| allows for a one-to-one mapping between 3 Euler angles
and rotation matrices. For fiting purposes, we let the angles take any value, with Equation
3.6 defining the rotation. Also, note that a and y are modulo 27, while f is not modulo 7.

For colloidal dimers (or any other axisymmetric object), only two Euler angles are mean-
ingful. We enforce a = o and allow f and y to vary continuously. We define the reference
configuration to have the rotational symmetry axis be the x axis, allow both particle sizes
to vary, and also allow for a nonzero gap distance between the particles.

For trimers, we allow all three particle sizes to vary, as well as a gap distance between all
three particles. The reference configuration is as shown in Figure 3.3.1, with all particles in
the xy plane. The three spheres have radii a,, a,, and a,, and g, denotes the gap distance
between particles 1 and 2. We define r,, = a, + a, + g, and define r,; and r,, similarly. r,,
points at a 60° angle from the y axis, as shown. Initially, particle 1 has coordinates (o, o),
particle 2 has coordinates (r,,1/3/2, 11,/2), and particle 3 has coordinates (r,, sin(27/3 —
§), —r; cos(2m/3 — §)) where

2 2 2
LS + r13 - rzg,

(3.7)

cosd =
21,10,

*This convention is new to HoloPy 2.0. Previous incarnations of the code were more heavily tied to the
Euler angle conventions of scsmfo1b.for, which uses a passive rotation picture. Previous interpretations of
the rotations as an active transformation thus had rotation angles signed in the opposite sense. While the
new convention breaks backwards compatability, it makes much more sense.
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Figure 3.3.1: Reference configuration for rigid trimer.

We then numerically shift the coordinates so that the center of mass lies at (0, 0). We can
apply a similar parameterization to a trimer whose particles are in a linear chain, where
instead of specifying g . we specify the subtended angle &.

Euler angles are not the only way to parameterize SO(3), the group of rigid body rota-
tions. Quaternions are another possibility, which have the advantage of avoiding the phe-
nomenon of gimbal lock: when f = o or 27, only the sum a + y matters, not the two angles
independently. Fitting with quaternions (which have 4 parameters) requires a minimizer
capable of handling implicit constraints between fit parameters, but if implemented may

be more effective.

3.3.3 RUNNING FITS

Levenberg-Marquardt fitters, like nmpf it as principally used in this work, require an initial
guess for the fit parameters. There are two ways we obtain them. First, we can manually
adjust fit parameters such as positions and orientation angles, perhaps guided by recon-
structions. Second, we can use a “bootstrap” method for a time series of holograms, where
the best-fit parameters of one frame are used as the initial guess for the next.

Recently, we have found that fitting a randomly chosen fraction of the pixels in a holo-
gram — as low as 1% for single spheres — is surprisingly effective. In a sense this is not
surprising since we are typically trying to determine ~ 10 fit parameters from a 200 X 200
hologram; the fitting problem is grossly overdetermined. Typically, what we do is to use
the manual guessing method to determine initial guesses for one frame, and then use boot-
strapping to do a rough fit to 10% of the pixels. Subsequently the rough fit results can be

used as an initial guess for a fit to all the pixels. This stage is embarassingly parallelizable.
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While HoloPy runs on local desktop computers for development and testing, manual
guessing, and small batch jobs, the majority of heavy-duty hologram analysis is done on
the Odyssey computational cluster, where we use up to hundreds of 2.3-GHz, 64-bit pro-

cessors simultaneously.

3.3.4 QUANTIFYING THE GOODNESS OF FIT

After fitting a scattering model to a hologram, we quantitatively confirm the fit of the model
by examining two statistical measures of the goodness-of-fit. The first measure, chi-squared
per pixel Xp 18 the quantity the fitting algorithm attempts to minimize:

N
1

X; =N Z(Iholo — Ig)™ (3.8)

i=1

The sums run over all N pixels of the recorded normalized hologram Ij,;, and the best-
fit model hologram If;;. For any given hologram, comparing X; to an expected noise level
allows us to assess whether deviations between the recorded hologram and best-fit model
are due to instrumental noise or to a systematic error in the model’s description of the
underlying data. Assuming noise in the least significant bit of an 8-bit camera, we would
expect x; values greater than (1/255)* = 1.54 X 107 to have originated from systematic
errors.
The second statistical measure we use was the coefficient of determination R*. We de-
fined R* as
R*— 1 — Z?;(Iholo - Ifit)2 - Z?;(Iholo - Ifit)z (3.9)

Zfil (Iholo - Tholo)z Zfil(lholo - 1)2

where I,,j, is the mean value of the recorded hologram, which is 1 by our normalization
[93]. R* measures the fraction of the variation of the recorded hologram from its mean
value that is captured by the best-fit model, independent of the amount of variation in the
hologram. Whereas X, varies significantly across physical systems that differ in scattering
cross section and hence hologram fringe amplitude, R* does not. Therefore, we use R* to

assess the validity of the scattering models with which we fit holograms. In particular, as
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we discuss in the next chapter, R* helps to assess the validity of using the Mie superposition

approximation.
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Imaging Multiple Colloidal Particles

This chapter discusses our imaging of multiple colloidal particles with DHM in two con-
texts: colloidal clusters and particles on emulsion droplets. We discuss how we produce
and image clusters of different morphologies, and discuss the internal dynamics of clusters
that have internal degrees of freedom. The anisotropic Brownian dynamics of clusters, a
major topic in itself, will be deferred to Chapter 5. We will then discuss what we can learn

about DHM as well as interparticle interactions from looking at emulsion droplets.

4.1 CoLLOIDAL CLUSTERS

4.1.1 INTRODUCTION

We have already discussed the importance of colloidal clusters for self-assembly in Chap-

ter 1. Aside from these, however, clusters are also among the simplest examples of non-

69



spherical colloidal particles, which may be more common than monodisperse spheres in
real suspensions. As such, they provide an important test case for the utility of DHM to go
beyond isolated spheres. We will particularly emphasize in this Chapter the importance of

multisphere superposition.

4.1.2 MAKING CLUSTERS

We have three main ways to make colloidal clusters: using depletion forces in combina-
tion with optical tweezers, using van der Waals forces and optical tweezers, and through
arrested aggregation (also known as salting-out quenching.) The latter two techniques pro-
duce clusters that are essentially rigidly bonded together; with the first technique, it is pos-
sible to make clusters that have internal degrees of freedom or even undergo morphological
changes.

Depletion forces arise entropically due to excluded volume effects in suspensions of
bidisperse spheres or spheres and polymers. The effect is schematically illustrated in Fig-
ure 4.1.1. The size of the smaller particles sets the thickness of an excluded volume layer
around the large particles into which the centers of the smaller particles are sterically for-
bidden from entering. When two large spheres come close to each other, their excluded
volumes overlap, resulting in a larger free volume for the small spheres. This then lowers
the free energy of the system and gives rise to an effective attraction between the spheres.
A model for the depletion interaction was first formulated by Asakura and Oosawa (AO)
[94, 95]. The AO model is formulated for the potential at center-to-center separation r be-
tween two large hard spheres of radius ay, dispersed in a gas of small hard spheres of radius

as at volume fraction ¢:

kB T(P
(2as)3

for2a; < r < 2(ap + ag). Porlarger r, Upo(r) = o. We give the AO model here to

UAo(r) = (zas + 2a; — 7‘)2 (zas + 2a; + g) (4_1)

illustrate the overall scaling of the effect, but we note that it fails to model what happens
when the small spheres are not dilute [34, 96] or when the particles do not interact as hard

spheres.
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Figure 4.1.1: Cartoon of experimental system and of the depletion interaction.
Shaded area around each polystyrene sphere shows the excluded volume around each
sphere, set by the radius of the depletant particles (here, made of PNIPAM hydrogel).
The centers of the depletant particles cannot enter the shaded areas.

We perform experiments with two different systems of depletants. One system is based
on poly-N-isopropylacrylamide (PNIPAM) hydrogel particles, which are highly swollen
atroom temperature and are effectively index-matched in an aqueous solution. The system
contains 0.99-ym-diameter, surfactant-free, sulfate-stabilized polystyrene (PS) spheres (In-
vitrogen) and 8o-nm-diameter PNIPAM hydrogel particles, synthesized according to [97].
The volume fraction of PS in the sample is 2 X 1077, and the approximate weight frac-
tion of PNIPAM is 0.05. We use equal proportions of H,O and D, O to density-match the
polystyrene spheres, and we add 15 mM NaCl to screen electrostatic interactions and 0.1%
w/w Pluronic P123 triblock copolymer surfactant to stabilize the particles. Because the
PNIPAM is index-matched, we treat everything in the system other than the PS particles
as an optically homogeneous solvent with refractive index n = 1.3349, as measured with
an Abbé refractometer. As we will discuss, the depth of the potential well in this system is
several kg T at room temperature.

The other system consists of a dilute suspension of monodisperse, 1.3-ym-diameter
surfactant-free, sulfate-stabilized polystyrene spheres (Invitrogen) at a volume fraction of

8 X 10~ ¢ in an aqueous solution containing s mM NaCl and 246 mM sodium dodecyl sul-
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fate (SDS). Because the SDS concentration is far above the critical micelle concentration
[98], the SDS forms micelles, which act as depletants. The micelles should be spheres with
a diameter of about 4 nm.

We also make clusters from 1.3-ym-diameter surfactant-free, sulfate polystyrene spheres
(Invitrogen). These particles are suspended at a volume fraction of about 8 X 10 *inao.1
M NaCl solution. This reduces the stability conferred by the charged sulfate groups on
the particles, which allows the particles to bind irreversibly to each other due to a van der
Waals force when brought close together.

In all of these cases, we use the optical trap in the inverted Nikon microscope described
in Chapter 3 to assemble the particles. We grab individual particles with the trap, and then
pull all the spheres into the trap focus. This is relatively easier to do with the two depletion
systems, but is much more finicky with the van der Waals system. In particular, anecdotal
experience suggests that the charge on the particles can vary based on preparation condi-
tions such as washing, and that charges (or the lack thereof) on glass sample holders can
affect whether particles can be easily bound together in free-energy minimizing configura-
tions in the bulk. The other inherent disadvantage of the optical trap method for making
clusters is that it is not scalable.

Consequently, we use a different method, based on arrested aggregation, to make dimers
and trimers of sulfate polystyrene spheres [99]. We make dimers from 1.3-ym diameter
spheres and trimers from 1-ym diameter spheres. We transfer these particles into a 250
mM NaCl solution to screen the charge of the stabilizing sulfate groups and start the ag-
gregation, then we decrease the ionic strength by quenching with deionized water (Mil-
lipore) after 1 minute to arrest the aggregation. We then suspend the resulting mixture
of single particles, dimers, and larger clusters in a density-matched solvent consisting of
50% v/vD,0 and 50% v/v H,O with a salt concentration of 1 mM. The arrested aggrega-
tion method produces a range of cluster sizes and geometries, ranging from single particles
to aggregates of many spheres. This is not a problem for our diffusion experiments with
DHM since they study single clusters, whose geometry we can verify in situ with bright
field microscopy and check post hoc by fitting hologram models.

Figure 4.1.2 shows bright-field micrographs of some of the clusters produced using opti-

cal tweezers and depletion with SDS micelles. We are able to produce geometries including
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Figure 4.1.2: Bright field micrographs of clusters made from 1.3-ym diameter
polystyrene spheres, recorded with a 60x 1.20 NA water immersion objective. Clusters
bound by depletion forces induced by SDS micelles. Ball-and-stick models, indicating
cluster geometry and orientation, are a guide to the eye. Scale bar 5 ym. n; denotes
the number of spheres in each cluster. a) Tetrahedron (n, = 4). b) Trigonal bipyramid
(ns = 5). c) Polytetrahedron (n; = 6).

tetrahedra with n; = 4 spheres, trigonal bipyramids with n; = s, and polytetrahedra with
ng = 6. Figure 4.1.3 shows a mixture of single spheres, dimers, trimers, and larger clusters

from the arrested aggregation method dried on a glass coverslip.

4.1.3 CLUSTER HOLOGRAMS AND ANALYSIS

We first show that we can record and model holograms of clusters whose shape is essen-
tially constant. We study a dimer of 1 micron spheres bound by a depletion interaction
induced by PNIPAM hydrogel particles in Figure 4.1.4. The dimer model allows one re-
fractive index for both particles, both particle radii, the center-of-mass position, 2 Euler
angles, the interparticle separation, and a, to vary. We find excellent agreement between
the experimental hologram and the best-fit model, with a per-pixel y* of 3.596 X 10™*.
Similarly, Figure 4.1.5 shows the comparison between the experimental hologram and the
best-fit model for a trimer of 1 micron spheres produced by using the optical trap to rigidly

bind particles together. The trimer hologram model varies one refractive index, one sphere
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Figure 4.1.3: Clusters made from 1.3 ym-diameter polystyrene spheres and arrested
aggregation technique [99]. The technique produces a range of cluster sizes. Scale
bar, 10 ym.

radius, the three center-of-mass coordinates, three Euler angles, and a,. For this hologram
and best-fit model, the normalized y* is 6.556 X 10~ *. Note, however, that the values of y*
per pixel are larger than what we would expect due to noise: for noise in the least significant
bit of an 8-bit camera, we would expect y* values on the order of (1/255)> = 1.54 X 1075
Figure 4.1.6 compares recorded and best-fit model holograms, calculated with multi-
sphere superposition, for tetrahedral, trigonal bipyramidal, and polytetrahedral clusters.
These clusters are bound by depletion forces induced by SDS micelles. Qualitatively, we
observe excellent agreement between the recorded and best-fit holograms. In particular,
the best-fit models reproduce the highly non-axisymmetric fringes in the recorded holo-
grams, which depend strongly on the cluster orientations. The quality of the agreement
is confirmed by the R* values of the fits, which are close to 1 (Table 4.1.1). Also, the fit-
ted particle radii are close to the manufacturer’s reported value of 650 nm. However, the
values of X, we observe are an order of magnitude larger than what we would expect due

to camera noise, and indicate that further improvements to fits will depend on modeling
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Figure 4.1.4: Hologram of a dimer composed of 1 micron spheres, held together

by a depletion interaction induced by PNIPAM hydrogel particles. (a) Comparison

of the recorded hologram (solid black lines) to the best fit, as calculated from the
multisphere superposition scattering model (red symbols), along the three dashed lines
indicated. (b) Recorded hologram. (c) Best fit model. The blue diagram above the
holograms shows a rendering of the particle positions from the fit. The upper sphere
is rotated 34.9° into the page. The rendering is oriented so that the incident light
direction is into the page.
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Figure 4.1.5: Hologram of a trimer of 1.3 micron spheres produced by binding
charged spheres in an optical trap. (a) Comparison between the recorded hologram
(solid black line) and the best fit, as calculated from the multisphere superposition
scattering model (red symbols), along the three dashed lines indicated. (b) Recorded
hologram. (c) Best fit. The blue diagram above the holograms shows a rendering of
the particle positions from the fit. The leftmost sphere is rotated 38.3° into the page.
The rendering is oriented so that the incident light direction is into the page.
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additional physical phenomena or improving the convergence of the fitter.

We emphasize that with these clusters, the use of multisphere superposition is criti-
cal. Figure 4.1.7 shows that there are qualitative differences between simulated holograms
where E, is computed with multisphere superposition and with Mie superposition. Ac-
cording to our criterion in Equation 2.42, we have in this case (for individual spheres with

x =10and m = 1.2 + 10~ *i)

~ = 18.4,

Qe (3.683)(10%)
kR 20 (42)

so it is not surprising that the Mie superposition approximation is inadequate.

As we might expect from these estimates, Mie superposition totally fails to fit holograms
from the multi-particle clusters discussed in Figure 4.1.6. There, the constituent spheres
have a relative index m =~ 1.2 and size parameter x ~ 8.3. A fit to the polytetrahedron
hologram of Figure 4.1.6¢c using a Mie superposition model yields X, =539 X 1073 and
R* = 0.463 (Figure 4.1.8). These values are much poorer than the values associated with
the multisphere superposition model. Moreover, qualitative differences between the best-
fit Mie superposition model and the experimental hologram are readily apparent.

Using these fitting techniques, we can also characterize clusters that have internal de-
grees of freedom. We give two illustrations of this: first, with the depletion-bound dimer
in Figure 4.1.4, and second with a trimer where there is a large gap between two of the
particles.

In the first case, recall that our model allows the determination of the center-to-center
distance between the particles. We can invert the Boltzmann distribution of center-to-
center separations to determine the pair potential U(r), shown in Figure 4.1.9. The mea-
sured potential is qualitatively consistent with what we expect for this system. At short
range, we expect a van der Waals attraction and an electrostatic repulsion. The sum of these
two competing interactions should lead to a potential well, which is what we observe.

We do not make a quantitative comparison between our measured potential and amodel
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Figure 4.1.6: Recorded and best-fit model holograms of rigid clusters. The third
column compares the recorded holograms (solid lines) to the best-fit models (open
symbols) along the color-coded dashed horizontal lines shown in the holograms. The
renderings in the rightmost column show the cluster orientations determined from the
fits. In the renderings, the incident light propagates into the page. a) Tetrahedron
(ns = 4). b) Trigonal bipyramid (n; = 5). c) Polytetrahedron (n; = 6).



Table 4.1.1: Fitted radii and goodness-of-fit statistics x; and R* for rigid clusters

holograms in Figure 4.1.6.

Cluster Radius (nm) X; R

Tetrahedron 670 £ 30 118 X 1073 0.923
Trigonal bipyramid 640 %+ 30 9.48 X 107% o0.910
Polytetrahedron 650 £ 20 1.24 X 103  0.877

a) 14 —_—

2 12} A -

s

>

‘s 10 {\

[

Qo

< o8} -

©

ko)

S 06

n \v ]
0.4 L L L

0 50 100 150 200
Hologram row number

T-Matrix

Lorenz-Mie

Figure 4.1.7: Comparison between simulated hologram calculated using multisphere
superposition method and simulated hologram computed from Mie superposition, for
a dimer composed of 1.57 ym polystyrene spheres in water with 658 nm incident illu-
mination. As shown in the blue rendering, the upper particle is rotated 45° into the
page. The rendering is oriented so that the incident light direction is into the page.
(a) Hologram intensity along red dashed lines in (b) and (c). The hologram calcu-
lated from a multisphere superposition solution (blue) differs qualitatively from the
hologram calculated by superposing the Lorenz-Mie solution for two spheres (green)
due to near-field coupling. (b) Simulated hologram computed from T-matrix code. (c)

Simulated hologram calculated by Lorenz-Mie superposition.
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Figure 4.1.8: Fit of polytetrahedron hologram in Figure 4.1.6c performed using Mie
superposition. a) Recorded hologram (shown again for ease of comparison). b) Best-

fit model determined from Mie superposition. c) Comparison between recorded holo-

gram (solid lines) and Mie superposition model (open symbols) along the dashed lines
in the holograms. d) Rendering showing cluster orientation determined by Mie super-

position fit. The incident light propagates into the page.
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Figure 4.1.9: Measured pair potential for a colloidal dimer. Only differences in U(r)
are relevant; the actual values are arbitrary. The measured potential is qualitatively
consistent with an attractive depletion force and an electrostatic repulsion. The bin
width of the histogram of particle center-to-center separations, from which we deter-
mine the distribution of separations and the potential, is 11.7 nm.
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potential, such as the Asakura-Oosawa potential [94], [95], because our system does not
conform well to existing depletion models: our depletants are not hard spheres, nor is their
concentration low. Moreover, we never observed the dimer break apart. Thus only differ-
ences in U are meaningful, as we are unable to observe the particles at large separations
where they are non-interacting. Also, the results depend strongly on the fitted radii: the
particle radii are encoded in low spatial frequency variations in the magnitude of the holo-
gram fringes, which can lead to a large uncertainty, on the order of 10-100 nm. This is why
there are a few frames in which the measured separation distance is smaller than 0.95 ym.
Using the DHM with multisphere superposition scattering models to accurately determine
pair potentials will require optimizing the fitting technique and improving the fidelity of
the low spatial frequencies in the holograms.

Nonetheless, the results are promising and qualitatively consistent with our expecta-
tions: the range of the measured potential is on the order of the depletant size, and the
depth of the well is several kg T, consistent with our observations that the dimers do not
break apart for at least several minutes.

Finally, we examine a cluster of 1.3 ym spheres, bound by depletion from SDS micelles,
that is not a free-energy minimum. Namely, we examine a cluster where three particles are
bound in a linear chain, but where the two end particles are not close enough to interact.
We show an experimental hologram and a best-fit model hologram in Figure 4.1.10. Here,
the three particles subtend an angle of 111.1°. These results indicate how clusters whose
geometries are changing can be studied in detail using DHM and scattering solutions, as

Perry and co-workers have subsequently done [9].

4.2 PARTICLES ON EMULSION DROPLETS

4.2.1 INTRODUCTION

Particles on liquid-liquid interfaces, and particularly on droplets, are of interest for several
reasons. Particles and droplets can be used to build useful materials such as colloidosomes
[ 100], whose potential applications include drug delivery. Emulsions can also be stabilized

by colloidal particles; these are known as Pickering emulsions [101]. In such emulsions,
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Figure 4.1.10: Bent trimer hologram. (a) Rendering of particle positions and orien-
tations determined from best-fit model. (b) Recorded hologram. (c) Best-fit model.
(d) Comparison of experimental hologram (solid lines) with best-fit model (open sym-
bols) along the horizontal dashed lines.

particles bound to the droplet interface can prevent the droplets from coalescing. How one
might either stabilize emulsions with particles, or destabilize particle-laden emulsions (as
in oil recovery) is of great industrial importance.

More importantly, much of the fundamental physics governing the interactions between
particles at liquid-liquid interfaces remains poorly understood. There is a classic equilib-
rium picture due to Young that describes the binding of an isolated particle to an interface.
This is illustrated in Figure 4.2.1(a) for a sphere at an oil-water interface. Young’s equation
balances the horizontal forces due to three competing surface tensions: oil-water (7,,,),
particle-oil ('}/P ,),and particle-water (y Pw)' Balancing the forces along the three-phase con-

tact line gives rise to Young’s equation for the contact angle 0.:

’}/PW - ‘}/pﬂ
YOW

cosf, =

(4.3)

There is another way to derive this, via an energetic argument, by minimizing the free en-
ergy of the particle-interface system as a function of the contact angle [ 102]. In so doing,

one may derive the free-energy difference between the sphere of radius a being wholly in
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one phase initially (say, the oil) and then sitting at the interface:
AF = —ma*y, (1 — cosf,)”. (4.4)

A qualitative way to think about this that the particle removes area from an energetically
costly oil-water interface (with a typical surface tension of 7, ~ 40 mN/m. Pulling a
particle with a = 1 ym off such an interface will cost on the order of 10'°kg T at room tem-
perature'. But this picture fails to capture what happens when multiple particles lie on an
interface. Figure 4.2.1(b)-(g) illustrate some of the possible effects. These include attrac-
tions due to capillary deformations due to gravity [104], electric fields [32], and surface
roughness [105]; electrostatic repulsions due to asymmetric counterion clouds [16] or
patches of trapped water [ 106]. Most theoretical and experimental works have considered
flat interfaces, but curvature (as on a spherical droplet) may change the physical picture,
inducing for instance new capillary effects [ 107, 108]. While all of these possibilities have
been suggested, some remain controversial and a detailed physical understanding is still
lacking.

Thus, experimental studies of particles on emulsion droplets may lead to a better under-
standing of interparticle interactions at liquid-liquid interfaces. In particular, the systems
we will consider here typically have small numbers (< 10) of micron-sized particles on
droplets several ym in diameter. These differ from systems with many particles that are es-
sentially jammed on the droplet surface, where topology rather than interparticle interac-
tions govern the formation of spherical crystals with defects [ 109]. These droplets are also
small enough that they cannot be considered locally flat; curvature matters. Our particle-
laden droplets will also serve as a test bed for DHM, and in particular its ability to study
systems of many particles that have no interparticle constraints (unlike rigid clusters), as

well as the Mie superposition approximation.

'Kaz et al. recently showed that this equilibrium picture is insufficient, and that colloidal particles
logarithmically relax to their equilibrium contact angles on a very clean interface [103]. The relaxation
of individual particles that penetrate liquid-liquid interfaces continues to be under active investigation by
A. Wang.
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Figure 4.2.1: lllustrations of interactions between colloidal particles at liquid-liquid
interfaces. (a) Geometry for Young's equation. (b) Gravitational forces on large par-
ticles cause them to deform the interface, resulting in an attraction (the “Cheerios
effect.”) (c) At an air-water interface, charged groups on the portions of particles in
the water can dissociate. The resulting dipoles lead to repulsion. (d) At an oil-water
interface, patches of water can lead to repulsions through the oil. (e) Electric fields
from charged particles can deform the interface. (f) Contact line undulations due to
particle surface roughness or a patchy charge distribution (exaggerated for clarity) can
result in capillary multipole interactions. (g) Particles with patchy charge form dipoles
with a component parallel to the interface.
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Water, glycerol, Pluronic P123

Decane

Figure 4.2.2: Bright field micrograph of decane droplet with 4 PMMA spheres on
its surface, recorded under 100x magnification and differential interference contrast
(DIC). Here, a slight index mismatch between the decane and the continuous phase
makes the droplet visible under DIC. Scale bar 5 ym.

4.2.2 SAMPLE PREPARATION

We prepare emulsion droplets laden with colloidal spheres by dispersing a suspension of
microspheres in oil into an aqueous continuous phase. We suspend 0.8 ym diameter poly-
methyl methacrylate (PMMA) spheres coated with poly(12-hydroxystearic acid) stabi-
lizer [110, 111] in decane at a mass fraction of 2.1 X 1073. The aqueous continuous phase
contains 0.2% w/w Pluronic P123 triblock copolymer surfactant and 56% w/w glycerol.
The glycerol matches the refractive index of the continuous phase to that of decane, so that
only the PMMA spheres scatter light. We prepare the emulsions by mixing 0.5 mL of the
PMMA-containing decane with 20 mL of the continuous phase in a 40 mL scintillation
vial and shearing the mixture for 3 minutes at 9500 rpm with an Ika T9 Basic homoge-
nizer equipped with a S25N-8G dispersing tool. After emulsification, we dilute the emul-
sion to 17% v/v with additional continuous phase. A micrograph of a typical emulsion
droplet, laden with 4 particles but with the continuous phase slightly mismatched to allow
the droplet to be seen, is shown in Figure 4.2.2.

While the emulsion droplets are index-matched?, we cannot simultaneously match the

*We check the index-matching with an Abbé refractometer. The match is close, typically to 5 X 10™*
on the refractometer. Still, this does not account for either the variation of the refractive indices of either
the decane or the continuous phase with temperature, or with wavelength.
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density of the dispersed and continuous phases. Consequently, the less-dense oil droplets
tend to cream to the top glass surface of the sample holders. This is problematic for two
reasons. First, nearby glass surfaces may affect the interparticle interactions. Secondly,
scattered light may back-reflect off the glass surface. Consequently, we use negative dielec-
trophoresis (NDEP) to keep the particle-laden droplets away from the top of our sample
cells. The following expression is usually quoted for the dielectrophoretic force on a spher-

ical particle of radius a with dielectric permittivity ¢, in a medium of permittivity ¢, [112]:

Fppp = 2me,a° <M) (VE?). (4.5)

& 1 26m

The term in parentheses is the Clausius-Mossotti factor for the particle’s effective polariz-
ability. For oil (¢, ~ 1) in water (¢, ~ 80) this factor is negative, and due to the large
dielectric constant of water this factor CM ~ o.5. Hence we speak of negative dielec-
trophoresis: oil droplets in water will be repelled from an electric field gradient. We do
not discuss the derivation of this here, but note that this is only approximately valid for our
droplets since the derivation assumes that the droplets are much smaller than the length
scale of variations in the electric field E. Note that the a* dependence of the force helps
to ensure that the forces on a micron-diameter colloidal particle will be at more than 100
times smaller than the forces on a 5§ micron droplet.

It is clear that to maximize the NDEP effect, a large gradient of E* is needed. This can
be done with an interdigitated geometry, schematically illustrated in Figure 4.2.3, in which
adjacent conducting strips have voltages applied to them that are 180° out of phase. We
apply an AC field instead of a DC field to prevent electro-osmosis. A model due to Morgan
etal., assuming a 1D periodic pattern of very long conducting strips, allows us to model the
electric fields of our devices [113]. Following Morgan’s model®, the maximum downward
(y) component of VE? occurs centrally between conducting strips of width d to which a

potential V, is applied. The gradient is given by

16V2  coshy 1
V(E), =——"=2 tan | ———— .6
(B, nd® /2 cosh(2) arean (\/Zsinh j/) (4-6)

*The following may be derived using Equations 19 and 20 in Morgan’s paper [113].
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Figure 4.2.3: Schematic illustration of NDEP devices produced by etching ITO-
coated glass slides. Voltages applied to adjacent interdigitated conducting strips are
180° out of phase. The resulting NDEP force, calculated using [113], is illustrated in
the vector plot.

where y = my/2d.

We use photolithography and wet etching to prepare interdigitated electrode arrays with
a 40 pm spacing between adjacent electrodes on microscope slides coated with a 30 nm
layer of ITO (Delta Technologies, CB-9oIN coating). We spin-coat the ITO surface of
the slides with Shipley S1813 positive photoresist at 5000 rpm and soft bake the slides
on a 115°C hot plate for 1 minute. We first define the electrode pattern by exposing the
photoresist to UV light through a photomask (150 mJ/cm” exposure at 405 nm), then
develop the photoresist by immersion in Microposit MF CD-26 developer for 1 minute
at room temperature. Following an overnight hard bake in a 90°C oven, we etch away the
excess ITO with an aqueous solution containing 40% v/v HCl and 10% v/v HNO, for 12
minutes at room temperature. The NDEP devices are typically operated by applying a 10
V peak-to-peak, 300 kHz square wave with an arbitrary waveform generator (Agilent AFG
3022B). Diffraction from the edges of the ITO electrodes was negligible.

Figure 4.2.4 shows a typical NDEP device; the 40 ym electrode patterning is not visible.
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Figure 4.2.4: Photograph of sample holder with NDEP devices fabricated on a 75
mm wide slide.

The edges of the ITO pads (from which the electrodes run horizontally) are visible. We
use copper tape and conductive silver paint to ensure a good electrical contact between
the waveform generator and the devices. Figure 4.2.5 shows a device in action; witha 15V
peak-to-peak square wave, ~ 10 ym-diameter droplets can be repelled about 30 ym from

the top of the sample cell.

4.2.3 RESULTS: IMAGING PARTICLE-LADEN DROPLETS

Here we show that our fitting techniques may also be applied to multisphere systems with-
out a fixed geometry. Figure 4.2.6 shows a hologram of six particles bound to the surface of
a decane droplet and a best fit model calculated using Mie superposition. Again, the qual-
itative agreement between the fringes of the recorded hologram and the best-fit model is
good. Quantitatively, we found x} = 7.29 X 107* and R* = 0.811. > was much lower
than the values we obtained for the clusters, primarily because the peak amplitude of the

hologram in Figure 4.2.6 was significantly smaller than the peak amplitudes of the cluster
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Figure 4.2.5: ITO devices with decane emulsion droplets. Continuous phase is par-
tially index mismatched for visibility; the AC field is on. (a) Field of view focused at
the top of the sample cell. Droplets visible where there is ITO (and consequently,
where E is approximately uniform; no droplets are in focus in the region between the
electrodes. (b) Same field of view, focused 30 ym below (a). Droplets, some with
PMMA particles, are visible in the region between the ITO electrodes. Micrographs
recorded at 40x magnification with DIC. Scale bar, 20 ym.

holograms in Figure 4.1.6. The value of R* indicates that the fit was slightly worse than the
fits for the clusters. However, because we knew the particles were bound to the surface of
a spherical droplet, we independently tested the accuracy of the fitted particle positions.
While we could not directly image the decane droplet, which was index-matched to the
continuous phase, we fit the surface of a sphere to the particle coordinates, as shown in
Figure 4.2.6d. The average difference between the radial distance of each particle from the
droplet center and the fitted droplet radius was 6o £ 60 nm. Differences of this scale are
comparable to previously reported precisions for DHM [ 59, 85], and may be partially ac-
counted for by variations in the interfacial contact angle between different particles [103].

To determine whether the slightly worse value of R* obtained in this fit is due to the
Mie superposition approximation, we examine the validity of this approximation in further
detail.

To confirm that Mie superposition is a suitable means for analyzing holograms like that
in Figure 4.2.6, in which multiple weakly scattering spheres are situated several diameters
apart, we fit a model based on multisphere superposition to the same hologram. The mul-

tisphere superposition fit yielded X, = 8.08 x107° and R* = 0.790, comparable to the
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Figure 4.2.6: Holograms of six PMMA spheres on a decane droplet. a) Recorded
hologram. b) Best-fit model. c) Comparison between recorded hologram (solid lines)
and best-fit model computed using Mie superposition (open symbols) along the
dashed horizontal lines in the holograms. d) Rendering showing the sphere positions
determined by fitting the holograms. The incident light propagates into the page, and
the scale bar is 1 ym. The larger blue sphere is a guide to the eye; its position and
diameter, 4.35 ym, were determined by fitting a sphere to the coordinates of the six
particles. The small red sphere indicates the particle showing the largest discrepancy
in position along the optical axis between fits to Mie superposition and multisphere
superposition.
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Mie superposition fits. Differences between fitted particle coordinates in the two in-plane
directions, perpendicular to the optical axis, were at most 22 nm. The largest difference be-
tween fitted coordinates along the optical axis was 154 nm. The sphere showing the largest
displacement along the optical axis is highlighted in red in Figure 4.2.6d. The size of these
differences, as well as the lack of improvement in the goodness-of-fit using the multisphere
superposition code, indicate that Mie superposition is an appropriate approximation. We
conclude that the smaller R* values for this system stem from physical effects—such as
weak scattering by the decane droplet—that neither multisphere superposition nor Mie
superposition account for.

Further insight into the applicability of Mie superposition comes from examining the
particle showing the largest coordinate difference along the optical axis. As shown in Fig-
ure 4.2.6d, the largest difference occured when two particles nearly occluded one another.
In such a configuration, the assumption that the field incident on each sphere is simply the
illuminating plane wave is clearly invalid, as the colloidal spheres scatter most strongly in
the forward direction. The field incident on the occluded sphere should therefore include a
significant component of the scattered field from the first sphere. Whereas the multisphere
superposition solution accounts for this multiple scattering effect, Mie superposition does
not.

We can check our dimensionless figure of merit, Equation 2.42. Taking the fitted drop
diameter of 4.35 ym as a typical interparticle spacing for PMMA spheres like those in the
droplet experiments, we find Q,,,x*/kR = o.11, in agreement with our previous conclu-
sion that the Mie superposition approximation is accurate for this sample. However, if
we consider the sphere shown in red in Figure 4.2.6d, using the nearest-neighbor distance
of 1.19 ym for R yields Q,,x*/kR = o0.35. This larger value indicates that Mie super-
position is a poorer approximation for this particle, as borne out by the 150 nm differ-
ence in the fitted position from Mie superposition and multisphere superposition. In con-
trast, for the polystyrene spheres used in the cluster experiments, which are separated from
each other by approximately a particle diameter, Q, ,x*/kR = 13. We therefore conclude
that Q,,,.x*/kR should be approximately 0.1 or smaller for Mie superposition results to be

trusted to a precision of 100 nm or better.
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Figure 4.2.7: Autocorrelation of u for four particles on a decane droplet. Solid line:
best fit to exponential decay.

4.2.4 DyNAMICS ON A DROPLET

Finally, we discuss some preliminary data suggesting that these PMMA spheres are non-
interacting. We study four particles moving on a 4.33 ym-diameter droplet. In particular,
we examine the autocorrelation of the normalized distance u from a best-fit droplet center
(determined from fitting the particle positions) to the particle center. Figure 4.2.7 shows
the results obtained from 2000 holograms. We fit these data to an exponential decay with

2 s, As we will describe in much more detail

decay constant 2D, = (7.8 £ 1.1) X 10~
in the next chapter, the exponential decay is indicative of rotational diffusion — what we
would observe if the particles were completely noninteracting.

While these measurements do not reveal anything about particle interactions at liquid-
liquid interfaces, these measurements do demonstrate that DHM with scattering solutions

is a potential means by which such interactions can be measured.
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Anisotropic 3D Diffusion of Colloidal

Clusters

5.1 INTRODUCTION

In this section we discuss measurements of diffusion tensors for anisotropic colloidal parti-
cles: clusters composed of approximately identical spheres. This work has been motivated
by several primary considerations. First, diffusion may be highly relevant to colloidal self-
assembly. Recent theoretical work by Holmes-Cerfon and co-workers has indicated that
the kinetics self-assembly in colloidal systems with short-ranged interactions may be pri-
marily governed by diffusion rather than by energy barriers [114]. Second, diffusion con-
stants can be theoretically difficult to predict. As we discuss in more detail in this chapter,
such predictions require solving the Stokes creeping flow equations, which is only possible

for spheres or highly symmetric particles such as ellipsoids [ 115 ] or sphere dimers [ 116] in
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unbounded fluids. In contrast, during self-assembly, anisotropic colloidal particles diffuse
near other particles and boundaries. Analytical techniques are of minimal help here, and
so experimental measurements would be of value. Finally, diffusion and Brownian mo-
tion are fundamental physical processes; our work here includes some of the first measure-
ments of heretofore unmeasured aspects of Brownian motion. Our work here focuses on
single clusters rather than ensembles. While bulk techniques such as depolarized dynamic
light scattering [117] can be used to measure diffusion in colloidal systems, it is difficult
to resolve the multiple diffusional timescales exhibited by anisotropic particles using such
techniques.

The author’s interest in anisotropic colloidal diffusion was ignited by the seminal work
of Han and co-workers in Arjun Yodh's group at the University of Pennsylvania. Han et
al. studied the anisotropic diffusion of micron-sized polystyrene ellipsoids diffusing in a
quasi-2D geometry using video microscopy [29]. Subsequent work by this group showed
how the confining 2D walls played a large role in the measured anisotropic diffusion, and in
particular enhanced the anisotropy beyond what could be observed in 3D [118]. Anthony
et al. also studied the 2D diffusion of anisotropic 2D sphere clusters all of whose particles
lay in a plane [119].

Measuring 3D anisotropic colloidal diffusion is more challenging due to the need for a
3D quantitative microscopy technique, as described in Chapter 1. Several measurements
using confocal microscopy have been reported in the literature. Mukhija and Solomon
measured the diffusion of ellipsoids in 3D [120]. Hunter et al. studied the motion of tetra-
hedral sphere clusters [ 121]. While tetrahedral clusters diffuse isotropically, like spheres, it
is possible to track their rotational motions, and Hunter’s work was primarily motivated by
the possiblity of using such particles to study the dynamics of glassy colloidal suspensions
primarily consisting of spheres. While techniques based on confocal microscopy are quite
general, it is usually only possible to study slow diffusional processes due to the necessary
acquisition times. Mukhija and Solomon embedded polymethyl methacrylate ellipsoids
in a solvent containing cyclohexyl bromide, decalin, and polydimethylsiloxane with a vis-
cosity of 2 Pas, more than three orders of magnitude larger than that of water. Hunter’s
work used clusters made from spheres 2.45 ym in diameter [121]. These particles were

more than double the size of the particles used in these experiments; by dimensional anal-
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ysis, the rotational diffusion of such particles would be more than 8 times slower due to
size effects alone. We mention this not to be critical of these workers, but because the
timescales affect the precision to which elements of the diffusion tensor can be measured,
a key advantage of our techniques.

Digital holographic microscopy has been used to study anisotropic diffusion as well.
Cheong and co-workers in David Grier’s group measured the rotational diffusion of long
copper oxide nanorods using DHM and reconstruction techniques [122]. These tech-
niques, however, would be difficult to apply to systems that did not have large aspect ratios.
Fung et al. reported measurements of the diffusion of a colloidal sphere dimer bound by a
weak depletion interaction in the first report of using DHM in conjunction with scattering
solutions for anisotropic particles [ 85 ]. However, the focus in that work was on measuring
translational, rotational, and vibrational degrees of freedom for a single cluster, and not on
making high-precision measurements of colloidal diffusion for rigid clusters, which is the
focus of this chapter.

Recently we discovered that similar measurements have been made by Daniela Kraft and
co-workers at NYU [123]. Our measurements and findings, which are in agreement with
theirs, complement theirs. Kraft et al. have considered a wider range of clusters than we
have using confocal microscopy, and in fact have measured translation-rotation coupling in
clusters made out of spheres of different sizes [ 123 ]. As we shall discuss, our measurements

have some advantages, in particular high precision.

5.2  THEORY OF ANISOTROPIC BROWNIAN MOTION

We describe the derivation of certain essential results in the theory of anisotropic Brow-
nian motion. Our discussion of Fick’s Law and D will mostly follow Brenner [124]. We
will next discuss the friction tensor following Brenner [124], Happel and Brenner [125],
and Harvey and Garcia de la Torre [126]. Finally, we will discuss the generalized Stokes-

Einstein relation following Harvey [127]; see Brenner [ 124, 128] for another approach.

95



5.2.1  GENERALIZED FiCcK’s LAW AND THE DIFFUSION TENSOR D

We begin by considering a colloidal particle that is an arbitrary rigid body, neglecting (for
example) any vibrational or soft modes that may exist in systems such as sphere clusters.

To fully describe the position and orientation of such a particle, we need six coordinates.
These coordinates will consist of three spatial coordinates and three orientation angles. We
will thus describe the particle via its position ¢’ in this six-dimensional space, where ¢*, ¢?,
and ¢* will be position coordinates and ¢*, ¢°, and q° will be spatial coordinates'. While
we could choose our generalized coordinates ¢’ in an arbitrary way, we will make our lives
simple by choosing a particular representation: coordinates fixed to the particle. We will
choose an origin O inside the particle and three orthogonal Cartesian axes fixed to this
origin; call these axis vectors u,, u,, and u,. While these axes move in space as the par-
ticle undergoes Brownian motion, we can describe any finite displacement of the particle
between instants t, and t, in terms of the components along w; at ¢,. Similarly, we can de-
scribe an infinitesimal Brownian rotation of the particle in terms of three rotations about
the u;. Note that such rotations must be infinitesimal, as finite rotations do not commute
(see, for instance, the discussions in Goldstein [129].) We will use these body coordinates
as our generalized coordinates q'.

We next consider an ensemble of N identical particles undergoing Brownian diffusion.

We define a generalized particle current density J' such that the flux integral

/f d°A (5.1)

gives the number of particles crossing a generalized area of the six-dimensional space per

unit time. We can also define a particle density o(q', t), such that

/U(qi, t)d°q’ (5:2)

gives the number of particles in the volume d°q’. Obviously this must be N if the limits

are extended to all of the 6-dimensional configuration space. With these concepts in hand,

"Throughout this Section we will restrict our conventional boldface vector notation v to quantities that
are 3-dimensional vectors or pseudovectors.
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we can now define the diffusion tensor D, or in index notation DY, as a set of proportion-
ality constants in a generalized Fick’s law relating the current density J' to the generalized

gradient of o:
J=-D'— (5:3)

where we have adopted the summation convention on repeated indices. We also postulate

a continuity equation for the particle density o:

do OJ
BN + g o. (5-4)

Here the second term is a generalization of the divergence. Combining Equations .3 and
5.4 leads us to the diffusion equation:

do . OPo

Y

ot 0q'0¢/ ’

(s.5)

Either Equations 5.3 or 5.5 may be viewed as the definition of DY. It can be shown that
DY is both symmetric and positive-definite; we refer the reader to Brenner [124] for the
proofs.

This means of defining DY, while rigorous, does not lead to a straightforward physical
intepretation or a way to experimentally measure D”. We now proceed to prove the follow-
ing correlation relation for displacements in the generalized coordinates over a short time

interval 7:
(Aq'(v)Ad () = 2D, (5.6)

As previously discussed, this will only apply over intervals 7 short enough such that any an-
gular diffusion of the particles is infinitesimally small. We will proceed following Brenner
with an approach in the spirit of the Fokker-Planck equation [ 130].

We will consider a particle initially with coordinates g’ and consider the probability that
due to Brownian motion over an interval 7, its coordinates will change by Aq'. We will
define a transition probability density W(Aq'; 7) such that the probability that the coordi-
nates q' change by an amount between Aq' and Aq’ + dAq' is given by W(Aq'; 7)dAq'. By
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conservation of probability density, we can evaluate the change in ¢ in terms of W:

olqist+ 7) = / o(q + A OW(—Aq' ) dAg
= / o(q + Aq )W(A]', 1) dAq (5-7)

where the integrals run over 6 dimensions and the second line follows from Brownian steps

in either direction being equally likely. We now Taylor expand both sides of this expression:

cr(qi;t)—l—ET—I—...:

/ <a(qi; t) + 8—0,13 42 (9. u Ag'Ag + .. > W(Aq';7)dAg'. (5.8)
oq' 2 0q'0q/

Because W is normalized, the first term on the RHS of Equation 5.8 is just o(q’; ). In

addition, as a probability density W allows the computation of ensemble averages:

(Ag) = / AqW(Ag';7) dAq'. (5.9)

Proceeding in like manner, we arrive at

7_(agAg). (5.10)
q

However, (Aq') = o. Therefore, after division by 7, we are left with

ds _1(Aq'Aq) O
ot 2 1t Ogog

(5.11)

Comparison with the diffusion equation, Equation 5.5 immediately yields the desired re-

sult:
(Aq(5)Ad (7)) = 2D, (512)

Note that this derivation, based on Taylor expansions, and this result are only valid in the

limit of short time intervals T and small generalized displacements Aq'. This result both
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allows us to interpret D in terms of correlated displacements and allows us a means to mea-

sure D, as we will later discuss.

5.2.2 THE FricTiION TENSOR R

We now turn to the problem of the hydrodynamic drag forces and torques exerted on small
particles moving slowly in fluids. For the benefit of the reader, we recall the full Navier-
Stokes equation for a fluid of mass density p with an Eulerian velocity field u(r, t), pressure
field p, and viscosity #:

0
p (i—’—u-Vu) = —Vp+ 3V’ (5.13)

The nonlinear terms in the Navier-Stokes equation make it impossible to solve exactly. A
common scheme for solving it approximately is to consider the relative size of the inertial

terms, on the LHS, with the viscous term proportional to 7 via the Reynolds number:

_puL
N

Re (5.14)

where L is a typical length scale in the flow problem. For flow due to moving colloidal

particles, Re is small, and that means the inertial terms can be neglected. We get the Stokes

equation:
1
V?*u = -Vp. (5.15)
n
Combined with the continuity equation for an incompressible fluid, V - u = o, these

equations with suitable boundary conditions describe the fluid problem. Note that these
equations are linear in the fluid velocity u.

What we need to calculate is the fluid forces and torques on a particle that is moving
with linear velocity v and angular velocity w. The reader is reminded of the Stokes drag

force F and torque T on a sphere of radius a (see Happel and Brenner for details [125]):

F= —6mnav; T = —8mna’w. (5.16)
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We will not prove it here, but the linearity of the Stokes equations essentially guarantees
that the drag force and torque will be linear in v and w even for an arbitrary particle; once
again, see Happel and Brenner [125] for the proof. The end result is that the following
relations hold:

F=-K-v—-C" (5.17)

T=-C-v—-Q- (5.18)

Here, K is the translational resistance tensor,  the rotational resistance tensor, and C the
coupling tensor. These are all 3 X 3 tensors; they depend linearly on the fluid viscosity 7 and
the particle geometries. All elements of the tensor will depend on the choice of coordinate
basis, and © and C are origin-dependent [ 125 ]. We can write these two equations in terms

of one big matrix:

F K C" v

= — 5.19
T cC 0/ \w (5:19)

We will refer to
K C”

c o (5.20)

as the resistance tensor R. Some other authors call this the friction tensor instead.

5.2.3 THE GENERALIZED STOKES-EINSTEIN RELATION

We now derive a generalization of the Stokes-Einstein relation that will connect the diffu-
sion tensor D and the resistance tensor R.

In the derivation of the conventional Stokes-Einstein relation for a sphere, some dynam-
ical information is needed. In particular, it is necessary to account for both the frictional
Stokes forces due to fluid viscosity that damp out the motion of a diffusing particle, as well
as the random fluctuating forces a particle experiences due to molecular kicks from the
fluid. One way of doing this is by writing Newton’s second law with a fluctuating force;
this is called the Langevin equation [ 130]. This approach is somewhat cumbersome to ap-

ply for the case of arbitrary particles we need to consider here. We will follow an approach
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due to Harvey [127] that is rooted in Lagrangian dynamics. We will model the random
thermal kicks by assuming that at intervals At, the diffusing particle gets a random initial
generalized velocity: u'(0) = §'(o). The Lagrangian will allow us to compute how this
initial kick decays based on R. Then, we will calculate the average kinetic energy of the
particle and relate that result to D. Finally, we will use the equipartition theorem to bring
in kg T and tie everything together.

We begin with a brief foray into an aspect of Lagrangian dynamics that was unfamiliar
to the author. We here follow Goldstein’s treatment [129]. The reader is probably familiar
with the concept of the Lagrangian L of a system:

L=K-U (5.21)

where K is the kinetic energy and U is the potential energy. One expresses L in terms of

generalized coordinates g’ and their time derivatives, and equations of motion follow from

4oLy oL o)
it \ 9g aqi—o. 5.22

Lagrange’s equation:

In the usual applications of the Lagrangian approach to dynamics (central force motion,
free particles in quantum mechanics, or the sorts of diabolical inventions one finds in me-
chanics textbooks involving things like blocks with attached springy pendula sliding down
inclined planes), the systems involved are frictionless or otherwise have no dissipative
forces. Mechanical energy is conserved. It turns out, however, that if there are dissipa-
tive forces that are linear in the generalized velocities, it is possible to adopt the Lagrangian

approach. One defines a Rayleigh dissipation function [129]
1
F = -Rju'v/ (5.23)
2

where u; is the 6-dimensional generalized velocity and R;; is the resistance tensor. Then,

Lagrange’s equations become

—— = (5-24)
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We will begin using this approach by computing the Lagrangian of an arbitrary parti-
cle in a fluid. We will neglect gravitation (or assume that the particle is density-matched)
and also assume that there are no external forces (like an electric field) that give rise to a

potential energy. So L consists only of the kinetic term, K. This term can be written
1
K= -M;u'v/ (5.25)
2

where M;; is a 6 X 6 symmetric matrix with dimensions of mass whose elements depend
on the particle geometry [ 129]. We will not prove its existence or give a recipe for its cal-
culation here. Substitution into the relevant form of Lagrange’s equations (Equation 5.24)
yields

1 1

-Mw/ = — R/ (5.26)

2 2

where the dot denotes a time derivative. This gives a system of six first-order equations of

motion for ', which have an exponential solution:
ui(t) = exp (—Mi]_.1 jkt) uk(o). (5.27)

If we wish to know the generalized displacement Ag' that occurs during the time step At,
we can integrate our solution for u(¢). Here we make an additional assumption: we assume
the damping forces are large enough that the particle essentially comes to rest prior to the
end of the time step. (We will make a post hoc check of this assumption at the end of the

derivation.) If so, then we can extend the limit of integration to co:

Ad = /At u'(t) dt (5.28)
| e (- ms) (o (29)

= R;"Mju* (o). (5.30)

Q

Now we compute the average kinetic energy during one time step At. Using Equations
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5.25 and 5.27,

1

At
2At/ exp(—Mi]_.lekt)uk(o)Mig exp(—M,, . Ryunt)u"(0).

(5.31)

The matrix elements in this expression can be rearranged because M;; and R;; are symmetric

— 1 At
K:—/ K(t) dt =
At J,

tensors”. After much algebra and rearranging of indices,

At
1

K= [ i (o)Muexp (M Rot) (o). (s:32)

We will once again extend the upper limit of integration to infinity, from which we obtain®

1

K= Euk(o)MuRZ; mntt"(0). (5.33)

Using Equation 5.30,
4KAt = uk(o)ngAqZ (5.34)
— Aq*RyAq' (5.35)

where we have inserted the identity tensor. This object should be thought of as the matrix
product of a six-element row vector qk, the matrix Ry, and the column vector qe. But ex-
ploiting the symmetry of the resistance tensor, we can rearrange this in terms of the tensor

(AqAq)u, the outer product of Ag* and Ag*:
4KAt = Ry (AqAq) . (5.36)

We now perform an average over many time steps At in the trajectory. This allows us to
invoke equipartition: each of the 6 quadratic terms in the kinetic energy, corresponding to
a degree of freedom, has a value of 2kzT. Ensemble-averaging (AgAq)y also enables us to

write this displacement-correlation tensor in terms of the diffusion tensor D for a temporal

*Working this out is rather tedious; the key is to Taylor-expand the matrix exponential and to work
with each piece in the expansion.
®Again, this may be proved by a Taylor expansion of the matrix exponential.
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displacement At (Equation 5.6):
4 - 3kgTAt = 2Ry Dy At. (5.37)
The right hand side is a trace; we have
6kgT = Tr (RD) . (5.38)

To move forward we must make several other assumptions. First, as symmetric tensors,
both R and D are diagonalizable by the spectral theorem of linear algebra*. On physical
grounds, we assert that the basis that diagonalizes R will also diagonalize D; thus in this
basis, RD is diagonal. Asserting that by equipartition, thermal energy is equally shared
among all elements of this eigenbasis and also noting that these are 6-dimensional tensors

allows us to assert that RD = kg TI. Hence, the generalized Stokes-Einstein relation
D = kTR (539)

follows.
This admittedly rather sketchy derivation hinges on the ability to choose a time step At

satisfying two conditions:

1. Atmustbe large enough that the particle generalized velocity from an initial thermal
kick is completely damped out. In multiple places we extended time integrals to

infinity, which would be incorrect if this did not hold.

2. At must be short enough that displacements are small enough so that it is valid to

relate correlations in the generalized displacements to D.

We can do an order-of-magnitude check of these conditions for a diffusing colloidal

sphere. For a sphere of radius a and mass m undergoing one-dimensional translation in

*This discussion does not imply that translation-rotation coupling or the coupling tensor C always
vanish. See the discussion of the screw-propeller in Chapter s of Happel & Brenner. We may choose
principal axes that diagonalize K, Q, and C individually, but then R will not be diagonal. The eigenbasis
for R will be a set of generalized displacements combining translation and rotation.
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a fluid of viscosity 7, the equation of motion following an initial velocity v(o) is

67na
() = v(o) exp (— Lt (s.40)
We can thus define a damping timescale Tgump, = m/67na. We want Tgum, to be much

smaller than the time Ty, for a particle to translate a small fraction of its radius, say o.o1a.

Since Stokes-Einstein gives (Ax*) = 10~ *a* = 2DTyyps, we have

67na
T =10 *a’ ) 41
trans ZkBT (5 4 )
Balancing these timescales, we find
T 27 an®
frans — 10_4—771—17 (5.42)
Tdamp 2 kB TP

where p is the particle mass density. Inserting typical values for a polystyrene sphere with

radius @ = 1 ym giVes Tirans/ Tdamp A 100, s0 our conditions are satisfied.

5.3 SYMMETRIES AND THEIR CONSEQUENCES

We now turn to a discussion of the effects of symmetry on the tensors D and R. In light
of the generalized Stokes-Einstein relation, we will restrict ourselves to a discussion of R,
since the properties of D will follow from it. Our discussion in general follows that in Hap-
pel and Brenner [125]. We will outline the approach and then describe its application to
spheres, dimers, and trimers.

Happel and Brenner’s symmetry arguments consider what happens when the basis (prin-
cipal axes in Cartesian space) that is used to describe K, £, and C changes. If the particle
has a symmetry such that it looks geometrically identical under a change of basis, then
the change of basis must leave K, £, and C unchanged. Let A denote the change-of-basis
matrix whose columns are the new basis vectors expressed in the old basis. Then, a general
matrix M may be expressed in the new basisasM’ = AMA ™. The translation tensor Kand

the rotation tensor £ transform in exactly this way; the coupling tensor is a pseudotensor
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Figure 5.3.1: Symmetries of colloidal clusters. (a): A dimer of identical spheres con-
tains three perpendicular planes of reflection symmetry (dashed lines, and the plane
of the figure), as well as an axis of continuous rotational symmetry (red line). (b) A
trimer of identical spheres has two planes of reflection symmetry and a threefold rota-
tional symmetry axis (green). (c) A trimer with one sphere of a different size has only
two planes of reflection symmetry. Inset shows orientation of axes.

and so it transforms with a factor of the determinant:
C' = det(A)ACA™". (5.43)

One of the simplest basis transformations is inversion about the z axis, for which the change-

of-basis matrix is

1 o o
A=lo 1 o (5-44)
o o —1

This matrix allows us to see how the submatrices of R are constrained for a particle with
reflection symmetry across the xy plane.

The simplest colloidal particle, a sphere, can be treated this way, although this machinery
is not strictly necessary. It suffices to note that a sphere looks identical along any set of
orthogonal axes centered at the sphere center. It can then be shown that C = o, and that
K = KIand = QI, where Lis the 3 X 3 identity.

We next consider a dimer of two identical spheres. A dimer of two identical spheres
has three perpendicular planes of symmetry, as illustrated in Figure 5.3.1(a). It also has an

axis of continuous rotational symmetry. As a consequence, the sub-matrices of R have the
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following form [125]:

K, o o Q) o o
K=]l0o K. o |;Q2=]|0o QO o (s.45)
o o K| o o O

and C = o (if computed about the center of reaction.)
Trimers of three identical spheres have two orthogonal symmetry planes as well as a
threefold symmetry axis (Figure 5.3.1(b)). Happel & Brenner treat the case of two or-

thogonal symmetry planes; these symmetries force K and £ to be diagonal

K o o Q, o o
K=|o KL o|;:@=]0 Q, o (5.46)
o o K o o Q,
and most of C to be zero
o o o
C=]o o GC,]|- (5.47)
o C, o

Happel & Brenner do not treat the case of a discrete symmetry axis, and so we work it out
here both for completeness and to illustrate the general approach. We will first work out
the change-of-basis matrix for an arbitrary rotation by an angle 6 about the z axis; we will
require K, ©, and C to be invariant under rotations of 0 = % and %. The matrix A is given
by

cosf sinf o

A= | —sinf cosf o (5.48)
o o 1
and its inverse by
cos@ —sinf o
A7 =|sinf cosf o]. (5.49)
o o 1
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We now compute K' = AKA™* with K from Equation 5.46:

K, cos* 0 + K, sin* 0 —K,sinfcosf 4+ K,sinfcos@ o
K = | —K,sinfcosf + K, sin 0 cos 0 K, sin* 0 + K, cos* 0 o
0 o K,

(5.50)

For this to be identical to Equation 5.46, we must have
(=K, + K,) sin 0 cos 0 = o. (5.51)

Since sin 6 cos 0 is nonzero for 8 = % and % , it follows that K, = K,. The same argument

gives Q, = Q,. Turning our attention to C’, we find from Equation 5.47,

0 0o C,; sin 6
Cc' = o o C,;cos0 | . (5.52)
C,,sinf C,,cos@ 0

It follows that C,; and C,, are both o, and hence C vanishes entirely.

As we will subsequently discuss, we will also examine the possibility of weak symmetry
breaking due to particle polydispersity for the case of a trimer. The simplest way to model
polydispersity is to have two spheres of the same size and one of a different size, as shown
in Figure 5.3.1(c). In this case we have only the two planes of reflection symmetry, and
Equations 5.46 and 5.47 apply. Note that the tensor components corresponding to motion
along the x and y axes are now different, which gives us a way to search for this symmetry
breaking. Having all three particles of different sizes would result in there being a single
plane of reflection symmetry, and there would be off-diagonal elements in Kand Q. These
would be quite challenging to measure, however, as would the coupling terms that would
also become nonzero. Finally, we note that the axisymmetry of a dimer makes detecting

particle size differences from measurements of D or R impossible.
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5.4 THEORETICAL PREDICTIONS OF D AND R

Computing the resistance tensor is in general a difficult task. Analytical solutions are gen-
erally possible only in cases where a suitable curvilinear coordinate system exists in which
the Stokes equation (Equation 5.15) can be solved by separation of variables. The canoni-
cal example here is the sphere (see Happel and Brenner [ 125 ] or any standard text on fluid
dynamics for details.) Perrin computed the frictional forces on an ellipsoid [ 115], and Nir
and Acrivos found a solution for two touching spheres, which need not be the same size
[116]. We rely heavily on the Nir and Acrivos solution to assess our dimer data, and so we
quote the results here. Nir and Acrivos found for the drag torque for a rotation perpendic-
ular to the dimer long axis,

T = —29.927na’. (5.53)

For translational drag along the axis,
F| = —7.740mna (5-54)

and perpendicular to the axis

F| = —8.6917na. (s-55)

The constants have been numerically computed via quadrature of complicated integrals
of Bessel functions [116]. Aside from these geometries, however, numerical methods are
generally necessary. Finite-element methods are in principle capable of great generality
[131-133], but they can be time-consuming and inherently approximate.

Rather than explicitly solving the Stokes equations for some arbitrary geometry, it might
occur to the reader that it might be possible to build up an arbitrary particle from subunits
made of particles for which the Stokes equations can be solved. This intuition would be
correct, particularly for the sphere clusters we are interested in. We use a version of this
idea known as shell modeling, in which particles composed of spherical or ellipsoidal sub-
units are represented by shells composed of small spherical beads. An example of a shell
representation is given in Figure §.4.1. Of course, the Stokes forces on each of the beads

will not solely be given by the Stokes drag 6714, but rather will also include hydrodynamic
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Figure 5.4.1: Shell model generated by HYDROSUB [134] for the computation of
the resistance tensor of a trimer of three identical spheres each with a diameter of

1.3 ym. The model consists of 2000 beads; note the inherent roughness of the bead
representation, particularly near the poles of the colloidal spheres. Rendering produced
by FirstGlance in Jmol (http://firstglance. jmol.org).

interactions, whereby the flow field around any given subunit, will be affected by the flow
fields caused by all other subunits.

Shell models are necessary because the approximations required to treat the hydrody-
namic interactions between spherical subunits assume that the subunit radius is much smaller
than the inter-subunit separations. Consider just the case of two spheres separated by a dis-
tance R. The force on sphere 1, F,, in the Stokes approximation will depend on both the

velocity of sphere 1, v,, as well as the velocity of sphere 2 v,:
F, = —6mnav, — T 'v,. (5.56)

Here T is a 3 X 3 hydrodynamic interaction tensor. The simplest approximation for T,

which considers the particles to be points, is the Oseen tensor [135]:

T ! (I—l— RR) (5.57)
= 5.57
871|R| R[>

where the second term contains an outer product in the numerator. There are corrections
to the Oseen tensor due to Rotne and Prager of order a*/|R]* [135-137], but the point

remains that the subunit size needs to be small compared to the separation. Hence shell


http://firstglance.jmol.org

modeling is necessary, and representing each sphere in a cluster as a single bead is inappro-
priate.

We perform the shell modeling hydrodynamic simulations using in this thesis using the
code HYDROSUB [134]. The accuracy of these simulations is approximately 1% from
prior studies comparing the shell models to systems such as spheres and ellipsoids where

there are analytical solutions for R [137, 138].

5.5 MEASURING D

We now turn our attention to measuring the elements of the diffusion tensor D. Much as
we partitioned R into blocks describing translational, rotational, and coupling forces, due

to the generalized Stokes-Einstein relation D can be partitioned in a similar way:

D% DIt
D= ot o) (5.58)
D" describes translational diffusion, D' rotational diffusion, and D" translation-rotation
coupling °.
Conceptually, the D* translation block is the easiest to measure; we can simply apply
the displacement correlation tensor (Equation 5.6). In particular, to measure a diagonal

element D; of D¥, we can calculate a cluster-frame mean-squared displacement:

(Ax}(7)) = 2Dy7. (5.59)

Here we use Ax; to denote a cluster-frame displacement (as opposed to ¢, a generalized
displacement that could be either a translation or a rotation.) From DHM, we obtain for
each of the two holograms from which we calculate a displacement a set of orientational

Euler angles and a center-of-mass position. The lab-frame cluster axis vectors u; based on

There are some subtle differences between D and R that we have ignored, having to do with origins.
One naturally describes R using an origin at the center of reaction, where the coupling tensor C is sym-
metric, since C and Q are origin-dependent. The diffusion tensor D is naturally described at the center of
diffusion, where D' is symmetric. These are not necessarily the same point; see [ 126] for details. Also, as
discussed by Harvey, in D it is the D" block that is independent of origin [126].



the orientation in the first frame are calculated. Then we calculate the laboratory-frame
displacement Axy,;, and obtain the cluster-frame displacements Ax; by resolving Axy,}, into
components parallel to the cluster axis vectors®.

Measuring the diagonal elements of the rotational block requires some additional theo-
retical development, since Equation 5.6 only applies for short lag times and small angular
displacements (the notion of a finite vector angular displacement is ill-defined, since fi-
nite rotations do not commute [129].) It turns out that we can characterize the diagonal
elements of D", D, ;, by calculating autocorrelations of the cluster axis vectors u; as they

diffuse in the laboratory frame [139]:

(w(t) - wi(t + 1)) = exp D,v,.—ZD,,,. | . (5.60)

This was first worked out using operator techniques by Favro [139]; it is also possible but
tedious to work this out using tensor techniques [ 124]. We will indicate where this comes
from, as well as show how this reduces to an axis mean-squared displacement (as in Equa-
tion 5.6) via a primarily physical argument. We will (neglecting translation-rotation cou-
pling) derive a distribution function for rotational diffusion and then show how Equation
s.60 follows from it; this distribution will also turn out to be critical for assessing our ex-
perimental data.

We first consider what happens for isotropic rotational diffusion, such as that for a sphere,
and then generalize. This rotational diffusion will be characterized by a single rotational
diffusion constant, D,. Let us consider an imaginary ensemble of identical particles under-
going rotational diffusion, and observe the motion of one body axis u;. Suppose also that
we prepare the ensemble such that at t = o, w, lies at the same point on the unit sphere for

every particle; choose this to be at § = o in polar coordinates without loss of generality.

®One might reasonably ask whether it matters that we choose the orientation from the first frame. We
could just as easily choose the orientation from the last frame, or even try to interpolate in the middle. We
have found that choosing either the first or the last frame makes no difference.



We seek to compute the probability distribution f;(, ¢; 7) such that’

9 [0
/ £,(0, ¢; 7) sin 6d0dp (5.61)
o 6o

gives the probability of finding u; between ¢_ and ¢ _and between 0, and 0, att = 7. We
write down the rotational version of the diffusion equation (which we could obtain from
Equation 5.5) [135]:

f,

ETi D, V’f.. (5.62)

This must be solved with the initial condition

5(6)

—, (5.63)
27 sin 0

f(8,¢;0) =

where §(6) denotes the Dirac delta function. Upon separating variables and noting that

the spherical harmonics Y}’ are eigenfunctions of the Laplacian, we obtain

o0

£(8:7) = 37 ¥3(0)¥2(8) exp (~(£ +1)D,7) (5.64)
{=o

This is independent of ¢ due to the symmetric initial condition; the spherical harmonics
with m = o are ¢-independent.
We now argue that Equation 5.64 applies for the more general case of a tensorial D"

with an effective diffusion constant:

Dr,j + Dr,k

D, = -, (5.65)

the mean of the rotational diffusion constants (diagonal elements of D) about the two
axes other than i. We will now consider preparing an ensemble of identical anisotropic par-
ticles such thatatt = o, axis u; for all the particles points in the same direction. Clearly, the

time evolution of f, must be governed by D, ; and D, . In our ensemble, prepared such that

"This probability density f, would arise from the general probability density ¢(q') /N defined in Section
5.2.1 by integration over the spatial coordinates and over two of the angular coordinates.
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all particles initially have u; at @ = o, the particles will not all have the same orientation: u;
and uy can lie anywhere on the equator of the unit sphere. Consequently, observing only
the motion of u;, we will on average observe f, evolving according to an effective rotational
diffusion constant D, . where D, o¢¢ = (D, ; + D,x)/2.

To compute the expected axis autocorrelations, we note that u;(t) - u;(t + 7) = cos 6,

where 0 is the angle between the two vectors. Hence,

(wi(t) - w(t+ 7)) =27 /7’ cos 6f,(6; 7) sin 6 d6. (5.66)

This integral may be evaluated if we note that P?(cos §) = cos 6. Thus, only the { = 1term

in the expansion for f, has support in the integral. Using the orthogonality relation

/ Py(cos 0)Py(cos ) sin 0 dO = > Sor, (5.67)
o 2l +1
we find

(wi(t) - w;(t + 7)) = exp(—2D; 7). (5.68)

Thus, by calculating axis autocorrelations from experimental data, we can extract the D, ;.

For dimers, we calculate a related quantity, the axis mean squared displacement:

(Aui(7))

((wi(t+7) —w(1)")
(ui(t+ 7)) + (0i(6)) — 2(w(t) -w(t + 7))

2 (1 — exp(—2D,.5T)) . (5.69)

Note that for short times where D, .47 < 1, this reduces to

(Au} (7)) = 4Dy e7 (5.70)

which can be compared to Equation 5.6. Here we get a factor of 4 instead of 2 since we are
effectively combining two orthogonal angular displacements.
Finally, we note that in general our measurements of D'" are more reliable than our mea-

surements of D the rotational measurements rely only on the orientation angles measured
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Figure 5.6.1: Rotational and translational correlation functions for a dimer of 1.3-
um polystyrene spheres. (a) Axis MSD (Au*(7)). Open symbols are measurements;
solid lines are a best fit to Equation. (b) Cluster-frame MSDs. Open symbols are
measurements; solid lines are linear fits. Triangle shows slope of 1 and indicates dif-
fusive behavior. Error bars are comparable in size to the plotting symbols or smaller.
Inset: orientation of dimer parallel (||) and perpendicular (L) axes.

via DHM. Measuring translation-rotation coupling, D¥, is a challenge we will briefly ad-

dress at the end.

5.6 DIMERS

We present experimental data from a dimer of 1.3-ym diameter polystyrene spheres. The
clusters were produced using the arrested aggregation technique described in Chapter 3;
suspensions were loaded into sample cells produced from 76 ym-thick Mylar spacers. We
recorded 22,000 holograms at a frame rate of 25 frames per second, with an exposure time
of 17.5 s, and fit a model based on multisphere superposition that depended on a single
particle index, the radius of each particle, the dimer center-of-mass position, two Euler
angles, and the scaling parameter a.

Figure 5.6.1 presents our data. We plot the axis mean-squared displacement of the dimer
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Table 5.6.1: Measured diffusion tensor elements for dimer in Fig. 5.6.1, along with

analytical calculations from an exact Stokes solution [116] and numerical calculations
from HYDROSUB [134]. Calculations use a best-fit particle radius a.s = 709 nm and

solvent viscosity 74 = 1.159 mPas.

Experiment Exact HYDROSUB
D, (s7) 0.1034 1 0.0006 0.1034 0.104
Dy (X107 8 m?s™?) 2.015 T 0.012 2.010 2.02
D, (X102 m?s™) 1.785 &£ 0.007 1.790 1.80
DH/DJ_ 1.129 £ 0.011 1.123 1.12

axis, u, in Figure 5.6.1(a) (Equation 5.69). This depends on the rotational diffusion con-
stants for rotations about the axes perpendicular to u, which we call D,; axisymmetry
makes it impossible to observe rotations about the long axis. Cluster-frame mean squared
displacements are shown in Figure 5.6.1(b). As can be seen, the behavior is diffusive. In all
cases, error bars (the computation of which is discussed in Appendix A) are smaller than
or comparable to the plotting symbols.

We determine the elements of D reported in Table 5.6.1 by fitting the points in the cor-
relation functions in Figure 5.6.1. For (Au’) , we use Equation §.69 with D, . = D, |.
The fit to a linear function of the cluster-frame translational diffusion perpendicular to the
long axis requires some explanation; it has a slope of 4D | since it combines motion along
the two perpendicular axes. The experimental uncertainties in the measured elements of
D come from a fit using the uncertainity in the correlation function points as weights. We
measure all the elements of D to a precision of nearly 0.5%.

We can compare these measured diffusion tensors to both the predictions of the Nir
& Acrivos solution [116] as well as to HYDROSUB computations. The ratio D /D is

dimensionless, and it depends only on a geometrical factor:
D||/DL = 1.123. (5.71)

We find excellent agreement between our measured ratio and the predicted value. Com-

paring individual tensor elements is somewhat more challenging since they depend on
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the sphere radius a, the solvent viscosity #, and the temperature kgT. Fortunately, for
dimers, with the Nir & Acrivos solution, we can find best-fit values. The ratios D, | / Dy
and D, | /D, areboth only dependent on a* and geometrical factors. From these ratios, we
compute a best-fit value of a.s = 709 nm. This is larger than the optical radius a,,c = 650
nm obtained from DHM. The larger effective radius is consistent with typical dynamiclight
scattering measurements of the size of colloidal spheres, which show enhanced hydrody-

namic radii due to charge or hairy surface layers on the particles [ 140, 141].

5.6.1  SOLVENT VISCOSITIES

Subsequent to determining a.¢, we determine the best-fit solvent viscosity. We find 1 .. =
1.159 mPa s for a sample temperature assessed as follows.

In actuality, it is the ratio kg T /7 that is relevant. Knowing k3 T and 7 independently is
not simple because the viscosity of our solvent, a density-matching mixture of water and
deuterated water, turns out to have a strong temperature dependence. We assessed this
by performing viscometry measurements using a Cannon-Manning capillary viscometer
and a temperature-controlled bath®. These measurements are shown in Figure 5.6.2. It
is clear the solvent viscosity can vary by nearly 20% over a 6°C temperature range. We
have moreover observed that room temperature in the laboratory can change by several
°C over the course of a few hours, most likely due to the cycling of the building heating
and air conditioning systems. Moreover, particularly if the laboratory room temperature is
changing, the temperature in the sample, sealed in a glass sample cell, may differ from that
of the surrounding air.

Consequently, we believe that that the best way to estimate the solvent viscosity is to
observe the in situ diffusion of single colloidal spheres, which are always present in the
sample due to the arrested aggregation technique we use to make the clusters, either im-
mediately before or immediately after imaging the diffusion of a cluster of interest. The

Stokes-Einstein relation gives the translational diffusion constant D in terms of the tem-

5We immersed the entire viscometer in a large beaker of water, whose temperature was controlled by
a Julabo HE-4 water bath. This water bath can only heat and cannot cool. To be able to stably access
temperatures below the ambient room temperature, all viscometry measurements were performed in a
cold room.
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Figure 5.6.2: Temperature dependence of solvent viscosity. Data points, open sym-
bols, were measured with a Cannon-Manning capillary viscometer. The solid line is a
best-fit quadratic function that allows for interpolation between the measured points.

perature T, the particle radius 4, and the solvent viscosity #:

kT
B 67r17a'

(5.72)

Using Eq. 5.72, once we determine D for a diffusing sphere of radius a, we can infer the
ratio kg T /7. Because of the strong temperature dependence illustrated in Figure 5.6.2,
kg T and 7 should not be viewed as independent parameters. Moreover, from dimensional
considerations, the elements of D are always proportional to kg T/5. Once we determine
ksT /1, we use the best-fit line to the data in Figure 5.6.2 to infer 7 and kg T separately.
While this is not the usual context in which microrheological experiments are performed,
we essentially treat the diffusing single spheres as in situ thermometers.

We obtain D from an MSD computed from the 3D trajectory of a diffusing particle:
(Ar*(1)) = 6Dr. In all cases, we obtain the trajectory using DHM and record holograms
at 25 frames per second. We obtain a radius, index of refraction, and 3D position from each
hologram by fitting a model based on the Lorenz-Mie solution [59].

For the dimer experiment, which used particles with a nominal radius of 650 nm, we
measure D = 2.5§33 3= 0.017 X 10~ * m*s™* for a diffusing particle with an optical radius of
639 nm. If we assume that the particle has the same enhanced hydrodynamic radius of 709

nm as we inferred from the dimer data, independent of any considerations of kg T or 7, we
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can subsequently use the data in Figure 5.6.2 to infer a solvent viscosity of 1.187 mPa s. This
is within 3% of the best-fit solvent viscosity, 1.159 mPass, inferred from the dimer diffusion
constants and assuming the same temperature. The consistency of these values, along with
the excellent agreement between the measured and predicted values of D /D |, which is

independent of a and kg T/, validates our dimer measurements.

5.6.2 ComprarisoN To HYDROSUB

We have determined best-fit parameters a.¢ and 7., and shown they are reasonable. As
can be seen in Table 5.6.1, these values give rise to predictions that agree well with the
measurements. We also compare the predictions of the exact Nir & Acrivos solution to
HYDROSUB calculations. Note the small, ~ 1% differences, particularly for D, | . We can
conclude that our measurement accuracy is at least comparable to, if not better than, that
of HYDROSUB.

5.7 TRIMERS

Because trimers are not axisymmetric, we can observe rotations about all three axes, and
we can measure all the diagonal elements of D. We prepared a trimer from 1 ym-diameter
polystyrene spheres and observed its diffusion for 20,000 frames at 25 frames per second.
We fit a model using one radius for all particles, one refractive index, the center-of-mass
position, three Euler angles, and a.

The model for the trimer holograms has an additional orientational degree of freedom
compared to the model for the dimer holograms. We have noticed that on occasion the fit-
ter converges to best-fit parameters that result in the best-fit model hologram having subtle
differences when compared to the experimental hologram; this usually stems from the ori-
entation angles being incorrect. We do not observe this problem for the dimer holograms.
To detect holograms with potentially incorrect best-fit parameters, we inspect the R* statis-
tic [ 142] of the fits. We also compute a y* statistic for a binary version of the experimental
and best-fit holograms, where all pixels above the mean of 1 are set to a value of 1 and all
remaining pixels are set to a value of o. The binary image is much more sensitive to the

shape of the interference fringes.
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When we compute correlation functions such as mean-squared displacements from the
trimer holograms, we reject the contribution from any holograms where either R* or bi-
nary x* is worse than 2 standard deviations from a rolling mean. Manual inspection of 200
randomly chosen trimer holograms that were not rejected under these criteria revealed 7
questionable fits. We infer from the Poisson distribution that, to a 99% confidence level,
the percentage of remaining bad fits is less than 8%. We also reject the contribution from a
given pair of holograms if the probability of obtaining either a center of mass displacement
or angular displacement of the observed magnitude is less than 1075. We compute these
probabilities using estimates for the diffusion tensor elements, and choose the threshold
of 107 to avoid biasing the observed distribution and to make the cutoffs weakly sensitive
to the estimates for D.

Performing this cutoff procedure requires knowing the probability distributions gov-
erning translational and rotational displacements. The probability distribution for trans-
lational displacements is Gaussian, but the distribution function for rotational displace-
ments is not, but is rather governed by Equation 5.64 with an effective rotational diffusion
constant, D, .¢. Recall that D, . = (D,; + D, )/2, where D, jand D, are the elements
of D™ describing rotations about the two cluster axes other than i.

After performing the cutoff procedures, we can compute axis autocorrelations and cluster-
frame mean-squared displacements. In Fig. 5.7.1, we show the axis autocorrelations (u; -
u;(t+ 7)) computed from 20,000 holograms, as well as best fits to exponential decays. The
autocorrelation of axis 3 decays more rapidly than the autocorrelations of axes 1 and 2, in
agreement with expectations: as shown in Eq. 5.60, (u,(t) - u,(t + 7)) depends on D, ,
and D, ,, both of which should be larger than D, ; due to hydrodynamics. The elements
of the diffusion tensor that we extract from this data are shown in Table 5.7.1. The differ-
ence between D, ; and both D, , and D, , is much larger than the experimental uncertainty,
showing clear evidence for anisotropic rotational diffusion. The translational diffusion we
observe is similarly anisotropic (Fig. 5.7.2 and Table 5.7.1).

Table 5.7.1 also shows comparisons between our measurements and HYDROSUB cal-

culations, for which we once again need an effective particle size and viscosity. For the
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Figure 5.7.1: (a) Cluster axis autocorrelations (u;(t) - w;(t + 7)) for a trimer of 1-ym
diameter spheres, showing anisotropic rotational diffusion. Open symbols are exper-
imental measurements; error bars are comparable to or smaller than symbols. Solid
lines are fits to exponential decays. Inset shows cluster axis orientation. (b) Residuals
for fits of a single exponential decay to the in-plane axis autocorrelations (i = 1 and
2). Solid line indicates best fit exponential. Red (light) and blue (dark) shaded regions
denote error bars.
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Figure 5.7.2: Body-frame MSDs for the same trimer in Fig. 5.7.1. See inset in

Fig. 5.7.1 for axis orientations i. Open symbols are experimental measurements; error
bars are comparable to or smaller than symbols. Solid lines are linear fits. Triangles
show MSD slope of 1.

121



Table 5.7.1: Measured diffusion tensor elements for trimer shown in Figs. 5.7.1 and
5.7.2 with comparisons to computations from HYDROSUB [134]. Computations use

a = 500 nm obtained optically from the best-fit hologram models and 1 = 1.049 mPas
from single-particle diffusion data; the difference in  from the dimer measurements is
due to a difference in room temperature.

Experiment  HYDROSUB

D,,(s™") 0.278 £ 0.002 0.296
D,,(s™) 0.270 & 0.002 0.296
D,,(s™) 0.210 % 0.002 0.220
Dm/Dh3 1.32 + 0.02 1.34
D,,/D,, 1.03 +0.02 1.00
Dy, (x1078 m?s™') 2.466 +0.015 2.64
D;, (X107®m*™") 2.446 £o0.015 2.64
Dy, (x1078 m*s™*) 2.372 £ o0.015 2.41
D;,/Dy, 1.04 + 0.01 1.09

trimer experiment, we measured D = 3.996 &= 0.055 X 10~ m*s™* for a diffusing sphere
of nominal radius 500 nm. With no analytical theory as we had for dimers, we cannot rig-
orously find a best-fit radius for the trimer. We take the optical radius of the particle, 517
nm, as an estimate of the particle size and use the data in Figure 5.6.2 to infer = 1.049

mPa s, the value we use in the HYDROSUB calculations.

5.7.1 VERIFYING FITS

As a final verification that our holographic imaging is correct and that any remaining errors
do not substantially affect the dynamics we measure, we compute probability distribution
functions for the dynamical quantities we use to measure D from the data. Figure 5.7.3
shows a representative sample for several lag times 7. We first examine the cosine of the
angle traversed by u,, or u,(f) - w,(t + 7), in Figure 5.7.3(a). Aside from a noise floor, we
find that the measured distributions agree well with the expected distribution computed
from Eq. 5.64 and the measured values of D”. We observe similarly good agreement for

the distribution of particle-frame displacements along axis 3 shown in Figure 5.7.3(b).
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Figure 5.7.3: Distribution functions for trimer angular displacements and cluster-
frame displacements. Histogram points computed from experimental data are shown
in open symbols; solid lines show theoretical predictions computed from elements of
D reported in Table Il of the body of the paper. (a) Rotational dynamics of u,. Pre-
dicted distribution computed from Eq. 5.64. (b) Cluster-frame displacements along
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Figure 5.7.4: Simulations of asymmetry between in-plane diagonal elements of D™
for a trimer where one particle is smaller than the other two. Simulations (open sym-
bols) performed using HYDROSUB. The solid line is a fit to a cubic polynomial, al-
lowing for interpolation. Inset shows labeling of the particles; spheres 2 and 3 have
the same radius a.

5.7.2  WEAK SYMMETRY BREAKING

Interestingly, although our measurements of the dimensionlessratios D, , /D, ; and Dy, /D; ,
agree well with the HYDROSUB predictions, we observe small but statistically significant dif-

ferences between the elements of D corresponding to the two in-plane axes 1 and 2. If the

particles in the trimer are identical, the threefold symmetry axis of the trimer ensures that

D;, = D;, and D,, = D,,. Thus the differences between these elements of the tensor

imply that the particles in our trimer are not in fact identical. We performed HYDROSUB

calculations to confirm that weakly breaking threefold symmetry results in differences be-

tween the in-plane elements of D. A plot of the results from these calculations is shown in

Figure 5.7.4.

Ourmeasuredratio D, , /D, ,, = 1.03%0.02 corresponds to a 3% size difference between
the spheres. This is consistent both with the particle manufacturer’s certificate of analysis
as well as with particle size differences determined from fitting 105 holograms with all radii
allowed to vary. This shows that the measurements are precise enough to detect the weak

breaking of threefold rotational symmetry due to particle polydispersity.
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5.8 COMPARISON TO CONFOCAL MICROSCOPY

The precision with which we measure elements of D consequently increases with the num-
ber of observed displacements and hence with the length of the trajectories we observe.
The rapid acquisition times of holographic microscopy give it an advantage over comple-
mentary 3D imaging techniques such as confocal microscopy in that a considerably larger
number of 3D images can be acquired in the same amount of experimental time.

The main advantage of holographic microscopy over confocal microscopy, however, lies
in the greater sensitivity of experiments using holographic microscopy to weakly anisotropic
diffusion. In confocal experiments on diffusion, the acquisition time needed to scan through
a 3D volume (~ 1s or more) requires the dynamics to be slowed down through the use
of larger particles and more viscous solvents. This results in the elements of D being much
smaller. For example, tetrahedral sphere clusters used in confocal measurements of diffu-
sion [121] have an isotropic rotational diffusion constant of D, ~ 5 X 1073 s™*, nearly
two orders of magnitude smaller than in our trimer experiment. Consequently, given the
same amount of experimental time, confocal experiments access much shorter timescales
relative to the rotational diffusion times than holographic experiments. This makes it more
challenging to observe statistically significant anisotropy in D, as we now show.

Demonstrating anisotropic diffusion requires showing that the ratio of the rotational au-
tocorrelation functions about axes i and j differs from 1 by a statistically significant amount.

Eq. 3 of our manuscript gives this ratio in terms of the relevant elements of D:

(u,-(t) . ui(t + T)>
(w(t) - w(t+ 1)

— exp [—(D,; — D,,)7] (5.73)

~

~1- (Dr,j - Dr,i>7 T+ (5-74)

where we have assumed in the second step that the anisotropy is small. The ratio differs
from 1 in proportion to the magnitude of the difference in the rotational diffusion constants,
rather than in proportion to the relative difference. Consider a confocal experiment and a
holographic experiment on systems with the same relative anisotropy D, ; /D, ;, where both

experiments measure the same number of independent displacements over the same time
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interval 7. Both experiments will compute autocorrelations at 7 with the same precision
and will require similar amounts of experimental time. But for the confocal experiment,
(Dm' — D, ;)7 will be smaller, and may even be comparable to the measurement precision
of the autocorrelations. Thus, because holographic microscopy can study more rapidly
diffusing clusters, it is easier to observe weakly anisotropic diffusion, as we show in our

measurement of the the 3% difference between D, , and D, , for the trimer.

5.0 SUMMARY

We have studied the anisotropic diffusion of colloidal sphere dimers and trimers. Our mea-
surements reveal how the diffusion tensor D evolves as symmetries get broken. Along with
Kraft and co-workers at NYU, we have made one of the first measurements of anisotropic
rotational diffusion. We have demonstrated that the technique we use, digital holographic
microscopy, is capable of measuring elements of D to precisions of 1% or better, enough
so that it is possible to detect weak symmetry breaking due to particle polydispersity. The
high precision of these measurements is enabled by the short acquisition times of DHM,
which in contrast to confocal measurements allow us to observe rapidly diffusing systems
on time scales ranging from a fraction of a rotational diffusion time 1/D, ; to hundreds.
Our measurements based on DHM also suggest how diffusion constants in environ-
ments relevant to self-assembly, such as near other particles or boundaries, can be mea-

sured with high precision.
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Conclusions and Outlook

In this thesis we have measured dynamics of multiple colloidal spheres in 3D. We here

describe some possible extensions of this work and some general concluding thoughts.

6.1 FUTURE WORK

We discussed nonspherical colloids at the beginning of this thesis. An obvious extension
of the work would be to study the dynamics of other types of nonspherical particles, be-
side sphere clusters. In particular, an ongoing project involving stabilizing emulsions seeks
to study the behavior of ellipsoidal particles on interfaces. Modeling holograms of these
particles would be straightforward using EBCM codes such as that of Mishchenko et al.
[87].

While the computational challenges are daunting, it is conceivable to use other types of

scattering models, namely the DDA, to study particles that are not axisymmetric or uni-
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form. We are currently engaged in studies of the dynamics of Janus spheres, partly coated
with metal on one side, using DDA models and DHM.

There are possible extensions of the diffusion experiments. Recently Kraft and colleagues
have measured translational-rotational coupling in asymmetric clusters made of spheres of
different sizes and compositions [ 123 ]. We note that it is in principle possible to observe
translation-rotation coupling in chiral clusters of identical spheres; the smallest such clus-
ter has 7 spheres. Also, recent theoretical work by Moths and Witten has suggested how
sedimenting anisotropic sphere clusters might achieve complete orientational alignment
[143]. In cases like these, the fast time resolution and inherent precision of DHM with fits
of scattering solutions might make it a useful experimental tool.

We are also interested in continuing studies of the self-assembly of colloidal spheres, par-
ticularly the nucleation and growth of clusters containing up to ~20 particles. Fitting scat-
tering models of clusters containing this many particles to experimental holograms will be
a challenge, but one that should be achievable. We have successfully simulated holograms
of 20-particle clusters undergoing a structural transition in which one particle rolls, and can
successfully fit models to the holograms and detect this motion. Getting initial guesses will
be the primary challenge here, but here using core-shell particles can help. In particular, we
can coat ~ 100 nm polystyrene cores with either PNIPAM or silica shells to build micron-
sized composite particles and index-match the shells with an aqueous solvent. For particles
that effectively scatter much more weakly, as these would, reconstruction should be much
more useful than it is for particles made of strongly-scattering, homogeneous polystyrene

spheres.

6.2 Limits on DHM

A natural question to ask as we consider possible future work that can be done with DHM
is whether we will reach the limits of using DHM along with scattering solutions to study
colloidal particles and clusters, particularly in terms of the number of particles (or, effec-
tively, the number of degrees of freedom in the fit of a scattering solution.) There are two
limiting factors: practical limits arising from computational challenges, and fundamental

physical limits.
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While the computational challenges of routinely fitting holograms of clusters of more
than ~ 10 spheres are real, they are surmountable largely because most of the required com-
putations are embarassingly parallelizable. Any technique involving fitting a scattering so-
lution to an experimental hologram requires one to compute the scattering solution for
many values of the fit parameters (such as computing the Jacobian matrix in a least-squares
algorithm.) Both the computation of single scattering solutions and the many computa-
tions needed for fitting can be parallelized. For scattering solutions that involve the expan-
sion of the scattered field over some set of basis functions (such as the Mie solution or the
multisphere superposition method), the computational tedium has generally come from
having to calculate the basis functions and sum the series at many points on a hologram,
rather than from computing the series expansion coefficients '. But the computations at
each point are independent. Similarly, computations of the scattering solution for different
parameter values are independent. While extensive parallelization efforts have not been
undertaken, and have not yet been necessary, they would be in principle straightforward.

Moreover, significant speed-ups in fitting scattering solutions have recently come about
by fitting to a random subset of the pixels in a hologram rather than to all of the pixels. For
cases such as single colloidal spheres, we can get away with fitting as few as 1-2% of the
pixels in a 256 X 256 hologram, thus obtaining a nearly so-fold speed-up. A manuscript
about this technique is currently in preparation.

The more pressing question, however, is whether there is a fundamental physical limit.
Is there some maximal number of particles (or density of particles within a given volume)
beyond which it will be impossible to either obtain initial guesses or fit scattering models?
Clearly some limit exists — illuminating a macroscopic volume of a dense colloidal suspen-
sion would result in a speckle pattern from which it would not be possible to extract mi-

croscopic information. Recall the fundamental mathematical description of a hologram:

I - ’Einc|2 + Zm{E?nc . Escat} + |Escat|2 . (6'1)

Speckle fundamentally arises from the third term here: the speckle pattern arises from the

!Even in cases where this could potentially be problematic, such as for a multisphere superposition
calculation for ~ 100 particles, the computation of the expansion coefficients can be parallelized [ 144].
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Figure 6.2.1: Left: contribution from hologram term linear in Es, to a hologram
of 8 spheres in a cube with a 3 ym side length. Right: contribution of the term
quadratic in Egt.

interference of the fields scattered from different particles with each other rather than in-
terference with the incident beam. Moreover, reconstruction, which can be crucial for
helping to find initial guesses, relies on ignoring the third term. It would thus seem plausi-
ble that where the third term dominates the second term, which encodes the phase of the
scattered wave, usefully analyzing digital holograms is likely to be difficult.

We verified this assertion through simulating holograms of 1 ym-diameter polystyrene
spheres randomly dispersed in a cubical box. We were then able to separately compute the
normalized contributions of the second and third terms in 6.1. Some results are presented
below.

We first consider the case in Figure 6.2.1 where 8 particles are dispersed in a 3 ym box.
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Figure 6.2.2: Same as Figure 6.2.1, but for 12 spheres in a cube with a 3 ym side
length.
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The second-order contribution is only large near the forward direction, and the second or-
der term also has lower spatial frequencies than the linear hologram term. Configurations
like these are easy to analyze with reconstruction, and fitting is straightforward.

The case of 12 particles in the same box, Figure 6.2.2, is somewhat more challenging.
It was impossible to detect all the particles by reconstruction, although a fit in which the
particle coordinates were perturbed from their known values was successful. Here we find
larger contributions from the second-order term over a larger portion of the hologram.

But when 32 particles are dispersed in a 5 ym box (Figure 6.2.3 ), the second-order term
swamps the linear term over much of the hologram. Reconstruction utterly fails in this
case, where near the forward direction the hologram begins to look reminiscent of speckle.
Fits of a scattering model have not been attempted, but might be challenging. It is not yet
clear whether this case is truly impossible to deal with, and a more detailed investigation
is needed. Nonetheless, these examples do suggest that DHM is likely to be successful so

long as the contribution linear in E,,; dominates.

6.3 FINAL REMARKS

This thesis has largely concerned the development of DHM for imaging multiple parti-
cles. When I began my graduate research, high-precision particle detection from digital
holograms was in its infancy. It has been a privilege to help to develop DHM as a tool for
studying the dynamics of multiple particles to the point where it has been possible for the
first time to make precision measurements of anisotropic 3D diffusion. While both tech-
nical challenges and some fundamental questions about ultimate limits remain, I close this
work with the knowledge and hope that the range of physical questions that DHM will

help to address will only continue to grow.
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Error Analysis and Dynamical Correlation

Functions

A.1 INTRODUCTION

As we have described in Chapter s, we have made measurements of elements of the diffu-
sion tensor D to a precision of 1% or better. Such a claim, upon which hinges our conclu-
sions that we have measured anisotropic rotational diffusion and weak symmetry breaking
due to particle polydispersity, requires careful justification. In this Appendix we address
the issue of uncertainties in dynamical correlation functions.

To measure an element of D, we generally need to compute a correlation function. This

might be a cluster-frame mean-squared displacement:

(Axj(7)) = 2Dy;7 (A.1)
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or an axis autocorrelation:
(wi(t) - w(t+7)) =exp | | D,; — ZD’J 7| . (A2)
j

Itis obvious that the uncertainties we report in Dy ; or D, ; will depend on the uncertainties
in the correlation functions. This is true whether we report tensor elements from a single
correlation function computed at a single time interval 7 (in which case the relative uncer-
tainties will be equal) or if we compute for many intervals and perform a weighted regres-
sion, as we do throughout Chapter 5. In particular, the covariance matrix from a nonlinear
least squares regression can provide error estimates on fit parameters, such as the elements
of D, so long as the points being fit (here, correlation functions) are weighted with ap-
propriate 10 errors. Correctly computing the error bars on these correlation functions is
therefore critical.

An underlying physical distribution underlies all Brownian processes. This is easiest to
understand for 1-dimensional translational Brownian diffusion characterized by a diffusion
constant D. While we have not explicitly derived this in Chapter s, it is straightforward to
show that the probability density function for taking a Brownian step Ax is Gaussian [ 130]:

P(Ax) = m xp {_%}
- 47r1Dr P {_ (fgiz} ' .

The physical quantity we want to know, D, ;, is related to the variance 0> of the parent Gaus-
sian distribution. To estimate the unknown variance, we experimentally observe some
number N of displacements and calculate (Ax?). If we choose N sufficiently large, we can
get a good estimate of ¢*. This Appendix will primarily focus on making “sufficiently large”
and “good estimate” more quantitatively precise.

Suppose that I as an experimenter observe N independent displacements, from which
I calculate (Ax?). If I choose a different set of N independent displacements, I will get a

different value for (Ax?). It turns out that for an underlying Gaussian parent distribution,
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Figure A.1.1: (a) Parent Gaussian distribution for 1-dimensional translational diffu-
sion where 2Dt = 1 ym?* (Equation A.3. (b) Histogram of 1000 imaginary displace-
ments. Displacements obtained by choosing 1000 random numbers with a mean of 0
and variance of 1. Note that the sample variance differs from 1. (c) Same as (b), but
for a different set of 1000 displacements.
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Figure A.1.2: Distributions of MSDs obtained from N, = 1000 simulated exper-
iments in which N displacements are sampled. Simulations performed by choosing
normally distributed random numbers with a mean of 0 and variance of 1 ym*. (a)
N = 1000. (b) N = 4000. The distribution in (b) is about half as wide as in (a),
illustrating the approximate 1/1/N scaling of the standard error of the variance.

if I carry out this process of measuring N independent displacements N, times, the distri-
bution of MSD’s I observe will in fact be approximately normally distributed . The error
bar o on the MSD I need to calculate, therefore, is going to be related to the variance of this
distribution of variances.

Figures A.1.1 and A.1.2 may help to clarify these issues. The parent distribution Gaus-
sian distribution governing the Brownian displacements at a fixed time interval is shown

in Figure A.1.1(a). Any experiment sampling N displacements governed by this Gaussian

'Technically, the distribution is a chi-square distribution with N — 1 degrees of freedom, but for large
N the distribution is approximately Gaussian by the central limit theorem [ 145, 146].
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distribution will result in a set of displacements. Each set of displacements will be differ-
ent and will have a slightly different sample mean and variance, as can be seen in Figures
A.1.1(b) and (c). Note that the experimentally observed variance differs from the true
variance. If we do the sampling experiment N.,, times, we can build up a distribution
of variances, as in Figure A.1.2, where we show histograms of the MSD’s we observe for
performing N, = 1000 experiments where we observe N displacements. Clearly, the
distribution becomes sharper as N increases.

In a computer simulation based on sampling random numbers, like this one, performing
hypothetical experiments many times is almost trivial, and one could analyze the distribu-
tions in Figure A.1.2 to estimate their width, which would be related to the desired MSD
uncertainty. Performing a comparable number of real experiments with DHM and diffus-
ing clusters is impractical. We thus need a means of estimating the uncertainty in a MSD
or other dynamical correlation function from a single experiment.

For the case of translational Brownian motion, this is possible because of the standard
error of the variance. The sample variance follows a y* distribution, from which the relative
standard error of the variance, ¢, /var, can be computed [145]:

Ovar 2

=,/ — A.
var Nig—1 (A4)

where N, is the number of independent displacements®. Equation A.4 gives the experi-
mental 1-sigma relative uncertainty in an MSD. The 1/+/N dependence is apparent in Fig-
ure A.1.2.

We have said nothing, however, about how N, is to be determined. In a real experi-
ment, we observe a trajectory and obtain a list of particle positions of length Ny,,; at evenly
spaced time intervals: x,, x,, . . ., x,,;- For displacements of 1 time step, we have x, — x,,
Xy — X,, . .., for Ny; — 1independent displacements. But trouble arises for displacements
oflarger time steps. For the case of two time steps, for instance, we could compute x, — x,,

X, — X,, and so on. The problem is that these two displacements overlap and are not inde-

*We must distinguish between the true but unknown variance ¢* and the sample variance S* (the ex-
perimental MSD.) It is (Njyq — 1)S*/0* that follows a chi-squared distribution 3, with a variance of
2(Njug—1) [145]. The resultin Equation A.4 follows from the square root of this, noting that for a constant
a and a random variable X, var(aX) = a*var(X).
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pendent.

There are three viable ways to proceed:

1. Choose N non-overlapping displacements, and then use the standard error of the

variance (Equation A.4) with N;,; = N.

2. Calculate all possible displacements, including overlapping ones, but estimate Nj,q

in some other way. Thereafter, use Equation A.4.

3. Useablock decorrelation technique to estimate the error on an average of correlated

data.

We reject the first possibility because we inherently throw out a great deal of information,
particularly involving displacements at larger intervals, when we restrict ourselves to non-
overlapping intervals. Consider a trajectory 101 time steps long. We can compute 9o pos-
sible displacements with an interval of 10 time steps, but only 10 non-overlapping displace-
ments.

The second approach is a frequently used one in colloid physics, and will hereafter be
called CGW after its proponents John Crocker, David Grier, and Eric Weeks. The ap-
proach, to the author’s knowledge, has not been described in detail in peer-reviewed lit-
erature, but is described in the documentation of IDL particle tracking codes by these
authors: http://www.physics.emory.edu/~weeks/id1l/msd.html. For a trajec-
tory oflength N timesteps, it is possible to calculate N—# displacements between positions
n timesteps apart. The number of non-overlapping displacements would be (N—n) /n. The
number of independent steps in the CGW is then given by

N-—n
n

Nina,cow = 2 (A.s)

or twice the number of strictly independent displacements. While this ad hoc factor of
2 seems reasonable, the author is not aware of a rigorous justification for it. The CGW
approach also requires that the underlying distribution be Gaussian. This is a reasonable
assumption for translational Brownian motion. But it is only approximately valid for axis

mean-squared displacements in rotational Brownian motion, and even without detailed
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computations it would seem obvious that the axis autocorrelation (u;(t) -u;(t+ 7)) cannot
be governed by a Gaussian distribution, since the dot product cannot exceed 1.

We thus favor the third approach, based on a block decorrelation technique first de-
scribed by Flyvbjerg and Petersen [ 147]. We will hereafter refer to this method as the FP
method. We will describe FP block decorrelation algorithm, and then present simulations
comparing FP to CGW for simulated Brownian dynamics.

The author first became aware of the FP method through Savin and Doyle’s work on the
statistical issues involved in multiple particle tracking in homogeneous materials [148].
Aside from Savin and Doyle’s work, the FP technique appears to have received little at-
tention from experimentalists, and certainly not for assessing standard errors on single-
particle diffusion. We note that Flyvbjerg and Petersen, in their 1989 paper on the tech-
nique [ 147] which has been widely cited in the simulation community, themselves deny
credit for having invented the technique. Our naming the technique after them may be
viewed as an example of what John David Jackson calls the zeroth theorem of the history

of science [149]3

A.2  FLYVBJERG-PETERSEN BLOCK DECORRELATION

Rather than being based on statistical results for normal distributions, the Flyvbjerg-Petersen
block decorrelation technique assesses the variance of the mean of a correlated data set
without assumptions as to its underlying distribution. This has the advantage of being
more readily applied to situations like rotational diffusion. A key difference is that while in
CGW we think of a mean-squared displacement as a variance, in the FP we think of it as a
mean.

The FP algorithm supposes that we have some series x; of N correlated data points. We
wish to compute the variance on the mean, var(x;). For completely uncorrelated data, it

possible to estimate this by computing the variance of the data:

var(x;)
N

var(x;) = (A.6)

*Jackson, the man of Classical Electrodynamics fame (or infamy?) did not himself come up with this
term, attributing it to Ernst Fischer.
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Figure A.2.1: Schematic illustration of FP block decorrelation algorithm. Raw data
set is subjected to two decorrelating block transformations, governed by Equation A.7.

but this will be an underestimate for correlated data [147]. The idea is to transform the
correlated data set x; into a smaller but uncorrelated set. The transformation averages to-
gether pairs of neighboring data points. To be precise, the transformed set x/, having half
as many points N’ as x;, is given by

/ Xai—1 + Xai

o = T T (A7)

2

The block transformation is shown schematically for an artificial data set in Figure A.2.1.

Flyvbjerg & Petersen show that this transformation preserves both the mean and the vari-

ance: thatx’; = X;andvar(x}) = var(x;) [147]. After each block transformation, var(x}) / (N'—

1) is computed. It will increase in succeeding block transformation steps When the trans-
formation has been carried out enough times, the data set should be decorrelated, and
var(x}) /(N' — 1) should approach a fixed point, which is then taken as the estimate of

the variance on x;. We refer the reader to the original paper for the proofs.

140



The block transformations themselves are straightforward to implement in Numpy, but
it becomes necessary to detect when a sufficient number of block transformations has oc-
curred. Flyvbjerg and Petersen point out that at the fixed point, the «] are independent.
Provided that N’ is large enough, the central limit theorem guarantees that the distribution
of x! is Gaussian to good approximation. Then, Equation A.4 gives a means to estimate the
variance of the variance. If the estimates of the variance, var(x’) / (N’ — 1), agree within the
1-sigma uncertainty given by Equation A .4, then we can say that the fixed point has been
reached.

Our FP algorithm thus works as follows:
1. Begin with correlated data (i.e., a set of squared displacements) x;

2. Block-decorrelate the data. Ateachblock decorrelation step, calculate var(«x}) /(N'—
1) as well as the uncertainty in this estimate based on A.4. Proceed until N’ reaches

some minimum (the technique is insensitive to the cutoff).

3. To find the leftmost fixed-point region (smallest number of decorrelation steps),
check if the variance estimate after j transformations lies within the 1-sigma error
bars of the variance estimate after j + 1 transformations. The leftmost point to be

considered fixed is the first point satisfying this criterion.
4. Repeat Step 3 from the right to find the rightmost edge of the fixed point region.

5. Compute a weighted average of all the var(«x}) /(N’ — 1) in the fixed-point region,

where the weights are given by the 1-sigma error bars.

This process is illustrated in Figure A.2.2, which shows the estimates on the variance of
the mean as a function of the number of FP decorrelation steps for a simulated random
walk. The data are shown for a simulated 1D random walk where Dt = § X 10" m?* and
mean-squared displacements are computed for positions separated by 25 time steps. The
estimated variance on the mean rises over the first few FP steps as the data set becomes
decorrelated, before reaching a fixed point. After many FP steps, however, N’ becomes

small enough that the estimates are unreliable.
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Figure A.2.2: Estimate of variance of mean as a function of the number of FP block
transformations. Data shown from a simulated random walk. Dashed box indicates
the fixed-point values that are averaged to determine the variance on the sample
mean.

142



A.3 VALIDATION OF FP BY BROWNIAN DYNAMICS SIMULATIONS

Having described the FP algorithm, we show that it is superior to the CGW method through
simulations of both translational and rotational Brownian motion. We can simulate a tra-
jectory similar to that obtained from a real experiment and from the trajectory calculate
error bars on dynamical correlation functions just as we would for real data, using both the
CGW and FP methods. But because simulating data is fast, we can generate many trajec-
tories satisfying the same statistical properties and measure the variance on the dynamical
correlation functions within this ensemble. We show that in all cases, the FP error bars
are closer to the standard deviations obtained from the ensemble of trajectories than the
CGW error bars.

Simulating a translational Brownian walk, where positions are observed at instants sep-
arated by a time interval At, is straightforward. To simulate a trajectory of length N,
which we choose to be 10%, we choose N,,; normally distributed random numbers with a
mean of o and a variance of 2DAt. We choose D = 10~ "> m?s™". These random numbers
physically correspond to steps. The simulated trajectory is then obtained by cumulatively
summing the steps. We analyze one such trajectory using CGW and FP, but also generate
an ensemble of 1000 trajectories in the same way, from which we generate what we will
term sample standard errors.

Figure A.3.1 compares the relative sample standard errors to the predictions of CGW
and FP. The sample standard errors increase with 7 since the number of independent dis-
placements decreases. It is apparent that while the CGW standard errors follow the same
trend as the sample standard errors, CGW gives a consistent under-estimate. In contrast,
with the exception of the longest 7, the FP standard errors track the sample standard errors
almost perfectly. The kinks that appear at several points for FP arise from integer jumps in
the number of points being used to compute the weighted average in Step s.

We simulate homogeneous rotational diffusion governed by a rotation constant D, =
0.1s~* and with the same At using an algorithm by Beard and Schlick [ 150]. The simplest
way to simulate rotational diffusion would be to choose normally distributed angles for

rotation about principal axes, but this can introduce a bias because finite rotations do not
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Translational Brownian Motion Simulations
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Figure A.3.1: Comparison between relative sample standard errors on MSDs com-
puted for different intervals 7. Sample standard errors (black circles) are computed
from the standard deviation of MSDs calculated for an ensemble of 1000 trajectories;
error bars from the standard error of the variance. Blue triangles show standard errors
computed from the CGW method, while green triangles show the FP standard errors.

144



commute [150]* Beard and Schlick avoid this problem by integrating the equations of
motion for a rigid body and deriving a matrix > based on 3 normally distributed angles with
a variance of 2D, At. We use the Beard-Schlick algorithm to compute 1000 trajectories of
the body x axis in the same manner as we did for translations.

Figure A.3.2 compares relative sample standard errors to the standard errors obtained
from the CGW and FP methods for a body axis mean squared displacement, (u*(7)).
This time, CGW consistently overestimates the sample standard errors, although it at least
correctly follows the trend of the sample standard errors. FP tracks the sample standard
errors much more closely. The results are more dramatic for the axis autocorrelations
(u(t) - u(t + 7)) in A.3.3. Here, CGW grossly overestimates the standard error; it even
fails to qualitatively capture the 7 dependence of the sample standard error. Whereas for
the body axis MSD, the underlying distribution is at least approximately Gaussian, the dis-
tribution underlying the axis autocorrelations (Equation 5.60) is not.

On the basis of these simulations, as well as the ad hoc nature of the crucial factor of 2
underlying the estimation of Nj,; in the CGW method, we strongly encourage other exper-
imentalists to adopt the FP method for placing error bars on MSDs and other dynamical

correlation functions.

*The alternative to this is to choose a simulation timestep At;, which is much smaller than the ex-
perimentally observed trajectory timestep At. This is the approach taken by Fernandes et al. in the code
BROWNRIG, which we use to simulate anisotropic Brownian dynamics including translation-rotational
coupling [151].

®Anyone interested in using the Beard-Schlick algorithm should note that there is a typographical error
in the key equation of their paper. In particular, the entry U,, of the operator U in Beard and Schlick’s
Equation § should read, in their notation,

_—— ((Q;-i—.Qz) cos.Q-l—.QZ)
22 e

(A.8)

The author thanks Prof. Tamar Schlick for helpful discussions on this point.
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Figure A.3.2: Comparison of relative sample standard errors to results from CGW
and FP methods for rotational diffusion with At = o.02 s. Standard errors are com-
puted for the axis MSD, (u*). Black circles denote sample standard errors, blue trian-
gles CGW, and green triangles FP.
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Figure A.3.3: Comparison of relative sample standard errors to CGW and FP stan-

dard errors, for same data as in Figure A.3.2. Standard errors are computed for axis
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Additional Scattering Problems

Here we discuss several additional scattering problems that are not directly pertinent to
modeling holograms of colloidal particles, but which nonetheless are of some utility and

interest.

B.1 ComrUTING LORENZ-MIE INTERNAL FIELDS

For the purposes of computing holograms, or for that matter any scattering quantity, the
internal field E;,; is of little relevance. There is no experimental way to probe E;,; directly.
Nonetheless, one may sometimes wish to be able to visualize the internal fields of a scat-
terer for pedagogical or other purposes. In addition, certain techniques based on topolog-
ical derivatives for solving the inverse problem in scattering require computations of E;;
[152]. It turns out that stably computing the internal field is not trivial. Since this problem

has not received much direct attention in the scattering literature, we briefly discuss it here.
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Recall that the internal fields may written as an expansion in the vector spherical har-

monics defined in Chapter 2:

> E,(2n+1)
Ei: = Zl m (C om —id Nem) : (Bl)

n=i

Recall that E, is the amplitude of the incident wave, and that the superscript on the vector
spherical harmonics denotes a radial dependence on spherical Bessel functions, j_ (n,k,r).
It might seem that the problem is trivial, as Bohren & Huffman give the expansion coeffi-
cients ¢, and d,, in terms of j, and hfll). Alternately, one could imagine computing ¢, and d,,
once the external scattering coefficients a, and b, are known through the linear relations

that enforce the boundary conditions on the sphere surface:

j(ma)e + h ()b, = j, (x) (B2)

mj, (mx)dy, + h (x)a, = j, (x). (B3)

The relative index m and size parameter x are defined here in the usual way. Neither of
these approaches should be used, however, because they require computing the spherical
Bessel functionj, (mux) inside the particle, which may be absorbing. As we have mentioned,
computing j, for complex argument is fraught with peril.

As a first step towards a more computionally friendly formulation, we rewrite ¢, and d,,

in terms of Riccati-Bessel functions:

o my, ()8 (x) — mb, (x)y), (%)
" ( x)8,(x) — mé, (x)y,, (mx)

(B.4)

L W56 — mE, ()Y ()
" g ()€, (x) — £, ()Y ()

This only helps somewhat, as ¥, (z) inherits the same pathologies as j (z) for a large imag-

(B.s)

inary argument. Much as the computations of the external Mie coefficients are aided b
y arg p y

using logarithmic derivatives, we can rewrite Equations B.4 and B.s in terms of logarithmic
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derivatives:

DOz = 122, poi(zy = &), (B.6)

A bit of algebraic manipulation yields

IR AC) DY) (x) — D ()

€ = m‘//n<mx) <Df,3) (%) — mD’gl)(mx)> (B.7)
%@ (DY) - D)

d, = ‘//n(mx) (WIDE?) (x) _ D,(ql)(mx)) . (B.8)

This form is useful because all the pieces appearing therein can be computed stably. The
logarithmic derivative D" is familiar from computations of the external coefficients and
can be calculated by downward recurrence. Mackowski et al. give stable upwards recur-
sion relations for computing D' (z), together with the product ¥, (z)§,(z), once DY (z)
is known [77]:

V(286 = v, (26 | -DL@E)] [ -D@)] (@)

z z

¥,(2)€,(2)

These relations are initialized with D) (z) = i and Vv, (2)§,(z) = —ie®sinz [77]. The

(B.10)

other necessary ingredient is a ratio of Riccati-Bessel functions; the use of such ratios to
stabilize scattering computations was initially pointed out by Toon and Ackerman [153].
Sitarski [ 154] as well as Mackowski et al. give a stable upward recursion for the ratio of v/,

for two different complex arguments z, and z, from logarithmic derivatives:

D,(f) (z,) +n/z,

= Rf:) (Zl, Zz) = Rfllzl (Zl7 ZZ)
DY (z,) +n/z

(B.11)

This method of calculating the Mie internal coeflicients, in Equations B.7 and B.8, has
been implemented in HoloPy. While the elements that go into computing ¢, and d,, this
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Figure B.2.1: Schematic illustration of scattering with reflections. A plane wave,
propagating in the normal direction with respect to a water-glass interface, illumines a
sphere. The detection plane is assumed to be in the water.

way are not novel, to the author’s knowledge, Equations B.7 and B.8 have not previously
appeared in the literature. Their use is reccommended whenever Mie internal fields, partic-

ularly for strongly absorbing particles.

B.2 LORENZ-MIE SCATTERING NEAR AN INTERFACE: REFLECTIONS

We now turn our attention to the approximate modeling of the effect of reflecting surfaces
on holograms. While our usual hologram modeling ignores such effects, there is a physical
basis for considering them. Typically, our experiments are conducted on aqueous samples
inside sample chambers made from glass. Thus, there will always be reflections at the glass-
water interface. In particular, we will consider the schematic geometry in Figure B.2.1,
where both the scatterer and the hologram plane are assumed to be in the aqueous medium.

Modeling these effects in a rigorous way turns out to be difficult. The following things

can happen:

1. The incident plane wave illuminates the sphere (normal case of Lorenz-Mie scatter-
ing)

2. Theincident plane wave reflects from the interface. This reflected incident wave also

illuminates the sphere.
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3. The wave scattered by the sphere will also reflect from the interface. This wave, also,

will illuminate the sphere.

The author is unaware of a theoretical treatment which rigorously treats all of these effects.
One of the most detailed is due to Gorden Videen [155, 156]. Videens treatment assumes
that all the scattered light reflects from the interface as though it struck the interface at nor-
mal incidence (in other words, it neglects the angular dependence of the Fresnel reflection
coefficients). Even this approximate treatment results in a system of linear equations to
be numerically solved [155], much as is the case with the multisphere superposition ap-
proach. We did not deem a full implementation of Videen’s solution to be worthwhile,
given that it still is inherently approximate. Instead, inspired by aspects of Videen’s solu-

tion, we model the situation in the following way:

1. Assume that both an incident wave E;,. and the reflection of this wave from the in-
terface, E,, illuminate the sphere. As we will show, this will change the scattering

coefficients a, and b,,.

2. Assume that at the hologram plane, the incident field we detect is E;,c + E,q. The
scattered field we detect will be the sum of direct waves scattered from the sphere
as well as reflected waves. We will account for the angle dependence of the Fresnel

coeflicients here.

In other words, we will neglect reflections of the scattered wave impinging on the sphere
(what Videen terms interaction terms), but will rigorously account for all other effects.
We first consider the reflection of the incident wave and its effect on the scattering co-
efficients. Suppose a plane wave E,e’**% (where we assume x polarization without loss of
generality) strikes the interface at normal incidence (at normal incidence, there is no dif-
ference between TE and TM polarization.) Suppose the phase is o at the center of the
particle, and that the distance between the particle center and the interface is d. The am-

plitude of E,.; will be smaller by a factor of the Fresnel coefficient r(0):

C1—m/n N
r(o) = T jn, (B.12)
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where , is the index of the first medium (water) and , is the index of the second medium
(glass). Note that the reflected wave gets a 7 phase shift if n, > n,, as is the case for water
and glass. There is an additional phase shift due to the round-trip propagation to and from

the interface. Therefore,

1—n,/n sikd —i
Ereﬂ = Eo (H_T:;ni) € kde lkz. (B13)

Recall the expansion of a plane wave E,e**4 in vector spherical harmonics:
an + 1 L
Ei. = E, Z 1(7121 - iNguZ) : (B.14)

Itis clear that up to the multiplicative factors for the Fresnel coeflicient and the phase shift,
we will get the expansion of E,q by taking the complex conjugate of this:

1_112/711 2ikd n Zﬂ‘l—l () ()
Ep=E,| —— o1n +i Nem B.
f (1"‘”2/7’11) Z ( ) ( 15)

noting that the VSH of the first kind, depending on j , are pure real. We also recall the

expansion of the scattered field in the Lorenz-Mie solution

Eoar = ZE ia,N em —b Moii) (B'Ié)

where E, = i"E,(2n + 1)/ (n(n + 1)). Now, we could repeat the arguments that lead to
the a, and b, in the Mie solution. We note, however, that Maxwell’s equations are linear,
and that the M and N vector spherical harmonics are orthogonal. We may thus arrive at
a new solution for a, by seeing how the input proportional to Nglzl changes between this

problem and the Lorenz-Mie solution. Similarly, we get a new solution for b, by examining

the input proportional to M{?). Defining

(ﬂ) (1), (B.17)

R,
1—i—n2/n1
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n;

5';)9'

Figure B.2.2: Geometric construction for reflection of light scattered by sphere at S
to field point P. The scattered light travels the red dashed path, reflecting from the
interface. The distance traveled is equal to the distance that light would travel from
an imaginary image sphere at S', mirrored across the interface. The light that reflects
from the interface is scattered at an angle of 7 — #’. The angle of incidence of the
scattered wave onto the interface is also 7 — @',

we can write the scattering coefficients for illumination in this case (primed) in terms of

the Lorenz-Mie scattering coefficients (unprimed):

b, = (1+ R,)b,. (B.18)

The minus sign in the expression for a/, comes from the change in sign of the terms propor-
tional to N) in Equation B.15.

Calculation of the direct scattered field can now proceed in the usual way, so long as we
use the scattering coefhicients in Equation B.18. We now come to the computation of the
reflected scattered field E,,.. Here, we use a geometric trick from Videen’s solution [155],
and illustrated in Figure B.2.2. In particular, if we have a field point (where we want to cal-
culate E, and its reflection) at r from the particle center, we can imagine the reflection
of the scattered field as coming from an image particle mirrored across the interface. We
can then draw the vector ' from the image particle to the field point. The reflected scat-
tered field will be the scattered field of the same particle computed at spherical coordinates

(¥, m — 0, ¢"), up to Fresnel coefficients.
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We will follow Jackson’s conventions for the Fresnel coefficients [157]. For transverse
electric polarization (polarization perpendicular to the plane of incidence, which is here

identical to the scatttering plane), we have

cos6; — n,/n,)* — n*sin* 6;
res(8)) = vV (n/n,)

= . B.1ig
cos 0; + /(n,/n,)> — n2sin* 6; (B.19)

The Fresnel coefficient for transverse magnetic polarization (parallel to the plane of inci-

dence) is given by

(n,/n,)* cos 0; — \/(”z/ﬂl)l — sin® 6,
o) = : .20
(6;) (n,/n,)* cos 0; + \/(”z/ﬂl)z — sin* 6, (B.20)

Furthermore, it is apparent that the § component of Eq.,; (perpendicular to the plane of
Figure B.2.2) is in fact TE polarized, and that the 0 component of E,; is TM polarized.
The relevant angle of incidence is 7 — . So, recalling that our usual amplitude scattering

matrix formalism gives us these two components of E,;, we may then conclude that

Esr,6 = Escut,e(r/; T — 6/7 (P/>7’TM(71' — 9/>
Esr,¢ = Escat,cp(rlu T — 9/7 ‘P,)VTE(W - 9,)- (B.zl)

Our code to model holograms with reflection can thus proceed as follows:

1. For a given sphere, compute scattering coeflicients a, and b, according to Equation

B.18.

2. Foreachhologram point, compute the spherical coordinates (r, 0, ¢) from the sphere

as well as the spherical coordinates (7, 6, ¢) from the image sphere.
3. Compute E;,; in the usual way.
4. Compute E,, following Equation B.21.

5. Obtain a hologram by interfering the total incident field E;,. + E,q and the total
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Figure B.2.3: Scatter plot of best-fit radius and best-fit z for a 1.3 ym polystyrene
sphere. Data courtesy of R. W. Perry.

scattered field! E,,; + E,.

We have used this code to examine whether reflections might be responsible for some
unusual physical effects we have observed. Figure B.2.3 shows the best-fit radius versus the
best-fit z position for holograms of a 1.3 ym-diameter polystyrene sphere, where the usual
Lorenz-Mie model was fit to the data. An oscillation in the fitted radius as z varies is clearly
apparent; the oscillation have a period of about 250 nm in z, which is approximately half
the wavelength of light in the aqueous medium.

This effect can be reproduced in simulations. We simulated a 1.26 ym diameter polystyrene
sphere sedimenting in water, with the hologram plane located 5 ym above a reflecting
glass interface. We calculated holograms using the code described above, but fit ordinary
Lorenz-Mie scattering models to these holograms. The results, in Figure B.2.4 have the
same feature as the experimental data: a clear oscillation with a wavelength of 0.51,,.4. We

attribute this effect to interference of the scattered field with its reflection.

"We convert all scattered fields to Cartesian coordinates prior to performing the sum.
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Figure B.2.4: Best-fit radii vs. z for simulations of a sedimenting polystyrene

sphere. Holograms calculated accounting for reflections were analyzed with Lorenz-
Mie models. The input particle radius is shown by the green dashed line.
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Towards Understanding the Scattering by
Particles at Non-Index Matched Liquid-Liquid

Interfaces

Here we describe some theoretical work conducted in collaboration with Alex Small (Cal. Poly.,

Pomona) on scattering by particles at mismatched liquid-liquid interfaces.

C.1  MOTIVATION

Experiments by Kaz and McGorty [ 103 ] examined the approach of micron-sized colloidal
spheres to planar oil-water interfaces. In those experiments, glycerol was added to the aque-
ous phase to index-match to decane. We were always intrigued by the possibility of doing

these experiments with a non-index matched interface. In particular, this seemed to offer
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Figure C.1.1: Diagram of interfacial scattering geometry.

the possibility of performing in situ contact angle measurements. Solving the interfacial
scattering problem has turned out to be challenging, and a complete practical solution is
not yet at hand. Here we highlight some aspects that we have addressed.

Figure C.1.1 shows the basic setup of the problem. A sphere of index 1, is embedded
with its equator at the interface between a media of indices n, and n,. We will generally

assume that the incident wavevector is normal to the interface (6; = o).

C.2  NAIVE SOLUTION: DIFFERENTIAL APPROACH

The simplest approach, which we first attempted, is to expand the fields in both external
media in VSH appropriate for that media. One can then generate coeflicients that are
matched at boundary conditions: at the interface of the sphere with each medium, and
at the liquid-liquid interface.

This is unfortunately problematic for a very simple reason: it turns out to be impossible
to satisfy boundary conditions at the liquid-liquid interface (6 = 7/2) without requiring
the fields to vanish there. Recall that the radial dependence of the scattered fields must be
in terms of spherical Hankel functions: hs) (nkor). These have different spatial frequencies
in the two media, and it is impossible to match them everywhere.

We thus take an alternate approach, based on an absorbing boundary condition formu-

lated by Grote & Keller [158]. We show that this allows us to rederive the Lorenz-Mie
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solution; it may be useful in getting a solution to the interfacial problem

C.3 ABSORBING BOUNDARY CONDITION AND THE LORENZ-MIE SOLUTION

C.3.1  SETUP

We are more or less following Grote & Keller’s 1995 SIAM paper, “Exact Nonreflecting
Boundary Conditions for the Time Dependent Wave Equation.” We will make several dis-
tinctions from them, however. Using Debye potentials, we can reduce the Mie problem of
solving for the vectorial E and H fields from a plane wave incident on a sphere in an infinite,
isotropic, homogeneous medium to that of solving the scalar wave equation:

%%Uu, f) — V*Ul(r, ) = F(r, U, VU). (C1)
Here Fis a source term which we assume to vanish outside the surface at which we applying
the absorbing boundary condition. Note that G & K set ¢/n = 1. Unlike G & K, we will
also explicitly assume harmonic time dependence at long times, so our Debye potential

u(r) relates to U as
U(r,t — 00) = ¢ “u(r). (C2)

In the usual manner we Fourier-expand u in terms of spherical harmonics Y7*(6, ¢). But
since orthogonality applies in the Mie problem, and the expansion of a plane wave involves
just spherical harmonics with magnetic quantum number m = 1, we choose to work with
the associated Legendre polynomials P} (cos ), following Bohren & Huffman. Because of

normalization differences, in lieu of G & K’s equation 2.4 we have

L a4 )
u(r) = Z M“l(r)Pl (cos 0) cos . (C3)

I=1

To summarize what G & K do, they show that an integral transform of u, G;[u], satisfies
the one-dimensional wave equation. Using the fact that there are no fields at t = o, they
argue that G;[u] is outgoing and depends only on r — ct/n, and subsequently arrive at a

boundary condition on u in Section 4. Subsequently, G & K derive a lemma (7.1) relating
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ru to radial derivatives of G;[u], and use that to arrive at the following boundary condition

atr = R, where Ris the radius of the spherical surface over which we’re applying the ABC:

(a, + gat) g = — 2 ZI:] L (Cat) 7 G, (C.4)

Here 7, is defined as
e S
=4 (Cs)
We also need to solve an ODE for wy(t) = G;[u)](a, t):

(§3t>lwz(t) = (—1)'Ruy(R, t) — Z E (%@) a wi(t). (C.6)

Here we can use our assumption of harmonic time dependence to good advantage: since

20, = —ink,, solving the ODE is trivial:

1
R<’”1"°> - (C)
. -7
1+Z} 1 (— :ZIZO

wy(t) =

Therefore, our absorbing boundary condition (C.4) becomes

J7y !
—ink,R)/ 1 + Z,l-zl (71‘Z130R)"

u(r). (C.8)

(8, — inks) [ruy(r)] = — Z (

J=1

Our goal is to apply this ABC just outside a sphere of radius R. Defining the scattering size

parameter x = nk,R, we introduce the following notation to simplify writing:

1 .

J73; 1

F = 7 — (C.9)
; (i) 14+ 55, iy

We emphasize that the physical interpretation of the absorbing boundary condition, C.8,
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is that the scattered fields are purely outgoing.

C.3.2 DETERMINATION OF THE INTERNAL F1IELD COEFFICIENTS

We here do not try to solve the full problem for the internal field for in the interfacial case
we are ultimately interested in; that work is still in progress. We do, however, show that this
is a viable path forward by explicitly rederiving the Lorenz-Mie solution using the ABC.
At this point we need to note a few notational differences that caused the author some
confusion. If you compare the formulae for the scattering coefficients 4; and b; on p. 123
of van de Hulst with p. 101 of Bohren & Huffman, they are identical. But, if you make the

same comparison for the internal coefficients ¢; and d;, one finds that

c1.8&H = Mdpyan (C.10)
dipeH = MC1ydn (C.11)
where m = fy4. /Mimeq is the relative refractive index. We will for now assume that all

magnetic permeabilities are equal.
Let us begin therefore with solving for dj, following van de Hulst’s conventions aside
from his time dependence, which is ¢’ rather than e ~*“*. Asusual we can expand the Debye

potential v corresponding to an incident plane wave of unit amplitude as follows:

Vipe = smgoz (

Outside the particle, the scattered field can be written in a similar way, but with radial de-

)]l(nk r)Pj(cos 0). (C.12)

pendence via the spherical Hankel function of the first kind since these are (as r — ©0)

outgoing spherical waves:

! .
Vscat = — SINQ Z ( 2t ) hl( )(nkor)P;(cos 0)b;. (C.13)

We can expand the Debye potential for the field inside the sphere in an analogous manner.
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Note that there’s an extra factor of m:

= !
Vipy = Sin @ ; il <l(zl ——:—_11)) mj,(mnk,r)Pj(cos 0)d,. (C.14)
As van de Hulst argues, we must match the Debye potential v inside and outside the

particle:

Vint = Vinc T Vscat (C-IS)
mj,(mx)d; = jj(x) — hl(l) ()b (C.16)

for each I. Here x = nk,R is the size parameter. Now, here is our novel approach: instead
of invoking the continuity of radial derivatives of v, we apply the absorbing boundary con-

dition to vy From matching v, we know that

Vseaty = mjj(mx)d; — jj(x). (C.17)

Therefore, the ABC gives
(ar — inko) [Rvscat,l] = _Flvscat,l (CIS)
(1 —ix + FZ)Vscat,l + Rarvscat,l = 0. (C'19)

Substitute (C.17) into the above:

(1— ix + F) (mj,(mx)d; — j,(x)) + m’«j,(mx)d; — xj,(x) = o (C.20)
(1 — ix + Fy)mj(mx)d; + m*xj,(mx)d; = (1 — ix + Fy)j,(x) + x5, (x). (C.21)

Therefore,
(1 — iz + Fy)jy (%) + jy ()

d = :
: (1 — ix + Fy)mj,(mx) 4+ m>xj;(mx)

(C.22)

We now outline the derivation of the ¢; coefficients, which proceeds in a largely similar

way. We require the following boundary conditions on the total Debye potential u:
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« mu must be continuous across any interface. Recall that m = 1 outside the sphere

in the Mie problem.

1 O(ru)

must be continuous.
m Or

See p. 123 of van de Hulst for these boundary conditions. In particular, it is not correct to
merely say that 2 J,u must be continuous. These boundary conditions on mu and 0, (ru)
come from requiring continuity of the tangential field components Eg, E,, Hg, and H, on
the surface of the sphere.

From the continuity of mu, we obtain
Ul scat — mzjl(mx)cl _]1(x> (C.23)

Using the continuity condition on -0, (ru),

1
ar(rul,scat) - ;ar(rul,int) - 8r(rul,inc) (C'24)
= iul,int + irarul,int — Ulinc — rarul,inc (CZS)

m m

1
= j(mx)e + ;rmnkoj;(mx)cl —jy(x) — x];(x) (C.26)
= (jl(mx) + mx];(mx)) G — ],(x) — x];(x) (C.27)

‘We must now substitute into the ABC:

8r(rul,scut) - ixul,scat + Flul,scat =0 (C'28)
(jl(mx) + mx];(mx)) a —jl(x) — x];(x) — (ix — Fl) (mzjl(mx)cl —jl(x)) = o.
(C.29)

Rearranging to solve for ¢;, we find

_ —(ix - Fz)jl(x) —|—jl(x) 4 x];(x) 0
a= jz(mx) + mxj;(mx) _ (ix N Fl)mzj,(mx)' (C.3 )

We must now show that the our expressions for d; and ¢;, (C.22) and (C.30), are equiv-

alent to those derived in the conventional technique. It initially bothered the author that

163



these expressions do not contain any hl(l) , but we will see that this is not a problem.

For convenience, we will show that Bohren & Huffman’s equations 4.52 on p. 100 are
identical to our equations (C.22) and (C.30) subject to the correspondences noted at the
beginning of Sec. C.3.2. Bohren & Huffman’s formulas contain expressions of the form

[xhl(l) (x)]'. We will make use of a theorem proven in another document:
2hy” ()] = (iz = Fh” (2) (Ca1)
Let us begin with Bohren & Huffman’s expresion for ¢;:

ji () [ ()] — By () [, ()]

Cl,B H — . (C 2)
) eh® ()] — B () g ()] ’
Using the theorem (C.31),
() (i — B (%)] — by () [, ()]
CIB&H — (C )
= e = FOROG)] — W o) )] >
Y (x) [(—1 4 ix — B)jy(x) — ()]
= (C34)
h,(l) (x) [(—1 + ix — Fl)jl(mx) — mx];(mx)] 3

- (1 — ix + Fy)j,(mx) 4+ mxj)(max)

It is immediately apparent that the preceding expression is equal to m times our expression
for d; in Equation C.22), as we wanted to show.
We can similarly show that our expression for ¢; (Equation C.30) is equivalent to the

Bohren & Huffman expression for d;. Using the spherical Hankel theorem, Equation C.31,
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we obtain

B0 ) () + )
(C.36)

a= [xh“ )]/
(j(m) + g ) — 2500

(

1

@) + kY p ) ()
By (o) [y (ma) ) — e[k ()] (mex)

o, . m ]l(mx)

: (C.37)

which indeed agrees with Bohren & Huffman’s expression for dj, up to a factor of m. This
completes the proof that the ABC can reproduce the Lorenz-Mie solution, and suggests
that it should be useful for attacking the more difficult interfacial scattering problem.

C.4 GENERALIZED OPTICAL THEOREM

Another related problem we have considered is the derivation of a generalization of the
Optical Theorem for the case of a particle breaching a liquid-liquid interface. The Optical
Theorem relates the the extinction cross section o, of a scatterer to the scattering amplitude
in the forward direction, and is useful for checking the results of scattering calculations. We
give an outline of the derivation of the basic case here. Our work has been motivated in part

by similar results obtained by Torrungrueng and co-workers [159].

C.4.1  GEOMETRY

We recapitulate our geometrical setup here. In our coordinate system (Fig. C.4.1), the
plane z = o corresponds to the interface between two media of indices n, (z < o) and n,
(z > o), and corresponding magnetic permeabilities ¢, and y,. We assume that a scatter-
ing particle straddles the interface. While Fig. C.4.1 is drawn such that the particle has its

approximate center at the origin, we do not assume this.
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Figure C.4.1: (a) Schematic and (b) coordinate system for the particle and interface,
as well as the directions of the incident, reflected, transmitted, and scattered fields.

C.4.2 INCIDENT, REFLECTED, AND TRANSMITIED FIELDS

We assume the system to be illuminated by a plane wave coming from the first medium
(n,, u,), propagating in the +z direction. Its wave vector in the first medium is k; =
n,k, (cos 0,2 + sin 6%); that is, it travels in the (x, z) plane. We assume that the incident
electric field has vector amplitude El,,-. The magnitude of El,,- is unity (for convenience),
and the direction indicates the polarization. We will only consider the case of no total in-
ternal reflection. Thus, when the wave hits the interface, it is partially reflected and partially
transmitted. The amplitudes of the reflected (£, ;) and transmitted (E, ;) electric fields are
determined by the Fresnel coeflicients for the TE and TM components, and the directions
by the Law of Reflection and Snell’s Law. The associated magnetic fields are determined
from Faraday’s Law:
1 0pH

VXE=——— — ik X E = ik,uH
c Ot : ot

k
H= — xE (C.38)

ko
The incident power is determined from the magnitude of the time-averaged Poynting
vector (S) = £Re (E X H"). For notational convenience, we leave out the time-averaging

brackets in what follows, and we let ¢ = 1. Because |B| = n|E| = u|H]|, and the incident
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field has unit amplitude, the incident power per unit area is:

n,
Iinc = (C3 9)
24,

This relation is needed at the end of the derivation, when we divide the scattered power by
incident intensity to determine the cross-section.

To be consistent with derivations of the Optical Theorem in homogeneous media, we
refer to the incident, reflected, and transmitted fields collectively as E; and H;. While the
reflected and transmitted fields are not, of course, “incident,” they are independent of the
scatterer. For clarity, we will henceforth refer to the incident field in the traditional sense

as the incoming field.

C.4.3 SCATTERED FIELDS

In the far field, the scattered fields E; and H; are:

exp (ink, exp (ink,
E =500 2 _ (50,000 1 5,(0.0)0) T ()
H, — gf « E (C.41)

where (6, @) is the vector scattering amplitude for scattering in the (6, ¢) direction, and
we have applied Faraday’s Law to determine H,. We suppress the implied e~** dependence
of all fields for convenience. Because the radiated fields are transverse, § has only 6 and ¢

components.

C.5 CALCULATING THE SCATTERED POWER

C.5.1 THE FORM OF THE KEY TERMS

We begin by considering the energy passing through a large imaginary sphere of radius
r, centered at the origin and surrounding the particle. We assume k,r >> 1, so that the

scattered fields on the sphere are in the far-field. The rate at which energy is absorbed inside
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this sphere is given by the negative of the flux of the Poynting vector through the sphere:

W, = —-Re </ (E x H) - ¢ dQ)
2 e

= —iRe (/ (E; x H + E; x H + E; Xx H] + E; x H}) -fr%iQ) (C.42)
4m

where we have left out time-averaging brackets, since the effects of averaging are encom-

passed in the ? factor. The first term is the flux due to the incident, reflected (from the

interface) and transmitted (through the interface) beams. Since medium 1 and medium 2

are assumed to be non-absorbing, this term integrates to zero. The second term is the neg-

ative of the scattered power W;. The two remaining terms are due to interference between

the scattered field and the other fields, which manifests as extinction. Thus:
W, + W, =W, = —IRe (/ (E; X H + E, x H}) - ¢ dQ) (C.43)
2 e

Since |k|/k, = n, the first term on the right side of Eq. C.43 simplifies to:

t-(E;xH)=-E;-(t xH) =

n n
—E; - (f X (f- X —E)) = -E;-E; (C.44)
Z Z

The first step follows from the triple scalar product rule. In the last step, the two cross
products of the scattered field with £ yield the scattered field (with a minus sign) because #
is perpendicular to the field and has unit magnitude.

The second term of Eq. C.43 is similar to the first term, but with the electric and magnetic
fields interchanged. We now show that this term has the same magnitude as the first term.
In the far-field, the scattered electric and magnetic fields, like the incident fields, are both
transverse to the direction of propagation, and are mutually perpendicular to each other.
Their magnitudes are also equal, up to a factor of n. Consequently, swapping E; for H; and
E; for H, does not change the magnitude of the cross product, as one swap gives a factor of
n and the other gives a factor of 1/n, resulting in cancellation under multiplication. (This is

only true in the far-field; in the near-field, the electric and magnetic fields can decouple.)
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Alternately, if one thinks of the fields as superpositions of plane waves in Fourier space,
swapping the electric and magnetic fields amounts to flipping all polarizations, which does
not change any relative orientations. Consequently, in the far-field, both vector terms in
the integrand Eq. C.43 should have equal magnitude.

However, when electric and magnetic fields are interchanged, there is a sign ambiguity
that needs to be considered for determining the sign of the dot product with . In anticipa-
tion of the key result of this paper — that the values of the key integrals, Eq. C.43, are pro-
portional to the value of the scattering amplitude in the directions of the “incident” plane
waves probing the scatterer — we consider the scattering amplitude in the second term of
Eq. C.43 for those directions.

There are two physical possibilities that result in different signs: the “incident” plane
wave and the scattered wave can propagate in either the same direction or in opposite direc-
tions. For E; and H; arising from the transmitted and reflected plane waves, in the far-field,
the scattered field and the relevant plane wave both propagate in the same direction. Thus,
E; X H; and E; X H} both yield vectors pointing in the same direction, and as already ar-
gued, both of these cross products have the same magnitude (up to complex conjugation)
(Fig. C.s.1a). At most, scattering can rotate the scattered field relative to the “incident”
field, so that the angle between E, and H; is the same as the angle between E; and H;. In
the direction of the incoming plane wave, however, the scattered field and incoming field
transport energy in opposite directions. Consequently, the angle between E; and H; dif-
fers from the angle between E; and H; by 180 degrees, and swapping the fields introduces
a minus sign in the cross product (Fig. C.s.1b).

We therefore have the following relation for the second term in Eq. C.43:

n
t-E, x H =+-E-E, (C.45)

U
that is, plus (for the reflected and transmitted waves) or minus (for the incoming wave)
the complex conjugate of the result in Eq. C.44 for the first term. When both terms in
Eq. C.43 have the same sign, adding Eq. C.44 to its complex conjugate will give twice its

real part. When the second term has a minus sign, we will get 2i times the imaginary part of

169



(a) Co-propagating (b) Counter-propagating

Figure C.5.1: Mutual orientations of E; and H;, and E; and H;, for “incident” and
scattered fields that are co-propagating or counter-propagating. All vectors in each
part exist at the same physical point, but have been separated for clarity. (a) The
“incident” and scattered fields propagate in the same direction, so both E; x H; and
E; x H; point in the same direction. (b) The “incident” and scattered fields propagate
in opposite directions; E; X H; and E; X H; point in opposite directions.

Eq. C.44. Ultimately, after evaluating the integrals in Eq. C.43, we will take the real part to
get a physical extinction power, and the imaginary part will not contribute. Consequently,
in the integrals in Eq. C.43, rather than having to consider three contributions to E;, we
need only consider the contributions from the transmitted and reflected plane waves. We

need not consider contributions to E; from the incoming wave.

C.s.2 THE KEY INTEGRAL

To evaluate the integral in Eq. C.43, we consider each medium separately. We consider
only the first term, since the second term has equal magnitude, as argued above. For con-
venience, we change the coordinate system from that shown in Fig. C.4.1. We will sepa-
rately consider the contributions to E; from the transmitted and reflected plane waves, and
for each of these plane waves choose the z axis to be parallel to the direction of propaga-
tion. This makes it easy to express the plane waves as ¢"*" <% but complicates the limits
of integration. The outgoing fields remain in the form (§(6, ¢) /k.r) exp ink,r.
Referring to Eq. C.43, we thus have to compute integrals of the form:

cos 0=1
/ E;-E rdQ = // LE* 6,9) - E ¢ mkori=cos0),2 g o5 9 dp (C.46)
medium i

¢ Jinterface "o
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Figure C.5.2: The polar angle 6 (measured with respect to the k vector) at the in-
terface depends on the azimuthal angle ¢.

where E, is the amplitude of the appropriate plane wave. The lower limit on 0 depends on

the value of ¢, as shown in Fig. C.5.2.

We first do the integral over cos 8, integrating by parts:

e*inkor(17cos ) |€°8 6=1

medium ? lnko

interface

cos =1 1 ag*(g (P) ”
_ ’ .E ¢ i or(1—cos 6) ]
/ / ink? O cos6 o€ dcos 8 dg (C.47)

¢ J interface

Only the first term in Eq. C.47, the boundary term from integrating by parts, survives in
the far field. In the boundary term, a factor of 1/r from the asymptotic dependence of the
fields and an additional factor of 1/r from integrating the exponential together cancel the
factor of r* from integrating over area. The second term of Eq. C.47 vanishes in the far field:
further integration by parts would result in two more terms each with an additional factor
of1/r.

The boundary term in Eq. C.47 is straightforward to evaluate at the upper bound. Sub-

sequently, integration over ¢ — around the pole in spherical coordinates — gives a factor of
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27, since § is independent of ¢ at = o. We therefore obtain

“(0,9) - E,
/ E -E rdQ = 271% + interface term. (C.48)
medium mK,

The first term on the right comes from the upper bound, and there is an additional contri-
bution from evaluating the boundary term in Eq. C.47 at the lower bound, which occurs
at the interface.

Evaluating the interface term results in a serious problem. Components of the “inci-
dent” and scattered fields parallel to the interface must be continuous across the interface.
The Fresnel coeflicients enforce this condition for the “incident” plane waves, and we re-
quire € to be continuous across the interface. However, exp ink,r(1 — cos 8) is not contin-
uous across the interface. Consequently, the terms in each medium arising from evaluating
Eq. C.47 at the interface do not cancel each other unless the media have the same refractive
index. We thus have a result for the extinction power that depends on r, which is clearly
unphysical.

It is tempting to assume that these terms at the interface vanish upon integration over
@, since the integrand contains a rapidly-oscillating exponential. But for incident beams
that are normal or nearly normal to the interface, 8 is approximately 9o° at the interface,
and the 1 — cos 0 factor in the exponent (approximately 1) depends only weakly on ¢
when integrating around the interface. Integrating over ¢ only gives a vanishing result
if exp nk,r(1 — cos 8) oscillates more rapidly than §(0, @) as a function of ¢. For an off-
normal incoming wave and r — o0 this condition is satisfied, but not for a normal incom-
ing wave. Likewise, for an incoming wave that is close to normal incidence, the extinction
power could oscillate as a function of r at distances out to 1/ A@ (where Af is the deviation
from normal incidence). For small A6 this oscillation of the extinction power could thus
persist at distances typically associated with the far-field. Consequently, we have the po-
tential for unphysical oscillatory dependence of the extinction power on r in the far-field.

The only resolution of this problem is to require that § be zero at the interface. With this
condition in hand, we conclude that the value of the key integral, Eq. C.46, is given (in the
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limit of large ) by Eq. C.48:

27T

/ E -E rdQ=—8£(0,9)E,. (C.49)
medium lnko

C.5.3 THE GENERALIZED OPTICAL THEOREM

To go from the key integral, Eq. C.49, to the generalized Optical Theorem, we apply the
following steps. We already showed in C.s5.1 that we only need to consider the reflected
and transmitted contributions to the “incident” wave E;. From Eq. C.43 and the results of
C.s.1, for these two contributions, we add the complex conjugate of the result in Eq. C.49,
yielding twice the real part. This factor of 2 cancels a factor of 1/2 from computing a time
average. Moreover, we have a prefactor of n/y in front of the integrand in the key integral.

We thus obtain

2T 1 .
Wext = ——Re (_g (kt> : Ez,t + ;g (kr) : El,r)

ke iy,
27 1, 1
=—Fm(;z&»Ew+—sm»EQ. (Cs0)

Here, E, , is the reflected plane wave in medium 1 and E, ; is the transmitted plane wave in
medium 2. Since the Fresnel coefficients are real, the “incident” fields have real amplitudes,

and we can re-express this in terms of § at the expense of a minus sign:

27T 1 1
Wext = Flm (H_g(kt> : Ez,t + _g(kr) : E1,r> . (C-Sl)

To go from power to cross-section we divide by the intensity of the incident beam, which

is u, /2n,, according to Eq. C.39. We find that the extinction cross-section is:

47n, 1 1
w=yﬂmgi@waﬁ~¢m»a). (Cs2)

2 1

This result, our generalized Optical Theorem, is equivalent to that of Torrungrueng et al.

[159] and reduces to the traditional Optical Theorem in the absence of an interface, when

173



there is no reflected plane wave. The incoming polarization and the Fresnel coefhicients
determine E, , and E, ;. Other conventions for the assumed forms of the “incident” plane
waves and scattered wave could lead to slightly different factors of 1, 2, and 7, and possibly
the replacement of the real part with the imaginary part, depending on the definition of
£. The key point remains that the extinction cross-section is determined by the scattering

amplitude in the directions of the transmitted and reflected plane waves.
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Studying Inertial Focusing with Holography:
Modeling Motion Blur

We discuss in this chapter aspects of a side project that the author has worked on in collab-
oration with Anna Wang and with Joseph Martel, a student in Mehmet Toner’s laboratory
at the Massachusetts General Hospital. We do not go into details of the complex but fas-
cinating fluid dynamics underlying the inertial focusing phenomena that motivated this
work. We do, however, discuss the modeling of holograms of rapidly moving particles. We
discuss some aspects of this problem that have not been published elsewhere, and in par-
ticular address a blurring technique based on Fourier transforms that has not previously
been applied to holograms. These techniques enable the measurement of the 3D position

as well as velocity of a rapidly moving colloidal particle.
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D.1  INTRODUCTION TO INERTIAL FOCUSING

Imagine flowing a colloidal suspension down a microfluidic channel — for instance, a cylin-
drical glass capillary with a radius R of say so ym. In a dilute colloidal suspension, the
particles are not structured in any way. So, if the suspension initially starts flowing through
the capillary with the particle positions randomly dispersed through a cross section of the
capillary, one would expect to obtain a random distribution further down the capillary.
This intuition is correct for sufficiently slow flows, but it turns out to be wrong for fast flu-
idic flows. For in such cases, inertial focusing can occur: the particles will eventually all be
found to lie within an annulus located at a radial distance of ~ 0.6R from the centerline of
the channel [ 160-162]. Such phenomena were first observed in the early 1960’s by Segre
and Silberberg [ 160, 161], although the first good theoretical explanations did not come
until the 1980’s [163]. It turns out that in addition to the drag forces from the fluid on the
particles, the presence of the capillary walls results in lift forces on the particles, which re-
sult in the inertial focusing. Similar focusing effects happen in rectangular channels, where
the particles focus to four symmetric points in the channel cross section [164].

These phenomena are difficult to study quantitatively because in modeling them, the
standard simplifying assumptions of fluid dynamics are invalid. The viscosity 7 of the fluid
cannot be neglected, but the fluid inertia cannot be neglected either. It is thus necessary to
solve the full Navier-Stokes equations in some manner, generally perturbatively. We refer
the interested reader to the review by Di Carlo for further details and references [162].

Additional phenomena can occur in curved channels, as the curvature induces a sec-
ondary Dean circulating flow. The Dean flow results in drag forces perpendicular to the
direction of the principal flow down the channel and can change the positions to which
particles focus [165]. The positions to which particles focus depend on parameters that
include the particle size; it is therefore hoped that such physical effects could be the ba-
sis for marker-free cell sorting technologies. The detailed physical mechanisms of these
effects remain under active investigation.

One problem that has arisen in the course of such investigations is illustrated in Figure
D.1.1, from [165]. The figure shows a fluorescence streak micrograph that contains many

particles; the particle velocity is high enough relative to the shutter time that the particles
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Figure D.1.1: Schematic diagram and fluorescence streak micrograph of particle
separation during flow in a curved channel. A dilute suspension of fluorescent particles
flows through a spiral channel. At sufficiently high flow rates, the particles localize to
one of the three indicated positions in the channel cross-section. Positions 1 and 2
mirror each other vertically; this is not visible within the channel and is only qualita-
tively observed at the outlet. Reprinted with permission from [165]. Copyright 2012,
American Institute of Physics.

appear as continuous streaks. Under the flow conditions in the figure, the particles appear
to focus to three positions in the channel, where two of the positions are vertically on top
of each other. It is not possible to quantitatively determine the height of these positions
(labeled 1 and 2) just with fluorescence microscopy. We therefore investigated holographic
microscopy as a potential solution.

Preliminary experiments using a Phantom V¢ high speed camera with a minimum shut-
ter time of 1ys soon revealed that at typical flow rates, the particle holograms did not qual-
itatively resemble holograms of stationary particles. This was due to the particles, moving
at speeds of ~ 1 m/s in the channel, travelling appreciably over the shutter time of the
camera. A typical experimentally recorded blurred hologram is shown in Figure D.1.2. Ef-
fects of moving particles in holography were first investigated by Dixon et al. [166], who
used a phenomenological model based on a decrease in contrast of the hologram fringes to

model the blurring. Here we describe two methods we have developed to model blurred
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Figure D.1.2: Experimentally recorded hologram of a polystyrene particle moving
from left to right. The motion causes the hologram fringes in the direction of motion
to be blurred.

holograms and present some initial results obtained therein.

D.2  SiMPLE BLURRING ALGORITHM

The main thing to note about motion blurring in holograms is that it results from a superpo-
sition of intensities and not of fields, as in the case of the Mie superposition approximation.
Blurring, in this picture, merely amounts to the adding up of holograms calculated for a
particle at different positions.

Consider a particle that at t = oisatr = r,. If the particle moves with velocity v, its
position at an instant Af later is just r, 4 vAt. If the camera has an exposure time of T,
we may compute n holograms at evenly spaced time intervals between o and T. We use a
dimensionless number f3 to determine the number of holograms to be summed:

BIvIT

n = m (Dl)

where 1.4 is the incident wavelength in the medium. We typically find = 4 adequate (4
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holograms per wavelength traveled by the particle). We compute the n holograms and then
divide their sum by n to model the blurring. This approach is rigorous, involving no phe-
nomenological models, and works well, but has the diadvantage of being computationally
intensive, particularly for the ~ 10 ym particles typically used in experiments. Many scat-
tering quantities are redundantly computed. We therefore describe an alternate method

for modeling blurring that is computationally much more efficient.

D.3 FOURIER TRANSFORM BLURRING ALGORITHM

The simple blurring model is inefficient because it involves making many redundant com-
putations of scattering. A much more efficient approach, without these redundancies, is
given by Potmesil and Chakravorty [167]. This approach is less general than the simple
blurring algorithm, in that it can only be applied to lateral particle motions (in x and y),
but that is not a limitation for the intertial focusing experiments.

The Potmesil & Chakravorty algorithm applies to any image of moving objects, not just
holograms, so our discussion here will not assume we are dealing with holograms®. In the
algorithm, motion blur is regarded as a convolution. Adopting their notation, let f(«, y')
be an image of a stationary object that is to be blurred, and let g(x”, y") denote the blurred
image. Any pixel in the blurred image will be an integral over portions of the unblurred

image:
) = 5 [ al0)0) (D)

Here x(t) and y(t) denote the positions in the unblurred image that are mapped to (x”, y")

in the blurred image at time t. In particular, for a velocity v = v, & + v, 9,
x(t) =& —vt; y(t) =y —nt. (D.3)

In this way, Equation D.2 can be written as a convolution integral:

) =5 [ [ A5 = a0y @)y a ()

""The original paper [167] applies the algorithm to images, including a picture of a house.
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where the spatial integrals run over the image f. It follows that we can Fourier transform
into the reciprocal space (u, v) where the convolution becomes a product. We use Equation
D.3 to evaluate the trivial integrals over x” and y/, and do Fourier transform integrals over

x" andy”:

G(u,v) = //g(x”,y”) exp[—ami(ux", vy")] du" dy"
T
— 5[] [ o=ty =y eslamitand o 'y . ()

If we define constants a and b via v, = a/T and v, = b/T, we can apply the translation

property of Fourier transforms:

1

G(u,v) = TP(u,v) /OTexp [—zm’(ua + vb)%] dt (D.6)

where F(u, v) is the Fourier transform of f. This is clearly a product between F(u, v) and a

transfer function H(u, v):

1

T
t
H(u,v) = ?/ exp [—zm(ua + vb)? dt. (D.7)

This integral may be evaluated to give

sin (7(ua + vb))

Hw,v) = 7(ua + vb)

exp|[—im(ua + vb)]. (D.8)

Blurred holograms Ay, may thus be calculated in the following way:
1. Calculate a hologram h of a particle located at r = r,.
2. Compute the fast Fourier transform of h.
3. Multiply by the transfer function in Equation D.8.

4. Compute the inverse fast Fourier transform to obtain hy,.
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D.4 PRELIMINARY RESULTS

A series of preliminary experiments have been conducted using microfluidic devices fabri-
cated by Joseph Martel and samples of polystyrene spheres in an aqueous solution density-
matched with iodixanol. Data has been taken with particles with diameters of 5, 10and 15
um. We collect data by continuously recording high-speed movies of flow through a chan-
nel using a Phantom Vg camera with typical exposure times of 1 ys and frame rates of 6600
frames per second. The samples are sufficiently dilute that most of the recorded frames
contain no particles; we select the frames that do. Furthermore, the particles move rapidly
enough that each particle typically appears in only a single frame. We first show, in Figure
D.4.1, that using the simple blurring model, we can successfully fit holograms of rapidly
moving particles. The fits depend on the particle 3D position as well as the particle veloc-
ity (assumed to be in one horizontal direction). While the 3D position information is what
we need to study inertial focusing, getting particle velocities is a useful by-product.

By looking at many particles in the channel, we can successfully measure distributions
of particle heights. Figure D.4.2 shows a bimodal height distribution; this is readily ob-
served using DHM and an appropriate scattering model, but almost impossible to obtain
quantitatively using streak microscopy.

Finally, we show that the rapid blurring algorithm based on Fourier transforms gives
results that are the same as the simple blurring model. Preliminary tests indicate that the
transform method is more than an order of magnitude computationally faster, particularly
with large particles that move several wavelengths during the exposure time. Figure D.4.3
compares two holograms computed using the simple and Fourier transform techniques;
the images agree with each other to 0.1%.

Further experiments and analysis are in progress; in particular, the tremendous com-
putational speed enhancement gained through the Potmesil-Chakravorty method should

make further fits much less tedious.
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Figure D.4.1: Hologram of a 10 ym diameter particle flowing in a channel. Image
has been cropped to remove fringes from non-index matched microfluidic channel
walls. The particle moves to the right at 3.3 m/s, where the speed has been deter-
mined from fitting a moving sphere model to the hologram.
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Figure D.4.2: Bimodal distribution of particle heights in a channel; heights deter-
mined using DHM.
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Figure D.4.3: Simulated holograms of a 10 ym diameter polystyrene sphere moving
to the right at v, = 2 m/s. Left: computation using simple blurring algorithm. Right:
computation using Potmesil-Chakravorty Fourier transform algorithm.
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