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Abstract
Biclustering is a technique for clustering rows and columns of a data matrix simul-

taneously. Over the past few years, we have seen its applications in biology-related

fields, as well as in many data mining projects. As opposed to classical clustering

methods, biclustering groups objects that are similar only on a subset of variables.

Many biclustering algorithms on continuous data have emerged over the last decade.

In this dissertation, we will focus on two Bayesian biclustering algorithms we devel-

oped for discrete data, more specifically categorical data and ordinal data.

The international HapMap project has made available the single-nucleotide poly-

morphism (SNP) data of thousands of individuals across the world. We analyzed

the SNPs data with our biclustering algorithm for categorical data and described the

similarities between human populations. In contrast to existing methods, our method

can locate the SNPs that are specific to subpopulation groups. This can provide in-

sight to the genome-wide association study (GWAS) by eliminating SNPs that are

common to di↵erent ethic groups. We also identified a number of SNPs that are

linked to disease, and this thesis describes their behavior in di↵erent subpopulations.

The biclustering process can be used as a variable selection step prior to existing

population inference procedures.
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Chapter 1

Introduction

Clustering is the art of organizing similar objects into groups according to their

variables so that objects are more similar to each other within each groups. It is a

common technique in statistical data analysis, and has applications in many fields,

e.g., biological sequence analysis, population structure inference, medical imaging,

market research, social networking analysis, recommender systems, search engine op-

timization, etc.

Central to the problem of clustering is how one defines a ”cluster.” The notion of a

cluster can be defined in many ways, resulting in many di↵erent clustering algorithms

(Estivill-Castro (2002)). Typical cluster models include connectivity models, which

choose a measure of distance and then perform clustering based on distance con-

nectivity; centroid models, which characterize clusters using a single centroid vector;

distribution models, which employ statistical models to describe the clusters; density

models, which define clusters as connected dense regions in the data space; subspace

models, which select a subset of attributes and define clusters based on this subset of
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Chapter 1: Introduction

space; etc. Subspace models are also called biclustering, or two-way clustering, which

is the model this dissertation will explore in more detail in the following chapters.

Clustering algorithms produce di↵erent results based on their particular defini-

tions of ”cluster.” Connectivity-based hierarchical clustering treats clusters as closely

connective objects, and describes a cluster by the maximum distance to connect all

parts of such cluster. There are also multiple choices for distance measure, e.g., sin-

gle linkage, complete linkage, average linkage, ward, median, etc. More clusters will

form as distance increases, and this can be represented with a dendrogram, with the

x-axis as the objects and the y-axis as the distance for the clusters to merge. There

is no single partitioning of the data set but a hierarchy of clusters at di↵erent levels.

K-means is another popular clustering algorithm based on centroid models. Given K

(the number of clusters) the algorithm iteratively assigns each object into its nearest

cluster and calculates the cluster’s centroid. This is a NP-hard optimization problem

and can usually be approximated. The clustering model most used by statisticians

is distribution model-based clustering, or model-based clustering. The major bene-

fit of model-based clustering is that the clusters are clearly defined as /textitobjects

that share the same distribution. The interpretation of the clustering results is also

straightforward, with each fitted parameter having its context based meanings. How-

ever, a known problem with model based clustering is overfitting. When we add more

parameters into the model, we can always explain the data better, but the complex-

ity of the model grows. Model complexity penalties are necessary for choosing the

appropriate model.

Biclustering takes the task to the next level by seeking objects that are similar

2



Chapter 1: Introduction

over a subset of variables. The concept was first introduced by Hartigan (1972), and

the term biclustering was coined by Mirkin (1996). However, for almost 30 years, the

technique has seen no application in real data. In the year 2000, as more and more

gene expression data was becoming available, Cheng and Church reintroduced the

same concept and applied it to the gene expression data of yeast (Cheng and Church

(2000)).

To further illustrate the concept, let us consider a rectangular matrix M, with

I rows and J columns. Rows represent objects and columns represent features or

variables. Biclustering algorithms seek to find a sub-matrix: a subset of rows that

share similar patterns across a subset of columns. A simple example is consumers’

purchase behavior with respect to clothing. Variables for clothes include color, style,

material, texture, size, etc. Some people may only consider style, color, and texture

when making a purchase, while other people may care about style and material.

Based on the preferences of people, we can divide them into two separate groups,

one using style, color and texture variables, the other one using style and material.

Those form two biclusters and we used only a subset of the physical properties of

clothes for each group. Another example for illustrating the concept of biclustering is

the subject matter of documents. After removing commonly used words like a, the,

do, etc., we will have a data matrix. Each row of the matrix represents a document

and each column represents the counts of the occurrences of words that appeared in

the document. We can thus find a subset of words and use those words to group

similar documents together. Each of those groups are assumed to include documents

with the same subject matter. For those problems, the data matrix contains many
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Chapter 1: Introduction

variables but the groups are defined only using a subset of the variables. Traditional

partitioning methods such as k-means will often produce undesirable results and are

not ideal algorithms for classification.

Just as with traditional clustering, di↵erent definitions of biclusters inform dif-

ferent biclustering algorithms (Madeira and Oliveira (2004)). There are four major

types of biclusters: (a) Biclusters with constant values; (b) Biclusters with constant

values on rows (or columns); (c) Biclusters with coherent values (additive or multi-

plicative); and (d) Biclusters with coherent evolutions. Many biclustering algorithms

have been developed since the application of biclustering to gene expression data, and

we will review some notable algorithms in the next chapter.

This dissertation will focus on introducing two new biclustering algorithms, and

one related application, to Human SNPs data from the HapMap project. Chapter

2 will give an overview of popular biclustering algorithms and their applications in

di↵erent fields. Chapter 3 will introduce the basics of categorical data, drawing exam-

ples from di↵erent subjects, and will explain the theoretical background for Bayesian

biclustering on categorical data. Chapter 4 will illustrate scenarios relating to the

usage of ordinal data, and will also detail the Bayesian framework for biclustering

on ordinal data using a Normal Random Cuto↵ approximation model. We also fur-

ther extend the biclustering model with the capacity to handle more levels of ordinal

data by introducing a Uniform Binomial mixture model. Chapter 5 will focus on the

application of the categorical biclustering model to human single-nucleotide polymor-

phism (SNP) data from HapMap Phase III, as well as to disease linked SNPs analysis.

Therein, we also present significant findings and result analysis.

4



Chapter 2

An overview of Biclustering

Methods

2.1 Notation

We will now introduce a few notations to formally define bicluster. These notations

will be used throughout the rest of the Chapter.

Suppose we have a data matrix A, with rows as object set X and columns as

variable set Y and the entry aij. The purpose of biclustering methods is to find a

sub-matrix of A with row set I ⇢ X and column set J ⇢ Y, such that the I objects are

as similar as possible on column set J. This sub-matrix A{I,J} is called a bicluster, as

seen in Figure 2.1. We use a.j to denote the mean of the jth column in the bicluster,

ai. as the mean of the ith row in the bicluster, and a.. as the overall mean of all

elements of sub-matrix A{I,J}.
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Chapter 2: An overview of Biclustering Methods

Figure 2.1: Illustration of a Bicluster. For a single bicluster, after re-arranging rows
and columns, we can change it from the configuration on the right panel to the one
on the left.

2.2 Types of Biclusters

By the nature of the data, there are two types of biclusters: (a) Biclusters with

quantitative values and (b) Biclusters with qualitative values. According to the con-

figuations of the biclusters they detect, Madeira and Oliveira (2004) further clustered

existing biclustering algorithms into four major classes:
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Chapter 2: An overview of Biclustering Methods

1. Biclusters with constant values.

constant values on rows and columns

aij = µ

2. Biclusters with constant values on columns or rows.

constant values on rows aij = µ+ ↵i

constant values on columns aij = µ+ �j

3. Biclusters with coherent values.

additive aij = µ+ ↵i + �j

multiplicative aij = µ · ↵i · �j

4. Biclusters with coherent evolutions.

Figure 2.2: Illustration of the four major types of biclusters that existing algorithms
seek to recover.

Figure 2.2 displays all four types of di↵erent biclusters. In Figure 2.2a, values are

all the same for each cell in the data matrix. In Figure 2.2b, every row has identical

7
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values while di↵erent rows have di↵erent values. In Figure 2.2c, every column has

identical values while di↵erent columns have di↵erent values. Figure 2.2b and Figure

2.2c are equivalent if we transpose the data matrix. In Figure 2.2d, every cell is

a summation of row e↵ect and column e↵ect, each row has a di↵erent row e↵ect,

and similarly for di↵erent columns. In Figure 2.2e, every cell is a multiplication of

row e↵ect and column e↵ect, each row has a di↵erent row e↵ect, and similarly for

di↵erent columns. Figure 2.2d and Figure 2.2e are essentially the same if we take

the logarithm of the data matrix. The first three types of biclustering algorithms

deal with the numeric values of the data matrix directly. They aim to find subsets

of rows that are similar over corresponding subsets of columns. Because these three

types of biclustering use the numeric values of a data matrix directly, many related

biclustering algorithms have been developed, which we will illustrate in the following

sections.

The fourth type of biclustering algorithm deals with coherent evolutions, regard-

less of the real numeric values in the data matrix. The biclustering is performed on

an abstract layer of the data. This abstract layer views data as symbols. There are

two types of symbols: non-ordered symbols, that is, nominal (categorical); and order-

preserving symbols, that is, ordinal. Few algorithms have been developed for coherent

evolution data and most of them are simply ad-hoc. This dissertation presents a gen-

eral framework for the biclustering of these two types of data, and will present the

details thereof in Chapters 3 and 4. Our biclustering algorithm for categorical and

ordinal data can handle both numeric matrices and matrices with coherent evolution

data. The continuous case for coherent value (additive and multiplicative) bicluster-

8
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ing has been covered by Gu and Liu (2008).

2.3 Patterns of Biclusters

Figure 2.3: Di↵erent structures of biclusters, from Madeira and Oliveira (2004)

There are generally more than one bicluster in a data matrix. Let’s assume there

are K biclusters in a data matrix. In the ideal case, after reordering rows and columns

of the data matrix, the biclusters may appear as rectangular blocks. Within each of

those blocks, the objects are more similar to each other in terms of their values on

the chosen subset of columns.

For most algorithms, we assume a neutral background where little information

can be captured for the elements outside the bicluster blocks. However, in our model,

we do not assume the existence of a background, and allow columns that are shared

across biclusters to be background in the traditional meaning. These background

columns can be eliminated for variable selection purposes.

9
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Depending on the relative positioning of those blocks in the data matrix, Madeira

and Oliveira (2004) stated there are eight di↵erent configurations for the bicluster

structures after reordering rows and columns, as plotted in 2.3.

1. Biclusters with exclusive rows and columns.

2. Nonoverlapping biclusters with checkerboard structure.

3. Exclusive-rows biclusters.

4. Exclusive-columns biclusters.

5. Nonoverlapping biclusters with tree structure.

6. Nonoverlapping nonexclusive biclusters.

7. Overlapping biclusters with hierarchical structure.

8. Arbitrarily positioned overlapping biclusters.

This is an exhaustive list of possible relative positioning of biclusterings. However,

from a variable selection perspective, we can unify them into one single configuration:

biclusters with exclusive rows. First, biclusters with exclusive columns are equiva-

lent to biclustering with exclusive rows by transposing the data matrix. Biclusters

with exclusive rows and columns can be viewed as a special case of biclusters with

exclusive rows. Non-overlapping biclusters with the checkerboard structure in Fig-

ure 2.3c can be further grouped into three larger biclusters each with exclusive rows.

Non-overlapping biclusters with the tree structure in Figure 2.3f can be grouped into

three new clusters with cluster 1 and cluster 2 only having the first one-thirds of the

10



Chapter 2: An overview of Biclustering Methods

column sets. Similarly, for Non-overlapping nonexclusive biclusters in Figure 2.3g,

three new biclusters can be formed with cluster 2 having a gap in the middle of the

bicluster. Overlapping biclusters with a hierarchical structure as displayed in Figure

2.3h are more complicated and can be dissected into seven new biclusters, each with

exclusive rows (some of them have gaps in them). Following the same logic, we can

separate the arbitrarily positioned overlapping biclusters in Figure 2.3i into several

smaller biclusters with exclusive rows. Under our model setting, we can simplify all

the above bicluster patterns to a single chessboard structure, and everything is a

special case for this structure. Two examples are presented in Figure 2.4 and Figure

2.5.

11
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Figure 2.4: Non-overlapping Non-exclusive biclusters mapped to three row-exclusive,
column-non-exclusive biclusters under our definition of biclusters.

12
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Figure 2.5: Two overlapping biclusters mapped to five biclusters in BBCD.

The essential part of this concept is to assign every row into a bicluster. If every

column of the chosen bicluster is the same as the corresponding column across all other

biclusters, this bicluster will be treated as trivial, and be discarded. This idea will be

further illustrated in Chapter 3 as we explain our biclustering model on categorical

data.

13



Chapter 2: An overview of Biclustering Methods

2.4 Biclustering algorithms

1. Block Clustering

The first biclustering algorithm ever developed was by Hartigan (1972), which

is also called block clustering. Block clustering aims to find biclusters with

constant values across the data matrix. Supposing there are K biclusters in

the data, an ideal case would be that within each of those K biclusters the

entry values aij are identical. They use a SSQ (Sum of Squares) to measure the

deviation of the found biclusters from the ideal model.

Given a particular partition B1, B2, . . . , BK , where Bk is the sets of rows and

columns of bicluster k in the data matrix, the deviation is defined as:

SSQ =
KX

k=1

X

i,j2Bk

(aij � bk)
2

where bk is the average of all entries in partition Bk, or in other words, in

bicluster k.

The algorithm starts with a partition that consists of the full data set. It

proceeds by splitting selected partitions. At the kth step, a partition Bp is

chosen for splitting and then the partition will change from B1, B2, . . . , Bp,

. . . , Bk to B1, B2, . . . , Bp�1, B
0
p, B

00
p . . . , Bk, which increases the total number

of biclusters by 1. The split can happen either on rows or on columns. The

algorithm selects the splitting that will maximize the SSQ reduction at the kth

step, and stops when the total number of biclusters reaches K.

This is the first biclustering algorithm, which built the foundation for later

14



Chapter 2: An overview of Biclustering Methods

biclustering works.

2. Bayesian Biclustering for Continuous data (BBC)

Gu and Liu (2008) developed a Bayesian Biclustering model for continuous data

and used a Gibbs sampling procedure to infer the bicluster structure in the data

matrix. They introduced two normalization methods for data processing: the

interquartile range normalization and the smallest quartile range normaliza-

tion. Similar to the Plaid model (Lazzeroni and Owen (2002)), in BBC, gene

expression value aij in a bicluster k is assumed to be the summation of the

additive e↵ects of cluster specific background level µk, gene e↵ect ↵ik, condition

e↵ect �jk, and a noise term ✏ijk. Entries that do not belong to any cluster are

described by a noise term ✏ij.

Aij =
KX

k=1

[(µk + ↵ik + �jk + ✏ijk) · ⇢ikjk] + ✏ij(1�
KX

k=1

⇢ikjk)

where ⇢ik 2 {0, 1} is the gene bicluster membership indicator; jk 2 {0, 1} is

the condition bicluster membership indicator; and Aij is in bicluster k if and

only if ⇢ik = jk = 1.

Unlike the ordinal Plaid model, BBC only allows biclusters to overlap in ei-

ther row direction or column direction, which results in two versions of BBC:

non-overlapping gene biclustering and non-overlapping condition biclustering.

In non-overlapping gene biclustering, a gene can be assigned into at most one

cluster, while a condition can be assigned into multiple biclusters. The con-

straints can be represented as
PK

k=1 ⇢ik  1. In either version of BBC, there

15
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are no overlapping elements between di↵erent clusters.

The priors for the membership indicators are set as:

jk ⇠ Bernoulli(qk)

P (⇢ik = 1, ⇢il = 0, l 6= k) = pk

P (⇢il = 0, l = 1, 2, . . . , K) = p0 = 1�
PK

k=1 pk

Initial values for qk are set to be 0.5 and pk = 1
K+1 . Di↵erent choices of initial

values of qk and pk do not a↵ect the results much.

Priors for other parameters are set as:

µk ⇠ N(0, �2
µk
)

↵ik | ⇢ik = 1 ⇠ N(0, �2
↵k
)

�jk | jk = 1 ⇠ N(0, �2
�k
)

✏ijk ⇠ N(0, �2
"k
)

✏ij ⇠ N(0, �2
")

Hyperpriors for �2
µk
, �2

↵k
, �2

�k
, �2

"k
, �2

" are all from Inverse Gamma distributions.

Denote all hyperpriors as a � vector.

Under this setting, the probability distribution of aij can be written as:

aij ⇠

8
><

>:

N(µk + ↵ik + �jk, �
2
"k
) if ⇢ik · jk = 1;

N(0, �2
") if ⇢ik · jk = 0.

16
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The conditional marginal distribution of aij is:

Y | ⇢, ⇠ N(0,⌃)

where Y = (Y0, Y1, . . . , YK)T with Yk = {aij : ⇢ikjk = 1}, k � 1; ⌃ is the

covariance matrix of Y.

The membership indicator ⇢ and  can be updated iteratively according to:

P (jk = 1 | [�jk], ⇢, �, Y )

P (jk = 0 | [�jk], ⇢, �, Y )

P (⇢ik = 1 | ⇢[�ik],, �, Y )

P (⇢ik = 0 | ⇢[�ik],, �, Y )

With the membership indicators, one can recover the bicluster structures in the

data matrix. The number of biclusters K can be determined by running the

algorithm with di↵erent values of K and selecting one according to the Bayesian

Information Criterion (BIC) (Schwarz (1978)).

3. Cheng and Church �-biclustering

Cheng and Church (2000) proposed a �-biclustering method for the gene ex-

pression data. Their definition of bicluster is the same as the additive Plaid

model (Lazzeroni and Owen (2002)): each entry in a bicluster can be viewed

as a summation of a constant cluster-specific background level, gene e↵ect and

condition e↵ect. After those e↵ects are removed, the residual levels should be

as small as possible, measured using a pre-defined threshold �. Following our
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notation at the beginning of this chapter, given the gene expression matrix A,

genes subset I and conditions subset J, we define:

a.j =

P
i2I aij

| I |

ai. =

P
j2J aij

| J |

a.. =

P
i2I,j2J aij

| I || J |

For entry aij in the bicluster, its residual can be calculated as rij = aij � ai. �

a.j + a... The mean square residual score of the submatrix A{I,J} is

H(I, J) =
X

i2I,j2J

r2ij
| I || J |

The goal is to find a locally maximal sub-matrix with a score smaller than �.

There are two phases in the algorithm: decay and growth. It starts with the

full data matrix as the desired bicluster, for each row it calculates the average

residual as ri =
1
|J |

P
j2J rij, and for each column it calculates rj =

1
|I|

P
i2I rij.

The row or column with the highest average residual value will be removed from

the bicluster. This iterates until H(I, J) is below threshold �. In the second

phase of the algorithm, it seeks to add rows or columns with the lowest average

residual values to the bicluster, under the constraint that H(I, J) < �.

This algorithm can detect biclusters one at a time. To find more biclusters, the

identified bicluster blocks have to be replaced with random noise to prevent it

from being included in the new bicluster.
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4. Coupled Two-way Clustering

Getz et al. (2000) introduced an algorithm for gene microarray data analysis

called Coupled Two-way Clustering (CTWC). The algorithm uses a traditional

one-way clustering method to find clusters on rows and columns iteratively. To

do this, a stationary cluster is defined as a genes subset V’ and conditions subset

U’ in a larger genes set V and conditions set U, such that when traditional

clustering is performed on V, the columns of the stationary cluster V’ can

be recovered as a significant cluster. Similarly, the genes set V’ can also be

recovered by performing one-way clustering on the larger genes set V.

The algorithm starts with the whole data matrix and iteratively select a genes

subset V and conditions subset U. Traditional one-way clustering is then applied

to the sub-matrix V ⇥ U. If a stationary cluster is found, then the rows and

columns of the stationary cluster will be added to the respective selected genes

and conditions set. The algorithm proceeds until no new stationary cluster

can be found. The performance of Coupled Two-way Clustering also depends

on the traditional one-way clustering algorithm employed. Some algorithms

that cannot distinguish significant clusters from non-significant ones cannot be

embedded into the Coupled Two-way Clustering.

5. The Iterative Signature Algorithm

Bergmann et al. (2003) proposed a biclustering method specially designed for

noisy gene expression data known as ISA (the Iterative Signature Algorithm).

In their algorithm, they define bicluster as a gene transcription module such

that the expression levels for the genes in the bicluster are significantly higher
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over every chosen condition in the bicluster, which can be measured using a

Z-score. The algorithm iteratively searches for the sets of genes and conditions

until the desired bicluster is found.

ISA aims to find a special bicluster such that the conditions of a bicluster

uniquely determine the objects and vice versa. In a mathematic framework, if

we standardize row-wise and column-wise a data matrix to generate EG and

EC respectively, a bicluster B = (U’, V’ ) is defined as the combination of U’

and V’ which satisfies

U 0 = {u 2 U : |eCuV 0 | > TC�C}, V 0 = {v 2 V : |eGU 0v| > TG�G}

simutaneously. The definition is intuitively reasonable under normal assump-

tion.

The algorithm is formalized as follows. We start with a set of individuals V0

arbitrarily or based on some prior information. U’ and V’ can be iteratively

updated by

Ui = {u 2 U : |eCuVi
| > TC�C}, Vi+1 = {v 2 V : |eGUiv| > TG�G}

The algorithm terminates at step n such that

|Vn�i \ Vn�i�1|
|Vn�i [ Vn�i�1|

< ✏

In the algorithm, TC , TG, �G, �G and ✏ are all pre-specified and are tunable. Dif-
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ferent settings of these parameters and V0 can be tried to detect a representative

set of biclusters.

6. Plaid Model

Lazzeroni and Owen (2002) developed a statistical algorithm called the Plaid

model to deal with biclusters with additive or multiplicative coherent values.

Multiplicative coherent values can be converted into additive values by taking

the logarithm of the original data matrix. Here we will illustrate the additive

Plaid model. The basic concept is to treat the data matrix as a superposition

of layers of data. Each layer is a bicluster, with each entry as a cluster specific

background level plus a row e↵ect and a column e↵ect. Under this setting, the

Plaid model can deal with overlapping biclusters.

Think of the data matrix as a gene expression data set, with rows as genes and

columns as conditions, the expression matrix can be represented as

Aij = µ0 +
KX

k=1

✓ijk⇢ikjk

where µ0 is the overall background level, ⇢ik 2 {0, 1} is the gene membership

indicator for the bicluster, jk 2 {0, 1} is the condition membership indicator for

the bicluster; ✓ijk = µk+↵ik+�jk, where µk is the bicluster specific background

level for bicluster k, ↵ik is the additive gene e↵ect for the ith gene, �jk is the

additive condition e↵ect for the jth condition.
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Finding the biclusters then boils down to the following minimization problem:

X

i,j

(Aij �
KX

k=0

✓ijk⇢ikjk)
2

where ✓ij0 = µ0, ⇢i0 = j0 = 1. To make the model identifiable, constraints

P
i ⇢

2
ik↵ik = 0 and

P
j 

2
jk�jk = 0 are imposed. The layers are added one at a

time and at each layer-finding step we choose the layer that minimizes the sum

of squared errors.

Suppose we have K � 1 layers, to seek for the Kth layer, we want to minimize

Q(K) =
1

2

nX

i=1

pX

j=1

(Z(K�1)
ij � ✓ijK⇢iKjK)

2

=
1

2

nX

i=1

pX

j=1

(Z(K�1)
ij � (µK + ↵iK + �jK)⇢iKjK)

2

subject to
P

i ⇢
2
iK↵iK = 0 and

P
j 

2
jK�jK = 0

where

Z
(K�1)
ij = Aij �

K�1X

k=0

✓ijk⇢ikjk

is the sum of squared errors after removing the first K � 1 layers.

Updating ✓ijK

22



Chapter 2: An overview of Biclustering Methods

The parameters for ✓ijK can be calculated using Lagrange multipliers:

µK =

P
i

P
j ⇢iKjKZ

(K�1)
ij

(
P

i ⇢
2
iK)(

P
j 

2
jK)

↵iK =

P
j(Z

(K�1)
ij � µK⇢iKjK)jK

⇢iK
P

j 
2
jK

�jK =

P
j(Z

(K�1)
ij � µK⇢iKjK)⇢iK

jK

P
i ⇢

2
iK

Updating ⇢iK and jK

Given ✓ijK , ⇢iK and jK that minimize Q(K) can be obtained as:

⇢iK =

P
j ✓ijKjKZ

(K�1)
ijP

j ✓
2
ijK

2
jK

jK =

P
i ✓ijK⇢iKZ

(K�1)
ijP

i ✓
2
ijK⇢

2
iK

The parameters were updated iteratively for many steps. The layer K will

only be accepted if the residual matrix Z
(K�1)
ij contains non noise. Otherwise,

the algorithm will stop and report K � 1 as the total number of biclusters in

the data. A permutation test is conducted to judge whether Z(K�1)
ij still has a

certain pattern.

7. Spectral Biclustering

Spectral Biclustering was developed using a linear algebra method of Singular

Value Decomposition (SVD) of a data matrix. Kluger et al. (2003) presented

this method and showed that it applies to a gene expression matrix that has a

hidden checkerboard-like structure.
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Suppose we have a gene expression data matrix E, which has a hidden checker-

board structure. If we supply a vector x that matches the block pattern of the

rows of E, we will get a vector y that reveals the column block structure of E.

In other words, we can project the row block pattern of matrix E by multiplying

it with a matching x. If we multiply y with ET , we will get another vector x’,

which has the same block patter as x. We can see that the block pattern of x

forms a closed space under ET ·E, which can be described as linear combination

of the eigenvectors of matrix ETE. Similarly, the eigenvectors of EET span the

closed space formed by vectors with the block pattern of y, which is the block

pattern of the columns of E.

E · x =

0

BBBBBBBB@

1 1 2 2 3 3

1 1 2 2 3 3

4 4 5 5 6 6

4 4 5 5 6 6

1

CCCCCCCCA

·

0

BBBBBBBBBBBBBBBB@

a

a

b

b

c

c

1

CCCCCCCCCCCCCCCCA

=

0

BBBBBBBB@

d

d

e

e

1

CCCCCCCCA

= y
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ET · y =

0

BBBBBBBBBBBBBBBB@

1 1 4 4

1 1 4 4

2 2 5 5

2 2 5 5

3 3 6 6

3 3 6 6

1

CCCCCCCCCCCCCCCCA

·

0

BBBBBBBB@

d

d

e

e

1

CCCCCCCCA

=

0

BBBBBBBBBBBBBBBB@

a0

a0

b0

b0

c0

c0

1

CCCCCCCCCCCCCCCCA

= x0

ET · E · x = ET · E ·

0

BBBBBBBBBBBBBBBB@

a

a

b

b

c

c

1

CCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBB@

a0

a0

b0

b0

c0

c0

1

CCCCCCCCCCCCCCCCA

= x0

The eigenvectors and eigenvalues for ETE and EET can be obtained by pe-

forming a singular value decomposition on matrix E.

E = U⌃V T

The columns of U and V are the corresponding eigenvectors for EET and

ETE and the square of the diagonal elements are the corresponding eigenvalues

shared by the eigenvector pairs. One can check the block pattern of each of the

eigenvector pairs and find the corresponding biclusters.

8. The SAMBA algorithm
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The Statistical-Algorithmic Method for Bicluster Analysis (SAMBA) was de-

veloped by Tanay (Tanay et al. (2002), Tanay et al. (2005)), and converts the

data matrix into a bipartite graph. For gene expression data, the two parts

of the corresponding bipartite graph are genes and conditions, with edges for

significant expression level changes. Let G = (U, V, E ) be the bipartite graph

converted from the input expression data. V is the set of genes and U is the

set of conditions. A vertex pair (u, v) 2 E if and only if there is a significant

change of expression level for gene v under experimental condition u. Let H

= (U’, V’, E’ ) be a subgraph of G, and let Ē’ = (U’ ⇥ V’ ) \ E’. The null

model assumes the occurrence of each edge (u, v) is from a Bernoulli distribu-

tion with parameter pu,v, while the alternative model assumes that each edge

of a bicluster is from a Beroulli distribution with a constant pc (pc > pu,v). The

log likelihood for H can be written as:

log(L(H)) =
X

(u,v)2E0

log
pc
pu,v

+
X

(u,v)2Ē0

log
1� pc
1� pu,v

This log likelihood is used as a score function for the subgraph H. Finding the

most significant bicluster in the data matrix now becomes a problem of finding

the heaviest subgraphs in the converted bipartitie graph using the weight defined

above for the subgraph. The algorithm then searches for subgraphs using a

heuristic method by starting with heavy bicliques as seeds around each vertex

of the graph. It iteratively modifies the current bicluster by adding or removing

a vertex until no score improvement can be achieved.
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9. xMOTIF

Murali and Kasif (2003) presented a biclustering method that defined biclus-

ter as a group of genes that are simultaneously conserved across a subset of

conditions. The found bicluster is called a gene expression motif (xMOTIF).

The conservation of a gene can be quantified by asserting whether its expres-

sion values are in the same state across conditions. A gene state is a range of

expression values that are statistically significant. A state is more interesting

if it contains more expression values than one would expect if the values were

generated at random. The null hypothesis is that the expression values of a

gene are generated from a uniform distribution. Let interval [a, b] be the state

we are interested in, and K out of the total of n values fall into this interval,

we can compute the p-value of this state as:

X

kin

(b� a)i(1� (b� a))(n�i)

Here, a and b are both numbers between 0 and 1, because gene expression

values lie in the interval [0, 1].

The states were chosen according to the p-values of the intervals. The algorithm

starts from di↵erent conditions as seeds and tries to find the largest xMOTIF by

adding gene-states that are most distinguishing for genes and the corresponding

conditions. The found xMOTIF must satisfy the following: the number of

conditions chosen is at least an ↵-fraction of all the conditions; for genes not

in the xMOTIF, it is conserved in at most a �-fraction of the conditions; and,
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every gene in the xMOFIT is conserved across all the chosen conditions, e.g.,

in the same state.

The major logic behind xMOTIF is to extract from the data matrix an abstract

layer: states and then use the states to perform the biclustering. It can handle

coherent evolutions data with constant nominal patterns on rows or columns.

10. Other Biclustering algorithms

Many other biclustering methods have been published so far, applying to a

variety of data types. Among them are FLOC (Yang et al. (2002) Yang et al.

(2003)), pClusters (Wang et al. (2002)), PRMs (Segal et al. (2001)) and OPSMs

(Ben-Dor et al. (2002)) etc.
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Chapter 3

Bayesian Biclustering on

Categorical Data

3.1 Background

Many biclustering algorithms have been developed since Cheng and Church (2000)

applied their �-biclustering to gene expression data. However, most of those al-

gorithms deal with continuous data. Very few of existing methods are designed for

discrete data. In this chapter, we propose a Bayesian Biclustering method for categor-

ical (nominal) data. In Chapter 4 we will introduce another algorithm we developed

under the Bayesian frame work for ordinal data.
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3.2 Categorical Data

Categorical data, a type of discrete data sometimes called nominal data, is a

statistical data type whose value is one of a number of fixed categories. There is no

intrinsic ordering to these categories. One simple example for categorical data is the

color of people’s hair, which might be black, red, brown, blond, brunette, etc.

There is no way to rank hair color from low to high. For categorical data, because

there is no ordering, calculating the arithmetic mean does not make any sense. A

distance based clustering method is no longer applicable in this situation. In this

chapter we will mainly discuss biclustering for categorical data. We will leave the

modeling of the ordinal data (the other kind of discrete data) for the next chapter.

The data we are interested in is an I by J rectangular data matrix Y, with rows

representing objects and columns representing variables. There are M di↵erent cat-

egories for each entry aij in the data set, yij 2 {1, 2, . . . ,M}. In reality, di↵erent

variables may have di↵erent numbers of categories. We can easily extend our algo-

rithm to be applicable to this scenario by allowing M to be variable specific, e.g.,

yij 2 {1, 2, . . . ,Mj}.

3.3 Modeling

Similar to existing biclustering methods, the primary goal of our biclustering al-

gorithm is to find a subset of rows and columns such that the selected objects are

more similar to each other over the selected columns. In addition, we are also inter-

ested in identifying those variables that are determinant of the biclusters, namely the
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variables that distribute unevenly across all biclusters such that they can be used to

characterize the biclusters. In our model, we assume that the objects are independent

conditional on their bicluster assignment, and that there is no interaction between

column variables.

Unlike existing approaches, we do not distinguish background and foreground from

each other explicitly. We assign each object into one of the predefined biclusters, and

each object can only be assigned into one bicluster. We include all columns in the bi-

cluster, and use a pattern indicator for each column to describe the similarity pattern

between biclusters. The majority of the biclusters that share the same distribution

are assigned to the background of that column. This is a general definition and it can

deal with all the previously listed bicluster structure patterns. Another advantage

of our algorithm is that it can handle not only numerical biclusters with constant

row or column values, but also biclusters with coherent evolutions, e.g., sign changes,

nominal patterns, etc.

3.3.1 Notations

LetK be the number of clusters in our algorithm, let Zi represent the cluster ID for

object i, and let Sj be the column pattern indicator for the jth column, j = 1, 2, . . . , J .

Zi can take values from {1, 2, · · · , K}, i = 1, 2, . . . , I. As mentioned above, each

object will be and can only be assigned into one cluster.

As the pattern indicator for K clusters, S is a vector of length K and each of its

elements can take a value of either 0 or 1. There are initially 2K di↵erent configura-
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tions.
✓
K

0

◆
,

✓
K

1

◆
,

✓
K

2

◆
, . . . ,

✓
K

K � 1

◆
,

✓
K

K

◆

In describing the similarity pattern in our model,

✓
K

K � 1

◆
,

✓
K

K

◆

are essentially equivalent. We remove this redundancy and use only all-1 vector

(1, 1, . . . , 1) to refer to this specfic pattern. The final configurations of S reduces to

2K �K.

3.3.2 Model Settings

In our model, we assume that columns are independent of each other, rows are

independent conditional on their cluster assignment. Given the bicluster assignment

Zi = k, each yij is from a multinomial distribution with frequency parameter ~✓kj. Let

⇥ be the set of all ~✓kj, which has 3 dimensions: K by J by M .

The distribution of the jth variable of object i, given its cluster ID Zi, distinction

pattern indicator Sj, and frequency parameter ⇥, can be expressed as follows:

yij | Z,S,⇥ ⇠ Multinom(~✓Zi,j)

The full likelihood of this model can be written as follows:

P (Y | Z,S,⇥) =
IY

i=1

JY

j=1

✓Zi,j,yij (3.1)
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Priors

We model the assignment of Zi as a Chinese Restaurant Process, and give the

prior as:

P (Z) / �(↵z)↵z
K

�(↵z + I)

Y

k

�(Ck) (3.2)

where Ck is the size of cluster k, ↵z is the concentration parameter in Chinese Restau-

rant Process. Here we set ↵z = 1.

The priors for S was given to penalize the inclusion of distinctive clusters over

columns.

We let

P (S | Z) /
Y

j

a
P

k Skj

P
Sj
a
P

k Skj
(3.3)

where a < 1 is a positive number. In our simulation study and real data application,

we use a = 0.05.

We assume that the multinomial parameters for all column cluster specific cat-

egorical distributions are from the same Dirichlet distribution and give each ~✓k,j a

Dirichlet prior as:

~✓k,j | Z, S ⇠ Dirichlet(~↵✓); (3.4)

P (⇥ | Z, S) /
Y

j

0

@
Y

k:Skj=1

MY

m=1

✓↵✓�1
k,j,m ·

Y

k:Skj=0

MY

m=1

✓↵✓�1
k,j,m

1

A (3.5)

In column j, for the clusters that share the same ✓, the second term in the bracket

is multiplied only once. Here we set common values for each category across all
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clusters in ~↵✓ as:

~↵✓ = {1, 1, · · · , 1}

When the number of categories in the data is large, it is reasonable to use a

fixed total pseudo-counts and allocate them equally to each dimension of ~↵✓. In our

simulation and application, there are only 3 categories and we used {1, 1, 1}.

Under above setting, the joint posterior of the model can be written as

P (Z, S,⇥ | Y ) / P (Y | Z, S,⇥) · P (Z) · P (S | Z) · P (⇥ | Z, S)

/
Y

i

Y

j

✓j,Sj ,Zi,yij

· �(↵z)↵z
K

�(↵z + I)

Y

k

�(Ck)

·
Y

j

a
P

k Skj

P
Sj
a
P

k Skj

·
Y

j

0

@
Y

k:Skj=1

�(
P

m ↵✓)P
m �(↵✓)

MY

m=1

✓↵✓�1
k,j,m ·

Y

k:Skj=0

�(
P

m ↵✓)P
m �(↵✓)

MY

m=1

✓↵✓�1
k,j,m

1

A

(3.6)

3.3.3 Sampling Methods

Denote ~H(·) as a function that returns the count of each category in the supplied

vector. Let (~a)
~b stand for the vectorized power function, which raises the elements of

~a to the power of the corresponding elements of ~b, respectively.

There are three parameters in our model: Z, S, ⇥. We will iteratively sample Z,

⇥, and S as follows:

1. Sample Z given Y, S, ⇥
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Conditional on the assignment of all other Zis, the prior for Zi is:

P (Zi = k | Z�i) =

8
><

>:

↵z
↵z+I�1 if k is a new cluster

C�i
k

↵z+I�1 if k is an existing cluster
(3.7)

For the new cluster, since there is no data available, we can draw ⇥ and S

directly from their prior distributions. Because the parameter space for Zi is

{0, 1, · · · , K}, we can calculate the conditional posterior probability for Zi of

taking each of those possible values and sample Zi from a multinomial distri-

bution proportional to this posterior probability.

P (Zi | Z�i,⇥, S, Y ) / P (Y | Zi, Z
�i,⇥, S) · P (Zi | Z�i) (3.8)

/
JY

j=1

✓j,Zi,yij · P (Zi | Z�i) (3.9)

2. Sample S given Y, Z, ⇥

To sample S, we first integrate out ⇥. The conditional posterior distribution

for S can then be written as

P (Sj | S�j, Z, Y ) / P (Y | Sj, S
�j, Z) · P (Sj | S�j)

/ B( H(Yij)
i:Zi=k,Skj=0

+ ~↵✓) ·
Y

k:Skj=1

B(H(Yij)
i:Zi=k

+ ~↵✓)

· a
P

k Skj

(3.10)

where B(~↵) is the multivariate beta function as in 3.11 and ↵✓ is the hyperpa-
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rameter of the Dirichlet prior we assign to ⇥.

B(~↵) =

Q
i �(↵i)

�(
P

i ↵i)
(3.11)

There are 2K � K di↵erent configurations of Sj. We can thus calculate the

conditional posterior probability for each configuration of Sj and then draw Sj

proportionally.

3. Sample ⇥ given Y, S, Z

As a result of the above setting, the multinomial parameters for foreground and

background are assumed to be from the same Dirichlet distribution. We will

further experiment and demonstrate the sensitivity of the algorithm at the end

of this Chapter.

The conditional posterior for ✓k,j can be written as

P (✓k,j | ⇥�k,j, S, Z, Y ) / P (Y | ✓k,j,⇥�k,j, S, Z) · P (✓k,j | ⇥�k,j) (3.12)

Considering column j, if Skj = 1, then cluster k is a distinctive cluster for

column j, and we will sample ✓j,Sj ,k based on the data only belongs to cluster

k; alternatively, if Skj = 0, then cluster k is one of the few identical clusters,

and we will sample ✓j,Sj ,k based on the combined data that belongs to those

clusters. This is done only once for each of the identical clusters and the same
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sampled value of ✓j,Sj ,k is assigned to each of them.

✓k,j
Skj=1

⇠ Dirichlet(H(Yij)
i:Zi=k

+ ~↵✓) (3.13)

✓k,j
Skj=0

⇠ Dirichlet( H(Yij)
i:Zi=m, s.t. Smj=0

+ ~↵✓) (3.14)

Let us illustrate the process again using K = 3 as an example.

Given K = 3, there are 23 � 3 = 5 di↵erent distinction patterns for Sj, which

are 0

BBBBB@

0

0

0

1

CCCCCA

0

BBBBB@

1

0

0

1

CCCCCA

0

BBBBB@

0

1

0

1

CCCCCA

0

BBBBB@

0

0

1

1

CCCCCA

0

BBBBB@

1

1

1

1

CCCCCA

Suppose the configuration of Sj is

0

BBBBB@

0

1

0

1

CCCCCA

We can see that S1j and S3j are both 0, to sample their frequency probability

vector ✓j,Sj ,1 and ✓j,Sj ,3, we pool the observations from column j which satisfies

Zi = 1 or 3, denote this data as ~D0. Then we sample

~p0 ⇠ Dirichlet
�
~H( ~D0) + ~↵✓

�

We assign the value of ~p0 to ✓j,Sj ,1 and ✓j,Sj ,3.
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Notice that S2j = 1, which means cluster 2 is from a di↵erent distribution than

cluster 1 and 3. Thus we only use the observations from column j that satisfy

Zi = 2, denote this data as ~D2. Then we sample

~p1 ⇠ Dirichlet
�
~H( ~D2) + ~↵1

�

We assign the value of ~p1 to ✓j,Sj ,2.

Further, if the configuration of Sj is

0

BBBBB@

1

1

1

1

CCCCCA

We can see that S1j, S2j and S3j are all 1, which means cluster 1, cluster 2 and

cluster 3 are from di↵erent distributions respectively. To sample ~✓j,Sj ,1, we only

use the observations from column j that satisfy Zi = 1, denote this data as ~D1,

and sample

~p1 ⇠ Dirichlet
�
~H( ~D1) + ~↵✓

�

We assign the value of ~p1 to ✓j,Sj ,1;

Next we use the observations from column j that satisfy Zi = 2, denote this

data as ~D2, and sample

~p2 ⇠ Dirichlet
�
~H( ~D2) + ~↵✓

�
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We assign the value of ~p2 to Pj,Sj ,2; similarly, we can obtain the sample for

Pj,Sj ,3.

We do this according to the distinction pattern of Sj and for every column j

and obtain a ⇥ matrix of K by J by M .

3.3.4 Determination of Number of Clusters

The number of clusters K is incorporated into our model. However, sometimes

the algorithm will be trapped into local mode because of the high energy barrier

between settings of di↵erent clusters. From our simulation study, it is di�cult to

increase the number of clusters, but the number of clusters will converge to the true

number of clusters if starting with a higher number. In our model, the joint posterior

probabilities for di↵erent numbers of clusters are up to a normalizing constant and

are thus comparable.

We will run independent chains starting with di↵erent number of clusters until

the number of clusters converges to a stable number. Then we will compare the joint

posterior mode for di↵erent numbers of clusters in determining the optimal number

of clusters.

3.3.5 Algorithm Summary

1. Start with K = 2.

2. Arbitrarily set values of Z(1) and S(1) in the Gibbs algorithm.

3. Suppose we have already obtained Z(t) and S(t), update ⇥, Z, S by taking the
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following steps:

(a) Sample ⇥(t+1) from Y, S(t) and Z(t).

(b) Sample Z(t+1) from Y, S(t) and ⇥(t+1).

(c) Sample S(t+1) from Y, Z(t+1) and ⇥(t+1).

(d) t ! t+ 1.

4. Iteratively run Step 3 until convergence.

5. Record the output at the joint posterior mode.

6. K ! K + 1 until the number of clusters converges.

7. Select the value of K that leads to the highest joint posterior probability as the

optimal number of clusters. Output the posterior samples of Z, ⇥ and S under

this K.

3.4 Simulation Study

3.4.1 Validation of Biclustering Results

We used a Jaccard Index (Jaccard (1901)) to validate the correctness of our biclus-

tering results. The Jaccard Index is an e↵ective measure for comparing the similarity

and diversity between sample sets. For any two sets S1 and S2, their Jaccard Index

is defined as the size of the intersection divided by the size of the union of the sample

sets:

J(S1, S2) =
| S1 \ S2 |
| S1 [ S2 |
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In our case, where there is more than one bicluster in each set, we use an adapted

version of Jaccard Index (Kaiser and Leisch (2008)) to measure the similarity of our

estimated bicluster structure and the true structure.

J(E, T ) =
1

K1

K1X

a=1

K2X

b=1

| Ea \ Tb |
| Ea [ Tb |

where K1 is the number of biclusters in the estimated set, K2 is the number of

biclusters in the true set; Ea is the ath bicluster in the estimated set; Tb is the bth

bicluster in the true set.

The value of a Jaccard Index of any two sets is between 0 and 1. Larger values

suggest higher similarity between two bicluster sets.

3.4.2 Date Generation

For the simulation study, we generated three data matrices. Data set A is a 600

by 2000 matrix, which contains 3 biclusters. Data set B is a 1000 by 1400 matrix,

which contains 5 biclusters. Data set C is a 600 by 600 matrix containing 3 biclusters.

The number of categories in Data set A was set to be 3, i.e. M = 3. For background

columns, the samples were drawn from a multinomial distribution with probability

vector {0.33, 0.33, 0.33}. For foreground, the samples were drawn from multinomial

with probability vector {0.1, 0.3, 0.6}, {0.5, 0.1, 0.4} and {0.7, 0.1, 0.2} respectively;

The number of categories in Data set B was set to be 4, i.e. M = 4. For columns,

the multinomial probability vector for both background and foreground samples were

independent draws from Dirichlet distribution with parameter {1, 1, 1, 1}. Data set

C was generated in the way that all columns were random draws from multinomial
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distribution {0.33, 0.33, 0.33}. According to our bicluster definition, it has 1 bicluster

and S is the same over all columns. The number of categories of the data in Data set

C was set to 3.

Figure 3.1: The true bicluster structure from which Data matrix A is simulated. Each
color demonstrates a di↵erent bicluster. Each of the 3 biclusters contains 200 rows
and 800 columns.
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Figure 3.2: The true structure for Data matrix B. There are 5 biclusters embedded,
with an equal size 200 by 400.
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Figure 3.3: The true structure for Data matrix C. The data are generated randomly
for each category. It corresponds to 1 background bicluster in our definition

Notice that in the first data set, there are a total of 23�3 = 5 distinctive patterns

that S can take and we embed all those patterns into the data, as seen in Figure 3.1.

In the second data set, there are a total of 25�5 = 27 distinctive patterns S can take

and we embeded 7 of them, which is displayed in Figure 3.2. In the thrid data set, S

is 0 across all columns as in Figure 3.3.
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3.4.3 Data set A: 3 clusters

Following the sampling procedure presented in section 3.3.5, we started with 3

clusters and let the algorithm run for 1,000 steps and discard the initial 500 steps

as burn-in. The priors were set as ↵z = {1, 1, 1}, ↵✓ = {2, 2, 2, 2}, a = 0.05. The

initial values for Z, S, and ⇥ were assigned randomly based on their priors. The trace

plot of joint posteriors for all 3 chains can be viewed in Figure 3.4. We can see that

chain 2 was trapped in local mode. To further investigate, we increased the number

of independent chains to 100 and found out that 11 of the chains were stuck in local

modes.
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Figure 3.4: Trace plot for the joint posteriors of 3 independent chains. Chain 2 is
plotted in red.
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Figure 3.5: Trace plot for the joint posteriors of the chain 1 and 2, after burn-in.

By looking into chain 1 which is not in a local mode, we can plot the recovered

bicluster structure as the iteration goes in Figure 3.6. The bicluster structure in the

plots correspond to those at step 20, 22, 25, 27, 50, 80. We can see the algorithm

converges to the truth very fast even starting from random initial values.
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Figure 3.6: Recovered bicluster structure at di↵erent step.

As a solution to the local mode trapping problem, we chose the chains with highest

joint posteriors and plotted their mixing after burn-in in Figure 3.5. As we can see,

the mixing is good. Then we started with 2, 4, 5, 6 clusters, each with 10 independent

chains and found out that all these independent runs will eventually converge to 3 or
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2 clusters. We compared their joint posterior modes from corresponding chains with

highest posteriors and found that the optimal number of clusters in this simulated

was 3.

An alternative approach to overcome the local mode problem is to use a hierar-

chical clustering method to provide a starting configuration for our algorithm. More

precisely, we treated the categorical data as continuous and employed the Euclidean

distance measure for hiearchical clustering.

We again ran 3 parallel MCMC chains with ↵z = {1, 1, 1}, ↵✓ = {2, 2, 2, 2},

a = 0.05. The initial values for Z were set using the results from hierarchical clustering

and it converges very fast. The diagnostics for the parallel chains are presented in

Figure 3.7 and 3.8. The ACF plot in Figure 3.9 reveals that the autocorrelation drops

to 0 at a high rate. The implementation of hierarchical clustering was adapted from

open source clustering package Cluster 3.0. (de Hoon et al. (2004))
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Figure 3.7: Trace plot for the joint posteriors of 3 independent chains, started with
hierarchical clustering results.
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Figure 3.8: Trace plot for the joint posteriors of 3 independent chains after burn-in,
started with hierarchical clustering results.
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Figure 3.9: ACF plot for the joint posteriors, started with hierarchical clustering
results

By running the algorithm with 3, 4, 5, and 6 clusters, the algorithm will all

converge to 3 clusters as the iterations run. However, if we started with 2 clusters,

the algorithm will stay at 2 because of the high energy barrier. After comparing

the joint posterior mode at 2 and 3 clusters, we finally identified 3 as the optimal

number of clusters, which is consistent with the true number of clusters. The change

of number of clusters from di↵erent runs is illustrated in Figure 3.10.
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Figure 3.10: Change of number of clusters from independent runs starting from 2, 3,
4, 5, 6 clusters

The results of the recovered biclustering structure is plotted in Figure 3.11. The

Jaccard Index for this estimate is 0.87, which indicates a good estimate of the original

biclustering structure. Di↵erent reasonable settings of priors have also be tested and

they have little impact on the estimation accuracy. A detailed comparision of the

sensitivity of the algorithm is presented at the end of this Chapter.
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Figure 3.11: the biclusters learned through the MCMC algorithm. They resemble the
true structure in general except for a small amount of errors.

3.4.4 Data set B: 5 clusters

We performed similar analysis for Data matrix 2, started with 2, 3, 4, 5, 6, 7,

and 8 clusters independently, and the number of clusters converged to 5 when greater

than 5. By comparing their joint posterior mode we chose 5 as the optimal number

of clusters. The diagnostic plots are presented as in Figure 3.12 and Figure 3.13.
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Figure 3.12: Trace plot for the joint posterior of three parallel chains for 5 clusters.
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Figure 3.13: Autocorrelation plot for the joint posterior for 5 clusters. No significant
autocorrelation emerges when the lag is greater than 1.
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Figure 3.14: The 5 biclusters determined by joint posterior mode. The estimated
bicluster structure is very close to the true structure.

The estimated biclustering structure is presented in Figure 3.14. The recovered

structure is very similar to the embeded true bicluster structure with a Jaccard Index

of 0.86.

3.4.5 Data set C: 1 cluster

For Data set C, we let the algorithm run starting from 1, 2, 3, 4, 5, 6 clusters and

it all converges to 1 bicluster, which is the same as we simulated.
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3.4.6 Sensitivity tests for Bayesian Categorical BiClustering

Model

In this section, we will present the experiments we performed to test the sensitiv-

ity of the Bayesian Categorical Biclustering algorithm. To test the sensitivity of the

algorithm, we embeded 3 biclusters into the data as in Figure 3.1, each with di↵er-

ent similarities between the column bicluster specific multinomial distributions. The

number of categories of data was set to be 3. In the simulated data, the same color

in each column means the data was drawing from the same multinomial distribution.

Di↵erent colors on the same column means that they are each from a di↵erent multi-

nomial distribution. All the multinomial distributions were generated from the same

prior Dirichlet distribution.

As ↵ increases, the sampled probability vectors for column bicluster-specific multi-

nomial distributions, from Dirichlet(↵,↵, . . . ,↵) will tend to be more and more sim-

ilar to each other. We let ↵ go from 0.1 to 10 and calculated the estimate accuracy

by evaluating the Jaccard Index for each simulation. In our Gibbs sampling, we used

the same prior setting (↵z = 1, ↵p = 2 and a = 0.1) across all tests. The recovered

bicluster structures are listed below and the results are presented in Table 3.1.
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Table 3.1: Sensitivity Test Results

Dirichlet Prior: ↵ a ↵z ↵p Jaccard Index
(0.1, 0.1, 0.1) 0.1 1 2 0.779
(0.2, 0.2, 0.2) 0.1 1 2 0.833
(0.3, 0.3, 0.3) 0.1 1 2 0.849
(0.4, 0.4, 0.4) 0.1 1 2 0.846
(0.5, 0.5, 0.5) 0.1 1 2 0.843

(1, 1, 1) 0.1 1 2 0.802
(5, 5, 5) 0.1 1 2 0.601
(7, 7, 7) 0.1 1 2 0.330

(10, 10, 10) 0.1 1 2 0.137

As we can see, when the Dirichlet prior for generating the data goes beyond 5,

the estimate accuracy drops fast and becomes unsatisfactory. The algorithm is in

general very robust. We tried di↵erent values for ↵z and ↵p in our sampling and the

recovered bicluster structure and Jaccard Index accuracy are similar. There are lots

of potential applications of this algorithm in real life and we hope it can help facilitate

new scientific discoveries.
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Figure 3.15: Bicluster structure learned through the MCMC algorithm. All column
bicluster specific multinomial parameters are drawn fromDirichlet(0.1, 0.1, 0.1). Jac-
card Index: 0.779
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Figure 3.16: Bicluster structure learned through the MCMC algorithm. All column
bicluster specific multinomial parameters are drawn fromDirichlet(0.2, 0.2, 0.2). Jac-
card Index: 0.833
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Figure 3.17: Bicluster structure learned through the MCMC algorithm. All column
bicluster specific multinomial parameters are drawn fromDirichlet(0.3, 0.3, 0.3). Jac-
card Index: 0.849
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Figure 3.18: Bicluster structure learned through the MCMC algorithm. All column
bicluster specific multinomial parameters are drawn fromDirichlet(0.4, 0.4, 0.4). Jac-
card Index: 0.846
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Figure 3.19: Bicluster structure learned through the MCMC algorithm. All column
bicluster specific multinomial parameters are drawn fromDirichlet(0.5, 0.5, 0.5). Jac-
card Index: 0.843
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Figure 3.20: Bicluster structure learned through the MCMC algorithm. All column
bicluster specific multinomial parameters are drawn from Dirichlet(1, 1, 1). Jaccard
Index: 0.802
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Figure 3.21: Bicluster structure learned through the MCMC algorithm. All column
bicluster specific multinomial parameters are drawn from Dirichlet(5, 5, 5). Jaccard
Index: 0.601
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Figure 3.22: Bicluster structure learned through the MCMC algorithm. All column
bicluster specific multinomial parameters are drawn from Dirichlet(7, 7, 7). Jaccard
Index: 0.330
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Figure 3.23: Bicluster structure learned through the MCMC algorithm. All column
bicluster specific multinomial parameters are drawn from Dirichlet(10, 10, 10). Jac-
card Index: 0.137
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Chapter 4

Bayesian Biclustering on Ordinal

Data

4.1 Introduction

Ordinal data is a statistical data type we see often in real life. For example, in

movie rating websites like Internet Movie Database (IMDB), people are asked to rate

a movie on a scale of 1 to 5. A rating of 5 stars is better than a 4 star rating, but we

do not know how much better it is. Ordinal data captures the ordering information

in the data and presents it as discrete values. The intervals between successive scales

are usually not equal. We also see this type of data in questionnaires, reviews etc.

Another everyday example is the Apple App store, which asks people to rate the apps

they downloaded on an ordinal scale of up to 5 stars.

As we discussed in Chapter 1, a certain type of bicluster with coherent evaluation

patterns consists of orders instead of the real numerical values of the data. Taking
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movie rating data, for example, we are interested in finding individuals such that

their ratings are more similar to each other, over a subset of movies. After finding

those cliques, we can build a recommendation system for suggesting movies to users.

We have not been able to find existing biclustering methods for ordinal data.

We here propose two Bayesian Biclustering algorithms, one using latent variable and

cuto↵ points from the normal distribution to model ordinal data, and the other one

using a mixture of binomial and discrete uniform distributions. There are more

parameters in the normal cuto↵ model when levels of data are higher, while the

intuition behind the modeling is more straightforward. The mixture model uses a fixed

number of two parameters for each bicluster and is easier in terms of implementation

and converges faster. In the following sections, we will first illustrate the Bayesian

modeling of Uniform Binomial Mixture model (UBM) and test the model with a

simulated data set. The Normal Random Cuto↵ model (NRC) will be discussed later

and the general framework will be presented at the end of this chapter.
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4.2 Bayesian Biclustering with Uniform Binomial

Mixture model (UBM)

Figure 4.1: Graphical illustration of the Uniform Binomial model. In this case, the
number of ordinal levels M = 8, w is the proportion of the Binomial component in
the mixture distribution. The probability parameter of the Binomial component is p
= 0.7

We propose a new Bayesian method which uses a mixture of discrete uniform

distribution and binomial distribution to approximate the ordinal distribution. Ba-

sically, we assume that each column of a given bicluster is from its cluster specific

mixture distribution. This approach is very fast when dealing with ordinal data with
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a high levels, M. Figure 4.1 illustrates 9 mixtures with di↵erent proportions of bino-

mial components as indicated by parameter w. Notice this model can only cope with

uni-modal distributions. As in reality, most ordinal distributions have a single mode

and our model have a great range of applications even under this parametric setting.

4.2.1 Notations

We use a similar notation scheme as we did for the Bayesian BiClustering for

Categorical model in previous chapter. Y is the data matrix which stores the ordinal

data. Let M+1 be the number of levels presented in the data.

Let K be the number of clusters in our algorithm, Zi represent the cluster ID for

object i and Sj be the column pattern indicator for the jth column, i = 1, 2, . . . , I,

j = 1, 2, . . . , J . Zi can take values from {1, 2, · · · , K}, i = 1, 2, . . . , I. Each object

will be and can only be assigned into one cluster.

Same as before, given K clusters, for each column variable j, there are 2K � K

di↵erent configurations to measure the similarity among the K biclusters.

Denote wkj as the proportion of the Binomial component for bicluster k in column

j. Denote pkj as the binomial probability parameter for bicluster k in column j. The

parameters in our UBM model are: Z, S, W, and P.

4.2.2 Model Settings

In this model, we assume that columns are independent of each other, rows are

independent conditonal on their cluster assignment. Under this assumption, we use
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a mixture of Binomial and Uniform to model the ordinal data.

Yij ⇠ w · A+ (1� w) · B

A ⇠ Binom(M,p)

B ⇠ Discrete Uniform on 0 . . .M (4.1)

where w is the binomial proportion of the mixture, p is the binomial probability

parameter, and M + 1 is the levels of the data.

The distribution of the jth variable of object i, given its cluster assignment Zi, dis-

tinction pattern indicator Sj, proportion of Binomial component wZi,j and Binomial

parameter pZi,j, can be expressed as follows:

f(yij | Z,S,W,P) = wZi,j

✓
M

yij

◆
p
yij
Zi,j

(1� pZi,j)
M�yij

+ (1� wZi,j)
1

M + 1
(4.2)

The full likelihood can be written as:

P (Y | Z,S,W,P)

=
IY

i=1

JY

j=1

⇢
wZi,j

✓
M

yij

◆
p
yij
Zi,j

(1� pZi,j)
M�yij +

1� wZi,j

M + 1

�
(4.3)
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Priors

We model the assignment of Zi as a Chinese Restaurant Process, and give the

prior as:

P (Z) / �(↵z)↵z
K

�(↵z + I)

Y

k

�(Ck) (4.4)

where Ck is the size of cluster k, ↵z is the concentration parameter from the Chinese

Restaurant Process, and K is the total number of clusters.

We give uniform prior for p and w. For S, we use the same penalty factor 0 < a < 1

to penalize the inclusion of distinctive clusters.

p | Z, S ⇠ Unif(0, 1)

w | Z, S ⇠ Unif(0, 1)

P (S | Z) /
Y

j

a
P

k Skj

P
Sj
a
P

k Skj

Under this setting, the joint posterior can be written as

P (Z, P,W, S | Y ) / P (Y | Z, P,W, S) · P (Z) · P (P ) · P (W ) · P (S)

/
Y

i

Y

j

f(yij | Z, P,W, S)

· �(↵z)↵z
K

�(↵z + I)

Y

k

�(Ck)

·
Y

j

a
P

k Skj

P
Sj
a
P

k Skj

(4.5)

where f(yij | Z, S,W, P ) is defined as in 4.2.
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4.2.3 Sampling Methods

Similarly, we use a Gibbs sampling procedure to sample Z, S, W and P itera-

tively by conditioning on all other parameters to obtain a sequence of samples to

approximate the joint posterior distribution.

The detailed sampling procedure is as follows:

1. Sample Z

Because the parameter space for Zi is {0, 1, · · · , K}, we can calculate the con-

ditional posterior probability for Zi of taking each of those possible values and

sample Zi from a multinomial distribution proportional to this posterior prob-

ability.

P (Zi | Z�i, P,W, S, Y ) / P (Y | Zi, Z
�i, P,W, S) · P (Zi | Z�i)

/
JY

j=1

f(yij | Z, S,W, P ) · P (Zi | Z�i)
(4.6)

where f(yij | Z, S,W, P ) is defined as in 4.2.

Conditional on all other Zis, the conditional prior for Zi becomes

P (Zi = k | Z�i) =

8
><

>:

↵z
↵z+I�1 if k is a new cluster

C�i
k

↵z+I�1 if k is an existing cluster
(4.7)

For a new cluster, p and w are drawn directly from the prior uniform distribu-

tions; S is randomly assign with 0s and 1s.

2. Sample P, W, S
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Unlike the Bayesian BiCluster for Categorical data model, we cannot integrate

out P,W from the model and sample S directly. It is di�cult to sample directly

from the mixture distribution because it cannot be derived to a simple form for

sampling. We thus reparametrize the model and use Multiple-try Metropolis

(Liu (2008), Liu et al. (2000)) to sample P,W, S.

Considering a single column in our model, we drop the j index from our model

for simple illustration

let ✓ = (p, w)

r =

8
><

>:

S = (S1, S2, . . . , SK)

✓ = (✓0,�✓1,�✓2, . . . ,�✓K)
(4.8)

⇥ = (P,W ) can be restructured from r as

✓1 = (p1, w1) = ✓0 + S1 ·�✓1

✓2 = (p2, w2) = ✓0 + S2 ·�✓2

. . .

✓K = (pK , wK) = ✓0 + SK ·�✓K

(4.9)

Let r(t) be the set of parameters at time t, we define

!(r(1), r(2)) = ⇡(r(1)) · T (r(1), r(2)) (4.10)

where ⇡(r(t)) is the joint posterior for P,W, S at time t
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⇡(r(t)) = P (S(t), ✓(t) | y)

/ P (y | S(t), ✓(t)) · P (✓(t)) · P (S(t))

P (y | S(t), ✓(t)) /
KY

k=1

f( yi
i:Zi=k

| ✓(t)0 + S
(t)
k ·�✓

(t)
k )

T (r(1), r(2)) is the jumping function, which we will explain in more details after

describing the sampling procedure

T (r(1), r(2)) = T (p(1), p(2)) · T (w(1), w(2)) · T (S(1), S(2))

Starting from r(t), we draw N independent trial proposals as r(t+1),1, r(t+1),2,

. . . , r(t+1),N , from T (r(t), .). Compute !(r(t+1),n) for n = 1, 2, . . . , N.

Select r(t+1),0 from the trial set {r(t+1),1, r(t+1),2, . . . , r(t+1),N} with probability

proportional to !(r(t+1),n, r(t)). Then draw x⇤
1, x

⇤
2, . . . , x

⇤
N�1 as a reference set

from T (r(t+1),0, .). Set x⇤
N = r(t).

Accept r(t+1),0 with probability

rg = min

(
1,

PN
n=1 !(r

(t+1),0, r(t))
PN

n=1 !(x
⇤
n, r

(t+1),0)

)
(4.11)

To jump from p(t) to p(t+1), we first map p to the real axis by doing a logit
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transformation and then draw

✏p ⇠ N(0, �2
p)

log
p(t+1)

1� p(t+1)
= ✏p + log

p(t)

1� p(t)

the proposal jumping function is

T (p(t), p(t+1)) / N(✏p; 0, �
2
p) · (

1

p(t)
+

1

1� p(t)
)

Similarly, for w, we have

✏w ⇠ N(0, �2
w)

log
w(t+1)

1� w(t+1)
= ✏w + log

w(t)

1� w(t)

the proposal jumping function is

T (w(t), w(t+1)) / N(✏w; 0, �
2
w) · (

1

w(t)
+

1

1� w(t)
)

To propose S(t+1) based on S(t), we let ps be the Bernouli probability that the

element of S would change value, e.g. from 0 to 1, or from 1 to 0. Let ns be

the number of elements that changed values during the proposal, we have

T (S(t), S(t+1)) = pns
s · (1� ps)

K�ns

We iterate between sampling Z and P,W, S until the algorithm converges.
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4.2.4 Determination of Number of Clusters

The number of clusters K is incorporated into our model. The joint posterior

probabilities for di↵erent numbers of clusters are up to a normalizing constant and

are thus comparable. We can compare the joint posterior to determine the optimal

number of clusters.

We will run independent chains starting with di↵erent number of clusters and

compare the joint posterior modes for di↵erent numbers of clusters in determining

the optimal number of clusters.

4.2.5 Algorithm Summary

1. Start with K = 2.

2. Arbitrarily set values of Z(1), P (1), W (1) and S(1) in the Gibbs algorithm.

3. Suppose we have already obtained Z(t), P (1), W (1) and S(1), update Z, P,W, S

by taking the following steps:

(a) Sample Z(t+1) from Y, P (t), W (t), S(t), and Z(t).

(b) Sample P (t+1), W (t+1) and S(t+1) from Y, Z(t+1), P (t), W (t) and S(t).

(c) t ! t+ 1.

4. Iteratively run Step 3 until convergence.

5. Calculate the joint posterior mode for the final sample and record it.

6. K ! K+1 if K does not exceed the pre-specified upper bound. Return to Step

2.
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7. Select the value of K that leads to the highest joint posterior mode as the

optimal number of clusters. Output the posterior samples of Z, P , W and S

under this K.

4.2.6 Simulation Study

Date Generation

In this simulation study, we generated a 600 by 2000 matrix for 3 biclusters as plot-

ted in Figure 4.2, and the number of levels of the ordinal data was set to 5. Column-

wise, the 3 bicluster foregrounds were drawn from (p, w) = (0.2, 0.9), (0.6, 0.9), (0.9, 0.9)

respectively, and the background samples were drawn from (p, w) = (0.5, 0.1). Notice

that in this data set, we embed all 23 � 3 = 5 di↵erent distinction patterns into the

data. The simulated bicluster structure is presented in Figure 4.2.
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Figure 4.2: The true bicluster structure from which the data is simulated. Each color
demonstrates a di↵erent bicluster. 3 biclusters embeded in this simulation

We followed the sampling procedure presented in section 4.2.5. The number of

multiple-try was set to 1,000. For each number of biclusters K, we ran the MCMC

algorithm for 1,000 steps and use the first 500 steps as burn-in. The joint posterior

mode was extracted using the samples from the last 500 steps. We tested di↵erent

values of K, K = 2, 3, . . . , 8, and found K = 3 maximizes the joint posterior, which

is consistent with truth in the simulation data.
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Figure 4.3: Trace plot for the joint posterior of three parallel chains.
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Figure 4.4: Trace plot for the joint posterior of three parallel chains.
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Figure 4.5: Autocorrelation plot for the joint posterior.

We ran 3 parallel MCMC chains with di↵erent starting values for P , W and S.

The initial values for Z were using the results from hierarchical clustering by treating

data as continuous and used Euclidean distance as the measure. The diagnostics for

the parallel chains are presented in Figure 4.3 and Figure 4.5. The recovered bicluster

structure is presented in Figure 4.6.
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Figure 4.6: the biclusters learned through the MCMC algorithm. They resemble the
true structure in general except for a small amount of errors. Jaccard Index: 0.84
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4.3 Modeling Ordinal Data with Normal Random

Cuto↵ model (NRC)

Figure 4.7: Graphical illustration of the Normal Random Cuto↵ model. In this case,
the number of ordinal levels M = 3, the 2 cuto↵s are t1 and t2. When latent variable
falls to the left of t1, the ordinal variable is 0; when the latent variable falls between
t1 and t2, the ordinal variable y is 1; when it falls to the right of t2, y is 2.

Besides modeling discrete ordinal data using a mixture of Binomial and Discrete

Uniform distributions, there are a few alternatives. Because ordinal data contains

only the order information, a natural way of modeling this type of data is to use

a continuous latent variable that comes from a standard normal distribution, as in
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Figure 4.7. We create M-1 random cuto↵s to divide the distribution into M disjoint

intervals. The order is then determined by which interval the latent variable falls into.

Suppose there are 3 levels in the ordinal data set and the cuto↵s on the standard

normal distribution are �1, 1, a latent variable whose value is less than �1 will be

mapped to 0 in the ordinal data set; latent variables that fall into the interval [�1, 1]

will be mapped to 1, and latent variables greater than 1 will be mapped to 2. Under

this Normal Random Cuto↵ model setting, an ordinal distribution can be represented

using a cuto↵ vector on a standard normal distribution.

Let K be the number of clusters in our algorithm, Zi represent the cluster ID for

object i, and Sj be the column pattern indicator for the jth column, j = 1, 2, . . . , J .

Zi can take values from {1, 2, · · · , K}, i = 1, 2, . . . , I. Each object will be and can

only be assigned into one cluster.

Same as before, given K clusters, for each column variable j, there are 2K � K

di↵erent configurations to measure the similarity among the K biclusters.

Let L be aa I by J matrix, in which each cell stores the continuous latent variable

lij. We use T to denote the normal cuto↵ matrix, with each entry representing the

cuto↵ vector (tj,Sj ,Zi,1, tj,Sj ,Zi,2), which is the corresponding lower and upper cuto↵ for

the standard normal distribution.

The parameters in the model are Z, S, and T .

As we know from our previous model for ordinal data, Multiple-try Metropolis

(MTM) is computationally very expensive. Instead of using MTM, we propose an

approximation for the Normal Random Cuto↵ model.
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4.3.1 Model Settings

In this model, we assume that columns are independent of each other, rows are

independent conditonal on their cluster assignment. We assume The distribution of

the jth variable of object i, given its cluster ID Zi, distinction pattern indicator Sj

and normal cuto↵ parameter T can be expressed as follows:

P (yij | Z,S,T) =

8
>>>>><

>>>>>:

�(tj,Sj ,Zi,1) if yij = 0

�(tj,Sj ,Zi,2)� �(tj,Sj ,Zi,1) if yij = 1

�(tj,Sj ,Zi,2) if yij = 2

(4.12)

where �(.) is the cumulative density function of the standard normal distribution.

The full likelihood of this model is derived as follows:

P (Y | Z,S,T) =
IY

i=1

JY

j=1

P (yij | Z,S,T) (4.13)

where P (yij | Z,S,T) is defined as in 4.12.

Priors

We give Z an independent joint uniform prior on {1, · · · , K}.

P
⇣
Z = (k1, k2, . . . , kI)

⌘
= (

1

K
)I (4.14)

where k1, k2, . . . , kI 2 {1, 2, . . . , K}

The priors for S was given to penalize the inclusion of distinctive clusters. Let nj
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be the number of 1s in Sj. We let P (Sj | Z) / anj , where a < 1 is a positive number.

P (S | Z) /
Y

j

anj (4.15)

We give priors for each tj,Sj ,Zi,1 and tj,Sj ,Zi,2 such that they are order statistics of

two independent uniform variables on the interval [-5, 5]. The interval is set this way

on one hand to cover the main part of a standard normal distribution, and on the

other hand, to avoid the occurrence of extreme values for T:

tj,Sj ,Zi,1 | Z, S ⇠ unif(�5, 5)

tj,Sj ,Zi,2 | Z, S ⇠ unif(�5, 5) (4.16)

4.3.2 Sampling Methods

We constructe a Gibbs sampling procedure to sample Z, S and T. For each pa-

rameter, we iteratively update it by conditioning on all other parameters to obtain a

sequence of samples to approximate the joint posterior distribution.

The detailed sampling procedure is as follows:

1. Sample Z given Y, S, T

The parameter space for Zi is {1, · · · , K}, and we can calculate the conditional

posterior probability for Zi of taking each of those possible values:

P (Zi = k | Z�i,Y,S,T) /
JY

j=1

P (yij | Z,S,T) (4.17)
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P (yij | Z,S,T) is defined in 4.12. We then sample Zi from a multinomial

distribution proportional to this quantity.

2. Sample T given Y, S, Z

If Skj = 1, then cluster k is a distinctive cluster, we will sample Tj,Sj ,k,1 and

Tj,Sj ,k,2 based on the data only belongs to cluster k.

If Skj = 0, then cluster k is one of the few identical clusters, we will sample

Tj,Sj ,k,1 and Tj,Sj ,k,2 based on the combined data that belongs to those clusters;

This is done only once for each of the identical clusters and the same sampled

value of Tj,Sj ,k,1 and Tj,Sj ,k,2 are assigned to each of them.

To sample T, we will first sample latent variable L according to:

li,j,Sj ,Zi ⇠

8
>>>>><

>>>>>:

Truncated�Normal(0, 1) on (�5, tj,Sj ,Zi,1) if yij = 0

Truncated�Normal(0, 1) on (tj,Sj ,Zi,1, tj,Sj ,Zi,2) if yij = 1

Truncated�Normal(0, 1) on (tj,Sj ,Zi,2, 5) if yij = 2

(4.18)

After obtaining the samples for L, we sample each individual tj,Sj ,Zi,1 and

tj,Sj ,Zi,2 as follows:

tj,Sj ,Zi,1 ⇠ Unif(max
yij=0

{li,j,Sj ,Zi}, min
yij=1

{li,j,Sj ,Zi})

tj,Sj ,Zi,2 ⇠ Unif(max
yij=0

{li,j,Sj ,Zi}, min
yij=1

{li,j,Sj ,Zi}) (4.19)

The above two steps (4.18 and 4.19) are repeated for many steps to obtain a

good sample of T.
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There are potentially some boundary problems when some levels have zero

counts. In this situation, we can sample t using the nearest known border

values as the ends of the intervals.

We do this for every possible distinction pattern of Sj and for every column j

and obtain a T matrix of K by J by (2K �K) by 2.

3. Sample S given Y, T, Z

There are 2K � K di↵erent configurations for Sj. We can thus calculate the

posterior probability for each Sj and then draw Sj proportional to

P (Sj = m | Y,T,Z,S[�j]) /
KY

k=1

Y

{i:Zi=k}

P (yij | Z,S,T) (4.20)

4.3.3 Determination of Number of Clusters

We can use Bayesian Information Criterion (BIC) (Schwarz (1978)) to determine

the number of biclusters in the data. BIC is calculated by the following equation:

BIC = �2 logLik +m log n

where Lik represents the likelihood, m the number of free parameters and n the data

size.
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Chapter 5

Inference of Human Population

Structure Using HapMap Data

People are di↵erent. However, any two individuals in the world share more than

99% of their DNA in common. It is the less than 1% di↵erence that makes each

person unique. Among the many forms of DNA variations, single-nucleotide poly-

morphism (SNP) is the most common type, which is defined as the DNA sequence

variation of a single nucleotide between members of biological species or homologous

chromosomes in a human. The international HapMap project has made available the

SNP data of thousands of individuals across the world. We describe an application

of the model-based Biclustering method developed in Chapter 3 to infer the simi-

larities and di↵erences between human populations using multilocus genotype data

. In contrast to existing methods, our method can locate SNPs that are specific to

given subpopulation groups. We show that the method can produce highly accurate

classification of populations using individual genotype data and locate the di↵erences
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between population groups. The Biclustering process can be used as a variable selec-

tion step prior to existing population inference procedures. The algorithm can also

provide insight to the genome-wide association study (GWAS) by finding SNPs that

are common to di↵erent ethnic groups.

5.1 Terminology

SNPs are DNA sequence variations of single nucleotides between individuals or bi-

ological species, which occur more frequently in the non-coding regions of the genome

than in coding regions.

An allele is one of a number of alternative forms of a single gene or genetic locus

(Malats and Calafell (2003)). Most SNPs have two alleles because it is highly unlikely

that the same mutation would occur on the same nucelotide more than once during

the production of germ cells, given the large number of nucleotides in the human

genome. In the following analysis of the Human HapMap Project SNPs, we focus

only on SNPs that have two alleles. For diploid organisms, there are two sets of

chromosomes in the genome, which are called homologous chromosomes. Each of the

two homologous chromosomes has exactly one copy of alleles on them. For example,

at a given genetic site (locus), there are two variants A and a. If random mating

is assumed, there are three possible combinations of alleles for this locus considering

both of the homologous chromosomes, which are {AA}, {Aa} and {aa}. Those three

combinations are called genotypes of the allele.

Minor allele frequency (MAF) is defined as the frequency of the less common allele

in a given population.
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5.2 Introduction

As of today, the world has more than 7 billion people (Nations (2013)) and ev-

eryone is unique. Di↵erences between people can be tracked down to the DNA of

human genomes, the blueprint of life. Human genomes di↵er in many ways. There

are small variations at the nucleotide level, known as SNP, and large variations such

as insertions, deletions and copy number variations (CNVs). Those variations in DNA

cause di↵erence among individuals and create a world of variety. DNA-level di↵er-

ences result in the variations in phenotypes, which can be manifested as di↵erences

in physical properties such as height and weight.

Over the past two decades, scientists from di↵erent countries have worked together

on identifying the composition of the human genome. The completion of the human

genome project has given researchers the opportunity to understand genetic diseases

through association studies, mapping oncogenes and mutations linked to cancers, cer-

tain pathogens, etc. Genome-wide association study (GWAS) focuses on comparing

the allele frequencies of diseased individuals with normal ones to determine whether

their allele frequency variation is linked to certain disease. As we can see today in the

open database of GWAS results, the study has identified thousands of SNPs associ-

ated with more than 300 diseases (Johnson and O’Donnell (2009)). Nevertheless, the

case-control designs of GWAS study are susceptible to confounding from population

stratification, where the allele being studied has di↵erent frequencies across subgroups

of the population. Population stratification is caused by nonrandom mating due to

physical separation and genetic drift of alleles. Di↵erences in allele frequency are not

necessarily caused by disease: it can also be due to ancestry di↵erences, which makes
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population stratification a confounding factor in association studies.

Population stratification can occur when performing case-control studies in a non-

homogeneous population. It’s critical to find ancestry background allele frequencies

between cases and controls. The case-control designs are susceptile to confounding

from population stratification if the allele being studied has variation across subgroups

of the population. The subgroups may also be di↵erent in term of their baseline

risk of the disease. One example of the problem without population stratifcation

can be seen from the study from (Knowler et al. (1988)), which shows an inverse

association between variants in immunoglobulin and non-insulin-dependent diabetes

mellitus among Gila River Indian Community residents. However, when population

stratification was performed by eliminating the Caucasian heritage factor, the inverse

association disappeared.

It has been shown that many alleles have di↵erent frequencies across populations

(Perez-Lezaun et al. (1997); Goddard et al. (2000)) and the extent of variation is

linked to the genetic distance between these populations. In association studies, the

variation of disease allele frequencies should be corrected with the baseline frequencies

of di↵erent subpopulation groups before drawing valid conclusions (Caporaso et al.

(1999)). The questions to be addressed are: how much variations there are in allele

frequencies in a given population, and what the baselines of those populations are?

One approach to deal with confounding variables in association study is to use

matched individuals with their geographical or ethnic groups. However, this method

cannot handle the cases of admixture populations (populations with mixed ancestry).

Part of African American populations in the United States, and mestizo populations
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in Mexico, are examples of admixture populations (Salari et al. (2005); Parra et al.

(1998)). It is very di�cult to apply matching for individuals with multiple ethnic

ancestors. This thus poses a great challenge to association studies with large sample

size.

Population stratification can lead to false positive or false negative results in SNP

association studies (Choudhry et al. (2006); Freedman et al. (2004); Barnholtz-Sloan

et al. (2008); Cardon and Palmer (2003)). A few methods have been developed

to address these issues. The Fixation index (Fst) (Weir and Cockerham (1984);

Cockerham and Weir (1993)) is a measure used to quantify the genetic di↵erentiation

of a population due to genetic structure, and it is widely used in population genetics.

The Fst calculation is based on the variance of allele frequencies between populations

and it depends heavily on the number of SNPs used.

STRUCTURE (Pritchard et al. (2000); Falush et al. (2003, 2007); Hubisz et al.

(2009)) used a model based clustering method and assigns individuals into subpop-

ulations by computing the likelihood of each genotype being in each of those sub-

populations. EIGENSTRAT (Price et al. (2010)) uses principal component analysis

(PCA) to perform data dimension reduction while keeping most variability. Genomic

controls (Devlin et al. (2004)) uses genetic markers that are not linked to the trait

to adjust the inflation of the association statistics. The rescaling of the chi-square

statistics is done by using a overall uniform inflation factor for all markers and may

introduce problems.

PCA based methods are becoming popular in GWAS due to their small compu-

tational cost, and can be performed on a whole genome scale (Burton et al. (2007);
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Craddock et al. (2010); Yeager et al. (2007); Hunter et al. (2007)). EIGENSTRAT is

one of the most widely used PCA methods, though there are many alternative exten-

sions that are also based on PCA (Epstein et al. (2007); Serre et al. (2008); Li and Yu

(2008); Jombart et al. (2010)). Due to computational cost, some studies will not per-

form the analysis on the whole genome set, and instead only use ancestry-informative

markers (AIMs), a subset of markers that show greater di↵erences between ancestral

populations (Bauchet et al. (2007); Tian et al. (2008); Seldin and Price (2008); Mao

et al. (2007); Tian et al. (2006)). However, with populations of unknown origins or

admixture populations, existing AIMs panels are of little use (Barnholtz-Sloan et al.

(2008)). PLINK (Purcell et al. (2007)) also provides a toolset for genetic associ-

ation analysis. With a predefined number of clusters, the CochranMantelHaenszel

test (CMH) in PLINK can be used to test overall disease and gene association. Salvi

et al. (2011) applied aforementioned methods in two real datasets and compared their

performance.

In this Chapter, we propose a Bayesian BiClustering model for population strat-

ification and background allele frequency inference. Our algorithm not only detects

the di↵erences in the genetic variations between individuals and separates them into

subpopulations, but also estimates the background allele frequencies for each SNP.

Furthermore, we can identify SNPs that are common to all populations, as well as

those that are specific to subpopulation groups. The number of shared SNPs between

two subpopulation groups can also be used as an indicator of the genetic closeness

between them.
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5.2.1 Population Structure Inference

Population structure inference is the problem of assigning individuals to di↵erent

clusters according to their di↵erences in allele frequencies between subpopulations

due to di↵erent ancestry. Population structure is also called population stratification

in population genetics. The major cause of population stratification is non-random

mating between groups of individuals. This can be attributed to physical separation

such as geographical isolation.

Genetic markers (e.g SNPs, RFLP etc.) are good measures for inferring the hid-

den population structures in a group of individuals (Pritchard et al. (2000)). Many

algorithms have been developed to solve this problem. Suppose we have individu-

als’ genetic information, and we want to classify them into di↵erent groups. There

are in general two major types of clustering methods: distance based clustering and

model based clustering. In the case of distance based clustering, one needs to define

a distance measure for the pairwise genetic distance between individuals. Traditional

clustering algorithms can then be applied once the distance matrix is computed. For

model based clustering, it is assumed that every individual is drawn from a cluster

specific parametric model. Distance based methods are straightforward, and there are

many classical methods available, such as k-means. Disadvantages of distance based

clustering include: (1) it depends on the choice of distance measure; (2) it is di�-

cult to interpret the statistical meaning of such classifications; (3) it cannot quantify

uncertainties. One popular algorithm based on distance measure is EIGENSTRAT

proposed by Price et al. (2006). It first uses Principle Component Analysis (PCA)

Jackson (2005) to determine the directions of the genetic variation. After the data
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dimensionality reduction, a multilinear regression is carried out using the remaining

dimensions on cases and controls. The detection of ancestry di↵erences is performed

by computing the association statistics.

Another widely used statistical algorithm for making population structure infer-

ence is STRUCTURE (Pritchard et al. (2000), Falush et al. (2003), Falush et al.

(2007)). STRUCTURE proposes two models: Model without admixture and Model

with admixture. In the model without admixture, it is assumed that there are K

populations and each individual is from one of the populations. The population here

is characterized by an allele frequency matrix P. i.e. within a given population, each

SNP site has its population specific alle frequencies for all alleles on the same site. For

the model with admixture, each individual is assumed to originate from a mixture of

the K predefined populations. There is a K dimensional q vector for each individual,

which indicates the fractional heritage from each of the populations. qik is the prob-

ability that individual i comes from population k, or equivalently the percentage of

genome of individual i that was derived from population k. Just as with the model

without admixture, the population here can be described using an allele frequency

matrix P.

Unlike STRUCTURE, we treat each individual as an observation from one of the

unknown populations. This is more practical from the perspective of the Genome-

Wide Association Study (GWAS). We are more interested in knowing the di↵erences

between those unknown populations and what caused the population di↵erences. The

admixture information is not of our primary research interest because knowing the

admixture information does not directly help identity the genome sites for association
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study. Under this setting, the unknown populations can be interpreted as new human

types, which share same genomic similarity. STRUCTURE uses the allele frequency

matrix to characterize each ancestral population. In our model, we use directly the

genotype frequency matrix to describe our cluster. We will detail the model settings

in the following section.

The primary goals of our study are

1. Grouping individuals into population groups based on their genetic di↵erences;

2. Finding out where the genetic di↵erences are;

3. Investigating how various disease-linked SNPs interplay with race-specific SNPs.

5.3 Data description and preprocessing

5.3.1 HapMap Project

In our study, we used the Phase III data from the international HapMap Project

(Thorisson et al. (2005); Altshuler et al. (2010)). The international HapMap Project

aims to construct a haplotype map of the human genome to describe common patterns

of human genetic variation. It is a collaboration among organizations from Canada,

China, Japan, Nigeria, the United Kingdom and the United States. The results of

Phase I were published in 2005. The Phase II dataset was published in 2007, and

Phase III was released in 2009.

The HapMap project focuses on common SNPs that have a minor allele frequency

(MAF) greater than 5%, while HapMap project phase III managed to include SNPs

100



Chapter 5: Inference of Human Population Structure Using HapMap Data

with low frequencies (MAF < 5%), and thus brought the information database to an

even higher resolution. The dataset from the HapMap project are the genotypes of

SNPs from the sampled individuals. The alleles of nearby SNPs on a chromosome are

correlated because of evolutional recombination events, which is referred as Linkage

Disequilibrium (LD) (Reich et al. (2001)). Tag SNPs are the representative SNPs in

a certain region for correlated SNPs (Halperin et al. (2005)). In GWAS study, to find

the genetic factors that a↵ect certain phenotypes (diseases etc.), researchers focus on

those tag SNPs and identify the distribution of them across individuals with di↵erent

phenotypes.

HapMap phase III collected the genotype data of 1,397 individuals from 11 pop-

ulations. The data were obtained by merging the results from A↵ymetrix Human

SNP array 6.0 and Illumine Human1M-single beadchip. After filtering out low-

quality/incomplete data and post processing, the consensus genotype set was left

with 1,440,616 SNPs that are polymorphic in the sampled individuals (Altshuler

et al. (2010)). Some of the genetic variations are specific to populations, while some

of them are specific to a set of populations. We are interested in identifying those

specific SNPs patterns that define the population structures.

5.3.2 Data Preprocessing

The 11 populations are: individuals from the Centre d’Etude du Polymorphisme

Humain collected in Utah, USA, with ancestry from northern and western Europe

(CEU); Han Chinese in Beijing, China (CHB); Japanese in Tokyo, Japan (JPT);

Yoruba in Ibadan, Nigeria (YRI); African ancestry in the southwestern USA (ASW);
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Chinese in metropolitan Denver, Colorado, USA (CHD); Gujarati Indians in Houston,

Texas, USA (GIH); Luhya in Webuye, Kenya (LWK); Maasai in Kinyawa, Kenya

(MKK); people with Mexican ancestry in Los Angeles, California, USA (MXL); and

Tuscans in Italy (Toscani in Italia, TSI).

The raw genotype data was downloaded in PLINK format (Purcell et al. (2007))

from HapMap phase III website. Due to linkage disequilibrium, we used PLINK to

remove correlated SNPs in the decorrelation step by setting the threshold of r2 to

be 10�6, where r2 refers to the squared Pearson correlation coe�cient of observed

genotypes between SNPs. The sliding window is set to be 200 with an increasing

step of 20. Also, we removed the child from each of trio-family so as to collect only

unrelated individuals. This generates a 1,198 by 4,217 data matrix. The SNPs in our

data are all biallelic thus the genotypes are either 0, 1 or 2. After the decorrelation

step, the Minor Allele Frequencies of the 4,217 SNPs are plotted in Figure 5.1.

The short code and number of individuals for each sample populations are listed

in Table 5.1

Table 5.1: All 11 populations

Short Code Description of group Individual numbers
ASW African ancestry in Southwest USA 1 - 53
LWK Luhya in Webuye, Kenya 54 - 163
MKK Maasai in Kinyawa, Kenya 164 - 319
YRI Yoruba in Ibadan, Nigeria 320 - 466
GIH Gujarati Indians in Houston, Texas 467 - 567
MEX Mexican ancestry in Los Angeles, California 568 - 625
CHB Han Chinese in Beijing, China 626 - 762
CHD Chinese in Metropolitan Denver, Colorado 763 - 871
JPT Japanese in Tokyo, Japan 872 - 984
CEU Utah residents with NW European ancestry 985 - 1096
TSI Toscans in Italy 1097 - 1198
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Figure 5.1: After the decorrelation step, we reduced the number of SNPs from 1.4
million to 4,217 by setting r2 to 10�6 using PLINK. We calculated the MAF based
on the genotype data for each of the 4,217 SNPs. The MAF ranges from 0.337 to
0.500 and are all common SNPs. This histogram shows the distribution of the MAFs
in our dataset.
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Our processed data is now a matrix of categorical data, taking values in three

di↵erent genotypes. Each row represents an individual while each column represents a

SNP. The individuals are unrelated and the SNPs are uncorrelated. We are interested

in inferring the population structure in the data without using the self-reported race

information, and in the mean time finding SNPs that are specific to each population

from an unsupervised standpoint.

5.4 Data Analysis

We used the Bayesian Biclustering model for Categorical Data (BBCD) we de-

veloped in Chapter 3 to analyze the genotype data of 1,198 unrelated individuals on

4,217 SNPs. In the current context, there are 3 categories for each SNPs, or in other

words 3 di↵erent genotypes for each SNP site, which are represented using { 0, 1,

2 }. The unknown populations here correspond to the clusters in this model. Each

individual will be and will only be assigned into one of the clusters. Within each

cluster, every column of SNP genotypes is from the same multinomial distribution.

The SNP sites whose genotypes are from the same multinomial distribution across all

clusters will be treated as background because they do not contribute in distinguish-

ing populations. The primary goal is to infer the number of biclusters in the data set

and find biclusters that share the same multinomial distributions on selected SNPs

columns, as illustrated in Figure 5.2.
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Figure 5.2: Illustration of a bicluster with three categories, {S, N, P}. The height of
the respective letter is proportional to the multinomial probability of this category
on the given column. The figure was generated using a modified version of Sequence
Logos software Schneider and Stephens (1990)

Following the notations from Chapter 3, letK be the number of clusters in the data

set, ⇥ be the multinomial genotype frequency matrix, M be the number of categories

in the data which is 3 in this case, and S be the column similarity pattern indicator

matrix. Zi is the cluster ID for individual i, and yij is the genotype of individual i

at SNP j. Given Zi = k, the genotype yij is from a multinomial distribution with

frequency parameter ~✓kj.

yij | Z,S,⇥ ⇠ Multinom(~✓Zi,j)

The Dirichlet prior for ⇥ is set to be:

↵✓ = {2, 2, 2}

and the Chinese Restaurant processs prior for Z is set to be:

↵Z = {1, 1, 1}
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The prior for S was given to penalize the inclusion of distinctive clusters:

P (Sj) / a
P

k Skj

where a = 0.1.

We ran the algorithm starting with di↵erent number of clusters, until the number

of clusters converges. The optimal number of clusters is determined by comparing

the joint posterior modes of each setting.

5.4.1 Results and Biological Implications

We used all 4,217 SNPs for the 1,198 individuals to find biclusters and found 5

biclusters according to the joint posterior modes. The publicly available potential

etiologic and functional association loci for human diseases and traits database was

used to match the SNPs (Hindor↵ et al. (2009), Hindor↵ et al. (2011)). We further

found that several diseases could potentially have di↵erent degrees of influences on

the subpopulations we discovered.

We started our algorithm with 2 clusters and gradually increase the number of

clusters to 3, 4, 5, 6, and 7. The number of clusters converges to 5 for any run

starting with a number greater than 5 as plotted in Figure 5.3. The comparision of

their respective joint posterior mode is presented in Figure 5.4.
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Figure 5.3: Number of clusters converges to 5 when starting with a number greater
than 5.
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Figure 5.4: Comparison of joint posterior modes at 2, 3, 4, and 5 BiClusters.

The number of clusters was chosen to be 5 for the SNP full data set. The trace

plot and ACF plot for 5 clusters are presented in Figure 5.5 and 5.6
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Figure 5.5: The trace plot of log-likelihood in 3 independent chains.
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Figure 5.6: The ACF plot for Log-Likelihood

If we start with 2 clusters, the algorithm will converge at 2 clusters, as in Figure

5.7. Although our model allows the number of clusters to change dynamically, it

is often trapped in a local mode because of the high energy barrier to jump to a

higher number of clusters. From the plot, we can see that 2,847 SNPs di↵erentiate

individuals with African ancestry with all other individuals.
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Figure 5.7: 2 BiClusters identified by starting with 2 clusters

The two biclusters identified are: Group 1: ASW LWK MKK YRI; Group 2: CHB

CHD JPT CEU GIH MEX TSI.

If we start with 3 clusters, it will converge to 3 clusters at a local mode. A new

cluster emerges from the second cluster of the previous analysis: individuals with East

Asian ancestry are separated from individuals with Indian, Mexican and European

ancestries. All individuals with African ancestries are in the same cluster as in the

previous analysis. This can be intepreted as that Indian, Mexican, European and

East Asian are closer in genetics compared to African ancestry. In addition, Indian,
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Mexican and European are closer to each other than those of East Asian ancestry.

The results are presented in Figure 5.8

Figure 5.8: 3 BiClusters identified by starting with 3 clusters

The three biclusters identified are: Group 1: ASW LWK MKK YRI; Group 2:

CHB CHD JPT; Group 3: CEU GIH MEX TSI.

We then start with 4 clusters, it will stay at 4 clusters because of the local mode.

A new cluster emerges as the Indian group, while Mexican, European ancestry indi-

viduals are still in the same cluster. The results are shown in Figure 5.9
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Figure 5.9: 4 BiClusters identified by starting with 4 clusters

The four biclusters identified are: Group 1: ASW LWK MKK YRI; Group 2:

CHB CHD JPT; Group 3: GIH; Group 4: CEU MEX TSI.

If we start with 5 clusters or higher, the algorithm will converge to 5 as the total

number of clusters. As seen in Figure 5.10, a new cluster emerges as the Mexican

group, while CEU, TSI individuals are still in the same cluster. There are 3 individuals

from the Mexican group that were assigned to the European ancestry group which

includes CEU and TSI individuals. This is potentially due to the admixture nature

of Mexican ancestry. These 3 individuals may inherit more genetic information from
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European ancestry than from other sources. By comparing the joint posterior modes

for 2, 3, 4 and 5 clusters, we chose 5 as the optimal number of clusters for the HapMap

data set.

Figure 5.10: 5 BiClusters identified by starting with 5 clusters

The five biclusters identified are: Group 1: ASW LWK MKK YRI; Group 2:

CHB CHD JPT; Group 3: GIH; Group 4: MEX; Group 5: CEU TSI. Table 5.2 lists

the genetic similarity in terms of SNPs between these 5 population groups. 0 means

the genotype frequencies of SNPs are from the same multinomial distribution. 343

SNPs are shared across all 5 populations. Table 5.3 lists the number of SNPs that are
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unique to each of the population group. In other words, the number of SNPs that can

distinguish the specific population group from other population groups. As we can

see, African ancestry group has the most unique SNPs (891), followed by East Asian

group (495), then the Northwest European group (185). This is consistent with the

human migration theory, which assumes all humans originated in Africa, and then

migrated to other parts of the world.

The number of SNPs shared by any two population groups are caculated and

plotted in Figure 5.11. The Mexican and North Indian groups have 15 and 58 unique

SNPs respectively, which suggests these two might be admixture population groups.

Further looking into those 2 groups, we see that Mexican shares 71.4% of the 4,217

SNPs with the Northwest European group, 47.8% with the East Asian group, and

35.8% with the African group; the North Indian group shares 66.9% with the North-

west European group, 43.5% with the East Asian group and 32.6% with the African

group; Between the North Indian and Mexican groups, there is a 80.2% similarity in

the 4,217 SNPs. A possible cause might be that they share the similar ancestries as

admixture population groups.
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Table 5.2: Genetic di↵erences among 5 discovered population groups

African N Indian Mexican NW European E Asian Num of SNPs
0 0 0 0 0 343
0 0 0 0 1 495
0 0 0 1 0 185
0 0 0 1 1 184
0 0 1 0 0 15
0 0 1 0 1 79
0 0 1 1 0 56
0 0 1 1 1 20
0 1 0 0 0 58
0 1 0 0 1 124
0 1 0 1 0 92
0 1 0 1 1 27
0 1 1 0 0 7
0 1 1 0 1 15
0 1 1 1 0 5
1 0 0 0 0 891
1 0 0 0 1 912
1 0 0 1 0 286
1 0 0 1 1 84
1 0 1 0 0 36
1 0 1 0 1 49
1 0 1 1 0 22
1 1 0 0 0 127
1 1 0 0 1 62
1 1 0 1 0 33
1 1 1 0 0 10
1 1 1 1 1 0

Total: 4217
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Figure 5.11: SNPs shared between populations groups.

Table 5.3: Number of Unique SNPs among 5 discovered population groups.

Population Group Number of Unique SNPs
African 891
East Asian 495
Mexican 15
North Indian 58
Northwest European 185
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Disease SNP linkage

Using the data from the published GWAS loci for human diseases and traits

catalog (Hindor↵ et al. (2009), Hindor↵ et al. (2011)), we matched our 4,217 SNPs

and found 27 SNPs that are known to be linked to diseases or traits. Table 5.4

lists the matched SNPs and their estimated allele frequencies in di↵erent population

groups. The higher the allele frequency for the strongest risk allele, the more likely

the population group is to be susceptible to the disease.

From the GWAS catalog, we know SNP rs2071748 is linked to obesity-related

traits in human. The strongest SNP risk allele is A, in our estimate African, North

Indian and East Asian group all have this A allele frequency at 0.53, while Mexican

and Northwest European groups are at 0.22, 0.42 respectively. We can speculate that

African, North Indian and East Asian population groups have di↵erent susceptibility

to this specific SNP linked traits due to their di↵erent risk allele frequencies from other

groups. Another example is from SNP rs12933233, which is linked to Alzheimer’s

disease. Its strongest SNP risk allele is unknown. However, from our estimate we

know that East Asian (0.65) has a higher allele frequency for allele {A} at this locus

than any other population groups (African: 0.47; North Indian: 0.37; Mexican: 0.37;

Northwest European: 0.37). East Asian group may have a di↵erent susceptibility to

this disease than all other populations, depending on what the strongest SNP risk

allele is. SNP rs4964469 is linked to Parkinson’s disease according to the GWAS

catalog, which has the strongest risk allele as A. Our estimate (African: 0.61; North

Indian: 0.39; Mexican: 0.39; Northwest European: 0.39; East Asian: 0.39) suggests

that African alone have di↵erent susceptibility to this linkage. The GWAS catalog
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Table 5.4: Public GWAS disease catalog matched SNPs and their estimated allele
frequencies in di↵erent population groups. For unknown Strongest SNP-Risk allele,
the estimate is based on the minor allele at given locus.

SNP Name Disease/Trait S. Risk African N Indian Mexican NW European E Asian

rs6601327 Multiple myeloma G 0.49 0.49 0.49 0.36 0.6

rs2071748 Obesity-related traits A 0.53 0.53 0.22 0.42 0.53

rs907121 Weight C 0.44 0.59 0.44 0.65 0.44

rs727428 Sex hormone-binding globulin levels T 0.53 0.53 0.53 0.44 0.53

rs10113903 IgG glycosylation C 0.58 0.36 0.36 0.36 0.61

rs27855 Height A 0.81 0.4 0.4 0.4 0.21

rs10906189 QT interval A 0.55 0.55 0.55 0.55 0.42

rs11013962 Common traits (Other) ? 0.68 0.48 0.48 0.48 0.32

rs12933233 Alzheimer’s disease ? 0.47 0.37 0.37 0.37 0.65

rs9951150 Autism spectrum disorder, etc A 0.38 0.52 0.52 0.52 0.64

rs6030171 IgG glycosylation C 0.51 0.34 0.34 0.34 0.64

rs1204798 Dental caries ? 0.2 0.72 0.72 0.72 0.72

rs6478241 Migraine A 0.75 0.35 0.35 0.35 0.35

rs531676 Metabolic syndrome ? 0.38 0.61 0.61 0.5 0.61

rs3011225 Amyotrophic lateral sclerosis G 0.78 0.32 0.32 0.32 0.32

rs3129882 Parkinson’s disease G 0.45 0.45 0.45 0.45 0.64

rs11977526 Insulin-like growth factors A 0.4 0.4 0.4 0.4 0.82

rs2281636 Obesity-related traits A 0.57 0.37 0.37 0.37 0.6

rs1292053 Inflammatory bowel disease G 0.53 0.42 0.42 0.42 0.56

rs293428 Sex hormone-binding globulin levels A 0.44 0.74 0.4 0.74 0.39

rs514024 Eating disorders A 0.57 0.57 0.57 0.57 0.28

rs1354774 Prostate-specific antigen levels G 0.88 0.41 0.41 0.41 0.21

rs1473247 Mean platelet volume C 0.68 0.4 0.4 0.24 0.4

rs4537545 C-reactive protein T 0.69 0.4 0.4 0.4 0.4

rs483610 Obesity-related traits G 0.74 0.35 0.35 0.35 0.35

rs7837791 Refractive error T 0.61 0.22 0.74 0.51 0.51

rs4964469 Parkinson’s disease A 0.61 0.39 0.39 0.39 0.39
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has been growing fast with contributions from association study and we will have

more data to investigate how various disease-linked SNPs interplay with race-specific

SNPs as it grows.

2,000 SNPs

We randomly draw 2,000 SNPs from the 4,217 SNPs and use this subset as input,

our algorithm can still separate the 1,198 individuals into 5 major population groups.

The estimated bicluster structure is shown in Figure 5.12. The population specific

SNPs pattern looks similar to the one we obtained using all 4,217 SNPs. A detailed

comparison of similarity patterns is presented in Table 5.5.
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Figure 5.12: Population structure estimated using 2,000 SNPs

1,000 SNPs

If we only draw 1,000 SNPs and repeat our alogrithm, we can also get the same

clusters. Table 5.5 lists the percentage of population specific SNPs from experiments

with di↵erent number of SNPs used. We can see the percentage is very consistent

between using 4,217 SNPs and 2,000 SNPs. It is no longer consistent with 1,000

SNPs.
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Figure 5.13: Population structure estimated using 1,000 SNPs

Table 5.5: Estimated population specific SNPs using di↵erent number of SNPs

Num of SNPs African N Indian Mexican NW European
4,217 891 (21.1%) 58 (1.38%) 15 (0.36%) 185 (4.39%)
2,000 440 (22%) 26 (1.3%) 8 (0.4%) 100 (5%)
1,000 7 (0.7%) 5 (0.5%) 204 (20.4%) 47 (4.7%)

500 SNPs

We keep decreasing the number of SNPs in our experiment. When the number

drops to 500, it can only form 3 clusters: (African, East Asian, (Mexican, North
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Indian, Northwest European)), as plotted in Figure 5.14. We tried multiple ex-

periements and the results were similar.

Figure 5.14: Population structure estimated using 500 SNPs

200 SNPs

When we drop the number of SNPs to 200. The algorithm keeps adding new

clusters by separating individuals from Indian and Mexican populations into new

clusters. We tried 5 independent random draws and the results are the same. We can

see that 1,000 SNPs is probably the lower bound for the number of SNPs required

for separating individuals into 5 major population groups. We can speculate that
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with more independent SNPs added, more meaningful clusters might form using our

Bayesian Biclustering algorithm.

5.4.2 Variable Selection for STRUCTURE

Figure 5.15: STRUCTURE analysis with 4,217 SNPs
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Figure 5.16: STRUCTURE analysis with 3,874 SNPs

As we discussed before, our Bayesian Biclustering model can be used as a variable

selection step. We use all 4,217 SNPs for 1,198 individuals as input to STRUCTURE

and set the number of ancestries to be 5. The estimated percentage of ancestries for

each individual is plotted in Figure 5.15. Every vertical line represents the ancestral

composition of an individual, with the length of the colored segements proportional to

the percentage of corresponding ancestries. After removing the 343 commonly shared

SNPs identified by our algorithm, we performed the analysis again and the estiamted

percentages are presented in Figure 5.16.
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Comparing the 2 plots, we can see that removing the 343 SNPs (about 8% of the

total SNPs used) will have little impact on the percentage estimate for East Asian

populations, while there is huge change in Indian, Mexican and Northwest European

populations. The green ancestry in Indian,Mexican and Northwest European popula-

tion becomes dominant. Mexican and Indian populations becomes even more similar

to each other after the removal according to STRUCTURE. In the meantime, the

removal caused another ancestry percentage become more evident in African pop-

ulations(the red segments). The dramatical change in percentage of ancestries are

subject to further investigation.

5.4.3 Discussion

In our analysis, we did not use any of the population information and started

everything from an unsupervised standing point. However, the biclustering results

show a high consistency between real geographical population groups and our pre-

dicted groups. This reveals the fact that human genome stores valuable and powerful

information to di↵erentiate people. In our analysis, we could not separate some

ethinic groups into distinctive clusters. This might be caused by the using of only

4,217 SNPs due to limitations of computing power.

Our choice of 106 as the correlation threshold for choosing Tag SNPs is also ar-

bitary. Given more computing power, we can relax this constraint by including more

Tag SNPs. In the meantime, the categorical biclustering model can be further im-

proved by allowing correlations between SNPs, including genetic proximity between

SNPs on chromosomes.
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