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Abstract

We report on results from whole-exome sequencing (WES) of 1,039 subjects diagnosed with autism spectrum disorders
(ASD) and 870 controls selected from the NIMH repository to be of similar ancestry to cases. The WES data came from two
centers using different methods to produce sequence and to call variants from it. Therefore, an initial goal was to ensure the
distribution of rare variation was similar for data from different centers. This proved straightforward by filtering called
variants by fraction of missing data, read depth, and balance of alternative to reference reads. Results were evaluated using
seven samples sequenced at both centers and by results from the association study. Next we addressed how the data and/
or results from the centers should be combined. Gene-based analyses of association was an obvious choice, but should
statistics for association be combined across centers (meta-analysis) or should data be combined and then analyzed (mega-
analysis)? Because of the nature of many gene-based tests, we showed by theory and simulations that mega-analysis has
better power than meta-analysis. Finally, before analyzing the data for association, we explored the impact of population
structure on rare variant analysis in these data. Like other recent studies, we found evidence that population structure can
confound case-control studies by the clustering of rare variants in ancestry space; yet, unlike some recent studies, for these
data we found that principal component-based analyses were sufficient to control for ancestry and produce test statistics
with appropriate distributions. After using a variety of gene-based tests and both meta- and mega-analysis, we found no
new risk genes for ASD in this sample. Our results suggest that standard gene-based tests will require much larger samples
of cases and controls before being effective for gene discovery, even for a disorder like ASD.
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Introduction

Common and rare variants are important constituents of the

genetic architecture of Autism Spectrum Disorders (ASD) [1–12].

Nonetheless analysis of rare variants has produced the vast

majority of findings that implicate certain genes as playing a role in

liability for ASD (i.e., ASD genes). Because of the promise of

identifying novel ASD genes via rare variants, and the potential

downstream implications regarding treatment, an ambitious

exome sequencing study has been implemented including nearly
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2000 case and control subjects sequenced at two genomic centers.

Exome sequencing studies of complex traits have shown success in

candidate gene studies [13–18]; however, most published candi-

date gene studies have not reported a p-value small enough to

attain exome-wide significance [19].

For rare variants, even if effects are strong, single variant tests

typically have little power. Rare variants have to be combined in

some way, such as within a gene or across genes, for an association

test to reach sufficient power. Hence statistical tests examine the

cumulative effects over the observed rare variants in the target set.

A number of statistical methods to test for association with rare

variants are now available. Several of these tests fall into the

category of burden tests in that they assess association with a

‘‘super-variant’’ [20–24]. Each of these burden methods assumes

variants impact the phenotype in a common direction. Rather

than aggregating variants, another class of methods, including C-

alpha [25] and SKAT [26], look for an unusual distribution of rare

variation among cases and controls.

Power of the test is determined by the number of causal variants

in the gene, the size of the corresponding effects, and the sample

size. Assuming that the rarest variants are likely to have the largest

effects, it is challenging to amass substantial evidence for

association without a large sample size. Based on extrapolation

of effect sizes and frequencies from published studies [19], the

results indicate that thousands of individuals are required to obtain

genome wide significance.

In this ARRA autism sequencing consortium (AASC) study,

data have been produced by two sequencing centers (Baylor

College of Medicine and Broad Institute) and by different exome

capture methods, different sequencing platforms and different pre-

processing alignment and variant calling methods. Therefore the

coverage and quality of these data sets varies. Nonetheless, as we

show in the sequel, these data can be harmonized using standard

filtering criteria. Given the distinct data sources, the most effective

way of testing for association is unclear. Following in the tradition

of association studies, meta-analysis is a natural option [27]. With

this approach we can perform the analysis on each data set

separately and then combine p-values using the weighted Z-score

method. Alternatively, after filtering to homogenize data, we can

combine the two data sets directly and perform mega-analysis.

Meta-analysis has the advantage of permitting and adjusting for

heterogeneity between samples [28]. All other things being equal,

this is the preferred choice. On the other hand, if the power of

mega-analysis is better, then this option is worth pursuing. In this

report we show that mega-analysis is the more powerful procedure

for gene-based tests, such as SKAT [26], a result that might be

counter-intuitive given the well-known efficiency of meta-analysis

for tests of linear form such as logistic regression. For these data we

also find that population structure appears to be corrected for by

using principal components analysis [29].

After quality control and controlling for ancestry, analysis of

AASC data reveals no clear-cut associations, including associations

in known ASD genes. We conclude that rare variants affecting risk

are not clustering in a small number of genes, supporting recent

results from de novo single nucleotide and copy number studies

showing that hundreds of genes in the genome affect risk for ASD

[4–6,8].

Results

Harmonizing Calls of Genotype across Sequencing
Platforms

The AASC whole-exome sequencing data included 1039 ASD

subjects of European ancestry and 870 controls of similar ancestry.

Approximately half of the samples were sequenced using the Solid

platform and called with AtlasSNP 2 [30] (Baylor: 505 cases, 491

controls) and the remainder were sequenced using the Illumina

platform and called with GATK [31] (Broad: 534 cases, 379

controls).

We considered 6 filters to make these data sets more similar in

terms of the distribution of variants in the exome. Filters were

sequential in their stringency for including a variant: Filter PASS

included variants that pass the baseline filter of GATK; Filter

MISS excluded any variant with more than 10% missingness;

Four additional filters placed increasingly stringent requirements

on depth and balance of reference and alternative allele calls (see

Methods). If not otherwise stated, results for analyses were based

on the least stringent of these: Filter DpBal, which filters by

missingness v10%, depth w10, balance v0:75 for Broad and

v0:85 for Baylor.

Seven control samples were sequenced by both centers,

facilitating an independent comparison of cross platform calls

and an evaluation of the filtering process. To do so, we identified

all rare (v1%), non-synonymous variants located in at least one of

the two data sets. Using Filter PASS, in total, these seven samples

had 337,478 calls and only .039% of them were mismatched. With

Filter DpBal, 290,426 calls remained and .017% of them were

mismatched (Table S1). Of the heterozygotes called by one center,

but not the other, the mismatch rate was not symmetric: 9

heterozygotes were called by Baylor, but not by Broad, while 42

heterozygotes were called by Broad, but not by Baylor. On closer

inspection, many of these heterozygotes did appear to be present;

however, one of the variant callers was not confident enough to

make the call. Application of the stricter filters (B–D) led to the

removal of many of the heterozygous calls for which the callers

matched without further improvement in the mismatch rate. For

instance, with Filter D only 65% of the matching heterozygous

calls from Filter PASS were preserved compared to 85% for Filter

DpBal.

Post filtering, the Broad and Baylor data sets had similar

numbers of minor allele calls per sample per gene (Figure 1A). The

Baylor variant count was slightly greater than the Broad count

(Figure 1B), due in part to the larger number of samples in the

Author Summary

This study evaluates association of rare variants and autism
spectrum disorders (ASD) in case and control samples
sequenced by two centers. Before doing association
analyses, we studied how to combine information across
studies. We first harmonized the whole-exome sequence
(WES) data, across centers, in terms of the distribution of
rare variation. Key features included filtering called variants
by fraction of missing data, read depth, and balance of
alternative to reference reads. After filtering, the vast
majority of variants calls from seven samples sequenced at
both centers matched. We also evaluated whether one
should combine summary statistics from data from each
center (meta-analysis) or combine data and analyze it
together (mega-analysis). For many gene-based tests, we
showed that mega-analysis yields more power. After
quality control of data from 1,039 ASD cases and 870
controls and a range of analyses, no gene showed exome-
wide evidence of significant association. Our results
comport with recent results demonstrating that hundreds
of genes affect risk for ASD; they suggest that rare risk
variants are scattered across these many genes, and thus
larger samples will be required to identify those genes.

Rare, Exonic Variants Association Study for Autism
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Baylor data set. The average count of rare variants per gene was

9.24 for Baylor and 8.82 for Broad. Association analysis was

limited to non-synonymous variants that had minor allele

frequency (MAF) less than 1%. A total of 156,636 and 152,851

variants were retained in the Baylor and Broad samples,

respectively. After filtering 9,738 and 5,808 indels were retained

in the Baylor and Broad samples, respectively.

Meta- Versus Mega-Analysis
Information from two or more datasets can be combined via

meta-analysis with the weighted Z-score approach [32]. In the

context of the SKAT test this approach assimilates gene-level

information without consideration of the directionality of any

single variant effects. Alternatively, if the data are combined after

careful filtering and harmonization, it is possible to analyze all data

simultaneously using a mega-analysis approach.

For a theoretical comparison of these approaches, see the

Methods; here we provide empirical analysis. To compare

analytically the power of meta- and mega-analysis we assume

two data sets have the same sample size and rare variants at the

same locations. Results of this analysis show that, regardless of the

number of variants, mega-analysis has greater power than meta-

analysis, unless the signal is so strong that both have power close to

one (Figure 2).

More realistic power comparisons can be made based on the

observed Baylor and Broad variant calls directly in simulation. We

focus on the 1090 genes with the largest number of variants to

obtain the greatest flexibility for configurations of causal variants.

From the combined list of variants, some of which are observed

only in Baylor or Broad, but not both, and some of which are

shared, we randomly pick a fraction f as causal variants. We use

causal variants to generate the phenotype based on the model in

Eqn. 1 with odds ratio inversely proportional to allele frequency.

The fraction of rare variants that are causal varies from f ~20% to

50%. In the analysis we upweight variants inversely proportional

to allele frequency using SKAT’s default setting. We also use

SKAT to calculate the p-values for Baylor, Broad and the merged

data sets based on its standard approximation technique. For this

simulation analysis and for all our other data analysis, we combine

all singleton variants as a super-variant. For meta-analysis the

weighted Z-score method combines the two p-values from Baylor

and Broad for each gene. Notice that in this analysis, mega-

analysis performs better than meta-analysis under a variety of

different distributions of causal variants and different log odds

ratios (Figure 3).

To gain intuition into the comparison between meta- and mega-

analysis, consider combining information across two dataset of

approximately equal size. If, in the combined sample and for a

particular variant, we observe all of the rare alleles in cases and

none in controls, then the evidence for association is higher than if

we combine statistics in which half of the rare alleles are observed

in cases from each of two sub-samples. For example, for a variant

observed 4 times, twice in cases from both subsamples, the mega

and meta p-values are .06 versus .17, respectively. The difference

in evidence occurs because there are five ways 4 alleles can be

partitioned between cases and controls in the mega dataset (4:0,

3:1, 2:2, 1:3 and 0:4); however, there are only three ways that 2

alleles can be partitioned between cases and controls. Thus with a

larger sample, it is possible for rare alleles to obtain more unusual

configurations. As variants become extremely rare the situation

becomes more unfavorable to meta-analysis. Unless the sample is

very large, most samples will draw only one copy of the rare allele

and in this scenario neither of the two case-control configurations

is unusual. With singleton variants SKAT can only gain

information about association if the rare variants are grouped to

form a super-allele.

Alternatively, mega-analysis also has advantages when consid-

ering rare alleles with no effect. If, for a particular variant, we

observe half of the rare alleles in cases and half in controls in the

combined sample, but all of the alleles are in cases in the first

Figure 1. Distribution of rare variants per gene in Baylor and Broad data sets after filtering. Minor allele counts (MAC) are restricted to
variants with minor allele frequency v1%. Panel (A), distribution of mean MAC per sample, averaged over all genes. Panel (B), in the Baylor samples,
genes were binned based on the counts of rare variants (which range from 1 to 30); for each bin the vertical axis shows the distribution of counts
(boxplot) from the same genes in the Broad samples. The red line indicates an equal count in Broad and Baylor.
doi:10.1371/journal.pgen.1003443.g001

Rare, Exonic Variants Association Study for Autism
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sample and all are in controls in the second sample, then the

evidence for association is appropriately diminished by considering

the full sample simultaneously (for 6 variants, mega~:65 versus

meta~:05). If there were only one variant per gene, it would be

possible to adjust the meta-analysis to capture the sign of the

association and overcome this weaknesses; however, gene-based

statistics rely on having multiple variants per gene to gain power.

With multiple variants, the power differential in mega versus meta

occurs because mega-analysis assimilates information variant by

variant, cancelling out false signals that differ in direction of

association across data sets and capitalizing on true signals that

match in direction. By construction, meta-analysis is restricted to

combining information at the gene level post hoc, rather than at

the variant level. In total, these comparisons explain why mega-

analysis has greater power than meta-analysis for statistical tests

such as C-alpha and SKAT, that are based on the distribution of

rare variants across cases and controls.

Distribution of AASC Data
To evaluate how sensitive the test statistic is to linkage

disequilibrium typical of rare variants, we select 144 genes that

have exactly d = 20 variants in the Broad data set. Using these data

we randomly assigned case-control status to generate a null

distribution for test statistics. With no linkage disequilibrium

structure among rare variants, and appropriately chosen weights,

the score test statistics Q is known to follow a x2
d distributions

Figure 2. Theoretical power comparison: Meta versus Mega. Theoretical power functions of meta- (red) and mega-analysis (blue) at
significance level of :0001. c is the strength of signal per variant and d is the number of rare variants. (A) d~15; (B) d~10; (C) d~5; and (D) d~3.
doi:10.1371/journal.pgen.1003443.g002

Rare, Exonic Variants Association Study for Autism
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under the null hypothesis. Alternatively, notable dependencies

among rare variants result in a statistic that follows a mixture of x2

distributions, with degrees of freedom less than d. Results from

simulations under the null in the form of a Q-Q plot (Figure 4),

show that the independence assumption is a reasonable approx-

imation for these data.

For association analysis of common variants (CVs, MAFw5%)

it is common practice to control for ancestry by regressing out the

most predictive eigen-vectors for ancestry derived from a

representative sample of CVs [29]. To determine if the

distribution of rare variants varied in ancestry space similarly to

CVs, we plot individuals based on their ancestry coordinates [33]

using three sets of single nucleotide variants (SNVs): CVs, low

frequency variants (LFVs, 1%vMAFƒ5%), and both types of

variants (CVs+LFVs). The ancestry coordinates are the eigen-

vectors obtained by applying principle components analysis to

CVs (14,702 CVs used in Baylor and 56,607 CVs used in Broad),

LFVs (8783 LFVs used in Baylor and 29,509 LFVs used in Broad)

and CVs+LFVs respectively. The variants used for PCA have no

missing genotypes. We find that individuals cluster fairly similarly

for CVs versus LFVs in eigen-vector 1, but less so for eigen-vector

2; and individuals cluster almost identically for CVs and

CVs+LFVs (Figure 5 for Broad and Figure S1 for Baylor; notice

that the similarity of clusters observed in CVs is apparent using

EVs 1 and 3 for CVs+LFs). In the subsequent data analysis we

explore the effect of using eigen-vectors from CVs and LFVs to

control for confounding due to population structure.

Cases and controls included in the AASC sample have been

chosen to have matching ancestry based on eigen-vectors derived

from CVs obtained from GWAS genotyping platforms [10].

Examining the distribution of cases (orange) and controls (blue)

from Baylor and Broad plotted versus the top 2 eigen-vectors

calculated from CVs in the exome shows that the samples are

fairly evenly distributed in ancestry space but many of the subjects

on the boundary of the eigenspace are cases (Figure 6). When

combining Baylor and Broad samples into a common eigen-space,

Figure 3. Simulation of power. The empirical power comparisons of SKAT applied to Broad (blue), Baylor (green), and combined via mega- (red)
and meta-analysis (orange). We use causal variants to generate the phenotype based on the model in Eqn. 1 with bi~h log10 (pi). Causal rate is the
fraction of variants with bj=0, which varied from f ~20% to 50%. We choose weights

ffiffiffiffiffi
vj
p

~Beta(pj ,1,25) and use SKAT to calculate the p-values for

Baylor, Broad and merged data sets. We combine all singleton variants as a super-variant. For meta analysis, the weighted Z-score method combines
the two p-values from Baylor and Broad for each gene. Panel (A) h~log(5)=3:3 and the significance level is set at .001; in panel (B) h~log(4)=3:3 and
the significance level is set at .01.
doi:10.1371/journal.pgen.1003443.g003

Figure 4. Q–Q plot of simulation tests under the assumption that
linkage disequilibrium among rare variants has little impact on
the distribution of the test statistic. 144 genes are selected from the
Broad data set. Each gene has exactly d rare variants, d~20. For each
gene, we first randomly assign the phenotypes for 913 samples based on
a coin toss, then calculate the test statistics Q, and corresponding p-value
computed under the assumption that Q*x2

d . We repeat this 100 times
per gene, to obtain more than 10,000 p-values.
doi:10.1371/journal.pgen.1003443.g004

Rare, Exonic Variants Association Study for Autism
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it is evident that the two samples overlap substantially (Figure S2).

The Baylor sample, however, includes greater diversity.

As a first step to investigate the distribution of rare variants, we

identify all pairs of individuals who share doubleton variants, i.e.,

each had one copy of an SNV seen only twice in the entire sample.

Doubletons are of interest because they are the rarest variants in

our sample for which we have strong confidence in the variant

calls. When we tally the total number of doubleton variants

possessed by each individual in the Baylor case sample, the

distribution of the doubleton-count varies widely, with some

individuals having a far greater share of these rare variants than

expected due to chance. We examine the distribution of

doubletons as a function of the eigen-map. Figure 7 displays the

relative count of doubletons in the 2-dimensional eigen-map for

the Baylor and Broad samples. Individuals with the largest number

of doubletons tend to be clearly separated from the majority of the

subjects in ancestry space by the top two eigen-vectors.

To compare the distribution of doubleton counts with the

distribution of common variants, for each individual in the Baylor

case sample we tally their count of minor alleles (MAC_c) over

exonic CVs. From Figure 8A, 8B it is clear that individuals with a

large count of doubletons also possess a disproportionate number

of minor alleles, suggesting that these individuals are toward the

boundary of the European ancestry space. Indeed all of these

individuals are separated in eigenspace from the majority of the

individuals (Figure 7A, orange points). Furthermore, sample

records suggest that many of these individuals are from Portugal,

a population whose individuals have a somewhat larger compo-

Figure 5. PCA from common variants, low frequency variants, and both types of variants. Plotted are the first eigen-vector versus second
eigen-vector for Broad samples. Eigen-vectors are obtained by applying PCA to all common variants that have no missingness (56,607 variants) (A), all
low frequency variants that have no missingness (29,509 variants) (B), and both type of variants (C). The colors are obtained by clustering individuals
based on their coordinates in panel (A) using model based clustering [51].
doi:10.1371/journal.pgen.1003443.g005

Figure 6. PCA for case (orange) and control (blue) samples. Panels (A) and (B) plot the top two eigen-vectors for Baylor and Broad,
respectively. Eigen-vectors are obtained by applying PCA to all common variants (CVs) that have no missingness (14,702 CVs used in Baylor and
56,607 CVs used in Broad).
doi:10.1371/journal.pgen.1003443.g006

Rare, Exonic Variants Association Study for Autism
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nent of African ancestry. The same pattern exists in the Broad case

sample (Figure 7B and Figure 8C); however the Broad sample does

not include any individuals with very large numbers of doubleton

variants.

These findings suggest that the distribution of common variants

might function as a proxy for the distribution of rare variants. Next

we look to see if these descriptive analyses support the use of an

eigen-map to control for confounding in rare variant tests due to

ancestry. To test for association between ASD and rare variants in

the AASC sample, we apply burden tests and SKAT to the filtered

version of the data sets and obtain the p-values of genes in the

Baylor, Broad and combined datasets. We investigate the effects of

population structure by calculating the genomic control inflation

factor l [34] when the test is performed with and without

including 10 eigen-vectors for ancestry obtained from genotypes of

CV [29].

Before comparing choices of eigenvectors, we investigate the

behavior of the genomic control statistic, l, when calculated based

on rare variant test statistics. SKAT has been shown to provide

accurate p-values in the tail of the distribution for moderate sized

samples [26]. Indeed, for these data, we also find that the nominal

p-values appear to be accurate in the tail of the distribution (see

below). The distribution of the p-values across the genome,

however, does not follow the expected uniform distribution (Figure

S3A, S3B). Specifically, for those genes clearly not associated with

the phenotype (p-values w:5) we find that SKAT tends to report

p-values biased downward toward .5, causing an apparent, but

uninteresting inflation in the GC factor. Notably, the algorithm for

Figure 7. Distribution of doubletons as a function of the eigen-map. The first eigen-vector versus second eigen-vector for (A) Baylor and (B)
Broad samples. Eigen-vectors are obtained by applying PCA to all common variants. For each individual, we count the number of doubletons. To
indicate the relative number of doubletons per individual, points are color-coded as follows: black (bottom 25%: fewest doubletons), blue (next 25%),
green (next 25%), and orange (top 25%: most doubletons) within the Baylor and Broad samples, respectively.
doi:10.1371/journal.pgen.1003443.g007

Figure 8. Doubletons counts versus minor allele counts (MAC_c) in common variants (CVs). MAC_c are computed for all variants with
minor allele frequency w:05. Panel (A) is the doubleton counts of Baylor cases versus MACs of CVs in the exome. Panel (B) is a zoomed in version of
panel (A). Panel (C) is the doubleton counts of Broad cases versus MAC_c of CVs in the exome.
doi:10.1371/journal.pgen.1003443.g008

Rare, Exonic Variants Association Study for Autism

PLOS Genetics | www.plosgenetics.org 7 April 2013 | Volume 9 | Issue 4 | e1003443



computing p-values seems to be accurate for smaller p-values; we

do not find a bias in estimate of the first quantile (Figure S3A,

S3B). A similar phenomenon holds true for the burden test, but to

a much lesser extent (Figure S3C, S3D). This is likely due to the

very small counts of rare variants. Using permutations to obtain p-

values would remedy the situation, but at a substantial cost in

computation.

These insights into the null distribution of the rare variant test

statistics lead us to calculate lq, a variant on the GC principle

based on the first quantile (rather than the median) of the p-value

distribution. For a properly calibrated statistic lq has an expected

value of 1 when there is no confounding due to population

structure (see Text S1). To compare the behavior of these two

genomic control factors we conduct the following experiment. We

calculate l and lq based on SKAT statistics computed for the

1000 largest genes. Then we permute case and control status 100

times, computing the genomic control factors for each permuta-

tion, to obtain the distribution of these statistics (Figure 9 and

Figure S4). Notice that the observed value of lq is close to the

mean of the simulated distribution for all 3 choices of eigen-

vectors. In contrast l shows much greater variability and the mean

of the permutation distribution is shifted further above 1,

Figure 9. Distribution of the genomic control factor lq. By permuting case/control status 100 times the distribution of lq is obtained based on
the 1000 largest genes. The red line shows the mean of the permutation distribution and the green line shows lq obtained from the data using (A)
Broad SKAT p-values obtained without eigen-vectors; (B) Broad SKAT p-values, with common variants (CVs) eigen-vectors, (C) Broad SKAT p-values,
with low frequency variants (LFVs) eigen-vectors; and (D) Broad SKAT p-values, with CVs plus LFVs eigen-vectors.
doi:10.1371/journal.pgen.1003443.g009
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supporting our conjecture that l provides a positively biased

estimate of the effect of confounding when using the SKAT

statistic for samples like this one.

Next we examine the effect of adjusting for ancestry (using CVs)

on the rare variant test statistics. Notice that while l is inflated for

all conditions, lq is controlled fairly well in the Baylor and Broad

samples individually (Table 1); in the mega SKAT analysis there is

a slight inflation (lq~1.08). From Table 1 and from the -

log10(observed p-values) versus -log10(expected p-values) plot

(Figure 10) we see the distribution of the test statistics follows the

null hypothesis quite closely. We conclude that adjusting for

ancestry using CVs is sufficient to yield a substantial reduction in

lq.

We explore this further by contrasting the results obtained when

applying no correction versus correction based on eigen-vectors

derived from CVs, LFVs and CVs+LFVs and find that the

corrected results are nearly indistinguishable regardless of the

scenario (both data sets individually, SKAT or burden test, meta-

or mega-analysis; Table S2). For example, in the Broad sample

and the SKAT statistic, using no eigenvectors yields lq~1:064
compared to lq~1:03,1:02, and 1.03, derived using CVs, LFVs

and CVs+LFVs, respectively.

Association Analysis of AASC Data
As described previously most analyses of the data use Filter

DpBal to screen called variants. Because one should always be

concerned about the possibility of screening out risk variants by

this filtering process, we first examine the number of genes

exceeding a threshold (i.e. signals) for 3 filters ranging from lenient

(Filter PASS) to stringent (Filter DpBal; Table 2). Applying the test

statistic to the individual data sets we find no large excess of signals

even for the most lenient filter. However, for mega-analysis,

filtering is essential to avoid false positive signals. Consider the

number of genes with p-values less than .001; with baseline

filtering (PASS) we observe a significant excess of such genes

(p~:014), but no excess with any other filters (Table 2). Next,

considering the number of genes with p-values less than .01 the

pattern continues; with baseline filtering (PASS) we observe a

highly significant excess of such genes (pv10{8), but this large

excess is absent for Filter DpBal (Table 2). It is quite likely that the

slight excess of genes with p-values less than .01 after filtering is

due to real, but weak signals in a small set of genes. A candidate

diagnostic for filtering is matching of minor allele count per person

of rare variants (MAC) across platforms (Table 2). However total

MAC is a crude measure of alignment. Diagnostic plots such as

Figure 1B give a more insightful comparison across genes and we

conjecture that a filter chosen to attain good alignment of MAC

across genes is a candidate for successful data harmonization.

MAC should also be similar across cases and controls for most

genes; for Filter DpBal, MAC per person is 330 and 300 in cases

and controls, respectively.

While filtering is beneficial to remove false positives, it has the

potential to remove real signals as well. We explore the effect of

filtering on a particular gene (SCN2A) that has been demonstrated

Table 1. Genomic control l and lq for all tests before and
after PC adjustment.

Broad Baylor Mega Meta

no
PCA PCA

no
PCA PCA

no
PCA PCA

no
PCA PCA

SKAT l 1.197 1.115 1.251 1.163 1.298 1.188 1.322 1.200

SKAT lq 1.064 1.032 1.107 1.046 1.176 1.078 1.145 1.089

Burden l 1.109 1.070 1.146 1.037 1.195 1.107 1.175 1.082

Burden lq 1.059 1.031 1.094 1.027 1.151 1.047 1.104 1.036

Note: These analyses are restricted to the genes that have more than 4 minor
alleles in the samples used in each study. l and lq are calculated based on the
median and the 1st quantile of the p-value distribution, respectively. PC
adjustment is based on the common variants (CVs) eigen-vectors.
doi:10.1371/journal.pgen.1003443.t001

Figure 10. -log10(observed p-values) versus -log10(expected p-values) of SKAT and Burden test for Mega-analysis. Panel (A) shows
SKAT p-values, Panel (B) shows burden test p-values. lq~1:078 and 1.047, for mega SKAT and burden test, respectively.
doi:10.1371/journal.pgen.1003443.g010
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to be an ASD gene based on 3 recurrent de novo loss of function

mutations [4,5]. In the Baylor sample, with Filter PASS we obtain

a suggestive p-value of .009, but many of the observed variants

have high missingness, very low depth and poor balance of alleles.

With Filter MISS the p-value is .033. Finally, with additional

filtering the signal is removed altogether. (Specifically, Filter DpBal

removes 2 putative severe missense mutations [35] and 1 putative

loss of function variant from cases.) There is no evidence of

association in the Broad sample for this gene.

Prior to filtering, a sizable fraction of the loci in which a variant is

called for one subject cannot be called – either heterozygous or

homozygous – for other subjects; it is current practice to remove loci

that have variant calls for some subjects, but w10% of subjects have

missing calls. After filtering (Filter DpBal), .3% of the values are

missing, but the missingness is not evenly distributed across sites or

case/control status (Table 3). Most notably this ‘‘missingness rate’’ in

Baylor cases is twice as high as the missingness in Baylor controls and

90% of the missingness arises from the Baylor site. Although

differential missingness has the potential to cause false positive

associations, differences between cases and controls within each data

set are not so high as to induce an excess of false positive associations

in meta-analysis even in the unfiltered data; however, if we apply

mega-analysis to the unfiltered data, we obtain a significant excess of

genes with p-values v:01 (pv10{4; Table 4). This problem is

remedied by applying Filter DpBal: after filtering, which removes loci

with high rates of missingness, we obtain no excess of small p-values

for the SKAT mega-analysis test statistics. When evaluating this issue

at a finer scale after filtering by looking at the effect of differential

missingness at the gene level, we find no association between the test

statistic and differential missingness (Figure S5).

Neither SKAT nor burden gene-based tests produce a test

statistic exceeding the threshold for exome-wide significance

(:05=20,000~2:5|10{6). Genes with p-values v:01 are reported

in Table S3. Note that nearly half of these genes have more rare

variants in controls than cases, suggesting a protective effect, but

we view this as unlikely. Moreover, the evidence is also not

sufficiently compelling to replicate any known ASD gene. To

explore this last issue in more detail we compile a list of genes with

at least two functional de novo mutations identified in the recent

ASD studies [4–6,8] (Table S4), and we examine the 114 ASD

genes cited by [36] as ASD genes (Table S5). For all genes in these

lists we obtain the p-values of SKAT and the burden tests applied

to Broad and Baylor samples separately and jointly by mega-

analysis. None of the genes yield compelling signals, arguing

strongly that our power is insufficient to detect associations with

rare variants without further information to guide our analysis.

Discussion

Studies of the distribution of de novo copy number and sequence

variants in ASD and control subjects invariably find elevated rates

of damaging de novo events in ASD subjects [1–8]. These studies

also invariably find relatively little convergence of de novo events on

particular loci in the human genome. These results are consistent

with only one conclusion about the genetic architecture of ASD,

namely that there are hundreds of genes in the genome that can

affect liability, possibly more. Indeed various statistical analyses of

the data support this conclusion [5,8].

Another common theme of ASD studies is that while de novo

events are rare, they can successfully identify ASD liability genes,

and in general the distribution of rare variation has been a key tool

for gene discovery [37]. By contrast common variation has not yet

proven an effective tool for discovering replicable ASD genes,

although there are tantalizing findings [10].

With these observations in mind the AASC has implemented a

study of rare variation in ASD based on WES [38]. Here we

report on data from almost 2000 ASD subjects and controls. We

find the distribution of rare variation between cases and controls is

Table 2. Number of significant genes (and expected number) under different filters.

Baylor Broad Mega MAC

Filter/a 0:01 0:001 0:01 0:001 0:01 0:001 Ba Br

Filter PASS 97(97) 7(10) 77(78) 10(8) 195(127) 22(13) 462 391

Filter MISS 79(73) 7(7) 77(76) 10(8) 133(113) 11(11) 338 379

Filter DpBal 67(66) 6(7) 69(70) 11(7) 123(106) 11(11) 305 351

Note: These analyses are restricted to the genes that have more than 15 minor alleles in the samples used in each study. MAC columns show the number of minor alleles
called per sample, Ba: Baylor, Br: Broad. Filter PASS includes all variants that score a ‘‘Pass’’ based on GATK, Filter MISS: missingness v10%, Filter DpBal: missingness
v10%, depth ~gw10 & balance ~jv0:85 for Baylor, gw10 & jv0:75 for Broad.
doi:10.1371/journal.pgen.1003443.t002

Table 3. Counts of missingness per sample after filtering.

Baylor Broad

case control case control

Missing 1,104 561 92 117

Not Missing 124,459 125,002 170,165 170,140

Note: These analyses are for all non-synonymous variants with MAFƒ0:01.
doi:10.1371/journal.pgen.1003443.t003

Table 4. Number of nominally significant genes before and
after filtering.

Meta Mega

Observed Expected Observed Expected

Filter PASS (MAC w0) 156 168 219 168

Filter DpBal (MACw0) 132 156 156 156

Filter PASS (MACw15) 133 127 195 127

Filter DpBal (MACw15) 96 106 123 106

Note: Significance level is 0.01, not corrected for muliple testing. The analyses of
the first two rows are for all genes that have at least one MAC in Baylor and
Broad dataset. The last rows are restricted to the genes that have more than 15
minor alleles after combining Baylor and Broad datasets.
doi:10.1371/journal.pgen.1003443.t004
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remarkably similar, showing that ASD risk genes cannot be

identified in a case-control sample of this size. Indeed, even known

ASD genes showed little association in this study. This finding is in

keeping with other studies of rare variants, but with quite different

phenotypes, supporting the conjecture that rare variant association

studies require large samples [19,39,40]. With respect to the

genetics of ASD, the results are also consistent with the inference

from de novo studies that there must be hundreds genes affecting

liability to ASD [3–6,8]. These results underscore the scale of the

challenges ahead in our effort to discover ASD genes. Large

samples must be amassed and assessed and effective study designs

implemented [41].

To gain insight into the limited power of this study, consider

three scenarios: (A) the gene has 15 variants, each with

MAF~:0025, for which all have odds ratio of 4; (B) the gene

has 20 variants, each with MAF~:005, for which 10 have odds

ratio of 3; and (C) the gene has 40 variants, each with MAF~:005,

for which 30 have odds ratio of 2. We list the required samples size

of each scenario in Table S6 to achieve a power of 50% and 80%

per gene (with a p-value threshold of 10{5). Even though the

power of mega-analysis is only 0.31, 0.11 and 0.06 for our study,

assuming these scenarios were realistic, power would have been

sufficient to discover a fraction of the large number of ASD genes

present in the genome. We conclude that these scenarios do not

describe likely models for risk genes in ASD.

As with GWAS, to assimilate large samples and gain power,

multiple studies must be combined. In the analysis of samples from

multiple studies, meta-analysis, based on Z-scores, has become the

norm for most genetic investigations. This form of meta-analysis

has power equal to mega-analysis for single variant tests [42],

hence it is reasonable to assume that meta-analysis is generally

superior to mega-analysis because the former more easily

accommodates heterogeneity across studies. A notable result from

our study is that these results do not carry over to gene-based tests

such as SKAT. In that setting mega-analysis has considerably

more power than meta-analysis because mega-analysis assesses the

concordance of association for a variant across all sites and then

combines information across all variants within a gene. In this

way, the method separates true signals from false ones and attains

a greater signal to noise ratio. In contrast, meta-analysis combines

information across studies at the gene level and hence can not

assess the pattern of signals at the variant level across sites.

A drawback of mega-analysis is that we encounter challenges

when combining datasets collected across multiple studies, which

can differ in many respects due to the use of different sequencing

platforms and protocols. For instance, these differences lead to

differential coverage by exon and different alignment errors. Even

the best laboratory process has measurement error and these

errors are exacerbated when they differ across batches of samples,

particularly if they differ between cases and controls. For these

reasons caution must be exercised if one is to reap the benefits of

mega-analysis. Indeed, even after careful filtering, heterogeneity

between sites could account for the modest inflation in the

associate test statistics and the genomic control factor after

combining sites via meta- and mega-analysis.

In this study we construct extra filters to ensure that the

distribution of rare variation of the WES data is similar for the two

centers. We find good results filtering called variants by fraction of

missing data, read depth, and balance of alternative to reference

reads. Ideally a filter is tuned by measuring some individuals on

multiple platforms. We tune our filters using subjects measured

twice. If such data are unavailable, however, we find that another

promising approach is to compare minor allele counts (based on

rare variants) per gene. A good filter is one that aims to equilibrate

these quantities.

Even with the most minimal filtering we observe no excess of

positive signals for association within the individual data sets, but

for mega-analysis we observe a great number of positive

associations. These false discoveries are diminished, however,

after filtering. Likewise mega-analysis is more susceptible than

meta-analysis to the impact of differential missingness across

platforms and across case/control status. Indeed, without filtering,

mega-analysis has many false discoveries but meta-analysis did

not. However, using filtered data we find that mega-analysis is

quite robust to differences in missingness rates across platforms

and case/control status, although we recognize that this robustness

could fail for more extreme heterogeneity of missingness. Still our

study has some differences in missingness and yet does not produce

detectable false discoveries. From our analyses we conjecture that

filtering that removes variants with w10% missingness (per data

set) is largely effective.

When combining data sets the effects of population substructure

on association is also a concern due to clustering of rare variants in

ancestry space [40,43]. Even though our case-control samples are

approximately pair-matched by ancestry in the study design, we

find weak evidence of population structure confounding the test of

association. In our data these effects could be mitigated by

regressing out principal components of ancestry using common

variants or low frequency variants. This result supports findings of

[44], but is contrary to other predictions [43]. Thus, although rare

variants tend to be younger, and therefore distinctly clustered in

populations, in our sample estimates of ancestry derived from

common variants capture the major features of the distribution of

rare variants in ancestry space.

In conclusion we find that WES data on nearly 2000 samples

collected for a case-control study are insufficient to discover novel

liability genes for ASD, even after applying efficient methods like

mega-analysis and controlling for ancestry effectively. These

results demonstrate that much larger samples will be required

for effective gene discovery and lend further support to the

prediction that there are hundreds of genes that impact ASD

liability in the human genome.

Methods

Data
The AASC whole-exome sequencing data includes 1039

independent subjects diagnosed with autism spectrum disorders

(ASD). Subjects were selected to be of European ancestry, based

on genetic (eigen-vector) analysis and European origin. Samples

were selected from the Autism Genetic Resource Exchange

(AGRE, research.agree.org), the Autism Simplex Collection

(TASC [45]), National Database for Autism Research (NDAR,

ndar.nih.gov) and the Boston’s Autism Consortium (autism.con-

sortium.org). 870 independent controls were selected from the

NIMH repository (www.nimhgenetics.org) to be of similar ancestry

to cases (Baylor cases: 440 males, 65 females; Baylor controls: 240

males, 251 females: Broad cases: 429 males, 105 females, largely

from the autism Consortium; Broad controls: 177 males, 202

females.) The Broad cases included probands only from trios.

These trios were previously analyzed for de novo variants [5]. De

novo variants were included in these analysis.

To evaluate sequence quality, 7 controls were sequenced at both

centers. The capture/enrichment assays used were Nimblegen

(Baylor) and Agilent (Broad). The Baylor samples were sequenced

using the Solid platform and called with AtlasSNP 2 [30]. The

Broad samples were sequenced using the Illumina platform and
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called with GATK [31]. Standard filters were used as part of both

pipelines to produce calls for SNVs and indels. For details see Text

S1.

In general, the MAF of SNVs matched well for the majority of

the SNVs in the two data sets, but some differed considerably

(Figure S6). One source of differences was the read depth: Broad

reads had greater mean depth and also greater variability than

Baylor reads (Figure S7). Overall counts of variants differed by

platform (Table 5). We utilized additional filters to make these

data sets more compatible. Relying on the validated de novo

variants [5] and 7 overlapping samples we constructed an

additional 3-round filter (see Text S1 and Table S7). First, for

each data set, we excluded the variants that had 10% or more

missing calls. Second, we discarded the variants that had average

depth less than g. Third, we filtered the variants by the quality of

the minor allele call. We defined the balance of depth for each

minor allele call as the reference depth divided by the total depth.

If more than half of the minor allele calls had a balance larger than

j or depth smaller than g, we discarded this variant. Based on

these features we constructed 6 filters denoted by PASS, MISS,

DpBal, B, C and D of increasing stringency. For Filter DpBal,

g~10, j~:75 for the Broad data set and :85 for the Baylor data

set; for Filter B, g~10, j~:75; for Filter C, g~17, j~:66 for the

Broad data set and g~12, j~:75 for the Baylor data set; for Filter

D, g~10, j~:66. If less than half of the minor allele calls had a

balance larger than j, we kept this variant but changed the specific

calls that did not pass the quality threshold from heterozygote to

the common homozygote call.

Two rounds of filtering were performed on called indels. First,

for each data set, we excluded indels with MAF greater than 1% or

more than 10% missing calls. Second, we excluded indels that had

more than six calls in one data set and none in the other data set.

Statistical Analysis
For n subjects sequenced, let y~(y1,:::,yn)’ denote the vector of

phenotypes. For a gene with d rare variants let Gi~(Gi1, . . . ,Gid )’
be the d-dimensional genotype vector. For dichotomous pheno-

types we consider a logistic model:

logitP(yi~1)~a0za0Xizb0Gi, ð1Þ

where a0 is the intercept, a is a vector of regression coefficients for

fixed covariates Xi such as sex and ancestry, and b is the vector of

log odds ratios for the genetic variants. For analytical purposes

only we also discuss the corresponding linear model for continuous

phenotypes:

yi~a0za0Xizb0Gizei, ð2Þ

where i*N(0,s2). Without loss of generality, we assume s~1.

We want to test the null hypothesis H0 : b1~b2~ � � �~bd~0.

One way to increase the power of the test is to assume that

b1~b2~ � � �~bd~bc and test if bc~0 [46]. Tests of this

hypothesis are often called burden tests. To add prior information

to this test, the weighted sum test has been proposed [22]. The

idea of weighted sum test is to use Giv~(v1Gi1,:::vdGid ) rather

than Gi~(Gi1,:::Gid ) in model (1) so that biologically more

plausible risk variants have larger weights in the test statistic. In

our study, we use the weighted sum test with weightsffiffiffiffiffi
vj
p

~Beta(pj ,1,25), where pj is the MAF of jth variant. To

implement the test, the genotypes Gi in model (Eqn. 1) are

replaced by a single composite term Civ, which is the weighted

sum of the genotype values of all rare variants Civ~
Pd

j~1 vjGij .

To assess significance of Civ as a predictor, we use the score test.

There are drawbacks to a burden test. It assumes that all rare

variants in the gene have the same direction and magnitude of

association. In reality, variants can be damaging, protective, or

have no effect, potentially reducing the power of the test. To

overcome these drawbacks, the C-alpha test [25] has been

proposed. The test is sensitive to unusual patterns in the

distribution of rare variants across cases and controls. It has good

power if most of the copies of a rare variant occur in cases (or

controls), yet unlike the burden test, this pattern can vary across

SNVs. SKAT [26] is a generalization of the C-alpha test. It has the

advantage of readily incorporating covariates, but without

covariates it reduces to the same form as C-alpha. This statistic

is based on the generalized linear model (Eqn. 1 or 2), with

random effects for the bj ’s, which are assumed to follow an

arbitrary distribution with mean zero and variance vjt [47]. The

test statistic is the score test for H0 : t~0, which is of the form

Q~(y{m̂m)T K(y{m̂m),

where K = GWG’ is the kernel matrix, W~diag(v1, . . . ,vd ) is a

weight matrix, and m̂m~logit{1(âa0zXâa) for the logistic model (1)

and m̂m~(âa0zXâa) for the linear model (2). The SKAT statistic can

also be expressed in terms of the individual score tests for

evaluating bj~0 for each of the d variants; let Sj~Gj’(y{m̂m),

j~1, . . . ,d , then

Q~
Xd

j~1

vjS
2
j :

The null distribution of Q is approximately a linear combination

of x2 distributions,

Q*
X
i~1

lix
2
1,i: ð3Þ

The SKAT p-values can be obtained by applying Davies exact

method [48] to the data and inverting the characteristic function

of Q.

Meta- Versus Mega-Analysis
Suppose we have samples from two (or more) datasets. To fix

ideas, consider two data sets, D1 and D2 where n1 and n2 are the

sample sizes, respectively. To perform meta-analysis using the

weighted Z-score approach, first compute Zk~W{1(p-valuek),
where the p-values are obtained for each data set k~1,2
independently, and W is the standard normal distribution function.

Then the meta-analysis p-value is computed from W(Z), where

Table 5. Counts of non-synonymous variants in Baylor and
Broad before filtering.

Single Double RVs LFVs CVs total

Baylor 193,281 22,355 29,363 9800 14,159 268,958

Broad 119,648 17,628 27,644 9996 16,327 191,243

Note: Single: count of singletons; Double: count of doubletons; RVs: count of
variants with MAFƒ0:01 and not singletons or doubletons; LFVs: count of
variants with MAF w0:01&ƒ0:05; CVs: count of variants with MAF w0:05.
doi:10.1371/journal.pgen.1003443.t005
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Z~
n1Z1zn2Z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
1zn2

2

q :

When applied to the SKAT test, this statistic combines informa-

tion at the gene level without consideration of the directionality of

any single variant effects.

We formally consider the SKAT test statistics in meta- and

mega-analysis by deriving a closed form expression for the power

of meta- and mega-analysis under restricted conditions. In the

Results we show via simulations that the results hold more

generally. Analysis is greatly simplified by choosing weights

vj~f2pj(1{pj)g{1
, a choice suggested in [22]. This weight is

equivalent to scaling Gij as

Tij~(Gij{2pj)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pj(1{pj) � n

p
,

where pj is the MAF of the jth variant. For the following

calculations we also assume no linkage disequilibrium (LD)

between rare variants [49,50]. Consequently we have

E
X

i

TijTik

" #
~Ifj~kg:

In the Results we show that this assumption appears to be

reasonable in the AASC data. Under these conditions and

assuming there are no covariates, we note that Q*x2
d (d), with

d~
X

k

2pk(1{pk)nb2
k, ð4Þ

for the linear model (Eqn. 2), and

d&
X

k

1

8
pk(1{pk)nb2

k, ð5Þ

for the logistic model (Eqn. 1; see Text S1).

It follows that the mega-SKAT statistic Qg*x2
d (dg), where the

experiment-wise non-centrality parameter is the sum of non-

centrality parameters from the individual studies: dg~d1zd2.

Hence, when combining 2 studies, with sample sizes n1 and n2, in

which the k’th variant has log odds ratio bk, the contribution to

the signal is proportional to

2pk(1{pk)(n1zn2)b2
k:

Notice that this term is approximately equal to the number of

realizations of the variants in the pooled data (m in the example

above) times the square of the log odds ratio. For rare variants the

number of realizations tends to be very small, emphasizing that

large samples are essential to gain good power.

In a comparison of the power of meta- and mega-analysis we

assume data sets D1 and D2 have the same sample size and rare

variants at the same locations. Furthermore, building on our

analysis above, we assume the individual test statistics from the two

samples are distributed as Q1*x2
d (d) and Q2*x2

d (d). Under a-

level type I error, the power function of weighted z-score meta-

analysis and the power function of mega-analysis can be

approximated as given in Text S1 (Eqn. S3–S4). The derived

expressions are complex, but from Figure 2 we see, regardless of

the degrees of freedom, mega-analysis has greater power than

meta-analysis.

To gain more analytical insight, consider a gene for which each

sample has sufficient coverage to detect all rare variants and that a

total of d rare variants are observed. Let y1 and y2 be the

corresponding phenotype vectors and G1j and G2j the genotype

vectors for variants j, j~1,:::,d . Furthermore, let S1j and S2j

denote the jth variant scores corresponding to D1 and D2. Next

let’s look at the test statistics for mega-analysis Qg :

Qg~
Xd

j~1

vj ½(G’1j ,G’2j)((y1,y2){(m̂m1,m̂m2))�2

~
Xd

j~1

vj ½G’1j(y1{m̂m1)zG’2j(y2{m̂m2)�2

~Q1zQ2z
Xd

j~1

½2vjG’1j(y1{m̂m1) �G’1j(y2{m̂m2)�

~Q1zQ2z
Xd

j~1

2vjS1jS2j :

Under the alternative hypothesis, the per-variant scores S1j and

S2j corresponding to j’th causal variant tend to have the same sign;

positive for risk variants and negative for protective variants.

Under the null hypothesis these per-variant score statistics are

uncorrelated and tend to cancel each other out, on average.

Consequently the final term in the expansion above tends to be

positive under the alternative hypothesis and close to zero under

the null.

In the Text S1 we find that the information captured by the meta-

analysis statistic is approximated by the two lead terms

(Q1zQ2*x2
2d (d1zd2)). Thus this expansion reveals why mega-

analysis is more powerful than meta-analysis for quadratic test

statistics such as SKAT. Mega-analysis cancels out false signals that

differ in sign. Meta-analysis is restricted to gene level information

and hence cannot account for directionality. The strength of the

signal over a gene is determined by two factors: the sum of the per-

variant contributions to the signal, versus the number of degrees of

freedom. Both meta and mega-analysis assimilate the same signal

(d1zd2), but the strength of the signal for meta-analysis is

apportioned over more degrees of freedom, effectively diminishing

the power. For mega-analysis, the degrees of freedom increase only

if the rare variants occur at different locations in the separate

studies. The power advantage of mega-analysis is most pronounced

when the rare variants accumulate at common locations across data

sets. meta-analysis is not able to assimilate information within a

variant across data sets as efficiently.

Supporting Information

Figure S1 PCA from common variants, low frequency variants

and both type of variants for Baylor samples. Eigen-vectors are

obtained by applying PCA to all common variants that have no

missingness (14,702 variants) (A), all low frequency variants that

have no missingness (8783 variants) (B), and both type of variants

(C). The colors are obtained by clustering individuals based on

their coordinates in panel (A) using model based clustering [51].

(A) and (B) are the first eigen-vector versus second eigen-vector for

Baylor samples. (C) is the first eigen-vector versus second eigen-

vector for Baylor samples.

(TIF)
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Figure S2 PCA of Baylor and Broad samples together. first

eigen-vector versus second eigen-vector for Broad and Baylor

samples.

(TIF)

Figure S3 Histogram of p-values for SKAT and Burden Test.

(A) and (B) are SKAT p-values for Broad and Baylor samples,

respectively. (C) and (D) are Burden test p-values for Broad and

Baylor samples, respectively. Green vertical lines are the 25%,

50% and 75% quantiles of p-values.

(TIF)

Figure S4 Distribution of the genomic control factor l. By

permuting case/control status 100 times the distribution of l is

obtained based on the 1000 largest genes. The red line shows the

mean of the permutation distribution and the green line shows l
obtained from the data using (A) Broad SKAT p-values obtained

without eigenvectors; (B) Broad SKAT p-values, with CVs

eigenvectors, (C) Broad SKAT p-values, with LFVs eigenvectors;

and (D) Broad SKAT p-values, with CVs plus LFVs eigenvectors.

(TIF)

Figure S5 P-values versus Missingness. We used 5500 genes to

make this plot. For each gene, we calculate the -log 10 p-values

and the odds ratio of missingness in case and control. The red line

is the fitted line of these 5500 observations.

(TIF)

Figure S6 MAF Comparison: Baylor versus Broad. We compare

the MAF for 72,758 shared non-synonymous variants in the two

data sets.

(TIF)

Figure S7 Depth Comparison: Baylor versus Broad. We

compare the average sample depth for all non-synonymous

variants in the two data sets.

(TIF)

Table S1 Comparison of seven individuals called by both Baylor

and Broad under different filters.

(PDF)

Table S2 Genomic control l and lq based on different types of

PC adjustment.

(PDF)

Table S3 Genes with p-valuev0:01 from the SKAT or Burden

Test.

(XLSX)

Table S4 The p-values of genes which have two or more de novo

nonsense or missense mutations as reported in [5].

(XLSX)

Table S5 The p-values of 114 ASD genes.

(XLSX)

Table S6 The required sample sizes by applying meta- and

mega-analysis.

(PDF)

Table S7 Classification tree results for heterozygote calls.

(PDF)

Text S1 Additional Information Regarding Methods. Part A

gives additional information about sequencing, including data

generation and quality control. Part B gives the mathematical

exposition of mega- and meta-analysis. Part C provides details for

association analysis.

(PDF)
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