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Abstract

Viruses diversify over time within hosts, often undercutting the effectiveness of host defenses and therapeutic interventions.
To design successful vaccines and therapeutics, it is critical to better understand viral diversification, including
comprehensively characterizing the genetic variants in viral intra-host populations and modeling changes from
transmission through the course of infection. Massively parallel sequencing technologies can overcome the cost constraints
of older sequencing methods and obtain the high sequence coverage needed to detect rare genetic variants (,1%) within
an infected host, and to assay variants without prior knowledge. Critical to interpreting deep sequence data sets is the
ability to distinguish biological variants from process errors with high sensitivity and specificity. To address this challenge,
we describe V-Phaser, an algorithm able to recognize rare biological variants in mixed populations. V-Phaser uses covariation
(i.e. phasing) between observed variants to increase sensitivity and an expectation maximization algorithm that iteratively
recalibrates base quality scores to increase specificity. Overall, V-Phaser achieved .97% sensitivity and .97% specificity on
control read sets. On data derived from a patient after four years of HIV-1 infection, V-Phaser detected 2,015 variants across
the ,10 kb genome, including 603 rare variants (,1% frequency) detected only using phase information. V-Phaser
identified variants at frequencies down to 0.2%, comparable to the detection threshold of allele-specific PCR, a method that
requires prior knowledge of the variants. The high sensitivity and specificity of V-Phaser enables identifying and tracking
changes in low frequency variants in mixed populations such as RNA viruses.
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Introduction

Genetic differences can arise among individual viral particles

within an infected host, and detecting these viral genetic variants

can reveal how viruses adapt to challenges such as host immune

responses, antiviral medications, and transmission bottlenecks.

However, detecting rare variants is difficult with existing

sequencing technologies due to low sensitivity, high error rates,

and/or poor scalability. For example, bulk-sequencing approaches

generate a consensus assembly, but they have limited sensitivity to

detect intra-host variation [1]. One approach to increase

sensitivity is to amplify and clone selected fragments of viral

nucleic acids into proliferating targets that are subsequently

isolated and sequenced [2], but this method has a higher false

positive rate and poor scalability. To reduce errors, the single

genome amplification (SGA) method isolates individual viral

genomes through dilution, and then amplifies and sequences each

genome individually to minimize introduced errors [3–5],

although scalability remains an issue. Rare variant detection

requires deep coverage that is not cost-effective with current

methods of cloning or SGA. To address scalability, massively

parallel sequencing technologies can isolate and sequence

individual DNA or cDNA molecules en masse from the population

of viral genomes and generate millions of short read sequences that

can increase the sensitivity and decrease the cost to detect variants

[6,7]. Still, increased error rates can somewhat impact potential

gains in sensitivity. Here, we report on a novel method to detect

rare variants that increases sensitivity even in the presence of

process errors.

Detecting biological variants involves not only finding them,

which deep sequencing technologies can do with high sensitivity,

but also differentiating them from process (i.e. amplification or
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sequencing) errors. One way to do this is to compare variants to a

distribution of errors. For example, several authors have reported

using a Poisson or binomial probability model to define the error

distribution, and they can call candidates that fall outside the

distribution variants [8–13]. These models, however, assume that

all bases have equal quality scores, where the base quality score is a

measure of how accurate the base call is. This assumption is

invalid for bases measured by massively parallel sequencing

technologies, as Brockman et al. [14] have shown, since base

quality can vary by several criteria; in fact, sequencing

technologies take criteria such as these into account when

assigning base quality scores. To avoid this assumption, probability

models can incorporate base quality scores. Such probability

models exist in tools that call single nucleotide polymorphisms

(SNPs) in human and other diploid genomes, including MAQ

[15], SoapSNP [16], Unified Genotyper [17], SNVMix [18], or

Slider [19]. In contrast, instead of an explicit error probability

model, Hoffman et al. [20] compare variants to an empirical

control data set. Archer et al. [21] and Rozera et al. [22] report

methods that correct read sequences for suspected process errors

prior to calculating variant frequencies. Archer et al. [21] use a k-

mer mapping approach to position reads on a consensus template

and refine alignments locally, and Rozera et al. [22] turn to

heuristic rules to filter out errors based on cutoffs for base quality

scores and other criteria. Both strategies avoid using an explicit

probability model of error and hence assume that all process errors

take a specific form, and that no biological variants take the same

form as the process errors.

The above models separate variants from error using specific

forms or heuristics or a probabilistic distribution. An alternative

approach is to consider patterns of candidate variants. For

example, Eriksson et al. [9] use Fisher’s exact test to find patterns

that occur more frequently than expected by chance to call

variants. Refining this approach further, several authors probabi-

listically cluster patterns to infer variant haplotypes [9,11,12,23];

the cluster centers are haplotypes, and process errors can be

removed by collapsing variation within the cluster. Since patterns

of variants are essentially groups of variants that occur at the same

loci on multiple reads, i.e. in phase, we can analyze them together

as a group of phased variants, and we can compare them to

phased errors in the same pattern. Phased errors presumably occur

much less frequently than errors in general, making it easier to

recognize phased variants.

To address the challenge of calling rare genetic variants in

diverse populations in the presence of error, we introduce V-Phaser,

a single nucleotide variant calling tool that uses phase and quality

filtering with a probability model that incorporates and recali-

brates individual base quality scores. To increase sensitivity, V-

Phaser looks not only for variants that fall outside the distribution of

errors but also for patterns of variants in phase. To increase

specificity, it incorporates individual base quality scores into a

composite Bernoulli model that allows error rates to vary from

base to base. It also uses a pre-processing filter to screen out low

quality bases and improve the fit of the model. We calculate the

theoretical gain in sensitivity of detecting variants using phase to

increase specificity. We then validate V-Phaser on read sets with

known variation generated by the 454 sequencing platform to

estimate sensitivity and specificity. To determine the effect of each

algorithmic step on performance, we evaluate the method with

each of three features (phasing, recalibration, and filtering) turned

off and compare these results to those achieved on the same data

with several other viral variant callers. Finally, we use V-Phaser on

data from a chronically HIV-1 infected subject to demonstrate its

utility to detect low frequency variants in viral populations.

Results

Using phased variants to increase sensitivity
Variant calling algorithms typically use a probabilistic or

empirical error model to define the distribution of errors, and

they recognize those candidates that fall outside of this distribution

as variants. We define the boundary between variants and errors

to be the variant detection threshold frequency (VDTF). To this definition,

we add the concept of phasing, where phased variants co-occur on

the same reads, to distinguish unphased VDTFs from phased VDTFs,

which separate phased variants from phased errors. V-Phaser uses

both phased and unphased VDTFs to increase sensitivity. If errors are

distributed uniformly at a rate p, we cannot use unphased VDTFs to

find variants that occur below this rate no matter how deeply we

sequence the population, since the unphased VDTF cannot fall

below p. In contrast, paired errors occur at the much lower rate of

p2, and correlated variant pairs can be detected at much lower

frequencies than p, so long as that frequency remains above p2 and

the depth of sequencing is sufficient. Theoretically, we can define

phased VDTFs for any pattern of variants, but in practice the only

patterns V-Phaser considers are paired variants in phase.

V-Phaser can call paired variants at a lower frequency using

phased VDTFs compared to unphased VDTFs, and given comparable

frequencies, V-Phaser can call phased variants at lower coverage.

We can calculate phased and unphased VDTFs as a function of

coverage and error rate (Figure 1). At any level of coverage and

error rate, the phased VDTF is lower than the unphased VDTF. In

addition, the phased VDTF remains relatively flat over a range of

error rates, whereas the unphased VDTF manifests more dynamic

range, which suggests that compared to the unphased VDTF, even if

the probability model grossly misspecifies error rates, the phased

VDTF is relatively robust.

V-Phaser detects variants in phase when they occur on the same

reads, so to be on the same reads, variants need to be close to each

other. When variants are close together, many of the reads that

cover one variant will also cover the other variant, but when

variants are farther apart, fewer and fewer reads will begin and

end in just the right places to span both. At some point, the gain

Author Summary

New sequencing technologies provide unprecedented
resolution to study pathogen populations, such as the
single stranded RNA viruses HIV, dengue (DENV), and West
Nile (WNV), and how they evolve within infected
individuals in response to immune, therapeutic, and
vaccine pressures. While these new technologies provide
high volumes of data, these data contain process errors. To
detect biological variants, especially those occurring at low
frequencies in the population, these technologies require a
method to differentiate biological variants from process
errors with high sensitivity and specificity. To address this
challenge, we introduce the V-Phaser algorithm, which
distinguished the covariation of biological variants from
that of process errors. We validate the method by
measuring how frequently it correctly identifies variants
and errors on actual read sets with known variation.
Further, using data derived from a patient following four
years of HIV-1 infection, we show that V-Phaser can detect
biological variants at frequencies comparable to approach-
es that require prior knowledge. V-Phaser is available for
download at: http://www.broadinstitute.org/scientific-
community/software.

Rare Variant Detection in Mixed Viral Populations
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from phase will be offset by the loss of shared coverage. To capture

this concept, we define the phase distance to be the farthest distance

from a locus such that compared to the unphased VDTF at that

locus, the phased VDTF is lower (i.e. more informative). If variants

are farther apart than the phase distance, they do not have enough

shared coverage to increase sensitivity. We show that the phase

distance is longer than half of the average read length for coverage

more than 65-fold, and as coverage increases, it approaches the

length of the average read (Figure 2). Just as increasing coverage

increases sensitivity to detect variants, it also increases the chances

to detect phased variants that are farther apart.

Pre-process filtering and recalibration of base quality
scores to increase specificity

Errors introduced by massively parallel sequencing technologies

can be correlated, and models to detect correlated variants can

also detect correlated errors, as well. On control read sets without

variants, we found that errors vary with base quality score, the

position of the base on the read, and the transition from the

previous base (Figure 3 a–c). DePristo et al. [17] use recalibration

equations in their Unified Genotyper to adjust for these

associations and call SNPs. V-Phaser minimizes false positive

correlated errors by filtering out errors and modeling the

correlations among errors. First, as detailed in the Materials and

Methods section, V-Phaser uses a read cleanup algorithm, Read-

Clean454 [24], to identify and correct process errors in the reads

and then utilizes a Neighborhood Quality Standard (NQS) criteria

to filter out low quality bases. From the remaining high quality

bases, V-Phaser builds an error probability model to adjust for

correlations.

Modeling base quality well is the key to achieving high

specificity, but highly variable viral sequences pose a difficult

challenge. To estimate the parameters, models are often fit to

highly conserved genomic regions without variation, but such

regions do not exist for small, diverse viral genomes. Models can

also be fit to empiric negative controls, but error rates can vary

from lane to lane or from run to run. Instead, V-Phaser uses an

expectation-maximization (EM) algorithm to iteratively fit its

probability model as it calls variants. Initially, V-Phaser treats all

mismatches as errors and estimates the parameters accordingly

using the recalibration equations of the Unified Genotyper [17]. In

the E step, V-Phaser uses the model to calculate the VDTFs to call

variants and remove them from the error list. Then in the M step,

V-Phaser updates the parameters to the model. V-Phaser iterates

until the number of variants called stabilizes.

Validating V-Phaser
To evaluate V-Phaser’s performance, we used read sets with

known variability generated by the 454 FLX sequencing platform.

Using these control data, we validated the variants called by the

comprehensive algorithm and also evaluated the contribution of

each core component of V-Phaser to the model’s sensitivity and

specificity. First, we assessed the effect of using or not using phased

variants by invoking a version of V-Phaser that only used unphased

VDTFs to identify variants. Second, we measured the effect of

using individual base quality scores utilizing a version of V-Phaser

that estimates two uniform error rates, for homopolymer and

nonhomopolymer regions. Finally, we tested the impact of low

quality base filtering invoking a version of V-Phaser without NQS

pre-processing filters. The positive control data were 454 read sets

derived from an artificial mixture of eight strains of West Nile

Virus (WNV) for which we knew the individual strain sequence.

We limited our analysis to regions of the genome covered by all

eight individual sequences. Differences among the individual

consensus assemblies defined the WNV variant set; a total of 110

variants were defined. We scored any error call that V-Phaser made

on this set of variants as a false negative, and any variant call as a

true positive.

Of the 110 variants in the WNV variant set, 102 variants were

detected with frequencies ranging from 0.3% to 47.5%, and a

median frequency of 11.3% (Table S1). Eight variants were not

observed on any sequence reads. V-Phaser called 100/102 variants

present in the data resulting in a sensitivity of 98% (Figure 4a),

including 15/17 (88%) of the variants at frequencies under 1%

(Figure 5 a–d). All versions of V-Phaser could detect 100% of the

variants above 2.5%, but without phased VDTFs V-Phaser could

Figure 1. Phase increased sensitivity to detect variants. Phase
increased sensitivity to detect variants, as seen over a range of error
rates at coverages of 100-fold, 250-fold, and 500-fold. The phased
variant detection threshold frequency (VDTF) is the lowest frequency of
reads with variants at two specific loci that V-Phaser can distinguish
from error among reads that span both loci. The unphased VDTF is the
lowest frequency of one variant that V-Phaser can distinguish from error
among reads that cover that locus. 100-fold phased sequence coverage
achieves comparable detection thresholds as 500-fold unphased. We
use Equation 7 to calculate the phased and unphased VDTFs. (See the
Materials and Methods section for Equation 7 and its derivation.)
doi:10.1371/journal.pcbi.1002417.g001

Figure 2. Phase distance approached length of average read as
coverage increased. The phase distance was longer than half the
average read length for loci covered more than 65-fold, and as coverage
increased, it approached the length of the average read. The phase
distance is a measure of how far apart phased variants can be and still
be detected at lower frequencies than variants not in phase. We show
the phase distance as a percentage of average read length.
doi:10.1371/journal.pcbi.1002417.g002

Rare Variant Detection in Mixed Viral Populations
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detect only 9/17 (53%) of the minor variants present at less than

1.0% in frequency, and it still missed other variants with

frequencies as high as 2.4%. Of the remaining 10,004 loci

assumed to be non-variant based on consensus sequence

comparison, V-Phaser called 143 variants, for a putative specificity

of 99%. Out of 555 loci that showed variation in the mixture read

set but not in the parental strains, V-Phaser correctly called 74% of

them as errors. It is possible that many or most of the mistaken

variant calls could be artificial variants or mutations that were

introduced somewhere in the process of creating the mixture,

rather than sequencing errors.

Because of the unknown rate of novel variants introduced

during passage of the WNV samples, we used an infectious clone

(HIV NL4-3) as a negative control to more accurately measure the

specificity of V-Phaser. We scored any variant calls that V-Phaser

made on the negative control as a false positive, and any error calls

as a true negative. Among all loci in the negative control read set,

87% had no mismatches. Considering only the loci that harbored

variation, all versions of V-Phaser maintained specificity greater

than 97% if they incorporated individual base quality scores, but

for the version using uniform errors, the specificity fell to 91%

(Figure 4b). Among these sites with variation, V-Phaser called 29

sites that ranged in frequency from 0.4% to 5.6% as true variants;

some of these sites may actually be biological variants and not

process errors (see discussion below). If the composite Bernoulli

model correctly described the error distribution, then 95% of the

time V-Phaser would not make any false positive calls on the entire

sample. Clearly, the composite Bernoulli model fits the error

distribution better than a uniform error model, but the false

positives are evidence that at least some errors did not follow the

model.

We tested the validity of the composite Bernoulli model by

assessing how well the model fit the error distribution with and

without filtering using a quantile-quantile (q-q) plot as described in

the Materials and Methods section. Compared to the unfiltered

data, the filtered data produced a model that fit the observed error

distribution better (Figure 6 a–b). Without pre-processing filters, V-

Phaser systematically overestimated the probability of error. This

overestimation of the model seemed to be a function of the

number of low quality bases. As we sampled without replacement

from 1% to 100% of the reads, we saw an increasing skew in the q-

q plot (Figure S1 a–f). In addition, to test whether homopolymer

related artifacts in 454 sequencing were causing V-Phaser to

overcall variants, we examined the error calls made by V-Phaser on

the clonal HIV NL4-3 data. Since homopolymer related artifacts

systematically violate model assumptions, the resulting overcalls

would be expected to cluster in or near homopolymer regions.

False positives were not significantly more likely to be observed in

homopolymer nucleotide runs, nor in regions proximal to these

runs, as compared to residues outside of these regions, regardless

of whether a variant is called with phase or without phase (x2 test

p.0.4 in all comparisons). These results were consistent if we

extended the homopolymer flanking regions to three or four

instead of two bases. Therefore, false positives appear to be

unrelated to homopolymer related artifacts and V-Phaser appears

to have no strong susceptibility to errors induced by system error

on the 454 sequencing platform.

Comparison to other variant calling algorithms
We ran several other variant calling programs on our control

data sets. The programs ShoRAH [12] and ViSPa [25] both

generated compute errors that were not easily resolved by the

Figure 3. Error rates were not uniformly distributed. Error rates varied by (A) read position, (B) base transition, and (C) base quality score. We
counted as errors any mismatches to the consensus assembly for each of the two runs in the control read set under the assumption that the NL-43
infectious clone had no diversity. We defined the read position relative to the beginning or end of the read, whichever was closer. We defined a base
transition as a dinucleotide representing the transition from the preceding base to the current base, and we scored a transition as an error if the
current base was a mismatch. Base quality scores came from the sequencing process.
doi:10.1371/journal.pcbi.1002417.g003

Rare Variant Detection in Mixed Viral Populations
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software’s authors when run on our data set. We successfully ran

Segminator II [21] and QuRe [13]. QuRe filters regions of the

genome that have less than 30-fold read coverage or are below

the 5th percentile of coverage (defaults); as such comparison of

sensitivity and specificity across the various algorithms was

computed only across the bases interrogated by QuRe. Sensitivity

and specificity of the three programs, in addition to results for V-

Phaser with phasing turned off, are shown in Table 1. V-Phaser

outperformed both of the other programs in specificity. Although

Segminator II had 100% sensitivity, it achieved this at the expense

of a very high false positive rate, calling variants at more than

20% of the examined invariant sites. Notably, the counting of

inserted or deleted bases as false positives can significantly impact

reported specificities. V-Phaser reports a deleted base in two

instances while QuRe and Segminator II report 841 and six

respectively. Inclusion of indels in the measure of specificity

decreases QuRe’s specificity considerably (Table 1), but this likely

a less accurate measure of the algorithms specificity since such

errors could be easily filtered.

Applying V-Phaser to clinical data
We applied V-Phaser to data from an individual with chronic

HIV-1 infection taken from a larger study [24], and we analyzed

called variants by the frequency of these variants among the reads

at that position. Using just unphased VDTFs, V-Phaser called only

485 variants, none of which were ,1%; using no filtering, V-Phaser

called 1,778 variants; with phased VDTFs and filtering, V-Phaser

detected 2,015 variants, including 603 variants with frequency

,1% (Figure 7). Notably, V-Phaser detected variants down to

0.2%, a detection threshold comparable to allele-specific PCR

[26]. More than one out of every five loci had a recognized

Figure 4. Phase information increased sensitivity, and base
quality scores increased specificity. We compared V-Phaser to
alternate versions of V-Phaser with specific components disabled. In the
No Phase version, V-Phaser called variants without phase information. In
the Uniform Errors version, V-Phaser estimated uniform error rates
within homopolymer and nonhomopolymer regions without regard to
assigned base qualities. In the No Filtering version, V-Phaser did not
filter out low quality bases. (A) Phase information increased sensitivity.
The version without phase information attained a sensitivity of 90%, but
all other versions of V-Phaser used phase information and attained a
sensitivity of 97% or more. We calculated sensitivity as the percentage
of known variants correctly identified. Data are from WNV mixed
population control dataset. (B) Individual base quality scores increased
specificity. Among loci with mismatches, the Uniform Errors version had
only 91% specificity, but all other versions incorporated base quality
scores in their probability model and attained 97% specificity or more.
We calculated specificity as the percentage of loci in the control sample
correctly identified as having no variants among loci that had at least
one candidate variant. Data are from infectious clone (HIV NL4-3)
control dataset.
doi:10.1371/journal.pcbi.1002417.g004 Figure 5. Phase information increased sensitivity to detect

minor variants. Phase information increased sensitivity to detect low
frequency variants, as shown by these histograms of variants under
2.5%. All versions of V-Phaser detected 100% of the variants above 2.5%
frequency, so these variants are not shown here. All versions of V-Phaser
with phase information (A), (C), and (D) detected most variants below
1% in frequency, but the No Phase version (B) missed many variants
below 1% and some variants as high as 2.5%. Data are from control
WNV mixed population.
doi:10.1371/journal.pcbi.1002417.g005

Rare Variant Detection in Mixed Viral Populations
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variant. Assuming the specificity of V-Phaser remained constant,

the positive predictive value was estimated as 98%. Of note, V-

Phaser identified 42 insertions or deletions (indels) as variants, and

V-Phaser detected 198 triallelic loci and 19 quadallelic loci.

Discussion

V-Phaser called rare variants in the presence of error in massively

parallel sequencing data of highly diverse viral populations with

.97% sensitivity and .97% specificity. Applied to a sample from

a chronically HIV-1 infected individual, V-Phaser could identify as

many as 603 minor variants at population frequencies of ,1%.

These variants were detected without a priori knowledge of the

specific mutations, and biological variants at frequencies as low as

0.2% were identified, comparable to the detection threshold of

allele-specific PCR, which is restricted to assaying known

mutations. In these data, V-Phaser called 42 indels and identified

more than 200 loci (roughly 2% of the genome) with more than

one variant.

In direct comparisons to two other recently published variant

callers, Segminator II [21] and QuRe [13], V-Phaser outperformed

both algorithms on specificity and outperformed QuRe on both

specificity and sensitivity. This is not surprising since QuRe

implements the error correction model of Wang et al. [27], which

only considers pileup information. In fact, if we turn off the

phasing portion of V-Phaser, it performs identically to QuRe on

sensitivity, but even better on specificity (Table 1). Segminator II

identifies all the true variants in the WNV mixed population data

Figure 6. NQS filtering improves fit of probability model to
data. (A) Quantile-quantile (q-q) plots under NQS filtering show good
fit of the probability model to the observed distribution of errors. Since
the probability model is discrete, p values are projected onto a uniform
distribution, and the distribution of projected p values is compared
with the expected null distribution. See Materials and Methods section
for details. (B) In contrast, q-q plots under no filtering show that no
filtering skews the calibration of the probability model used by V-
Phaser. Q-q plots of models based on subsets of the reads demonstrate
that this effect becomes more pronounced with increasing coverage
(see Figure S1). Q-q plots are scaled to fit curve, so y = x line is not at a
45 degree angle.
doi:10.1371/journal.pcbi.1002417.g006

Table 1. Comparison of V-Phaser to other viral variant callers.

Program Segminator II QuRe V-Phaser
V-Phaser (no
phasing)

Sensitivity 100.0% 89.0% 96.0% 89.0%

Specificity 88.% (88.8%) 97.1% (88.7%) 99.9% (99.9%) 99.7% (99.6%)

Sensitivities and specificities reported across residues interrogated by all
programs. Sensitivity is measured as the fraction of the known variants found
by each program in the WNV mixed population control data set. Specificity is
the fraction of sites not containing known variants that were called as invariant
in the HIV NL4-3 control data set; values reported in parentheses include
inserted and deleted bases (see Materials and Methods).
doi:10.1371/journal.pcbi.1002417.t001

Figure 7. Low frequency variants overwhelmingly called with
phase. Histogram shows low frequency variants overwhelmingly called
with phase thresholds. Variants frequencies are estimated by the
frequencies of variants among the reads at that position. Versions of V-
Phaser with and without phase thresholds called variants on a clinical
sample that are binned by their frequency at their locus. Most variants
,5% were detected only be V-Phaser with phase thresholds, and the
version without phase thresholds detected no variants ,1%.
doi:10.1371/journal.pcbi.1002417.g007
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set, but at the cost of an unacceptably high false positive rate. Its

alignment-based read filtering only removes errors arising from

process-based indels while ignoring errors from other sources, such

as random substitution errors due to sequence misreads or PCR

errors in library construction.

The comprehensive V-Phaser model clearly outperformed the

model using uniform error rates, but the number of false

positives was higher than expected with the Bonferroni

correction. Some of these false positives detected in the

negative-control might actually be low level variants present in

the HIV NL4-3 cDNA libraries used to generate the read set that

had not been previously detected. Some might be errors

introduced early and amplified to create correlated errors not

modeled by V-Phaser. Particularly when considering the 454

sequencing process, which generates systematic errors in regions

around homopolymers, correlated error may occur in such

regions. However, we have multiple reasons to believe that this

has a small impact on the final V-Phaser calls. First, V-Phaser’s

base context model in the quality recalibration accounts for some

amount of homopolymer error. Second, our ReadClean454 read

cleanup step during the alignment phase removes or marks as

low quality the majority of errors derived from homopolymer

misreads or ‘‘carry forward and incomplete extension’’ (CAFIE)

errors (a related 454 error mode) [24]. Third, we examined the

error calls made by V-Phaser on the clonal HIV NL4-3 data to see

if they clustered in or near homopolymer regions, and we found

them to be randomly distributed with respect to homopolymer

regions. While the false positive rate was very low for the highly

diverse clinical sample we used, it could be higher for samples

with very low diversity since the false positive rate is inversely

proportional to the total number of true variants. Another

potential weakness of the model is the modeling of indels.

DePristo et al. [17] suggest that indel errors distribute differently

from other errors and need to be modeled differently. We did

not explicitly test V-Phaser for indel detection in the artificial

mixture used as the positive control, since the set of variants had

no indels.

V-Phaser uses phase information to increase sensitivity. Corre-

lated errors under the model are rarer than errors in general,

making it easier to call correlated variants. One potential problem

is the presence of chimeras, where one read is a composite from

two different genomes. Chimeras can decrease the correlation

between variants, but data from Hedskog, et al. [28] suggest that

chimeras occur rarely, making it difficult to significantly obscure

any correlation. The biggest limitation to using phase information

is the read length generated by the sequencing platform. We saw

that correlated variants need to be close enough to add to the

sensitivity, and that this phase distance is bounded by the average

read length (Figure 2). For the 454 platform the average read

length is over 500 bp, but for other platforms the average read

length is much shorter. This limitation could be overcome by

utilizing paired-end reads to extend the phase distance to cover

variants significantly farther apart.

V-Phaser is a variant calling tool that uses phase information to

increase sensitivity and models base quality to increase

specificity. V-Phaser is an effective tool to call variants in the

presence of errors from massively parallel sequencing data with

high specificity and high sensitivity. We designed V-Phaser to

overcome specific challenges to calling variants in small, diverse

viral genomes, but V-Phaser is general enough to analyze read sets

from other populations as well, such as metagenomic data and

tumor sequencing data, making it a novel algorithm with wide

utility.

Materials and Methods

Ethics statement
The subject gave written informed consent and the study was

approved by the Massachusetts General Hospital and granted

exemption by the Massachusetts Institute of Technology Review

Boards.

Statistical model
We construct a composite model of independent Bernoulli

random variables that are not identically distributed to allow error

rates to vary from base to base. We suppose that the base bik at

genomic locus i and read k is measured at an error rate pik, where

reads are aligned to a reference assembly with loci numbered from

1 to l, and reads at locus i are numbered from 1 to ni, the coverage

at locus i. We define the error random variable Eik to be 1 if bik is

measured incorrectly, and 0 otherwise. Let the random variable Xi

be the number of errors that occur at locus i:

Xi~
Xni

k~1

Eik ð1Þ

Under the special case that the errors are independent and

identically distributed Bernoulli random variables, such that pik = pi

for all reads k at locus i, Xi follows a binomial distribution, so the

probability fi(x) that x or more errors occur at locus i with coverage

of ni reads is as follows:

fi xð Þ~P(Xi§x)~
Xni

z~x

ni

z

� �
pz

i 1{pið Þni{z ð2Þ

More generally, if Xi is the sum of independent Bernoulli

random variables that are not identically distributed, we can

calculate fi(x) with the recursive application of the discrete

convolution formula, where we define the random variable Uir

as the number of errors that occur at locus i in the first r reads:

P Ui0~0ð Þ~1

P Uir~0ð Þ~ 1{pirð ÞP Ui(r{1)~0
� �

,0vrƒni

P Uir~rð Þ~pirP Ui(r{1)~r{1
� �

,0vrƒni

P Uir~xð Þ~ 1{pirð ÞP Ui(r{1)~x
� �

z

pirP Ui(r{1)~x{1
� �

,0vrƒni,0vxvr

fi xð Þ~P Xi§xð Þ~
Xni

z~x

P Uini
~z

� �

ð3Þ

We define the unphased variant detection threshold ti as the

smallest t such that fi(t) is statistically significant. To adjust for

multiple testing, we use the Bonferroni correction since errors are

uncorrelated under the null hypothesis. At a significance level a,

and applying the Bonferroni correction for testing the total

number of positions sequenced c, we calculate ti as follows:

ti~ argmin
t

fi tð Þƒa=cð Þ ð4Þ

If mismatches at position i occurred in t reads, we can infer if the

mismatches are variants by comparing t to ti. If t is greater than or
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equal to ti, then we infer that not all of the mismatches are errors,

and at least one of them is a variant. If t is less than ti, then we infer

that we cannot distinguish these mismatches from error.

Under the probability model, errors are independent, but

variants can be phylogenetically related. Thus, we can also

distinguish variants from errors if mismatches at one locus are

correlated with mismatches at a different locus. In particular, we

define the error random variable Eijk to be 1 if errors occur at both

loci i and j on read k and 0 otherwise. Then the number of errors

Xij that occur in phase at both loci i and j, with shared coverage of

nij reads that span both i and j, is the sum of error random

variables as before. In the special case that errors are identically

distributed Bernoulli random variables, where pik = pi and pjk = pj

for all reads k that cover both loci i and j, we calculate the phase

probability gij(x) as follows:

gij xð Þ~P(Xij§x)~
Xnij

z~x

nij

z

� �
pipj

� �nij 1{pipj

� �nij{z ð5Þ

In the more general case, we can calculate gij(x) by recursively

applying the discrete convolution formula as before, where we

define the random variable Uijr as the number of reads with errors

that occur at locus i and locus j among the first r shared reads:

P Uij0~0
� �

~1

P Uijr~0
� �

~ 1{pijr

� �
P Uij(r{1)~0
� �

,0vrƒnij

P Uijr~r
� �

~pijrP Uij(r{1)~r{1
� �

,0vrƒnij

P Uijr~x
� �

~ 1{pijr

� �
P Uij(r{1)~x
� �

z

pijrP Uij(r{1)~x{1
� �

,0vrƒnij ,0vxvr

gij xð Þ~P Xij§x
� �

~
Xnij

z~x

P Uijnij
~z

� �

At a significance level a and applying the Bonferroni correction

for testing the total number b of pairs of loci i and j such that gij is

defined, we can calculate the phased variant detection threshold tij
as follows:

tij~ argmin
t

gij tð Þƒa=b
� �

ð6Þ

If we find phased mismatches at locus i and locus j on t reads, we

can infer if they are variants by comparing t to tij. If t is greater

than or equal to tij, then we infer that not all of these mismatches

are errors. Otherwise, we cannot distinguish these mismatches

from errors.

We define the unphased variant detection threshold frequency (VDTF) Fi

to be the frequency at which we begin to distinguish variants from

errors at locus i and depth ni. Similarly, we define the phased VDTF

Fij to be the frequency at which we begin to distinguish phased

variants from errors at loci i and j and shared depth nij. We

calculate Fi and Fij as follows:

Fi~ti=ni

Fij~tij=nij

ð7Þ

Sample preparation, assembly, and annotation of control
and sample read sets

We sequenced an HIV infectious clone (NL4-3) to serve as a

negative control for our validations and HIV RNA derived from a

clinical sample as previously described [24]. We derived the

positive control read set from eight individual primary WNV

strains isolated from mosquitoes and birds. Individual strains were

passaged once in C6/36 cells for amplification, and equal

concentrations of each strain were then pooled and used to infect

C6/36 cells at a multiplicity of infection of 0.1. Viral RNA was

isolated from these cultures (QIAmp viral RNA mini kit, Qiagen)

and the RNA genome reverse transcribed to cDNA using

Superscript III reverse transcriptase (Invitrogen), random hexa-

mers (Roche) and a specific oligonucleotide targeting the 39 end of

the target genome sequences. Four overlapping PCR products,

each of size ,3 kb, were designed to capture the WNV coding

region. PCR products were then pooled and sheared prior to

library construction.

To generate each read set, whole viral genomes were sequenced

using the Broad Institute’s viral genome sequencing and assembly

pipeline. Pooled PCR products (,3 kb) were amplified using

primer sets specific to either HIV or WNV, acoustically sheared,

and sequenced on the 454 Genome Sequencer FLX Titanium

(Roche) using standard protocols. The library was loaded into a

picotiter plate (PTP) to yield .200-fold read coverage. Resulting

sequence reads were trimmed of primer sequences, filtered for

high quality, assembled de novo and annotated using the Broad

Institute’s AssembleViral454 algorithm [24] and an in-house

annotation algorithm. Reference consensus assemblies used in

analyses are available from NCBI’s GenBank under accessions

HQ505665, JN819311, JN819312, JN819313, JN819315,

JN819318, JN819319, JN819320, JN819315, JQ403053, and

JQ403055; read data are available from NCBI’s Short Read

Archive (Project Accessions SRA045000 and SRA045569).

Alignment and preprocessing filters
Once we generated the sequence data, we aligned and

processed them using ReadClean454 algorithm as previously

described [24]. In particular, the algorithm corrects typical errors

introduced by the 454 sequences, including carry forward and

incomplete extension errors, homopolymer errors, and indels that

break the open reading frame (ORF). Any base rearrangements do

not affect the assigned base quality. Any insertions to preserve the

ORF consist of N bases with an assigned base quality of 1.

We then flagged each base to indicate if it passed the NQS

criteria [29]. A base met NQS criteria if its quality score was 20 or

higher and the five bases to either side all had quality scores of 15

or higher. We omitted the final NQS criterion that at least nine of

the ten flanking bases were perfect matches, since we expected the

HIV genome to be variable enough that variants among the

flanking bases could be relatively common [24]. For calling

variants, V-Phaser ignored any bases flagged as not meeting the

NQS criteria.

Estimation of model parameters by EM algorithm
Once we aligned and preprocessed the sequence data, we

estimated the model parameters and applied the model to the data

to call variants. In the uniform error case, we estimated error rates

in homopolymer and nonhomopolymer regions, where homopol-

ymer regions are defined by runs of 3 or more identical nucleotides

in a row. In the general case, we estimated error rates overall, per

base transition (where each transition was a dinucleotide consisting
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of a base and its preceding base in the read sequence), and per

read position (distance from the start or end of the read, whichever

was closer). We then used these estimates in calibration equations

[17] to estimate the error rate for each base.

As V-Phaser called variants, it iteratively adjusted model

parameters using an EM algorithm. It initialized the algorithm

by treating all mismatches as errors to estimate error rates. In the

E step, it derived phased and unphased thresholds, called variants,

and removed these variants from the list of errors. In the M step, it

updated error rates due to the removal of called variants from the

error list. V-Phaser continued to iterate until it could call no more

variants.

Correlation of V-Phaser errors with homopolymers
To test whether homopolymer-related artifacts in 454 sequenc-

ing which violated the model assumptions were causing V-Phaser to

overcall variants, we divided the reference sequence of the clonal

HIV NL4-3 genome into three categories: homopolymeric regions

(defined as 3 or more of the same nucleotide in a row),

homopolymer flanking regions (defined as 2 bases to either side

of an homopolymeric region, representing the region in which

CAFIE errors are expected to occur), and non-homopolymeric

regions (the remainder of the genome). We then assigned each of

the false positive calls made by V-Phaser to one of these categories

and used a x2 test (2 d.f.) to determine whether any region had

more variants than expected.

Construction of quantile-quantile plots
We use quantile-quantile (q-q) plots to assess the fit of our

probability models under the null. To assess the fit of the model to

the observed data, we compute the probability of observing each

datum under the model using F(x), the cumulative distribution

function (CDF), and compare the distribution of these observed

probabilities against the expected distribution of cumulative

probabilities under the null. For random variables with continuous

CDFs, the expected distribution under the null is the uniform

distribution between 0 and 1. For our probability models, the

expected distribution of probabilities under the null is more

difficult to calculate, since the CDF is discrete and varies from

locus to locus with the base qualities at that locus. Since our

models use discrete rather than continuous random variables, we

redistribute the mass of the probability mass function to construct

a uniform distribution. We define G(x), a projection of the

cumulative distribution function (PCDF) that maps the CDF

probabilities onto the uniform distribution in the following way:

G(F (x))~
b if a~b

Z otherwise, where Z*U(a,b)

(

a~ lim
y?x{

F (y)

b~F (x)

Conceptually, the PCDF redistributes massed probabilities

uniformly to bridge discontinuities in the CDF. For example, if

X is a random Bernoulli variable with success probability p and

failure probability q = 12p and CDF FX, then FX(k) = 0 for k,0,

FX(k) = q for 0#k,1, and FX(k) = 1 for k$1. The discontinuities at

k = 0 and k = 1 correspond to the massed probabilities for X at

those values. G redistributes this mass uniformly to bridge the

discontinuity. So whenever X = 0, G(FX(k = 0)) uniformly takes on a

value between 0 and q, and whenever X = 1, G(FX(k = 1)) uniformly

takes on a value between q and 1. X can take on no other values, so

G(FX(k = X)) follows a uniform distribution between 0 and 1. So if

we have n observations of X, about p/n of them will be 1 and about

q/n of them will be 0. The expected cumulative probabilities for

each observed 0 will all be q, but their projected probabilities will

be uniformly distributed between 0 and q. Similarly, the projected

probabilities for each observed 1 will be uniformly distributed

between q and 1. If we sort the observations by their projected

probabilities, then the projected probability for the ith observation

will be very close to i/n. By construction, these projected

probabilities are uniformly distributed between 0 and 1 under

the null. So even though the CDFs vary by locus with the mix of

error rates among bases at that locus, the PCDF remains uniform.

Thus, we can compare the projected distribution of PCDF

probabilities against the expected distribution under the null,

which by design is the uniform distribution.

Comparison to other variant callers
We evaluated V-Phaser’s performance in terms of sensitivity and

specificity to detect variants relative to four other programs

designed for variant detection in viral quasispecies populations:

ShoRAH [12], ViSPa [25], Segminator II [21], and QuRe [13]. All

programs were run according to standard parameters defined by

the software authors. In all cases, we used the alignment and read

cleaning (if any) methods recommended by the authors. Only the

Segminator II and QuRe software packages successfully ran on our

datasets. For V-Phaser, we used our standard process including

ReadClean454 [24] to error correct and align the reads. In all cases,

we used our sample-specific consensus assemblies as the reference

for alignment. Sensitivity was computed using our WNV mixed

population control data set and specificity was determined using

the HIV NL4-3 infectious clone control data set. In scoring the

resulting calls, we ignored all inserted and deleted bases called (6

by Segminator II, 2 by V-Phaser, and 841 by QuRe), because we could

not determine the exact number of discrete indel events called by

QuRe and felt that it would be unfair to count all 841 as errors since

such errors could be filtered (the data have no known indels based

on the input strain sequences).

Supporting Information

Figure S1 Impact of not filtering by NQS on model
calibration with increased coverage. Quantile-quantile (q-q)

plots for no NQS filtering data model show that the skew in the

calibration of the probability model used by V-Phaser increases with

increased sequence coverage. The impact of the skew is

demonstrated for (A) 5-fold, (B) 27-fold, (C) 52-fold, (D) 131-fold,

(E) 262-fold, and (F) 528-fold sequence coverage.

(TIF)

Table S1 V-Phaser variant calls in experimental WNV
mixed population. Eight parental strains of WNV were mixed

at equal proportions and then infected into mosquito cells and

allowed to proliferate, resulting in a final mixture with ratios set by

the relative replicative success of the strains. The nucleotide

sequence in each parental strain at residues known to contain a

mutation are shown and a ‘‘.’’ indicates the strain has the

dominant allele at that particular residue. Dominant residues are

noted in the variant column. The true proportion of the parental

strains in the sequenced mixture is not set, but since we know the

strain or strains of origin for all of the variants, we can infer the

mix of parental strain proportions that maximizes the likelihood of

observing the actual counts (including zero) of all parental alleles in

the sequencing data. The resultant frequencies are presented in

the ‘‘expected’’ column to provide an estimate of the true

frequency of the variants in the population. This allows us to
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capture the full effect of stochastic variation in the sequencing

process on our ability to detect variants of any given population

frequency.

(PDF)
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