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Obesity is currently a global pandemic and is associated with
increased mortality and co-morbidities including many meta-
bolic diseases. Obesity is characterized by an increase in adi-
pose mass due to increased energy intake, decreased energy
expenditure, or both. While white adipose tissue is specialized
for energy storage, brown adipose tissue has a high concentra-
tion of mitochondria and uniquely expresses uncoupling
protein 1, enabling it to be specialized for energy expenditure
and thermogenesis. Although brown fat was once considered
only necessary in babies, recent morphological and imaging
studies have provided evidence that, contrary to prior belief,
this tissue is present and active in adult humans. In recent
years, the topic of brown adipose tissue has been reinvigo-
rated with many new studies regarding brown adipose tissue
differentiation, function and therapeutic promise. This review
summarizes the recent advances, discusses the emerging
questions and offers perspective on the potential therapeutic
applications targeting this tissue.

Obesity has now reached pandemic levels globally1 and while the
etiology and physiology are complex, the majority of weight gain
in obese humans is characterized by an increase in adipose mass,
and adipose tissue hypertrophy and lipid overload is believed to
eventually precipitate other morbidities such as cardiovascular
disease and type 2 diabetes.2 In contrast to white adipose tissue
(WAT), which not only stores energy in the form of triglycerides
but also is recognized as an important endocrine and immune
organ, brown adipose tissue (BAT) is specialized for energy
expenditure. While WAT structure is characterized by a single,
large lipid droplet and few mitochondria, BAT contains several
small lipid droplets (multilocular), many mitochondria, and
uniquely expresses uncoupling protein 1 (UCP1).3-8 UCP1 is
localized to the inner mitochondrial membrane and acts to
uncouple oxidative phosphorylation from ATP production,
thereby releasing energy as heat (termed thermogenesis). BAT
plays a pivotal role in adaptive thermogenesis, a physiological
process during which energy is dissipated in response to environ-
mental changes, such as cold temperature and diet.9,10 BAT is also

able to utilize both glucose and fatty acids in mitochondrial
metabolism, however the thermogenic capacity of BAT is
enormous. In humans, it has been estimated that as little as
50 g of BAT (less than 0.1% of body weight) could utilize up to
20% of basal caloric needs if maximally stimulated.11 This energy
expending role makes BAT an important potential tool for
combating the complications of human obesity.

BAT is important for temperature regulation in small
mammals. In humans, it is present in abundant quantity in
newborns,12 but it was traditionally believed that BAT was
nonexistent or nonfunctional in adult humans. However, this
dogma was recently reversed by evidence from nuclear medi-
cine,13-20 which showed active BAT in adult humans. Since then,
there has been a flurry of new data surrounding BAT function and
therapeutic potential.21-23 The goal of this review is to summarize
and offer perspective on these recent advancements in knowledge
about BAT, from studies conducted in humans to rodent or in
vitro models, with a special focus on recently published papers.

The Importance of BAT with Cold-Exposure
and for Seasonal Hibernating Mammals

The physiological importance of BAT, previously referred to as
the ‘hibernating gland,’ is most strikingly observed in seasonal
mammals, which require BAT’s thermogenic properties to main-
tain body temperature during periods of hibernation or torpor,
and to mediate periods of arousal and re-warming from these
decreased metabolic states. Hibernation is a period of hetero-
thermia, where body temperature may drop from 35–37°C to
0°C, accompanied by a period of metabolic reduction.24 The
onset of hibernation is often triggered by shortening daylight cues
reaching the brain, in conjunction with the brain’s own circadian
rhythms. Torpor, on the other hand, is a short-term state of
reduced physical activity and metabolism, and may be induced
by reductions in environmental temperature or caloric restriction
(or both).

A recent study measured liver and BAT gene expression in
arctic ground squirrels during torpor, a hibernatory period of
reduced ambient temperature which requires an 8-fold increase
in energetic demand in order to maintain body temperature.25

This study showed that in comparison to squirrels during
warm summer months (i.e., not during torpor), hibernators
had increased gene expression in pathways regulating fatty acid
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catabolism, ketogenesis and gluconeogenesis. By contrast, genes
for fatty acid synthesis, amino acid metabolism, the urea cycle,
glycolysis and lipid metabolism were decreased. Whether or not
similar metabolic pathways are regulated in non-hibernation con-
ditions of increased BAT thermogenesis remains to be determined.

BAT UCP1 also plays an important role in arousal from
hibernation or torpor. Despite the importance of UCP1 for
thermogenesis and energy expenditure, it has previously been
shown that UCP1 deficient mice (UCP1−/−) are cold sensitive, but
do not become obese on a high-fat diet at room temperature,
although they do have an impaired thermogenic response after
cold or β3-adrenergic stimulation.26 However, when room
temperature is increased (to 27°C or 30°C, the latter of which
is thermoneutral for mice), the resistance to diet-induced obesity
is abolished.27,28 In a recent study utilizing this UCP1−/− model,
bouts of torpor under conditions of 48 h food deprivation and
cold-exposure lasted significantly longer if induced during the
dark-phase. Mice without UCP1 also had fewer daily bouts of
torpor, took longer to arouse from torpor and required 60% more
energy to do so.29 During hibernation, BAT increases in mass
and displays higher UCP1 expression. Stimulation of BAT β3-
adrenergic receptors with CL316,243 resulted in faster arousal
from hibernation, while a β3-adrenergic receptor antagonist
produced the opposite effect.30 These studies indicate that UCP1
and β3-adrenergic signaling are required for changes in energy
metabolism with diet and cold, a mechanism that is potentially
similar in seasonal and non-seasonal mammals.

Melatonin may offer one insight into this similarity. Melatonin
influences recruitment of brown adipocytes as well as their
metabolic activity. In response to light cues received by the retina
and pineal gland, melatonin production is upregulated, and short
photoperiods (less light) have similar effects on BAT as cold
environmental temperature.31 It is now appreciated that melato-
nin may not only transmit information about photoperiods, but
also about temperature and food availability, suggesting that
rodent hibernatory models of seasonal changes in BAT thermo-
genesis may be indicative of BAT physiology in situations of cold
or diet-induced thermogenesis as well (reviewed in ref. 31).
Additionally, it is clear from rodent models of seasonally activated
BAT that inputs via the central nervous system (CNS) are of
utmost importance. Similarly, cold-exposure and other situations
that stimulate BAT in non-seasonal models also involve pathways
which originate in the CNS.

Developmental Origin of Brown Fat

In rodents, brown fat is located in an interscapular fat pad, as well
as smaller pads in other anatomical regions (such as perirenal and
perivascular), and brown adipocytes are also dispersed through-
out skeletal muscle and white fat. Recent fate-mapping studies
combined with cell sorting analysis revealed that in rodents there
are distinct progenitors that give rise to fat cells located in different
anatomical locations of the body (Fig. 1). The myf5-expressing
progenitors give rise to skeletal muscle and preformed brown
adipocytes, which are found in the interscapular and perirenal
regions,32 and brown fat precursor cells express a myogenic gene

signature,33 suggesting that brown fat and skeletal muscle share
a common developmental ancestry. Indeed, during embryonic
development, cells expressing transcription factors that are
known to mark dermomyotome are found to give rise to the
interscapular BAT. Homeobox transcription factor engrailed 1
(EN1)-expressing cells give rise to dermis, muscle and brown fat.34

Selectively marking the somatic Pax7-expressing cells at embry-
onic day 9.5 (E9.5) demonstrates that Pax7-expressing cells can
give rise to dorsal dermis, some muscle and brown fat. After
E12.5, marked Pax7-expressing cells become lineage-restricted to
skeletal muscle,35 suggesting that early Pax7-expressing cells are
multi-potent, but become committed to the myogenic lineage as
embryonic development proceeds. However, not all of brown fat
cells are derived from precursors expressing myogenic markers. In
adult life, brown fat cells located in the non-classic sites, such as
WAT and skeletal muscle, are derived from the myf5 negative
progenitors.36 These non-classic brown adipocytes have been
given different names, such as ‘brite cells’37 and ‘beige cells,’38

designations that reflect their recruitable and inducible nature.
We have recently identified and prospectively isolated a sub-
population of adipogenic progenitors (Sca-1+/CD45-/Mac1-;
referred to as Sca-1+ progenitor cells, ScaPCs) residing in murine
brown fat, white fat and skeletal muscle. Using the myf5 lineage
tracing reporter mice, we and others have demonstrated that
ScaPCs derived from skeletal muscle and subcutaneous WAT
develop from cells that have never expressed myf5.39 Nevertheless,
it is likely an oversimplification to divide into only myf5 positive
and myf5 negative lineages, because progenitors derived from
different tissues possess unique molecular expression signatures
and adipogenic capacities, further supporting the notion that
brown fat depots located in different anatomical locations arise
from distinct developmental origins (Fig. 1). Another non-classic
brown fat depot is the perivascular fat. Perivascular adipose tissue
around the thoracic region has been found to express gene profiles
highly similar to the interscapular BAT,40 but the developmental
origin of this BAT depot remains to be determined. Recently,
growing evidence has indicated that increased ‘browning’ in WAT
can counteract diet-induced obesity, suggesting that inducible
brown adipocytes may be potential targets for developing anti-
obesity therapies. We review the recent evidence on browning in
WAT in detail in the next section

Cell fate determination in pluripotent stem/progenitor cells is
controlled by the integration of cell intrinsic factors with extrinsic
cues supplied by the surrounding microenvironment, known as
the stem cell niche.41 Prototypical stem cell niches include the
stem cells, stromal support cells, soluble factors, extracellular
matrix, blood vessels and neuronal inputs. The identification and
characterization of niches within tissues and how niches support
specific stem cell function remain key topics in understanding
tissue development and homeostasis. Several developmental
signaling molecules implicated in the evolution of mesodermal
tissue have been shown to impact early stages of fat development
(Fig. 1). These include members of the transforming growth
factor-β (TGF-β) and bone morphogenetic protein (BMP) family,
the fibroblast growth factor (FGF) family, the wingless (Wnt)
family, the hedgehog family, and others. The exact effects of these
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factors depend on the concentration, stage of differentiation,
cell-cell interactions, and nature of the extracellular matrix.
While TGF-β inhibits adipocyte differentiation in vitro,42 TGF-β
expression in fat is paradoxically increased with obesity in rodents
and humans.43,44 We have demonstrated that in contrast to the
roles of BMP2 and BMP4 in development of white fat, BMP7
serves as a potent inductive signal for brown adipogenesis.45 Some

members of the FGF family, such as FGF 1, 10, 16, 19 and 21,
have been implicated in adipose development. In particular,
FGF 16, 19 and 21 are specifically involved in brown fat
formation.46-48 Wnt signaling is known to suppress adipogenic
and favor myogenic or osteogenic differentiation in MSCs.49

Finally, while the anti-adipogenic role of the hedgehog pathway
has been established,50 a recent Drosophila genome-wide screen

Figure 1. Regulation of brown adipocyte development. Brown adipocytes located in different anatomical locations of the body arise from different
developmental origins. While the Pax7+/En1+/Myf5+ dermomyotome progenitor gives rise to interscapular brown fat, a distinct myf52 tissue resident
progenitor serves as the common precursor for white adipocytes and systemic brown adipocytes. With the stimulation of appropriate developmental
cues, these progenitors become committed to the adipocyte lineage. The Sca-1+ progenitor cells isolated from interscapular brown fat serve as
constitutively committed brown fat precursors, and Sca-1+ progenitor cells from skeletal muscle and subcutaneous white fat are highly inducible to
become mature brown adipocytes. These precursors possess unique molecular signatures that allow designation of the distinction of cellular origin.
Agents that can promote brown adipocyte differentiation include norepinephrine, insulin/IGF1, thiazolidinedione (TZD), cyclooxygenase 2 (COX2), orexin,
BMP7 and others. At the molecular level, a number of transcriptional/post-transcriptional regulators have been shown to specify or enhance brown fat
phenotype, such as PRDM16, PGC1a, FOXC2, C/EBPb, Plac8 and miR-193b-365. The brown adipocytes in white fat may come from de novo differentiation
and/or transdifferentiation. Dashed lines in this figure indicate links that are only partially established.
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identified hedgehog as a determinant of brown vs. white cell
fate.51

Molecular Control of Brown Fat Development

Despite the distinct functions of brown and white fat, these two
cell types share a similar transcriptional cascade for adipocyte
differentiation. This is a process involving adipogenic transcrip-
tion factors PPARc (peroxisome proliferator-activated receptor-c)
and CCAAT/enhancer-binding proteins (C/EBPs; for reviews see
refs. 52–54). Importantly, a number of nuclear factors that specify
or enhance brown fat phenotype have been identified. Before the
initiation of the adipogenic program, the preadipocytes need to be
released from suppression and become committed to terminal
differentiation. Among the known inhibitors of preadipocyte-
adipocyte transition, proteins of the retinoblastoma (Rb) family
and necdin, a growth repressor functionally resembling Rb, selec-
tively inhibit brown preadipocyte differentiation.55-58 Consistent
with these findings, Calo et al. recently demonstrated that
deletion of both Rb and tumor suppressor p53 in primitive
mesenchymal cells shifts the tumor spectrum away from
osteosarcoma to the brown fat tumor hibernoma.59

After release from suppression, the adipose precursors initiate
a transcriptional cascade to turn on lipid synthesis and other
adipocyte specific programs. A number of transcription factors
and co-regulators appear to play important roles in specifying
brown fat cell fate or modulation of the expression of thermogenic
genes, especially UCP1. Nuclear co-repressor RIP140 directs
histone and DNA methylation to silence UCP1 expression and
suppress mitochondrial biogenesis in white adipocytes.60,61

Nuclear receptor liver X receptor (LXR) can suppress UCP1
gene expression by binding to the LXRE element of the UCP1
promoter and recruiting co-repressor RIP140.62 Thus, LXR KO
mice display increased energy expenditure and UCP1 expres-
sion.63 The zinc-finger containing protein PRDM16, which is
expressed at higher levels in brown compared with white
adipocytes,64 has been shown to drive differentiation of white
preadipocytes or myoblasts into functional brown adipocytes.
This effect depends on the interaction of PRDM16 with nuclear
coactivator PGC-1a and transcription factors PPARc and
C/EBPβ, while binding of PRDM16 to CtBP-1 and CtBP-2
suppresses expression of white fat-selective genes.65,66 In addition,
the forkhead family transcription factor forkhead box C2
(FOXC2) can induce expression of the R1 subunit of cAMP-
dependent protein kinase A (PKA), thereby sensitizing cells to
β-adrenergic stimulation and promoting brown adipogenesis.67

Recently, Plac8, a 12.5 kDa protein containing a cysteine-rich
domain, has been found to play a critical role in promoting brown
adipogenesis via induction of C/EBPβ expression.68

Recently, microRNAs (miRNAs) have emerged as important
regulators of diverse biological processes and pathologies,
including cell fate decision. The role of miRNAs in brown
adipogenesis has just begun to emerge. Certain myogenic
miRNAs have been shown to be enriched in BAT compared
with WAT.69 Sun et al. have recently shown that the miR-193b-
365 cluster is required for brown fat differentiation from the

myf5+ progenitors, and that miR-193b-365 expression was
regulated via the PRDM16-PPARc transcriptional cascade;70

however, whether this miRNA cluster could regulate the forma-
tion of the inducible brown adipocytes arising from the myf5−

lineage is unknown.

‘Browning’ in White Adipose Tissue

Recent years have brought a greater appreciation for potential
beneficial effects of acquiring brown fat cells in non-classic BAT
locations, such as WAT and skeletal muscle.71 Obesity-resistant
strains of mice contain higher amounts of brown adipocytes
dispersed in their WAT and muscle,72-75 and physiological stimuli,
such as cold exposure and sympathetic activation, are also known
to induce brown adipogenesis in white depots.76 Over the past
two years, several studies reported that mouse models with
increased UCP1-positive brown adipocytes in WAT are protected
from high-fat diet-induced obesity. Transgenic expression of
PRDM16 in fat tissue using the aP2 promoter induced the
formation of brown adipocytes in subcutaneous but not
epididymal fat, and the transgenic mice exhibited increased
energy expenditure, limited weight gain, and improved glucose
tolerance in response to a high-fat diet.77 Similarly, transgenic
mice with overexpression of FOXC2 in adipose tissue induced the
emergence of brown fat cells in WAT. This interconversion
of white to brown adipose was recently shown to be reliant on
the C/EBPa signaling pathway, which acts with co-repressors to
reduce the expression of certain visceral WAT genes in order to
promote BAT genes.78

Hormone-sensitive lipase (HSL) null mice have increased
UCP1 expression and enhanced mitochondrial activity in WAT,79

while mice with adipose triglyceride lipase (ATGL, also known
as desnutrin) ablation display a conversion of BAT to a WAT
phenotype,80 suggesting that these two lipases may have opposite
effects in adipose cell fate decision. A lipid droplet protein,
perilipin, was recently demonstrated to induce a brown-like
phenotype in WAT upon its overexpression, thereby reducing
lipid-droplet size.81 However, mice deficient in another lipid
droplet protein, fsp27, also display brown fat properties in
WAT.82 Interestingly, mice living in an enriched environment
with increased social interactions, novel objects and physical
activity also displayed a brown-phenotype occurring in WAT,
which was reproduced upon hypothalamic overexpression of
brain-derived neurotrophic factor (BDNF).83 BDNF has also
been recently linked to ventromedial hypothalamus control of
energy expenditure, through sympathetic activation of BAT.84 As
detailed below, the central nervous system appears to play an
important role in the induction of brown fat cells within WAT.

Pharmacological agents that regulate different biological path-
ways have also been demonstrated to induce browning in WAT.
For example, synthetic PPARc agonists, such as the thiazolidi-
nedione (TZD) family members, are also able to induce a brown
phenotype in WAT.85 At the cellular level, Petrovic et al. have
demonstrated that TZDs can induce brown adipogenesis in
adipose precursors isolated from white fat.86 Furthermore, cyclo-
oxygenase (COX)2, a rate-limiting enzyme in prostaglandin (PG)
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synthesis, can promote de novo BAT in WAT and increased
energy expenditure, and also exerts anti-obesity effects in high-fat
fed mice.87 COX2 induces UCP1 expression specific to inguinal
WAT, as expression is not induced in classic interscapular
BAT.88 Interestingly, co-injection of brown adipogenic factor
BMP7 and β3-adrenergic receptor agonist CL316,243 to mice
maintained on a high-fat diet resulted in significant increases in
the expression of brown fat marker genes UCP1 and CIDEA
in both WAT and interscapular BAT. These data suggest that
BMP7 may act in concert with other brown adipogenic agents
to promote the formation of energy-dissipating brown adipocytes
from tissue-resident brown fat cells.

The exact cellular and molecular mechanisms contributing
to the browning phenomenon in WAT have not been fully
elucidated. Two potential mechanisms have been proposed and
each is supported by experimental evidence (Fig. 1). First, the
presence of brown fat cells in WAT may come from de novo
differentiation. Indeed, as described in the sections above, several
brown fat inducers, such as TZD, BMP7 and COX2, can induce
de novo brown fat differentiation from tissue resident progenitors.
Second, the brown fat cells in WAT may come from the existing
white adipocytes, a process called transdifferentiation. Recent
evidence for this includes observation of an ‘intermediate’ cell
type in cold-exposed WAT, which has ‘paucilocular’ lipid
droplets and mitochondria characteristic of both WAT and
BAT.89 These two mechanisms are not exclusive to each other; in
fact, it is likely that both mechanisms may co-exist in the body
and different stimuli may preferentially activate one pathway
over the other. Importantly, several findings also indicate that
induction of brown adipocytes in WAT is directly reliant on the
sympathetic nervous system. Therefore, it appears that complex
signaling and neuronal inputs converge to either induce or
maintain a BAT phenotype, providing potential in-roads for
converting WAT to BAT.

New Physiological Functions of Brown Fat

In addition to thermogenesis, recent studies have demonstrated
that BAT is involved in triglyceride clearance and glucose disposal,
serves as a source of adipokines, and posseses distinct inflam-
matory function compared with WAT. For example, Bartelt et al.
recently demonstrated a new function of BAT in triglyceride
clearance and glucose disposal, a process which involves whole-
particle uptake of triglyceride-rich lipoproteins through activation
of the cell-surface fatty acid translocase CD36.90-92

White adipose tissue secretes many cytokines, hormones, and
other factors which are collectively termed ‘adipokines,’ leading
to the classification of adipose tissue as an endocrine organ.
While it is expected that BAT secretes many of the same factors
which it also expresses (adiponectin, for instance), there are also
several factors which may be uniquely secreted by BAT alone,
which we are calling BATokines, for BAT-derived adipokines.
Several BATokines have already been demonstrated in the
literature, including FGF21, which is induced upon cold and
adrenergic stimulation.93-95

Furthermore, BAT secretes other factors such as IL6 and
neurotrophic factors such as BDNF and NGF,96-99 which may
play unique roles in BAT vs. WAT. For example, BAT is more
highly innervated by the sympathetic nervous system and contains
a more richly developed vasculature. Therefore, the paracrine and
autocrine environment of BAT may have evolved to respond
uniquely to various adipokines, given the metabolic functions
of BAT.

White adipose tissue readily becomes infiltrated with immune
cells and macrophages upon high-fat feeding and obesity, believed
to be the trigger of the inflammation observed in obese adipose
tissue. BAT, by contrast, does not appear to accumulate pro-
inflammatory macrophages with a high-fat diet, though this may
depend on mouse strain or diet conditions.40 The authors of this
study postulate that the high metabolic rate of mitochondria-rich
BAT allows tissue to readily utilize free fatty acids through
β-oxidation, whereas the overload of free fatty acids (lipotoxicity)
in WAT may be the precipitating event leading to the influx of
immune cells, including pro-inflammatory macrophages.

Interestingly, another group has similarly demonstrated that
macrophages in BAT do not develop the same chemokine and
cytokine expression profile as those in WAT.100 Together, these
studies indicate that the microenvironment provided by different
adipose depots likely influence whether or not the tissue recruits
immune cells such as macrophages, and whether these tissues
become inflamed. They further suggest that the microenviron-
ment of BAT may be protective against the pro-inflammatory
state which may lead to insulin resistance, and interventions
which convert white depots to BAT may be protective against
this effect.

Mechanisms of Increased Metabolic Activity in BAT

The traditional view of BAT is that its metabolic activity (both
β-oxidation and thermogenesis via UCP1) is regulated via input
from the sympathetic nervous system (SNS). SNS input to BAT
results in the release of the catecholamine neurotransmitter
norepinephrine (NE), which binds to adrenergic receptors in
BAT. BAT expresses G-protein coupled adrenergic receptors
(classified as a1–a3 or β1–β3), and while NE is believed to be the
main catecholamine from sympathetic nerves which acts on these
receptors, there is emerging evidence that epinephrine may also
affect PGC1 a and UCP1 expression in BAT.101 Activation of the
β3-adrenergic receptor stimulates cAMP production and PKA
activation. It is believed that the β3-adrenergic receptor isoform
is the main isoform in mouse BAT, while β1 may be the
predominant isoform in human BAT. Indeed, a recent study
found that non-shivering thermogenesis (activated in the absence
of shivering thermogenesis only after several weeks in the cold) in
β3-adrenergic receptor knockout mice is still activated, and the
knockout mice are able to survive 7 weeks or more. This period
was characterized by upregulation of UCP1 and the β1 adrenergic
receptor in BAT, indicating that these KO mice may be a good
model for human BAT thermogenesis where β1 appears to be the
main responsible isoform.102
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Downstream of cAMP and PKA, HSL is phosphorylated and
activated, as well as perilipin A.103 Normally, perilipin A protects
the lipid droplet, but after phosphorylation and activation it
induces fatty acid cleavage. HSL also promotes fatty acid release
from triglycerides. The newly available fatty acids are brought to
the mitochondria by the carnitine shuttle, where they can activate
UCP1 as well as be metabolized through β-oxidation (pathways
summarized in Fig. 2).

For BAT thermogenic function, there is a synergy between
sympathetic inputs and thyroid hormone action (reviewed
in ref. 104). Thyroid hormones (as both the T3 and T4 forms,
which are more or less active respectively) are transported into
brown adipocytes, where T4 is further converted to T3 by type 2
deiodinase (DIO2), followed by T3-driven expression of genes
such as UCP1.105 The thyroid hormone is essential for adaptive
thermogenesis, as demonstrated by hypothyroid mammals
which succumb quickly to reduced environmental temperature.
However, a recent study clarified that this metabolic response of
hypothyroid animals is temperature-specific and does not occur
at ambient room temperatures.106 Relevant to BAT thyroid

hormone signaling, the β isoform of the thyroid receptor has
recently been demonstrated to mediate T3 regulation of UCP1.107

Other pathways are also implicated in the increased expression of
UCP1, such as the PKA and protein kinase G (PKG) pathways,
and the p38-CREB pathway.108-110

Recently, several novel factors have been implicated in the
regulation of these energetic processes in BAT. Sympathetic input
to BAT can be removed through surgical or chemical denervation
of the tissue. A recent study demonstrated that unilateral BAT
denervation not only reduced UCP1 expression, but also reduced
activity of AMPK, the cellular energy sensor which is activated in
BAT upon β-adrenergic receptor stimulation.111

The regulation of fuel supply in BAT may also be a point of
metabolic control. As mentioned above, BAT is involved in tri-
glyceride clearance, through whole-particle uptake of triglyceride-
rich lipoproteins, and Vergnes et al. have shown that FABP3 (the
heart-type fatty acid binding protein) is required for BAT fatty
acid oxidation and cold tolerance, despite FABP4 (or ap2) being
the most abundant FABP in BAT.112 Mitochondrial activity and
energy expenditure in BAT are therefore complex processes

with multiple points of potential regulation,
from sympathetic/catecholamine stimulation
of adrenergic receptors, to UCP1 and other
genes involved in thermogenesis, to mito-
chondrial activity and fuel utilization.

Central Nervous System (CNS)
Control of BAT Function

The brain remains the most important organ
for control and coordination of systemic
energy balance. Several brain regions, includ-
ing the hypothalamus, are involved in the
central regulation of appetite and energy

Figure 2. Brown adipose activity in response
to sympathetic input and thyroid hormone.
Catecholamines bind to adrenergic receptors
on the surface of brown adipocytes, initiating
signaling cascades that include cAMP and protein
kinase A (PKA), which then phosphorylates and
activates the enzyme hormone sensitive lipase
(HSL), which then cleaves triglycerides (TG) into
free fatty acids (FFA). Triglycerides enter the cell
by uptake of triglyceride rich lipoproteins via
CD36 transport, and fatty acids then enter
the mitochondria through the carnitine shuttle.
Mitochondrial fatty acids may be oxidized via
b-oxidation, or serve to activate UCP1 ther-
mogenesis. Additionally, thyroid hormones T3
and T4 enter the cell, and T4 is further converted
to T3 by type 2 deiodinase (DIO2). T3 is then able
to affect mitochondrial activity and nuclear
transcription of genes that affect energenesis,
including UCP1. PKA also affects nuclear tran-
scription of UCP1, a protein which acts in
the mitochondria to uncouple oxidative phos-
phorylation from ATP production, resulting in
heat generation.
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expenditure, including the activation of sympathetic output to
adipose depots. For example, when cold is sensed by the pre-
optic area (POA) of the brain, signals are relayed to the dorso-
medial hypothalamus (DMH), then the GABAergic neurons
of the rostroventral medulla in the brainstem, followed by
sympathetic outflow to the tissue113-116 (summarized in Fig. 3).
Several hypothalamic signaling pathways have been identified
which can increase sympathetic output to adipose tissue, includ-
ing leptin receptors in the ventromedial hypothalamus (VMH)
and POA, as shown through retroviral tract tracing from BAT to
the hypothalamic leptin-receptor neurons.117

In response to diet or cold, hypothalamic pathways like those
described above lead to sympathetic activation of BAT, as well
as increased sympathetic input to WAT depots, which in turn
respond by upregulating brown-adipocyte genes such as UCP1.
The exact CNS pathways involved in this communication with
adipose depots to control peripheral energy expenditure continue
to be elucidated, but much of the neural connections and
neurotransmitters have already been identified. Recently several
candidate signaling molecules have been identified with a CNS
role in sympathetic outflow to adipose. For instance, the sirtuin

deacetylase SIRT1 in pro-opiomelanocortin (POMC) neurons
appears to be responsible for ‘browning’ of perigonadal WAT in
response to cold or diet.118 Similarly, neurons in the paraven-
tricular hypothalamus (PVH) appear to also inhibit sympathetic
outflow to adipose tissue. Upon activation of PVH neurons by
NMDA (an agonist for the NMDA glutamate receptor), no effect
on BAT thermogenesis was observed, and in fact NMDA treat-
ment to the PVH reversed BAT activation that had been
stimulated by cold exposure. In addition to this, DMH neuro-
peptide Y (NPY) appears to be an inhibitory signal for adipose
expression of UCP1, as its knockdown produces an increase
in UCP1 expression in inguinal and BAT depots.119 However,
previous studies have demonstrated that the DMH is involved in
activation of BAT thermogenesis.120

The same group of researchers has also recently identified
orexigenic projections from hypothalamus to raphe pallidus, a
region of serotonergic neurons in the medulla that plays an
important role in sympathetic activation of thermogenesis.121,122

Indeed, previous studies have shown that orexin infusions to the
lateral ventricle affect sympathetic outflow and BAT thermo-
genesis.123-125 Interestingly, Sellayah et al. recently showed that the

Figure 3. Simplified schematic of neural
pathways in the mouse brain which
affect sympathetic outflow to brown
adipose tissue. Using rodent models,
neuroscientists have begun to identify
which neural pathways are involved in
signaling temperature status (such as
cold) to the brain, followed by sym-
pathetic stimulation of brown adipose
tissue in order to initiate thermogenesis.
Some of these findings are summarized
in this mid-sagittal view of a mouse
brain, but for a complete review see
Morrison et al. Cold temperature is
sensed by the pre-optic area (POA),
rostral to the hypothalamus (hypo).
The POA sends signals to the hypothal-
amus, including the dorsomedial hypo-
thalamus (DMH). Other hypothalamic
nuclei are also involved in relaying
various signals related to energy status,
in response to various neural inputs and
circulating factors. Neural outputs from
the hypothalamus reach the inferior
olive and GABAergic centers in the raphe
pallidus (RPa) in the medulla of the brain
stem. From here, sympathetic outputs
are activated and send afferents to
the sympathetic ganglia, followed by
the brown adipose tissue, where cate-
cholamine neurotransmitters are
released from sympathetic nerve term-
inals, to act on adrenergic receptors
there. White arrows represent neural
pathways.
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neuropeptide orexin, which is known to stimulate feeding and
arousal in the hypothalamus, is involved in BAT differentiation
and function. This was exhibited in orexin knockout mice which
display impaired thermogenesis and smaller BAT depots, due to
decreased ability of progenitor cells to differentiate. Additionally,
in vitro studies showed that orexin was able to have a direct effect
on BAT differentiation by inducing expression of PRDM16 and
PGC1a.126 It is currently not clear if orexin’s effects are solely
mediated by CNS pathways and sympathetic nervous system
activity,127 or whether orexin is reaching the brown adipocytes
(either via sympathetic neuron secretion or through the circula-
tion) to act on BAT directly. Indeed, brown adipocytes have
recently been shown to express orexin receptors.128 However,
orexin is a neurotransmitter and its expression has not yet been
shown in sympathetic nerve terminals in BAT, it is not expressed
in brown adipocytes, and its levels in the circulation are low,
leaving open the question regarding the physiological pathways by
which orexin regulates BAT.

Taken together, nearly every region of the hypothalamus has
been implicated in some manner in the regulation of sympathetic
outflow to adipose tissues and the resulting regulation of thermo-
genesis and energy expenditure; however a complete understand-
ing of the circuitry involved remains to be fully described.

Lessons from Human Brown Fat

Recently, several studies concurrently demonstrated that human
BAT is present and active in adult humans. These findings
reignited research on human BAT, which had essentially been
ignored and believed to be inactive beyond the infant stage when
it is important for maintenance of body temperature in the setting
of high surface-to-volume ratio with no capacity for shivering.
These studies have further clarified conditions in humans which
correlate with increased (cold-exposure) or decreased (obesity)
BAT activity, as measured by imaging modalities such as 18F-
fluorodeoxyglucose (FDG)-positron emission tomography (PET)
combined with X-ray CT (CT). BAT activity also declines with
age, from 50% activity in subjects in their 20s, down to 10% for
subjects in their 50s and 60s.129 In accordance with this, it was
also found that BAT is more prevalent in children than adults,
and BAT activity increases into adolescence when it may play a
specific metabolic role.130

Additionally, more recent studies have confirmed that circulat-
ing catecholamines such as epinephrine and norepinephrine also
activate BAT.131 While it is enticing to consider adrenergic
stimulation as a means to increase BAT mass and activity in
humans, thereby increasing energy expenditure and decreasing
body weight, adrenergic stimulation through various pharma-
ceutical means results in non-specific activation in other tissues
and undesirable, or even dangerous, side effects (reviewed in
ref. 132). Interestingly, a recent study showed that blockade of
β-adrenergic receptors in fact does not inhibit cold-induced
thermogenesis in humans, an effect thought to be due to the
differing roles of β-adrenergic isoforms in BAT vs. skeletal muscle,
another thermogenic tissue.133 This finding was surprising and
important, taking into account that the three β-adrenergic

receptors (β1–β3) are considered the most important for thermo-
genic effects, illustrated by the obesity observed in mice with total
depletion of the β-adrenergic receptors.134

Instead of therapeutic approaches which may induce sym-
pathetic drive to BAT in order to increase its activity, another
approach is to induce tissue-resident progenitor cells in human
BAT to differentiate, thereby increasing the total mass of human
BAT. A recent study has provided promising evidence for this
direction, demonstrating that progenitor cells derived from PET-
CT positive BAT are able to differentiate to brown adipocytes in
vitro, in contrast to PET-CT negative subcutaneous white tissue
progenitors which did not develop into brown adipocytes.135

Increasing BAT mass and activity not only provide increased
energy expenditure to potentially combat obesity, but BAT also
serves to improve lipid and glucose homeostasis (reviewed in
ref. 132). Cold may not be the only parameter to activate BAT in
adult humans, as BAT also has the capacity to act as a glucose
sink. Comparing cold to insulin stimulation, Orava et al.
measured BAT perfusion as well as glucose uptake, and observed
that insulin leads to increased glucose uptake independent of
perfusion, while cold leads to increased thermogenesis correlated
with perfusion rates,136 thereby indicating two distinct mechan-
isms of BAT stimulation. Other signals beyond cold and
adrenergic stimulation include leucine deficiency, which leads
to decreased abdominal fat mass and has now been associated
with increased BAT UCP1 expression and thermogenesis-
related energy expenditure due to increased sympathetic
innervation.137,138

It remains to be determined whether rodent BAT studies are
translatable to understanding the biology of human BAT. Thus
far, human BAT has been found to display a unique distribution,
but an overall similar morphology and gene expression profile
(including high UCP1 and type 2 deiodinase) as the mouse.
However, a recent comparison of BAT vs. WAT in humans
showed that many genes enriched in human BAT differ from
those found in murine interscapular BAT.139 Localization of
human BAT is another difficulty, and PET-CT is the most
common method for this in humans, where many small BAT
depots are interspersed with WAT. However, recent data indicate
that PET-CT is able to localize only dense regions of BAT, and
BAT can be found in PET-CT negative fat biopsies. Also, given
the mechanism of PET-CT (i.e., essentially a measurement of
tissue glucose uptake) and the fact that BAT also utilizes fatty
acids as fuel, not all BAT activity may be detected using this
method. Overall, recent research regarding human BAT has
provided the promise that this metabolically active tissue may be
coaxed to increase in size or activity in order to boost energy
expenditure and combat obesity. However, given the difficulty in
obtaining BAT samples from human adults, most future research
into the function of BAT may come from rodent models.140

The Promise of Brown Adipose Tissue

As presented in this review, research into the development,
function and control of BAT has now reached an exciting pace
following the re-discovery of BAT in adult humans. Given the
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global pandemic of obesity and the projection for epidemic rates
of co-morbidities like diabetes, as well as the limited success
rate with various interventions to treat and prevent obesity,
knowledge about BAT and its promise as a potential therapeutic
agent are exciting areas for biological and translational research.
BAT activity may be increased in order to elevate whole-body
energy expenditure, either through sympathetic or other activa-
tion of UCP1 and mitochondria pathways, increased differenti-
ation from progenitor cells, or stimulation of a brown phenotype
in WAT depots. Interestingly, transplantation of as little as
0.1–0.4 g of BAT into the visceral cavity of recipient mice is
able to prevent weight gain and improve glucose homeostasis in
diet-induced obese mice.141 Given its huge capacity for energy
expenditure, newly identified effects on fatty acid and glucose
metabolism, as well as potential resistance from infiltrating pro-
inflammatory macrophages, increasing the amount and function
of brown fat may not only combat obesity, but may also prevent

type 2 diabetes and other metabolic disorders. Therefore, future
research regarding BAT function will further our understanding of
its unique physiology as well as its therapeutic promise.
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