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Holographic measurements of anisotropic three-dimensional diffusion of colloidal clusters
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We measure all nonzero elements of the three-dimensional diffusion tensor D for clusters of colloidal spheres
to a precision of 1% or better using digital holographic microscopy. We study both dimers and triangular trimers
of spheres, for which no analytical calculations of the diffusion tensor exist. We observe anisotropic rotational
and translational diffusion arising from the asymmetries of the clusters. In the case of the three-particle triangular
cluster, we also detect a small but statistically significant difference in the rotational diffusion about the two
in-plane axes. We attribute this difference to weak breaking of threefold rotational symmetry due to a small
amount of particle polydispersity. Our experimental measurements agree well with numerical calculations and
show how diffusion constants can be measured under conditions relevant to colloidal self-assembly, where
theoretical and even numerical prediction is difficult.
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Diffusion plays a critical role in the dynamics, self-
assembly, and rheology of complex fluids. In systems such
as colloidal suspensions, which typically have short-ranged
interaction potentials, diffusion can in fact play a larger
role than energy barriers in setting transition rates [1].
However, the diffusion of geometrically anisotropic particles,
a common class of colloidal suspension that can also arise
as intermediates in the self-assembly of spherical particles,
can be difficult to predict. Theoretically determining friction
factors for these particles requires analytically solving Stokes’s
equation, which is only possible for highly symmetric particles
such as ellipsoids [2] or sphere dimers [3] in unbounded
fluids. Numerical methods such as bead modeling [4] or finite-
element methods [5–7] require approximating the shape of the
particles or the hydrodynamic interactions. These methods are
difficult to apply when asymmetric particles diffuse near rigid
boundaries or other particles, two situations that are relevant
to colloidal self-assembly and dynamics in general. Thus
experimental measurements of diffusion tensors are crucial.

In particular, precision measurements on single particles
rather than ensembles are necessary. Anisotropic particles
show multiple diffusion time scales that are difficult to resolve
through bulk techniques such as depolarized dynamic light
scattering [8]. However, there have been few single-particle
studies of anisotropic diffusion in three dimensions. Video
microscopy has been used to measure two-dimensional (2D)
diffusion of colloidal ellipsoids [9,10] and planar sphere
clusters [11], but the technique yields limited information
about out-of-plane motions [12–14]. Confocal microscopy
can be used to study the three-dimensional (3D) dynamics of
geometrically anisotropic particles, but has only been applied
to highly symmetric particles [15,16] and is limited by the
time (∼1 s) needed to acquire a 3D stack. This can make
it challenging to probe time scales comparable to particle
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diffusion times or to study rare processes such as the early
stages of self-assembly [17].

In this Rapid Communication, we study the 3D diffusion
of individual colloidal clusters. We measure the diffusion
tensor using a fast 3D imaging technique, in-line digital
holographic microscopy, which involves recording a 2D
hologram generated by interference between light scattered
from colloidal particles and the undiffracted transmitted beam
[Fig. 1(a)] [18]. Unlike 3D confocal stacks, 2D holograms can
be recorded at submillisecond frame rates. By fitting models
based on electromagnetic scattering solutions to the holograms
[18–20], we recover the 3D dynamics of dimers and triangular
trimers of colloidal spheres. We resolve all the translational
and rotational components of the diffusion tensor to 1%
precision or better. We experimentally demonstrate the effects
of asymmetry on diffusion and even show that a small amount
of polydispersity results in symmetry breaking in the rotational
diffusion tensor components. Our measurements agree well
with numerical calculations and, more generally, show how
diffusion tensors can be measured in experimental systems
relevant to self-assembly, where theoretical predictions are
challenging.

The diffusion tensor D quantifies the translational and
rotational Brownian diffusion of an arbitrary rigid colloidal
particle. In general, six generalized coordinates qi (three
positions and three orientation angles) are needed to de-
scribe the position and orientation of a rigid body. Although
D is rigorously defined by generalizing Fick’s law to an
abstract ensemble of particles diffusing in this six-dimensional
configuration space, D also describes correlations between
displacements of the qi for short lag times τ [22,23]:1

〈�qi�qj 〉 = 2Dij τ. (1)

1Equation (1) strictly applies only for short τ because it assumes
small changes in the generalized particle probability density arising
from diffusion for short τ [22].
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FIG. 1. (Color online) (a) Schematic overview of the in-line
holographic microscope used in the experiments. The inset shows
the orientation of the laboratory-frame axes. (b) Axis trajectories for
a diffusing triangular cluster of 1-μm-diam polystyrene spheres (the
inset shows the orientation of the laboratory-frame axes). Renderings
show the trajectories of axes 1 and 3 on a unit sphere. Blue (dark)
markers indicate the start of the 40-s trajectory and orange (light)
markers the end. (c) Laboratory-frame center-of-mass trajectories of
the same triangular cluster over the same time interval as in (b). The
inset shows the amplitude reconstruction [21] of a recorded trimer
hologram, showing the cluster structure. The scale bar is 2 μm.

Further, D may be partitioned into the following 3 × 3 blocks:

D =
(

Dt t D†tr

Dtr Drr

)
(2)

Here Dt t describes translational diffusion, Drr rotational
diffusion, and Dtr translation-rotation coupling. The gen-
eralized Stokes-Einstein equation relates D to the friction
tensor F describing the hydrodynamic Stokes drag forces
and torques on a moving particle: D = kBT F−1 [22,23].
Predicting D thus requires a solution for the Stokes flow
around a particle. Dimers are one of the few nonspherical
shapes for which analytical solutions exist; none exist for
trimers.

We make dimer and triangular trimer clusters through
limited aggregation of sulfate polystyrene spheres (Invitrogen)
[24], 1.3-μm in diameter for dimers and 1-μm in diameter
for trimers. We transfer these particles into a 250-mM NaCl
solution to screen the charge of the stabilizing sulfate groups
and start the aggregation and then we decrease the ionic
strength by quenching with deionized water (Millipore) after
1 min to arrest the aggregation. We then suspend the resulting
mixture of single particles, dimers, and larger clusters in a
density-matched solvent consisting of 50% v/v D2O and 50%
v/v H2O with a salt concentration of 1 mM. We load the
particles into sample cells made from glass slides, coverslips,
and 76-μm-thick Mylar spacers [19,20]. After finding a cluster
with the desired morphology using bright field microscopy,
we ensure that it is at least 30 μm away from sample

cell walls or other particles so that the cluster diffusion is
unhindered by boundaries [25]. We record holograms using
an instrument previously described in the literature [17,20]
at a frame rate of 25 frames/s and at ambient temperature
T = 296+2

−4 K.
We then analyze the measured holograms to obtain 3D

trajectories of the clusters. We obtain particle sizes, refractive
indices, center-of-mass 3D positions, and three orientation
angles (two for dimers) by fitting an exact scattering solution
to Maxwell’s equations to each recorded hologram [19,26,27].
Figures 1(b) and 1(c) show some of the 3D data we obtain
for a trimer. We measure the components of the translational
block Dt t by directly applying Eq. (1), where the relevant �qi

are relative to a coordinate system rigidly fixed to the cluster
[19,22,23]. The correlation functions needed to measure the
diagonal components of Dt t are cluster-frame mean-squared
displacements (MSDs). To measure the components of Drr , we
examine the dynamics of the axis vectors ui fixed to a cluster.
The tips of the ui diffuse along the surface of a unit sphere,
as illustrated in Fig. 1(b). We compute autocorrelations of the
ui , which are related to Dr,i , the three diagonal components of
Drr , as follows [28]:

〈ui(t) · ui(t + τ )〉 = exp

[(
Dr,i −

∑
j

Dr,j

)
τ

]
(3)

For the axisymmetric dimer, we consider a related quantity,
the MSD of the axis unit vector u [15,19,29,30]:

〈�u2(τ )〉 = 2[1 − 〈u(t) · u(t + τ )〉]. (4)

We find good agreement between D for a dimer, measured
to 0.5% precision [27] from a time series of 22 000 holograms,
and analytical and numerical predictions. The measured axis
MSD, along with a best fit to Eq. (4), and the cluster-frame
MSDs are shown in Fig. 2. Dimers of two identical spheres
have three mirror planes and an axis of continuous rotational
symmetry, so in the coordinate system shown in the inset
of Fig. 2(b), D is diagonal. However, due to the breaking
of spherical symmetry, D has four rather than two unique
elements: the translational diffusion constants D‖ and D⊥ and
the rotational diffusion constants Dr,‖ and Dr,⊥ [19,22]. The
subscripts denote translations along, or rotations about, the
dimer symmetry axis (‖) and the two degenerate perpendicular
axes (⊥). Because we cannot observe rotations about the
dimer axis, we can only measure Dr,⊥. Moreover, we can only
measure a combined MSD 〈�x⊥(τ )2〉 along the perpendicular
axes. We then extract D‖ and D⊥ from linear fits to the MSDs.
The MSD 〈�x2

‖ (τ )〉 has a slope of 2D‖ in accordance with
Eq. (1) and 〈�x2

⊥(τ )〉 has a slope of 4D⊥. Our measurement
of D‖/D⊥, which is a universal constant for any Brownian
dimer, agrees well with predictions from the shell modeling
code HYDROSUB [31] and the exact Stokes solution of Nir and
Acrivos [3] (Table I).

The individual elements of D also agree with calculations,
once we account for the sphere radius a and the solvent
viscosity η. We determine an effective sphere radius aeff

from the measured ratios D‖/Dr,⊥ and D⊥/Dr,⊥, which
depend only on a [3]. Then we determine the best-fit ηeff

from the measured elements of D. We find an effective
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FIG. 2. (a) Axis MSD for dimer of 1.3-μm-diam spheres.
Open symbols are measurements; the solid line is the best fit to
Eq. (4), where 〈u(t) · u(t + τ )〉 = exp(−2Dr,⊥τ ). (b) Cluster-frame
MSD computed for the same dimer as in (a). Open symbols are
measurements; solid lines are linear fits. The triangle shows a slope of
1. Error bars are calculated using a block decorrelation technique [32];
they are comparable in size to the plotting symbols or smaller. The
inset shows the orientation of parallel (‖) and perpendicular (⊥) axes.

aeff = 709 nm, which is larger than the optical radius aopt =
650 nm obtained by fitting the holographic data. The larger
effective radius is consistent with typical dynamic light
scattering measurements of the size of colloidal spheres, which
show enhanced hydrodynamic radii due to charge or hairy
surface layers on the particles [33,34]. The best-fit viscosity
is ηeff = 1.159 mPa s, consistent with measurements of the
diffusion constant of a freely diffusing sphere in the same
sample, which acts as an in situ thermometer, combined
with bulk viscosity measurements using a Cannon-Manning
capillary viscometer; these together give a solvent viscosity
of 1.19 ± 0.04 mPa s. We use this procedure because the
solvent viscosity has a strong temperature dependence [27].
The elements of D computed with these effective parameters
agree with our measurements to better than 1% (Table I). We
also note that the HYDROSUB prediction for Dr,⊥ differs from
the analytical prediction by about 1%, which is consistent with
prior studies [4]. The agreement between our measurements
and the analytical prediction suggests that our measurement

TABLE I. Measured diffusion tensor elements for the dimer in
Fig. 2, along with analytical calculations from an exact Stokes solu-
tion [3] and numerical calculations from HYDROSUB [31]. Calcula-
tions use a best-fit particle radius aeff = 709 nm and solvent viscosity
ηeff = 1.159 mPa s. Experimental uncertainties are determined from
best fits in Fig. 2; see [27] for details.

Experiment Exact HYDROSUB

Dr,⊥ (s−1) 0.1034 ± 0.0006 0.1034 0.104
D‖ (×10−13 m2 s−1) 2.015 ± 0.012 2.010 2.02
D⊥ (×10−13 m2 s−1) 1.785 ± 0.007 1.790 1.80
D‖/D⊥ 1.129 ± 0.011 1.123 1.12

FIG. 3. (Color online) (a) Cluster axis autocorrelations 〈ui(t) ·
ui(t + τ )〉 for a trimer of 1-μm-diam spheres, showing anisotropic
rotational diffusion. Open symbols are experimental measurements;
error bars are comparable to or smaller than symbols. Solid lines are
fits to exponential decays. The inset shows the cluster axis orientation.
(b) Residuals for fits of a single exponential decay to the in-plane axis
autocorrelations (i = 1 and 2). The solid line indicates the best-fit
exponential. Red (light) and blue (dark) shaded regions denote error
bars.

accuracy is at least comparable to, if not better than, that
of HYDROSUB.

Measurements on trimers reveal anisotropic translational
and rotational diffusion. Trimers of identical particles have
two mirror planes, making Dt t and Drr diagonal [22,35] in the
coordinate system shown in the inset of Fig. 1(b). We denote
the six diagonal elements by Dt,1, Dt,2, Dt,3, Dr,1, Dr,2, and
Dr,3. In contrast to dimers, trimers lack axisymmetry, allowing
us to observe rotations about all three axes and measure all
six elements. In Fig. 3(a), we show the axis autocorrelations
〈ui(t) · ui(t + τ )〉 computed from 20 000 holograms, as well
as best fits to exponential decays. The autocorrelation of axis
3 decays more rapidly than the autocorrelations of axes 1
and 2, in agreement with expectations: As shown in Eq. (3),
〈u3(t) · u3(t + τ )〉 depends on Dr,1 and Dr,2, both of which
should be larger than Dr,3 due to hydrodynamics. The elements
of the diffusion tensor that we extract from these data are shown
in Table II. The difference between Dr,3 and both Dr,1 and Dr,2

is much larger than the experimental uncertainty, showing clear
evidence for anisotropic rotational diffusion. The translational
diffusion we observe is similarly anisotropic (Fig. 4 and
Table II).

Interestingly, although our measurements of the dimen-
sionless ratios Dr,1/Dr,3 and Dt,1/Dt,3 agree well with the
HYDROSUB predictions, we observe small but statistically sig-
nificant differences between the elements of D corresponding
to the two in-plane axes 1 and 2. Figure 3(b) indicates that
the autocorrelations of axes 1 and 2 are poorly fit by a single
exponential decay. If the particles in the trimer are identical, the
threefold symmetry axis of the trimer ensures that Dt,1 = Dt,2
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TABLE II. Measured diffusion tensor elements for trimer shown
in Figs. 3 and 4 with comparisons to computations from HYDROSUB

[31]. Computations use a = 500 nm obtained optically from the
best-fit hologram models and η = 1.049 mPa s from single-particle
diffusion data; the difference in η from the dimer measurements
is due to a difference in room temperature. Experimental uncer-
tainties determined from best fits in Figs. 3 and 4; see [27] for
details.

Experiment HYDROSUB

Dr,1 (s−1) 0.278 ± 0.002 0.296
Dr,2 (s−1) 0.270 ± 0.002 0.296
Dr,3 (s−1) 0.210 ± 0.002 0.220
Dr,1/Dr,3 1.32 ± 0.02 1.34
Dr,1/Dr,2 1.03 ± 0.02 1.00
Dt,1 (×10−13 m2 s−1) 2.466 ± 0.015 2.64
Dt,2 (×10−13 m2 s−1) 2.446 ± 0.015 2.64
Dt,3 (×10−13 m2 s−1) 2.372 ± 0.015 2.41
Dt,1/Dt,3 1.04 ± 0.01 1.09

and Dr,1 = Dr,2.2 Thus the differences between these elements
of the tensor imply that the particles in our trimer are not
in fact identical. We performed HYDROSUB calculations to
confirm that weakly breaking threefold symmetry results
in differences between the in-plane elements of D. Our
measured ratio Dr,1/Dr,2 = 1.03 ± 0.02 corresponds to a 3%
size difference between the spheres. This is consistent both
with the particle manufacturer’s certificate of analysis as well
as with particle size differences determined from holograms.
This shows that even a small amount of particle polydispersity
can break the threefold rotational symmetry to a measurable
degree.

Overall, our work demonstrates experimentally how both
large and small differences in the symmetry of small particles
affect the diffusion tensor. The technique we use, holographic
microscopy, can measure elements of the diffusion tensor
to high precision, 1% or better, small enough to resolve
weak symmetry breaking due to particle polydispersity. The
high precision is enabled by the inherently short acquisition

2See [22,35]. Brenner does not explicitly treat discrete rotational
symmetry, but his symmetry arguments are readily applied to this
case.
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FIG. 4. Body-frame MSDs for the same trimer in Fig. 3. See
the inset in Fig. 3(a) for axis orientations i. Open symbols are
experimental measurements; error bars are comparable to or smaller
than symbols. Solid lines are linear fits. Triangles show a MSD slope
of 1.

times of the technique, allowing us to study rapidly diffusing
systems that we can image for up to hundreds of rotational
diffusion times 1/Dr,i . These longer time scales more clearly
reveal anisotropy in the diffusion tensor. Although here we
have measured the diffusion of isolated clusters, it should
be possible to use the same technique to measure diffusion
tensors in environments that are relevant to self-assembly but
challenging for computation. In particular, it may be possible
to measure diffusion tensors near boundaries or other particles
or for clusters that have internal degrees of freedom. The few
studies examining the effect of interparticle hydrodynamic
couplings on particle diffusion have been restricted to spheres
in planar geometries [36–38]. Furthermore, measurements on
other even less symmetric clusters may be able to reveal
translational-rotational coupling as well as the off-diagonal
rotational and translational elements in the diffusion tensor.
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