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Summary 

The study of developmental genetics is providing insights into how plant 

morphology can and does evolve, and into the fundamental nature of specific 

organs. This new understanding has the potential to revise significantly the way 

we think about seed plant evolution, especially in regard to reproductive 

structures. Here, we have sought to take a step in bridging the divide between 

genetic data and critical fields such as paleobotany and systematics. We discuss 

the evidence for several evolutionarily important interpretations, including the 

possibility that ovules represent meristematic axes with their own type of lateral 

determinate organs (integuments) and a model that considers carpels as analogs 

of complex leaves. In addition, we highlight the aspects of reproductive 

development that are likely to be highly labile and homoplastic, factors that have 

major implications for understanding seed plant relationships. While these 

hypotheses may suggest that some long-standing interpretations are misleading, 

they also open up whole new avenues for comparative study and suggest 

concrete best practices for evolutionary analyses of development. 
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I. Introduction 

 

The defining feature of the seed plants is the ovule, which upon fertilization develops into 

the seed.  Yet the steps underlying the evolution of the ovule and its associated structures 

remain poorly understood, both in gymnosperms and angiosperms.  This hampers our 

ability to relate reproductive structures across clades of seed plants, and thus, to 

reconstruct the evolutionary history of this key group.  Here, we argue that insights from 

developmental genetics are essential to resolving long-standing questions in plant 

systematics and paleobotany, and that conversely, a broad understanding of systematics 

and paleobotany can guide comparative developmental studies into productive avenues. 

Several major questions have driven research in seed plant systematics and 

paleobotany for over a hundred years, including: How does the angiosperm carpel relate 

to ovule-bearing structures in gymnosperms? Is the fundamental nature of the flower a 

branched or simple axis? How did hermaphroditism evolve and in how many lineages?  

Along these lines, the genetic bases of phenomena such as determinacy and branching 

have been the subjects of developmental evolutionary studies, but this work has largely 

focused on recently diversified angiosperms (Yoon & Baum, 2004; Vollbrecht et al., 

2005; Sliwinski et al., 2006; Kellogg, 2007; Sliwinski et al., 2007), primarily on close 

relatives of established genetic models. These studies take advantage of research using 

model systems that has begun to unravel the inherent logic of plant development, and 

illuminate the processes by which plants have diversified.  While some researchers have 

begun to integrate molecular findings regarding developmental processes into studies of 

leaf and root evolution (Rothwell et al., 2008; Sanders et al., 2009; Boyce, 2010), we 
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believe that the time is right to expand this effort to aspects of reproductive evolution.  In 

particular, functional genetic data have the potential to inform the way we assess the 

distinction between homology vs. homoplasy - the common inheritance of features as 

opposed to their independent evolution. As a starting place, we summarize emerging 

developmental genetic insights into how angiosperm reproductive structures are formed, 

modified, and recombined. Next, we consider how these findings impact our thinking 

about the evolution of ovules, ovule bearing structures, and various aspects of flowers. 

Finally, we discuss how these insights bear on our understanding of reproductive 

structures in seed plants and on the design of developmental evolutionary studies. 

 

II. Transformation and transference in angiosperm developmental genetics 

 

The complementary phenomena of homeosis and modularity are the fundamental 

mechanisms by which plants build their bodies (Walbot, 1996; Baum & Donoghue, 

2002).  Seed plants reiteratively produce a basic module, the phytomer, which is 

composed of three subunits: the lateral determinate organ, the axillary meristem and the 

associated internodal stem (Gray, 1879).  Plants then generate morphological complexity 

via the differential expression of genetic identity programs that alter developmental 

patterns within the subunits.  This mechanism is inherently homeotic; it depends on a 

sequential transformation of identity (Sattler, 1988).  For instance a meristem may 

initially produce juvenile leaves, then mature leaves, then bracts, then floral organs.  All 

of these structures are lateral determinate organs but their identity, and hence their 

morphology, differ based on which genetic program is expressed, both in the organs and 
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in the meristem that produces them.  Although any one species may only express 

relatively few alternate identity programs (e.g., Arabidopsis thaliana, Fig. 1), across the 

seed plants there are dozens, if not hundreds, of potential variations (e.g., a vegetative 

meristem can be a thorn, tendril, branch; Gifford & Foster, 1988; Bell, 1991).  The 

expression of these genetic programs is controlled by a diverse array of endogenous (e.g., 

determined by age, position) and exogenous (e.g., determined by light quality, 

photoperiod, temperature) pathways.  Transitions between identities may be abrupt, as 

with the conversion of an inflorescence meristem to floral meristem identity (Kaufmann 

et al., 2011), or gradual, as with the effect of phase change on leaf morphology (Huijser 

& Schmid, 2011).  Another important point is that the high degree of modularity we 

observe at the morphological level is also reflected at the genetic level. As modules 

themselves, genetic programs display a high degree of spatial and temporal lability, and 

can even be transferred across subunit boundaries, such as with the expression of 

meristematic activity in a lateral organ (see below). In the following brief overview, we 

highlight the most critical aspects of the genetic programs controlling reproductive 

identity and development, in Arabidopsis thaliana with an emphasis on their homeotic 

and modular natures (see Table 1 for a summary of the major genes or gene families 

discussed herein). This background provides a framework for our subsequent discussion 

of evolutionary models. 

 

1. The genetic basis of the phytomer 

From a genetic perspective, the best understood subunits of the phytomer are the 

meristem (whether primary or axillary) and the lateral organs.  While the expression of 
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identity programs such as “inflorescence” or “bract” may vary in time and space, the 

genetic pathways that control meristematic activity appear to be common to all meristems 

and, likewise, the fundamental patterning of lateral organ primordia is the same across 

diverse organ types (these two subjects have been reviewed in detail by Barton, 2010; 

Kidner, 2010; Moon & Hake, 2011, from which the following discussion is drawn unless 

otherwise noted).  Typical angiosperm shoot apical meristems can be subdivided into the 

so-called central zone (CZ), in which cells divide slowly and maintain a pluripotent state, 

and the peripheral zone (PZ), which is marked by more rapid divisions of undifferentiated 

cells and is the site of lateral primordium initiation (Fig. 2A).  The CZ genetic module is 

composed of a non-cell autonomous receptor pathway, which involves several receptor 

kinases and their peptide ligand CLAVATA3 (CLV3), and the homeodomain 

transcription factor WUSCHEL (WUS). While WUS acts to promote CZ identity, the 

CLV3 pathway acts to restrict it.  These opposing actions are accomplished via a 

homeostatic feedback whereby WUS function activates CLV3 expression, which in turn 

acts to represses WUS, resulting in a maintained balance of CZ activity.  In contrast, the 

undifferentiated state of the PZ is promoted by a subfamily of homeodomain loci called 

the type I KNOX genes.  Specifically, the main players are members of two paralogous 

gene lineages respectively defined by the Arabidopsis gene SHOOTMERISTEMLESS 

(STM) and the maize gene KNOTTED1 (KN1), which are expressed throughout the 

meristem except in incipient primordia.  These two key genetic pathways, the WUS/CLV 

module acting in the CZ and the STM/KN1 genes maintaining the PZ, work together to 

establish the activity and integrity of all shoot apical meristems (Fig. 2A). 
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The initiation of lateral organs requires down-regulation of the meristematic 

program, namely via repression of KNOX gene expression in the PZ.  In fact, the 

localized elimination of STM/KN1 expression is one of the earliest markers for a shift in 

PZ cell fate towards leaf identity.  Several genetic pathways involving complex signaling 

responses underlie KNOX down-regulation.  One of these is based on polar auxin 

transport (PAT), a phenomenon whose broader significance for plant development cannot 

be overstated.  The polarized, cell-to-cell trafficking of auxin, mediated by the 

PINFORMED (PIN), P-glycoprotein ABC transporter (PGP) and AUX protein families, 

allows the phytohormone auxin to be concentrated in specific cells.  Depending on the 

identity of these cells, a peak in auxin concentration can induce a wide range of 

developmental responses (reviewed in Grunewald & Friml, 2010).  In the PZ of the 

meristem, auxin flows primarily through the outer epidermal layer, oriented towards the 

PZ.  An auxin concentration peak in this region induces the formation of a new 

primordium (Fig. 2A). As the organ begins to develop, the inductive auxin flows away 

through the central core of the primordium, which both defines the new vasculature of the 

leaf and drains auxin away from the immediate region of the PZ.  This local auxin 

depletion creates the so-called primordium “inhibition zone” and results in the 

stereotypical phyllotaxy of any given meristem by preventing the establishment of new 

auxin peaks in the immediate vicinity of a recently initiated leaf (Kuhlemeier, 2007).  The 

auxin peak associated with a new primordium also initiates the down-regulation of 

KNOX gene expression.  In addition, the activation of the primordium developmental 

program up-regulates the expression of a suite of genes that feedback negatively onto the 

KNOX loci to reinforce their repression while simultaneously acting to establish the 
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adaxial (upper) and abaxial (lower) surfaces of the incipient leaf.  The juxtaposition of 

opposing abaxial and adaxial identity is essential for the lateral expansion that produces 

the lamina.  The major genetic players on the adaxial surface include the Arabidopsis 

genes ASYMMETRIC LEAVES1 (AS1), a MYB transcription factor, and its co-factor 

ASYMMETRIC LEAVES2 (AS2), a LOB domain transcription factor, along with the class 

III homeodomain leucine zipper-containing (HD-ZIPIII) genes.  Working in opposition 

on the abaxial side are members of the so-called KANADI and YABBY transcription 

factor families (Fig. 2A). Lastly, there are genes that act at the junction between the 

growing primordium and the meristem, most notably members of the CUC SHAPED 

COTYLEDON (CUC) gene family, which repress cell divisions and thereby promote 

separation of the primordium from the meristem. 

 The fundamental meristem and primordium genetic programs do not function 

alone, but work in concert with additional identity programs that determine what kind of 

meristem or leaf will be produced.  Such identity programs may impinge directly on the 

genes mentioned above or they may work in parallel.  For instance, vegetative meristem 

identity will impact a meristem’s response to auxin flow in order to produce spiral 

phyllotaxy, while a switch to floral meristem identity may alter this response to yield 

whorled phyllotaxy.  Beyond these interactions are some perhaps surprising 

modifications that can blur the very definition of meristem and leaf.  Early work on 

compound leaf development demonstrated that it is associated with reactivation of the PZ 

KNOX genes in the developing leaf primordium (reviewed Champagne & Sinha, 2004; 

Koenig & Sinha, 2010). Extensive studies have now shown that this involves the 

wholesale transference of the genetic module controlling PZ identity and primordium 
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initiation into the leaf itself, thereby creating a limited degree of indeterminacy and 

allowing discrete leaflet formation (reviewed in Rosin & Kramer, 2009). Moreover, this 

translocation has occurred in numerous independent instances, although there are a 

handful of compound leaves that rely in part on additional genetic mechanisms (e.g., 

Champagne et al., 2007). Another fascinating aspect of the PZ/primordium genetic 

module is that it also apparently underlies a wide spectrum of what can be called complex 

leaves, ranging from dissected to lobed to toothed, to even the bizarre morphologies of 

the Podostemaceae and Streptocarpus (Harrison et al., 2005; Katayama et al., 2010). 

These observations underscore how the modularity of plant developmental genetic 

programs can enable extreme levels of morphological lability by simply shifting their 

localization. 

 

2. Determinate vs. indeterminate growth and inflorescences 

One of the most fundamental meristematic alterations occurs in the transition from 

vegetative to reproductive meristem identity. This can happen in two ways: the meristem 

can be directly converted from vegetative to floral identity or it can transition first to 

inflorescence meristem identity before floral meristems are formed. While both 

vegetative and inflorescence meristem identity programs can be considered 

indeterminate, once a meristem has acquired floral meristem identity, it is, by definition, 

determinate and primary growth terminates. Further distinctions are often made between 

determinate and indeterminate inflorescences but in the former case, the inflorescence 

typically becomes determinate by transforming itself into floral identity. In Arabidopsis 

thaliana, the inflorescence is considered indeterminate. Its developmental program 
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differs dramatically from that of the vegetative meristem in that internodes are elongated, 

lateral organs are largely suppressed, and lateral meristems are immediately active rather 

than suppressed as in the rosette. The first few nodes of the inflorescence produce a 

lateral leaf subtending a secondary inflorescence meristem but that pattern quickly 

transitions to the production of lateral floral meristems with no subtending leaves. These 

floral meristems produce yet another completely different pattern – strongly condensed 

internodes, lateral organs with floral organ identity and suppressed axillary meristems 

(Fig. 1). 

The genetic basis for the switch from inflorescence meristem identity to floral 

meristem identity is the differential expression of complementary identity programs. 

These genetic modules are complex but, in Arabidopsis, inflorescence identity is defined 

by expression of loci such as TERMINAL FLOWER1 (TFL1), AGL24 and SUPPRESSOR 

OF CONSTANS (SOC1) (Lee & Lee, 2010), while floral meristem identity is primarily 

promoted by LEAFY (LFY) and APETALA1 (AP1) (reviewed in Moyroud et al., 2009; 

Moyroud et al., 2010). Both genetic studies and modeling demonstrate that differential 

expression of these two identity programs can account for the full range of inflorescence 

structure diversity in angiosperms (Prusinkiewicz et al., 2007; McKim & Hay, 2010). For 

example, the cymose Aquilegia formosa inflorescence meristem produces two bracts, 

each with an axillary inflorescence meristem, then converts to floral meristem identity, 

allowing the axillary inflorescence meristems to repeat the pattern (Ballerini & Kramer, 

2011). In groups with especially complex inflorescence structure, such as the grasses, 

there appear to be more than one genetic “flavor” of meristem identity (e.g., primary 

branch, secondary branch, spikelet, floret, etc.), but the model is similar – differential 
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expression of these various identities has allowed the generation of enormous 

morphological diversity (Vollbrecht et al., 2005; McSteen, 2006; Hake, 2008). 

Interestingly, double mutant combinations of LFY or mutations in other loci that help 

promote floral meristem identity can result in meristems that possess some floral organs 

along with unusual patterns of branching. For example, in flowers of ap1 mutants, the 

outer whorls contain bracts and axillary meristems while the inner whorls produce normal 

stamens and carpels (Irish & Sussex, 1990). It is important to appreciate that these 

phenotypes are not atavistic but, rather, the product of mixed genetic identity, a 

reasonably common outcome that results when floral or inflorescence identity genes are 

misexpressed. These phenotypes do underscore, however, how fine is the line between 

determinate and indeterminate meristem development and how easily this line can be 

blurred via complete or partial genetic transformation. 

 

3. Floral organ identity 

The ABC model of floral organ identity is one of the best-understood genetic programs in 

plants (reviewed in Causier et al., 2010; Litt & Kramer, 2010; Liu & Mara, 2010), from 

which the following discussion is drawn unless otherwise noted). This model holds that 

three main classes of gene activity are expressed in floral meristems in overlapping 

domains such that they create a combinatorial code corresponding to each floral organ 

type.  Sepals are determined by A function; petals, by A+B; stamens, by B+C; and 

carpels, by C alone (Fig. 2B).  In addition to these canonical ABC classes, we now 

recognize that another gene class, termed the E class, is broadly expressed in the floral 

meristem and acts to facilitate the ABC functions.  The majority of these genes are 
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members of the type II subfamily of MADS box containing transcription factors: 

APETALA1 (AP1) in the A class; APETALA3 (AP3) and PISTILLATA (PI) in the B class; 

AGAMOUS in the C class; and the SEPALLATA1-4 (SEP) loci in the E class. Although 

aspects of the model have been significantly revised, especially the nature and 

conservation of A function (Davies et al., 2006; Litt & Kramer, 2010), it is critical to 

appreciate that floral organ identities are understood to be entirely interchangeable, with 

simple shifts in gene expression allowing complete homeotic transformations.  It is 

important to note that organ position and number are largely controlled independently of 

the ABC model, i.e., floral organ identity is overlaid on primordia whose number and 

position are controlled by separate genetic pathways. 

 

4. Elaboration of the carpels 

The carpel is a highly derived structure that is distinctive among seed plants.  It 

comprises a chamber enclosing the ovules (the ovary), a transmitting tract through which 

the pollen tubes grow, and a stigmatic surface, which receives and mediates recognition 

of the pollen. While the identity of the carpel is established by C+E function, many 

aspects of the genetic pathways controlling carpel development are based directly on the 

systems controlling lateral organ development (reviewed in Ferrandiz et al., 2010, from 

which the following discussion is drawn unless otherwise noted). The general principles 

of these programs are common across all phylloid organs, but in several cases carpel-

specific paralogs have evolved to control lateral organ development. For instance, the 

Arabidopsis YABBY family member CRABS CLAW (CRC) has become largely carpel-

specific. In addition to the canonical YABBY role in the determination of abaxial 
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identity, CRC acts immediately downstream of the C class gene AG to promote the 

identity of the carpel itself. This is not to say that CRC is the only YABBY gene that 

contributes to carpel development, but it is the only family member whose role is largely 

restricted to carpel development. The existence of carpel-specific paralogs may serve to 

reduce genetic pleiotropy, allowing the carpel developmental program to evolve in 

dissociation from other lateral organs. Other types of organ polarity pathways contribute 

to the development of the stigma and transmitting tract (reviewed in Ferrandiz et al., 

2010), but little comparative work has been done on them to date, even within 

angiosperms (but see Fourquin et al., 2005). 

One especially fascinating aspect of carpel differentiation is the specification of 

the placenta, the tissue that will give rise to the ovules. Arabidopsis placental tissue is 

derived from a region positioned in a crease that forms between the carpel wall and 

replum/septum of the silique (Fig. 2C). This is part of a broader domain with apparent 

meristematic activity that is termed the medial ridge. From a genetic perspective, this 

region has all the hallmarks of axillary meristem – it arises in association with the adaxial 

surface of a lateral organ (the inner surface of the carpel wall) and it expresses many of 

the genetic markers associated with the peripheral zone of shoot apical meristems, 

including type I KNOX genes and patterns of differential auxin trafficking. Expression of 

components of this PZ vs. primordium regulatory system in the carpel appears to be 

associated with the complex elaboration of the carpel, specifically the maintenance of 

indeterminacy that is required for placenta development and subsequent ovule production 

(Skinner et al., 2004; Girin et al., 2009). In many ways, this makes the carpel analogous 

to complex leaves where the PZ/primordium genetic program is expressed in a lateral 
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organ in order to maintain a degree of indeterminacy. Although both the complex leaf 

and carpel developmental programs use the PZ/primordium module, they differ 

fundamentally in terms of their products: in leaves, the meristematic zone produces 

leaflets or lobes but no new lateral meristems, whereas in carpels, this zone produces new 

lateral meristems – the ovules (see below) – but no leaflets. This distinct difference may 

be conditioned by the expression of the PZ module within the context of vegetative 

identity on the one hand and female reproductive identity on the other, much as with 

behavioral changes of apical meristems between vegetative and floral identity. The 

apparent co-option of the PZ program in carpels again highlights the modularity of 

meristematic identity and the diversity of developmental functions for which it can be 

deployed.  

 

5. The fundamental nature of the ovule 

The ovule is an indehiscent, integumented megasporanium in which a nucellus surrounds 

one or few functional megaspores; integuments initiate from the chalaza to form a 

micropyle through which pollen tubes transport either motile or nonmotile sperm. The 

identity of ovules in Arabidopsis thaliana is established in large part by the collective 

function of one or more AG-like loci, which in Arabidopsis include AG itself as well as 

the related paralogs SHATTERPROOF1/2 (SHP1/2) and SEEDSTICK (STK) (Pinyopich 

et al., 2003). Because the AG/SHP and STK lineages diverged before the diversification 

of the flowering plants (Kramer et al., 2004), most angiosperms have one or more 

representatives of AG as well as at least one ortholog of STK. What is particularly 

interesting is that most STK homologs studied to date have ovule-specific expression 
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patterns and, in some taxa, these genes appear to function alone in defining ovule identity 

(reviewed in Kramer et al., 2004). However, in Arabidopsis, this function is redundantly 

encoded by AG, SHP1/2 and STK, suggesting that ovule identity, sometimes termed “D” 

function (Colombo et al., 1995), is not necessarily a distinct role of the STK lineage. At 

the same time, the existence of multiple loci that can contribute to ovule identity may, 

again, act to reduce pleiotropy and allow ovule development to evolve in dissociation 

from that of the carpel. 

As already noted, an important point of divergence in the carpel-as-complex leaf 

analogy is that ovules are not modified leaflets. Rather, they are their own kind of 

meristematic axis, as indicated by several features (Fig. 2D). For one, ovules express 

WUS, marking the nucellus as an analog of the CZ (Gross-Hardt et al., 2002). For 

another, they produce their own lateral organs, the integuments, the formation of which is 

dependent on WUS just like the formation of leaf primordia in apical meristems (Gross-

Hardt et al., 2002). Interestingly, this form of indeterminacy does not appear to involve 

the KNOX genes and is therefore distinct from what we see in complex leaves and 

carpels. In Arabidopsis, WUS is both necessary and sufficient for integument initiation: 

over-expression of the gene within the ovule results in the production of an indeterminate 

number of additional integuments (Gross-Hardt et al., 2002; Sieber et al., 2004). There 

are important differences, however, between WUS function in a typical meristem and its 

role in ovules. Most importantly, there is no evidence for a role of the CLV3 feedback 

pathway in ovules (Gross-Hardt et al., 2002), which may reflect the fact that unlike 

indeterminate shoot meristems, the ovule is distinctly determinate. After the adjacent 

chalazal domain produces a small number of lateral organs, the nucellus is entirely 
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consumed by the production of the megaspore and subsequent megagametophyte, or is 

modified to store reserves for the latter. 

 As expected for lateral organs produced in conjunction with a meristematic axis 

(in this case the ovule), the integuments express significant components of the genetic 

program that patterns lateral organs. Both the inner and outer integuments depend on the 

establishment of abaxial and adaxial identity for their proper development, although the 

exact complement of participating loci differs between the two organs (Fig. 2D; Kelley et 

al., 2009). In the Arabidopsis inner integument, multiple HDZIPIII loci act in the adaxial 

domain while the KANADI gene ABERRANT TESTA SHAPE (ATS) determines abaxial 

identity. The outer integument appears to depend on the HDZIPIII REVOLUTA (REV) for 

adaxial identity and the YABBY gene INNER NO OUTER (INO) along with several 

KANADI homologs for abaxial identity, which is responsible for producing the proper 

curvature of these anatropous ovules. Similar to CRC in the carpel, INO is a YABBY 

gene that has become functionally restricted to integument polarity (Villanneva et al., 

1999). In addition to these fundamental markers of lateral organ identity, both 

integuments depend on expression of the AP2/EREBP transcription factor 

AINTEGUMENTA (ANT), which is also expressed in all lateral organs (Elliott et al., 

1996). Thus, we see that the ovule exhibits developmental and genetic parallels to a 

modified meristematic axis that produces a limited number of lateral organs. 

 

III. Implications for understanding patterns of seed plant evolution   
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What do these genetic insights into reproductive development imply for seed plant 

evolution, specifically the nature of integuments, ovules, and associated structures?  

Ovules across seed plants likely are homologous, given that analyses of morphological 

data from both living and extinct taxa have supported their monophyly (e.g., Crane, 1985; 

Nixon et al., 1994; Rothwell & Serbet, 1994; Doyle, 1998; Hilton & Bateman, 2006; 

Doyle, 2008). However, it remains unclear how integuments, which are variable in 

number across seed plants, are related to one another and, similarly, what is the 

correspondence among ovule-bearing structures of different clades. At higher levels of 

organization, questions remain as to how transitions from unisexual to bisexual as well as 

branched to unbranched axes were achieved. 

 

1. Integuments 

Integuments enclose the nucellus and form the micropylar tube through which pollen 

travels toward the egg cell.  Presumed ovule precursors of the earliest seed plants lacked 

integuments that fully enclosed the nucellus and have, therefore, been called pre-ovules 

(Stewart & Rothwell, 1993).  The nucellus of pre-ovules was subtended by fused or 

partially fused appendages, which have been viewed by many as being derived by 

condensation and reduction of a group of branches or dichotomously branching telomes 

(e.g., Andrews, 1963; Smith, 1964; Rothwell & Scheckler, 1988; Stewart & Rothwell, 

1993), or a group of megasporangia (Kenrick & Crane, 1997).  Under this view, the 

integuments were thought to have originated by subsequent fusion of these appendages. 

The genetic evidence that ovules have characteristics of meristems (Gross-Hardt 

et al., 2002) suggests an alternative hypothesis regarding the nature and origin of 
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integuments. Specifically, integuments, as well as the sterile appendage of pre-ovules, 

could be lateral organs initiated by nucellar meristems, and are of de novo origin. The 

nucellar meristem appears to result from co-option of portions of the CZ genetic module 

into the megasporangium developmental program. Further, given that the overexpression 

of WUS results in additional integuments (Gross-Hardt et al., 2002; Sieber et al., 2004), 

the dynamics of WUS expression in the ovule could explain both the origin of the inner 

integument and the variable number of integuments observed across seed plants. This 

variation includes a wide diversity in integument number ranging from the second 

integument of angiosperms to the supernumerary integuments of taxa nested within 

otherwise unitegmic clades, such as Taxaceae and gnetophytes (Coulter & Chamberlain, 

1917b; Takaso, 1985; Takaso & Bouman, 1986; Yang & Jack, 2004) as well as the 

extinct Bennettitales and Erdtmanithecales (Friis et al., 2011), to third integuments in 

ancestrally bitegmic clades such as Annonacaeae (Endress, 2011). The question of 

whether WUS homolog expression in the nucellus is conserved across angiosperms and in 

other clades of seed plants is critical to testing this concept of ovules and their 

integuments (Table 2). Notably, the WUS-like gene from Gnetum is expressed in the apex 

of the developing ovule primordium, indicating that this role may in fact be conserved; 

limited data from other gymnosperms suggests they possess WUS-like genes, but their 

expression patterns are yet to be determined in detail (Nardmann et al., 2009).  

Patterns of ovule ontogeny from Gingko, gnetophytes, conifers, and angiosperms 

are completely consistent with this view of integuments and their origin.  In all 

gymnosperms and angiosperms that have been examined, the ovule primordium clearly 

initiates before the integuments, which subsequently arise from the flanks of the nucellus 
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(Coulter & Chamberlain, 1917b; Takaso, 1985; Takaso & Bouman, 1986; Takaso & 

Tomlinson, 1989a; Takaso & Tomlinson, 1989b; Takaso & Tomlinson, 1990; Takaso & 

Tomlinson, 1991; Tomlinson, 1992; Tomlinson et al., 1993; Yang, 2004; Douglas et al., 

2007; Rydin et al., 2010; note, comparable developmental data from cycads are lacking). 

In this way, the initiation of the nucellus and integuments is very like the initiation of 

apical meristems and lateral organ primordia (Steeves & Sussex, 1989). 

In Arabidopsis, expression patterns of leaf polarity genes in the integuments (Fig. 

2D) also support the interpretation of integuments as lateral organs, as does the presence 

of ANT transcripts in both leaves and integuments (Elliott et al., 1996).  A common 

feature of leaves and integuments is the expression of HDZIPIII and KANADI genes in 

the respective adaxial and abaxial surfaces of inner and outer integuments (Fig. 2D; 

Kelley & Gasser, 2009; Kelley et al., 2009). It is important to note, however, that unlike 

leaves, neither Arabidopsis integument utilizes the adaxial identity locus AS1 and the 

inner integument lacks YABBY expression. In regard to the AS1 gene, it may be that the 

lack of PZ identity in the ovule negates a requirement for AS1 to down-regulate the 

KNOX genes. In the case of the differences between the inner and outer integument, 

these could reflect a fundamental difference in their derivation, perhaps with the inner 

being derived from branches (e.g., Kelley & Gasser, 2009), as predicted by the telomic 

theory of origin (see above). However, it is equally possible that the developmental 

programs of the outer and inner integuments have diverged due to their different 

morphology or simply as a result of developmental system drift (True & Haag, 2001). An 

added complication is that the YABBY lineage itself is seed plant-specific (Floyd & 

Bowman, 2007) and it is unknown how the timing of its appearance relates to the 
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origination of either integument. Further data from angiosperms and gymnosperms are 

clearly needed to distinguish among the alternatives (Table 2).  The polarity genes are 

members of gene families with complex evolutionary histories (Floyd & Bowman, 2007; 

Yamada et al., 2011), and while expression of the YAB locus INO appears to conserved 

across angiosperms (Yamada et al., 2003), it remains to be determined if expression 

patterns of other polarity genes are similarly conserved in flowering plants. Likewise, few 

data exist about the distribution and expression of polarity genes outside of angiosperms, 

although ANT has been detected in gymnosperm integuments (Shigyo & Ito, 2004; 

Yamada et al., 2008).  

 

2. Ovules 

Developmental geneticists often use interchangeably the phrases, “female identity” and 

“carpel identity”, but clearly, female identity is determined by the presence and 

development of a megasporangium, a structure that long predates the origin of seed 

plants, let alone carpels.  Therefore, it may be more productive to hypothesize the 

following.  1) Female identity in seed plants is determined by the elaboration of a 

meristematic tissue, the placenta, which initiates one or more ovules.  2) Expression of 

this basic female identity program leads to the modification of the formerly sterile 

surrounding tissues, and this pattern of modification has evolved along different 

trajectories in various clades of seed plants, leading to diverse reproductive architectures.  

The questions then become: What genetic pathways lead to elaboration of the placenta 

and initiation of the ovule, and are they shared across seed plants?  As with questions 

about integuments, full characterization of candidate gene families in terms of evolution 
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and expression patterns is needed to identify common determinants of ovule identity 

(Table 2). Regardless of the outcome, the results will set the stage for subsequent 

experiments to investigate how the basic female identity program interacts with other 

meristem and organ identity genes to produce the architectures found in different clades 

of seed plants. 

There is limited evidence that allows us to consider the genetic basis for ovule 

identity. As discussed above, this so-called “D” function is closely associated with 

homologs of the AG subfamily but it is important to remember that the often ovule-

associated STK lineage is derived from an angiosperm-specific duplication event. 

Gymnosperms possess AG family members that predate this duplication, but these have 

experienced their own independent duplication events (Winther and Kramer, unpub data). 

Based on the Arabidopsis model (Pinyopich et al., 2003), we would expect members of 

the AG lineage s.l. to determine ovule identity in other seed plants.  Consistent with this, 

data available from conifers suggest that multiple AG-like genes are broadly expressed in 

both male and female cones, with expression becoming more localized to different tissues 

as development proceeds (Rutledge et al., 1998; Jager et al., 2003; Zhang et al., 2004; 

Englund et al., 2011; Groth et al., 2011). This would seem to indicate that in 

gymnosperms, AG-like genes are acting in the entire reproductive axis, but more 

sampling and better detail in expression patterns will be important for accurate 

interpretation of these findings, especially in light of previously unrecognized complexity 

that has been detected within the conifer AG-like gene lineages (Winther and Kramer, 

unpub. data).  In addition to testing all the AG-like paralogs, it would be equally 

important to investigate other components of the ovule identity and development pathway 



	
   23	
  

(reviewed in Skinner et al., 2004; Kelley et al., 2009) to gain an understanding of their 

potential functions across seed plants. 

 

3. Ovule-bearing structures 

In living seed plants, ovules are variously borne on the inner walls of carpels 

(angiosperms), on leafy or reduced megasporophylls (cycads), on axillary stalks 

subtended by leaves (Ginkgo), at the termini of condensed axillary shoots (gnetophytes), 

or on the surface of a cone scale that represents a condensed axillary shoot (conifers). 

What genetic pathways might interact with those that determine female reproductive 

identity to shape this architecture?  And exactly how do variations in the pathways and 

their interactions result in the variety of reproductive architecture observed in seed 

plants? 

 To address these questions, let us first return to our characterization of the carpel 

as a complex leaf that uses the PZ genetic module in a female reproductive context, 

which we could simply call “PZ+C.” This is an intriguing model but considerable 

additional work is required in angiosperms to determine whether it is broadly applicable. 

Keeping that significant caveat in mind, it is still interesting to examine how the PZ+C 

model might help explain the diversity in ovule bearing structures. First, if we consider 

the PZ module alone, we know that it can be expressed in two completely different 

contexts: in terminal or axillary meristems it helps drive the production of entire 

phytomers, while in leaves, it plays a more narrow role in promoting leaflet/lobe 

initiation. What if the PZ+C module is similarly labile? The laminar megasporophylls of 

angiosperms evolved from within a diverse assemblage of seed plants that were 
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themselves apparently derived from lineages that produced terminally-borne pre-ovules 

(Friis et al., 2011). What if the PZ+C module first arose in the context of a meristem 

rather than a lateral organ? This hypothesis would hold that when PZ+C is expressed in a 

meristematic context, it can produce an ovule-bearing stalk, either axillary or terminal, 

but when co-opted into a lateral organ, would produce a laminar structure bearing ovules, 

similar to what we see in angiosperm carpels or cycad megasporphylls. While this idea is, 

admittedly, highly speculative, it does suggest specific lines of investigation into the 

nature of ovule production in extant gymnosperms, as well as potential explanations for 

the genetic basis of diversity seen in fossil seed plants. 

 The first area of needed research concerns the nature of female reproductive 

identity. Although we typically think of “C” function as primarily related to AG 

homologs, which have already been discussed, carpel identity is also promoted by the 

YABBY paralog CRC. Orthologs of this gene are expressed in all angiosperm carpels 

examined to date, including those of members of the ANITA grade (Yamada et al., 2004; 

Fourquin et al., 2005; Ishikawa et al., 2009; Yamada et al., 2011). Functional tests are 

more limited but are still consistent with a model that CRC’s role in carpel identity is 

broadly conserved, although in certain lineages it may perform additional developmental 

functions (Yamaguchi et al., 2004; Lee et al., 2005; Orashakova et al., 2009). Current 

data suggest that the CRC lineage is angiosperm-specific, without obvious gymnosperm 

precursors (Yamada et al., 2011), so it is critical to obtain a more detailed picture of the 

YABBY lineage in gymnosperms in order understand the origin of their role in carpels. 

 A useful starting place for a discussion of the role of the PZ+C module in the 

diversification of seed plant female structures is with a description of those structures. A 
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megasporophyll, leafy or reduced is the fundamental ovule-bearing structure in both 

angiosperms and cycads.  As with the carpel, the leafy megasporophylls of Cycas are 

candidate analogs of complex leaves expressing the PZ/lateral primordium pathway along 

the margins.  In more distal positions along the megasporophyll, leaflets are produced, 

while in more proximal positions, ovules arise.  In contrast, a modified axillary shoot is 

the fundamental ovule-bearing structure shared by Ginkgophytes, conifers (living and 

extinct), and gnetophytes.  In Ginkgo biloba the ultimate product of modification is a 

stalk bearing a pair of ovules, with each stalk borne in the axil of a leaf.  In conifers, 

ovule-bearing stalks of the axillary shoot were fused with sterile subtending scales into a 

cone-scale, which in turn was more or less fused with the bract that originally subtended 

the axillary shoot, leading to a branch-scale complex.  The branch-scale complex is the 

basic unit of the conifer cone and they are variously aggregated to produce the diversity 

of cones in modern conifers.  In gnetophytes, axillary shoots, with terminal ovules 

subtended by sterile scales, are condensed and aggregated into cones of varying degrees 

of laxness, i.e., more or less elongated and condensed.   

The starting point for these structures is thought to have been a lax axillary shoot 

similar to that of extinct Cordaitales (e.g., Florin, 1951; Clement-Westerhoff, 1988), and 

analyses of combined morphological and molecular data suggest that Ginkgo, conifers, 

and gnetophytes share a common ancestor with Cordaitales (Mathews et al., 2010), as do 

some analyses of morphological data alone (Doyle, 2006; Hilton & Bateman, 2006; 

Doyle, 2008). Inasmuch as ovules in Cordaitales were terminal (e.g., Florin, 1951; 

Stewart & Rothwell, 1993), these observations indicate that living gymnosperms may 

represent two basic trajectories in the evolution of reproductive architecture, one in which 
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the placental/ovule meristem pathways have been transferred onto the megasporophyll, as 

may have happened in cycads and angiosperms, and one in which these pathways have 

been maintained in an essentially terminal position.  This suggests that a synthetic 

understanding of the evolution of reproductive development may require at least three 

models, one each for angiosperms and cycads, and one for a gnetophyte, conifer or 

Gingko.  This should begin by characterization of the relevant gene families in 

gymnosperms, followed by documentation of expression patterns of their members. 

Intuitively, we might predict the greatest similarity between cycads (particularly Cycas) 

and angiosperms, with type I KNOX and CUC genes expressed along the margins of the 

megasporophyll.  Conversely, the cones of conifers and gnetophytes and the stalked 

ovules of Ginkgo represent compound structures for which the question is whether 

KNOX gene expression is associated with the tissues that immediately give rise to the 

ovules. 

 

4. Hermaphroditism 

Hermaphroditic axes occur in angiosperms, gnetophytes, and Bennettitales, and are 

occasionally observed in some conifers.  Nonetheless, dioecy and monoecy predominate 

in seed plants.  The two most recent models to explain the transition from dioecy and 

monoecy to hermaphroditism in angiosperms are the Mostly Male (MM) and the Out of 

Male/Female (OOM/F) models (Frohlich & Parker, 2000; Theissen et al., 2002; Theissen 

& Melzer, 2007).  The MM was based on a premise of ectopic identity expression rather 

than complete homeosis, specifically that ovule identity was expressed on the surface of a 

microsporophyll which subsequently became sterilized to enclose the ovule. Although 
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key aspects of this model have been definitively disproven (Vazquez-Lobo et al., 2007), 

it represents a critical first step in the process of integrating developmental genetic data 

into our understanding of angiosperm evolution. The OOM/F model makes a clear case 

for homeosis as the driving force underlying the evolution of hermaphroditism. Quite 

simply, a male strobilus could become hermaphroditic if B homolog expression was 

eliminated from the distal sporophylls or, alternatively, a female strobilus would become 

hermaphroditic if B homologs were ectopically expressed in proximal sporophylls 

(Theissen et al., 2002). Baum and Hileman expanded on this idea to produce a more 

detailed model for how such a shift in gene expression might have occurred in terms of 

transcriptional regulation (Baum & Hileman, 2006). 

 How can we determine whether the OOM/F model is accurate? Ideally, we would 

manipulate expression of homeotic B class homologs in gymnosperms to test whether 

such simple transformations are possible but, unfortunately, no extant gymnosperms are 

currently tractable for functional genetics. In lieu of such tests, we might consider the 

predictions of a homeotic identity program. Most notably, we would expect the 

occurrence of hermaphroditic teratologies, as are observed throughout angiosperms. In 

fact, this has been well documented: occasional bisexual strobili are observed throughout 

conifers, and also in Gnetum, most commonly represented by male cones that have distal 

sporophylls transformed to female identity (reviewed in Coulter & Chamberlain, 1917a; 

Flores-Renteria et al., 2011; Rudall et al., 2011). In these cases, the proximal lateral 

organs have fertile microsporophyll identity while the distal nodes have fertile ovule 

identity. Although it is yet to be decisively demonstrated, the expectation is that these 

transformations are the result of differential expression of homologs of B-class homeotic 
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genes. Other types of teratologies have been described in Ginkgo, where normally 

unisexual short shoots produce both male and female organs, albeit on separate strobili, 

and in other cases, chimeric leaves bear ectopic ovules. The former case could be 

explained by inconsistent expression of B gene homologs within the short shoot axillary 

meristem while the latter could result from imprecise delimitation of leaf boundaries 

within the short shoot meristem (Douglas et al., 2007). This would be analogous to 

mutants of Arabidopsis where perturbation of primordium positioning can result in 

chimeric organs (Levin & Meyerowitz, 1995; Wilkinson & Haughn, 1995), although in 

the case of Ginkgo it would be a chimera of leaf and axillary female strobilus. 

Homoplastic evolution of hermaphroditism also provides evidence that components of 

the homeotic program may be widely conserved. Perhaps the most notable examples of 

this are Welwitschia and some species of Ephedra, which express a cryptic bisexuality 

much like the moneocy of angiosperms (Endress, 1996). Furthermore, many extinct 

lineages exhibit forms of bisexuality, including representatives of the Bennettitales (Friis 

et al., 2011). Thus, consistent with the lability inherent in such a homeotic identity 

program, bisexuality appears to be homoplastic. 

 

IV. Understanding the origin of the flower 

 

The bisexual flower is a canonical angiosperm structure in which the carpels are 

subtended by whorls of microsporangia (in stamens) and sterile bracts (petals, sepals).  Is 

the flower derived from a branched (pseudanthial origin) or unbranched (euanthial origin) 

axis?  We believe that this question may not be especially critical given the high degree 
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of flexibility inherent in the genetic program that controls development of such 

differences. Simple shifts in the expression of lateral organ and/or meristem identity can 

rapidly convert branched to unbranched axes and vice versa. This provides a simpler 

explanation than complicated reduction series or axial condensation to derive the 

angiosperm flower. 

As noted by Boyce (2010): “Determinacy is the ancestral sporophyte condition, 

its suppression for indeterminate growth was an important early innovation, and 

resumption of determinacy has always been present for the differentiation of sporangia.” 

This point has been elegantly demonstrated by genetic studies in Physcomitrella that 

targeted loci involved in epigenetic remodeling of the genome. Deletion of the 

Physcomitrella Polycomb Repressive Complex 2 member CURLY LEAF (PpCLF) results 

in the activation of the sporophyte developmental program in the gametophytic stage of 

the life cycle (Okano et al., 2009). If these aberrant plants are maintained in culture, they 

form branched bodies with multicellular “stems” that are quite unlike what is observed in 

normal gametophyte branching. However, if PpCLF function is restored, the pseudo-

sporophyte will switch back to determinate development and produce a sporangium-like 

structure, albeit a sterile one due to the fact that the tissue is haploid. These findings 

underscore the idea that indeterminate development is what happens when sporangial 

identity is delayed, and further suggest a global switch for these transitions – epigenetic 

remodeling – that is conserved across land plants (Jarillo et al., 2009). 

So how is this developmental switch between indeterminacy and determinacy 

expressed in seed plants? As discussed in section III, many extant and fossil taxa produce 

lateral strobili that are ultimately determinate, although the axes vary in their degree of 
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elongation (Friis et al., 2011). In male strobili, microsporophyll identity tends to be 

expressed in the first order lateral organs to produce a simple axis (Fig. 3A, see 3B for an 

exception). By contrast, in female strobili, the expression of megasporophyll and/or 

megasporangium identity is often delayed by one or more orders of branching until after 

the production of subtending sterile organs, although simple unbranched female axes 

certainly do occur (Fig. 3C-F). This diversity of patterns is entirely in keeping with the 

homeotic nature of the phytomer.  Although the sporangium developmental program, 

whether male or female, is inherently determinate, the expression of that program is 

sometimes accelerated or delayed, which generates diversity in reproductive structures.  

 From a genetic perspective, determinacy in angiosperm flowers is established by 

the floral meristem identity gene LFY via activation of the C function gene AG, which 

later in development initiates a pathway that represses expression of the CZ gene WUS 

(reviewed in Ferrandiz et al., 2010). Furthermore, both suppression of axillary meristems 

in the flower and compression of internodal elongation appear to be a component of floral 

meristem identity, genetically established by LFY along with AP1 and other loci 

(Moyroud et al., 2009; Moyroud et al., 2010). To understand the implications for other 

seed plant structures, we need to determine how widely these functions are distributed.  

Gymnosperms have two types of LFY-like genes, termed LFY and NEEDLY (NLY) 

(Mouradov et al., 1998; Frohlich & Parker, 2000), that are broadly expressed in both 

male and female reproductive axes, including strobilus apical meristems and both sterile 

and fertile lateral structures (Mouradov et al., 1998; Dornelas & Rodriguez, 2005; 

Vazquez-Lobo et al., 2007). Thus, it is possible that LFY homologs commonly control 

degrees of branching and internodal length but, while more expression data will be 
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useful, ultimately functional data from gymnosperms would be required to definitively 

test this possibility. On the other hand, some floral meristem identity genes, most notably 

AP1, are angiosperm-specific (reviewed in Litt, 2007), raising the potential that certain 

components of the indeterminacy vs. determinacy switch did evolve in the common 

ancestor of angiosperms prior to their diversification. 

As to AG-like genes and WUS, the former have been found to be broadly 

expressed in the reproductive axes of several conifers, and species of Cycas, Gingko and 

Gnetum (Rutledge et al., 1998; Jager et al., 2003; Zhang et al., 2004; Englund et al., 

2011; Groth et al., 2011), and it does appear that WUS-like genes are expressed in male 

and female structures of Gnetum (Nardmann et al., 2009). In this context, it is interesting 

that another observed conifer teratology is the reversion of reproductive cones to 

vegetative identity, which results in indeterminacy of the axis (Rudall et al., 2011). The 

genetic basis of these mutant forms is unknown but could rely on either AG or LFY/NLY 

homologs. Regardless, their existence suggests that determinacy and reproductive 

identity go hand in hand for gymnosperms as well as angiosperms. Obviously, our 

understanding of the evolution of the AG and WUS gene lineages in gymnosperms is still 

limited and further experiments would be useful to track the expression of WUS-like 

genes during strobilus development. Even in angiosperms, the role of AG in repressing 

WUS is not immediate but delayed until after carpels have initiated (Lenhard et al., 2001; 

Lohmann et al., 2001), so shifts in the timing of this repression could result in axes of 

variable lengths. It is completely unknown whether the mechanism by which AG 

represses WUS is conserved across angiosperms, let alone gymnosperms (Table 2), but it 

would be very interesting to see whether variation in this module underlies variation in 
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reproductive axis length in other taxa.  For instance, such shifts might underlie the 

difference in the condensed cones of Welwitschia and Ephedra versus the elongated 

cones of Gnetum.   

 

V. Conclusions 

 

Over the last twenty years, several striking themes have emerged from phylogenetic 

studies. One of these is that homoplasy is ubiquitous (Wake 2009). Even complex 

morphological and physiological syndromes appear to have evolved independently (e.g., 

heteroarthrocarpy, Hall et al., 2011; C4 photosynthesis, Sinha & Kellogg, 1996; double 

fertilization,	
  Friedman, 1990; Carmichael & Friedman, 1996; succulence, Nyffeler et al., 

2008). Likewise, we have all been struck by previously unforeseen relationships between 

wildly disparate morphological forms (Bremer et al., 2009) – Rafflesiaceae and 

euphorbs? Nelumbo and Platanus? The examples go on. The underpinning of both these 

phenomena is the developmental genetic lability of plant development, whose modular 

nature facilitates evolutionary exceptionalism. By fully integrating a molecular genetic 

viewpoint into the study of seed plant reproductive evolution, we can gain new insights 

and identify more productive lines of research. In the development of the ovule, we 

recognize its meristematic nature and the likelihood that integuments can be added de 

novo. This frees us from the necessity of identifying a precursor for the outer integument 

of angiosperms and raises the possibility that the presence of multiple integument-like 

structures may well be homoplastic. Consideration of the carpel suggests that it is a 

complex lateral organ associated with a placental meristem that utilizes a PZ-like genetic 
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module. Our understanding of the homeotic basis of floral organ identity demonstrates 

that the apparently dramatic evolution of hermaphroditism was probably accomplished 

via undramatic, simple shifts in gene expression, likely multiple times independently. 

Lastly, the simple unbranched flower does not have to be explained with complex series 

of condensation and intermediates. Transitions between branched and unbranched axes 

can be achieved, again, through simple shifts in gene expression. We can recognize that 

such differences in branching patterns may evolve too rapidly to be phylogenetically 

informative. 

 The homoplasy of integument number and hermaphroditism on the one hand, and 

the lability of ovulate structural morphology and determinacy on the other, changes the 

traditional images that have guided the search for the sister group of angiosperms. For 

instance, given the lability of integument number, this precursor need not have a cupule 

that could be converted to an outer integument, or be a gymnosperm with multiple 

integuments.  Such insights should also guide how we consider character and character 

states for phylogenetic analyses.  In seed plants, where so much of the diversity needed to 

understand their evolution is extinct, character evolution will be understood best in 

synthetic analyses that combine molecular data for their statistical power with 

morphological data for the diversity of taxa that can be included. Obviously, more 

paleobotanical research is crucial since every new discovery has the potential to change 

the way we think about seed plant evolution, and improving our understanding of 

individual extinct taxa will empower the phylogenetic analyses.  Likewise, we 

desperately need to improve our understanding of reproductive developmental genetics in 

extant gymnosperms so that the insights gained thereby can inform our understanding of 
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character evolution. Functional tools are sadly lacking at this time, but we currently know 

so little that there are plenty of questions to pursue. Transcriptomic projects underway 

have the potential to substantially improve our understanding of gene lineage evolution 

and, hopefully, this can be paired with comparative gene expression studies. Ideally, we 

would produce a detailed atlas of gene expression patterns (e.g., of LFY/NLY, MADS, 

WUS) in reproductive axes across multiple gymnosperm lineages, beginning with 

investigation of the questions outlined in Table 2. However, just as gymnosperms resist 

functional analyses, they are also not the most tractable systems for in situ hybridization. 

This may indicate that other methods, such as laser microdissection, would be fruitful for 

such studies. Of course, there are also several major aspects of reproductive morphology, 

such as the transmitting tract and stigmatic surface, which have received little attention. 

Given that analogs of the stigma occur in both extinct and living gymnosperms (Takaso 

& Bouman, 1986; Endress, 1996; Friis et al., 2011), comparative studies could provide 

insight into whether the stigma in angiosperms simply represents a redeployment of a 

more broadly conserved seed plant program for pollen reception or, likewise, whether 

any gymnosperm reproductive tissues share process homology with the transmitting tract. 

Lastly, we believe it is critical to sample as many taxa as possible in order to achieve the 

most robust reconstruction of ancestral seed plant expression patterns. While some 

answers may remain beyond our grasp, recognizing the most constructive questions will 

allow considerable progress towards the goal of understanding the evolutionary processes 

that drove the most significant radiation in land plants. 
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Table 1: Arabidopsis Genes or Gene Families Discussed in the Text 

Arabidopsis Locus Gene Family Functions 

WUSCHEL (WUS) WOX homeodomain - Central zone identity in 

shoot apical meristems 

- Integument production in 

ovules 

SHOOTMERISTEMLESS 

(STM) 

 

KNOX homeodomain - Peripheral zone identity in 

shoot apical meristems 

- Maintained indeterminacy 

in complex leaves 

- Meristematic activity of the 

placenta 

HDZIPIII Class III 

homeodomain 

leucine zipper 

- Adaxial organ identity in 

lateral organs, incl. leaves, 

floral organs and 

integuments 

CUP SHAPED 

COTYLEDON (CUC) 

NAC domain - Separation of lateral 

primordia incl. leaves, 

leaflets and ovules 

CRABS CLAW (CRC) YABBY  - Aspects of carpel identity 

and abaxial identity  

INNER NOOUTER (INO) YABBY  - Abaxial identity of the outer 

integument 
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ABERRANT TESTA 

SHAPE (ATS) 

KANADI GARP-

domain  

- Abaxial identity of the inner 

integument 

AINTEGUMENTA (ANT) AP2/EREBP  - Growth and proliferation in 

all lateral organs, including 

leaves, floral organs and 

integuments 

LEAFY (LFY) LFY - Floral meristem identity, 

incl. control of phyllotaxy, 

floral organ identity and 

determinacy 

TERMINAL FLOWER1 

(TFL1) 

PEBP - Inflorescence identity, 

indeterminacy in meristems 

APETALA3 (AP3) 

PISTILLATA (PI) 

Type II MADS box - Petal and stamen identity 

AGAMOUS (AG) Type II MADS box - Carpel and ovule identity, 

floral meristem determinacy 

See text for relevant references. 
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Table 2: Major Outstanding Questions for Comparative Investigations of 

Reproductive Development 

1) Are WUS homologs expressed in ovules across the seed plants? 

2) How are YABBY genes expressed in gymnosperm integuments and 

megasporophylls and what do these patterns tell us about the evolution of the 

discrete CRC and INO functions in angiosperms? 

3) How conserved are KNOX gene expression patterns in the tissue giving rise to 

ovules across the seed plants? What about other components of the PZ module 

such as CUC genes and auxin trafficking? 

4) Are teratological bisexual gymnosperms associated with differential 

expression of B-class gene homologs? 

5) How conserved are genetic pathways controlling determinacy vs. 

indeterminacy (e.g., LFY, AG, TFL1-like genes) across seed plants? 
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Figure Legends 

Figure 1. Parts list for the Arabidopsis shoot. All above ground parts of the plant, 

except the hypocotyl and cotyledons, are made from the shoot apical meristem. 

Leaves are located at nodes with stem segments, or internodes, between them. 

The number of rosette leaves depends on ambient environmental conditions that 

influence time to flowering. Axillary meristems are made in the leaf axil—the 

junction of leaf and stem. Reprinted from Barton 2010 by permission of the 

author. 

 

Figure 2. A. Schematic of a meristem in longitudinal section. Stem cell activity is 

repressed by the secreted CLAVATA3 (CLV3) peptide (fushia), which acts to limit 

the size of the WUSCHEL (WUS) zone (pink). WUS promotes stem cell activity 

and positively regulates CLV3 activity, thus generating a feedback loop that 

stabilizes stem cell activity in the meristem. KNOX gene expression (yellow) 

marks the PZ of the meristem and interacts with WUS activity via the hormone 

cytokinin. The positions of new leaves (P0 and P1) are marked by peaks in auxin 

concentration (green). These initiating primordia are delimited from the meristem 

by the expression of leaf/meristem boundary genes (dark purple). Within 

developing leaves, YABBY and KANADI genes (blue) act on one surface to 

establish abaxial identity while the HDZIPIII and AS1 loci (red) act on the other to 

determine adaxial identity. Modified from Barton, 2010 and reprinted with 

permission of the author. B. The ABC model as it relates to Arabidopsis floral 

structure (reviewed in (Krizek & Fletcher, 2005). A+E determine sepal (se) 
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identity; A+B+E, petal (pe) identity; B+C+E, stamen (st) identity; and C+E, carpel 

(ca) identity. C. Schematic of one side of an Arabidopsis carpel in transverse 

section. The ovary walls express abaxial (light blue) and adaxial (red) identity 

genes. The medial meristematic ridge (mmr, yellow) is marked by KNOX 

expression as well was auxin peaks that also mark the eventual initiation of the 

ovule primordia, which are delimited by the same loci that separate primordia in 

the meristem (CUC, dark purple). The expression of other boundary genes (light 

purple) are involved in the differentiation of the replum (rep) and valve margins 

(specific features of Arabidopsis fruits). Modified from Ferrandiz et al., 2010 and 

reprinted by permission of the author. D. Schematic of a longitudinal section of 

an Arabidopsis ovule. The nucellus is marked by WUS expression (pink) and 

contains the megaspore mother cell (mmc). Both the outer (oi) and inner (ii) 

integuments express organ polarity genes but in distinct combinations. In the oi, 

abaxial identity is established by the YABBY gene INO along with several 

KANADI loci and adaxial identity involves the HDZIPIIII REV. In the ii, abaxial 

identity requires the KANADI locus ATS and adaxial identity appears to be 

patterned by multiple HDZIPIII loci (Kelley et al., 2009). 

 

Fig. 3. Schematics of different reproductive phytomers from across the seed 

plants. A. A simple phytomer from a male strobilus, common in many 

gymnosperms. The lateral organ has microsporophyll identity (open circle) and 

the axillary meristem is suppressed. B. A branched phytomer from the male axis 

of the caytonialean Kachchia, an example of a complex male strobilus, which is 
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rare among living gymnosperms. The first lateral organ is suppressed and the 

axillary meristem produces multiple microsporangia. C. The ovulate phytomer of 

a Cordaitalean. The first lateral organ is a bract. This subtends an active axillary 

meristem that produces several sterile scales followed by ovules (closed circles) 

with single integuments. The axillary meristem then terminates. D. The ovulate 

phytomer of Pinus. The first lateral organ is a bract, which represents the 

condensation of a shoot bearing several sterile scales, and which subtends an 

active axillary meristem that produces a subtending ovulate scale and two ovules 

each with one set of integuments (only one ovule shown). E. The ovulate 

phytomer of Gnetum. The first lateral organ is a bract whose axillary meristem 

produces several pairs of sterile scales or bracts, before terminating in an ovule 

with one pair of integuments. The most distal envelopes, subtending the ovule 

may in fact be the products of the ovule meristem itself. F. The ovulate phytomer 

of Ginkgo. Female short shoots produce lateral vegetative leaves with axillary 

meristems that give rise to a stalk with two terminal ovules, each with one set of 

integuments. 
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