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Interspecies Interactions Stimulate Diversification of the Streptomyces
coelicolor Secreted Metabolome

Matthew F. Traxler,a Jeramie D. Watrous,b,c,d Theodore Alexandrov,d,e Pieter C. Dorrestein,b,c,d,f Roberto Koltera

Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USAa; Department of Pharmacologyb and Department of Chemistry
and Biochemistry,c University of California at San Diego, La Jolla, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San
Diego, La Jolla, California, USAd; Center for Industrial Mathematics, University of Bremen, Bremen, Germanye; Center for Marine Biotechnology and Biomedicine, Scripps
Institution of Oceanography, University of California at San Diego, La Jolla, California, USAf

ABSTRACT Soils host diverse microbial communities that include filamentous actinobacteria (actinomycetes). These bacteria
have been a rich source of useful metabolites, including antimicrobials, antifungals, anticancer agents, siderophores, and immu-
nosuppressants. While humans have long exploited these compounds for therapeutic purposes, the role these natural products
may play in mediating interactions between actinomycetes has been difficult to ascertain. As an initial step toward understand-
ing these chemical interactions at a systems level, we employed the emerging techniques of nanospray desorption electrospray
ionization (NanoDESI) and matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) imaging mass spectrome-
try to gain a global chemical view of the model bacterium Streptomyces coelicolor interacting with five other actinomycetes. In
each interaction, the majority of secreted compounds associated with S. coelicolor colonies were unique, suggesting an idiosyn-
cratic response from S. coelicolor. Spectral networking revealed a family of unknown compounds produced by S. coelicolor dur-
ing several interactions. These compounds constitute an extended suite of at least 12 different desferrioxamines with acyl side
chains of various lengths; their production was triggered by siderophores made by neighboring strains. Taken together, these
results illustrate that chemical interactions between actinomycete bacteria exhibit high complexity and specificity and can drive
differential secondary metabolite production.

IMPORTANCE Actinomycetes, filamentous actinobacteria from the soil, are the deepest natural source of useful medicinal com-
pounds, including antibiotics, antifungals, and anticancer agents. There is great interest in developing new strategies that in-
crease the diversity of metabolites secreted by actinomycetes in the laboratory. Here we used several metabolomic approaches to
examine the chemicals made by these bacteria when grown in pairwise coculture. We found that these interspecies interactions
stimulated production of numerous chemical compounds that were not made when they grew alone. Among these compounds
were at least 12 different versions of a molecule called desferrioxamine, a siderophore used by the bacteria to gather iron. Many
other compounds of unknown identity were also observed, and the pattern of compound production varied greatly among the
interaction sets. These findings suggest that chemical interactions between actinomycetes are surprisingly complex and that co-
culture may be a promising strategy for finding new molecules from actinomycetes.
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Actinomycetes remain the single richest source of medically
useful natural products, including antibiotics, antifungals,

anthelminthics, antitumor agents, and siderophores (1–4). Most
actinomycetes dedicate a substantial fraction of their genomes to
the production of such natural products (~4.5% in the case of
Streptomyces coelicolor) (3, 5). Yet it is clear that the overwhelming
majority of this biosynthetic potential is not expressed under stan-
dard laboratory conditions (3, 5, 6). Thus, there is great interest in
developing new strategies that increase the number and diversity
of the metabolites secreted by actinomycetes in the laboratory.

Despite the clinical usefulness of these natural products, the
roles that they play for the producing bacterium remain largely
unknown (7). Their secreted nature has long prompted the idea
that they may mediate diverse interactions between bacteria, rang-

ing from chemical warfare to potential roles in signaling (5, 8, 9).
This idea raises the possibility that coculture of actinomycetes may
offer an avenue for discovery of compounds not produced in
monocultures. However, systematically evaluating this hypothesis
using traditional chemical techniques has been technically chal-
lenging.

Cocultivating different species of soil bacteria results in dra-
matic physiological changes relative to results when the bacteria
are grown as pure cultures. Ueda et al. found that cocultivation of
actinomycetes frequently induced morphological development
and antibiotic production (10). These changes were caused by the
production of the siderophore desferrioxamine by the strain stim-
ulating antibiotic production (11). We recently found that the
converse of this phenomenon is also at play in actinomycete in-
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teractions, i.e., that production of a siderophore that cannot be
used by one strain can lead to impaired development due to a
decrease in local iron availability (12, 13). Another recent work
that mapped pairwise interactions among a set of 64 Streptomyces
isolates concluded that outcomes of such interactions are mostly
determined by metabolite production (14). Several other studies
have examined interactions between streptomycetes and the com-
mon soil bacterium Bacillus subtilis (15–22). These studies have
documented a number of different interaction modalities, includ-
ing inhibition of streptomycete development (15, 18–20, 22), deg-
radation of signaling compounds via secreted enzyme activity (15,
18), and alteration of streptomycete natural product biosynthesis
(16, 17, 21, 22). Given that each actinomycete is probably capable
of producing dozens of secreted metabolites and that interspecies
interactions may influence production of these molecules, we
sought an experimental framework that would allow us to system-
atically examine changes in the secreted metabolome during mul-
tiple pairwise interspecies interactions.

The nascent mass spectrometry (MS) techniques of nanospray
desorption electrospray ionization (NanoDESI) and matrix-
assisted laser desorption ionization–time of flight (MALDI-TOF)
imaging have recently opened new ways of examining the ex-
change of secondary metabolites between interacting bacteria in
situ (21–24). In the work described here, we used these tools to
examine the changes in the secreted metabolome of the well-
studied actinomycete S. coelicolor as it grew near other actinomy-
cetes. We studied five such interactions, and in each case we found
many metabolites that were not produced by S. coelicolor when
grown as a pure culture. We also observed that the sets of metab-
olites associated with S. coelicolor colonies were highly variable
depending on the interacting partner, suggesting a unique re-
sponse in each case. Several interactions triggered the production
of an extended family of acylated desferrioxamines, never before
observed from S. coelicolor. Altogether, the results presented here
indicate that interspecies interactions can trigger broad, differen-
tial production of secreted metabolites by a single streptomycete.

RESULTS
Experimental system for studying actinomycete interactions.
S. coelicolor is perhaps the best-studied actinomycete. Many fea-
tures of its genome, secondary metabolism, growth, development,
and stress response have been characterized (25–28). Some
growth media, such as R2YE, stimulate rapid multicellular devel-
opment of S. coelicolor and production of a range of secondary
metabolites, including the pigmented antibiotics actinorhodin
and the prodiginines (29). Other growth media, including ISP2
(International Streptomyces Project medium 2), support the
growth of S. coelicolor, but robust development and secondary
metabolite production occur only after prolonged incubation
(i.e., �10 days). To look for interactions that stimulated such
metabolite biosynthesis by S. coelicolor on ISP2 medium, we spot-
ted 1 �l of an S. coelicolor spore suspension 5 mm from 20 similar
inocula of other actinomycetes. Several actinomycetes triggered
production of the red antibiotic prodiginine in S. coelicolor, in
some cases as early as 3 days. For example, see the interaction with
Amycolatopsis sp. AA4 in Fig. 1A. Of these 20 interactions, we
focused on 5 (all shown in Fig. 1A) that provoked different tem-
poral and phenotypic responses in S. coelicolor ranging from no
stimulation of pigmentation or development (Streptomyces sp.
E14 interaction) to partial or strong pigmentation (Streptomyces

sp. SPB74 and Amycolatopsis sp. AA4 interactions, respectively)
and both pigmentation and development (Streptomyces albus
J1074 and Streptomyces viridochromogenes DSM40736 interac-
tions). Given that developmental and natural product biosyn-
thetic regulatory cascades are linked in S. coelicolor, we hypothe-
sized that these different phenotypes expressed by S. coelicolor
might be indicative of differences in the pattern of small molecules
produced.

To test this hypothesis, we employed two metabolomic ap-
proaches, nanospray desorption electrospray ionization (Nano-
DESI) and microbial matrix-assisted laser desorption ionization–
time of flight (MALDI-TOF) imaging mass spectrometry (IMS),
to examine the chemical response of S. coelicolor in each of these
interactions. Importantly, both techniques allow for sampling di-
rectly from colonies grown on an agar substrate (21, 23). Nano-
DESI MS is a recently developed methodology in which the sol-
vent is delivered to the sample surface via a fused silica capillary
(21). A second capillary draws the solvent (now containing dis-
solved analyte) off the sample surface and delivers it directly into
the mass spectrometer such that a small liquid bridge (~1 �l) is
constantly maintained on the sample surface between the two cap-
illary ends. The analyte desorbed from the sample surface is then
subjected to data-dependent tandem MS analysis, ultimately
yielding individual tandem mass spectra for the hundreds to thou-
sands of ions detectable within the sample. We thus used Nano-
DESI MS and MALDI-TOF IMS to analyze the colonies of the
interactions shown in Fig. 1A. The general experimental and data
analysis work flow is diagrammed in Fig. 1B. In every case, we
sampled both the S. coelicolor colony and the interacting colony,
which we refer to as the initiator colony, at days three, five, and
seven. We also sampled control colonies of S. coelicolor that were
grown in isolation on the same medium and at similar time points.
All samples were prepared and analyzed in duplicate. The thou-
sands of MS2 spectra from all time points were used to build a
spectral network that allowed visualization of chemical species in
both structurally familial and temporal contexts based on statisti-
cally significant similarities between their tandem MS fragmenta-
tion patterns (21, 30).

While NanoDESI affords unparalleled sampling, microbial
MALDI-TOF IMS allows high-resolution mapping of ions within
a sample (23). As a complement to the NanoDESI spectral net-
works, we also collected IMS data sets for each interaction and
S. coelicolor control colonies at day five. The combined output
from these complementary techniques provided a uniquely rich
data set for simultaneously assessing the response of a single or-
ganism in multiple interactions at a system-wide scale and for
prospecting for novel secondary metabolites.

Interspecies interactions cause differential secondary me-
tabolite production in S. coelicolor. To broadly characterize the
chemical response of S. coelicolor in these interactions, we consid-
ered these data in terms of chemical inputs from the initiator
colonies and chemical output from S. coelicolor. In our work flow,
we chose to represent the MS2 spectra visually via spectral net-
working, which allows each MS2 spectrum within the entire ex-
perimental data set to be compared in a pairwise manner to all
other MS2 spectra and scored based on the statistical similarity
between the two fragmentation patterns. When the results of this
analysis are imported into two-dimensional (2D) visualization
software (such as Cytoscape), this allows similar compounds to be
grouped together in 2D space separate from other compounds
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exhibiting different fragmentation patterns. In this visualization,
individual compounds present in the samples are represented as
single nodes (circles) within the spectral network (30), with each
node containing one or many MS2 spectra, as is the case when
multiple MS2 spectra are judged to be identical by the spectral

scoring algorithms (31). When the MS2 spectra for two nodes
meet a set of criteria designed to assess structural relatedness, they
are connected with an edge (line) (21, 31). Applying this algo-
rithm to the pooled data sets yielded an aggregated parent net-
work, which was then filtered to maximize interpretability. This

FIG 1 S. coelicolor exhibits a variety of phenotypes in interactions with other actinomycetes. (A) Micrographs of colonies of S. coelicolor grown alone (first
column) and near colonies of other actinomycetes. A range of S. coelicolor phenotypes, including differences in pigment production and multicellular develop-
ment, is visible in interacting colonies over time. The labels M (S. coelicolor M145), A (Amycolatopsis sp. AA4), E (Streptomyces sp. E14), S (Streptomyces sp.
SPB74), and V (S. viridochromogenes DSM 40736) are used throughout. (B) Methodological work flow. Each interaction was investigated using NanoDESI and
MALDI-TOF imaging mass spectrometry. The resulting spectral networks and ion distributions form a comprehensive data set for analysis of these microbial
interactions.
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entailed removing nodes associated with several controls, includ-
ing the solvent alone, agar medium with no colonies, and S. coeli-
color colonies grown alone at 3, 5, and 7 days. Finally, nodes were
retained only if constituent spectra were found in both runs of
data collection from duplicate samples, giving a refined network
composed of nodes representing ions associated with the initiator
colonies and S. coelicolor colonies during the interactions (Fig. 2).

The resulting network contains 629 total nodes. Of these,

227 nodes were associated exclusively
with S. coelicolor colonies. There were
278 nodes associated exclusively with the
various initiator colonies. Nineteen nodes
were found only in both S. coelicolor
and a given initiator at the same time
(common), and 105 nodes showed vari-
able behavior, i.e., they were found asso-
ciated with S. coelicolor and/or an initiator
at different times. Only 23 compounds
were associated exclusively with S. coeli-
color control colonies, and 43 compounds
were common to interacting and con-
trol S. coelicolor colonies (see Fig. S25
in the supplementary appendix available
at http://gasp.med.harvard.edu/journals
/traxler_2013_SI_nanodesi.pdf). At a
broad level, the spectral network shows
that these interactions triggered produc-
tion of many compounds by S. coelicolor
which were not observed when S. coeli-
color was grown in isolation.

To see how similar the response of
S. coelicolor was between interactions, we
constructed Venn diagrams encompass-
ing all S. coelicolor-associated nodes for all
five interactions for each day. The dia-
gram for day three is shown in Fig. 3A.
This analysis highlighted an important
trend, namely that the majority of the
nodes fall into the outer, or “unique,”
zones of the diagram, implying that they
are interaction specific. For day three, the
total number of unique nodes was 94, ver-
sus 29 that fell into the “shared” interior
sections of the diagram. This trend was
evident at every time point (Fig. 3B). We
also note that while some interactions
triggered production of relatively few
compounds at a given time point (i.e.,
S. albus and Streptomyces sp. SPB74 at day
3), each interaction, with the exception of
the S. albus interaction, underwent a time
when the majority of its stimulated com-
pounds were unique (see Venn analyses
for days 5 and 7 in the supplemental ap-
pendix at the above URL). Taken to-
gether, these results suggest that the
chemical response of S. coelicolor was
highly idiosyncratic depending on the in-
teracting strain and the time of sampling.

When we interrogated the network for
known compounds in the S. coelicolor chemical response, we
found subnetworks representing at least four major compound
families: the antibiotics actinorhodin and prodiginine and the sid-
erophores coelichelin and desferrioxamines B and E (Fig. 2). To
examine the pattern of production of each of these molecular
families, we considered the percentage of the total number of
nodes for each family active in each interaction at each time point
(heat map in Fig. 3C). For example, the prodiginine family of

FIG 2 Aggregated and refined spectral network of metabolites observed with NanoDESI during
actinomycete interactions. The network is composed of nodes representing ions associated with S. coeli-
color colonies grown near another actinomycete (ions found in S. coelicolor colonies grown alone were
removed) and ions from initiator colonies. Nodes associated only with S. coelicolor at any time are blue.
Nodes associated only with initiators are red. Nodes found only in both an initiator and S. coelicolor at
the same time are yellow. Gray indicates nodes with variable behavior (i.e., found in multiple contexts).
Representative structures of identified metabolites are shown.

Traxler et al.

4 ® mbio.asm.org July/August 2013 Volume 4 Issue 4 e00459-13

https://email.med.harvard.edu/OWA/redir.aspx?C=SGXDPE5SNE-NPrBrjyZ9-OI3j7w7W9BI3HphIQe1ArRm_MwEV22dl7EqHH4M4Z6jBzfRhhvmNS8.&URL=http%3a%2f%2fgasp.med.harvard.edu%2fjournals%2ftraxler_2013_SI_nanodesi.pdf
https://email.med.harvard.edu/OWA/redir.aspx?C=SGXDPE5SNE-NPrBrjyZ9-OI3j7w7W9BI3HphIQe1ArRm_MwEV22dl7EqHH4M4Z6jBzfRhhvmNS8.&URL=http%3a%2f%2fgasp.med.harvard.edu%2fjournals%2ftraxler_2013_SI_nanodesi.pdf
mbio.asm.org


antibiotics is represented in the network as a subnetwork consist-
ing of eight total nodes observed across all 5 interactions and all 3
time points. Six of these eight nodes were observed when S. coeli-
color was interacting with Amycolatopsis sp. AA4 at day seven,
representing robust stimulation of this compound family.

Production of each of these four compound families varied
according to the interaction and sampling time. For example,
Streptomyces sp. E14 did not stimulate prodiginine or actino-
rhodin production (as expected, given that no S. coelicolor pig-
mentation is evident in this interaction), while Amycolatopsis sp.
AA4, Streptomyces sp. SPB74, S. viridochromogenes, and S. albus
all stimulated production of both pigmented antibiotics, al-
though the timing of production varied depending on the initia-
tor. The genomes of all six strains examined in these interactions
have been sequenced and analyzed for their secondary metabolic

potential using the antiSMASH platform
(32). The results of this analysis (provided
in Table S5 in the supplemental appendix
at http://gasp.med.harvard.edu/journals
/traxler_2013_SI_nanodesi.pdf) showed
that none of the initiator strains contains
genes for production of either actino-
rhodin or prodiginines, and accordingly,
all compounds of these families associ-
ated with these interactions are presumed
to originate with S. coelicolor. As further
validation of our overall approach, we de-
termined the spatial distribution of the
prodiginines within the interacting colo-
nies using IMS (see Fig. S1 in the supple-
mental appendix at the above URL).
Prodiginine distribution was found to
match exactly the pattern expected given
the visibility of red pigment and the activ-
ity of nodes within the prodiginine sub-
network.

Coelichelin was found sporadically
across the interactions, with the exception
of the S. viridochromogenes interaction,
where it was observed at every time point.
BLAST analysis of the S. viridochromo-
genes genome clearly shows that it too
possesses the genes for coelichelin biosyn-
thesis. Thus, observation of coelichelin in
this interaction may reflect production by
either or both of the strains. Desferriox-
amine B or E was found in every interac-
tion and at every time point with the ex-
ception of Streptomyces sp. SPB74 at day
three. Genes for desferrioxamine produc-
tion are widely distributed among actino-
mycetes, with Streptomyces sp. SPB74,
S. viridochromogenes, and S. albus all con-
taining canonical operons for biosynthe-
sis of this siderophore. However, Amyco-
latopsis sp. AA4 and Streptomyces sp. E14
do not have desferrioxamine synthesis
operons. Thus, in the Amycolatopsis sp.
AA4 and Streptomyces sp. E14 interac-
tions, the observed desferrioxamines

likely originated from S. coelicolor, while either or both of the
strains may be responsible for its production in the Streptomyces
sp. SPB74, S. viridochromogenes, and S. albus interactions. The
common detection of siderophores in these interactions suggests
that competition for iron may be stringent in interactions between
actinomycetes, a notion further underscored by our findings de-
tailed below and previously observed under other interaction con-
ditions (13).

Extended family of acyl-desferrioxamines from S. coelicolor.
The spectral network in Fig. 2 contains many nodes of unknown
identity associated with S. coelicolor colonies. A majority of these
unknown nodes fall into four major subnetworks, highlighted in
Fig. 4A. One of these subnetworks (a1) was indirectly connected to
the node representing desferrioxamine B, leading us to consider
that these compounds might be modified versions of desferriox-

FIG 3 Global analysis of metabolites observed with NanoDESI. (A) Venn analysis of nodes associated
with interacting S. coelicolor colonies on day 3. Each ellipse contains nodes found in the indicated
interaction. The majority of detected ions fall into the outer zones of the diagram, indicating that each
interaction is more unique than it is similar to other interactions. (B) Numbers of unique and shared
nodes found at each time point. For each day, the numbers of nodes found only in single interactions
were summed to give the total number of unique nodes. Nodes that were found in more than one
interaction were summed to find the total number of shared nodes. The number of unique nodes
exceeds the number of shared nodes at every time point, suggesting that the response of S. coelicolor is
different depending on the interaction. (C) Patterns of known compound production. Each compound
family is observed as a subset of nodes within the larger network in Fig. 2. Heat map colors indicate the
proportion of active nodes in each interaction. For example, 1.0 indicates that all the nodes associated
with a given compound family are active. Three, 5, or 7 represents the sampling time in days. Numbers
beneath compound names indicate number of nodes associated with those compounds in Fig. 2.
Interactions are labeled as indicated in Fig. 1A. This analysis includes nodes associated with initiator
colonies.
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amine. Confirming this possibility, we found that the MS2
spectra of four of the nodes in this subnetwork, representing
compounds with m/z values of 743, 729, 687, and 659, matched
exactly the MS2 spectra of several recently characterized acyl-
desferrioxamines (33), including promicroferrioxamine (24).
These molecules contain the core desferrioxamine siderophore
structure (structure 1 in Fig. 4B) with a terminal R group com-
posed of an acyl chain with an anteiso-methyl group (structures 3
to 6 in Fig. 4B). The fragmentation patterns for these known acyl-
desferrioxamines provided the basis for annotation of more mol-
ecules in these subnetworks, ultimately showing that S. coelicolor
made at least 12 analogs of the acyl-desferrioxamines, with ap-
pendages ranging from C7 to C17 fatty acids (summarized in Ta-
ble S1 at http://gasp.med.harvard.edu/journals/traxler_2013_SI
_nanodesi.pdf). We also observed a node with an m/z of 727 that
corresponds to a previously described version of promicrodesfer-
rioxamine with a nonhydroxylated central hydroxamate moiety
(structure 2 in Fig. 4B).

Throughout the entire network, the nodes associated with
these acyl-desferrioxamines total �90 and thus account for ~40%
of the total response of S. coelicolor observable in the spectral net-
work. Of the four major subnetworks circled in Fig. 4A, sub-
networks a1 and a2 share broad redundancy in terms of the masses
of their constituent nodes, although the discrete clustering of
subnetwork a2 may indicate an unknown structural feature that
sets these versions apart. Subnetwork a3 encompasses larger
molecules that include versions of the C12 and C13 acyl-

desferrioxamines with an unknown addition of ~118 Da (see Fig.
S22 and S23 at the above URL). Finally, based on high-resolution
masses, subnetwork a4 likely contains sodiated and potassiated
adducts of the acyl-desferrioxamines (see Fig. S3 at the above
URL). These findings show that S. coelicolor is capable of making
an extensive repertoire of siderophores in the presence of other
actinomycetes.

Stimulation of acyl-desferrioxamine production in interspe-
cies interactions. Having deduced the identity of a key compo-
nent of the S. coelicolor chemical response, we returned to the
spectral network and IMS data to further examine the temporal
and spatial pattern of acyl-desferrioxamine production across the
five interactions. When the heat map analysis presented in Fig. 3C
was extended to include 94 nodes representing the acyl-
desferrioxamines, a clear pattern of production was apparent;
namely, the Amycolatopsis sp. AA4 and Streptomyces sp. E14 inter-
actions triggered robust acyl-desferrioxamine synthesis even at
day 3 (Fig. 5A). In the case of the Streptomyces sp. E14 interaction,
these molecules continued to be detected throughout the time
course. In contrast, in the Amycolatopsis sp. AA4 interaction, the
number of different acyl-desferrioxamine nodes was diminished
on days five and seven, perhaps indicating uptake by the growing
colony. Acyl-desferrioxamine production was observed starting at
day 5 for the Streptomyces sp. SPB74 interaction and at day 7 for
the S. viridochromogenes and S. albus interactions. These trends
can be seen on a finer scale by examining the pattern of activity in
different acyl-desferrioxamine subclusters within the spectral net-

FIG 4 Visualization of acyl-desferrioxamine (acyl-DFO) subnetworks and desferrioxamine structures. (A) Acyl-DFOs form four major subnetworks (num-
bered a1 to a4) within the larger spectral network. Subnetwork a1, circled in black, is magnified in Fig. 5. Subnetworks a2 to a4 are shown in Fig. S2 and S3 at
http://gasp.med.harvard.edu/journals/traxler_2013_SI_nanodesi.pdf. (B) Structure 1 at the top constitutes the core desferrioxamine structure, while structure 2
lacks a complete central hydroxamate moiety. Structures 3 to 6 are acyl appendages from known acyl-desferrioxamines (11, 50). MS2 fragmentation patterns and
m/z values from molecules bearing 3 to 6 match MS2 fragmentation patterns and m/z values found here to be made by S. coelicolor. The m/z values associated with
each structure are 743 (structure 3), 729 (structure 4), 687 (structure 5), and 659 (structure 6).
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FIG 5 Patterns of acyl-desferrioxamine production in interspecies interactions. (A) Heat map of acyl-desferrioxamine production. Analysis parameters are
identical to those in Fig. 3C. (B) Subnetworks 1 and 2 contain the majority of acyl-desferrioxamines verified by MS2 fragmentation. Fine-scale analysis of
subnetwork 1 is shown, illustrating differential acyl-desferrioxamine production in various interactions over time. Note the proximity of subnetwork 1 to
desferrioxamine B (DFO B). Subnetworks 3 and 4 contain larger versions of DFOs and sodium adducts, respectively (see Fig. S3 at http://gasp.med.harvard.edu
/journals/traxler_2013_SI_nanodesi.pdf). (C) Desferrioxamines are observable using IMS at day 5. m/z 561 and 601 correspond to desferrioxamines B and E,
respectively. m/z 701 to 785 are representative acyl-desferrioxamines. Note the production of acyl-desferrioxamines by S. coelicolor in interactions where initiator
strains do not make desferrioxamines B and/or E. Each IMS signal is scaled as a single color heat map; brighter color indicates higher signal intensity, and darker
indicates lower signal intensity. (D) Acyl-desferrioxamines diffuse away from S. coelicolor colonies in three dimensions. The outermost to innermost layers
(isosurfaces) correspond to 0.8, 0.88, and 0.95% ion intensity.
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work, including subnetwork a1, shown in Fig. 5B. Activity in sub-
networks a2 to -4 also mirrors this pattern (see the supplemental
appendix at http://gasp.med.harvard.edu/journals/traxler_2013
_SI_nanodesi.pdf).

We also examined the distribution of acyl-desferrioxamine
production using IMS at day 5 (Fig. 5C). To serve as an internal
control for the IMS experiments, an additional S. coelicolor colony
was spotted 1 cm away from the S. coelicolor colony that was di-
rectly adjacent to the initiator colony. A subset of the acyl-
desferrioxamines with m/z values ranging from 701 to 785 was
readily detectable using this technique. Consistent with the activ-
ity within the NanoDESI spectral network, we saw production of
the acyl-desferrioxamines in the Amycolatopsis sp. AA4, Strepto-
myces sp. E14, and Streptomyces sp. SPB74 interactions. Little to no
acyl-desferrioxamine production was seen in the S. viridochromo-
genes and S. albus interactions; however, desferrioxamine E (m/z
601) was produced by both of the initiator strains. S. albus pro-
duced a large amount of deferrioxamine B as well (m/z 561). The
near colonies in the Amycolatopsis sp. AA4 and Streptomyces sp.
E14 interactions showed the most acyl-desferrioxamine produc-
tion, with molecules even being detected beyond the border of the
colony in several cases in the Amycolatopsis sp. AA4 interaction.
To further examine the distribution of the acyl-desferrioxamines,
we used a newly developed three-dimensional (3D) MALDI-TOF
IMS methodology (34) (Fig. 5D). The resulting 3D renderings
show that the representative acyl-desferrioxamines at m/z 743 and
757 were distributed beyond the edge of the colony not only on the
agar surface but below the producing colony as well. Overall, these
data imply that while the temporality and amount of acyl-
desferrioxamine production varied among the interactions, all of
the interactions eventually led to competition for iron. Moreover,
the acyl-desferrioxamines were especially abundant in the inter-
actions with the two strains that likely utilize siderophores other
than desferrioxamine for iron acquisition (i.e., Amycolatopsis sp.
AA4 and Streptomyces sp. E14).

Siderophores from other strains trigger acyl-desferriox-
amine production in S. coelicolor. The apparent competition for
iron induced in these interactions prompts the hypothesis that
siderophores from initiator strains might locally decrease the iron
available to S. coelicolor and thus stimulate acyl-desferrioxamine
synthesis. Our previous work with Amycolatopsis sp. AA4 showed
that it makes a unique siderophore, amychelin, which cannot be
used by S. coelicolor (12, 13). Several amychelin adducts were ob-
served in the spectral network as a subnetwork associated with the
Amycolatopsis sp. AA4 interaction (Fig. 6A, listed in Table S3 at
http://gasp.med.harvard.edu/journals/traxler_2013_SI_nanodesi
.pdf). Amycolatopsis sp. AA4 strains with mutations in the amcG
locus are unable to make amychelin (13). To determine if amy-
chelin might play a role in activating acyl-desferrioxamine synthe-
sis in S. coelicolor, we grew a colony of the Amycolatopsis sp. AA4
�amcG strain adjacent to S. coelicolor and examined molecule
production using IMS. Production of four representative ions
from the acyl-desferrioxamine family are shown in Fig. 6B in in-
teractions with both wild-type Amycolatopsis sp. AA4 and the
�amcG strain. Much less acyl-desferrioxamine, both in area and
in abundance, was produced by S. coelicolor in the interaction with
the �amcG strain than in the wild-type Amycolatopsis sp. AA4
interaction. To further examine if iron starvation alone could trig-
ger production of the acyl-desferrioxamines, we tested the ability
of the iron chelator 2,2=-dipyridyl to stimulate production of these

molecules (see Fig. S26 in the supplementary appendix at the
above URL). Indeed, we found that when 2,2=-dipyridyl was in-
cluded at 200 �M, acyl-desferrioxamines were produced. These
results confirm that iron competition caused by xenosiderophores
can lead to induction of acyl-desferrioxamine biosynthesis in
S. coelicolor and that iron starvation alone is sufficient to trigger
production of these siderophores.

DISCUSSION

In natural environments, such as the soil, bacteria live surrounded
by a multitude of other organisms, including other bacteria. Acti-
nomycetes, whose genomes contain numerous gene clusters for
making complex secreted metabolites, have clearly evolved many
and diverse chemical means to affect other nearby residents of the
soil (3, 5). Humans have long been the beneficiaries of this evolu-
tionary process, since the majority of natural products used clin-
ically originate with actinomycete bacteria (1, 2). However, how
actinomycetes deploy their arsenals of secondary metabolites in
the presence of other species has remained largely mysterious.

In this work, we used two mass spectrometry techniques,
NanoDESI and MALDI-TOF imaging, to profile the chemical
output from the actinomycete S. coelicolor in interactions with five
other species of actinomycetes. Importantly, these complemen-
tary techniques allowed interrogation of the secreted metabolites
directly from the bacterial colonies. The resulting data sets com-
prise the most comprehensive chemical view of a related set of
microbial interactions to date. The spectral network yielded by
our analyses includes some 629 compounds. Importantly, many
of these molecules are of unknown identity. Surprisingly, we
found that the set of compounds associated with S. coelicolor
colonies varied dramatically from interaction to interaction,
suggesting a largely specific response in each case (Fig. 3). Several
interactions triggered production of an extended family of
acyl-desferrioxamine siderophores, never before observed from
S. coelicolor (Fig. 4). This result illustrates that interspecies inter-
actions can lead to unexpected biosynthetic shifts in secondary
metabolic pathways. Together, these findings indicate that during
interspecies interactions, the chemical landscape exploited by ac-
tinomycetes is both vast and dynamic. Moreover, the great num-
ber of unidentified metabolites present in these data sets hints that
interspecies interactions may represent a new path to accessing the
rich chemical diversity encoded in actinomycete genomes.

S. coelicolor produces several compounds representative of
therapeutically important chemical families. These include des-
ferrioxamines (used to treat iron toxicity [35]), prodiginines (cur-
rently being investigated as immunosuppressant anticancer
agents [36, 37]), and the calcium-dependent antibiotic (similar to
the drug daptomycin [38]). Here, we observed a large number
(227) of compounds differentially associated with S. coelicolor col-
onies across the five interactions. Of these, 50% (114) are readily
classified as related to known S. coelicolor metabolites, including
the prodiginines, actinorhodins, coelichelins, and the newly ob-
served acyl-desferrioxamines. S. coelicolor has many other gene
clusters for uncharacterized metabolites (25), some of which likely
account for the many unknown compounds we detected. It is also
possible that some of the compounds found exclusively associated
with S. coelicolor colonies may have had precursors made by the
initiator colonies that were later modified directly or indirectly by
S. coelicolor. NanoDESI and IMS analyses of S. coelicolor strains
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with mutations in various gene clusters will be required to posi-
tively link the many unidentified compounds observed here with
specific genes. As such, our current work sets the stage and pro-
vides a solid foundation for future studies to characterize the cur-
rently cryptic secondary metabolome of this streptomycete and
many others like it.

The family of desferrioxamines described here has fatty acid
appendages ranging from 7 to 17 carbon units. While several acyl-
desferrioxamine versions have been found from at least two bac-
terial species (24, 33), the range of the acyl-desferrioxamines pro-
duced by S. coelicolor is unprecedented. Interestingly, both the

promicroferrioxamines and the other known examples of acyl-
desferrioxamines were isolated from actinobacteria sampled from
intertidal habitats, initially suggesting that desferrioxamine acyla-
tion might be an adaptation to life in marine environments (24,
33). Further reinforcing this notion, marine bacteria from diverse
genera are known to produce suites of acylated siderophores (39),
including the marinobactins (40), aquachelins (40), amphibactins
(41), ochrobactins (42), and synechobactins (43). While a few
other acylated siderophores are known from terrestrial bacteria
(44–46), the finding that S. coelicolor makes a very large suite of
acylated desferrioxamines strongly suggests that the advantages

FIG 6 Acyl-desferrioxamine production by S. coelicolor is stimulated by a siderophore from a nearby actinomycete. (A) The actinomycete Amycolatopsis sp. AA4
produces the siderophore amychelin. Sodiated and potassiated adducts of amychelin are visible as an Amycolatopsis sp. AA4-associated subnetwork. (B) Five days
IMS of S. coelicolor grown near wild-type Amycolatopsis sp. AA4 and a mutant lacking the gene amcG, which does not produce amychelin. Ion abundance is
visualized as a heat map. When grown near the �amcG strain, which does not make amychelin, S. coelicolor produces much less of the acyl-desferrioxamines.
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associated with modulating siderophore solubility are not limited
to marine environments.

Siderophores with relatively long fatty acid tails, such as myco-
bactin T and the amphibactins (14 to 21 carbons in length), have
been found associated with cell membranes (41, 47), while sidero-
phores such as marinobactins and aquachelins, with 12 to 16 car-
bons in their acyl chains, are known to partition as micelles and
vesicles into the aqueous environment (40). Other siderophores,
with acyl chain lengths of 10 carbons or less, such as rhizobactins
and carboxymycobactins, diffuse relatively freely (39, 47). More-
over, synthetic acylation of desferrioxamine B, with appendages of
up to 7 carbons in length, was shown to alter their solubility and
membrane permeability (48). The range of acyl moieties found in
the S. coelicolor desferrioxamines, from a single carbon in desfer-
rioxamine B, 3 carbons in desferrioxamines E and G, and 7 to 17
carbons for the new versions found here, encompasses the entire
range of solubility. We note that versions of desferrioxamines with
appendages ranging from C11 to C14 were clearly present beyond
the edges and below S. coelicolor colonies (Fig. 5C and D, Amyco-
latopsis sp. AA4 interaction), possibly hinting that micelle-
mediated iron acquisition may be occurring here. We also ob-
served that production of the acyl-desferrioxamines was largely
stimulated by production of a competing siderophore by one of
the initiator strains (Fig. 6). Together, these findings point to a
remarkably diversified foraging strategy in the face of fierce com-
petition for iron.

The biosynthetic pathway for desferrioxamine is well docu-
mented (49, 50). The third step of the proposed pathway entails
the acylation of N-hydroxycadaverine by the enzyme DesC to
yield N-hydroxy-N-succinyl-1,5-diaminopentane (hsDAP), three
units of which then serve as building blocks for the final trimeric
desferrioxamine structure. In organisms that make desferrioxam-
ines B and G (including S. coelicolor), DesC is proposed to have
relaxed substrate specificity, allowing it to incorporate acetyl-
coenzyme A (CoA) or succinyl-CoA into desferrioxamine precur-
sors (50). The acyl moieties found in place of the normal acetyl-
CoA or succinyl-CoA additions suggest that the relaxed substrate
specificity of S. coelicolor DesC may extend much further than
originally thought, allowing it to incorporate these long acyl
chains into the normal desferrioxamine biosynthetic pathway.

The experimental framework utilized here yields data sets that
afford unique opportunities for the discovery of natural products.
Indeed, the differential chemical output observed from S. coeli-
color implies that this bacterium has great flexibility in the expres-
sion of its secondary metabolome. While competition for iron
provides a straightforward rationale for the induction of sidero-
phore synthesis in S. coelicolor interactions with other actinomy-
cetes, the physiological cues underlying the induction of antibiot-
ics and other metabolites remain to be elucidated. Understanding
the mechanisms of such interactions is of great interest since they
may offer a new door to accessing “cryptic” metabolites from
other actinomycetes.

An appendix containing supplemental figures and chemical
annotations for the molecules detected in this study can be ac-
cessed at http://gasp.med.harvard.edu/journals/traxler_2013_SI
_nanodesi.pdf.

MATERIALS AND METHODS
Strains and growth conditions. Strains used in this study are listed in
Table S4 in the supplemental appendix at http://gasp.med.harvard.edu

/journals/traxler_2013_SI_nanodesi.pdf. All experiments were done on
ISP2 agar (10 g malt extract, 4 g glucose, 4 g yeast extract, 15 g agar, 1 liter
Milli-Q H2O). For all experiments, 10 ml of agar was added to standard
100-mm petri plates to yield an agar surface ~2 mm thick, which is suit-
able for preparation for IMS. Strains were inoculated onto agar in 1-�l
aliquots from frozen spore suspensions. S. coelicolor and the initiator
strains were spotted 5 mm apart at the same time. For IMS experiments, a
second colony of S. coelicolor was spotted 1 cm away from the first S. coe-
licolor colony to serve as an internal control. Petri plates were incubated at
30°C until the appropriate time points in large sealable bags to prevent
desiccation.

MALDI-TOF imaging mass spectrometry. IMS was carried out as
described previously (22, 24). At the appropriate time point, colonies and
the surrounding agar were cut and removed from petri plates and trans-
ferred to Bruker MSP 96 anchor plates. The samples were then sprinkled
with Universal MALDI Matrix (Fluka 50149) using a 53-�m sieve. Once a
thick, uniform layer of matrix was deposited on the sample, it was placed
at 37°C for 4 h or until it was completely desiccated. Excess matrix was
blown off with compressed air, and any residue remaining on exposed
surfaces of the MALDI plate was wiped away with methanol. Spectra were
acquired using a Bruker Autoflex MALDI-TOF MS, and ions were visu-
alized using Fleximaging software. 3D IMS was performed as described
previously (34). Briefly, an 8-mm-thick section of agar was excised and cut
widthwise at room temperature using microtome blades into 1.0-mm
sections with each section placed on its side on the MALDI plate. 2D
MALDI-TOF IMS analysis was conducted. Then, data were imported in
the Matlab software program, where sections were aligned and processing
was performed. The resulting 3D volume data set corresponding to an
m/z value was visualized using 50%, 75%, and 90% semitransparent iso-
surfaces, indicating 80%, 88%, and 95% relative abundances of the mo-
lecular compound within the imaging area, respectively.

NanoDESI mass spectrometry. NanoDESI mass spectrometry was
carried out essentially as described elsewhere (21). The NanoDESI source
was coupled to a Thermo LTQ-FT-ICR (linear trap quadrupole Fourier
transform ion cyclotron resonance) MS. Briefly, at the desired time
points, samples were placed on the NanoDESI sample stage, and the liquid
bridge was placed in contact with the sample for 15 min. During this time,
the liquid bridge was placed at several locations on the colonies themselves
and on the agar adjacent to the colonies located on the opposite side from
the interacting strain. All data were collected in the positive ion mode in
the range of 100 to 2,000 m/z using a solvent consisting of 65% acetonitrile
and 35% water containing 0.05% formic acid. The data acquisition mode
excluded ions for 10 min once they had been trapped and fragmented
three times.

Computation of mass spectral networks. Spectral networks were as-
sembled largely as described elsewhere (21). MS2 spectra were clustered
using the MS-Clustering software program to build consensus spectra for
repeatedly observed ions (31). Pairs of consensus spectra were aligned if
both spectra fell within the top 10 alignments for each of the respective
spectra and the cosine of their peak match scores was �0.6. The algo-
rithms assumed a peak mass tolerance of 1.0 Da and an MS2 peak toler-
ance of 0.5 Da. The networks were visualized in the software program
Cytoscape (51), where consensus spectra are represented as nodes con-
nected by edges to aligning nodes. In order to maximize chemical/biolog-
ical interpretability, nodes found in several control data sets were re-
moved. These included nodes found associated with the solvent, the agar
substrate, and S. coelicolor colonies grown in isolation at 3, 5, and 7 days.
Finally, only nodes that were reproducible in both runs of data collection
were retained.
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ADDENDUM IN PROOF
While this manuscript was in review, another paper appeared that also ob-
served the production of acylated desferrioxamines from S. coelicolor (A. M.
Sidebottom, A. R. Johnson, J. A. Karty, D. J. Trader, and E. E. Carlson. ACS
Chem Biol. 2013, doi:10.1021/cb4002798).
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