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ABSTRACT
It is generally thought that the light coming from the inner plunging region of black hole
accretion discs contributes negligibly to the disc’s overall spectrum, i.e. the plunging fluid is
swallowed by the black hole before it has time to radiate. In the standard disc model used to
fit X-ray observations of accretion discs, the plunging region is assumed to be perfectly dark.
However, numerical simulations that include the full physics of the magnetized flow predict
that a small fraction of the disc’s total luminosity emanates from the plunging region. We
investigate the observational consequences of this neglected inner light. We compute radiative-
transfer-based disc spectra that correspond to 3D general relativistic magnetohydrodynamic
simulated discs (which produce light inside their plunging regions). In the context of black
hole spin estimation, we find that the neglected inner light only has a modest effect (this bias
is less than typical observational systematic errors). For rapidly spinning black holes, we find
that the combined emission from the plunging region produces a weak power-law tail at high
energies. This indicates that infalling matter is the origin for some of the ‘coronal’ emission
observed in the thermal dominant and steep power-law states of X-ray binaries.

Key words: accretion, accretion discs – black hole physics – MHD – radiative transfer –
methods: numerical – X-rays: binaries.

1 IN T RO D U C T I O N

The ubiquity and simplicity of black holes (BHs) in our Uni-
verse make them truly marvellous objects of study. The complete
physics of each and every BH can be distilled down to just two
numbers:1 the BH’s mass M and angular momentum J, the latter
of which is usually expressed as a dimensionless spin parameter
a∗ = J/(GM2/c). This implies that all physical theories that involve
BHs, e.g. the link between BH spin and jet power (Blandford &
Znajek 1977), gamma-ray bursts and spinning BHs (MacFadyen &
Woolsley 1999), models of quasi-periodic oscillations (Abramow-
icz & Kluźniak 2001), must connect in some way to these two
numbers.

For binary systems, the task of measuring mass is relatively
straightforward; so long as one can obtain the period, orbital ve-
locity, orbital geometry (i.e. inclination and eccentricity) and mass
for a companion orbiting a BH, one can immediately obtain the

�E-mail: yzhu@cfa.harvard.edu (YZ); swd@cita.utoronto.ca (SWD);
rnarayan@cfa.harvard.edu (RN); akulkarni@cfa.harvard.edu (AKK);
rpenna@cfa.harvard.edu (RFP); jem@cfa.harvard.edu (JEM)
1 In principle, BH charge is an independent parameter; however, we do not
expect astrophysical BHs to retain any significant charge.

BH mass using only Newtonian gravity (for a recent example, see
Orosz et al. 2011b). The game of measuring BH masses has been
played as early as 1972 for Cygnus X-1 (Bolton 1972; Webster &
Murdin 1972), and to date we have robust mass estimates for about
20 stellar mass binary BH systems (Remillard & McClintock 2006;
Orosz et al. 2007, 2009, 2011a,b; Cantrell et al. 2010), and 64
supermassive BHs (Gültekin et al. 2009; Graham et al. 2011).

Despite this success in measuring BH mass, spin has been a more
difficult quantity to obtain. The spin of an object only makes itself
known at very short distances through a general relativistic effect
known as frame dragging. Thus to probe BH spin, we must rely
on observations of matter that is very close to the BH horizon.
In practice, the only available probe is the accretion disc orbiting
the BH, which transitions from nearly circular orbits to plunging
at a special location known as the innermost stable circular orbit
(ISCO). By observing the light given off by the accretion disc, it
is possible to determine this transition radius. When the ISCO is
expressed in terms of the gravitational radius rg = GM/c2, it has
a well-defined monotonic dependence on BH spin (e.g. Shapiro &
Teukolsky 1983). Therefore, a measurement of the ISCO size yields
the BH spin if the mass is independently known.

For a BH binary system, we measure the size of the ISCO by
modelling the light given off by the accretion disc. Objects inside the
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ISCO (hereafter referred to as the ‘plunging zone’) cannot remain
in stable circular orbits, and are forced to plunge into the BH in
just a few free-fall times. Since the plunging time-scale is short, it
is thought that fluid inside the plunging zone does not have time
to radiate (Page & Thorne 1974), which means that if we could
resolve an image of the accretion disc, then we would see a dark
void corresponding to the plunging region in the centre. In practice,
we cannot resolve images2 of accretion discs around BHs, and thus
our only information comes in the form of X-ray spectra.

One method of estimating BH spin3 works by fitting the spectral
shape of the thermal continuum emission from the accretion disc to
thereby estimate the radius of the ISCO (this method was pioneered
by Zhang, Cui & Chen 1997b; see Table 3 for some recent results).

This ‘continuum fitting’ method uses the colour temperature of
the thermal component, the distance to the source and the received
X-ray flux to obtain a characteristic emitting area for the disc.
Given a model for the radial dependence of the disc emission, this
characteristic emitting area determines the ISCO radius. The main
drawback of the continuum fitting method is that we first need
accurate estimates of the BH distance (to turn fluxes into areas),
disc inclination (to turn the projected area into an ISCO radius)
and BH mass (to get spin from the monotonic rISCO/rg versus a∗
relation). Luckily, the techniques needed for measuring distance
(Reid et al. 2011), mass and inclination (Cantrell et al. 2010; Orosz
et al. 2011b) for binary systems are well developed, and to date
have been successfully applied to more than half a dozen BH binary
systems (McClintock et al. 2011).

The continuum fitting method has evolved through a sequence of
progressively more complex disc models. The simplest model as-
sumes multitemperature blackbody emission from the disc (Mitsuda
et al. 1984). Including relativistic effects such as Doppler beaming,
gravitational redshifting and light bending yielded the next genera-
tion of models (called KERRBB; Li et al. 2005). The current generation
of disc models (named BHSPEC; Davis et al. 2005; Davis & Hubeny
2006) frees itself from the blackbody assumption, and instead ob-
tains the disc spectra by means of radiative transfer calculations. All
of the above mentioned models use the prescription of Novikov &
Thorne (1973, hereafter NT) as the underlying disc model,4 which
assumes a perfectly dark void inside the ISCO. The advance that we
make in this work is to apply radiative transfer calculations to com-
pute the spectrum for a general relativistic magnetohydrodynamic
(GRMHD) simulated disc that produces emission from inside the
ISCO.

Currently, a crucial assumption in the continuum fitting enterprise
is the perfect darkness of the plunging zone. This scenario applies
only to the idealized case of a razor thin unmagnetized disc (see
NT). For finite thickness discs, it has been argued that as long as
the disc remains geometrically thin (with disc aspect ratios h/r �
1), the disc can be well approximated by the NT model (Paczyński
2000; Afshordi & Paczyńsky 2003; Shafee, Narayan & McClintock
2008a). However, recent work with magnetized discs (Shafee et al.
2008b; Noble, Krolik & Hawley 2009, 2010; Penna et al. 2010;

2 Although it has been recently proposed to use radio very long baseline
interferometry observations to test general relativistic by resolving the ap-
parent shape of Sgr A∗ (Doeleman et al. 2009).
3 Another commonly applied method is known as the ‘iron line’ method,
which estimates BH spin through spectral modelling of the Fe Kα fluores-
cence line (Fabian et al. 1989, see Miller 2007 for a recent review).
4 This is the relativistic generalization of the standard Shakura & Sunyaev
(1973) model for viscous geometrically thin but optically thick accretion
discs.

Figure 1. Comparison of dimensionless luminosity profiles from the
GRMHD simulations of Penna et al. (2010) (solid) with the standard disc
model (dotted; NT; Page & Thorne 1974). Results from models A, B and C
(defined in Table 1) are shown. The dashed line depicts an alternate measure
of the GRMHD luminosity (described in Section 7.2 and Appendix D). Note
that the luminosity in the standard NT disc model goes to zero at the ISCO.

Noble et al. 2011) suggests that there may be departures from NT
even in the limit of thin discs. An observational difference between
these magnetized discs and the classic NT discs is the appearance of
non-negligible luminosity inside the plunging region (see Fig. 1 for
the result from Penna et al. 2010, where the extra plunging region
luminosity constitutes ∼4 per cent of the total). Recent models of
unmagnetized discs that include the physics of energy advection
(Abramowicz et al. 1988; most recently Sa̧dowski 2009; Sa̧dowski
et al. 2011) also share the feature of non-zero luminosity inside the
ISCO, but in these advective models, the extra light only becomes
significant when the accretion rate approaches the Eddington rate.

The primary goal of the present project is to investigate the im-
portance of the neglected light from the inner plunging region of
accretion discs. Since GRMHD discs exhibit the phenomenon that
we wish to investigate (i.e. non-zero light from the plunging region),
we use them as the basis for all our investigations. We analyse the
GRMHD simulations of Penna et al. (2010) in this work. To connect
the GRMHD simulations with observables, we compute realistic
(i.e. radiative transfer based) disc spectra from them. Essentially,
we adapt the ideas pioneered in BHSPEC (Davis et al. 2005; Davis &
Hubeny 2006) to the domain of GRMHD discs. One limitation of
the GRMHD simulations is that they do not inherently model the
radiation field of the disc fluid. The way we put the photons back
in (for the purposes of computing disc spectra) is to do a radiative
transfer post-processing step. To get the integrated disc spectrum
corresponding to a particular simulation run, we take the following
three steps: (1) we slice the GRMHD disc into many individual an-
nuli; (2) for each annulus, we compute the local spectrum through
a radiative transfer calculation and (3) by means of ray tracing, we
sum up the light from every annulus to get the overall spectrum of
the accretion disc.

Several previous studies have also used GRMHD simulations to
consider the impact of emission from the plunging region on disc
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spectra (e.g. Beckwith, Hawley & Krolik 2008a; Noble et al. 2009,
2011; Kulkarni et al. 2011), but all assumed (modified) blackbody
emission. Since the plunging region is precisely where the fluid
becomes tenuous and optically thin, here the blackbody assumption
is likely to be strongly violated. Our work extends the analysis of
Kulkarni et al. (2011, hereafter K2011), which also made use of
the GRMHD discs from Penna et al. (2010). The advance that we
make beyond K2011 is that we obtain disc spectra by means of
radiative transfer calculations (this allows our work to be free from
the blackbody assumption which underpins all previous work on
GRMHD disc spectral modelling).

Our paper is organized as follows. In Section 2, we describe the
set-up and properties of the simulated GRMHD discs that we use
to generate disc spectra. We then detail the physics of the radiative
transfer calculation in Section 3, and list the simulation quantities
needed to generate the spectrum for each annulus. In Section 4,
we explain how these simulation quantities are extracted, and we
give a brief overview of the ray tracing process in Section 5. The
implications from the additional plunging region light are discussed
in Section 6, and in Section 7 we briefly touch upon the limitations
of our disc model. We summarize the key results in Section 8. Ap-
pendices A–D expand upon the technical details of various aspects
of this work.

2 G R M H D S I M U L AT I O N S

The simulation numerically evolves the 3D GRMHD equations in
the Kerr space–time via the code HARM (Gammie, McKinney &
Tóth 2003; McKinney 2006; McKinney & Blandford 2009). The
code works in dimensionless units (G = c = kB = 1), and we
assume that the fluid follows an ideal gas equation of state Pgas =
(� − 1)U, where Pgas is the gas pressure, and U is the gas internal
energy density. We choose the adiabatic index to be � = 4/3, which
corresponds to an ultrarelativistic equation of state. We start off the
simulation with a torus of gas that is initially in pure hydrodynamic
equilibrium (De Villiers, Hawley & Krolik 2003; Gammie et al.
2003) threaded by a weak (100 < Pgas/Pmag < 1000) four-loop
poloidal magnetic field structure (see Penna et al. 2010 for details
on the field topology). The torus is also set up such that its orbital
spin axis is aligned with the spin axis of the BH.

There are three primary degrees of freedom for the torus: (1) the
initial gas entropy; (2) the initial magnetic field strength and ge-
ometry and (3) the initial angular momentum profile. The choice of
initial gas entropy controls the overall thickness of the disc, whereas
the choice of initial magnetic field strength/geometry controls the
strength of the turbulence (Beckwith, Hawley & Krolik 2008b). The
angular momentum profile sets the radial extent of the starting torus.
We evolve the system in time via a conservative Godunov scheme,
with an additional caveat that we cool the gas via the following
prescription:

dU

dτ
= −U

ln (K/Ki)

τcool
, (1)

where U is the internal energy of the gas, K = P/ρ� is the gas
entropy constant, Ki = Pi/ρ

�
i is the initial entropy constant, and

we set τcool = 2π/�k for the cooling time-scale (�k =
√

GM/r3).
After a gas element heats up from dissipation, energy is removed
according to equation (1) such that the gas returns to its initial
entropy5 (this acts to preserve the initial aspect ratio of the disc).

5 The cooling function in equation (1) is not invoked when K < Ki (i.e. the
cooling prescription does not add any heat to the fluid).

Table 1. GRMHD disc parameters.

Model a∗ Target h/r L/LEdd α Comment

A 0.9 0.05 0.35 0.22 –
B 0.7 0.05 0.32 0.10 –
C 0.0 0.05 0.37 0.04 –
D 0.0 0.1 0.70 0.04 –
E 0.0 0.1 0.71 0.08 High res.
F 0.0 0.05 0.36 0.03 One loop

Note. The BH mass was set to be M = 10 M�. L/LEdd and α

are derived quantities that are measured from the simulations
(see Section 4). K2011 also used models A, B, C and F in
their work.

In the absence of a full radiative transfer calculation, the cooling
function is a substitute for the radiative energy loss that we expect
from a geometrically thin, optically thick disc.

The initial conditions of the specific simulations that we consider
are listed in Table 1. All models are run using a fixed spherical
polar mesh with Nr = 256 (radial cells), Nθ = 64 (poloidal cells)
and Nφ = 32 (toroidal cells), except for model E, which has twice
the number of poloidal and toroidal cells. The cell spacing is chosen
such that resolution is concentrated near the horizon and the disc
midplane (see Penna et al. 2010 for details). We find that the increase
in resolution from model D to E has the effect of increasing α.
Models A–C correspond to thin discs and most of our reported
results focus on these models. Model F differs from the other runs
in its initial magnetic field topology in that it uses a single poloidal
loop configuration rather than the four-loop model adopted in the
other runs.

3 A N N U L I SP E C T R A

We obtain the overall GRMHD accretion disc spectrum by summing
up the light contributions from all annuli that comprise the disc.
Most previous work on disc spectra assumes a modified blackbody
prescription for the local spectrum emitted by each annulus. The
blackbody is modified such that the specific intensity is given by

Iν(T ) = f −4Bν(f T ), (2)

where Bν(T) is the standard Planck function and f is spectral hard-
ening constant (often assumed to be 1.7 for X-ray binaries). Fol-
lowing Davis & Hubeny (2006), we improve on this assumption
by solving the radiative transfer equation. The emergent spectrum
for each annulus is obtained through the stellar atmospheres code
TLUSTY (Hubeny & Lanz 1995). The code simultaneously solves
for the vertical structure of a plane-parallel atmosphere and its
angle-dependent radiation field, and is independent of any black-
body assumption. The atmosphere is modelled as a series of 1D
vertical cells that are in radiative, hydrostatic and statistical equi-
librium (which allows for departures from local thermodynamic
equilibrium in the atomic populations). In each cell, we obtain the
spectrum as a function of viewing angle Iν(θ ), density ρ, gas tem-
perature T , vertical height above the midplane z and the particle
composition (ne, nH I

, nH II
, etc.).

We are primarily interested in each annulus’ emergent spectrum
(i.e. Iν(θ ) for the surface cell). To obtain a unique solution in the
stellar atmospheres problem, we need to specify the following three
boundary conditions.

(1) The radiative cooling flux F = σSBT 4
eff (where Teff is the

annulus effective temperature).
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(2) The vertical tidal gravity experienced by the fluid
(parametrized by Q = g⊥/z, where g⊥ is the vertical acceleration
and z is the height above the midplane).

(3) The column density to the midplane m = �/2 (where � is
the total column density of the annulus).

The problem of computing the disc spectrum simply becomes
one of obtaining the radial profiles of Teff (r), Q(r) and m(r) for the
GRMHD disc. We then compute the spectrum for each disc annulus
with TLUSTY using the corresponding values of Teff , Q and m.

3.1 Assumptions in the TLUSTY model

In our annulus problem, we make the assumption of uniform vis-
cous heating per unit mass, and we ignore the effects of magnetic
pressure support, fluid convection and heat conduction. We allow
for deviations from local thermodynamic equilibrium (LTE) by ex-
plicitly computing the ion populations for H, He, C, N, O, Ne, Mg,
Si, S, Ar, Ca and Fe assuming solar abundances. In the non-LTE
calculations, only the lowest energy level is considered for each ion-
ization state, except for the cases of H and He+, which are modelled
with nine and four levels, respectively. The treatment of bound–free
transitions includes all outer shell ionization processes, collisional
excitations and an approximate treatment for Auger (inner shell)
processes. Free–bound processes are modelled including radiative,
dielectric and three-body recombination. Free–free transitions are
modelled for all listed elements, whereas bound–bound transitions
are not modelled. Comptonization is included through an angle-
averaged Kompaneets treatment (Hubeny et al. 2001). Finally, to
reduce the number of independent vertical cells in the problem, we
assume that the annulus is symmetric about the midplane.

One drawback of the algorithm used in TLUSTY (lambda iteration
and complete linearization, see Hubeny & Lanz 1995 for details)
is that TLUSTY requires an initial guess for the conditions in each
vertical cell. The code often fails to converge when the initial guess
is poor. However, if TLUSTY finds a converged solution, it is robust to
the choice of initial guess. Often, manual intervention (in the form
of providing better initial guesses) is needed to ensure convergence,
which means that the process of generating annuli spectra cannot
be completely automated. However, since only three parameters are
necessary to uniquely specify an annulus, we have simply manually
pre-computed a grid of annuli spanning the full range of parame-
ter space for the case of stellar mass BH systems. The grid spans
log10Teff ∈ {5.5, 5.6, . . . , 7.3}, log10Q ∈ {−4.0, −3.9, . . . , 9.0} and
log10m ∈ {0.5, 0.6, . . . , 2.8, 2.9, 3.0, 4.0, 5.0, 6.0}. We then interpo-
late on this grid to obtain any needed annuli spectra (see Appendix
C for details on the interpolation process).

4 SL I C I N G T H E G R M H D D I S C I N TO A N N U L I

Since we wish to describe the accretion disc from the 3D GRMHD
simulations as a series of annuli, we take out the poloidal and
toroidal structure through an averaging process. All quantities are
first subject to azimuthal averaging (since we model the annuli as
azimuthally symmetric structures), followed by vertical averaging
(i.e. averaging over θ ) weighted by rest mass density. For each
annulus in the GRMHD simulation, we must identify Teff (r), Q(r)
and �(r) before we can call on TLUSTY to provide the local spectrum.

We obtain Teff (r) directly from the simulation luminosity profile
(Section 4.1), Q(r) from the Kerr metric and the fluid velocities
(Section 4.2) and �(r) from the fluid velocities and accretion rate
(Section 4.3). Since the simulations are dimensionless, we must first

choose a BH mass M and a disc luminosity L/LEdd to dimensionalize
the radial profiles of Teff (r), Q(r) and �(r). For all the simulation
runs, we have chosen a fiducial value of M = 10 M�, and we set
L/LEdd so the disc thickness in the radiative model matches that of
the GRMHD simulation (see Section 4.1.1).

One complicating factor is that the simulated disc is only reliable
for a short range of radii. Beyond a certain critical radius r >

rie (where rie stands for the radius of inflow equilibrium; see Penna
et al. 2010 for a detailed discussion), the simulation has not been run
long enough for the fluid to reach its equilibrium configuration. The
relevant physical time-scale for reaching inflow equilibrium is the
accretion time tacc = r/ur, where ur is the fluid’s radial velocity. The
problem with fluid outside of rie is that this fluid still has memory
of its initial conditions (i.e. fluid outside of rie has tacc > tsim,
where tsim is the total runtime of the simulation). Beyond the inflow
equilibrium point, we instead turn to an analytic disc model that is
matched to the simulation disc (we use a generalized NT model that
allows for non-zero stresses at the ISCO, see Appendices A and B
for details). The analytic model also requires us to specify a disc
viscosity parameter α (defined as the ratio between the vertically
integrated stress and pressure, see NT). Table 1 lists the values of
L/LEdd and α corresponding to the different simulation runs, where
both parameters are determined by matching the GRMHD disc at rie

to the analytic generalized NT disc (see Sections 4.1.1 and 4.3.1).

4.1 Flux profile – Teff (r)

From the simulations, we have extracted in the Boyer–Lindquist (t,
r, θ , φ) frame, the fluid four-velocity (ut, ur, uφ , uθ ) and luminosity
LBL, where the luminosity is computed from the cooling function
dU/dτ (see equation 1) in the following fashion:

LBL(r) = 1

tf − ti

∫ 2π

φ=0

∫ π

θ=0

∫ r

r ′=rH

∫ tf

t=ti

dU

dτ
ut

√−g dt dr ′dθ dφ,
(3)

where ti and tf are the initial and final times considered for the time
integral, rH is the BH horizon, ut is the fluid’s conserved specific
energy and

√−g is the determinant of the Kerr metric. We do the
integration for only the bound fluid, and then obtain the comoving
flux by transforming from the Boyer–Lindquist flux (see K2011):

σSBT 4
eff (r) = Fcom(r) = FBL(r)

−ut

= 1

−4πrut

dLBL(r)

dr
. (4)

However, since the simulations are converged only for a short radial
extent, we extrapolate the flux profile to large radii by matching the
GRMHD flux with an analytic disc model at a matching radius rie.
The extrapolation model we use is the same as K2011, which is a
generalized Page & Thorne (1974) model (see Appendix A) that
does not assume zero torque at the disc inner boundary, and hence
allows for non-zero ISCO luminosities.

To determine the point at which we can no longer trust the sim-
ulations (in other words, to locate rie), we look at the radial profile
of the GRMHD accretion rate (Fig. 2). Beyond a certain radius,
we see that the accretion rate begins to significantly deviate from
a constant value (the deviation from a constant accretion rate only
occurs in fluid that has not reached inflow equilibrium). We pick
the matching point to be the outermost point where we have well
behaved accretion, though the final luminosity profile is fairly in-
sensitive6 to our choice of matching radius (i.e. after varying the

6 The insensitivity of the luminosity extrapolation to the matching radius rie

was demonstrated in appendix A of K2011.
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Figure 2. The GRMHD simulation accretion rates normalized to Ṁ at the
horizon are shown. We identify the region left of the vertical dashed line as
converged, so the line marks the boundary rie where we match the GRMHD
disc to an analytic model.

matching location by ±20 per cent, the luminosity profile changes
by less than 10 per cent).

4.1.1 Disc thickness matching (L/LEdd)

The GRMHD luminosity that we measure (as shown in Fig. 1)
is actually in dimensionless units of L/Ṁsim, where Ṁsim is the
local accretion rate of the simulations (see Fig. 2). To calculate
Teff in dimensioned units of [K], we need to first determine the
dimensioned luminosity corresponding to the GRMHD simulations.
Unfortunately, the simulations do not include radiation physics,
so the simulation fluid does not have a set density scale, which
means there is no direct way of measuring Ṁ and hence L. We
thus resort to an indirect method for determining this accretion rate.
We identify L/LEdd of the simulation with the value that matches
the disc thickness in both the GRMHD simulated disc and the
TLUSTY annuli7 (see Fig. 3). However, since TLUSTY ignores magnetic
support and the simulations ignore radiation pressure, the TLUSTY

based and GRMHD thickness profiles have completely different
shapes. We opt to match the thickness at the radius corresponding
to the luminosity peak (see Fig. 3).

Although the luminosity profile drops off fairly rapidly inside
the ISCO (see Fig. 1), we find that the disc’s effective temperature
remains roughly constant (Fig. 4). Therefore the falloff in disc
luminosity when approaching the BH horizon is purely a geometric
effect. Annuli near the horizon have less surface area, and hence
they contribute less to the total luminosity.

4.2 Vertical gravity profile – Q(r)

The vertical gravity parameter g⊥, which represents the tidal verti-
cal acceleration in the disc, is obtained by evaluating the Rẑ

t̂ẑt̂
com-

ponent of the Riemann curvature tensor in the comoving frame.
A commonly used prescription for the vertical gravity is that of
Riffert & Herold (1995), which assumes that the disc fluid moves
along circular geodesics; this approach becomes invalid inside the

7 K2011 also applied this method to dimensionalize their luminosity profiles.

Figure 3. Shown are the h/r disc thickness profiles for model C, as computed
by TLUSTY and our GRMHD simulation, where h = ∫

ρ|z| dz/
∫

ρ dz. The
black dotted lines depict the TLUSTY disc thicknesses for different choices
of luminosity (the four sets of dotted lines correspond to L/LEdd = 0.1, 0.2,
0.4, 0.8). The black solid line denotes the matched thickness profile with
L/LEdd = 0.37. The black dot represents the radius where the luminosity
is greatest, which we have chosen to be the radius at which we match the
TLUSTY and GRMHD thickness profiles.

Figure 4. Here we plot the Teff flux profile, computed from the luminosity
profiles of Fig. 1, for the accretion rates listed in Table 1.

plunging zone. We thus turn to the prescription of Abramowicz,
Lanza & Percival (1997), which relaxes the circular orbit assump-
tion:

g⊥(r, z) = �2
kRz(r) z, (5)

where �k = (GM/r3)1/2 is the Keplerian orbital frequency, and the
dimensionless relativistic factor Rz(r) is given by

Rz(r) =
(

u2
φ + a2

∗(ut − 1)

r

)
. (6)

In equation (6) we use the four-velocity corresponding to the mid-
plane fluid from the GRMHD simulations for r < rie (as deter-
mined from Fig. 2). For r > rie, we use circular geodesics as the
four-velocity in equation (6). We find that the two prescriptions for
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vertical gravity (Riffert & Herold 1995; Abramowicz et al. 1997)
give nearly identical results outside the ISCO.

For convenience, we define the function Q(r) such that

g⊥(r, z) = Q(r) z, (7)

and we interpret Q(r) as the radial dependence of the vertical grav-
ity.

4.3 Column density profile – �(r)

Since the GRMHD simulation does not include radiation physics,
the simulation mass density is scale-free, so we cannot directly
read out the disc column mass density in physical units. We dimen-
sionalize the simulation density by solving for � in the vertically
integrated mass conservation equation after having picked a con-
stant accretion rate Ṁ:8

Ṁ = 2πr�ũr , (8)

where r is the BL radial coordinate, and ũr is the mass-averaged
radial velocity for the GRMHD simulations, computed via

ũr =
∫ π

θ=0 ρ̂ur
√−g dθ∫ π

θ=0 ρ̂
√−g dθ

. (9)

4.3.1 Radial velocity matching (α)

At large radii (r > rie), the simulation is no longer converged, and
we resort to matching the simulation result with an analytical disc
model. Rather than directly using the NT disc model, we re-solve the
NT disc equations using our matched GRMHD luminosity profile
(see Appendix B for details). The final matched radial velocity
profile is shown in Fig. 5.

We choose the disc viscosity α so as to ensure continuity in
the radial velocity profile (Fig. 5). The matching values of α for
each disc are listed in Table 1. The location of the radial velocity
matching point is set to be the same as the luminosity matching
point. To verify that our α value from radial velocity matching is
sensible, we compare it to the directly computed value from the
simulation αsim = τr̂φ̂/(hPtot), where τr̂φ̂ is the height integrated
shear stress, and hPtot is the height integrated total pressure (where
Ptot = Pmag + Pgas). The near continuity in the simulation α profile
with the matched value suggests that our method for determining α

is sound (Fig. 6).
From the radial velocity profile and from our choice of con-

stant Ṁ , the mass continuity equation (equation 8) yields the final
matched disc column density profile (Fig. 7).

5 R AY TR AC IN G

The final step in the process of generating the accretion disc’s SED
is to sum the light from all the individual annuli. The observed
disc image is determined by shooting a series of parallel light rays
from an image plane that is perpendicular to the BH line of sight.
We partition the image plane into a sequence of polar grid cells
with logarithmic radial spacing (to concentrate resolution near the
BH), and with uniform angular spacing. To produce the ray traced
images, we shoot rays for Nr = 300 radial grid cells and Nφ = 100

8 We set Ṁ to be the value corresponding to the disc luminosity as determined
in Section 4.1.1. They are related by L = ηṀc2, where η(a∗) is the spin-
dependent accretion efficiency of the NT disc.

Figure 5. A comparison between the mass averaged simulation radial ve-
locity profile (dotted) and the final matched radial velocity profile (solid
line). The matching point is depicted as the large coloured circle, whereas
the vertical dashed line denotes the location of the ISCO. The gaps in the
GRMHD radial velocity profile represent grid cells whose radial velocity is
pointed outwards.

Figure 6. The vertically averaged α profile as computed from the GRMHD
simulation (dotted) compared to the α obtained by the radial velocity match-
ing method (solid horizontal lines, corresponding to the α values listed in
Table 1). For reference, we have plotted the ISCO locations using dashed
vertical lines.

polar cells. The grid is then further squashed by a factor of cos i to
match the geometry of the inclined disc.

A single ray is shot for each grid cell, and by numerically inte-
grating the (second-order) geodesic equations for light:

d2xα

dλ2
+ �α

βγ

dxβ

dλ

dxγ

λ
= 0, (10)

where λ is an affine parameter along the geodesic, and �α
βγ are

the connection coefficients, we locate the first disc midplane inter-
section for each light ray (we stop at the disc midplane since we
have an optically thick disc; see Fig. 11 for a plot of the optical
depth profile). For simplicity, we opt to use the disc midplane as
the point of light emission rather than using each annulus’ precise

C© 2012 The Authors, MNRAS 424, 2504–2521
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



2510 Y. Zhu et al.

Figure 7. Dimensioned column density profiles for the GRMHD discs
(solid lines) compared to NT discs (dotted lines). Note the sharp drop in NT
column density as the fluid reaches the plunging region, in contrast to the
more gradual tapering observed in the GRMHD simulations.

photosphere. K2011 suggested that the latter is important only for
thick discs viewed at high inclinations angles (which is when disc
self-shadowing becomes important). In this work, we do not expect
the distinction between midplane and photosphere to be impor-
tant since we are dealing with thin discs (where h/r � cos i). The

ray tracing code used in this work was originally developed by
Scherbakov & Huang (2011), with further refinements by K2011.

For each ray, we compute (by interpolation on the GRMHD
grid cells, see Appendix C for details) the local values of flux
Teff , column density �, vertical gravity Q and comoving light ray
incidence angle μ. The local comoving spectrum is then obtained
by interpolating on our grid of TLUSTY atmosphere models. We then
apply the relevant Doppler boosting and gravitational redshifting
to these spectra (see Fig. 8 for the ray traced images). Finally,
the overall disc spectrum is obtained by integrating the spectra
corresponding to these light rays over the apparent disc area in
the image plane. We take a fiducial BH distance of 10 kpc when
generating the disc spectra.

6 R ESULTS

Qualitatively, we can spot a few differences in Fig. 8 between the
GRMHD (top) and NT (bottom) panels. We see that for spinning
BHs, the plunging fluid emits in the hard X-rays (appearing as
a >12 keV blue smudge in Fig. 8). Even outside the plunging region,
there is a noticeable increase in disc luminosity, which results in
harder annuli spectra everywhere (compare the bright white Doppler
spot in the upper right-hand (model C, GRMHD) panel, with the
duller orange spot in the lower right-hand (model C, NT) panel.

By integrating the flux in the image plane, we arrive at the ob-
served disc spectrum (see Fig. 9). For spinning BHs, the spec-
tra corresponding to the GRMHD simulations appear to exhibit a

Figure 8. Colour images of the inner disc (r < 15M) produced via ray tracing (viewed at an inclination angle of i = 60◦) for models A, B and C in Table 1. The
colours correspond to the flux Fν integrated over different energy bands, where red colour corresponds to the energy band E < 4 keV, green 4 < E < 12 keV
and blue E > 12 keV. For each value of BH spin, the colour mapping for the GRMHD and NT panels is identical, and each colour channel is normalized to the
maximum flux in that channel. Note the appearance of a blue spot in the GRMHD disc plunging region. This blue spot is responsible for the appearance of a
non-thermal high-energy power-law feature in the disc spectra (see Fig. 9).
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Figure 9. GRMHD and NT disc spectra for each of the six models listed
in Table 1. The flux normalization corresponds to an assumed distance of
10 kpc. Note that the GRMHD spectra peak at slightly higher energies than
their NT counterparts. Note also the emergence of a high-energy power-law
tail for the spinning BHs. The dashed spectra (labelled GRMHD2) corre-
spond to the alternate GRMHD luminosity profile (dashed line in Fig. 1),
discussed in Section 7.2 and Appendix D.

power-law component at high energies. We discuss this effect in
Section 6.1. In addition, for all models, the location of the energy
peak in the spectra for the GRMHD discs is shifted towards higher
energies. The harder overall spectrum of GRMHD compared to
NT implies that there would be an asymmetric error in BH spin
estimates (since the current fitting models are based on the cooler
NT disc). The quantitative size of this spin bias is discussed in
Section 6.2.

6.1 Power-law tail

Observationally, high-energy power-law tails are often seen in the
X-ray spectra of BH binary systems (e.g. Miyamoto et al. 1991;
McClintock et al. 2001; Reis, Fabian & Miller 2010). The current
leading theory to explain these high-energy power-law phenomena
is the action of a hot optically thin corona (Zhang et al. 1997a),
which produces the power-law tail by means of either Comptoniza-
tion of disc photons, synchrotron radiation and/or synchrotron self-

Comptonization (McClintock & Remillard 2006; Miller 2007). De-
spite the many proposed coronal models (e.g. Haardt & Maraschi
1991; Dove, Wilms & Begelman 1997; Kawaguchi, Shimura &
Mineshige 2000; Liu, Mineshige & Shibata 2002), there is no
agreed-upon standard (i.e. there is scarce agreement on the geome-
try and physical properties of the corona). Although a hot corona is
often invoked to explain the existence of a high-energy power-law
tail, in this work we naturally recover a hot power-law tail from just
the thermal disc fluid that occupies the plunging region.

To better understand the origin of the apparent high-energy
power-law tail in our models, we examine the area-weighted lo-
cal spectrum for several annuli in model B (a∗ = 0.7), chosen since
this simulated disc exhibits the strongest tail relative to the disc
continuum. From Fig. 10, we see that the high-energy power-law
tail stems solely from the emission of annuli inside the plunging
region (coloured in blue). Furthermore, we see that the power law
emerges from the combined emission of plunging annuli at various
locations (i.e. the envelope of spectra from r = 2M to 3M comprise
the power law). No single annulus emits the full power law.

In our plunging region model, we find that the strength of the
high-energy power law also depends on BH spin. The spinless
models (C, D, E and F) do not appear to produce any significant
power-law component. The reason for why model B (a∗ = 0.7)
produces a stronger power law than model A (a∗ = 0.9) is simply
that the plunging region in B covers a larger area in the image plane
than A, leading to a larger overall plunging region flux (compare
the relative sizes of the blue plunging region blobs in Fig. 8). We
also find a correlation in the strength of the power law with disc
viewing angle; edge-on discs produce the strongest power laws
relative to the thermal continuum since Doppler beaming increases
with inclination angle, and hence acts to preferentially boost the
plunging region emission.

We find that the spectral hardening factor for the plunging an-
nuli appears to start growing non-linearly as the gas approaches the
horizon (see Fig. 10 and note the rapid shift in the spectral peak
locations for the blue plunging region annuli, despite that Teff is

Figure 10. Local emergent fluxes from various annuli for model B (a∗ =
0.7), weighted by their face-on emitting areas (i.e. A = 2πr�r , where �r
is the radial width of the annulus). Plunging region annuli are coloured blue,
whereas annuli beyond the ISCO are coloured red to black (for reference,
the ISCO is located at 3.4M, and the horizon is at 1.7M). Doppler and
gravitational redshift corrections have not been applied to these spectra.
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Figure 11. Optical depths corresponding to model B (a∗ = 0.7). The total
optical depth τR = �κR is computed using the Rosseland mean opacity
κR (including both absorption and scattering). The effective optical depth
is computed as τeff = √

3τabsτscat, where τ abs and τ scat are the individual
absorption and scattering optical depths, respectively.

nearly constant in the plunging zone as per Fig. 4). The physical
reason for this rapid spectral hardening is simply that the plunging
gas quickly becomes extremely hot. Upon entering the plunging
region, the fast radial plunge causes the annuli to rapidly thin out
in column density. The dropping column mass allows the annuli to
make the transition from being optically thick to effectively opti-
cally thin9 (see Fig. 11). Despite this drop in column density, the gas
needs to maintain a roughly constant cooling rate (i.e. Teff remains
constant in the plunging zone; see Fig. 4). A property of effec-
tively optically thin gas is that it cannot radiate efficiently (Shapiro,
Lightman & Eardley 1976). To keep a constant cooling rate despite
the rapidly dropping optical depth, the gas must heat up tremen-
dously, leading to very hot emission.

The power laws produced by the plunging region in our models
have photon power-law indices that range from � = 4 to 6, with
scattering fractions10 ranging from 1 to 15 per cent. In our model, we
find that the scattering fraction (and hence strength of the power law)
increases monotonically with inclination angle, whereas the photon
power-law index decreases monotonically. The scattering fraction
range spanned by our models is comparable to the observed range
covered by the thermal-dominant state, as well as much of the range
of the intermediate, and steep power-law states for BH binaries
(which ranges from 0 to 25 per cent; see Steiner et al. 2009b, 2011).
However, even in the steep power-law state, the observed photon
index range of � = 2.2–2.7 (Gou et al. 2009, 2011; Steiner et al.
2011) is much less steep than what we obtain from the plunging
region of our models. This discrepancy may simply be due to a
limitation of our model, which neglects the physics of disc self-
irradiation. Including this effect would result in a hotter disc that
would act to boost the strength of the high-energy tails. Also, self-
irradiation becomes increasingly important as one approaches the

9 An effectively optically thin medium is one that is optically thin to absorp-
tion, and optically thick to scattering.
10 The scattering fraction denotes the fraction of thermal seed photons that
undergo Comptonization to produce the power-law component.

BH (where light bending is most severe). This implies that including
irradiation will likely result in power laws that are less steep (since
the emission from the hottest, innermost annuli will be boosted
the most by this self-irradiation effect). We speculate that a more
complete treatment of the plunging region (that includes the physics
of disc irradiation and magnetic fields) would produce high-energy
tails that are better matched to observations.

Since many of our approximations become poor in the plunging
region (see Section 7 for a discussion of some of the pitfalls of
our method), we strongly caution against reading too much into the
quantitative details of the power laws of Fig. 9 (i.e. slope, normal-
ization). The high-energy power-law result should be taken only
at the qualitative level; although the plunging region luminosity is
dwarfed by the disc luminosity, it starts to dominate the flux at E >

20 keV taking on a non-thermal shape that appears as a power law.

6.2 Quantitative effect on spin

As already discussed, the thermal emission from the disc is slightly
stronger and hotter in the GRMHD models compared to the equiv-
alent NT model. This will introduce an error in BH spin estimates
obtained from the continuum fitting method. To quantify the effect,
we generate mock observations of our GRMHD discs and we fit
these simulated observations with the currently used suite of con-
tinuum fitting disc models. For simplicity, to generate these mock
observations, we use an idealized instrument with effective area that
is independent of photon energy. We choose the instrument’s effec-
tive area11 to be 1000 cm2, and use a 3 h exposure time. We compute
photon statistics in 1000 energy channels uniformly spaced in log E,
ranging 0.4 < E < 50.0 keV.

We then fit our simulated disc observations with BHSPEC (Davis
et al. 2005; Davis & Hubeny 2006), which is a set of (TLUSTY based)
disc spectra often used in continuum fitting. The BHSPEC spectra are
computed in much the same way as our procedure in Section 1,
except that BHSPEC uses a classic NT disc instead of our GRMHD
disc. Whenever necessary, we also attempt to fit a power-law tail to
the models using SIMPL (Steiner et al. 2009a), which is a physically
motivated Comptonization model that has been quite successful in
fitting many observed high-energy power-law tails (Steiner et al.
2009b).

The fitting is handled through XSPEC, a spectral fitting software
package commonly used by X-ray astronomers (Arnaud 1996).
For each spectrum, we fit for only two parameters: BH spin and
mass accretion rate. We fix the mass, distance and inclination to
exactly the values used to generate the simulated observations. In
the cases where a power-law fit via SIMPL is needed, we fit for two
additional power-law parameters (essentially the normalization and
the spectral slope of the power law, which SIMPL encapsulates as the
scattering fraction of soft disc photons and the photon power-law
index). We list in Table 2 our spin results from this fitting exercise.
The first three columns correspond to the following.

‘NT’ – we perform a BHSPEC fit on spectra computed from a NT
disc model, with disc parameters corresponding to Table 1. We use
this as a baseline for comparing with our GRMHD fit results. For
the fit, we use an energy range of 0.4–8.0 keV.

‘GRMHD’ – we perform a BHSPEC fit on the GRMHD disc spectra
on the energy range 0.4–8.0 keV. We employ an 8.0 keV upper

11 This is modelled after the Rossi X-Ray Timing Explorer’s total effective
area in the hard energy band (>20 keV), see Jahoda et al. (2006).
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Table 2. The recovered BH spins from XSPEC fitting of simulated disc observations.

i (◦) NT GRMHD GRMHD+PL GRMHD2a GRMHD2+PLa

(Model A: a∗ = 0.9, L/LEdd = 0.35, α = 0.22)
15 0.902 ± 0.004 0.909 ± 0.018 – 0.913 ± 0.017 –
30 0.909 ± 0.005 0.914 ± 0.015 – 0.916 ± 0.016 –
45 0.904 ± 0.006 0.912 ± 0.013 – 0.916 ± 0.013 0.916 ± 0.005
60 0.902 ± 0.005 0.919 ± 0.012 0.913 ± 0.006 0.921 ± 0.011 0.911 ± 0.004
75 0.897 ± 0.007 0.925 ± 0.011 0.916 ± 0.005 0.934 ± 0.010 0.908 ± 0.004

(Model B: a∗ = 0.7, L/LEdd = 0.32, α = 0.10)
15 0.68 ± 0.01 0.73 ± 0.03 0.72 ± 0.03 0.75 ± 0.03 0.73 ± 0.03
30 0.69 ± 0.01 0.74 ± 0.03 0.72 ± 0.02 0.75 ± 0.03 0.72 ± 0.03
45 0.69 ± 0.01 0.75 ± 0.02 0.71 ± 0.03 0.76 ± 0.03 0.72 ± 0.03
60 0.70 ± 0.01 0.75 ± 0.02 0.71 ± 0.03 0.76 ± 0.02 0.71 ± 0.04
75 0.70 ± 0.01 0.76 ± 0.01 0.69 ± 0.04 0.77 ± 0.03 0.69 ± 0.04

(Model C: a∗ = 0, L/LEdd = 0.37, α = 0.04)
15 −0.12 ± 0.04 −0.04 ± 0.09 – −0.01 ± 0.09 –
30 −0.10 ± 0.04 −0.03 ± 0.09 – 0.01 ± 0.09 –
45 −0.09 ± 0.04 0.01 ± 0.08 – 0.03 ± 0.08 –
60 −0.08 ± 0.04 0.03 ± 0.08 – 0.07 ± 0.09 –
75 −0.06 ± 0.05 0.05 ± 0.09 – 0.10 ± 0.10 –

(Model D: a∗ = 0, L/LEdd = 0.70, α = 0.04)
15 −0.19 ± 0.02 −0.01 ± 0.09 – 0.04 ± 0.09 –
30 −0.17 ± 0.02 0.00 ± 0.09 – 0.05 ± 0.09 –
45 −0.15 ± 0.03 0.01 ± 0.08 – 0.08 ± 0.09 –
60 −0.14 ± 0.03 0.03 ± 0.08 – 0.11 ± 0.09 0.08 ± 0.10
75 −0.12 ± 0.04 0.08 ± 0.09 0.04 ± 0.09 0.17 ± 0.09 0.07 ± 0.13

(Model E: a∗ = 0, L/LEdd = 0.71, α = 0.08)
15 −0.08 ± 0.03 0.04 ± 0.08 – 0.07 ± 0.08 –
30 −0.08 ± 0.03 0.05 ± 0.08 – 0.10 ± 0.08 –
45 −0.07 ± 0.02 0.09 ± 0.07 – 0.12 ± 0.09 –
60 −0.06 ± 0.02 0.10 ± 0.08 – 0.16 ± 0.08 –
75 −0.06 ± 0.03 0.13 ± 0.09 – 0.20 ± 0.09 0.11 ± 0.07

(Model F: a∗ = 0, L/LEdd = 0.36, α = 0.03, 1 loop)
15 −0.13 ± 0.07 −0.07 ± 0.14 – −0.03 ± 0.15 –
30 −0.11 ± 0.07 −0.05 ± 0.13 – −0.01 ± 0.14 –
45 −0.10 ± 0.06 −0.02 ± 0.13 – 0.02 ± 0.14 –
60 −0.09 ± 0.06 −0.01 ± 0.13 – 0.06 ± 0.13 –
75 −0.09 ± 0.06 0.01 ± 0.13 – 0.10 ± 0.14 0.09 ± 0.13

Note. All spectra were fit with BHSPEC disc spectra, where αfit = 0.1. The quoted uncertainties
correspond to the systematic GRMHD luminosity profile uncertainties (determined empirically by
analysing the last five subsequent 1000M time chunks of the GRMHD simulations). The spectral
fitting statistical uncertainties were negligibly small (�a∗ ∼ 0.001). This is because the disc
parameters that are responsible for most of the uncertainty (mass, distance, inclination) were not
allowed to vary during the fit.
aThese two rightmost columns correspond to a disc model that uses an alternative measure of
the GRMHD luminosity (see Section 7.2 and Appendix D for details). The luminosity profiles
corresponding to GRMHD2 are shown in Fig. 1.

energy cut-off in the fitted spectrum since we want to exclude the
power-law spectral feature.

‘GRMHD+PL’ – in addition to continuum fitting, we also fit
for the power law. Formally, we fit a BHSPEC⊗SIMPL model over the
energy range 0.4–50.0 keV (the full range of our mock observation).

The primary purpose of the ‘NT’ column is to disentangle another
systematic effect that is independent of the extra luminosity of the
GRMHD simulations. The BHSPEC spectral model is tabulated only
for αfit = 0.1, however, in our disc models, only the a∗ = 0.7 disc
happens to have a matching α = 0.1 (see model B in Table 1).
This mismatch between the fitting model αfit and the input model
α leads to a systematic bias in the recovered spin. The spectral
dependence on α arises from the fact that column density scales

inversely with α, so discs with higher α values tend towards lower
optical depths. A lower optical depth medium has gas that is hotter,
which results in harder spectra. In Fig. 12, we illustrate the influence
that the choice of α has on the spectrum of model C (a∗ = 0). As
expected, we find that the higher α disc has a harder spectrum
(Fig. 12).

In the context of spin fitting, if αfit > α, we expect the fitted spins
to be too low (since for any given spin, the fitting spectrum will be
harder than the intrinsic disc spectrum), and vice versa for αfit <

α. This effect is seen in the ‘NT’ column of Table 2 (which differs
from the fitting model only by its choice of α). Models C, D, E and
F all have αfit > α, and consequently the recovered spins are too
low. On the other hand, model A has αfit < α, yielding recovered
spins that are too high.
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Figure 12. NT disc spectra for model C (a∗ = 0) computed for two choices
of α. The slight shift in the location of the spectral peak causes a systematic
error in the recovered BH spin if αfit does not match the intrinsic α of the
disc.

We interpret the difference between the ‘NT’ column and the
‘GRMHD’ column as the effect of the extra luminosity from the
inner regions of the GRMHD discs, which is to systematically
increase the recovered spin. The spin deviation also grows with
inclination angle (see the ‘GRMHD’ column in Table 2), since the
net effect of Doppler beaming (which becomes more important at
higher inclinations) is to enhance the inner disc emission. We also
find that the spin deviation becomes smaller at high spins (this is
due to the fact that the ISCO–spin relation becomes steeper at high
spins).

In those cases where using the SIMPL model significantly improves
the fit (i.e. when the fit χ2 improved by more than a factor of 2, upon
inclusion of a power-law fit component), the modelling of the power
law also leads to better agreement between fitted and input BH
spin (compare ‘GRMHD’ and ‘GRMHD+PL’ columns in Table 2).
By fitting a power-law component, some of the hot photons get
associated with the power law, which lowers the fitted spin (since
the remaining disc spectrum looks softer after removal of the hard
power-law photons). However, we note that the GRMHD luminosity
excess extends even beyond the ISCO (see Fig. 1). This explains
why even fitting for the power law does not completely eliminate the
upwards spin bias (i.e. the ‘GRMHD+PL’ columns still yield spins
that are higher than the ‘NT’ column in Table 2); although some
of the excess luminosity is bound up in the non-thermal plunging
region (which can be excluded by means of power-law fitting),
there is still some residual thermal disc luminosity excess, that acts
to bias the GRMHD spin upwards. Overall, the effect of the extra
plunging region light results in �a∗ ∼ 0.1, 0.06, 0.03 corresponding
to spins a∗ = 0, 0.7, 0.9, respectively (estimated by comparing the
‘NT’ column with the ‘GRMHD’ column in Table 2 for the ∼30 per
cent Eddington discs).

These systematic spin errors should be thought of as an upper
bound since the discs that we consider correspond to fairly high
accretion rates (with L/LEdd > 0.3). Previous work (Paczyński 2000;
Shafee et al. 2008a) suggests that thinner discs (corresponding to
lower accretion rates) better match the NT model. Our results in
Table 2 also support this claim; in comparing the spin fits from
model C (thin disc) with models D and E (thick discs), we find

that model C agrees best to the NT disc (i.e. that model C has the
smallest difference between the ‘NT’ and ‘GRMHD’ columns). In
addition, model C also exhibits the least deviation from a thermal
spectrum at high energies (compare the >20 keV emission from
model C with those of models D and E in Fig. 9).

We did not simulate lower accretion rate discs due to the rapidly
increasing computational cost associated with such simulations.
Typically, continuum fitting is not applied to systems where the ac-
cretion rate exceeds 30 per cent Eddington since beyond this critical
point, the continuum fitting method is no longer robust to variations
in the disc accretion rate (see McClintock et al. 2006; Steiner et al.
2009b). One possible explanation is that disc self-shadowing be-
comes important beyond this critical accretion rate threshold (Li,
Yuan & Cao 2010).

To put into perspective how significant our quoted spin deviations
are, we compare our results to the spin uncertainties from actual
continuum fitting exercises in the literature (see Table 3). Since
the current observational uncertainties are significantly larger than
the deviations that we find in this work, we conclude that the extra
light from the inner and plunging regions of the disc do not limit our
ability to make accurate spin estimates through the continuum fitting
method. The current limiting factors in measuring BH spin are how
accurately one can determine the distance, mass and inclination of
BH binary systems.

7 D I SCUSSI ON

The disc model that we adopt in this work is not completely self-
consistent. The annuli that we compute using TLUSTY are assumed
to have reached their equilibrium configuration. However, close
to the BH there is simply insufficient time for the fluid to reach
equilibrium (see Fig. 13 for a plot of the various time-scales). In
addition, the GRMHD simulations show that the pressure in the
innermost regions of the disc is magnetically dominated, yet in the
TLUSTY annuli calculations, we completely ignore magnetic pressure
support. Previous work by Davis et al. (2009) suggests that includ-
ing magnetic support may lead to a slight hardening of the annuli
spectrum. Another problem for the innermost annuli is that they
become extremely hot (Tgas > 108–109 K), which may invalidate
TLUSTY’s handling of Comptonization (i.e. an angle averaged Kom-
paneets treatment, which is only valid for non-relativistic electrons;
see Hubeny et al. 2001). Finally, due to the increasingly strong light
bending effects near the BH, the process of disc self-irradiation (i.e.
where one part of the disc shines on another part) may also become
important, especially for the innermost annuli (Li et al. 2005). The
net effect of this disc self-irradiation would be to further heat up
the annuli, causing additional spectral hardening. We have ignored
disc self-irradiation in our spectral model since this reprocessing of
light cannot be easily handled by our grid of pre-computed annuli.

These issues primarily affect annuli that are very close to the BH,
which radiate in the hard X-rays (>20 keV). We do not expect these
inconsistent annuli to affect our spin fitting results in Table 2 since
the recovered spin is mainly constrained by photons near the peak of
the spectrum (located at a few keV in Fig. 9). The inconsistent annuli
will however affect the high-energy part of the spectrum, which is
why we caution against reading too deeply into the quantitative
details of the power laws.

7.1 Other signatures of the plunging region

Observations of disc variability could potentially be used to dis-
criminate between our plunging region model and other coronal
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Table 3. Spin measurements yielded by continuum fitting.

Black hole a∗ i (◦) L/LEdd αfit Reference

A0620−00 0.12 ± 0.19 51.0 ± 0.9 0.11 0.01 + 0.1a Gou et al. (2010)
H1743−322c 0.2 ± 0.3c 75 ± 3 0.03–0.3 0.01 + 0.1a Steiner, McClintock & Reid (2012)
LMC X-3 <0.3 67 ± 2 0.1–0.7 0.01, 0.1b Davis, Done & Blaes (2006)
XTE J1550−564 0.34+0.2

−0.28 74.7 ± 3.8 0.05–0.30 0.1 Steiner et al. (2011)
GRO J1655−40d 0.70 ± 0.1 70.2 ± 1.2 0.04–0.1 0.1 Shafee et al. (2006)
4U 1543−47d 0.80 ± 0.1 20.7 ± 1.5 0.06–0.1 0.1 Shafee et al. (2006)
M33 X-7 0.84 ± 0.05 74.6 ± 1.0 0.07–0.11 0.01 Liu et al. (2008, 2010)
LMC X-1 0.92+0.05

−0.07 36.4 ± 2.0 0.15–0.17 0.01 + 0.1a Gou et al. (2009)
GRS 1915+105d >0.95 61.5–68.6 0.2–0.3 0.01, 0.1b McClintock et al. (2006)
Cygnus X-1 >0.95 27.1 ± 0.8 0.018–0.026 0.01 + 0.1a Gou et al. (2011)

Note. The spin uncertainties correspond to the 68 per cent (1σ ) level of confidence, whereas the inequalities are to the
3σ level.
aThe spin errors are marginalized over both choices of α.
bThe spin constraint covers both choices of α.
cNo reliable mass estimate is available for this source.
dThe quoted spin errors have not been rigorously computed, and have been arbitrarily doubled from the published
estimates since these are among the first systems for which continuum fitting was applied.

Figure 13. Several time-scales of interest are plotted here for model B (a∗ =
0.7). We show the accretion time-scale (solid blue), the photon diffusion
time-scale (dash–dotted green), the photon absorption time-scale (dotted
red) and the photon scattering time-scale (dashed dark cyan). The absorption
and scattering time-scales are computed via t = 1/(ρκc), using midplane
gas densities (ρ) and opacities (κ). The diffusion time-scale is computed via
td = τ 2

scattscat, where τ scat is the scattering optical depth to the disc midplane
(i.e. we expect τ 2

scat scatterings to occur before a photon can diffuse out).
Note that close to the BH, the accretion time-scale becomes shorter than the
photon absorption time-scale, which indicates that the fluid close to the BH
has insufficient time to reach thermal equilibrium.

models. Assuming that the variability is caused by Doppler beam-
ing of hotspots moving about in the disc flow, we associate the
hotspot orbital time-scale with the variability time-scale. Since the
orbital time decreases monotonically as one approaches the horizon,
the variability from the inner plunging region of the disc ought to be
more rapid than that occurring farther out in disc. Hence, our plung-
ing region model predicts that the hard X-ray light (originating from
the innermost regions of the disc) would have faster variability than
the soft X-ray light (produced farther out in the thermal disc). Fur-
thermore, in the power-density spectrum in the hard X-ray bands,

we expect most of the variability power to occur above the ISCO
orbital frequency (since we associate this hard emission with the
plunging region).

Polarization observations could also serve as a means to distin-
guish between other coronal models and a plunging region model.
Generally, one expects evolution of the polarized fraction and net
polarization angle as the observed photon energy is varied. This is
due to higher energy photons (which are typically emitted closer to
the BH) feeling stronger relativistic effects, leading to a stronger
shift in their polarization vectors (Schnittman & Krolik 2009, 2010).
The planar geometry of the plunging region may lead to a po-
larization signature that differs significantly from coronal mod-
els. If the high-energy power law originates from the plunging
region, we expect that its polarization properties will vary con-
tinuously from the thermal component to the non-thermal power
law. This contrasts with some alternative coronal geometries (e.g.
spherical models) that provide abrupt transitions in the polarization
properties from one component to the next (Schnittman & Krolik
2010).

In the plunging region model, even at energies where the power
law dominates, the variation of the polarization fraction and an-
gle with energy could be consistent with thermal state polarization
models that assume a thin disc geometry. The signal might then
be similar to the models of Li, Narayan & McClintock (2009)
and Schnittman & Krolik (2009), who calculate the polarization
due to direct emission from a NT model, assuming a (modified)
blackbody spectrum and intrinsic disc polarization appropriate for
a scattering-dominated atmosphere. The models also include the
effect of scattered emission from light that is strongly bent by the
relativistic space–time of the BH and re-intersects the disc surface
(i.e. returning radiation). In these calculations, matter in the plung-
ing region is allowed to scatter returning radiation, but does not
provide direct emission. Since the intrinsic emission and returning
radiation have different polarization signals, a similar calculation
that includes the direct (power law) emission from the plunging
region is required to confirm the above speculation and discrimi-
nate between coronal models. The impending launch of NASA’s
Gravity and Extreme Magnetism Small Explorer (GEMS; Swank
et al. 2010) mission promises observational constraints that may be
capable of discriminating between such models.
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7.2 How does our choice of cooling function influence
the results?

A criticism that might be levied against the GRMHD simulations
is that our choice of cooling function (as defined in equation 1) is
arbitrary. We have interpreted this cooling function as the rate of
radiative cooling, despite the fact that the GRMHD simulations do
not inherently model radiation physics.

We would like to test how our choice of cooling function im-
pacts the results of Section 6. Rather than rerunning the GRMHD
simulations with another prescription for cooling (i.e. by chang-
ing the functional form of equation 1), we use the simulation’s
dissipative heating profile as another means to get a cooling rate.
Instead of simply assuming that dissipation equals cooling locally,
we consider the physics of energy advection (i.e. that the fluid re-
leases its heat downstream). To generate a disc model that is more
self-consistent with the TLUSTY annuli, we use the TLUSTY vertical
structure when computing the rate of energy advection (see Ap-
pendix D for a thorough exposition on this method of computing
the new GRMHD luminosity profile). The new dissipation-based
cooling function (which we label as GRMHD2) releases slightly
more luminosity inside the plunging region (compare the solid and
dashed lines in Fig. 1).

We repeat the same exercise as in Section 6 with this new
GRMHD2-derived luminosity profile. The spectra corresponding
to GRMHD2 are shown as the dashed lines in Fig. 9. Without fitting
for the power laws, we find that the recovered spins are slightly
higher owing to the extra plunging region luminosity (compare the
‘GRMHD’ and ‘GRMHD2’ columns in Table 2). However, the
more realistic fit (i.e. including the power-law component) takes
care of this extra light, yielding comparable spin estimates to be-
fore. The enhanced power laws are purely due to the extra plunging
region luminosity (compare solid and dashed lines in Figs 1 and
9). The worst cases for the 30 per cent Eddington discs now have
�a∗ ∼0.15, 0.07, 0.03 for a∗ = 0, 0.7, 0.9, respectively. Given these
results, we still conclude that the extra luminosity from the GRMHD
inner disc does not limit our ability to measure BH spin through the
continuum fitting method (the dominant source of uncertainty is still
the observational uncertainties in distance, mass and inclination).

As in K2011, we estimate that �a∗ ≤ 0.15, which is lower than
the estimate of Noble et al. (2011), who infer �a ∼ 0.2–0.3 for a
Schwarzschild BH. Because of the reduced sensitivity of the con-
tinuum fitting method at low spins, this amounts to a somewhat
modest discrepancy, which we attribute to various differences in
the set-up and initial conditions of the GRMHD simulations used
by the different groups.

7.3 What is the impact of the initial magnetic field topology?

It can be argued that our choice of four weak poloidal magnetic loops
is arbitrary, and that the most natural choice is either a singly looped
purely toroidal or purely poloidal field (Igumenshchev, Narayan &
Abramowicz 2003). Our choice is motivated by the belief that nature
does not begin the accretion process with an ordered field spanning
large spatial scales; starting from a weak and disordered field, we
believe the physics of the magnetorotational instability (MRI) nat-
urally selects the correct magnetic configuration, forgetting about
the initial conditions. Ideally, we would like to start the disc with an
infinite number of loops to model this tangled geometry, however,
owing to resolution limitations we settle with four loops.

To determine how much influence the initial field geometry could
have on disc spectra, we compare the results of model C (four-

loop) and model F (one-loop). In general, we find that the one-
loop case releases significantly more luminosity inside the plunging
region. The large-scale magnetic fluxes from the one-loop geometry
produce more stress and dissipation than its four-loop counterpart.
However, most of this energy is released at large polar angles (i.e.
far from the disc midplane where the gas is unbound), and for the
purposes of modelling the thermal disc emission, we choose to
ignore this unbound gas contribution to the luminosity.

Making this distinction between bound and unbound gas, we
find that the luminosity profile corresponding to the bound gas in
the one-loop case closely matches that of the four-loop case. This
leads to very similar disc spectra (compare the spin fit results from
models C and F in Table 2 and spectra in Fig. 9). We conclude
that in the context of the thermal continuum for thin discs, the
resultant spectrum is largely independent of the initial magnetic field
geometry. This is in contrast to the case of magnetically arrested
accretion flows, whose final accretion state and jet power depends
crucially on both the strength and geometry of its seed magnetic field
(Igumenshchev 2008, 2009; Tchekhovskoy, Narayan & McKinney
2011; McKinney, Tchekhovskoy & Blandford 2012). For thin discs,
the primary differences arising from the choice of one-loop and four-
loop configurations are highlighted in sections 8 and 9 of Penna et al.
(2010). For a complete discussion of this topic, see also K2011,
Noble et al. (2010, 2011) and Hawley, Guan & Krolik (2011).

7.4 Convergence of GRMHD simulations

Recent work by Hawley et al. (2011) suggests that the growth and
saturation of the MRI in disc simulations is highly dependent on
their vertical and azimuthal resolution. These authors propose the
following two convergence criteria for the MRI to be well resolved:
the vertical criterion is given by Qz = λMRI/(�z) � 10, and the
azimuthal criterion Qy = λMRI/(�y) � 5, where λMRI is the MRI
length scale in the direction that Q is being measured.

To compare with Hawley et al. (2011), we adopt their prescription
for λMRI = 2πHβ−1/2|Bz|/|B| in the evaluation of Qz and λMRI =
2πHβ−1/2

y in Qy, where H is the disc scale height, plasma β =
Pgas/Pmag and plasma βy is computed with only the toroidal field
component. For the four-loop standard resolution runs,12 we find
Qz = 6–13 at the disc midplane and Qy = 2–3.

As an alternative model-free means to estimate the MRI length
scale, we have also performed a correlation length analysis similar
to the one presented in section 3.8 of McKinney et al. (2012). From
the spatial autocorrelation function for gas density, we find Qz ∼ 9–
11 and Qy ∼ 5–7. Azimuthal shear elongation of the MRI unstable
zone is the reason why the correlation length based Qy is larger than
the Hawley et al. (2011) estimate for Qy.

Since our value for Qy is low, this implies that the simulations
are only marginally resolving the azimuthal disc substructure (and
hence MRI turbulence). A consequence of this low resolution is
that the strength of the MRI turbulence (as measured by the disc
viscosity α) does not appear to converge with respect to resolution.
Comparing models D and E in Table 1, we find that α has doubled
upon doubling both φ and θ resolutions. However, recent work by
Sorathia et al. (2012) suggests that α is a poor metric for gauging
simulation convergence since large variations in α are observed
even in the cases of abundant resolution.

12 This includes models A–D in Table 1. Model E, which has double the
resolution, will have double the Qz and Qy values.
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For the purposes of spectral modelling we ultimately only care
about the simulation luminosity profile. Despite the low azimuthal
resolution of the Penna et al. (2010) simulations, the luminosity
profile remains fairly insensitive to changes in φ resolution. The
convergence tests performed by Penna et al. (2010) show that the
luminosity profile changes only by 10 per cent, even after a fourfold
increase in φ resolution. This robustness in luminosity profile is also
borne out when comparing the spectra of models D and E (see Fig. 9
– these two runs only differ in grid resolution).

7.5 Equation of state

Another inconsistency in the GRMHD simulations is that we adopt
an ultrarelativistic gas equation of state (with � = 4/3), motivated
by the idea that the disc energy budget is dominated by photons
(a � = 4/3 fluid). However the TLUSTY annuli calculations suggest
that the combined photon and gas entity acts more like a � =
5/3 fluid, especially in the gas-pressure-dominated plunging region.
Despite the difference in �, Noble et al. (2009, 2010, 2011) have
also performed GRMHD simulations of thin discs with � = 5/3,
and they find similar results to the � = 4/3 discs of Shafee et al.
(2008b) and Penna et al. (2010).

In Fig. 14, we examine the relative impact that this equation
of state inconsistency has on the disc’s entropy profile. A fully
self-consistent model would have identical GRMHD and TLUSTY

gas entropy profiles. It appears that well outside the ISCO, the
assumption that the gas cools towards a fixed entropy is supported
by the radiative transfer calculations of TLUSTY (Compare the flat
plateaus in Fig. 14). However, Fig. 14 shows that the GRMHD
(solid) and TLUSTY (dotted) discs reach different constant entropies.
The alternate disc cooling model (dashed) discussed in Section 7.2
yields annuli which are more self-consistent with the simulation
entropy profile (compare dashed lines and solid lines in Fig. 14,
which now track each other fairly well outside the ISCO).

Figure 14. GRMHD versus TLUSTY vertically averaged specific gas en-
tropy profiles (relative to the entropy at the horizon shor). The dimen-
sionless entropy is computed using an ideal gas equation of state, where
s = ( k

μ
) 1

�−1 ln(pgas/ρ
�). The TLUSTY lines (dotted) denote the gas en-

tropy as computed from the TLUSTY annuli vertical structure. The TLUSTY2
lines (dashed) represent annuli that comprise the GRMHD2 disc model
(described in Section 7.2 and Appendix D).

8 SU M M A RY

The primary goal of this work is to determine how important the
neglected light from the plunging region is in the context of BH
spin measurements. To answer this question, we rely on GRMHD
disc simulations of Penna et al. (2010), which capture all but the
radiation physics for magnetized flow around a BH. We seek to
convert these dimensionless simulations into a form that can be
directly compared with observations, namely the accretion discs’
X-ray continuum spectra.

To do this, we apply radiative transfer post-processing on the
simulated discs. This is an advance over previous work on comput-
ing GRMHD disc spectra (i.e. K2011), which assumes (modified)
blackbody annuli spectra. We slice the GRMHD disc into many in-
dividual annuli, and for each annulus, we apply a one-dimensional
radiative transfer calculation to solve for its emergent spectrum. We
sum up this collection of local spectra by means of ray tracing to get
the full disc spectrum, which we then compare with contemporary
disc models used to measure BH spin. The following are the key
results from this work.

(1) The GRMHD-based accretion discs have hotter spectra than
the standard NT discs. The GRMHD discs produce more luminosity
everywhere, and the contrast becomes most apparent inside the
ISCO (see Fig. 1).

(2) The increased luminosity of the GRMHD discs compared to
the classic NT discs induces a modest systematic bias in the derived
spins of these GRMHD discs. For BHs of spin a∗ = 0, 0.7, 0.9 the
spin deviation is �a∗ ∼ 0.15, 0.07, 0.03 in the worst cases (corre-
sponding to inclination angles of 75◦). We remark that these errors
are well within observational uncertainties (i.e. from not precisely
knowing the system’s mass, inclination and distance; see Table 3).

(3) Without needing to invoke an external corona, the GRMHD
discs around spinning BHs exhibit a weak high-energy power-law
tail (Fig. 9). This power-law tail arises from the combined emission
of the hot plunging region gas. The strength of this plunging region
power law increases with the system’s inclination angle.

In our spectral modelling approach, we have made many sim-
plifications and assumptions (see Section 7), some of which may
be incorrect close to the BH horizon. Because of these problems,
we trust the power laws presented here only to a qualitative level
– we only trust that the plunging region fluid emits at much higher
energies than the disc, which adds a non-thermal component to the
overall spectrum at high energies.
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A P P E N D I X A : L U M I N O S I T Y MAT C H I N G
M O D E L

The functional form of the matching flux profile is given below (see
Page & Thorne 1974, hereafter PT; K2011):

f (r) = fPT(r) − [(E† − �L†)2/�,r ]rie

[(E† − �L†)2/�,r ]r
fPT(rie)

−
[

�,r

(E† − �L†)2

]
r

C, when r > rie, (A1)

where f (r) = 4πrFcom(r)/Ṁ is the dimensionless flux, L†, E†,
� are the specific angular momentum, energy-at-infinity, angular
velocity (given by equations 15f–h of PT), f PT is the flux from
the Page and Thorne model (equation 15n of PT) and C is a free
parameter that is determined by the torque at the inner disc boundary.
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The task now is to find an appropriate value of C such that
the GRMHD flux and equation (A1) match at rie. For simplicity,
we factor out the radial dependence from the last two terms of
equation (A1) to get

f (r) = fPT(r) −
[

�,r

(E† − �L†)2

]
r

K, (A2)

where K ≡ {
[(E† − �L†)2/�,r ]riefPT(rie) − C

}
is just another

constant. To ensure continuity in the flux profile at rie, we require
K to be

K =
[

(E† − �L†)2

�,r

]
rie

[fGRMHD(rie) − fPT(rie)] . (A3)

Thus, our final matched flux profile is given by

σSBTeff (r)4 =
{ 1

−4πrut

dLBL(r)
dr

, r ≤ rie,

Ṁ
4πr

f (r), r > rie, (A4b)

(A4a)

where LBL(r) is the Boyer–Lindquist luminosity profile measured
from the GRMHD simulations, and f (r) is the dimensionless flux
as shown in equation (A2).

A P P E N D I X B: G E N E R A L I Z E D N OV I KOV
A N D T H O R N E M O D E L

To get the generalized NT column density and radial velocity profile
far out in the disc (to extend the GRMHD simulated disc beyond
rie), we solve the following set of vertical structure equations (with
a one-zone model for the vertical structure).

(i) Vertical pressure balance

dPtot

dz
= ρg⊥

has the vertically integrated form of

Ptot

h
= ρQh, (B1a)

where h is the vertical scale height, and Q = g⊥/z is the prescription
for the local vertical gravity (as defined in equation 7).

(ii) Radiative transfer
From the second moment of radiative transfer equation (see sec-

tion 1.8 of Rybicki & Lightman 1979):

dPrad

dτ
= Frad

c
,

we transform the dτ optical depth differential to a column mass
differential dm via dτ = κ dm, where κ is the Rosseland mean
opacity. We integrate the column mass from the surface to the disc
midplane (from m = 0 to m = mtot = �/2). We also assume that the
flux profile linearly increases with mass away from the midplane
(i.e. F(m) = Ftot(1 − m/mtot) – this linearity assumption is also used
in TLUSTY). The vertically integrated radiative diffusion equation
thus becomes

Prad = aT 4

3
= Ftotκ�

4c
, (B1b)

where a is the radiation constant, and T is radiation temperature.
Note the factor 2 discrepancy in equation (B1b) compared to the
standard prescription for radiative diffusion stems from the linearity
assumption in F(m).

(iii) Stress
We adopt an α prescription for the stress where tφ̂r̂ = αptot.

Vertical integration yields

W ≡
∫ h

−h

tφ̂r̂ dz = 2 hαPtot. (B1c)

(iv) Viscous heating
Through the energy equation for viscous heating, it is possible to

link the heating flux with the vertically integrated stress (cf. 5.6.7-12
of NT). The resulting expression is

Ftot = 3

4
�kRF(r)W, (B1d)

with the dimensionless relativistic factor RF(r) defined as

RF(r) = 1 − 2/r∗ + a2
∗/r

2
∗

1 − 3/r∗ + 2a∗/r
3/2
∗

.

(v) Equation of state
We ignore magnetic pressure in this analysis, and adopt an ideal

gas equation of state, yielding

Ptot = ρkBT

μ
+ aT 4

3
, (B1e)

where μ is the mean particle weight of the fluid.
(vi) Column density
In this one-zone model, the column density represents the quan-

tity

� =
∫ h

−h

ρ dz = 2hρ. (B1f)

Our goal is to solve equations (B1) with unknowns (Ptot, ρ, T , �,
h), given the values of (κ , μ, α, Ftot, Q, M, r). After some algebra,
we obtain an expression for � that solves equations (B1). We find
� by solving for the real root of the following polynomial in x:

(F1)2 −
[

F1

4F3

]
x4 −

[
2

(
3

8

)1/4

F1F2

]
x5

+
[(

3

8

)1/2

(F2)2

]
x10 = 0, (B2)

where x = �1/4 and the polynomial coefficients F1, F2, F3 depend
only on the given values:

F1 = W

α
= 4Ftot

3αRF�k
, (B3a)

F2 =
(

κFtot

2σSB

)1/4 (
kB

μ

)
, (B3b)

F3 = c2Q

κ2F 2
tot

. (B3c)

We then solve equation (B2) at different radii to obtain �(r) for
(r > rie). We pick κ = κes = 0.3383 cm2 g−1 and μ = 0.615 mH,
which corresponds to a fluid composition of 70 per cent hydrogen,
30 per cent helium by mass. Given �(r), we get the mass averaged
radial velocity by solving for ũr in the mass conservation equation
Ṁ = 2πr�ũr .

A P P E N D I X C : IN T E R P O L AT I O N M E T H O D S

All interpolated quantities are computed by linear interpolation in
log space (i.e. for two variables x, and y, we interpolate linearly
on log (x) and log (y)). We have chosen this interpolation scheme
since it can perfectly capture all power-law scalings. For quanti-
ties obtained by interpolating on TLUSTY annuli (such as the annuli
vertical structure), we employ trilinear interpolation over the three
annuli parameters log (Teff ), log (�) and log (Q) (i.e. each parameter
is linearly interpolated separately in log space).
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The interpolation of spectra Iν is handled by a more complicated
method to account for the shape of the Planck function. For an opti-
cally thick medium with scattering, the resultant spectrum takes on
the form of a modified blackbody (cf. equation 2). Since the spectra
does not depend very sensitively on �, or Q, we apply the log-linear
interpolation discussed above for these two annuli parameters. For
Teff , we use a more complicated interpolation scheme. Rather than
follow Davis et al. (2005) (they applied a linear interpolation on the
brightness temperature, computed with a fixed spectral hardening
factor of f = 2.0), we switch between three different interpolation
methods that each work for all choices of f . The three methods are
applied to different frequency ranges of the spectrum.

(i) Method 1: at low frequencies, we have that Iv ∝ Teff in the
Raleigh–Jeans tail, and thus we can apply the linear interpolation
method.

(ii) Method 2: at high frequencies, we apply linear interpolation
on 1/Teff and log (Iν). The motivation is that for a blackbody-like
spectrum in the high-frequency Wien limit, the specific intensity as
a function of temperature scales as log (Iv) ∝ −1/Teff .

(iii) Method 3: for intermediate frequencies, we take a non-linear
combination of the two interpolation results so that the transition
between interpolation methods is smooth.

Denoting the interpolated intensities using methods 1 and 2 as I1(ν)
and I2(ν), respectively, the expression for the final combined inter-
polation method is

Iν(ν) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I1(ν), ν ≤ ν1,

exp
{

ln(ν2)−ln(ν)
ln(ν2)−ln(ν1) ln [I1( ν)]

+ ln(ν)−ln(ν1)
ln(ν2)−ln(ν1) ln [I2(ν)]

}
, ν1 < ν < ν2,

I2(ν), ν ≥ ν2.

We have set ν1 = 0.07 νmax and ν2 = 2.3 νmax, where νmax is the
frequency that maximizes Iν in the spectra of the lowest Teff annuli
in the bracketing set used for the interpolation. These frequency
boundary values were determined by minimizing the interpolation
error for a pure Planck function. For a perfect modified Planck func-
tion with constant f , the chosen ν1 and ν2 correspond to a maximum
interpolation error of 0.08 per cent in Iν for our grid with tempera-
ture spacings �log10(Teff ) = 0.1. In practice, the interpolation error
after interpolating over the three annuli parameters and emission
angle is ∼1 per cent (see Fig. C1), except for annuli in the plunging
region, where the flux error grows to ∼10 per cent (the assumption
of a constant f is violated for annuli in the plunging region). The
main advantage of this interpolation method is it provides interpo-
lated spectra that peak very close to the correct frequencies, and the
method works equally well across all spectral hardening factors.

A P P E N D I X D : A N A LT E R NAT I V E G R M H D
LUMINOSITY PROFILE

We wish to generate a disc luminosity profile that has the follow-
ing desirable properties: (1) it is based on the GRMHD dissipation
profile rather than cooling profile, and (2) it produces a disc whose
entropy profile is self-consistent with the TLUSTY annuli. We accom-
plish this task by considering the physics of energy advection. The
idea is to solve for the radiative cooling rate, taking into account
both the dissipative heating rate (measured from the GRMHD sim-
ulations) and the heat advection rate (computed using the vertical
structure from TLUSTY annuli). The energy balance equation relating

Figure C1. Comparison of annuli spectra obtained through the interpolation
method (solid) and an exact calculation (dashed) for the spin a∗ = 0.7 disc.
The black spectra represent annuli outside the plunging region, whereas the
red spectrum corresponds to a plunging region annulus.

these three quantities is

q̂adv = q̂heat − q̂cool, (D1)

where q̂adv is the advected heating rate per unit volume, q̂heat the
viscous heating rate per unit volume and q̂cool is the cooling rate
per unit volume (assumed to be purely radiative, i.e. we ignore
conduction and convection). We take the convention that all hatted
quantities are measured in the comoving frame of the fluid. The
advective heating rate is obtained by evaluating q̂adv = ρ̂T̂ (dŝ/dτ ),
where ρ̂ is the rest mass density, T̂ is the gas temperature, ŝ is the
specific gas entropy of the fluid and τ is the fluid’s proper time.
Making the approximation that we have stationary axisymmetric
flow that is devoid of motion perpendicular to the midplane, we have
dŝ/dτ = urdŝ/dr via the chain rule (dŝ/dr and ur are evaluated in
BL coordinates). Vertically integrating equation (D1) while making
use of q̂adv = ρ̂T̂ ur (dŝ/dr) yields

Q̂adv = Q̂sim
heat − Q̂cool (D2)

=
∫ +∞

z=−∞
ρ̂T̂ ur

(
dŝ

dr

)
dz, (D3)

where Q̂adv is the vertically integrated heat advection rate (evaluated
with TLUSTY vertical structure), Q̂sim

heat is the vertically integrated
viscous heating rate (measured from the GRMHD simulated discs)
and Q̂cool is the net radiative cooling flux that escapes. For simplicity
in equation (D3), we adopt the following constant mass-averaged
radial velocity:

ur =
∫ π

θ=0 ρ̂ur
sim

√−g dθ∫ π

θ=0 ρ̂
√−g dθ

, (D4)

where ur
sim represents the pointwise radial velocities measured from

GRMHD simulations.
Our goal is to find the value of Q̂cool that satisfies equation (D2),

given that we can measure Q̂sim
heat from the simulations and calculate

Q̂adv from equation (D3).
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D1 Obtaining Q̂sim
heat (the GRMHD dissipation profile)

Unfortunately, the GRMHD simulations that we ran were not set
up to directly keep track of the numerical dissipation Q̂sim

heat(r). De-
spite this lack of information, we can still estimate the dissipation
indirectly by running the argument in equation (D2) backwards; we
solve for the vertically integrated dissipative heating rate

Q̂sim
heat = Q̂sim

adv + Q̂sim
cool. (D5)

The ‘sim’ superscript is used to denote quantities derived solely
from the GRMHD simulations (i.e. these quantities are independent
of TLUSTY). Analogous to equation (D3), the vertically integrated13

GRMHD advective heating rate is obtained by

Q̂sim
adv =

∫ π

θ=0
ρ̂T̂

(
dŝ

dr

)
ur

√−g dθ. (D6)

For simplicity, we first apply azimuthal and time averaging to all
simulation quantities used in equation (D6). Since the GRMHD
simulations are dimensionless (k/μ = 1) and employ an ideal
gas equation of state, we have that T̂ = P̂gas/ρ̂, and ŝ = (� −
1)−1 ln(P̂gas/ρ̂

�). The GRMHD cooling flux is simply Q̂sim
cool = Fcom,

where Fcom is the comoving disc flux, as given by equation (4).

D2 Net result of the luminosity calculation

The final goal is to solve for the value of Q̂cool that satisfies equa-
tion (D2). The physical interpretation of this newly derived Q̂cool

is simply the cooling rate corresponding to a disc with the vertical
structure given by TLUSTY that is heated up according to the GRMHD
dissipation profile. Putting everything together, substituting equa-

13 To maintain consistency with the simulation cooling flux Q̂sim
cool (as cal-

culated by equations 3 and 4, which only considers bound disc fluid), the
integral in equation (D6) is likewise only taken over the bound fluid.

tion (D5) for Q̂sim
heat into equation (D2) gives Q̂cool as

Q̂cool = Q̂sim
cool + Q̂sim

adv − Q̂adv. (D7)

Q̂sim
adv and Q̂sim

cool are computed from equations (D6) and (4), respec-
tively. Q̂adv uses the TLUSTY vertical structure, and is evaluated via
equation (D3). However, the process of locating the correct value
for Q̂cool that solves equation (D7) is complicated by two factors.

(i) Q̂adv on the right-hand side is a function of Q̂cool. Q̂adv indi-
rectly depends on Q̂cool through the annuli vertical structure (since
T̂eff = [Q̂cool/σSB]1/4 is an annuli parameter). The strategy that we
employ to find the correct Q̂cool is a bisection method; we start with
the two initial guesses for Q̂cool that bracket the relation in equa-
tion (D7) (which we have empirically found to be monotonic with
Q̂cool). We then bisect on this Q̂cool interval until equation (D7) is
satisfied.

(ii) To compute the dŝ/dr term, we need to know Q̂cool (or
equivalently T̂eff ) for two neighbouring annuli. However, the process
outlined above (in point 1) only lets us solve Q̂cool for a single
annulus. The resolution to this problem is to choose a value of Q̂cool

for the outermost annulus as a boundary condition. If there are a
total of N annuli, then given Q̂cool for the Nth annuli, we can solve
Q̂cool for the (N − 1)th annuli. This process can be iterated to obtain
Q̂cool for all remaining interior annuli. We set Q̂cool = Q̂heat as the
boundary condition for our outermost annuli since far into the disc,
energy advection becomes negligible (in other words, Q̂adv → 0 far
out in the disc, which implies Q̂cool → Q̂heat from equation D2).

Running through the above two steps allows us to solve for Q̂cool,
and hence obtain a second measure of the disc luminosity (labelled
as GRMHD2 in all plots and tables). Note that the GRMHD2 model
is more self-consistent with TLUSTY in Fig. 14. The TLUSTY2 model
(computed from the newly derived GRMHD2 disc luminosities) and
the intrinsic GRMHD entropy profiles agree fairly well when r >

rISCO.
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