
The global distribution and burden of dengue

Citation
Bhatt, S., P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow, C. L. Moyes, J. M. Drake, et al. 
2013. “The global distribution and burden of dengue.” Nature 496 (7446): 504-507. doi:10.1038/
nature12060. http://dx.doi.org/10.1038/nature12060.

Published Version
doi:10.1038/nature12060

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11878919

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:11878919
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=The%20global%20distribution%20and%20burden%20of%20dengue&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=0201cfe8a3e643e84bcfdfbab2b34f34&department
https://dash.harvard.edu/pages/accessibility


The global distribution and burden of dengue

Samir Bhatt1, Peter W. Gething1, Oliver J. Brady1,2, Jane P. Messina1, Andrew W. Farlow1,
Catherine L. Moyes1, John M. Drake1,3, John S. Brownstein4, Anne G. Hoen5, Osman
Sankoh6,7,8, Monica F. Myers1, Dylan B. George9, Thomas Jaenisch10, G.R. William
Wint1,11, Cameron P. Simmons12,13, Thomas W. Scott9,14, Jeremy J. Farrar12,13,15, and
Simon I. Hay1,9

1Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University
of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
2Oxitec Limited, Milton Park, Abingdon OX14 4RX, United Kingdom.
3Odum School of Ecology, University of Georgia, Athens, Georgia 30602, United States of
America.
4Department of Pediatrics, Harvard Medical School and Children’s Hospital Informatics Program,
Boston Children’s Hospital, Boston, Massachusetts 02115, United States of America.
5Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College,
Hanover, New Hampshire 03755, United States of America.
6INDEPTH Network Secretariat, East Legon, P.O. Box KD 213, Accra, Ghana.
7School of Public Health, University of the Witwatersrand, Braamfontein 2000, Johannesburg,
South Africa.
8Institute of Public Health, Heidelberg University, Heidelberg, Germany.
9Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892, United
States of America.
10Section Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University
Hospital, INF 324, D 69120 Heidelberg, Germany.
11Environmental Research Group Oxford (ERGO), Tinbergen Building, Department of Zoology,
University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
12Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City,
Vietnam.
13Centre for Tropical Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, United
Kingdom.
14Department of Entomology, University of California Davis, Davis, California 95616, United
States of America.

Correspondence and requests for materials should be addressed to SIH (simon.hay@zoo.ox.ac.uk). .

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Author Contributions SIH and JJF conceived the research. SB and SIH drafted the manuscript. SB drafted the supplemental material
with significant support on A (OJB, CLM), B (JPM, GRWW), C (PWG), D (OJB, TWS) and OJB wrote E. JSB and AGH provided
Healthmap occurrence data and advice on its provenance. OJB reviewed all the occurrence data. SB did the modelling and analysis
with advice from JMD, PWG and SIH. JPM created all maps. All authors discussed the results and contributed to the revision of the
final manuscript.

Author Information Reprints and permission information is available at www.nature.com/reprints.

NIH Public Access
Author Manuscript
Nature. Author manuscript; available in PMC 2013 October 25.

Published in final edited form as:
Nature. 2013 April 25; 496(7446): 504–507. doi:10.1038/nature12060.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.nature.com/nature
http://www.nature.com/reprints


15Department of Medicine, National University of Singapore, Singapore.

Abstract
Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes1. For some
patients dengue is a life-threatening illness2. There are currently no licensed vaccines or specific
therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global
spread3. The contemporary worldwide distribution of the risk of dengue virus infection4 and its
public health burden are poorly known2,5. Here we undertake an exhaustive assembly of known
records of dengue occurrence worldwide, and use a formal modelling framework to map the
global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal
information from dengue cohort studies and population surfaces to infer the public health burden
of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial
variations in risk influenced strongly by rainfall, temperature and the degree of urbanisation.
Using cartographic approaches, we estimate there to be 390 million (95 percent credible interval
284-528) dengue infections per year, of which 96 million (67-136) manifest apparently (any level
of clinical or sub-clinical severity). This infection total is more than three times the dengue burden
estimate of the World Health Organization2. Stratification of our estimates by country allows
comparison with national dengue reporting, after taking into account the probability of an apparent
infection being formally reported. The most notable differences are discussed. These new risk
maps and infection estimates provide novel insights into the global, regional and national public
health burden imposed by dengue. We anticipate that they will provide a starting point for a wider
discussion about the global impact of this disease and will help guide improvements in disease
control strategies using vaccine, drug and vector control methods and in their economic
evaluation. [285]

Dengue is an acute systemic viral disease that has established itself globally in both endemic
and epidemic transmission cycles. Dengue virus infection in humans is often inapparent1,6

but can lead to a wide range of clinical manifestations, from mild fever to potentially fatal
dengue shock syndrome2. The lifelong immunity developed after infection with one of the
four virus types is type-specific1 and progression to more serious disease is frequently, but
not exclusively, associated with secondary infection by heterologous types2,5. No effective
antiviral agents yet exist to treat dengue infection and treatment therefore remains
supportive2. Furthermore, no licensed vaccine against dengue infection is available, and the
most advanced dengue vaccine candidate did not meet expectations in a recent large trial7,8.
Current efforts to curb dengue transmission focus on the vector, using combinations of
chemical and biological targeting of Aedes mosquitoes and management of breeding sites2.
These control efforts have failed to stem the increasing incidence of dengue fever epidemics
and expansion of the geographical range of endemic transmission9. While the historical
expansion of this disease is well documented, the potentially large burden of ill-health
attributable to dengue across much of the tropical and sub-tropical world remains poorly
enumerated.

Knowledge of the geographical distribution and burden of dengue is essential for
understanding its contribution to global morbidity and mortality burdens, in determining
how to allocate optimally the limited resources available for dengue control and in
evaluating the impact of such activities internationally. Additionally, estimates of both
apparent and inapparent infection distributions form a key requirement for assessing clinical
surveillance and for scoping reliably future vaccine demand and delivery strategies.
Previous maps of dengue risk have used various approaches combining historical occurrence
records and expert opinion to demarcate areas at endemic risk10-12. More sophisticated risk
mapping techniques have also been implemented13,14, but the empirical evidence-base has
since been improved, alongside advances in disease modelling approaches. Furthermore, no
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studies have used a continuous global risk map as the foundation for dengue burden
estimation.

The first global estimates of total dengue virus infections were based on an assumed
constant annual infection rate amongst a crude approximation of the population at risk (10%
in 1 billion5 or 4% in 2 billion15), yielding figures of 80-100 million infections per year
worldwide in 19885,15. As more information was collated on the ratio of dengue
haemorrhagic fever to dengue fever cases and the ratio of deaths to dengue haemorrhagic
fever cases, the global figure was revised to 50-100 million infections16,17, although larger
estimates of 100-200 million have also been made10 (Figure 1). These estimates were
intended solely as approximations but, in the absence of better evidence, the resulting figure
of 50-100 million infections per year is widely cited and currently used by the World Health
Organization (WHO). As the methods employed were informal, these estimates were
presented without confidence intervals, and no attempt was made to assess geographical or
temporal variation in incidence or the inapparent infection reservoir.

Here we present the outcome of a new project to derive an evidence-based map of dengue
risk and estimates of apparent and inapparent infections worldwide based on the global
population in 2010. We compiled a database of 8,309 geo-located records of dengue
occurrence from a systematic search, resulting from 2,838 published literature sources as
well as newer online resources18 (see Supplementary Information A; the full bibliography4

and occurrence data are available from authors on request). Using these occurrence records
we: chose a set of gridded environmental and socioeconomic covariates known, or
hypothesised, to affect dengue transmission (see Supplementary Information B);
incorporated recent work assessing the strength of evidence on national and sub-national-
level dengue present/absent status4 (Figure 2A); and built a boosted regression tree (BRT)
statistical model of dengue risk that addressed the limitations of previous risk maps (see
Supplementary Information C) to define the probability of occurrence of dengue infection
(dengue risk) within each 5km × 5km pixel globally (Figure 2B). The model was run 336
times to reflect parameter uncertainty and an ensemble mean map was created (see
Supplementary Information C). We then combined this ensemble map with detailed
longitudinal information on dengue infection incidence from cohort studies and built a non-
parametric Bayesian hierarchical model to describe the relationship between dengue risk and
incidence (see Supplementary Information D). Finally, we used the estimated relationship to
predict the number of apparent and inapparent dengue infections in 2010 (see
Supplementary Information E). Our definition of an apparent infection is consistent with that
used by the cohort studies: an infection with sufficient severity to modify a person’s regular
schedule, such as attending school. This definition encompasses any level of severity of the
disease, including both clinical and sub-clinical manifestations.

We predict that dengue transmission is ubiquitous throughout the tropics with the highest
risk zones in the Americas and Asia (Figure 2B). Validation statistics indicated high
predictive performance of the BRT ensemble mean map with area under the receiver
operating characteristic (AUC) of 0.81 (±0.02 SD, n = 336) (see Supplementary Information
C). Predicted risk in Africa, though more unevenly distributed than in other tropical endemic
regions, is much more widespread than suggested previously. Africa has the poorest record
of occurrence data and, as such, increased information from this continent would help to
better define the spatial distribution of dengue within it and to improve derivative burden
estimates. We found high levels of precipitation and temperature suitability for dengue
transmission to be most strongly associated among the variables considered with elevated
dengue risk, although low precipitation was not found to strongly limit transmission (see
Supplementary Information C). Proximity to low-income urban and peri-urban centres was
also linked to greater risk, particularly in highly connected areas, suggesting that human
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movement between population centres is an important facilitator of dengue spread. These
associations have previously been cited9, but have not been demonstrated at the global scale
and highlight the importance of including socioeconomic covariates when assessing dengue
risk.

We estimate that there were 96 million apparent dengue infections globally in 2010 (Table
1). Asia bore 70% (67 [47-94] million infections) of this burden, and is characterised by
large swathes of densely populated regions coinciding with very high suitability for disease
transmission. India19,20 alone contributed 34% (33 [24-44] million infections) of the global
total. The disproportionate infection burden borne by Asian countries is emphasized in the
cartogram shown in Figure 2C. The Americas contributed 14% (13 [9-18] million
infections) of apparent infections worldwide, of which over half occurred in Brazil and
Mexico. Our results indicate that Africa’s dengue burden is nearly equivalent to that of the
Americas (16 (11–22) million infections, 16% of the global total), representing a
significantly larger burden than previously estimated. This disparity supports the notion of a
largely hidden African dengue burden, being masked by symptomatically similar illnesses,
under-reporting and highly variable treatment-seeking behaviour6,9,20. The countries of
Oceania contributed less than 0.2% of global apparent infections.

We estimate that an additional 294 (217–392) million inapparent infections occurred
worldwide in 2010. These mild ambulatory or asymptomatic infections are not detected by
the public health surveillance system and have no immediate implications for clinical
management. However, the presence of this huge potential reservoir of infection has
profound implications for: (i) correctly enumerating economic impact (for example, how
many vaccinations are needed to avert an apparent infection) and triangulating with
independent assessments of disability adjusted life years (DALYs)21; (ii) elucidating the
population dynamics of dengue viruses22; and (iii) hypothesising about population effects of
future vaccine programmes23 (volume, targeting efficacy, impacts in combination with
vector control), which will need to be administered to maximise cross-protection and
minimize post-vaccination susceptibility.

The absolute uncertainties in the national burden estimates are inevitably a function of
population size, with the greatest uncertainties in India, Indonesia, Brazil and China (see full
rankings in Supplementary E table T4). In addition, comparing the ratio of the mean to the
width of the confidence interval24 revealed the greatest contributors to relative uncertainty
(see full rankings in Supplementary E table T4). These were countries with sparse
occurrence points and low evidence consensus on dengue presence, such as Afghanistan or
Rwanda (see Figure 2A), or those with ubiquitous high risk, such as Singapore or Djibouti,
for which our burden prediction confidence interval is at its widest (see Figure SD2 in
Supplementary D). Therefore, increasing evidence consensus and occurrence data
availability in low consensus countries and assembling new cohort studies, particularly in
areas of high transmission, will reduce uncertainty in future burden estimates. Our approach,
uniquely, provides new evidence to help maximize the value and cost-effectiveness of
surveillance efforts, by indicating where limited resources can be targeted to have their
maximum possible impact in improving our knowledge of the global burden and distribution
of dengue.

Our estimates of total infection burden (apparent and inapparent) are more than three times
higher than the WHO predicted figure (Supplementary Information E). Our definition of an
apparent infection is broad, encompassing any disruption to the daily routine of the infected
individual, and consequently is an inclusive measurement of the total population affected
adversely by the disease. Within this broad class, the severity of symptoms will affect
treatment-seeking behaviours and the probability of a correct diagnosis in response to a
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given infection. Our definition is therefore more comprehensive than those of traditional
surveillance systems, which, even in the most efficient system, report a much narrower
range of dengue infections. By reviewing our database of longitudinal cohort studies, in
which total infections in the community were documented exhaustively, we find that the
biggest source of disparity between actual and reported infection numbers is the low
proportion of individuals with apparent infections seeking care from formal health facilities
(see Figure SE5 and Supplementary Information E for full analysis). Additional biases are
introduced by misdiagnosis and the systematic failure of health management information
systems to capture and report presenting dengue cases. By extracting the average magnitude
of each of these sequential disparities from published cohort and clinical studies, we can
recreate a hypothetical reporting chain with idealised reporting and arrive at estimates that
are broadly comparable to those countries reported to the WHO. This is most clear in more
reliable reporting regions such as the Americas. Systemic underreporting and low
hospitalisation rates have important implications, for example, in the evaluation of vaccine
efficacy based on reduced hospitalised caseloads. Inferences about these biases may be
made from the comparison of estimated versus reported infection burdens in 2010,
highlighting areas where particularly poor reporting might be strengthened (see
Supplementary Information E).

We have strived to be exhaustive in the assembly of contemporary data on dengue
occurrence and clinical incidence and have applied new modelling approaches to maximise
the predictive power of these data. It remains the case, however, that the empirical evidence
base for global dengue risk is more limited than that available, for example, for Plasmodium
falciparum25 and P. vivax26 malaria. Records of disease occurrence carry less information
than those of prevalence and, as databases of the latter become more widespread, future
approaches should focus on assessing relationships between seroprevalence and clinical
incidence as a means of assessing risk27. Additional cartographic refinements are also
required to help differentiate endemic- from epidemic-prone areas, to determine the
geographic diversity of dengue virus types and to predict the distributions of future risk
under scenarios of socioeconomic and environmental change.

The global burden of dengue is formidable and represents a growing challenge to public
health officials and policymakers. Success in tackling this growing global threat is, in part,
contingent on strengthening the evidence base on which control planning decisions and their
impact are evaluated. It is hoped that this evaluation of contemporary dengue risk
distribution and burden will help to advance that goal. [1935].

Methods
Assembly of the occurrence database and its quality control

Occurrence data comprised of point or polygon locations of confirmed dengue infection
presence derived from both peer-reviewed literature and HealthMap alerts18,31 (see
Supplementary Information A). An occurrence was defined as one or more laboratory or
clinically confirmed infection(s) of dengue occurring at a unique location (a 5km × 5km
pixel) within one calendar year. All occurrence data underwent manual review and
automatic quality control to ensure information fidelity and precise geo-positioning. In total,
9,648 and 1,622 occurrence locations were obtained from literature searches and HealthMap
respectively. After the quality control procedures, our final dataset contained 8,309
occurrence locations (5,216 point locations and 3,093 small polygon centroids) spanning a
period from 1960 to 2012. We assume any record of dengue occurrence, regardless of its
age, represented an environment permissible for the disease, since dengue has expanded
from a focal disease in Asia to a cosmopolitan disease of the tropics.
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Explanatory covariates
We assembled gridded global data for a suite of eight explanatory covariates. The covariates
were chosen based on factors known or hypothesised to contribute to suitability for dengue
transmission (see Supplementary Information B). These covariates included: (i) annual
maximum and minimum precipitation variables from a Fourier processed32 synoptic annual
series interpolated from global meteorological stations33; (ii) a biological model combining
the effects of temperature on the extrinsic incubation period of dengue virus and life-span of
the Aedes aegypti vector to quantify the dengue-specific temperature suitability for
transmission28,34,35; (iii) Fourier-processed annual average normalised difference vegetation
index36 (iv); categorical demarcations of urban and peri-urban areas37; (v) an urban
accessibility metric defining the travel time to nearest city of 50,000 people or more by land-
or water-based travel38; and (vi) an indicator of relative poverty derived from the finest
geographic scale data available for economic productivity and adjusted for purchasing
power parity39. No covariate grids were shown to be adversely affected by multicollinearity
(see Supplementary Information B) and were standardised to ensure identical spatial
resolution, extent and boundaries. For point records, covariate values corresponded to the
pixel value containing the location of the point. For polygon occurrence records, covariate
values were averaged across the whole polygon.

Predicting the probability of occurrence (risk) of dengue transmission
We used a boosted regression tree (BRT) approach to establish a multivariate empirical
relationship between the probability of occurrence of a dengue virus infection and the
environmental conditions sampled at each site from the covariate suite. The BRT method
has been shown to fit complicated response functions efficiently, while guarding against
overfitting, and is therefore widely used for vector and disease distribution mapping40,41.
The BRT approach combines regression trees42 with gradient boosting43, whereby an initial
regression tree is fitted and iteratively improved upon in a forward stagewise manner
(boosting) by minimising the variation in the response not explained by the model at each
iteration (see Supplementary Information C).

Like other niche mapping approaches, the BRT models require not only presence data but
also absence data defining areas of disease absence and potentially unsuitable environmental
conditions at unsampled locations. Since data on absence of disease are not-definitive,
pseudo-absence data estimate areas of disease absence instead. No consensus approach has
been developed to optimise the generation of pseudo-absence data and we therefore created
an evidence-based probabilistic framework for generating pseudo-absences, incorporating
the main biasing factors in pseudo-absence generation, namely: (i) geographical extent; (ii)
number; (iii) contamination bias; and (iv) sampling bias. To represent areas of absence, na
pseudo-absence points29,44,45 were randomly generated based on dengue presence or
absence certainty measures at a national or subnational level4. Pseudo-absence locations
were restricted to a maximum distance μ from any recorded presence site46,47. Additionally,
to compensate for “contamination” of true but unobserved presences within the generated
pseudo-absences48, np pseudo-presence points were generated using the same procedure
used to generate the pseudo-absences. Variation in the parameter set π = {μ, μa, μp}
resulted in independent samples of the possible states of the real distribution, with all
parameter combinations representing a null distribution of possible states. Therefore, rather
than using an individual parameter combination from π, we created an ensemble49 of 336
BRT models spanning reasonable ranges in π and evaluated the central tendency as the
mean across all 336 BRT models (see Supplementary Information C). The final ensemble
BRT model was used to predict a global map of the probability of occurrence of dengue
virus infection at a 5km × 5km resolution.
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Estimation of dengue burden and populations at risk
Formal literature searches were conducted for serological dengue virus incidence surveys.
Inclusion criteria were restricted to longitudinal surveys of seroconversion to dengue virus-
specific antibodies carried out in parallel with active symptom surveillance in a defined
cohort. The surveys were abstracted, standardised and geopositioned (see Supplementary
Information D). In total, 54 dengue incidence surveys were collected. Of these, 39 contained
information about the ratio of inapparent to apparent infections.

The empirical relationship between incidence and the probability of occurrence was
represented using a Bayesian hierarchical model. We defined a negative binomial likelihood
function50 with constant dispersion and a rate characterised by a highly flexible data-driven
Gaussian process prior51. The Gaussian process prior was parameterised with a quadratic
mean function and a squared exponential covariance function51. Uninformative hyperpriors
were assigned hierarchically to the prior parameters and the full posterior distribution
determined by Markov Chain Monte Carlo (MCMC) sampling52. The entire model was
fitted separately for apparent and inapparent infection incidences, with missing inapparent to
apparent ratio values imputed in the MCMC. Using human population gridded data for the
year 201053, estimates of apparent and inapparent dengue infections were calculated
nationally, regionally and globally. These estimates were then compared to national clinical
cases reported to the WHO and differences between our cartographic estimates and the
WHO surveillance estimates were reconciled in a comparative analysis addressing key
factors in traditional surveillance underreporting (see Supplementary Information E). [973].
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Global estimates of total dengue infections
Comparison of previous estimates of total global dengue infections in individuals of all ages,
1985 to 2010:  Halstead et al. 19885,  Monath et al. 199415,  Rodhain et al. 199617, 
Rigau-Perez et al. 199816,  TDR/WHO. scientific working group 200630,  Beatty et al.
200910,  apparent infections from this study. Estimates are aligned to the year of estimate
and, if not stated, aligned to the publication date. Red shading marks the credible interval of
our current estimate, for comparison. Error bars from ref. 10 and ref. 16 replicated the
confidence intervals provided in these publications.
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Figure 2. Global evidence consensus, risk and burden of dengue in 2010
a, shows National and subnational evidence consensus on complete absence (green) through
to complete presence (red) of dengue4. b, shows the probability of dengue occurrence at
5km × 5km spatial resolution of the mean predicted map (area under the receiver operator
curve of 0.81 (±0.02 SD, n = 336)) from 336 boosted regression tree models. Areas with a
high probability of dengue occurrence are shown in red and areas with a low probability in
green. c, shows a cartogram of the annual number of infections for all ages as a proportion
of national or sub-national (China) geographical area.
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Table 1

Estimated burden of dengue in 2010, by continent

Apparent Inapparent

Millions (credible interval) Millions (credible interval)

Africa 15.7 (10.5 - 22.5) 48.4 (34.3 - 65.2)

Asia 66.8 (47.0 – 94.4) 204.4 (151.8 – 273.0)

Americas 13.3 (9.5 - 18.5) 40.5 (30.5 - 53.3)

Oceania 0.18 (0.11 - 0.28) 0.55 (0.35 - 0.82)

Global 96 (67.1 - 135.6) 293.9 (217.0 – 392.3)
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