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Background: Systematic differences in functional connectivity MRI metrics have
been consistently observed in autism, with predominantly decreased cortico-cortical
connectivity. Previous attempts at single subject classification in high-functioning autism
using whole brain point-to-point functional connectivity have yielded about 80% accurate
classification of autism vs. control subjects across a wide age range. We attempted to
replicate the method and results using the Autism Brain Imaging Data Exchange (ABIDE)
including resting state fMRI data obtained from 964 subjects and 16 separate international
sites.

Methods: For each of 964 subjects, we obtained pairwise functional connectivity
measurements from a lattice of 7266 regions of interest covering the gray matter
(26.4 million “connections”) after preprocessing that included motion and slice timing
correction, coregistration to an anatomic image, normalization to standard space, and
voxelwise removal by regression of motion parameters, soft tissue, CSF, and white matter
signals. Connections were grouped into multiple bins, and a leave-one-out classifier
was evaluated on connections comprising each set of bins. Age, age-squared, gender,
handedness, and site were included as covariates for the classifier.

Results: Classification accuracy significantly outperformed chance but was much lower
for multisite prediction than for previous single site results. As high as 60% accuracy was
obtained for whole brain classification, with the best accuracy from connections involving
regions of the default mode network, parahippocampaland fusiform gyri, insula, Wernicke
Area, and intraparietal sulcus. The classifier score was related to symptom severity, social
function, daily living skills, and verbal IQ. Classification accuracy was significantly higher
for sites with longer BOLD imaging times.

Conclusions: Multisite functional connectivity classification of autism outperformed
chance using a simple leave-one-out classifier, but exhibited poorer accuracy than for
single site results. Attempts to use multisite classifiers will likely require improved
classification algorithms, longer BOLD imaging times, and standardized acquisition
parameters for possible future clinical utility.

Keywords: functional connectivity, fcMRI, classification, autism, ABIDE

INTRODUCTION
Brain imagingclassification strategies of autism have used
information from structural MRI (Ecker et al., 2010a,b; Jiao
et al., 2010; Uddin et al., 2011; Calderoni et al., 2012; Sato
et al., 2013), functional MRI (Anderson et al., 2011d; Coutanche
et al., 2011; Wang et al., 2012), diffusion tensor MRI (Lange

et al., 2010; Ingalhalikar et al., 2011), positron emission tomog-
raphy (Duchesnay et al., 2011), and magnetoencephalography
(Roberts et al., 2010, 2011; Tsiaras et al., 2011; Khan et al.,
2013). Such approaches have been undertaken for several clini-
cal objectives. Sensitive and specific biomarkers for autism may
contribute potentially useful biological information to diagnosis,
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prognosis, and treatment decision-making. It is hoped that imag-
ing biomarkers may also help delineate subtypes of individu-
als with autism that may have common brain neuropathology
and respond to similar treatment strategies, although different
methodology will likely be required for subgrouping individu-
als than for classifying individuals by diagnosis. Such quantitative
biomarkers may also serve as a metric for biological efficacy
of potential behavioral or pharmacologic interventions. Finally,
imaging biomarkers may help identify pathophysiologic mecha-
nisms of autism in the brain that can guide investigations into the
specific neural circuits, developmental windows, and genetic or
environmental factors that may result in improved treatments.

Abnormal functional connectivity MRI (fcMRI) has been
among the most replicated imaging metrics in autism. The pro-
posed basis for fcMRI is that connected brain regions are likely
to exhibit synchronized neural activity, which can be detected as
covariance of slow fluctuations in Blood Oxygen Level Dependent
(BOLD) signal between the regions. Initial reports of decreased
functional connectivity in autism by three independent groups
(Just et al., 2004; Villalobos et al., 2005; Welchew et al., 2005) have
been followed by more than 50 primary reports of abnormal func-
tional connectivity in autism in the literature, derived from fMRI
data both in a resting state and acquired during cognitive tasks
(Anderson, 2013).

Most reports show decreases in connectivity between dis-
tant brain regions, including nodes of the brain’s default mode
network (Cherkassky et al., 2006; Kennedy and Courchesne,
2008; Wiggins et al., 2011), social brain regions (Gotts et al.,
2012; von dem Hagen et al., 2013), attentional regions (Koshino
et al., 2005), language regions (Dinstein et al., 2011), interhemi-
spheric homologues (Anderson et al., 2011a), and throughout
the brain (Anderson et al., 2011d). Nevertheless, some reports
have also shown abnormal increases in functional connectiv-
ity in autism (Muller et al., 2011) or unchanged connectivity
(Tyszka et al., 2013). In particular, higher correlation between
brain regions has been observed in negatively correlated connec-
tions (Anderson et al., 2011d), corticostriatal connections (Di
Martino et al., 2011),visual search regions (Keehn et al., 2013),
and brain network-level metrics (Anderson et al., 2013a; Lynch
et al., 2013).

Despite the large and growing body of reports of abnormal
functional connectivity in autism, uncertainty remains about the
spatial distribution of decreased and increased connectivity and
how this relates to the clinical heterogeneity of autism spectrum
disorders (ASD). One of the challenges for answering these ques-
tions has been fractionation of the available data into individual
site-specific studies with relatively small sample sizes. There is a
need for analysis of multisite datasets that can improve statistical
power, represent greater variance of disease and control sam-
ples, and allow replication across multiple sites with differential
subject recruitment, imaging parameters, and analysis methods.
Ultimately, clinically useful biomarkers will need to be repli-
cated in diverse acquisition conditions that reflect community
and academic imaging practices.

The advent of cooperative, publicly available datasets for
resting state functional MRI is an important step forward.
Multiple such datasets have now been released including the 1000

functional connectome project (Biswal et al., 2010), the ADHD
200 Consortium dataset (ADHD-200_Consortium, 2012), and
most recently the Autism Brain Imaging Data Exchange (ABIDE)
(Di Martino et al., 2013), consisting of images from 539 indi-
viduals with ASD and 573 typical control individuals, acquired
at 16 international sites. In the present study, we evaluate clas-
sification accuracy of whole-brain functional connectivity across
sites, and determine which abnormalities in connectivity across
the brain are most informative for predicting autism from typical
development, which imaging acquisition features lead to greatest
accuracy, whether functional connectivity abnormalities covary
with metrics of disease severity, and the extent to which abnormal
functional connectivity is replicated across sites.

MATERIALS AND METHODS
SUBJECT SAMPLE
ABIDE consists of 1112 datasets comprised of 539 autism and
573 typically developing individuals (Di Martino et al., 2013).
Each dataset consists of one or more resting fMRI acquisitions
and a volumetric MPRAGE image. All data are fully anonymized
in accordance with HIPAA guidelines, with analyses performed
in accordance with pre-approved procedures by the University of
Utah Institutional Review Board. All images were obtained with
informed consent according to procedures established by human
subjects research boards at each participating institution. Details
of acquisition, informed consent, and site-specific protocols are

Subject demographics for individuals satisfying inclusion cri-
teria are shown in Table 1. Six different testing batteries were
used to calculate verbal IQ and performance IQ, respectively.
In addition to the IQ measures, the following measures were
included in correlations with the classifier score (see Table 1
for summary of behavioral measures):the Social Responsiveness
Scale (Constantino et al., 2003) is a measure of social func-
tion and the Vineland Adaptive Behavior Scales (Sparrow et al.,
1984) is a measure of daily functioning. See the ABIDE web-
site for more information on the specific behavioral measures
used. For handedness, categorical handedness (i.e., right-handed,
left-handed, or ambidextrous) was used in the leave-one-out clas-
sifier (see details below). In the case that only a quantitative
handedness measure was reported, positive values were con-
verted to right-handed, negative values to left-handed, and a value
of zero to ambidextrous. Fifteen subjects lacked a categorical
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available at http://fcon_1000.projects.nitrc.org/indi/abide/.
Inclusion criteria for subjects were successful preprocessing

with manual visual inspection of normalization to MNI space
of MPRAGE, coregistration of BOLD and MPRAGE images, seg-
mentation of MPRAGE image, and full brain coverage from MNI
z > −35 to z < 70 on all BOLD images. Inclusion criteria for sites
were a total of at least 20 subjects meeting all other inclusion crite-
ria. A total of 964 subjects met all inclusion criteria (517 typically
developing subjects and 447 subjects with autism from 16 sites).
Each site followed different criteria for diagnosing patients with
autism or ascertaining typical development, however, the major-
ity of the sites used the Autism Diagnostic Observation Schedule
(Lord et al., 2000) and Autism Diagnostic Interview-Revised
(Lord et al., 1994). Specific diagnostic criteria for each site can
be found at fcon_1000.projects.nitrc.org/indi/abide/index.html.
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Table 1 | Subjects included from the ABIDE sample with demographic information.

Age ADI-R social ADI-R verbal ADOS total Verbal IQ Performance IQ SRS total Vineland

Number of
subjects

964 348 349 348 781 796 335 201

Control (426 M, 91 F) 0 0 32 413 425 160 80

Autism (396 M, 51 F) 348 349 316 367 371 175 121

Control mean
±SD

16.9 ± 7.56 NA NA 1.25 ± 1.37 112 ± 13.3 108 ± 13.3 21.2 ± 16.2 105 ± 11.6

(Control
range)

(6.47–56.2) NA NA (0–4) (67–147) (67–155) (0–103) (77–131)

Autism mean
±SD

16.6 ± 8.1 19.7 ± 5.65 15.9 ± 4.55 11.9 ± 3.81 105 ± 17.4 106 ± 17.2 91.6 ± 30.6 75 ± 13.2

(Autism
range)

(7–64) (2–30) (2–26) (2–22) (50–149) (59–157) (6–164) (41–106)

and quantitative measure of handedness. In those cases, a near-
est neighbor classification function (ClassificationKNN.m in
MATLAB) was used to assign categorical handedness. For the
classifier, 862 subjects were right-handed, 95 were left-handed,
and 7 were ambidextrous.

BOLD PREPROCESSING
Preprocessing was performed in MATLAB (Mathworks, Natick,
MA) using SPM8 (Wellcome Trust, London) software. The fol-
lowing sequence of preprocessing steps was performed:

(1) Slice timing correction.
(2) Realign and reslice correction of motion for each volume

relative to initial volume.
(3) Coregistration of BOLD images to MPRAGE anatomic

sequence.
(4) Normalization of MPRAGE to MNI template brain, with

normalization transformation also applied to coregistered
BOLD images.

(5) Segmentation of gray matter, white matter, and CSF com-
ponents of MPRAGE image (thorough clean).

(6) Voxelwisebandpass filter (0.001–0.1 Hz) and linear detrend

(a) The lower limit of 0.001 Hz was chosen in order to be
certain as much neural information was included as
possible (Anderson et al., 2013b). The linear detrend
removed much of the contribution of low frequencies
given the relatively short time series available in the
dataset.

(7) Extraction of mean time courses from the restriction masks
applied to BOLD images from ROIs consisting of:

(a) CSF segmented mask with bounding box −35 < x <

35, −60 < y < 30, 0 < z < 30.
(b) White matter segmented mask overlapping with 10 mm

radii spheres centered at x = −27, y = −7, z = 30,
x = 27, y = −7, z = 30.

(c) Mask of scalp and facial soft tissues (Anderson et al.,
2011b).

(8) Voxelwise regression using glmfit.m (MATLAB Statistics
Toolbox) software of CSF, WM, Soft tissue, and 6 motion
parameters from realignment step from time series of each
voxel of BOLD images.

(9) Motion scrubbing (Power et al., 2012) of framewise dis-
placement and DVARS with removal of volumes before
and after a root-mean-square displacement of >0.2 mm for
either parameter and concatenation of remaining volumes.
In 86.2% of the participants more than 50% of the volumes
remained after motion scrubbing. Among the remaining
participants with fewer than 50% retained volumes, the
majority belonged to the autism group (8.8%, compared to
5.0% from the typically developing group; p = 0.02). The
groups differed in the number of retained volumes when
considering the entire sample of 964 subjects (t = 4.11,
p < 0.001) and when considering only those with greater
than 50% of the volumes remaining (t = 2.04, p = 0.04).

(10) No spatial smoothing was performed. The global mean sig-
nal and gray matter time courses were not regressed from
voxelwise data (Saad et al., 2012, 2013; Jo et al., 2013).

ROI ANALYSIS
From preprocessed BOLD images for each subject, mean time
course was extracted from 7266 gray matter ROIs. These ROIs
from a lattice covering the gray.nii image (SPM8) from z = −35
to z = 70 at 5-mm resolution, with MNI coordinates of centroids
previously reported (Anderson et al., 2011d). The ROIs averaged
4.9 ± 1.3 standard deviation voxels in size for 3 mm isotropic
voxels. A 7266 × 7266 matrix of Fisher-transformed Pearson cor-
relation coefficients was obtained for each subject from the ROI
timecourses representing an association matrix of functional con-
nectivity in each subject between all pairs of ROIs. Each pair of
ROIs is termed a “connection” for the present analysis.
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LEAVE-ONE-OUT CLASSIFIER
The classification approach is summarized in Figure 1. Overall,
a leave-one-out classifier was used to generate a classification
score for each of the 964 subjects, leaving out one subject at a
time and calculating the classification score for the left out sub-
ject. The classification approach followed the approach reported
previously, with slight modifications (Anderson et al., 2011d).
First, the correlation measurements for the remaining 963 sub-
jects were extracted for one of the 26.4 million connections from
the 7266 × 7266 association matrix described above (Figure 1,
Step 1). Second, a general linear model was fit to the measure-
ments separately for autism (red fit line in Figure 1, Step 2) and
control subjects (black fit line in Figure 1, Step 2) for the given
connection with covariates of subject age, age-squared, gender,
and handedness. From these data, estimated values for the left out
subject for this connection were calculated based on the left out
subject’s age, gender, and handedness. A value was estimated sep-
arately from the remaining autism subjects (blue X in Figure 1,
Step 2) and remaining control subjects (green X in Figure 1,
Step 2).

Because each site used slightly different scanning hardware
and parameters that may systematically bias results, the estimated
values of the left out subject (blue and green X in Figure 1,
Step 2) were adjusted by adding the difference of the site’s mean
value for that connection (minus the left out subject) from the
mean value for that connection from all other sites. Finally, the
actual value for the left out subject for the connection (green
dot in Figure 1, Step 2) was subtracted from the estimated value
obtained from autism subjects (blue vertical line on Figure 1,
Step 2) and from the estimated value obtained from control sub-
jects (green vertical line in Figure 1, Step 2). The difference of
the absolute value of these two differences was then multiplied
by the F-statistic for the difference between the remaining autism
and control subjects. This process was iteratively carried out for
all 26.4 million connections and then averaged across the 7265
connections in which each of 7266 ROIs participates. Then the
averaged values for each of the 7266 ROIs were summed. The
summed value was equal to the classification score for the sub-
ject. More negative values for the classification score predict the
left out subject was a control subject, and more positive values
for classification score predict the left-out subject was an autism
subject.

BINS OF “CONNECTIONS”
Connections were grouped into bins in several different ways
to aggregate groups of connections to test for accuracy in dis-
criminating autism from control subjects. First, a measurement
of correlation strength was obtained for each connection from
961 independent subjects from the 1000 Functional Connectome
project using identical preprocessing steps (see y-axis of Figure 6).
Subjects included in this sample have been previously described
(Ferguson and Anderson, 2011). Second, Euclidean distance
between each pair of ROIs was calculated from the centroid coor-
dinates for the ROIs (see x-axis of Figure 6). Connections were
grouped into 2-dimensional bins based on the strength of the
correlation and the distance between the ROIs, with bin spac-
ing of 0.05 units of Fisher-transformed correlation and 5-mm

FIGURE 1 | Summary of classification approach. Step 1, Association
matrices corresponding to the intrinsic connectivity between each pair of
7266 gray matter regions (about 26.4 million connections) are estimated

(Continued)
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FIGURE 1 | Continued

for the leftoutsubject and the963 remainingsubjects.Step2,Plotdepictingan
example connection (i.e., single cell of the possible 26.4 million cells from the
association matrices in Step 1) for the 964 subjects. The plot includes axes for
correlation strength and age, however, the plot represents a multidimensional
space that includes age-squared, gender, and handedness as covariates.
Black line, fit line for the control group; red line, fit line for the autism group;
green data point, left out subject (a control subject in this example); green X,
estimated value for the control group; blue X, estimated value for autism
group; green vertical line, difference between actual connection strength
value for left out subject and estimated value for control group; blue vertical
line, difference between actual connection strength value for left out subject
and estimated value for autism group. Steps 3 and 4 are described in the text.

distance. The results for accurately classifying the subjects using
this binning system are summarized in Figure 6.

A separate binning scheme was performed during the evalu-
ation of a leave-one-out-classifier. For each left out subject, sets
of connections were calculated that satisfied a two-tailed t-test
between remaining autism and control subjects with p-values
less than 0.01, 0.001, 0.0001, and 0.00001. These sets of con-
nections varied slightly for each left out subject, since no data
that can reflect the value of the left-out subject’s connectivity
measurement can be used in the classifier.

Classification accuracy, sensitivity, and specificity were cal-
culated for the set of connections that differed between autism
and control subjects at p-values of 0.01, 0.001, 0.0001, 0.00001
(Figure 3A). We used this last binning system because there is
a tradeoff in using many connections in constructing the classi-
fier scores and using fewer but more informative connections. We
wanted to determine which thresholded bin yielded the highest
accuracy.

STATISTICAL ANALYSES
For each bin of connections, a vector of 964 classification scores
was obtained (one for each left out subject) and the classification
score was thresholded at 0 (in the case of the strength/Euclidean
distance bins, or at a threshold selected to optimize the area under
a receiver operating characteristic curve for the case of the bins
determined by p-values. Predicted diagnosis (autism vs. control)
was compared to the actual diagnosis of each left out subject, and
significant classification accuracy was determined by a binomial
distribution. For 964 subjects, predicting 509 subjects (52.8%)
correctly corresponded to an uncorrected p-value of less than
0.05, and predicting 531 subjects (55.1%) correctly corresponds
to p-value of less than 0.001. Two-proportion z-tests were used
to test the following: (1) whether there was a group difference in
the proportion of subjects with less than 50% of the BOLD vol-
umes remaining after motion scrubbing (results above in BOLD
preprocessing section), (2) whether classification accuracy differed
between the eyes open and eyes closed subjects, (3) whether clas-
sification accuracy differed between the male and female subjects,
and (4) whether accuracy increased when considering only those
subjects with greater than 50% of the BOLD volumes remaining
after motion scrubbing, rather than all 964 subjects. Two-sample
t-tests were used to determine if there was a group difference
in the number of remaining volumes (results above in BOLD
preprocessing section).

FIGURE 2 | Total accuracy, sensitivity, and specificity for leave-one-out

classifier in 964 subjects. The total accuracy, sensitivity, and specificity are
shown when all 26.4 million connections were included in the classifier and
then for different p-value thresholds that determine which connections are
included in the classifier.

RESULTS
First, we investigated the overall accuracy, sensitivity, and speci-
ficity of the leave-one-out classifier for all 964 subjects in
the ABIDE consortium (Figure 2) and the 16 data collection
sites individually (Figure 3). For the entire ABIDE consortium,
we achieved the highest overall accuracy (60.0%), sensitivity
(62.0%), and specificity (58.0%) when connections were included
in the classification algorithm if group differences for the connec-
tion met a p-value threshold of less than 10−4; whereas the lowest
accuracy (55.7%), sensitivity (57.1%), and specificity (54.4%)
were found when all 26.4 million connections were included in
the leave-one out classifier. When considering only those sub-
jects with greater than 50% of the BOLD volumes remaining
after motion scrubbing, the accuracy for the five different p-value
thresholds increased between 0.6% and 3.1%, although the dif-
ference was not significant compared to the accuracy for all 964
subjects (p > 0.18). No difference in classification accuracy was
found between subjects who had their eyes open during the scan
vs. those who had their eyes closed, after correcting for multi-
ple comparisons using an FDR of q < 0.05. Also, no difference in
classification accuracy was found between male and female sub-
jects, after correcting for multiple comparisons using an FDR of
q < 0.05.

We also compared the accuracy, sensitivity, and specificity
across sites using different p-value thresholds for determining
which connections to include in the leave-one-out classifier. The
accuracy, sensitivity, and specificity varied at each site depending
on the p-value threshold, however, we consistently achieved the
highest accuracy at SBL (mean accuracy = 69.3%), USM (mean
accuracy = 69.1%), Stanford (mean accuracy = 67.7%), and
Pitt (mean accuracy = 65.4%); the highest sensitivity at SDSU
(90.0%), Leuven (88.9%), SBL (84.0%), and Stanford (74.4%);
and the highest specificity at USM (79.5%), Olin (75.0%), UCLA
(71.5%), and KKI (70.6%).

Next, we determined whether the site’s sample size or the num-
ber of imaging volumes from a single run related to the site’s clas-
sification accuracy (Figure 4). The number of imaging volumes
was positively correlated with accuracy (r = 0.55, p = 0.03).
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FIGURE 3 | Accuracy, sensitivity, and specificity for each data

acquisition site. Accuracy (A) is shown for each data acquisition site
at different p-value thresholds. The sensitivity and specificity (B) are

shown for each data acquisition site at a threshold of p < 0.0001 (i.e.,
the threshold at which optimal total accuracy was obtained in
Figure 2).

If the number of imaging volumes post-scrubbing was aver-
aged across site, the relationship between number of imaging
volumes and accuracy was no longer significant. Sample size
did not correlate with site’s classification accuracy (r = 0.17,
p = 0.53).

We then determined which brain regions and connection char-
acteristics accurately classified the ABIDE subjects. In Figure 5,
the following brain regions (and the 7265 connections in which
they were involved) resulted in the highest accuracy: parahip-
pocampaland fusiform gyri, insula, medial prefrontal cortex, pos-
terior cingulate cortex, Wernicke Area, and intraparietal sulcus.
In Figure 6, two clusters of bins resulted in the highest accuracy.
The first cluster included bins with short-range (10–25 mm) and
medium-strength connections (0.3 < z < 0.5). The second clus-
ter included bins with long-range (100–125 mm) and medium-
strength connections (0.15 < z < 0.4).

Finally, we investigated the relationship between the subject’s
classifier score and behavioral measures (Figure 7). Estimates of
symptom severity (r = 0.13, p = 0.01), as measured by the ADOS
social + communication algorithm score, and SRS (r = 0.17,
p = 0.002) positively correlated with the classifier score, how-
ever, symptom severity, as measured by the ADI-R verbal domain
algorithm score (r = −0.06, p = 0.30) or social domain algo-
rithm score (r = −0.04, p = 0.51), and performance IQ (r =
−0.03, p = 0.38) did not correlate with the classifier score. Verbal
IQ (r = −0.07, p = 0.05) and Vineland adaptive behavior com-
posite score(r = 0.17, p = 0.002) negatively correlate with the
classifier score. In other words, as social function (lower SRS
score is indicative of better social function), verbal IQ, and
daily living skills increased and current level of symptom sever-
ity decreased, a subject was more likely to be classified as a
control.
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FIGURE 4 | Relationship between a site’s total accuracy and the

number of imaging volumes acquired by each site. Each site’s total
accuracy was calculated when using a p < 0.0001 threshold (i.e., the
threshold at which optimal total accuracy was obtained in Figure 2) and
correlated with the number of BOLD imaging volumes acquired during the
resting-state sequence.

DISCUSSION
Functional connectivity MRI data from a set of 26.4 million “con-
nections” per subject is able to successfully classify a subject as
autistic or typically developing using a leave-one-out approach
with an accuracy of 60.0% (p < 2.2 × 10−10), across a set of
964 subjects contributed from 16 different international sites.
Overall specificity was 58.0% and overall sensitivity was 62.0%.
Classification consisted of a weighted average of connections
that used no information about the left out subject except for
age, gender, site, and handedness. Using a weighted average of
all 26.4 million connections resulted in a classification accuracy
of 55.7% (p = 0.00017), with best accuracy (60.0%) achieved
for a subset of connections that satisfied p < 10−4 for a dif-
ference between autism and control among remaining subjects
for each left-out subject. Classification scores significantly covar-
ied with metrics of current disease severity including ADOS-G
(as opposed to ADI-R, which incorporates disease severity at
early ages), SRS, and verbal IQ metrics. Classification accuracy
significantly improved in sites for which longer BOLD imag-
ing times were used, but no relationship was found between
number of subjects contributed by a site and classification
accuracy.

Classification accuracy was lower in this multisite study despite
its much larger sample size when compared with a prior study
using similar methods from a single site (Anderson et al.,
2011d). The prior study achieved ∼80% accuracy, with 90%
accuracy for subjects under 20 years of age in both a pri-
mary cohort and a replication sample of affected and unaf-
fected individuals from multiplex families. Several reasons may
explain this difference. Expanding a classifier to accommodate
multisite data necessarily involves dealing with many addi-
tional sources of variance. The pulse sequence, magnetic field
strength, scanner type, patient cohort and recruitment pro-
cedures, scan instructions (eyes open vs. closed vs. fixation),
BOLD imaging length, age distribution, gender differences, and

FIGURE 5 | Total accuracy for 7266 brain regions. Accuracy was
determined for each of the 7266 brain regions independently by only taking
into account the 7265 connections in which a given region was involved (no
p-value threshold, all connections used). The minimum accuracy displayed
for a single region is 53.95%, which was the false discovery rate corrected
percentage for 7266 regions and a binomial cumulative distribution.

population ethnicity all varied across sites. Each of these vari-
ables has the potential to decrease sensitivity and specificity of
functional connectivity measurements for autism. Nevertheless,
a multisite cohort helps test generalizability of the results
across different samples, making it more likely that connec-
tions identified as discriminatory between autism and control
reflect disease properties rather than particulars of a single
dataset.

Classification accuracy in the multisite cohort varied with the
subset of connections used to construct the classifier. This find-
ing reflected a tradeoff between improved accuracy when using
more connections with decreased accuracy when including less
specific connections in the classifier. This result argues against
a homogenous regional distribution of connectivity abnormal-
ities in autism in favor of a heterogeneous spatial distribu-
tion of connectivity disturbances that involves specific brain
regions. Analysis of brain regions most affected in abnormal
connections herein confirms the findings of previous reports:
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FIGURE 6 | Total accuracy across connection strength and distance

between brain regions. The 26.4 million connections were divided up into
bins based on the correlation strength of the connection (determined by an
independent sample) and the distance between the connection’s two
endpoints. Accuracy is displayed for each bin with at least one connection.

areas of greatest abnormality included the insula, regions of
the default mode network including posterior cingulate and
medial prefrontal cortex, fusiform and parahippocampal gyri,
Wernicke Area (posterior middle and superior temporal gyrus),
and intraparietal sulcus (Anderson et al., 2011a,d; Gotts et al.,
2012). All of these regions correspond to functional domains
that are known to be impaired in autism, including attention,
language, interoception, and memory. We note that some of
these regions are in brain areas with relatively high suscepti-
bility artifact and sensitivity to changes in brain shape (such
as the medial prefrontal cortex). However, given the coherent
distribution of the default mode network, we favor an inter-
pretation of network-based differences attributable to autism
rather than underlying structural or artifactual sources of these
findings.

When interrogating subsets of connections from an inde-
pendent dataset based on the Euclidean distance between
ROIs and connection strength in a previous study, we found
that the most informative connections consisted of typically
strong connections between distant ROIs that were weaker in
autism, and typically negatively correlated connections, that were
less negative in autism (less anti-correlated) (Anderson et al.,
2011d). In the current study, the connection bins based on
strength and distance that showed greatest classification accu-
racy were not precisely the same connection bins found pre-
viously. Rather, they were adjacent to the bins in the previous
study. This is the case because the classification algorithm in
the current study takes advantage of larger numbers of con-
nections. There was again a tradeoff between using more con-
nections, given that individual connections exhibited relatively
little information, and using sets of connections that differed
more in autism. Thus, bins of medium strength connections
(0.3 < z < 0.5) outperformed the more specific bins of stronger
connections (z > 0.5) because the slightly weaker sets of con-
nections included many more connections in the bin. This

cautionary finding is relevant when attempting to identify the
“optimal” set of connections for constructing candidate brain
imaging biomarkers for ASD. Although specific affected regions
appear to have autism connectivity abnormalities, classifica-
tion schemes using only a small number of connections are
likely to suffer from the high variance in metrics for individual
connections.

This point is reinforced by a significant positive relation-
ship between classification accuracy across sites and the length
of BOLD imaging time per subject. Previous studies of test-
retest reliability using functional connectivity MRI have shown
that accuracy of results varies with one over the square root
of BOLD imaging time (Van Dijk et al., 2010; Anderson et al.,
2011c), with only moderate reproducibility when short BOLD
imaging times such as 5 min are used (Shehzad et al., 2009;
Van Dijk et al., 2010; Anderson et al., 2011c). This relation-
ship would suggest that classifiers using information from many
brain regions continue to show benefit from much longer imag-
ing times, with continued improvements even after hours of
imaging across multiple sessions per subject to the extent this
is practical (Anderson et al., 2011c). Improvements in pulse
sequence technology may also facilitate acquisition of greater
numbers of volumes in shorter periods of time (Feinberg and
Yacoub, 2012).The correlation between total imaging time and
accuracy was more significant than the correlation between num-
ber of volumes used after scrubbing and accuracy. This might
indicate that imaging time is more important than the num-
ber of volumes used. As multiband acquisition protocols become
more prevalent (Setsompop et al., 2012), it will be important
to determine the extent to which finer sampling vs. longer
imaging time will contribute to specificity of BOLD fcMRI
measurements.

In a prior study that examined the effect of BOLD imag-
ing time on ability to identify functional connectivity values
obtained from a single individual compared to a group mean,
individual “connections” could only be reliably distinguished
after 25 min of BOLD imaging time. The number of connec-
tions that could be reliably distinguished increased exponentially
with imaging time for at least up to 10 h of total imaging time
(Anderson et al., 2011c). Indeed, there is good theoretical basis
that any desired accuracy can be obtained with sufficient imag-
ing time, stretching into many hours. Although Van Dijk and
colleagues report that the intrinsic connectivity measurements
stabilize around 5 min of imaging time, they also state that noise
continues to decrease at a rate of 1/sqrt(n), where n is the amount
of imaging time (Van Dijk et al., 2010) (which is in accordance
with our findings from (Anderson et al., 2011c). Moreover, they
report that the stabilization is of composite network-level met-
rics rather than connections between small individual ROIs. In
contrast, we have found that coarse network-level measurements
are not particularly informative in classification compared to
fine-grained metrics that take into account specific differences in
the spatial distribution of connectivity. There may be no upper
limit for continued improvements if more imaging time were
obtained.

We found significant relationships between the classification
score and some behavioral measures, such as social function and
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FIGURE 7 | Scatterplots depict the relationship between the

classifier scores for control subjects (black) and subjects with

autism (red) and the following behavioral measures: ADOS-G

social + communication algorithm score (A), ADI-R social verbal

algorithm score (B), verbal IQ (C), performance IQ (D), SRS total

score (E), and Vineland Adaptive composite standard score (F).

Correlation coefficients and corresponding p-values are included on
the plots.

daily living skills, however, the proportion of variance in the
behavioral measures that was explained by the linear relationship
between the classification score and the behavioral measure was
small (between 0.5 and 2.9%). This may be due to the overall

poor accuracy of the classification approach. As accuracy and
techniques for combining multisite data improves, we also expect
an increase in the proportion of variance accounted for by the
correlations.
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Additional benefits may be achieved through improved clas-
sification algorithms that take advantage of machine learning
techniques to allow more effective weighted combinations of
connections. Similarly, multimodal classifiers remain a promis-
ing, relatively untapped method for characterizing diagnostic
and prognostic information about autism. Given classification
accuracies of single site datasets exceeding 80% for structural
MRI (Ecker et al., 2010a,b; Jiao et al., 2010; Uddin et al., 2011;
Calderoni et al., 2012; Sato et al., 2013), diffusion tensor MRI
(Lange et al., 2010; Ingalhalikar et al., 2011), positron emission
tomography (Duchesnay et al., 2011), and magnetoencephalog-
raphy (Roberts et al., 2010, 2011; Tsiaras et al., 2011; Khan et al.,
2013), it would be of great interest to determine whether dif-
ferent modalities identify similar cohorts of subjects correctly,
and whether a combination neuroimaging approach that lever-
ages these different features might be able to achieve even greater
accuracy than any one alone.

Although multisite datasets such as those in ABIDE are invalu-
able for testing replicability of neuroimaging findings in autism,
they contain inherent limitations that should be recognized.
Large inhomogeneities in acquisition parameters, subject popu-
lations, and research protocols limit the sensitivity for detecting
abnormalities. These inhomogeneities may overwhelm the ability
of discriminating many findings, and may lead to overconfi-
dence in a result as definitive because of the large sample of
subjects used. There remains a need for replicating results in
high-quality, carefully controlled individual datasets that may
show increased sensitivity for some results compared to multi-
site data, as exhibited by classification accuracy in the present
study. Preprocessing methods may also bias results in unpre-
dictable ways, as has been suggested with head motion correction

strategies (Power et al., 2012; Van Dijk et al., 2012) and regression
procedures (Murphy et al., 2009; Anderson et al., 2011b; Saad
et al., 2012). Datasets such as those in ABIDE will be of great value
in testing multiple procedural manipulations in relatively large
samples allowing determination of optimal processing methods
for specific questions. Ultimately, it is unknown whether differ-
ences in resting state functional connectivity in autism arise from
differential performance of the “resting” task or underlying dif-
ferences in structural connectivity reflected in the measurements.
Continuing comparison with structural metrics such as diffusion
tensor imaging will help to clarify this point.

Nevertheless, it remains an attractive hypothesis that with
longer imaging times, controlled acquisition strategies, integra-
tion of multimodal features, and improvement in classification
methodology, neuroimaging may be able to contribute useful
biological information to the clinical diagnosis and care of indi-
viduals with ASD and further elucidate pathophysiology and
brain-based intermediate phenotypes.
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