
Identification and function of long non-coding RNA

Citation
Ernst, Carl, and Cynthia C. Morton. 2013. “Identification and function of long non-coding 
RNA.” Frontiers in Cellular Neuroscience 7 (1): 168. doi:10.3389/fncel.2013.00168. http://
dx.doi.org/10.3389/fncel.2013.00168.

Published Version
doi:10.3389/fncel.2013.00168

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11878958

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:11878958
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Identification%20and%20function%20of%20long%20non-coding%20RNA&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=eb56ec1435b35b98f06067232e26767b&department
https://dash.harvard.edu/pages/accessibility


“fncel-07-00168” — 2013/9/30 — 16:47 — page 1 — #1

REVIEW ARTICLE
published: 02 October 2013

doi: 10.3389/fncel.2013.00168

Identification and function of long non-coding RNA
Carl Ernst 1,2* and Cynthia C. Morton 3 ,4 ,5

1 Douglas Hospital Research Institute, Montreal, QC, Canada
2 Department of Psychiatry, McGill University, Montreal, QC, Canada
3 Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
4 Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
5 Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA

Edited by:

Tommaso Pizzorusso, Istituto
Neuroscienze Consiglio Nazionale
delle Ricerche, Italy

Reviewed by:

Janine LaSalle, University of California
Davis Medical School, USA
Beatrice Bodega, Istituto Nazionale di
Genetica Molecolare, Italy

*Correspondence:

Carl Ernst, Douglas Hospital Research
Institute, 6875 LaSalle Boulevard,
Frank Common Building, Room
2101.2, Montreal, QC H4H 1R3,
Canada
e-mail: carl.ernst@mcgill.ca

Long non-coding (lnc) RNAs are defined as non-protein coding RNAs distinct from
housekeeping RNAs such as tRNAs, rRNAs, and snRNAs, and independent from small
RNAs with specific molecular processing machinery such as micro- or piwi-RNAs. Recent
studies of lncRNAs across different species have revealed a diverse population of RNA
molecules of differing size and function. RNA sequencing studies suggest transcription
throughout the genome, so there is a need to understand how sequence relates to
functional and structural relationships amongst RNA molecules. Our synthesis of recent
studies suggests that neither size, presence of a poly-A tail, splicing, direction of
transcription, nor strand specificity are of importance to lncRNA function. Rather, relative
genomic position in relation to a target is fundamentally important. In this review, we
describe issues of key importance in functional assessment of lncRNA and how this might
apply to lncRNAs important in neurodevelopment.
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THERE IS A WIDE VARIETY OF NON-CODING RNA IN MANY
SPECIES
The co-occurrence of massively parallel sequencing technology
applied to RNA and the recognition that non-coding, functional
RNA species may not be restricted to X-chromosome inactivation
(Jeon et al., 2012; Batista and Chang, 2013) or to protein synthesis
machinery, have revealed an RNA universe of remarkable diver-
sity in plant and animal cells. Non-coding (nc) RNAs, those RNA
molecules that are not templates for protein synthesis, make up a
large portion of the total RNA in the cell suggesting a profound
functional importance. Despite their abundance, few ncRNAs have
been studied and even fewer have been functionally characterized.
These ncRNAs come in many forms: they can be very small or
several hundred kilobases long; they may be spliced or unspliced;
they can form linear or tertiary structures; they may or may not
have a poly-A tail, and some interact with DNA, protein, or other
RNA molecules (Novikova et al., 2013). As is described in this
review, among various roles, Long non-coding (lnc) RNAs partic-
ipate in guidance of large protein complexes to DNA leading to
influence over locus-specific gene expression, and in the modifi-
cation of expression or abundance of complementary messenger
RNA strands. The wide diversity of function and form of ncRNA,
combined with the explosive growth in newly identified ncRNA
molecules, has lead to a need to understand better potential rela-
tionships of function between ncRNA and to consider a more
categorical approach to classification.

Non-protein coding RNA has long been recognized in cells.
Transfer RNAs and ribosomal RNAs were identified over 50 years
ago; neither encodes a peptide chain, though they are integral
components of the machinery for protein synthesis. Identification
of these RNAs demonstrated that ncRNAs interact with proteins,
perform specific cell functions, and operate autonomously from

information transfer. Francis Crick’s central dogma (1955)
described information transfer amongst DNA, mRNA, and pro-
tein, and even at that time was recognized as an oversimplification.
Crick himself subsequently built substantial flexibility into the
model in 1970 such as the idea that RNA may be prone to “special”
and “unknown” transfers of information (Crick, 1970). While he
may not have imagined the diversity of RNA (Nakamura et al.,
1996), there was a tacit acknowledgment that there was likely
more to RNA than was known. Subsequent identification of ncR-
NAs unrelated to protein synthesis over 25 years ago, specifically,
the catalytic ribozymes that formed secondary and tertiary struc-
tures thought to be important to early life on earth, re-enforced
the diversity of RNA species (Sharp, 1985; Lamond and Gibson,
1990).

Several recent papers have identified new ncRNA species of
particular function, and mechanistic insight into some of these
different varieties of RNA reveal overlapping features, both in
plant and animal cells. This diversity of RNA has been extensively
reviewed with respect to small RNA-induced silencing complex
(RISC)-related RNAs (e.g., Czech and Hannon, 2011) and lncR-
NAs (e.g., Rinn and Chang, 2012), with particular emphasis
on disease specificity (Qureshi and Mehler, 2012; Sana et al.,
2012) and epigenetic function (Lee, 2012). While there are sev-
eral reviews that categorically describe different studies on RNA
(Esteller, 2011; Wan et al., 2011), a more critical analysis of
what defines a long ncRNA is lacking and the methods used for
this, as well as a synthesis of lncRNA function across cell types.
The purpose of the current review is to contextualize lncRNAs
more generally, and review their effects in cellular function with
respect to mechanism. This information will then be used to
frame some of the preliminary studies emerging from studies of
neurodevelopment.
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CHARACTERIZATION OF lncRNAs
Several recent reviews have delineated ncRNA species into sub-
categories based on size (less or greater than 200 bases – often
used as the definition of long versus short ncRNA), position (e.g.,
RNA species generated from the 3′UTRs or 5′UTRs), molecular
interactions (e.g., Drosha- or Dicer-dependent), and molecular
function, a good example of which is competitive antisense (AS)
RNA that binds to microRNA and acts as a sponge to inhibit com-
petitively microRNA from binding to a sense mRNA transcript
(Cesana et al., 2011). It is unclear whether these categories are
empirically determined, or whether they will prove relevant to
categorization as future ncRNAs are discovered; indeed, the iden-
tification of such a wide diversity of RNA is consistent with what
might be expected from an ancient, flexible molecule, capable of
forming 3D structures and interacting with DNA, protein, or other
RNAs.

What makes a lncRNA a lncRNA rather than some other RNA
species? Are they a functionally distinct RNA product or are they
a small part of the transcriptome that has been suggested to occur
from large portions of the genome, mostly from recent ENCODE
data (Carninci et al., 2005; Birney et al., 2007)? Certainly, a recent
report (Guttman et al., 2013) suggests that intergenic lncRNAs are
indeed non-coding, an issue that has been previously determined
using algorithms (Lin et al., 2011) to assess whether different
combinations of potential codons are similar to any other pre-
viously identified amino acid molecule. Most studies of lncRNA
also attempt to determine whether an RNA species is localized to
the nucleus, usually using RNA fluorescence in situ hybridization
(FISH). Because translation occurs in the cytoplasm this might be
evidence for the lack of coding potential. This analysis is some-
what arbitrary though, because ncRNA might be identified in
the nuclear, chromatin, or cytoplasmic fraction of cells. Com-
partmentalization of lncRNAs in one of these fractions may be a
defining feature of different lncRNA and may help to guide future
classification schemes. Functional studies of lncRNA have also led
to a proliferation of potential future categories for lncRNA, some

of which are listed in Table 1, but this categorization creates its
own problems in that many lncRNAs have overlapping features.
This is a major issue at the moment and one likely to increase in
complexity given the number of RNAs that can be detected from
so many regions of the genome.

The current classification system will likely evolve as more RNA
species are discovered, and classification of each ncRNA might
follow a similar trajectory to that of protein coding gene classi-
fication. Genes that lead to an mRNA product are not divided
up by length, genomic position, whether they are spliced or not
for example, and numerous coding genes fit into different clas-
sification categories. Instead they are classified by function or
conserved domains. Likely it is the novelty of the RNA field,
facilitated by the detection of so many transcripts by massively
parallel sequencing that is leading to the classification conun-
drum, but this may diminish as individual RNAs are functionally
analyzed.

Several recent reports have carefully documented lncRNAs over
a very unique range of function. To understand how lncRNAs are
similar or different in both structure and function, we synthe-
size this information from recent papers to determine if there are
any patterns or consistencies across RNA species. We focus on
currently defined long RNA (>200 bp) and omit discussion of
small RNAs such as microRNA, piwiRNA, or imprinting-related
RNA’s.

FUNCTIONAL STUDIES OF lncRNAs
The recognition of HOTAIR (Rinn et al., 2007) as a lncRNA
that regulates gene expression in cis and trans (it is transcribed
on chromosome 12 from the HoxC cluster and can regulate
the chromosome 2 HoxD gene cluster) opened a new chapter
for RNA molecules. HOTAIR defined a class of molecules dis-
tinct from housekeeping RNAs, microRNAs, and others, and
which were not involved in fundamental imprinting processes.
It hinted at the existence of RNA in the genome with regula-
tory functions directly related to their particular sequence and

Table 1 | Some examples of categorization of non-coding RNA.

Category Description Example Reference

Intronic Expressed from the intron of target DMD lncRNA Bovolenta et al. (2012)

H3K4me3 Has a methylated H3K4 promoter lincRNA-p21 Huarte et al. (2010)

Antisense Expressed from the non-coding strand and acts on the

complementary target

BACE1-AS Faghihi et al. (2008)

Enhancer Expressed to enhance expression at a locus at some

distance from target

p53 eRNAs Melo et al. (2013)

Promoter Acting on and expressed from the promoter of target DBE-T Cabianca et al. (2012)

Intergenic Expressed at some distance from coding genes lincRNA00299 Talkowski et al. (2012)

Trans-acting Acting at some distance from target Evf2 Bond et al. (2009)

Cis-acting Acting on an adjacent target AIRN Santoro et al. (2013)

Small Less than 200 bp in size microRNA 137 Ripke et al. (2011)

Long Greater than 200 bp in size Fendrr Grote et al. (2013)

5-UTR Expressed near the 5′UTR of target 5′UTR ELK-1 Rahim et al. (2012)
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provided an explanation for the targeting specificity required
by ubiquitous binding molecules such as large chromatin mod-
ifying complexes. Since HOTAIR’s description, the function of
many other lncRNAs has been revealed. Shown below is the
large diversity of these molecules, from their genomic position
in relation to the genes they regulate, their size, processing,
and mechanism of action. While this diversity is large, there
are also similarities, especially in reference to function. To
demonstrate differences and similarities, we have selected all
reports from the last 2 years (2011–2013) that have character-
ized positional, processing, and functional information of specific
lncRNAs. Table 2 lists structural information from lncRNAs that
have been characterized functionally and this information is syn-
thesized with the functional characteristics in the concluding
remarks.

The lncRNA COLDAIR presents a series of themes for lncRNAs
with respect to function. COLDAIR recruits polycomb repressive
complex 2 (PRC2), a complex of proteins that can alter histone
chemical groups to decrease gene expression, through an inter-
mediate protein (homolog of Enhancer of zeste, Drosophila) and
the binding of COLDAIR occurs through a CXC domain of this
intermediate protein (see Table 3 for a discussion of RNA:protein

interaction domains). COLDAIR is expressed at equal ratios over
time, despite an increasing repression of the target, suggesting
increased affinity for the PRC2 interaction. COLDAIR reveals sev-
eral potential areas of diversity/similarity amongst lncRNAs. What
determines expression of the lncRNA itself? Is the lncRNA regu-
lated in conjunction with the target or independently from it? Is
the lncRNA action direct on the target or indirect? Is the lncRNA
repressive or activating? Does it act on a single target or a cluster
of targets at a locus?

The lncRNA IRT1 differs significantly from the mechanistic
action of COLDAIR, but also functions in a repressive manner
to block expression of the target gene IME1. IRT1 can respond
within hours to a cell stressor to aid in the inhibition of gameto-
genesis, which means the repressive mechanism used by IRT1 may
be specific to fast-acting effects. IRT1 completely covers the 2 kb
promoter of the target gene and functions to block transcription
factors from binding and promoting transcription and acts in cis,
similar to COLDAIR. Because IRT1 is transcribed over the pro-
moter of the target gene in the sense direction, it has an identical
specificity to the DNA of the IME1 promoter. The blocking of tran-
scription factors in combination with aiding in the establishment
of a repressive chromatin state through histone methyltransferases

Table 2 | Processing and positional diversity of lncRNA (in order described in text).

lncRNA [Ref] Species Description of all structural properties reported

COLDAIR (Heo and Sung, 2011) A. thaliana 1100 base RNA expressed from the sense strand relative to target, has no poly-A tail,

expressed from an intron of the target gene

IRT1 (van Werven et al., 2012) S. cerevisiae Expressed from promoter of target, 1.4 kb in length, not spliced and is transcribed from the

same strand as the gene it regulates

NeST (Gomez et al., 2013) M. musculus Encoded on the antisense strand, contains six exons spread over a 45 kb region, transcript is

914 bases

Braveheart (Klattenhoff et al., 2013) M. musculus 590 base RNA with three exons, 33% confined to the nucleus

NeST (Gomez et al., 2013) M. musculus Encoded on antisense strand, contains six exons spread over a 45 kb region, primary

transcript is 914 bases

DBE-T (Cabianca et al., 2012) H. sapiens 9.5 kb is one major product, transcribed from same strand as target genes, transcript contains

one of many targets, nuclear and chromatin associated

HOTTIP (Wang et al., 2011) H. sapiens 3,764-nucleotide, spliced and polyadenylated intergenic RNA, ∼330 base product, regulates

gene cluster

ANRIL (Wan et al., 2013) H. sapiens ∼126 kb transcript, spliced, 19 exons with an ∼1.1 kb transcript, 13 isoforms transcribed in the

antisense orientation of gene cluster, overlaps one target gene

lincMD1 (Cesana et al., 2011) M. musculus Three exons and two introns in 14 kb of genomic space, spliced product of 521 bases,

accumulates as cytoplasmic poly-A+ RNA, transcribed on same strand in same orientation as

microRNAs for which it acts as a decoy

TINCR (Kretz et al., 2013) H. sapiens Three exons, 3.7 kb transcript predominantly cytoplasmically expressed, over 100 different

targets dispersed through genome

UCHL1-AS (Carrieri et al., 2012) M. musculus Four exons spanning 70 kb, overlaps the first 73 bases of UCHL1, including the AUG start

codon, transcribed in reverse orientation in a head-to-head fashion, second intron of UCHL1

contains the TSS for UCHL1-AS, enriched in the nucleus

1/2sbsRNA1 (Gong and Maquat, 2011) H. sapiens Present in cytoplasm, poly-A+, two alternative transcripts consist of 688 nucleotides, multiple

targets throughout genome
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Table 3 | Protein:RNA interacting domains.

Cysteine domains

CXC (redox-like), CXXC (redox), or C-X(6)-X (zinc finger or ring finger) motifs

refer to the cysteine residue (C) with any amino acid (X) in between. These

Cys residues may be active, meaning they can use their highly active

sulfhydryl (SH) group to form a covalent bond with the OH group on the

RNA sugar ring. These motifs can also interact with Ser, Thr, or Tyr amino

acid residues to form S–S or S–O bonds on other proteins. An example of

the cysteine RNA interacting domain are the Enhancer of zeste-related

proteins with conserved X(6)-C-X(3)-C-X-C motifs.

WD domains

WD domains refer to peptide domains with rich repeats of tryptophan (W;

hydrophobic) and aspartic acid (D; negatively charged) that are present in a

large range of proteins. WD domains are non-catalytic and are thought to

form a platform for the interaction of different cellular partners.

and deacetylases suggests that IRT1 can physically hinder TFs but
also guide repressive chromatin complexes. Here the repressive
effects are different than COLDAIR in that repression is due to the
deposition of H3K4m2 and H3K36me by factors traveling with
the RNA polymerase transcribing IRT1. Little is known about the
regulation of IRT1, but it must be under tight control to hinder
or allow expression of the target gene within such a timeframe of
only hours.

NeST is a lncRNA that functions to increase transcription of
the target gene and appears to act in trans although it is physi-
cally proximal to its target gene, Ifng. Evidence for trans action
comes from NeST being genetically unlinked to its target gene and
from experimental injection of NeST into cells. NeST action on
the target gene is similar to IRT1 and COLDAIR in that it acts
through a histone complex, but in this case it physically interacts
with WDR5, which has a WD repeat domain of ∼40 amino acids
(see Table 3). WDR5 is a core subunit of complexes that catalyze
the methylation of histone H3 at lysine 4, a mark of active gene
expression, so NeST interacts directly with the histone modify-
ing complex, unlike COLDAIR. It is likely that NeST functions to
physically bring the histone modifying complex in close proximity
to the target gene; it is 59 kb downstream from its target in mouse
and 166 kb in human.

Bvht is a cis-acting lncRNA expressed only in mouse, mean-
ing it may be a lncRNA that has recently gained a function. In a
continuing theme for lncRNAs, it interacts directly with SUZ12
(a component of the PRC2 complex) and functions upstream of
a key gene in lineage commitment. This differs from the action
of COLDAIR that requires a binding partner for interaction with
PRC2, whereas bvht directly interacts with one of the subunits.
Notably, SUZ12 has a zinc finger motif, which may explain the
protein/RNA binding (see Table 3).

DBE-T is a human lncRNA expressed only in a diseased
condition only that acts in cis and affects genes in a large
chromosomal region, in contrast to COLDAIR, IRT1, NeST, or
bvht, which appear to regulate a single target, although these
targets often trigger expression of many other genes. DBE-T is
transcribed from the first repeat of the D4Z4 repeat domain that

is important for recruitment of PRC2. Repression of the region,
controlled by PRC2 binding and spreading, commences at the
repeat region, thus the basal state in adult cells is the repression
of genes at this chromosomal locus. Loss of PRC2 at the repeat
region corresponds with the binding of ASHL1, a histone lysine
N-methyltransferase that is part of the TrixG group, which recruits
DBE-T to chromatin. Thus, this lncRNA is at the crossroads of
crosstalk between conflicting histone modifying complexes. While
little is known about the regulation of lncRNAs, DBE-T may be
an example of a positive feedback loop which may be a common
theme for other lncRNAs – in other words, lncRNA expression
may be regulated by targets of the target that the lncRNA itself
regulates.

Similar to the positive feedback observed between DBE-T
and ASHL1, HOTTIP lncRNA and WDR5 operate analogously.
Similar to NeST, HOTTIP physically interacts with WDR5, and
WDR5 forms a complex with MLL1, which is a H3K4 methyl-
transferase, triggering gene expression. HOTTIP maintains an
appropriate level of the WDR5/MLL1 at a gene cluster, and its
influence over the gene cluster dissipates as a function of dis-
tance from its site of transcription. Thus, this lncRNA interacts
indirectly with a histone modifying complex, is involved in a feed-
back loop with its interacting partner, and activates expression
of a cluster of genes as a function of distance from its site of
expression.

ANRIL is a lncRNA transcribed immediately upstream of a
cluster of genes important in human cell proliferation and is prob-
ably the most studied lncRNA to date because of its important
role in cancer. ANRIL is transcribed on the AS strand of three
intimately linked genes. It can bind to the transcript of the nearest
gene at the locus, INK4, through complementary base pairing
and can act at the promoter to recruit both PRC1 and PRC2
to repress transcription. ANRIL, while seemingly with a wider
diversity of function than other polycomb recruitment lncRNAs,
may actually foreshadow the function of other PRC-recruiting
lncRNAs. Specifically, that they may have a wide variety of func-
tions at a particular locus, and the only reason this has not yet
been identified is because of experimental design strategies. We
suspect many PRC-interacting lncRNAs will have many other
functions that complement their effects. The multi-mechanistic
function of ANRIL also showcases the idea that not all lncRNAs
operate by recruiting large histone modifying complexes. Instead,
recently identified lncRNA often operate by binding to the pri-
mary target or acting as a decoy of repressive effectors of the
target.

lincMD1 and TINCR are two examples of non-PRC-recruiting
lncRNAs with novel function to refine expression of a target.
In contrast to lncRNAs COLDAIR, IRT1, NeST, BVHT, DBE-
T, HOTTIP, and ANRIL, lincMD1, is a lncRNA that appears to
be a by-product or remnant of microRNA processing (Ala et al.,
2013). Specifically, this lncRNA can act as a decoy for the tar-
gets of microRNA produced from the same locus as lincMD1
(Cesana et al., 2011). TINCR also differs from all reported lncR-
NAs to date as it appears to bind to a 25 bp “TINCR-box”
present in the RNA of different coding transcripts and influ-
ence levels of these transcripts in a STAU-dependent manner.
STAU is an RNA guidance protein initially identified for its
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FIGURE 1 | Different mechanistic action of lncRNAs that overlap an

mRNA target. (A) lncRNA expressed from the antisense strand may have an
overlapping domain, providing specificity, and a non-overlapping activation
domain. This activation domain could be a sequence that allows single-strand

binding for different molecules, leading to stabilization or degradation of the
RNA:RNA complex. (B) Complementary binding of overlapping mRNA and
lncRNA could create a double-stranded binding site for protein binding,
leading to selective degradation of stabilization of the RNA:RNA complex.

involvement in oocytes of Drosophila. All lncRNA described to
date provide locus specificity for activating or repressive com-
plexes to neighboring target genes, or interact directly with a
target through sequence complementarity. TINCR on the other
hand, appears to target specific RNA transcripts actively through
an RNA sequence motif. lincMD1 also diverges drastically in
that it is a by-product of pri-microRNA processing and acts to
sponge the microRNAs from which it was initially processed. There
may be many other pri-microRNA by-products that function
similarly.

Another lncRNA that reportedly does not use large histone
modifying complexes to alter a target, but instead operates through
binding of a primary target, is AS-UCHL1. AS-UCHL1 has been
shown recently to be important for proper targeting of sense
transcript to polysomes, suggesting a stabilizing function for this
lncRNA, demonstrated by a strong increase in UCHL1 protein
with no difference in UCHL1 transcript on over-expression of
AS-UCHL1. This principle of RNA stabilization to affect pro-
tein levels of targets may be a continuing theme for lncRNAs
(e.g., Yoon et al., 2012). This lncRNA has a single target, binds
it directly, and functions to increase protein of the primary target
by stabilizing the mRNA. Besides this novel functional effect for a
lncRNA, AS-UCHL1 action is driven by repeat elements within the
AS transcript. Specifically, an orientation-specific SINEB2 repeat
is required for the stabilizing function and protein synthesis acti-
vation of the sense strand. The overlapping portion of the AS gene
with the sense gene thereby provides targeting information, while
the SINEB2 region, which is not overlapped by the sense strand,
confers protein synthesis activation (see Figure 1A).

The idea of repeat elements in the genome, acting through
lncRNAs, has also been described with respect to Alu repeats, one
of the most common repeats in the human genome. The descrip-
tion of overlapping Alu repeats, one in an AS strand and one in the
3′UTR of the sense strand, can lead to formation of a STAU1 bind-
ing site, which allows for STAU1 to stabilize base pairing and target
the RNA duplex for degradation. Similar to all lncRNAs described
here, these Alu-containing lncRNAs can regulate the levels of a
transcript through an mRNA decay pathway. This was specifically
demonstrated for SERPINE1 and FLJ21870 mRNAs between their
3′ UTR Alu element and the Alu element in a single lncRNA (see
Figure 1B).

SYNTHESIS OF lncRNA FEATURES FROM DIFFERENT
SPECIES
These examples support an important role for lncRNAs in the
genome, and highlight the diverse function of lncRNAs, but
also some similarities. First, there appears to be no relationship
between the particular function of a lncRNA, its size, or how it
is processed. This suggests that lncRNAs will represent a diverse
range of characteristics. Second, neither transcriptional direction
nor strand specificity appears to have an effect on function. The
key element is that lncRNAs are produced either within their target
gene or in the vicinity of target genes. Those lncRNAs produced
from overlapping regions of their target gene are more likely
to bind to the target, however, due to direct complementarity
with the target. Whether these lncRNAs come from the same or
the AS strand as a target appears not to have functional impact.
Future experiments should document this for all newly described
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lncRNAs to determine whether this remains the case. These ideas
may help guide issues of categorization of lncRNAs, and we pro-
pose a system that anchors lncRNAs in the target molecule. This
may not prove useful for those lncRNA, like the intergenic lncR-
NAs, that do not appear to have nearby targets. Their function
may prove to be completely different and independent from those
lncRNAs expressed in relationship to mRNAs.

Most lncRNAs are modulators of a primary transcript suggest-
ing that, evolutionarily, they arose after the primary transcript.
For example, HOTTIP, either evolved with or after the HOX gene
cluster that it regulates. There is little evidence for lncRNAs that
operate in isolation (although the lincRNAs may be an exception,
reflected by their distinct locations and conservation across species
(Managadze et al., 2013), but rather form part of a transcriptional
regulation complex of a specific target or a cluster of targets. This
suggests that characterizing lncRNA might best be done grounded
in the primary target rather than through effector status.

Many lncRNAs act though histone modifying complexes and
appear to affect either a single target gene or a cluster of genes in
a local region. They may require an intermediate binding part-
ner for recruitment of the histone complex or interact directly
with one of the proteins in these complexes. Determining whether
lncRNAs bind directly to the target, interact directly with a histone
modifying complex, or require a partner to bind histone modify-
ing complex, will be important information as new lncRNAs are
uncovered. Most lncRNAs do not share any sequence similarity
(i.e., no indication yet of any conserved domain within lncRNAs)
and it seems the position of lncRNAs in relation to the target(s)
are of fundamental importance to their function. While there are
many remarkable functions attributed to lncRNAs, we strongly
suspect that the function of even these lncRNA will prove more
diverse as they undergo further investigation.

lncRNAs IN CNS DEVELOPMENT
Functional and mechanistic data generated by studying ncRNAs
in different molecular systems and species suggests lncRNAs likely
play an important role in all cellular systems. As evidenced in the
previous sections, lncRNAs most likely act as modifiers of a com-
plementary RNA, interact with large histone complexes, interact
with complementary DNA sequences, or act completely indepen-
dently in the nucleus with no obvious partners required. Given
this diverse potential, the complexity of the nervous system in any
species might be partially due to the additional level of control
over the cellular machinery by lncRNAs. lncRNAs may provide
a means to tweak a cellular system at many levels and to operate
rapidly in response to external signals whether axon guidance cues
or environmental exposure. In line with these ideas, we synthesize
recent reports of lncRNAs in the developing nervous system.

lncRNA IN NEURAL STEM CELLS
Some of the first experiments to underscore the importance of
lncRNAs were done in mouse or human stem cells from. Stem
cells used for research are either derived from the inner cell
mass of a fertilized embryo (Thomson et al., 1998) or induced
to pluripotency by the experimental increase of transcription fac-
tors normally present in early embryonic stages (Takahashi and
Yamanaka, 2006) in terminally differentiated cells. These stem

cells can be differentiated to a neural stem cell (NSC) fate and
these NSCs can then give way to glia and neurons (Hu et al.,
2010). In a wide ranging, exploratory analysis, Ng and colleagues
(Ng et al., 2012) examined neuronal differentiation from human
embryonic stem cells (hESCs). They used a two-step differenti-
ation protocol from radial glial-like cells to largely dopaminergic
cells, and then assessed global gene expression levels of pre-selected
lncRNAs in radial-glial cells compared to dopaminergic-like cells.
They identified 35 lncRNAs that were differentially expressed
between progenitor and mature states, and then tested some of
these for functionality. Following similar designs of non-neuronal
studies of lncRNA, they assessed the association of differentially
expressed lncRNA with SUZ12 and the neurogenesis repressor
complex REST/NRSF (neural restrictive silencer factor; Naruse
et al., 1999). In a study using just three lncRNAs, their data
supported interaction of one lncRNA with REST and another
lncRNA with SUZ12. While the SUZ12 interaction is consistent
with previous lncRNA studies, the interaction with REST/NRSF is
novel for lncRNAs in neurons, although it does associate with
HOTAIR in non-neuronal cell types to repress expression of
neuronal genes. This suggests that the lncRNA in the Ng et al.
(2012) study may interact with REST to regulate neuronal gene
expression.

While ES (embryonic stem cells)- and iPSC (induced pluripo-
tent stem cell)-derived NSCs may not perfectly capture the
developmental progression of the human brain, they provide an
excellent model with which to screen for important factors as the
cells develop from stem cells to electrically active neurons. A study
monitoring iPSC-NSC differentiation accompanied by RNA sam-
pling at different timepoints, contrasted with brain temporal lobe
brain tissue RNA levels from the same donor has revealed a gradual
increase in the expression of different lncRNAs as NSCs differenti-
ate (Hjelm et al., 2013). This is supported by our own study, where
we observed an increase in the neurodevelopmentally important
intergenic lncRNA00299 as iPSC-NSCs differentiated (Talkowski
et al., 2012). A recent report using adult NSCs in mice has further
confirmed that lncRNAs increase as cells differentiate. Ramos et al.
(2013) sorted stem cells of the sub-ventricular zone of mice and
screened these cells for expression levels of different lncRNAs cre-
ating publically accessible expression maps for lncRNAs that may
be relevant to glial-neuron specification in adult brain.

lncRNA IN DEVELOPING BRAIN
In the mammalian brain, lncRNAs have long been recognized as
important in neurodevelopment, although they were traditionally
referred to as AS transcripts. An example of this is the AS tran-
scripts near the Sox4 and Sox11 loci produced during development
of the mouse cerebral cortex (Ling et al., 2009). Sox proteins con-
tain a high mobility group, and this refers to the ability of these
proteins to bind and bend DNA. Using global gene expression
analysis tools, Ling et al. (2011) showed that AS Sox4 and Sox11
transcripts are produced during proliferating and differentiating
states, suggesting that the regulation of these important genes is by
complementary lncRNAs. Recently, this same group documented
a similar effect with respect to Nrgn and Camk2n1 gene product
in mouse cerebral corticogenesis. A recent study in adult brain
also suggests that electrical activity in neurons stimulates lncRNA
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(Barry et al., 2013). Given the importance of initial synaptic con-
tacts and communication between cells, it stands to reason that
there may be lncRNAs that respond to activity and independent
lncRNAs that increase expression as differentiation proceeds, sim-
ilar to data from in vitro NSC models. Of intense interest as well
are the loci of the genome where AS transcripts are transcribed
from the same genomic locations as brain-relevant genes and how
some of these may be specific to human. For example, BDNF is
transcribed from chromosome 11 and an AS transcript is pro-
duced from the opposite strand in humans but not in mouse
(Aid et al., 2007; Pruunsild et al., 2007). The discovery of an ever
increasing number of AS transcripts that may assist in regulation
of genes fundamental to brain development will likely be forth-
coming. Determining the exact role of these AS transcripts, their
size, and binding dynamics will be important.

Recent data from our group suggest that lncRNAs may be
important in neurodevelopmental disease (Talkowski et al., 2012);
we showed that a nuclear, multi-exon lncRNA was disrupted in
subjects with global developmental delays. This complements
work from others, where ncRNAs have long been suspected of
causing certain neurological problems, the best example of which
may be Prader–Willi syndrome (PWS). PWS is characterized by
intellectual disability, sleep disorders, and psychosis, and can be
caused by deletion of 15q11-13 on the paternal chromosome.
Genes in this region are suppressed on the maternal chromo-
some, meaning that paternally expressed genes likely provide the
optimal dosage of expression. The minimal required locus within
this ∼10 Mb region implicates 116HG, a lncRNA retained in the
nucleus, as well as the small nucleolar RNA SNORD116 (Sahoo

et al., 2008). Both ncRNAs are the control of the imprinting con-
trol region, involving multiple overlap of genes – suggesting that
transcription and splicing in this region are complex. Recently,
Powell et al. (2013) reported the first experiments to determine
the function of lncRNA 116HG. They found that 116HG forms
RNA “clouds” specific to nuclei in mouse brain, and that these
116HG clouds change size and shape in predictable ways as the
brain develops. Using RNA and DNA FISH mapping, they show
that 116HG likely interacts with the paternal UBE3a locus, a gene
found immediately upstream of the 116HG locus and known to
be important in neurodevelopment. Their data further suggest
that 116HG interacts with RBBP5, a subunit of the MLL com-
plex, which acts as a transcriptional activator by methylation of
H3K4. This model conforms nicely to what is known of lncRNA
functions in other species; 116HG might associate with MLL com-
plex and interact with histones at the UBE3a locus. How 116HG
itself is regulated is unknown, but this will be clearly important to
understand better the neurobiology of PWS.

lncRNAs likely have a role in many aspects of the cell, and brain
development might be an area where their structure and function
is particularly suited. This may suggest that many more lncRNAs
await discovery in novel systems as well as in added layers of control
for well known processes of neurodevelopment.
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