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Skeletal muscle is a highly specialized organ system evolved 
for locomotion and energy metabolism in multicellular organ-
isms. Deterioration of muscle cell integrity as a result of genetic 
mutations leads to progressive muscle wasting with detrimental 
consequences including early death. Typically, mutations in dif-
ferent genes tend to target distinct muscle groups, on the basis of 
which these conditions have been subdivided into several groups. 
However, mutations in different regions of the same protein, or 
even identical mutations, have also been implicated in clinically 
distinct phenotypes. Gene mapping efforts in families with af-
fected individuals have been instrumental in elucidating the un-
derlying cellular and molecular processes perturbed in most of 
these diseases. Mutations in a wide range of proteins, including 
many structural proteins and enzymes that posttranslationally 
modify some of these proteins have been implicated in muscu-
lar dystrophy. A comprehensive review of all types of muscular 
dystrophies and myopathies is beyond the scope of this review. 
A revised list of causative genes and reclassification is annually 
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reported by the journal Neuromuscular Disorders (Kaplan and 
Hamroun, 2012). Here we will discuss distinct disease mecha-
nisms of several well-understood muscular dystrophies and high-
light several recently identified genes that will likely uncover 
novel cellular mechanisms underlying disease.

The structure of skeletal muscle cells
The myofiber is the functional unit of skeletal muscle and is a mul-
tinucleated tubular structure formed from the fusion of multiple 
mononucleated muscle cells (myoblasts). Myoblasts are gener-
ated by asymmetric division and differentiation of muscle stem 
cells, called satellite cells, that are located between the muscle 
cell membrane (sarcolemma) and basal lamina (Mauro, 1961). 
In addition to typical cellular organelles, the cytoplasm (sarco-
plasm) of a myofiber contains a regular array of contractile units 
(sarcomeres) comprised of actin-containing thin filaments and 
myosin-containing thick filaments that, along with additional  
structural and regulatory proteins, are arranged longitudinally 
as myofibrils. The peripheral myofibrils are connected to the 
sarcolemma along the Z-disks via interactions with subsarco-
lemmal protein complexes called costameres. These structures 
transmit contractile forces from sarcomeres of one myofiber to 
another, which prevents sarcolemma ruptures by synchronizing 
contraction of myofibers within a muscle. Sarcolemma is firmly 
attached to the basal lamina, which consists of ECM proteins. 
Failure to attach properly results in sarcolemmal disruption, which 
is the predominant underlying cause of several forms of muscu-
lar dystrophies. Cross-section of healthy muscle reveals myofibers 
that are roughly equal in diameter with multiple nuclei pushed  
to the periphery of the cell. However, dystrophic muscle displays 
centrally located nuclei and myofibers of variable size, which are 
caused by successive rounds of degeneration and regeneration. 
Extensive damage to muscle activates satellite cells to promote 
muscle regeneration. Although these cells are replenished by 
self-renewal, recurrent degeneration and regeneration of skeletal 
muscle in disease state depletes the satellite cell pool and fails 
to further regenerate the muscle contributing to muscle wasting 
(Collins et al., 2005). Furthermore, atrophied muscle is gradually 

The muscular dystrophies are a group of heterogeneous 
genetic diseases characterized by progressive degenera-
tion and weakness of skeletal muscle. Since the discovery 
of the first muscular dystrophy gene encoding dystrophin,  
a large number of genes have been identified that are  
involved in various muscle-wasting and neuromuscular dis-
orders. Human genetic studies complemented by animal  
model systems have substantially contributed to our un-
derstanding of the molecular pathomechanisms underlying 
muscle degeneration. Moreover, these studies have revealed 
distinct molecular and cellular mechanisms that link genetic 
mutations to diverse muscle wasting phenotypes.
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contracting myofiber to withstand the mechanical stress gener-
ated by sarcomeres and to prevent its fragile sarcolemma from  
contraction-induced injuries (Petrof et al., 1993). Disruption of 
the DAPC, as a result of structural or posttranslational defects 
in one of the components building this protein complex, weakens 
the sarcolemma and causes different types of muscular dystro-
phy depending on the altered protein. The subcomplex of integral 
proteins sarcoglycans and sarcospan within the DAPC provides 
additional mechanical support to the DAPC and thereby to the 
sarcolemma (Yoshida et al., 1994). Mutations in genes encod-
ing the , , , and  subunits of the sarcoglycan complex cause  
sarcoglycanopathies, a subtype of recessively inherited limb-girdle 
muscular dystrophies (LGMDs; Table 1). In general, structural 
defects in one sarcoglycan subunit lead to reduction or complete 
loss of the other subunits, destabilizing the entire protein com-
plex, which consequently weakens the sarcolemma. LGMDs 
are the most heterogeneous subgroup of muscular dystrophies 
that predominantly involve the proximal limb-girdle muscula-
ture, mainly those around hips and shoulders. Besides sarcogly-
canopathies, there are several additional LGMDs with distinct 
molecular underpinnings that can arise as a result of mutations 
in proteins unrelated to the DAPC, each type categorized based 
on the mode of inheritance and altered gene product.

Aberrant glycosylation of -dystroglycan. During 
posttranslational maturation, the mucin domain of -dystroglycan  
undergoes extensive O-glycosylation at serine/threonine resi-
dues catalyzed by multiple enzymes residing in the Golgi ap-
paratus and sarcoplasmic reticulum in a stepwise manner. The 
branched O-linked carbohydrate moieties are required for high-
affinity binding to G domain–containing proteins of the ECM 
such as laminin 2, agrin, and perlecan (Barresi and Campbell, 2006). 
Hypoglycosylation of -dystroglycan diminishes its binding 
capacity to the ECM proteins and destabilizes the sarcolemma. 
Functional impairment of several known or putative glycosyl-
transferases as a result of genetic mutations causes them to fail 
to properly glycosylate the -dystroglycan protein and leads to 
a clinically heterogeneous group of congenital muscular dystro-
phies (CMDs): Walker-Warburg syndrome (WWS), muscle-eye-
brain disease (MEB), and Fukuyama CMD (Michele et al., 
2002; Moore et al., 2002). In addition to hypotonia and severe  
muscle weakness, present at birth or thereafter, the affected indi-
viduals suffer from severe brain and eye malformations. To date, 
recessive mutations in 10 genes have been identified in 50% 
of individuals with CMD (Table 1), and the number of causative 
genes is increasing rapidly with the advent of whole-exome se-
quencing. Mutations in these genes produce a wide spectrum 
of clinical severity that lead to recent reclassification of the most  
severe forms of CMD—WWS, MEB, and Fukuyama CMD—as  
muscular dystrophy-dystroglycanopathy type A (MDDGA). 
An intermediate form, with or without cognitive impairment, is  
designated as MDDGB, and the least severe form with no cogni-
tive impairment and manifested as later onset LGMD is desig-
nated as MDDGC (Table 1). However, in the majority of cases 
the causative gene is difficult to predict from the clinical pheno-
type. Because these disorders are not caused by mutations in 
the dystroglycan gene itself, but rather by insufficient posttrans-
lational glycosylation of the protein, they are often classified  

substituted by fibrous and fatty tissues, which is one of the hall-
marks of muscular dystrophy. Disruption of sarcolemma causes  
leakage of muscle proteins such as creatine kinase (CK) into the 
serum. Thus, highly elevated CK concentration in circulating 
blood serum is used as an informative biomarker for degenerative 
processes occurring in muscle. However, the precise diagnosis 
of muscular dystrophies needs to be determined by a combina-
tion of protein testing with immunostaining or immunoblotting 
on a muscle biopsy followed by targeted genetic testing. Even 
though the end point of these conditions is severe muscle loss 
and accumulation of fibrotic and fatty tissues, different molecu-
lar pathomechanisms have been implicated in distinct types of 
muscle disease.

Cellular and molecular mechanisms  
of muscle degeneration
Disruption of cytoskeleton–ECM connection. The 
most common and severely debilitating neuromuscular dis-
order, Duchenne muscular dystrophy (DMD), affects 1 in 3,500 
males. It is manifested by rapidly progressive proximal muscle 
wasting starting around 3 years of age, culminating with respi-
ratory insufficiency and cardiac failure that leads to premature 
death by the mid-20s. The allelic disorder Becker muscular dys-
trophy (BMD) is less common and milder, with late disease 
onset and relatively advanced survival age. Both diseases are 
caused by mutations in the DMD gene, the largest gene in the 
human genome, located on the X chromosome, which encodes 
the 427-kD protein dystrophin (Monaco et al., 1986; Burghes 
et al., 1987; Hoffman et al., 1987; Koenig et al., 1987). DMD is 
caused by recessive, frameshifting deletions and duplications or 
nonsense mutations that lead to complete loss of or expression 
of nonfunctional dystrophin in myofibers, whereas mutations 
causing BMD produce semifunctional dystrophin (Hoffman 
et al., 1988; Monaco et al., 1988; Koenig et al., 1989). Dystrophin 
is an intracellular, rod-shaped protein with four major func-
tional domains. This protein is localized to the inner surface  
of the sarcolemma, with a high abundance at costameres. The  
N terminal and a portion of the middle rod domain interact 
with the cytoskeletal filamentous actin (F-actin), whereas the 
C-terminal domain interacts with multiple proteins to assemble 
the dystrophin-associated protein complex (DAPC), a group of 
proteins that span the sarcolemma of the skeletal and cardiac 
muscle (Ervasti et al., 1990; Yoshida and Ozawa, 1990; Fig. 1 A).  
This protein complex, in addition to dystrophin, encompasses 
intracellular (1- and 1-syntrophin, -dystrobrevin, and nNOS), 
transmembrane (-dystroglycan, -, -, -, and -sarcoglycan, 
and sarcospan), and extracellular proteins (-dystroglycan and 
laminin-2). The core component of the DAPC, dystroglycan, is 
encoded by a single gene and posttranslationally cleaved to yield 
two noncovalently associated subunits. The transmembrane  
subunit -dystroglycan binds to dystrophin and other cytolinker 
proteins at the intracellular periphery of sarcolemma, whereas 
the cell-surface subunit -dystroglycan binds to -dystroglycan 
and to the ECM proteins such as laminin-2; together, these 
proteins connect the intracellular cytoskeleton through sarco-
lemma with the basement membrane (Ibraghimov-Beskrovnaya 
et al., 1992). The integrity of this protein complex is crucial for the 
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junctions (MTJs). Targeted deletion of the 7 chain causes pro-
gressive muscle degeneration with specific impairment of function  
at the MTJ (Mayer et al., 1997). Loss of the DAPC in DMD mus-
cle increases the amount 71 integrin at the sarcolemma, likely 
to compensate for the weakened link between the sarcolemma and 
basal lamina. Furthermore, transgenic overexpression of 71  
integrin reduced sarcolemma damage and significantly amelio-
rated disease symptoms in mdx mice, the most widely used ani-
mal model for DMD with a nonsense mutation in Dmd (Burkin 
et al., 2001; Liu et al., 2012). The integrin linkage system ap-
pears to functionally complement the DAPC-mediated linkage 
between the cytoskeleton and the ECM. Therefore, enhancing 
sarcolemmal expression of the integrin heterodimers provides 
a potential therapeutic approach for DMD and other muscular 
dystrophies caused by loss of the DAPC.

Disruption of the ECM. The ECM is a meshwork of 
glycoproteins, collagen, and proteoglycans that provides an at-
tachment and signaling scaffold for myofibers. Mutations in sev-
eral genes encoding the structural components of the ECM are 

as secondary dystroglycanopathies. A missense change of a highly 
conserved amino acid (Thr192Met) in dystroglycan was recently 
identified in an individual affected with LGMD and cognitive 
impairment, the first reported case of a primary dystroglycanopa-
thy within this disease classification (Hara et al., 2011). Functional 
studies, including a mutation knock-in mouse model, determined 
that this mutation interferes with LARGE-mediated matura-
tion of phosphorylated O-mannosyl glycans on -dystroglycan, 
thereby decreasing its binding efficiency to laminin.

Loss of integrin-mediated linkage between  

cytoskeleton and ECM. Similar to the DAPC, the 71 
integrin heterodimer connects the actin cytoskeleton to the ECM 
(Fig. 1 A). Mutations in ITGA7 encoding the 7 chain of 71 
integrin cause CMD (Hayashi et al., 1998). In developing myo-
blasts, 71 integrin plays a role in cell adhesion, prolifera-
tion, and differentiation. In mature myofibers, it is expressed 
throughout the sarcolemma to reinforce its attachment to the basal 
lamina, and in particular these proteins are concentrated at cos-
tameres, neuromuscular junctions (NMJs), and myotendinous  

Figure 1. Sarcolemmal proteins and sarcomere structure. (A) The DAPC is a multimeric protein complex that connects the intracellular cytoskeleton of a 
myofiber to the ECM, which is composed of laminin, collagen, and other proteins. The muscle-specific laminin is composed of 2, 1, and 1 chains. The 
2 subunit directly interacts with glycosylated -dystroglycan, which in turn interacts with the transmembrane -dystroglycan. The dystrophin protein has 
four functional domains including the N-terminal, a long middle rod, cysteine-rich, and C-terminal domains. The central rod domain consists of 24 spectrin-
like repeats arranged head-to-tail and interspersed by four flexible hinges. The N-terminal and the spectrin-like repeats bind to F-actin of the cytoskeleton, but 
not to the -actin of thin sarcomeric filaments. The cysteine-rich domain binds to -dystroglycan and the adjacent C-terminal domain binds to -dystrobrevin 
and syntrophin. The cytolinker protein plectin binds -dystroglycan and dystrophin and connects desmin IFs with the DAPC. Microtubules also interact with 
dystrophin. The four subunits of the sarcoglycan complex interact with each other and with the transmembrane protein sarcospan. The small leucine-rich 
repeat proteoglycan biglycan in the ECM binds to - and -sarcoglycan and -dystroglycan. Syntrophins bind to dystrophin, -dystrobrevin, nNOS, and 
caveolin-3. The 71 integrin dimer binds laminin extracellularly and actin intracellularly via the vinculin (V) and talin (T) proteins. (B) The basic contractile 
unit of skeletal muscle, the sarcomere, is composed of thin and thick filaments predominantly composed of actin and myosin, respectively. Thin filaments of 
adjacent sarcomeres are anchored at the Z-disk, which defines the lateral borders of the sarcomere. Myosin has a long, fibrous tail and a globular head, 
which interacts with actin to produce muscle contraction.
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through glycosylated -dystroglycan and with the 71 integ-
rin dimer. These protein complexes are secreted from myofibers 
and interact with entactin, which binds to collagens to build 
the ECM. In addition to destabilized sarcolemma in laminin-
deficient muscle, mitochondrial apoptosis appears to contribute  
substantially to disease progression in MDCA1. Detachment 
of cell membrane from the ECM induces a particular form 

responsible for CMDs. The most common form of CMD, merosin- 
deficient or type 1A (MDC1A), is caused by the deficiency 
of laminin-2 chain (LAMA2; Helbling-Leclerc et al., 1995).  
Secondary loss of laminin-2 is common to severe forms of 
CMD caused by mutations in other genes (Brockington et al., 
2001). Laminin-2 is one of the three subunits of muscle-specific 
laminin that makes distinct interacting complexes with the DAPC 

Table 1. Genes associated with muscular dystrophies

Disease Inheritance Gene Protein References

DMD, Becker muscular dystrophy XR DMD Dystrophin Monaco et al., 1986;  
Burghes et al., 1987

Emery-Dreifuss muscular dystrophy XR EMD Emerin Bione et al., 1994;
 XR FHL1 Four and a half LIM domains 1 Gueneau et al., 2009
 AD/AR LMNA Lamin A/C Bonne et al., 1999
LGMD1A AD MYOT Myotilin Hauser et al., 2000
LGMD1B AD LMNA Lamin A/C Muchir et al., 2000
LGMD1C AD CAV3 Caveolin-3 Minetti et al., 1998
LGMD1D AD DES Desmin Greenberg et al., 2012
LGMD1E AD DNAJB6 DnaJ (Hsp40) homolog, subfamily B, 

member 6
Sarparanta et al., 2012

LGMD2A AR CAPN3 Calpain 3 Richard et al., 1995
LGMD2B, Miyoshi myopathy, distal anterior 

compartment myopathy
AR DYSF Dysferlin Bashir et al., 1998;  

Liu et al., 1998
LGMD2C AR SGCG -Sarcoglycan Noguchi et al., 1995
LGMD2D AR SGCA -Sarcoglycan Roberds et al., 1994
LGMD2E AR SGCB -Sarcoglycan Bönnemann et al., 1995;  

Lim et al., 1995
LGMD2F AR SGCD -Sarcoglycan Nigro et al., 1996
LGMD2G AR TCAP Titin-cap Moreira et al., 2000
LGMD2H AR TRIM32 Tripartite motif containing 32 Frosk et al., 2002
LGMD2J AR TTN Titin Hackman et al., 2002
Tibial MD AD
LGMD2L AR ANO5 Anoctamin 5 Bolduc et al., 2010
LGMD2Q AR PLEC Plectin Gundesli et al., 2010
MDDGA1, MDDGC1 (LGMD2K)a AR POMT1 Protein-O-mannosyltransferase 1 Beltrán-Valero de Bernabe et 

al., 2002
MDDGA2, MDDGC2 (LGMD2N) AR POMT2 Protein-O-mannosyltransferase 2 van Reeuwijk et al., 2005
MDDGA3, MDDGC3 (LGMD2O) AR POMGNT1 Protein O-linked mannose beta1,2-N-

acetylglucosaminyltransferase
Yoshida et al., 2001

MDDGA4, MDDGC4 (LGMD2M) AR FKTN Fukutin Kobayashi et al., 1998
MDDGA5, MDDGC5 (LGMD2I) AR FKRP Fukutin related protein Brockington et al., 2001
MDDGA6 AR LARGE like-glycosyltransferase Longman et al., 2003
MDDGA7 AR ISPD Isoprenoid synthase domain containing Roscioli et al., 2012;  

Willer et al., 2012
MDDGA8 AR GTDC2 Glycosyltransferase-like domain contain-

ing 2
Manzini et al., 2012

MDDGA AR B3GNT1 UDP-GlcNAc:betaGal beta-1,3-N-acetyl-
glucosaminyltransferase 1

Buysse et al., 2013

MDDGA AR B3GALNT2 -1,3-N-acetylgalactosaminyltransferase 2 Stevens et al., 2013
MDDGC9 (LGMD) AR DAG1 Dystroglycan Hara et al., 2011
DM1 AD DMPK CTGexp in 3 UTR Brook et al., 1992; Fu et al., 

1992; Mahadevan et al., 1992
DM2 AD CNBP CCTGexp in intron 1 Liquori et al., 2001
FSHD1 AD DUX4 Double homeobox 4 Kowaljow et al., 2007; Lemmers 

et al., 2010
FSHD2 AD, Digenic DUX4, SMCHD1 Double homeobox 4, structural  

maintenance of chromosomes flexible  
hinge domain containing 1

Lemmers et al., 2012

AD, autosomal dominant; AR, autosomal recessive; XR, X-linked recessive; LGMD, limb-girdle muscular dystrophy (LGMD1, autosomal dominant; LGMD2, autosomal 
recessive); MDDG, muscular dystrophy-dystroglycanopathy; DM, myotonic dystrophy; FSHD, facioscapulohumeral muscular dystrophy; exp, expansion.
aAlternative or previous nomenclature is provided in parentheses.
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direct interaction with dystrophin appears to be critical for the 
recruitment of nNOS to the sarcolemma. Although minidystro-
phin, a truncated version of dystrophin without these specific 
spectrin-like repeats engineered for antiviral gene therapy, re-
verses dystrophic pathology in the mdx mouse, it is unable to 
reduce exercise-induced fatigue; therefore, inclusion of spectrin-
like repeats required for nNOS interaction with minidystrophin 
should be considered in gene replacement therapies. In conclu-
sion, these studies underscore the importance of nNOS signal-
ing in the functioning and maintenance of skeletal muscle.

Cytoskeletal defects in muscular dystrophy. 
The main intracellular cytoskeletal component that transmits the 
mechanical force through the DAPC to ECM is the microfila-
ment network consisting of F-actin (Ervasti and Campbell, 1993; 
Rybakova et al., 2000). The N-terminal actin-binding domain 
and spectrin-like repeats within the rod domain of dystrophin 
bind to actin filaments. However, several recent studies revealed 
that dystrophin interacts with the other two elements of the cyto-
skeleton; intermediate filaments (IFs) and microtubules. Multi-
ple members of the IF network are expressed in striated muscle; 
among these desmin is the predominantly expressed IF pro-
tein in myofibers. Desmin connects Z-disks of neighboring 
myofibrils and anchors myofibrils to intracellular organelles, 
such as mitochondria and the nucleus, and to the sarcolemma, 
to maintain a spatial organization between myofibrils and other 
structural components of the myofiber. Mutations in desmin are 
associated with the autosomal dominant LGMD1D with dilated 
cardiomyopathy, with characteristic desmin-positive protein ag-
gregates within the sarcoplasma (Greenberg et al., 2012). The 
linkage between desmin and the DAPC appears to be mediated 
by the giant cytolinker protein plectin, mutations in which also 
underlie muscular dystrophy with skin blistering (epidermoly-
sis bullosa simplex; Smith et al., 1996). Plectin is expressed 
as multiple isoforms through alternative splicing of its variable 
N-terminal domain. The C-terminal domain of plectin-1f iso-
form binds desmin while the actin-binding and plakin domains 
bind dystrophin and -dystroglycan at costameres, respectively 
(Rezniczek et al., 2007). A homozygous 9bp deletion muta-
tion in the first plectin-1f isoform-encoding exon of PLEC was 
identified in progressive LGMD2Q without skin manifestation, 
demonstrating a unique role of plectin isoform 1f in skeletal 
muscle function (Gundesli et al., 2010). Enlarged distance be-
tween the sarcolemma and myofibrils and misaligned Z lines 
in patient muscles suggest that lack of this particular isoform 
fails to hold these structures together. Other cytolinker proteins 
such as syncoilin and synemin are expressed in skeletal muscle 
and have been suggested to mediate interaction of the desmin 
IF cytoskeleton network with the DAPC (Bellin et al., 2001; 
Poon et al., 2002). Furthermore, dystrophin directly interacts 
and stabilizes the organization of the third component of the 
cellular cytoskeleton—microtubules (Prins et al., 2009)—and 
microtubule disorganization has been proposed to contribute to 
disease pathogenesis in DMD. Brief stretching of muscle from 
mdx mice induces microtubule-dependent activation of NADPH 
oxidase, which in turn produces reactive oxygen species and in-
creases sarcolemmal Ca+2 influx (Khairallah et al., 2012). Col-
lectively, in contrast to the initial assumption that the F-actin is 

of apoptotic pathway called anoikis. Inhibition of muscle cell 
death by transgenic overexpression of the antiapoptosis protein 
Bcl-2, or through targeted ablation of the pro-apoptosis protein 
Bax in Lama2/ mice, alleviated the dystrophic phenotype and 
extended lifespan of these animals severalfold (Girgenrath et al., 
2004). Therefore antiapoptosis therapies could potentially benefit 
MDCA1 and likely other neuromuscular disorders where apoptosis 
plays an important role in disease pathogenesis, such as those  
that result from defective collagen VI. Different types of mutations 
in three genes (COL6A1, COL6A2, and COL6A3) encoding the 
subunits of collagen VI cause two clinically distinct myopathies: 
Ullrich CMD and Bethlem myopathy (Bönnemann, 2011).

Impaired cell signaling at the sarcolemma. The 
intracellular module of the DAPC that includes -dystrobrevin, 
syntrophins, and neuronal nitric oxide synthase (nNOS) regu-
lates the signal transduction cascade at the sarcolemma. The nNOS 
enzyme produces nitric oxide (NO) from l-arginine, which in 
turn induces guanylyl cyclase to synthesize cyclic GMP, a sig-
naling molecule broken down by cyclic nucleotide phosphodi-
esterases (PDEs). cGMP functions as a potent vasodilator by 
inhibiting the vasoconstrictor response to -adrenergic receptor 
activation. Muscle contractions activate nNOS and the resultant 
NO augments local blood flow to meet the increased energy 
demand of contracting muscle (Kobzik et al., 1994). nNOS is 
anchored to the sarcolemma via the PDZ domain of the adap-
tor protein syntrophin, which binds directly to the C-terminal 
domain of dystrophin. To ensure rapid diffusion of NO to blood 
vessels, sarcolemmal localization of nNOS is essential for its 
function as a vasodilator in skeletal muscle. Complete loss of 
dystrophin dissociates nNOS from the sarcolemma (Brenman 
et al., 1995), causing functional ischemia and exercise-induced 
fatigue in DMD patients (Sander et al., 2000). Interestingly, a 
recent study demonstrated that not only the DMD muscle, but 
muscles from other types of muscular dystrophies, including 
those that do not directly involve the DAPC, tend to lose nNOS 
from the sarcolemma, which implies that many muscular dys-
trophies may share common mechanisms of exercise-induced 
fatigue (Kobayashi et al., 2008). Furthermore, using nNOS-null 
mice, this study demonstrated that exercise-induced fatigue as 
a result of nNOS loss is distinct from general muscle weakness 
pertinent to muscle wasting diseases. Treatment of the mdx and 
Sgca/ mice, which lack -sarcoglycan, with the phosphodi-
esterase 5A inhibitor sildenafil citrate to boost cGMP signaling  
significantly improved vasodilation and reduced exercise-induced 
fatigue, which supports the therapeutic benefits of vasomodu-
lation in muscular dystrophies (Kobayashi et al., 2008). Fur-
thermore, syntrophins also bind the dystrophin-related protein 
-dystrobrevin, which in turn interacts with dystrophin as well  
as with sarcoglycans. Mice null for -dystrobrevin exhibit mus-
cular dystrophy and cardiomyopathy, not because of disruption 
of the DAPC and sarcolemma but as a result of compromised 
signaling at the sarcolemma (Grady et al., 1999). In muscle from 
these mice, nNOS is dislocated from the DAPC and the pro-
duction of NO is reduced, leading to muscle and heart abnor-
malities. Recent studies demonstrate that nNOS can also bind 
directly to the dystrophin protein via a 10–amino acid fragment 
within spectrin-like repeat 17 (Lai et al., 2009, 2013). In fact, 
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was demonstrated to result from defective membrane repair 
(Cai et al., 2009a). Influx of oxidized extracellular environment 
through damaged sarcolemma into the sarcoplasma appears to 
oligomerize MG53 residing on intracellular vesicles, which in 
turn induces their translocation to and nucleation at the acute in-
jury site. Subsequently, through functional interaction with MG53 
and caveolin-3, dysferlin facilitates rapid membrane patch forma-
tion in the presence of elevated Ca2+ level, and disruption of one 
of these components can affect the localization and function of 
the other components (Cai et al., 2009b). Dysferlin also interacts 
with annexins A1 and A2 (Lennon et al., 2003). Annexins are a 
family of proteins that bind phospholipids in a Ca2+-dependent 
manner to assemble a docking platform for interacting proteins 
at the membrane. A recent study using high-resolution in vivo 
imaging in zebrafish demonstrated that after membrane injury, 
cytoplasmic annexin A6 accumulates at the membrane lesion, 
independently and simultaneously with dysferlin-docked intra-
cellular vesicles, and then together with dysferlin sequentially 
recruit annexins A2 and A1 to the membrane repair site (Roostalu 
and Strähle, 2012; Fig. 2 A). In dysferlin-deficient muscles, the  
localization and distribution of annexin A1 and A2 at the sarco-
lemma is perturbed (Lennon et al., 2003). In conclusion, sarco-
lemmal repair involves sequential interaction between multiple 
proteins, and these proteins could be strong candidates for mus-
cular dystrophies that have not yet been associated with a ge-
netic mutation. Furthermore, variation within these proteins might  
also modulate phenotypic variability of dysferlin-associated mus-
cle diseases.

Anoctamins are a family of transmembrane proteins with 
Ca2+-activated chloride channel activity (Tian et al., 2012). Loss-
of-function mutations in ANO5, encoding anoctamin 5, were 
identified in families with LGMD2L and distal nondysferlin 
Miyoshi myopathy 3 (MMD3; Bolduc et al., 2010). Muscles from 
subjects with ANO5 mutations displayed multifocal sarcolemma 
lesions, but unlike in typical dysferlinopathies no subsarcolem-
mal vesicle accumulation was observed. However, fibroblasts 
from one MMD3 subject did show impaired membrane repair 
when the cell membrane was injured in vitro. The function of 
anoctamin 5 in skeletal muscle still remains unclear. Progres-
sive loss of both proximal as well as distal muscles in differ-
ent individuals, defective membrane repair in one subject, and 
predicted Ca2+-activated chloride channel activity point to its 

the only cytoskeletal element interacting with the DAPC, it is 
now well established that IFs as well as microtubules interact 
with the DAPC.

Defective sarcolemma repair. Frequent mechanical  
stress and the large size of individual muscle fibers render the 
fragile sarcolemma susceptible to microinjuries. In healthy mus-
cle these contraction-induced membrane injuries are efficiently 
resealed by a Ca2+-dependent repair pathway. The dynamic re-
pair process performed by fusion of membrane-bound intracel-
lular vesicles with the sarcolemma is orchestrated by intricate 
interactions between multiple proteins residing both on the sar-
colemma and on these vesicles (Fig. 2 A). In contrast to myo-
fiber degeneration that results from loss of connection between 
the cytoskeleton and the ECM, muscle degeneration can also 
arise from inefficient repair of naturally damaged sarcolemma. 
Dysferlin, a 230-kD transmembrane protein with six intracel-
lular C2 domains, is a key component of the Ca2+-dependent 
sarcolemma repair pathway. It promotes the fusion of the intra-
cellular vesicles with each other and with the sarcolemma at the 
injury site. Loss-of-function mutations in DYSF underlie three 
clinically distinct muscular dystrophies, collectively called dys-
ferlinopathies: LGMD2B, Miyoshi myopathy, and distal ante-
rior compartment myopathy (DACM; Bashir et al., 1998; Liu 
et al., 1998). Miyoshi myopathy prominently affects distal limb 
muscles, whereas LGMD2B is a proximal muscle disease. Inter-
estingly, identical mutations in DYSF have been associated with 
both types (Weiler et al., 1999). Dysf/ mice develop progres-
sive muscular dystrophy, with intact DAPC, which indicates 
that loss of dysferlin does not destabilize the DAPC (Bansal  
et al., 2003). Because the intracellular vesicles fail to fuse with 
the damaged sarcolemma, there is a characteristic accumulation 
of subsarcolemmal vesicles in dysferlin-deficient muscle.

Dysferlin interacts with multiple proteins. Among these 
proteins, caveolin-3 (Matsuda et al., 2001) is the principle con-
stituent of plasma membrane caveolae, small invaginations of the 
plasma membrane that are responsible for LGMD1C when mu-
tated (Minetti et al., 1998). Mitsugumin 53 (MG53), a muscle-
specific TRIM (Tri-partite motif) family protein encoded by the 
TRIM72 gene, is another important member of the sarcolemma 
membrane repair pathway. Although no mutations in TRIM72 
have yet been identified in human muscular dystrophy, MG53 
knockout mice develop progressive muscle degeneration, which 

Figure 2. Dysferlin-mediated sarcolemma repair. (A) Repetitive muscle contractions often cause membrane disruption. Mitsugumin 53 (MG53; red) 
located on intracellular membrane-bound vesicles oligomerizes when exposed to oxidized extracellular components (gray circles) and recruits dysferlin- 
carrying vesicles to the injury site. Simultaneously but independently of these vesicles, intracellular annexin 6 (ANXA6) accumulates at the membrane  
lesion. (B) Together with dysferlin, ANXA6 sequentially recruits ANXA2 and ANXA1 to the injury site. (C) Elevated intracellular Ca2+ concentration facili-
tates fusion of intracellular vesicles with each other and with the plasma membrane through interactions between dysferlin, annexins, and other proteins at 
the disrupted site, rapidly forming a membrane repair patch.
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Myotonic dystrophy type 1 (DM1) is caused by a CTG trinucle-
otide repeat expansion (from 50 to >2,000) within the 3 UTR 
of the dystrophia myotonica protein kinase (DMPK) gene (Brook 
et al., 1992; Fu et al., 1992; Mahadevan et al., 1992). DM1 is a 
multisystem disease that predominantly affects skeletal muscles 
and the central nervous system, and it is also considered the 
most common adult onset muscular dystrophy, with a preva-
lence of 1/8,000. It is characterized by myotonia (slow relax-
ation of the muscles after contraction), muscle degeneration, 
cataracts, cardiac arrhythmias, and cognitive impairment. The 
less frequent DM2 results from a CCTG repeat expansion (from 
75 to >10,000) in intron 1 of the CCHC-type zinc finger nucleic 
acid binding protein (CNBP; Liquori et al., 2001). The mRNA 
products transcribed from the expanded alleles of these genes 
are retained within the nucleus, forming punctuated foci of RNP 
aggregates (Taneja et al., 1995; Davis et al., 1997; Mankodi et al., 
2003). In both types of DM, mis-splicing of downstream target 
gene transcripts secondary to these repeat sequence amplifica-
tions underlie the molecular etiology of the disease. Muscleblind-
like proteins (MBNL) are a highly conserved, developmentally 
regulated family of proteins that regulate alternative splicing of 
a large number of pre-mRNAs. The native cognate binding site 
of MBNL1 includes a CUG motif. Therefore, MBNL1 binds to 
expanded CUG and CCUG repeats of the DMPK1 and CNBP 
mRNAs, respectively, and becomes sequestered within the nu-
cleus (Miller et al., 2000; Mankodi et al., 2001; Fig. 3 A). Seques-
tration of MBNL1 depletes its cellular abundance, which in turn 
leads to inappropriate splicing of many pre-mRNAs that depend 
on MBNL1 for their transition from an embryonic to postnatal 
splicing pattern (Lin et al., 2006). Two of the well-studied pre-
mRNAs that are prominently affected and directly contribute to 
disease symptoms encode muscle-specific chloride channel, re-
sponsible for the hyperexcitability of muscle (myotonia; Charlet-B 
et al., 2002), and insulin receptor, which explains insulin resis-
tance in DM patients (Savkur et al., 2001). Mouse models ex-
pressing CTG repeats from the 3 UTR of the human skeletal 
-actin transgene (HASLR; Mankodi et al., 2000) and null for 
muscleblind-like 1 (Mbnl1E3/E3; Kanadia et al., 2003) reproduce 
several human phenotypes including embryonic pattern of pre-
mRNA splicing in adult tissues. Genome-wide gene expression 
and pre-mRNA splicing analyses in these two mouse models 
revealed >200 exons with altered splicing profiles (Du et al., 
2010). More than 80% of the splicing differences observed in 
HASLR muscles were also seen in Mbnl1-deficient muscles, which 
suggests that loss of Mbnl1 likely accounts for the majority of 
abnormal splicing occurring in DM. Furthermore, expression 
levels of genes encoding the ECM proteins were overrepresented 
among the altered transcripts, highlighting common molecular 
defects with other types of muscular dystrophies. These genome-
wide studies of mRNA expression and splicing events have iden-
tified potential candidate genes that might contribute to disease 
symptoms when inappropriately spliced. The specific roles of 
individual target genes in disease etiology remain to be estab-
lished. In addition to MBNL1 depletion, expanded CUG repeats 
induce aberrant activation of PKC, which in turn phosphorylates 
and increases the activity of a second splicing regulatory factor 
CUGBP Elav like family 1 (CELF1), formerly called as CUGPB1 

potential role in sarcolemma repair, likely through the dysferlin-
dependent repair pathway described above. According to the 
proposed model, increased Ca2+ concentration within a dam-
aged myofiber might activate the putative chloride ion chan-
nel ANO5 residing on intracellular vesicles and allow chloride 
transport into the vesicles to modify their conformation and  
facilitate recruitment to the injury site (Bolduc et al., 2010).

Disintegration of muscle sarcomeres. The  
assembly and maintenance of myofibrils is regulated by multi-
ple proteins that interact with the primary sarcomeric proteins 
actin and myosin (Fig. 1 B). Mutations in proteins expressed in 
sarcomeres have been associated with neuromuscular disorders, 
including several LGMDs, but mutations in sarcomeric proteins 
are more common in cardiomyopathies. Associated genes and mo-
lecular mechanisms of inherited cardiomyopathies are discussed 
in two recent reviews (Harvey and Leinwand, 2011; McNally 
et al., 2013). Interestingly, mutations in sarcomeric proteins caus-
ative of muscular dystrophy tend to affect distal muscles, i.e., 
those in hands, forearms, lower legs, and feet. The myotilin pro-
tein cross-links -actinin, filamin-C, and F-actin, and promotes 
myofibrillogenesis at Z-disks (Salmikangas et al., 2003). Muta-
tions in the MYOT gene were identified in families with LGMD1A 
(Hauser et al., 2000). Dominant mutations in the actin-binding 
domain of filamin-C that increase its binding affinity for actin 
have recently been associated with a distal myopathy (Duff et al., 
2011). Nebulin spans the length of the thin filament interacting 
with its components actin, tropomyosin, tropomodulin, and CAPZ. 
It regulates the filament length by stabilizing and preventing 
actin depolymerization (Pappas et al., 2010). Mutations in nebulin 
are responsible for nemaline myopathy, a group of congenital 
muscle disorders characterized by generalized muscle weakness 
and rod-like nemaline bodies in myofibers (Wallgren-Pettersson 
et al., 2011). Titin extends from the opposing Z-disks of a sar-
comere and overlaps in the middle of the sarcomere and is thought 
to serve as the molecular ruler that controls the length of sarco-
mere during contraction and relaxation. Mutations in titin have 
been associated with both muscular dystrophy and cardiomyop-
athy. Heterozygous mutations in the C-terminal domain of titin, 
located within the M-line of sarcomeres, cause the late-onset 
tibial muscular dystrophy, whereas homozygous mutations un-
derlie the more severe LGMD2J (Hackman et al., 2002). Titin 
mutations associated with dilated cardiomyopathy are, how-
ever, overrepresented in its A-band region but are absent in the 
Z-disk and M-line regions (Herman et al., 2012). Furthermore, 
mutations in titin lead to secondary reduction of calpain 3, a 
muscle-specific, calcium-dependent protease that is mutated in 
LGMD2A (Richard et al., 1995). LGMD2G is associated with 
mutations in telethonin (titin-cap), which anchors two parallel 
titin molecules within a single sarcomere to the Z-disk (Moreira 
et al., 2000). Given the complexity of the organization and biogen-
esis of sarcomeres, mutations in many of the interacting proteins 
have been associated with several forms of muscular dystrophies. 
These disorders have been reviewed recently (Udd, 2009).

Toxic RNA induced muscle degeneration. Unlike 
the majority of muscular dystrophies caused by mutations that 
alter the amino acid sequence, the primary cause of myotonic dys-
trophy (DM) is the accumulation of toxic RNA in cell nucleus. 
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embedded in the last repeat extends into the adjacent pLAM se-
quence, which contains a polymorphic canonical polyadenyl-
ation signal. Transcripts expressed from the permissive allele 
(4qA) are polyadenylated and stabilized, consequently produc-
ing protein, whereas the nonpolyadenylated transcripts transcribed 
from the nonpermissive allele (4qB) are degraded (Lemmers 
et al., 2010). The double homeobox domain containing transcrip-
tion factor DUX4 in turn induces muscle cell death (Kowaljow 
et al., 2007; Snider et al., 2010; Fig. 3 B). The exact mecha-
nisms of its toxicity to muscle cells are not clear yet. Further-
more, DUX4 is spliced into two isoforms, the full-length protein 
(DUX4-fl), which was shown to be expressed exclusively in 
1/1,000 cultured FSHD myoblasts, causing cell death shortly 
after translation, and a shorter nontoxic isoform expressed in both 
affected and unaffected cells and muscles (Snider et al., 2010).

Later findings challenged the notion that the expression of 
DUX4 is restricted to affected cells and muscles, by demonstrat-
ing that DUX4-fl is also expressed in unaffected cells and mus-
cles, albeit at lower frequency, which is suggestive of potential 
disease modifiers (Jones et al., 2012). DUX4-fl was shown to 
induce a large number of genes that are normally expressed in 
stem cells and germline (Geng et al., 2012). However, the signifi-
cance of these genes in disease pathogenesis is elusive. Strikingly, 
injection of very low amounts of DUX4-fl mRNA into zebrafish 
embryos recapitulated several human phenotypes, including the 
extramuscular phenotypes such as eye and ear abnormalities 
and asymmetric involvement of affected organs (Mitsuhashi 
et al., 2013).

(Roberts et al., 1997; Philips et al., 1998; Kuyumcu-Martinez 
et al., 2007; Fig. 3 A). MBNL1 and CELF1 are thought to act as 
antagonistic splicing regulatory factors. CELF1 is also known to 
control mRNA translation and stability. Consequently, imbalance 
between these two genomic regulatory factors has a widespread 
effect on a large number of genes that result in systemic disease.

Ectopic expression of a toxic transcription 

factor. Facioscapulohumeral muscular dystrophy (FSHD) is an 
unusual and the third most common muscular dystrophy, char-
acterized by the asymmetric and progressive weakness and at-
rophy of skeletal muscles of the face, scapula, and upper arms, 
frequently accompanied by retinal telangiectasia and/or hearing 
loss. The common form of FSHD, type 1, is caused by contrac-
tions of tandemly arrayed repeat elements of 3.3 kb within the 
highly polymorphic macrosatellite element D4Z4 on the distal 
end of chromosome 4q35 (Wijmenga et al., 1992; van Deutekom 
et al., 1993). FSHD1 is, however, associated with D4Z4 muta-
tions that arise only on the permissive chromosomal allele 4qA, 
whereas deletions on the equally common allele in the general 
population 4qB do not present any pathogenic consequences 
(Lemmers et al., 2002). In unaffected individuals, the D4Z4 
array usually consists of 11–100 repeats, whereas FSHD1 pa-
tients carry 1–10 repeats. Furthermore, each repeat unit of D4Z4 
contains an open reading frame encoding the transcription fac-
tor double homeobox 4 (DUX4). Reduction of the D4Z4 size to 
a pathogenic threshold of <10 repeats relaxes the chromatin 
state within D4Z4 and induces the expression of the otherwise 
presumably repressed DUX4 retrogene. The expression of DUX4 

Figure 3. Primary molecular mechanisms underlying toxic RNA 
and toxic transcription factor–induced muscular dystrophies.  
(A) The expanded CUG tract within the 3 UTR of the DMPK mRNA 
folds into a double-stranded hairpin structure that resembles the 
cognate binding site of the muscleblind-like 1 (MBNL1) protein. 
MBNL1 binds the expanded RNA molecules and becomes seques-
tered within the nucleus, resulting in loss of its normal function in 
RNA splicing and enhancing formation of the foci that trap the ex-
panded RNA in the nucleus. The nuclear accumulation of this RNA 
disrupts RNA-processing functions in the nucleus and cytoplasm, 
affecting the regulation of alternative splicing and translation of 
many pre-mRNAs. A handful of well-studied examples are listed 
in the figure. Hyperphosphorylation and up-regulation of CELF1 
as a result of expanded CUG repeats affect alternative splicing, 
translation, and mRNA stability of its target genes. (B) Unaffected 
individuals carry 11–100 repeats (triangles) within the D4Z4  
macrosatellite on the telomeric end of chromosome 4q35. Contrac-
tion of D4Z4 repeats to <10 repeats relaxes the chromatin and 
induces DUX4 expression from the distal-most repeat unit (shown 
separately). DUX4 expressed from the nonpermissive chromosomal 
allele that does not contain the poly(A) signal (yellow bar) does 
not get polyadenylated and is unstable, whereas polyadenylated 
transcripts expressed from the permissive allele (red bar) are stable 
and translate into toxic transcription factor. Black triangles depict 
condensed chromatin, whereas gray triangles depict relaxed chro-
matin as a result of hypomethylation. SMCHD1 regulates D4Z4 
methylation. In FSHD2, mutated SMCH1 fails to methylate D4Z4 
and suppress DUX4 expression.
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The less common type, FSHD2, which is clinically indis-
tinguishable from FSHD1, was previously linked to hypometh-
ylation of D4Z4 chromatin (van Overveld et al., 2003). However, 
the genetic determinant of this phenomenon was not known 
until recently. Whole-exome sequencing in FSHD2 families 
identified heterozygous mutations in the SMCHD1 gene that 
co-segregate with D4Z4 hypomethylation of the permissive 
allele in affected family members (Lemmers et al., 2012). This 
study demonstrated that in addition to the haploinsufficiency of 
SMCHD1, inheritance of the polyadenylated DUX4 is required 
for disease manifestation. Consequently, these findings converge 
the underlying disease mechanisms of FSHD1 and FSHD2. 
SMCHD1 encodes for the SMCHD1 (structural maintenance of 
chromosomes flexible hinge domain containing 1) protein and 
is required for maintenance of the genome-wide hypermethyl-
ation of D4Z4, and likely other repeat elements. It has yet to 
be tested whether genetic variants in SMCHD1 also modify the 
disease phenotype of FSHD1, such as the highly variable age of 
onset, mutation penetrance, and extramuscular involvement.

Conclusion
Remarkable progress has been made over the last two decades 
toward deciphering the cellular and molecular underpinnings of 
neuromuscular disorders. Better understanding of the molecular 
mechanisms has paved the way for the development of targeted 
therapeutic interventions for several muscular dystrophies,  
not only specific for each type of disease, but also specific for 
individuals with certain mutations. Progress in antisense oligo-
nucleotide-mediated exon skipping to restore the open reading 
frame of mutated dystrophin or nonsense mutation read-through 
approaches developed to treat DMD has already started showing 
encouraging outcomes in clinical trials. Furthermore, recent ad-
vances in improved diagnostics, in particular using next-generation 
sequencing technologies, now allow the rapid (literally within 
hours) screening of newborns for potentially pathogenic genetic 
lesions. Early identification of mutations causative of muscular 
dystrophies will enable clinicians to take proactive measures to 
halt or reverse muscle degeneration.
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