
Impact of MAPK Pathway Activation in BRAFV600 
Melanoma on T Cell and Dendritic Cell Function

Citation
Ott, Patrick A., and Nina Bhardwaj. 2013. “Impact of MAPK Pathway Activation in BRAFV600 
Melanoma on T Cell and Dendritic Cell Function.” Frontiers in Immunology 4 (1): 346. 
doi:10.3389/fimmu.2013.00346. http://dx.doi.org/10.3389/fimmu.2013.00346.

Published Version
doi:10.3389/fimmu.2013.00346

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879158

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879158
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Impact%20of%20MAPK%20Pathway%20Activation%20in%20BRAFV600%20Melanoma%20on%20T%20Cell%20and%20Dendritic%20Cell%20Function&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=7bf44ad95b9cc8065b2022600917512a&department
https://dash.harvard.edu/pages/accessibility


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 28 October 2013

doi: 10.3389/fimmu.2013.00346

Impact of MAPK pathway activation in BRAFV600

melanoma on T cell and dendritic cell function
Patrick A. Ott 1 and Nina Bhardwaj 2*
1 Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
2 Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA

Edited by:
Timothy Bullock, University of Virginia,
USA

Reviewed by:
Franca Ronchese, Malaghan Institute
of Medical Research, New Zealand
Pedro Berraondo, Centro Para la
Investigación Médica Aplicada, Spain

*Correspondence:
Nina Bhardwaj , Division of
Hematology and Oncology, Hess
Center for Science and Medicine,
Tisch Cancer Institute, Mount Sinai
School of Medicine, 1470 Madison
Avenue Room 116, New York, NY
10029, USA
e-mail: nina.bhardwaj@mssm.edu

Constitutive upregulation of the MAPK pathway by a BRAFV600 mutation occurs in about
half of melanomas. This leads to increased oncogenic properties such as tumor cell inva-
sion, metastatic potential, and resistance to apoptosis. Blockade of the MAPK pathway with
highly specific kinase inhibitors induces unprecedented tumor response rates in patients
with advanced BRAFV600 mutant melanoma. Immune checkpoint blockade with mono-
clonal antibodies targeting cytotoxicT-lymphocyte antigen 4 and programed death-1/PD-L1
has also demonstrated striking anti-tumor activity in patients with advanced melanoma.
Tumor responses are likely limited by multiple additional layers of immune suppression in
the tumor microenvironment.There is emerging preclinical and clinical evidence suggesting
that MAPK inhibition has a beneficial effect on the immunosuppressive tumor microenvi-
ronment, providing a strong rationale for combined immunotherapy and MAPK pathway
inhibition in melanoma.The T cell response has been the main focus in the studies reported
to date. Since dendritic cells (DCs) are important in the induction of tumor-specific T cell
responses, the impact of MAPK pathway activation in melanoma on DC function is critical
for the melanoma directed immune response. BRAFV600E melanoma cells modulate DCs
through the MAPK pathway because its blockade in melanoma cells can reverse suppres-
sion of DC function. As both MEK/BRAF inhibition and immune checkpoint blockade have
recently taken center stage in the treatment of melanoma, a deeper understanding of how
MAPK pathway inhibition affects the tumor immune response is needed.

Keywords: melanoma, dendritic cell,T cell, BRAF, MEK, immunotherapy, kinase inhibitor

INTRODUCTION
Melanoma incidence rates have been increasing for at least
30 years. It is estimated that 76,690 individuals will be diag-
nosed in 2013 (1). The disease is usually curable when detected
in its early stages (thin primary tumor, no lymph node involve-
ment). For patients with unresectable or metastatic melanoma,
recently emerged novel systemic treatment modalities such as
Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) and Programed
Death-1 (PD-1)/PD-L1 blockade as well as BRAF and MEK inhi-
bition have expanded the spectrum of therapeutic options (2–13).
The successes with immune checkpoint blocking antibodies in the
treatment of patients with metastatic melanoma, with reported
response rates of up to 50% are remarkable. Both CTLA-4 and PD-
1/PD-L1 blockade can induce long lasting tumor responses in the
absence of vaccination, suggesting that endogenous tumor-specific
T cells exist in a substantial proportion of patients and that these
T cells, once uncoupled from the inhibitory effect mediated by
CTLA-4 and/or PD-1/PD-L1 can mediate effective tumor cell lysis
(2, 3, 12–15). Multiple other immune suppressive mechanisms are
at work in the tumor environment, including additional inhibitory
molecules such as Tim-3 (16) and LAG-3 (17), regulatory T cells,
myeloid derived suppressor cells (18), and soluble immunosup-
pressive mediators such as IDO (indoleamine 2,3-dioxygenase),
arginase, prostaglandin E2 (PGE2), IL-6, IL-10, VEGF, TGF-β

along with other suppressive cytokines and chemokines. Given
the multitude of suppressive mechanisms, it is remarkable that a
relatively high proportion of patients can achieve objective tumor
responses by blockade of a single pathway, such as PD-1/PD-L1
or CTLA-4.

Approximately half of melanomas harbor a somatic point
mutation of the BRAF oncogene at codon 600 (V600E and
V600K). This mutation results in constitutive activation of the
MAPK pathway and increased oncogenic behavior mediated
through a variety of mechanisms such as increased apopto-
sis, invasiveness, and metastatic potential. The MAPK path-
way is an important therapeutic target in melanoma: BRAF,
MEK, and combined BRAF/MEK inhibition with small mol-
ecule kinase inhibitors are successful treatment strategies in
patients with BRAF mutant metastatic melanoma (6–10). How-
ever, resistance to these treatments develops almost universally,
limiting the median duration of treatment responses to 6–
9 months. Investigation of resistance mechanisms and poten-
tial strategies to overcome resistance is a very active area of
research; a number of different mechanisms have been identified,
including the reactivation of MAPK signaling by other pathways
(19–24).

Given the treatment successes with both kinase inhibition and
immune checkpoint blockade in melanoma, there is considerable
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interest in combinatorial approaches. The promise is to com-
bine the response durability that is characteristic for patients
responding to immunotherapy with the high response rate seen
with BRAF inhibition. The scientific rationale for such strate-
gies is based on the interplay of the MAPK pathway and the
tumor immune response in the microenvironment. Activation
of signaling pathways in tumor cells have long been impli-
cated in promoting suppressive immune networks in the tumor
environment (25, 26). There is emerging evidence of a link
between the MAPK pathway in melanoma and the tumor immune
response. Preclinical and clinical observations indicate that inhi-
bition of the MAPK pathway may have a favorable effect on
the melanoma-specific immune response on the level of T cells,
tumor cells, stromal cells, and dendritic cells (DCs) (Table 1;
Figure 1).

BRAF AND MEK INHIBITION IN MELANOMA CELL LINES
LEADS TO UPREGULATION OF TUMOR ANTIGENS AND
INCREASED RECOGNITION BY MELANOMA-SPECIFIC T
CELLS IN VITRO
In melanoma cell lines, MEK and BRAF inhibition leads
to increased expression of melanoma differentiation antigens
(MDAs) such as gp100, MART-1, and tyrosinase on the mRNA
and protein levels (27–29). The underlying mechanism of onco-
genic BRAF-regulated MDA expression is unclear. It has been sug-
gested that oncogenic BRAF suppresses MDA expression through
microphthalmia-associated transcription factor. However addi-
tional pathways are likely involved and may account for the
heterogeneity of MDA induction observed across different cell
lines including mutant and wild-type cell lines (30). Increased
expression of gp100 and MART-1 leads to improved antigen
recognition by T cells as measured by IFN-γ production (27).
Upregulation of gp100 and MART-1 was seen in both BRAF
mutant and WT melanoma cell lines. BRAF inhibition did not
negatively impact lymphocyte function, whereas MEK inhibi-
tion negatively affected T cell proliferative potential, viability, and
IFN-γ production. These data were recently confirmed in vivo
in patients with metastatic melanoma (31). Increased MART,
TYRP-1, TYRP-2, and gp100 expression was found in metasta-
tic melanoma specimens obtained from patients after treatment
with BRAF and/or MEK inhibition. Interestingly, melanoma anti-
gen expression in metastatic tumors was decreased at the time
of tumor progression in patients treated with a BRAF inhibitor
and partially restored upon initiation of dual MEK and BRAF
blockade.

INCREASED FREQUENCY OF TUMOR INFILTRATING
LYMPHOCYTES AFTER BRAF INHIBITION
In an adoptive T cell transfer (ACT) model, frequencies of
gp100 specific luciferase expressing pmel-1 T cells were markedly
increased in gp100 expressing melanoma lesions after treat-
ment with vemurafenib (32) and this was associated with
improved tumor response compared to either vemurafenib or
ACT alone. This observation was specific to BRAF mutant
tumors and independent of BRAF inhibition-mediated upreg-
ulation of MDA. In this model, the increased intra-tumoral
T cell frequencies were attributed to decreased VEGF in the

tumor. It was previously shown that VEGF/VEGFR-2 inhibi-
tion can upregulate endothelial adhesion molecules in tumor
vessels, which can in turn increase the infiltration of leuko-
cytes in tumors (33). Wilmott et al. confirmed the observa-
tions of increased intra-tumoral T cell frequencies in melanoma
patients who were treated with a BRAF inhibitor (34). Increased
frequencies of CD4 and CD8 cells were seen in both intra-
tumoral and peritumoral regions of metastatic tumor speci-
mens obtained between 3 and 15 days after treatment initiation.
The increase in lymphocyte numbers inversely correlated with
tumor size, but not with clinical objective responses. Notably,
intra-tumoral lymphocyte frequencies returned to pre-treatment
levels at the time of tumor progression. Similar increases in
tumor infiltration by CD8 cells (but not CD4 cells) and decrease
upon tumor progression in melanoma patients treated with
BRAF or dual BRAF/MEK inhibition was reported by Freder-
ick et al. (31).

MAPK INHIBITION AFFECTS T CELL FUNCTIONALITY AND
SECRETION OF IMMUNOSUPPRESSIVE CYTOKINES IN THE
TUMOR MICROENVIRONMENT
In an ACT model using the murine BRAFV600E mutant melanoma
SM1 and transgenic T cells recognizing gp100 and ovalbu-
min (OVA), combined ACT and vemurafenib induced supe-
rior anti-SM1 tumor immune responses compared to either of
the therapies alone. In this study, no difference in frequen-
cies of adoptively transferred T cells was observed in tumors,
lymph nodes, or spleen as assessed ex vivo by flow cytome-
try and immunofluorescence imaging and in vivo by tracking
of the firefly luciferase transgene-labeled T cells using biolumi-
nescence imaging when mice were treated with vemurafenib in
addition to ACT. However, adoptively transferred T cells exhib-
ited increased functionality as measured by IFN-γ production and
their ability to lyse tumor cells (35) in mice treated with ACT and
vemurafenib.

CROSS-TALK BETWEEN THE MAPK PATHWAY IN BRAF
MUTANT MELANOMA AND DCs
Sumimoto et al. demonstrated that BRAFV600E mutant cell lines
can produce immunosuppressive cytokines such as VEGF, IL-6,
and IL-10 and that MEK inhibition with U0126 and BRAF inhibi-
tion using BRAFV600E specific RNAi suppressed secretion of these
cytokines. IL-12 and TNF-α production by DCs exposed to super-
natant from the BRAF mutant A375 melanoma cell line prior to
maturation by LPS was suppressed (36). This inhibitory effect
was mediated by IL-6, IL-10, and VEGF and could be partially
reversed by pre-treatment of the melanoma cells with BRAFV600E

specific RNAi, indicating that constitutive activation of the MAPK
pathway in melanoma cells may lead to compromised DC func-
tion and that this immune evasion may be overcome by MAPK
inhibition. In a separate study, IL-10 expression in the melanoma
line A375 was found to be induced by TGF-β, an effect that was
mediated by cross-talk between the Smad, PI3K/AKT, and MAPK
pathways (37).

We recently explored a potential link between constitutive
MAPK pathway upregulation driven by a BRAFV600 mutation and
DC function using a human melanoma-DC co-culture system

Frontiers in Immunology | Tumor Immunity October 2013 | Volume 4 | Article 346 | 2

http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ott and Bhardwaj BRAFV600 melanoma and immune response

Table 1 | Effects of MAPK inhibition on immune function and melanoma.

Study type Model Immune cell type

studied

Effect of MAPK inhibition

Immune cells Melanoma cells

In vitro (human)

(38)

Monocyte-derived moDC

co-cultured with BRAFV600E

mutant and WT melanoma

cell lines DC maturation with

Poly-ICLC

DCs Restored IL-12 and TNF-α production by

DCs exposed to BRAF mutant

melanoma cells treated with MEK and

BRAF inhibition

No consistent suppression

of cytokine production

observed

In vitro (human)

(36)

Monocyte-derived moDC

cultured with supernatants of

BRAFV600E mutant melanoma

cell lines DC maturation with

LPS

DCs Restored IL-12 and TNF-α production by

DCs exposed to supernatants of

melanoma cells treated with

BRAFV600E – specific RNAi

Suppression of IL-6, IL-10,

and VEGF secretion

In vitro (human)

(27)

BRAFV600E mutant and WT

melanoma cell lines treated

with MEK and BRAF

inhibition. Melanoma cells

cultured with TCR-transgenic

CTL specific for gp100,

MART-1

CTL Increased IFN-γ production by

melanoma-specific CTL cultured with

BRAFV600E melanoma upon MEK and

BRAF inhibition

Increased expression of

MDA

In vitro (human)

(42)

Mixed lymphocyte reaction

with DCs, PBMCs, and T cells

DCs, T cells Suppressed T cell activation by DCs

exposed to melanoma overexpressing

CD200; effect abrogated by CD200

knockdown with shRNA

Not assessed

Mouse adoptive T

cell transfer (35)

BRAFV600E-driven murine

model of SM1 melanoma

Adoptive transfer of C57BL/6

mice with TCR-transgenic

lymphocytes

OVA and pmel-1

TCR-transgenic

lymphocytes

No effect on expansion, distribution, or

tumor accumulation of adoptively

transferred T cells

Increased T cell functionality (IFN-γ

production, intrinsic tumor cell lysis)

No effect on gp100

expression on SM1 cells

Increased tumor response

with BRAF

inhibition + adoptive T cell

transfer

Mouse adoptive T

cell transfer (32)

Xenograft with gp100

expressing melanoma cell

lines. Adoptive transfer of

C57BL/6 mice with

TCR-transgenic gp100-specific

pmel-1 T cells

Pmel-1

TCR-transgenic T

cells

Enhanced infiltration of BRAF mutant,

but not BRAF WT tumors with

adoptively transferred T cells

Increased VEGF production in tumors

Increased tumor response

with BRAF

inhibition + adoptive T cell

transfer

Melanoma

patients (34)

Intra-tumoral CD4

cells, CD8 cells,

CD20 cells,

Granzyme B, CD1a+

DC

Increased CD4 and CD8 cell

frequencies in post-treatment tumor

specimens

Objective tumor responses

on CT imaging

Correlation between increased tumor

CD8 infiltration and decreased tumor

size and increase in tumor necrosis

Occasional CD1 DCs present in

post-treatment biopsies in 2 patients

Melanoma

patients (31)

Intra-tumoral CD4+

cells, CD8+ cells,

IL-6, IL-8, IL-10, TGF-β,

granzyme B,

perforin, Tim-3, PD-1,

PD-L1

Increased CD8+ cell frequencies

No effect on CD4 cells

Decreased IL-6 and IL-8 production

Increased expression of Tim-3, PD-1,

PD-L1

No effect on IL-10, TGF-β

Objective tumor responses

on CT imaging

Increased expression of

MDA (MART-1, gp100,

TYRP-1, TYRP-2)
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FIGURE 1 | Mechanisms that may lead to increased DC function upon
MAPK pathway blockade in the tumor microenvironment.
(A) Apoptosis/necrosis of melanoma cells results in release of tumor antigens
that will presumably be available to DCs for cross presentation; (B) Increased

expression of MDA through direct effect of MAPK pathway inhibition,
potentially making them available to DCs for cross presentation,
(C) decreased direct inhibition of DCs leading to increased IL-12 and TNF-α
production.

(38). BRAFV600E mutant and wild-type melanoma cell lines were
treated for 24 h with the MEK inhibitor U0126, the BRAF inhibitor
vemurafenib, or respective controls (U0124 or DMSO). After
removal of supernatant, monocyte-derived immature DC from
healthy donors were added, cultured for 24 h and then stimulated
with poly-ICLC. Poly-ICLC was chosen as the DC maturation
stimulus because it induces the secretion of proinflammatory
cytokines in the absence of IL-10 and is a potent TLR3 and
MDA5 agonist (39). It has been widely used as a cancer vac-
cine adjuvant in clinical trials. We found that IL-12 and TNF-α
production by DCs was inhibited when DCs were exposed to
melanoma cells treated with vehicle control. Notably, the secre-
tion of both cytokines could be partially or completely restored
with both MEK and BRAF inhibition in BRAFV600E mutant, but
not wild-type cell lines. Furthermore, CD80, CD83, and CD86
expression on DC was decreased upon co-culture with melanoma
cells and could be partially restored with BRAF inhibition in
BRAFV600E mutant melanoma cell lines. The inhibition of IL-
12 and TNF-α secretion by DCs was not cell-contact dependent.
In contrast to the study by Sumimoto, a soluble factor responsi-
ble for mediating the suppressive effect could not be identified
in our investigations. It is possible that continuous local pro-
duction of small amounts of soluble mediators by melanoma
cells in close proximity to DCs accounts for the inhibitory effect
observed in the melanoma cell/DC co-culture experiments in our
study.

CD200, a type I membrane-associated glycoprotein and mem-
ber of the immunoglobulin superfamily is highly expressed on

melanoma cells and was found to be regulated by ERK acti-
vation (40). CD200 mRNA expression levels were found to be
positively correlated with tumor progression. Moreover, MEK
inhibition with U0126 and knockdown of mutant BRAF resulted
in reduced expression of CD200 mRNA in melanoma cell lines.
Of note, through interaction with the CD200 receptor, which is
expressed on macrophages and DC, CD200 mediates an inhibitory
signal (41). In mixed lymphocyte reactions with T cells, DCs, and
melanoma cells, T cells produced larger amounts of IL-2 when
CD200 in melanoma cells was knocked down with shRNA specif-
ically targeting the CD200 ligand (42). These data suggest a link
between MAPK/ERK activation in melanoma and the ability of
DCs to activate T cells.

DIRECT IMPACT OF MAPK INHIBITION ON DCs
Since there is a strong clinical interest in combined immunother-
apy and BRAF/MEK inhibition in melanoma, the direct impact
of MAPK pathway inhibition on immune cells is of great interest.
BRAF inhibition, even at high concentrations, does not appear to
directly compromise T cell function, and there is emerging data
showing that low doses of RAF inhibition may even enhance T cell
activation (43, 44). Furthermore, frequencies of DCs, monocytes,
T cells, B cells, NK cells, and regulatory T cells in peripheral blood
from metastatic melanoma patients were not affected by BRAF
inhibition (45).

There is some controversy about the direct impact of signal-
ing through the MAPK pathway on DC maturation. In LPS and
TNF-α-matured DCs, MEK inhibition leads to upregulation of
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co-stimulation molecules, increased IL-12 secretion and enhanced
ability to activate T cells (46), whereas activation of ERK in DCs
leads to immune suppression, mediated by TGF-β and Treg cells
(47). Only minimal or no effect of MEK inhibition on DC function
was shown in other studies (48–51). Differences in the maturation
stimuli may account for some of the inconsistencies observed in
these investigations.

In monocyte-derived DC from healthy donors, MEK inhibi-
tion lead to reduced IL-12 and TNF-α secretion, whereas BRAF
inhibition had no effect on cytokine production over a wide range
of doses (38). The expression of CD40, CD80, CD83, and MHCI
was also reduced by direct MEK inhibition, whereas it was unaf-
fected by BRAF inhibition. In addition, DC viability was reduced
with MEK, but not BRAF inhibition and the ability of DCs to
induce T cell proliferation in an MLR was reduced with MEK,
but not BRAF inhibition. The impact of MEK inhibitors cur-
rently used in the clinic on APC function in vivo remains to be
determined.

MAPK INHIBITION MAY ENHANCE DC FUNCTION IN THE
TUMOR MICROENVIRONMENT BY SEVERAL MECHANISMS

RESTORATION OF DC FUNCTION COMPROMISED BY MELANOMA CELLS
Our studies and earlier investigations by Sumimoto suggest that
suppression of IL-12 and TNF-α production by DCs in the tumor
microenvironment of a BRAFV600 mutant melanoma is mediated
at least partially by constitutive activation of the MAPK path-
way. These data also indicate that BRAF and MEK inhibition, by
blocking the MAPK pathway in melanoma cells and thereby restor-
ing IL-12 and TNF-α production in DCs, leads to improved DC
function, presumably leading to better activation of melanoma-
specific T cells. Notably in our studies there was none or only
minimal apoptosis in BRAFV600E mutant and WT melanoma cell
lines after 48 h of MEK or BRAF inhibition. This is consistent
with prior studies showing an anti-proliferative effect, rather than
apoptosis, during the first few days of treatment with these kinase
inhibitors (52, 53). It is therefore unlikely that the reversal of
compromised DC function mediated by melanoma cells in the
in vitro experiments is mediated by melanoma cell death. Simi-
larly, in the experiments by Sumimoto, no significant cell death
was observed after treatment of the melanoma line A375 with the
MEK inhibitor U0126, indicating that decreased IL-10, IL-6, and
VEGF production was a direct effect of MAPK pathway inhibition
rather than mere death of the melanoma cells. Taken together,
these data suggest that MAPK pathway activation in BRAFV600

mutant melanoma cells has a direct suppressive effect on the
capacity of DC to activate T cells.

INCREASED CROSS PRESENTATION OF OVEREXPRESSED MELANOMA
DIFFERENTIATION ANTIGENS BY DCs IN THE TUMOR OR LYMPH NODE?
Inhibition of the MAPK pathway in BRAF mutant melanoma
leads to increased expression of MDAs (gp100, Mart-1, Tyrp-
1, and Tyrp-2), resulting in improved antigen-specific recog-
nition by gp100 and MART-1 specific TCR-transgenic CTL
as measured by increased IFN-γ production in vitro (27). In
patients with BRAFV600 mutant metastatic melanoma, MART-1

expression was upregulated in metastatic tumors after treat-
ment with BRAF inhibition. Increased infiltration of metastatic
tumors with both CD4 and CD8 cells in one study, and of CD8
cells, but not CD4 cells in another study was observed after
treatment with BRAF inhibition. A correlation between intra-
tumoral infiltration with CD8 cells and tumor necrosis was found
in post-treatment biopsies in one study (34). In addition to
the direct effect on CTL function shown in vitro, it is possi-
ble that MDA overexpression on melanoma cells in the tumor
in vivo may lead to increased cross presentation of these anti-
gens to DCs and thus further enhance the tumor-specific T cell
response.

INCREASED CROSS PRESENTATION OF TUMOR ANTIGENS DERIVED
FROM APOPTOTIC TUMOR CELLS AFTER MAPK INHIBITION
As outlined above, in short-term (48–72 h) in vitro experiments
using BRAF mutant melanoma cell lines, apoptosis or necro-
sis does not have a significant role in mediating the effects
of melanoma MAPK pathway inhibition on DCs. BRAF inhi-
bition does however eventually induce apoptosis and necro-
sis as evident by the fact that tumors shrink markedly in the
majority of patients. Tumor necrosis/apoptosis likely leads to
the release of antigens, which may be available for DCs either
residing in the tumor or in draining lymph nodes to be taken
up, processed, and cross-presented to T cells. Cross presentation
may be one of the mechanisms mediating the synergy observed
with ACT and BRAF inhibition in melanoma mouse models,
although no direct evidence was provided in the reported studies
(32, 35).

CONCLUSION
Constitutive upregulation of the MAPK pathway in BRAFV600

mutant melanoma appears to directly impact DC function as evi-
dent by partial restoration of IL-12 and TNF-α secretion upon
treatment of melanoma cells with MEK or BRAF inhibition.
These effects have so far been shown only in vitro. The beneficial
effects of MAPK blockade on the tumor immune microenviron-
ment shown in vivo in mouse models and melanoma patients
argue for a broader impact of these treatments on the tumor-
specific immune response, including increased T cell frequencies
and improved function and changes in cytokine secretion pat-
terns. Several mechanisms that may account for the improved
immune response have been described such as increased MDA
expression on melanoma cells and decreased intra-tumoral VEGF
production, others remain speculative, such as increased cross pre-
sentation to DCs resulting from BRAF/MEK inhibition-mediated
necrosis/apoptosis of melanoma cells. These observations rein-
force the rationale for clinical trials assessing MEK/BRAF inhi-
bition and immunotherapy in combination in patients with
melanoma. Further studies are needed to delineate the pheno-
type and function of DCs in patients treated with BRAF/MEK
inhibition. Because of superior efficacy and potentially improved
tolerability, combined BRAF-MEK inhibition will likely replace
BRAF inhibitor monotherapy. Defining the impact of both BRAF
and MEK inhibition on the immune response will therefore be
critical.
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