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Abstract

Objective: To provide objective measures which characterize mobility in older adults assessed in the community setting
and to examine the extent to which these measures are associated with parkinsonian gait.

Methods: During conventional mobility testing in the community-setting, 351 ambulatory non-demented Memory and
Aging Project participants wore a belt with a whole body sensor that recorded both acceleration and angular velocity in 3
directions. We used measures derived from these recordings to quantify 5 subtasks including a) walking, b) transition from
sit to stand, c) transition from stand to sit, d) turning and e) standing posture. Parkinsonian gait and other mild parkinsonian
signs were assessed with a modified version of the original Unified Parkinson’s Disease Rating Scale (mUPDRS).

Results: In a series of separate regression models which adjusted for age and sex, all 5 mobility subtask measures were
associated with parkinsonian gait and accounted for 2% to 32% of its variance. When all 5 subtask measures were
considered in a single model, backward elimination showed that measures of walking sit to stand and turning showed
independent associations with parkinsonian gait and together accounted for more than 35% of its variance. Cross-validation
using data from a 2nd group of 258 older adults showed similar results. In similar analyses, only walking was associated with
bradykinesia and sway with tremor.

Interpretation: Quantitative mobility subtask measures vary in their associations with parkinsonian gait scores and other
parkinsonian signs in older adults. Quantifying the different facets of mobility has the potential to facilitate the clinical
characterization and understanding the biologic basis for impaired mobility in older adults.
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Introduction

Parkinsonian signs including unsteady and slow gait with

balance and postural disturbances are common in older adults

who do not have clinical Parkinson’s disease (PD) [1]. While these

signs are robust clinical predictors of a wide range of adverse

health outcomes, these signs lack specificity since many different

disorders (i.e., neurologic, musculoskeletal, cardiopulmonary) can

contribute to their development [1–3]. Furthermore the underly-

ing CNS sites controlling these different signs and their underlying

pathologic basis are unclear. Thus, while nigral pathology

including Lewy bodies and neuronal loss is correlated with the

severity of parkinsonism in older adults without clinical PD, recent

work has shown that other common neuropathologies including

Alzheimer’s disease and cerebrovascular disease are also associated

with the severity of parkinsonism, especially parkinsonian gait[4–

6]. This underscores the need for more specific mobility tests

which have the potential to facilitate the clinical characterization

and identification of the structural and pathologic basis underlying

impaired mobility in older adults.

Mobility is not a unitary process but is derived from dissociable

systems within the CNS which effect musculoskeletal structures to

control its different features[7]. Laboratory investigations have

quantified many subtasks of gait necessary for successful locomo-

tion[8–10]. By contrast, a higher score on a modified version of

the Unified Parkinson’s Disease Rating Scale (mUPDRS) indicat-

ing more severe impairment of parkinsonian gait does not specify
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which aspect of mobility is impaired. Similarly, prolonged time to

complete different mobility performances does not specify which

mobility subtask is impaired[11]. It is possible that different disease

pathologies preferentially affect different subtasks leading to an

overall higher mUPDRS score. Thus, quantification of the

different components of mobility may inform, in future studies,

on the pathologic basis of impaired mobility.

Rapid advances in technology have led to the availability of

unobtrusive portable devices that which can record 3-dimensional

movements and store large amounts of data for analyses at a later

time. These devices offer the potential for obtaining a wide range

of objective mobility measures in the community setting which,

until recently, were only available in specialized laboratories.

These measures can be obtained in the same amount of time as

conventional testing and without additional burden to the

individual being tested, while providing a more detailed charac-

terization of mobility in older adults.

The overall goal of the current study was to quantify several

mobility subtasks in community-dwelling older adults and examine

which aspects of mobility are associated with the severity of

parkinsonian gait. We used clinical data collected from 351 non-

demented older adults participating in the Rush Memory and

Aging Project to obtain more precise mobility measures in older

adults tested in the community setting[12]. Prior studies have

suggested that timed mobility performances are associated with

parkinsonian gait[13]. Subjects underwent conventional gait

testing in the community setting while wearing a belt with a

small, light-weight whole body sensor which recorded both

acceleration and angular velocity in 3 directions (DynaPortMini-

Mod Modules, McRoberts BV, the Netherlands). We derived gait

measures from the sensor recordings that were used to quantify 5

mobility subtasks including: a) walking, b) transition from sit to

stand, c) transition from stand to sit, d) turning and e) standing

posture. The mUPDRS was used to assess the severity of

parkinsonian gait and other signs. In a series of regression

analyses, we examined the associations of the 5 quantitative

mobility subtask measures which we derived alone and together

with the severity of parkinsonian gait and other signs of

parkinsonism.

Methods

Participants
All participants were from the Rush Memory and Aging

Project, a longitudinal clinical-pathologic investigation of chronic

conditions of old age that began in 1997[12]. Participants were

recruited from retirement facilities and subsidized housing facilities

from around the Chicago metropolitan area. All participants

signed an informed consent agreeing to annual clinical evaluation

and the study was in accordance with the latest version of the

Declaration of Helsinki and was approved by the Institutional

Review Board of Rush University Medical Center. Participants

wore whole-body sensors (See below) starting in 2011. Persons

were eligible for these analyses if they were ambulatory and did

not have clinical dementia or PD when tested with these sensors.

Clinical Assessment and Clinical Diagnoses
Participants underwent a uniform structured clinical evaluation

each year that included a medical history, neurologic examination,

and neuropsychological performance tests [14,15]. Participants

were evaluated by a physician who used all cognitive and clinical

data to diagnose dementia and other common neurologic

conditions as previously described [14,15].

Assessment of Parkinsonian Gait and Other Covariates
Trained nurses assessed 26-items from the motor section of the

UPDRS. Four previously established scores for parkinsonism,

including gait disturbance, bradykinesia, rigidity and tremor, were

derived from these 26 items and a global parkinsonian score was

based on their average[5]. A list of the items assessed, the

approach used to summarize these data into individual parkinso-

nian signs and studies done to validate this instrument are

provided as supplementary information (Appendix S1 and Table

S1). Our primary outcome was parkinsonian gait. The parkinso-

nian sign scores had positively skewed distributions. The global

parkinsonism and gait scores were subjected to a square root

transformation, and the transformed scores were used as outcome

variables in all analyses. Rigidity and tremor were relatively

infrequent and so were treated as present or absent in analyses.

Date of birth and sex were collected via participant interview.

Assessment of Mobility
In an effort to minimize participant burden, we added whole

body sensor recordings to the existing mobility testing protocol

that has been used in the Memory and Aging Project since its

inception. The 3 performances examined in this study comprise

movements that are integral to mobility in older adults i.e.

walking, standing posture, turning and transition from sit to stand

and stand to sit. Participants were asked to walk an eight foot path

back and forth twice without stopping for a total of 32 ft. Next,

participants performed the Timed Up and Go (TUG) test twice

(Figure 1). Participants were instructed to stand up from a chair,

walk 8ft at a comfortable speed, turn and walk back to the chair

and sit down again. Finally, the participants were asked to stand

for 20 seconds with their eyes closed.

Quantifying Mobility
Whole body sensor. During the conventional mobility

testing described above, participants wore a portable small, light-

weight whole-body sensor (Dynaport Hybrid, McRoberts, The

Netherlands) on a neoprene belt placed on their lower back above

the sacrum in the midline at the level of anterior iliac crest. The

sensor weighs 74 grams and its dimensions are 87645614 mm.

It includes a triaxial accelerometer (sensor range and resolution:

62 g and 0.001 g, respectively) and a triaxial gyroscope (sensor

range and resolution: 6100 deg/sec and 0.0069 deg/sec,

respectively). The device recorded activity in three acceleration

axes [vertical (V), mediolateral (ML), anterioposterior (AP)] and

three angular velocity axes [yaw (rotation around the vertical axis);

pitch (rotation around the mediolateral axis) and roll (rotation

around the anterioposterior axis)].

Data collection. The device was set to record continuously

during the entire conventional testing of mobility. The sequence of

the tasks tested was the same for all participants. The data were

saved on a secure digital card at a sampling frequency of 100 Hz.

After testing, the data were reviewed by a research coordinator

before being uploaded to a secure server for storage. The data

were transferred to a personal computer for analyses at a later time

(Matlab, version R2012b the MathWorks Inc, US).

Developing gait scores for analyses. We derived measures

for a walking subtask from the 32ft walk since the longer

distance allowed us to derive more robust walking measures. In

prior work, we showed that the TUG has subtasks; for these

analyses, we focus on: 1) transition from sit to stand, 2)

transition from stand to sit, and 3) turning which are illustrated

in Figure 1[16,17].From the 20 second stand with eyes closed,

we derived measures for a standing posture subtask. The

research assistant pressed a button on the device to identify the

Mobility Subtasks and Parkinsonian Gait
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beginning and end of each performance (Figure 1). The marks

embedded in the recordings were used to segment the

recordings and extract each performance alone. Automated

algorithms were developed to derive a wide range of measures

from each of the 3 performances recorded by the whole body

sensor. Then we employed graphical and analytical techniques

to analyze each of these performance and derived 31 gait

measures from the 5 mobility subtasks as detailed in Appendix
S1[16,18]. Next, using principal component analyses and prior

literature, we summarized these 31 measures into 13 gait

summary scores. Table 1 outlines the mobility performance

decomposition and subsequent date reduction effort. The metric

properties of these gait scores are described in Appendix S1
and Tables S2–S5.

Statistical Analysis
The goal of these analyses was to examine the contributions of

different mobility subtasks to parkinsonian gait. Our approach

consisted of 2 stages which employed a series of multiple regression

models. In the first stage, we used gait scores to derive an outcome

specific score for each of the 5 mobility subtasks. In the 2nd stage,

we used the 5 individual mobility subtask scores which we derived

to determine which subtasks showed independent associations with

parkinsonian gait and other parkinsonian signs. For outcomes that

had enough variation to be analyzed as continuous variables

(parkinsonian gait, global parkinsonian score), we used linear

regression analyses. For measures that were less common and not

observed in many participants (bradykinesia and rigidity), we used

logistic regression models of binary outcomes i.e., the presence or

absence of these signs. We describe our methods for the analysis of

our primary outcome measure parkinsonian gait in detail. Similar

analyses were conducted for the other signs of parkinsonism and

for the global parkinsonian score. A more detailed description of

these analyses is included in Appendix S1.

First, we examined a series of regression models and

discarded scores not associated with parkinsonian gait. In the

Figure 1. Timed Get Up and Go (TUG) Subtasks are Best Identified from Different Channels. This figure shows the acceleration and
rotation signals recorded with a whole body sensor during conventional mobility testing of TUG in the community setting. The top channel shows
the acceleration signal from the Anterior-Posterior (Blue) axis. The second channel shows the rotation signal of Yaw (Green, rotation around the
vertical axis). Third, is the Pitch signal (Red, rotation around the mediolateral axis). The current study focused on several TUG subtasks including
transition from sit to stand (S1), transition from stand to sit (S2), Turn 1 during the middle of the TUG and a second, Turn 2 which occurs immediately
prior to sitting back down (S2). Walking measures can be extracted but in this study were derived from a 32 ft walk. To facilitate subsequent analyses,
marks were inserted in the recorded data by the research assistant to identify the beginning and the end of each of the 3 performances analyzed in
this study. The black star (M1) shows the first mark inserted when the research assistant pressed a button on the device immediately prior to
instructing the participant to begin moving for the TUG. A second mark (M2) was inserted at the end when the task was completed. The M1 and M2
marks were used to extract the entire TUG trial from the continuous recording of the entire mobility testing session. After extraction of the entire TUG
trial, an automatic algorithm was then applied for detecting the exact start and end times of the TUG based on the start time of the sit-to-stand (S1)
and end time of the stand-to-sit (S2) AP signal (solid black line on AP channel). The Turn subtasks are visualized best from the Yaw (green) channel
[black solid arrows Similarly, the Transition measures (S1 & S2) are best visualized on the AP (blue) and Pitch (red) channels [solid black arrows on the
pitch]. Gait measures were derived from the onset and offset of the turns and transitions which are illustrated as described in the text (Appendix
S1).
doi:10.1371/journal.pone.0086262.g001

Mobility Subtasks and Parkinsonian Gait
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second step, we included all the gait scores which were

associated with parkinsonian gait in a single model and

employed backwards elimination. We used standard selection

criteria for the backwards elimination steps: p-to- remove was

set at the default alpha= 0.10.This identified the best model for

which each of the subtasks constituent scores showed separate

effects with parkinsonian gait. For example, 3 of 4 individual

walking scores (cadence, speed and regularity) were associated

with parkinsonian gait (results not shown). After backward

elimination, speed and regularity remained associated with

parkinsonian gait (Table 2). We used the regression coefficients

for all significant terms in the final model to compute a fitted

subtask measure for parkinsonian gait. Since backwards

elimination can eliminate important variables early in the

process in the presence of correlated predictors, we also

reviewed all subsets of the predictors to avoid anomalies and

ensure that the model we selected was appropriate.

In the second stage of these analyses, we examined the

contributions of the 5 fitted subtask scores to parkinsonian gait.

The approach employed in this stage was similar to the approach

described above. In a first step, we examined the contributions of

each of the 5 adjusted subtask measures alone with parkinsonian

gait as the outcome. We eliminated any subtask that was not

associated with the parkinisonian gait outcome. Then we

employed backward elimination to determine which subtasks

measures showed separate effects with parkinsonian gait when

they were considered together. Overfitting can occur when

automatic methods are used and may exaggerate measures of

agreement. However the process will not be biased to favor certain

predictors over others. To validate this analytic approach, a cross-

validation study was performed in a second group of participants

who had undergone similar mobility testing.

We used a similar approach to examine the contributions of the

5 subtask measures with bradykinesia and tremor, as well as a

global summary of parkinsonian signs. In the analyses of

bradykinesia and tremor, we used logistic regression for presence

versus absence of the parkinsonian sign when the parkinsonian

sign was seen in less than 60% of this group of participants. Since

Table 1. Gait Measures and Gait Scores Derived from Whole Body Sensor Recordings Obtained during Conventional Mobility
Performance Tests in the Community-Setting.

PERFORMANCE TESTS MOBILITY SUBTASKS GAIT MEASURES GAIT SCORES

32 ft Walk Walk Speed (m/s) Speed

Stride length (m)

Cadence (steps/min) Cadence

Stride time CV (%) Variability

Stride regularity [g2] Regularity

Step symmetry

Timed Up & Go (TUG) Sit to Stand (S1) AP Duration (s) Anterior-Posterior

AP Jerk (g/s)

AP range(g) Range

AP Acc SD (g)

Pitch range (deg/s)

Pitch jerk (deg/s2) Posterior

Median (deg/s)

Pitch Duration (g/s)

Stand to Sit (S2) Pitch jerk (deg/s2) Jerk

AP duration (s)

Pitch duration (s)

AP Jerk (g/s)

AP range (g) Range

Pitch range (deg/s)

AP Acc SD (g)

Median (g) Median

Turning Yaw, turn 1 (deg/s) Yaw

Yaw, turn 2 (deg/s)

Duration, turn 1 (s)

Duration, turn 2 (s)

Frequency, turn 1 (Hz) Frequency

Frequency, turn 2 (Hz)

Standing With Eyes Closed Standing Posture Jerk [g/s]2 Sway

RMS distance [g]

Total power [psd]

doi:10.1371/journal.pone.0086262.t001

Mobility Subtasks and Parkinsonian Gait
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it is not appropriate to adjust the binary outcome directly, we used

the estimated person-specific logit from the model with age and

sex only as an offset term (entered with coefficient forced to be 1 in

all the other models). Rigidity was too infrequent (N= 16, 4.6%) to

allow for meaningful analyses at the present time.

For all steps described above, models were examined graphi-

cally and analytically and assumptions were judged to be

adequately met. Graphical and analytic review included checks

of standard statistical diagnostics (Cook’s D, influential points,

residuals, residual plots, and checking correlations among predic-

tors). A priori level of statistical significance was 0.05. Programming

was done in SAS version 9.3 (SAS Institute Inc, Cary, NC)[19].

Results

These analyses were based on 351 participants whose clinical

characteristics are summarized in Table 3.

Quantitative Mobility Subtask Measures and Parkinsonian
Gait
Our primary analysis examined the contributions alone and

together of 5 mobility subtasks with parkinsonian gait. In the first

step, we use the fitted values for each of the 5 subtasks as predictors

in multiple regression models (Table 4, Step 1, Models A–E) to
examine the contributions of the 5 subtasks alone with parkinso-

nian gait. For this reason, the single regression coefficients for

models A-E are all equal to 1. Each column corresponds to a

regression of adjusted parkinsonian gait score for a different

subtask measure. The Adj-R-sq is the fraction of variation of

parkinsonian gait explained by the subtask score relative to the

variation not explained by demographic terms. All 5 subtasks were

associated with parkinsonian gait. Walking, turning or transition

from sit to stand each accounted for 20% or more of the variance

of parkinsonian gait. By contrast, the sway and transition from

stand to sit measures accounted for 2% and 5% of the variance.

In the next step, we used a backwards elimination regression

algorithm (Table 4, Step 2, Model 1) which included all 5

subtask measures which had been associated with parkinsonian

gait in step 1 (Table 4, A–E). Model 2 (Table 4) was selected by

backwards elimination since all the gait subtask measures included

show separate effects with adjusted parkinsonian gait score. When

considered together, the subtask measures for walking, sit to stand

and turning showed independent associations with adjusted

parkinsonian gait and accounted for more than 35% of the

residual variance of adjusted parkinsonian gait (Model 2). The

most robust predictor was turning.

To cross-validate our results and address concerns about

overfitting, we repeated these same analyses in a 2nd group of

258 additional MAP participants who had undergone the same

mobility testing. The same 3 subtasks (walk, sit to stand and turns)

showed independent associations with parkinsonian gait and

accounted for 32% of the residual variance of adjusted parkinso-

nian gait. These data are included in Table S6 and discussed in

Appendix S1.

Table 2. Regression Coefficients for Gait Scores Used to Compute Fitted Mobility Subtask Scores for Parkinsonian Signs (Stage 1).

Mobility Subtasks Gait Scores Parkinsonian Gait Bradykinesia Tremor Global Park

Walk Speed 20.466 2.718 – 20.470

Cadence – – – –

Variability – – – –

Regularity 20.152 – – 20.118

Sit to Stand (S1) Anterior-Posterior (S1) – – – –

Range (S1) – – – –

Posterior (S1) 20.427 – –0.376

Stand to Sit (S2) Jerk (S2) 20.208 – – 20.236

Range (S2) – – – –

Median (S2) – – – –

Turning Yaw 20.615 – – 20.586

Frequency – – – –

Standing Posture Sway 20.146 – 2.718 20.204

doi:10.1371/journal.pone.0086262.t002

Table 3. Characteristics of Participants (N= 351).

Variable Mean (SD) or N %

Age (yrs) 78.8 (6.74)

Sex (women) 275 (78.4%)

Education (yrs) 15.0 (2.80)

BMI (kg/m2) 27.1 (5.21)

Mini Mental Status Examination 27.6 (3.12)

Parkinsonian Scores (0–100)

Global Parkinsonism 5.6 (5.38)

Parkinsonian gait 12.9 (13.16)

Rigidity score 0.38 (1.94)

Tremor score 1.8 (4.72)

Bradykinesia score 7.3 (9.74)

Parkinsonian trait Present (N, %)

Any 299 (85.2%)

Parkinsonian gait 257 (73.2%)

Rigidity 16 (4.6%)

Tremor 77 (21.9%)

Bradykinesia 196 (55.8%)

doi:10.1371/journal.pone.0086262.t003

Mobility Subtasks and Parkinsonian Gait
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Quantitative Mobility Subtask Measures and Other
Parkinsonian Signs
Parkinsonian gait is one of four cardinal motoric signs of

parkinsonism. We next examined the extent to which the 5

subtasks were associated with other parkinsonian signs. The

multistage process described above was not necessary since only

the walking subtask was associated with bradykinesia and the sway

subtask measure was associated with tremor (Table 2). In a final

set of analyses, we examined the association of the 5 subtask

measures, with global parkinsonism, a summary measure based on

all 4 parkinsonian signs. When considered individually, all 5

subtask measures were associated with global parkinsonism and

accounted for between 4% to 30% of the variance. In a model

selected by backwards elimination the quantitative subtask

measures for walking and turning showed independent associa-

tions with adjusted global parkinsonism accounting for almost

30% of the residual adjusted variance of global parkinsonism.

Discussion

This study obtained a more detailed clinical characterization of

mobility in 350 ambulatory undemented older adults who wore a

whole body sensor while undergoing conventional mobility testing

in the community-setting. Measures derived from these recordings

were used to quantify 5 previously identified mobility subtasks.

These subtasks included walking, transition from sit to stand,

transition from stand to sit, turning, and standing posture. Results

showed that while all 5 subtasks were associated with parkinsonian

gait, there was a wide disparity in the variance of parkinsonian gait

accounted for by each of the individual subtasks (2%–32%).

Further, only walking, transition from sit to stand and turning

showed independent associations when the 5 subtasks were

considered together. Using this analytic approach, we obtained

similar results in a second group of 258 older adults who

underwent identical mobility testing. Of the 5 subtasks, only

walking was associated with bradykinesia and only sway was

associated with tremor[20]. Quantifying the different facets of

mobility with a whole body sensor during conventional mobility

testing has the potential to provide more detailed characterization

of impaired mobility in older adults without additional testing

burden.

Prior laboratory studies suggest that quantitative measures of

mobility obtained during traditional gait testing can increase the

detection of gait impairments and the prediction of adverse health

outcomes such as dementia and falls[16,17,21–27]. The current

study extends these laboratory-based studies in several important

ways. First, the device employed in the current study measured

both acceleration and angular velocity signals for three orthogonal

axes. Measuring both simultaneously allowed us to derive both

quantitative spatiotemporal measures of gait, as well as rotation

and tilt which occur during the testing of mobility. Second, the

current study shows that it is now feasible to incorporate an

unobtrusive whole-body sensor during conventional mobility

testing. This approach allows investigators to continue longitudinal

data collection of traditional gait metrics, as well as providing

novel quantitative measures on the full spectrum of mobility

among older adults living in the community setting. Third, in

contrast to prior studies, this study collected quantitative measures

for several mobility subtasks from older adults without overt

neurologic diseases and developed an analytic approach which was

used to examine their contributions to parkinsonian gait and other

parkinsonian signs.

Emerging technologies that are used to study mobility can be

used to derive numerous objective measures from a single

performance and methods are needed to reduce and summarize

these data. Several recent studies have described approaches for

reducing multiple measures obtained from recordings of a single

walking task into 2 or more factors[21,22]. The current study

employed a similar approach for reducing multiple measures to 1

or more scores for each of the 5 subtasks. Since we hypothesized

that the contributions of these different subtasks would vary with

different outcomes and since the subtasks are not themselves

highly correlated, we did not create a single summary measure for

all the subtasks together, nor did we employ a fixed summary

Table 4. Quantitative Mobility Subtask Measures and Parkinsonian Gait (Stage 2).

STEP 1 Linear regression models STEP 2 Backward elimination

Mobility
Subtasks

Model A b
(SE, p-Value)

Model B b
(SE, p-Value)

Model C b
(SE, p-Value)

Model D b
(SE, p-Value)

Model E b
(SE, p-Value)

Model 1 b
(SE, p-Value)

Model 2 b
(SE, p-Value)

Adj R-Sq 0.319 0.197 0.047 0.327 0.022 0.352 0.353

Walk 1.000 (0.109,
,0.001)

0.418 (0.167,
0.013)

0.418 (0.164, 0.012)

Sit-Stand (S1) 1.000 (0.163,
,0.001)

0.455 (0.178,
0.012)

0.399 (0.172, 0.022)

Stand-Sit (S2) 1.000 (0.341,
0.004)

20.414 (0.339,
0.225)

Turning 1.000 (0.117,
,0.001)

0.540 (0.173,
0.002)

0.510 (0.172, 0.004)

Standing
Posture

1.000 (0.441,0.025) 0.334 (0.452,
0.461)

This table shows the final step of a multistage process which was used to develop 5 quantitative mobility subtask measures from whole body sensor recordings and to
examine their associations with parkinsonian gait score. On the left is a series of linear regressions to determine which of the 5 quantitative mobility subtask scores were
associated with parkinsonian gait score. Each cell shows the b coefficients from the regression for the terms included, with (Standard Error, p-value) below. The Adj-R-sq
is the adjusted R2 with the adjusted parkinsonian score, that is the fraction of variation explained relative to the variation of parkinsonian score not explained by
demographic terms. By construction of the subtask scores, the single regression coefficients for models 1–5 are all equal to 1. In a second stage (right 2 columns), we
employed backward elimination and started with a backward elimination regression model (Model 1) that included all 5 subtask scores which were all associated with
parkinsonian gait score when considered alone in models A–E. Two subtasks did not show significant independent associations with parkinsonian gait; neither of these
two subtasks were retained in the final model which showed that walking, turning and sit to stand accounted for 35% of the variance of adjusted parkinsonian gait.
doi:10.1371/journal.pone.0086262.t004
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measure for each individual subtask. Rather, we chose to compute

fitted values for each subtask for different outcomes which we

examined. Consistent with this idea, our analyses showed that the

associations of the 5 subtasks varied substantially across the

parkinsonian signs that we examined (i.e. parkinsonian gait,

bradykinesia and tremor). Furthermore, the additive associations

of different subtasks with parkinsonian gait underscores the

importance of testing several subtasks to obtain a more compre-

hensive description of the facets of mobility associated with diverse

outcomes. Similarly, the lack of association of transition from

standing to sit and sway with parkinsonian gait suggests that these

subtask measures may capture additional features of mobility or

other motor behaviors (i.e. strength, balance) not assessed by the

UPDRS[18,28]. Finally, the approach employed in the current

study could be expanded to a wider range of mobility

performances in order to develop a more complete inventory of

mobility subtasks for explicating the pathologic basis for impaired

mobility in older adults.

The notion that the control of varied clinical mobility subtasks

derives from distinct CNS neural networks has the potential to

transform the clinical categorization of impaired mobility in older

adults. Rapid advances in imaging and neurophysiologic methods

have led to increasing evidence about the complexity of neural

mechanisms which underlie mobility, but these advances have not

been fully assimilated into the clinical domain. Mobility occurs in

three-dimensional space and requires the production of coordi-

nated rhythmic activations of both legs and the trunk as well as the

postural control of the moving body which are adapted to self-

motivations and environmental demands. Localized brain lesions

(e.g., stroke), specific diseases (e.g., Parkinson’s disease, radiculop-

athy, or myositis), and localized musculoskeletal disease (e.g.,

osteoarthritis) may selectively impair distinct aspects of mobility

while sparing others[29–31]. These dissociations suggest that

mobility is not a unitary process and that the clinical manifesta-

tions of impaired mobility vary with the localization of CNS and

musculoskeletal systems dysfunction[32–35].

These clinical observations are supported by recent advances

which have begun to characterize the neural processes that

underlie mobility. Integration of a wide range of sensory and

visuospatial information is essential for intact gait [i.e. postural

control, spatial navigation, and joint position][36] and different

regions within mobility related brain regions may control distinct

aspects of gait [i.e., speed versus balance][37]. Finally, brain

structures outside traditional motor regions are also crucial for gait

with increasing evidence from animal studies for the importance of

brainstem and spinal cord locomotor circuits[38–42]. Translating

these basic science observations into the clinical domain is essential

but requires an expansion of the range of clinical measures which

are obtained routinely during conventional mobility testing. While

clinical instruments like the mUPDRS are robust clinical

predictors of adverse health outcomes, CNS control of the

individual items which are assessed is unclear. Even for

subspecialties which focus on localizing specific CNS lesions with

varied locomotor abnormalities, objective assessment of mobility

subtasks remains a research tool. The current study suggests that it

is now feasible to incorporate devices which can provide a wide

range of objective mobility measures. Further work will be

necessary to delineate the specificity and sensitivity of these

mobility subtask measures, compare their concurrent validity with

other devices and delineate their underlying structural basis. This

approach offers the potential for more accurate clinical charac-

terization of mobility and identification of the localization and

pathologic basis underlying impaired mobility in older adults. This

in turn would provide a host of new targets for interventions to

meet this growing public health challenge.

The current study has several limitations. We used a volunteer

cohort of community-dwelling adults who may not be represen-

tative of the general population, so the results need to be

confirmed in other cohorts. These analyses were cross-sectional

and longitudinal studies are needed to separate change from

cohort effect. The current study examined only 3 mobility tasks

that are not likely to exhaust all the subtasks which may contribute

to impaired mobility in older adults. As our understanding of

mobility increases, additional subtasks can be added to provide

investigators and clinicians the means to more fully characterize

impaired mobility in older adults. The strengths of the present

study include the use of a device that measured both acceleration

and angular velocity in 3 planes to quantify several subtasks

commonly used to evaluate mobility and examined a large

number of men and women without clinical dementia in the

community-setting.
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