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Peer Prediction without a Common Prior†

JENS WITKOWSKI, Albert-Ludwigs-Universität Freiburg
DAVID C. PARKES, Harvard University

Reputation mechanisms at online opinion forums, such as Amazon Reviews, elicit ratings from users about
their experience with different products. Crowdsourcing applications, such as image tagging on Amazon
Mechanical Turk, elicit votes from users as to whether or not a job was duly completed. An important
property in both settings is that the feedback received from users (agents) is truthful. The peer prediction
method introduced by Miller et al. [2005] is a prominent theoretical mechanism for the truthful elicitation
of reports. However, a significant obstacle to its application is that it critically depends on the assumption
of a common prior amongst both the agents and the mechanism. In this paper, we develop a peer prediction
mechanism for settings where the agents hold subjective and private beliefs about the state of the world and
the likelihood of a positive signal given a particular state. Our shadow peer prediction mechanism exploits
temporal structure in order to elicit two reports, a belief report and then a signal report, and it provides
strict incentives for truthful reporting as long as the effect an agent’s signal has on her posterior belief is
bounded away from zero. Alternatively, this technical requirement on beliefs can be dispensed with by a
modification in which the second report is a belief report rather than a signal report.

Categories and Subject Descriptors: J.4 [Computer Applications]: Social and Behavioral Sciences—Eco-
nomics; K.4 [Computers and Society]: Electronic Commerce

Additional Key Words and Phrases: Peer Prediction, Information Elicitation, Mechanism Design

1. INTRODUCTION
User-generated content is essential to the effective functioning of many e-commerce
platforms, with prominent examples including the elicitation of feedback about prod-
ucts or services on sites such as Amazon Reviews or Expedia, and the elicitation of
information or opinions from users (workers) on crowdsourcing platforms who are
paid small rewards to do human computation tasks. While statistical estimation tech-
niques [Raykar et al. 2010] can be adopted for the purpose of adjusting for biases
or identifying users whose inputs are especially noisy, they are appropriate only in
settings with repeated participation by the same user and when user inputs are infor-
mative in the first place. But what if providing accurate information is costly for users,
or if users have external incentives for submitting false reports?

Consider a worker who provides feedback on the appropriateness of search results
for given key words, who would rather shirk and avoid expending effort by randomly
selecting a level of appropriateness. Alternatively, consider a worker in a crowdsourc-
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ing context, such as voting on image tags or labeling websites that contain inappropri-
ate content for an advertiser, who is paid per task and can thus improve his hourly rate
by skipping over tasks without exerting due effort. Or consider a user in a restaurant
rating context who may be concerned that sharing truthful, positive feedback could
cause a trend towards the restaurant becoming more popular, and thus crowded.

The peer prediction method developed by Miller, Resnick and Zeckhauser [2005]
(henceforth, MRZ) provides a theoretical approach to aligning incentives with report-
ing truthful feedback, or alternatively, with investing effort in order to provide infor-
mative feedback. Each user receives a payment from the center, with the amount of
the payment depending on the user’s own report and the report that was given by
some other user. The information (or opinion) available to one user tells her something
about the information (or opinion) that will be attained by another user. Take a digital
camera bought from Amazon as an example: while different buyers may experience
different quality, for example due to variations in the production process, all buyers
receive the identical model. A buyer’s belief that another buyer of the same camera
experiences high quality is higher if she herself experienced high quality than if she
experienced low quality.

The peer prediction method has fostered much research, including the work by Jurca
and Faltings [2006; 2007; 2009] and Witkowski [2009; 2010]. To the best of our knowl-
edge, however, it has not yet been applied in practice. The focus of the present paper
is to address what we believe is the most significant difficulty when turning to appli-
cation: the peer prediction method makes strong common knowledge assumptions. In
particular, in the context of eliciting feedback on the quality of a product or service, it
requires that every user shares the same prior belief about an item’s inherent quality
and about the way in which a user’s experience (or “signal”) is generated from quality.
Moreover, it assumes that the mechanism knows this prior.

To support these assumptions, MRZ suggest that, in the context of feedback about a
product or service, the rating history can be leveraged in order to allow the mechanism
to estimate the prior. This, however, leaves open the question as to how the rating his-
tory itself was built: either people reported honestly without an incentive-compatible
mechanism in place (and there is no design problem) or people reported dishonestly, in
which case the mechanism cannot use these reports to learn the correct prior. Beyond
this difficulty, there remains the concern that every user must share the same prior,
something that seems unreasonable in practice.

Relaxing this common prior assumption is the main focus of our paper, and we intro-
duce two mechanisms that provide strict incentives for truthful reports in equilibrium
while allowing participants to adopt subjective and private priors. Both mechanisms
ask a user for two reports: one before experiencing an item (or in crowdsourcing, before
the user is presented with a unit of work), and one afterwards. The ability to enforce
this temporal separation is critical but seems very reasonable in many applications.
For example, a travel site could ask a user for her opinion at the time of booking and
then again after her stay. Similarly, a paper reviewing system could ask a reviewer
about her opinion on a particular paper after providing access to the paper’s title and
abstract, and then again after providing access to the entire paper.

We first introduce the basic private-prior peer-prediction mechanism (BPP), that re-
quires an agent to report two belief reports about the signal that another agent will
receive, one before and one after receiving her own signal. BPP is strictly incentive
compatible, and infers the agent’s signal from the change in her belief reports. Build-
ing on this, we introduce and analyze the equilibrium of a mechanism in which an
agent’s belief report is followed by only a signal report. In this candidate mechanism,
truthful reporting of the signal, but not of the belief, is an equilibrium. Computing an
agent’s optimal belief misreport, we then construct the strictly incentive compatible



shadow private-prior peer-prediction mechanism (SPP) via an application of the reve-
lation principle, simulating this misreport on behalf of an agent. Moreover, we present
a special case of SPP that has a very simple and intuitive form. The main technical
innovation is to combine an agent’s belief report and her own signal report to calculate
a “shadow” posterior belief which is scored according to its predictiveness of another
agent’s signal report. The only knowledge SPP requires about the agents’ priors is that
the effect an agent’s signal has on her posterior belief that another agent will receive a
high signal is bounded away from zero. In particular, the mechanism requires knowl-
edge of some ε > 0 such that the difference between the posterior belief following a
high signal and the posterior belief following a low signal, is bounded from below by ε.
This technical requirement in regard to the minimal informativeness of signals given
the agents’ beliefs is not required for the strict incentives of BPP, in which the second
report is a belief report rather than a signal report.

In moving from a common knowledge setting to one with private and subjective pri-
ors, an important consideration is the amount of additional information over and above
a signal report that must be elicited from a participant. Indeed, MRZ had suggested
the possibility of incentive compatible peer prediction with subjective and private pri-
ors. In a brief treatment, they proposed an approach in which in addition to her own
signal, a user also reports her prior belief on the true underlying world state (e.g., a
product’s “quality”) and her belief on the probability of receiving each possible signal,
conditioned on each possible state. In comparison, both BPP and SPP are considerably
simpler with respect to the reporting costs, and thus likely more practical. In fact, our
analysis suggests a trade-off between the robustness of incentive properties and the re-
porting requirements, given that SPP but not BPP requires the technical requirement
on the minimal informativeness of signals.

A limitation of both BPP and SPP relative to the original peer prediction method is
that its application is restricted to domains with binary signals. However, many inter-
esting applications of peer prediction mechanisms are to settings with binary signals.
For example, blogs and online forums allow users to vote whether a post was helpful or
not. Similarly, social networking websites, such as Facebook and Google+, allow users
to “like” or “+1” other users’ comments. Hotel booking websites, such as Expedia and
Hotwire, ask customers after their stay whether they “would recommend this hotel to
a friend,” and the decision whether to flag a crowdsourced task as spam or not, is bi-
nary, too. While we believe that it is an interesting theoretical question whether BPP
and SPP can be extended to handle multiple signals, note that, even with their rel-
atively low reporting costs, this would still place a high burden on users, who, when
reporting their beliefs, would have to report full probability distributions instead of a
single number.

Related Work
In addition to the original peer prediction method [Miller et al. 2005] that we will
introduce in Section 3, there is other related work:

Jurca and Faltings [2007] apply techniques from robust optimization to the peer pre-
diction method to make it robust against small variations in the commonly-held prior.
Their work differs from ours in that we allow subjective priors to differ arbitrarily
between agents, and in that the mechanism does not need to have a prior itself.

Prelec [2004] develops the “Bayesian truth serum” (BTS) for a setting where the
prior need not be known to the mechanism, but must still be common to the agents.
In addition to requiring a common prior, BTS is incentive compatible only for a
large enough number of agents. For a setting with binary signals, Witkowski and
Parkes [2012] provide a Robust Bayesian Truth Serum (RBTS). As in Prelec’s mecha-
nism, RBTS requires a common prior to agents but does not insist on the mechanism



knowing the prior. Unlike Prelec’s mechanism, RBTS achieves strict incentive compat-
ibility for every number of agents n ≥ 3. The mechanism is based on the observation
that a particularity of the quadratic scoring rule can be used to truthfully elicit signals
even if the mechanism does not know an agent’s prior. This is the idea of identifying
a “shadow” belief report by perturbing some other reference belief report according to
the agent’s signal report. However, the design problem for the private and subjective
prior setting of this paper is significantly more difficult than the common-prior setting
of RBTS. In particular, whereas another agent provides the reference belief in RBTS,
in the present context with subjective priors, an agent’s own belief report must provide
the reference. This complicates the design problem significantly, because there is now
a coupling between the belief report and the signal report.

Jurca and Faltings [2008; 2011] suggest a mechanism for on-line polls which is situ-
ated in the same common-prior setting as BTS and RBTS. Their mechanism requires
only a signal report but it is not incentive compatible. Instead, the mechanism pub-
lishes the current frequencies of reports, and the authors show that these converge in
equilibrium towards the true distribution of signals in the population.

In handling private and subjective priors, in place of the Bayes-Nash equilibrium
analysis of peer prediction mechanisms, we analyze the subjective equilibrium of a
mechanism. Informally, this requires that each agent best-responds to the strategy of
every other agent given her own subjective prior, and given strict uncertainty about
the priors of other agents. Formally, the prior of an agent is modeled via a belief type
and we study the properties of BPP and SPP in an ex post subjective equilibrium, em-
phasizing that agents need no knowledge of other agents’ belief types. Various notions
of subjective, self-confirming and conjectural equilibria appear in the game theory lit-
erature, although normally studied in repeated contexts [e. g., Kalai and Lehrer 1993;
P. Battigali and Molinari 1992]. The most related concept to our solution concept is
that of Rubinstein and Wolinsky [1984], who propose rationalizable conjectural equi-
libria in the context of a one-shot game, but without our notions of ex post robustness
and strict uncertainty about the others’ belief types. In addition, they require player
observations in regard to the play of others and consistency of beliefs relative to these
observations. We model a single interaction between an agent and a peer prediction
mechanism, and the agent is unable to make any observations about the actions of her
“peer” agent (against which she is scored.)

2. THE SETTING
There is a group of n ≥ 2 rational, risk-neutral and self-interested agents. A world
state is determined by random variable T which can adopt values in {1, . . . ,m}. When
interacting with the world, each agent i observes a binary signal Si, which is a random
variable with values {0, 1}, that is sometimes represented {l, h} and referred to as a
“low” and a “high” signal, respectively. The signal represents an agent’s experience
or opinion, and different world states induce different distributions on signals. The
objective in peer prediction is to elicit an agent’s signal in an incentive compatible way.

Each agent i has a subjective prior in regard to the state of the world and the sig-
nals it will receive conditioned on different world states. That is, every agent i has
subjective beliefs in regard to a prior Pri(T = t) on the world state, in regard to the
conditional probability Pri(S = h | T = t) for how signals are generated for each possi-
ble state t, and in regard to the number of possible states, denoted mi. The mechanism
does not need to know these priors and, moreover, a prior can vary from agent to agent.
Collectively, we refer to an agent’s subjective beliefs as the agent’s belief type, denoted
θi ∈ Θ for some abstract set Θ. We insist that all belief types are admissible:



Definition 2.1. An agent’s belief type is admissible if the subjective prior satisfies
the following properties:

— There are two or more possible states; i.e., mi ≥ 2.
— Every state has positive probability, so that Pri(T = t) > 0 for all t ∈ {1, . . . ,mi}.
— States are distinct, such that Pri(S = h | T = t) 6= Pri(S = h | T = t′) for any two
t 6= t′. We adopt the convention that states are sorted; i.e., Pri(S = h | T = 1) < . . . <
Pri(S = h | T = mi).

— The signal beliefs conditional on state are fully mixed, with 0 < Pri(S = h | T = t) < 1
for all t.

Admissibility of an agent’s belief type is a weak requirement. In particular, note that
any belief type can be transformed into an admissible belief type as long as (a) all
signal beliefs conditional on state are fully mixed for states with positive probability,
and (b) the signal beliefs conditional on state are distinct for at least two states with
positive probability. Any two states with the same signal probability can be merged
into a new state, and states with zero probability can be dropped.

When an agent observes a signal, she updates her state and signal beliefs according
to her subjective prior. We adopt shorthand pi(si) = Pri(Sj = h | Si = si) for agent
i’s posterior signal belief that a second agent j receives a high signal given agent i’s
signal si. The posterior signal belief can be calculated as

pi(si) = Pri(Sj = h | Si = si) =

mi∑
t=1

Pri(Sj = h | T = t) Pri(T = t | Si = si), (1)

and applying Bayes’ rule to the second part of the summation in (1) yields:

Pri(T = t | Si = si) =
Pri(Si = si | T = t) Pri(T = t)

Pri(Si = si)
. (2)

The denominator in (2) is the prior signal belief and can be computed as

Pri(Si = si) =

mi∑
t=1

Pri(Si = si | T = t) Pri(T = t). (3)

Similar to the posterior beliefs, we denote the prior signal belief for a high signal by
pi = Pri(Si = h).

An important property that we require of the domain is temporal separation:

Definition 2.2 (Temporal Separation). A domain satisfies temporal separation if a
mechanism can restrict one report from an agent to being made before the agent re-
ceives her signal and a second report to being made after the agent receives her signal.

At this stage, we are not specific about what constitutes a “report” but we are heading
towards a mechanism, in which a first report about an agent’s prior signal belief pi is
separated from the agent’s report about her received signal, where it is crucial that
the report in regard to pi must be made before the agent receives her signal.

3. THE PEER PREDICTION METHOD
In this section we briefly review proper scoring rules and the classical peer prediction
method. Proper scoring rules can be used to incentivize a rational agent to truthfully
report her private belief about the likelihood of a future event.

Definition 3.1 (Binary Scoring Rule). Given possible outcomes Ω = {0, 1}, and a re-
port y ∈ [0, 1] in regard to the probability of outcome ω = 1, a binary scoring rule
R(y, ω) ∈ R ∪ ±∞ assigns a score based on report y and the outcome ω that occurs.



First, the agent is asked for her belief report y ∈ [0, 1]. Second, an event ω ∈ {0, 1} ma-
terializes (observed by the mechanism) and, third, the agent receives payment R(y, ω).

Definition 3.2 (Strictly Proper Scoring Rule). A binary scoring rule is proper if it
leads to an agent maximizing her expected score by truthfully reporting her belief
p ∈ [0, 1] and strictly proper if the truthful report is the only report that maximizes the
agent’s expected score.

An example of a strictly proper scoring rule is the binary logarithmic scoring rule Rl:
Rl(y, ω = 1) = ln(y)

Rl(y, ω = 0) = ln(1− y),
(4)

for natural logarithm ln.

PROPOSITION 3.3. [e. g., Selten 1998] The binary logarithmic scoring rule Rl is
strictly proper.

Note that if one applies a positive-affine transformation to a proper scoring rule, the
rule is still proper. For a more detailed discussion of proper scoring rules in general,
we refer to the article by Gneiting and Raftery [2007].

The classical peer prediction method is defined for a common prior, shared by all
agents and also known to the mechanism. For this, we denote by p(si) = Pr(Sj =
h | Si = si) the signal posterior for a generic agent i, given that it has received signal
si. While we present the binary version of the peer prediction method, it extends to an
arbitrary number of signals. The classical peer prediction method is defined as:

(1) Each agent i is asked for her signal report xi ∈ {0, 1}.
(2) For each agent i, choose another agent j = i+ 1 (modulo n) and pay agent i:

ui = R (p(xi), xj) , (5)
where R is an arbitrary proper scoring rule and xj the signal report by agent j.

Because the common prior is known to the mechanism, an agent’s score R(p(xi), xj)
can be computed by the center for all xi, xj ∈ {0, 1}.

Consider a strategy σi : {0, 1} → {0, 1} for an agent, describing her report for every
possible signal. Given a common prior, the equilibrium concept adopted for the analysis
of peer prediction is that of a Bayes-Nash equilibrium:

Definition 3.4. Strategy profile (σ1, . . . , σn) is a Bayes-Nash equilibrium (BNE) of
the peer prediction method with n agents if

E[R(p(σi(si)), σj(Sj)) | Si = si] ≥ E[R(p(s′i), σj(Sj)) | Si = si],

for all i, all si, all s′i 6= si, and with j = i+ 1 (modulo n).

Each agent maximizes her expected score by following strategy σi, given her own sig-
nal, her posterior signal belief, and given that the other agents play according to strat-
egy profile σ−i. A mechanism is Bayes-Nash incentive compatible (BNIC) if the truthful
strategy, σi(si) = si for each si ∈ {0, 1}, and for all agents i, is a BNE. A mechanism is
strictly BNIC if the inequalities defining the BNE are strict rather than weak, so that
agents strictly prefer to submit a truthful report.

THEOREM 3.5. [Miller et al. 2005] The classical peer prediction method is strictly
Bayes-Nash incentive compatible for any strictly proper scoring rule R and any admis-
sible common prior.

Definition 3.6 (Ex Post Individually Rational). A peer prediction mechanism is ex
post individually rational (ex post IR) if no agent can ever incur a negative payment.



PROPOSITION 3.7. [Miller et al. 2005] The classical peer prediction method can be
made ex post IR for any proper scoring rule R.

In the classical peer prediction method, the mechanism knows the prior and thus all
possible posteriors and scores that can arise for a given scoring rule. It is thus possible
to add a constant to every payment, such that, for example, the logarithmic rule plus
this constant is non-negative for any possible combination of signal reports.
Example 1. (Classical Peer Prediction) Two agents each experience a product that
can have one of two true states. The common prior is Pr(T = 2) = 0.7, with conditional
signal probabilities Pr(S = h | T = 2) = 0.8 and Pr(S = h | T = 1) = 0.1. The prior
probability that agent i will receive a high signal is Pr(Si = h) = Pr(Si = h | T =
2) Pr(T = 2) + Pr(Si = h | T = 1) Pr(T = 1) = 0.59. By experiencing the product, an
agent learns something about the world state. For example, following a high signal,
she updates her state belief to posterior Pr(T = 2|Si = h) = Pr(Si=h|T=2)Pr(T=2)

Pr(Si=h)
= 0.95.

(The analogous update following a low signal is 0.34.) The agent also revises her belief
that agent j received a high signal, with posterior signal beliefs p(h) = Pr(Sj = h | Si =
h) = 0.76 and p(l) = Pr(Sj = h | si = l) = 0.34. If agent i reports high, the center
calculates signal posterior belief 0.76 and applies this, together with agent j’s signal
report, to a strictly proper scoring rule. Now assume that agent 1 and agent 2 report
a low signal and a high signal, respectively. If the logarithmic rule Rl is used, the
computed payments for agent 1 and agent 2 are Rl(0.34, 1) = ln(0.34) = −1.08 and
Rl(0.76, 0) = ln(0.24) = −1.43 respectively. To ensure ex post individual rationality,
the center uses a scaled version of the logarithmic rule R′l, with an added constant
corresponding to the absolute value of the lowest possible negative payment, such that
R′l = Rl + | ln(0.24)| = Rl + 1.43.

There are two problems in extending the classical peer prediction method to incor-
porate subjective and private priors. First, it is no longer sufficient for the mechanism
to only ask for signal reports because it would not be able to infer posterior signal
beliefs. This could be solved by eliciting posterior signal beliefs, but then we run into
a second problem which is more severe: without the prior being common knowledge,
eliciting only the signal posterior does not enable the mechanism to infer the agent’s
signal. Eliciting the signal is crucial because it is used as the event that another agent
shall predict.
Example 2. Consider again the setting from Example 1: if the mechanism did not
know that Pr(T = 2) = 0.7, Pr(S = h | T = 2) = 0.8 and Pr(S = h | T = 1) = 0.1,
it could not infer anything from the agent reporting her signal posterior belief to be
0.34 because this could, for example, also stem from a high signal in a setting with
Pr(T = 2) = 0.06125 and the same conditional signal beliefs.

As a possible solution for settings with private and subjective priors, MRZ briefly
discuss the possibility of a direct-revelation approach where the agents are asked to
report all private information, including the prior beliefs on world state, the signal
beliefs conditional on state and the signal itself. In fact, this approach is not strictly
incentive compatible if all information is reported simultaneously.
Example 3. Consider again the setting from Example 1: if agent i observes a low
signal, a truthful report of all private information including the low signal yields the
same payment as a misreport of the same conditional signal beliefs but prior belief
Pr(T = 2) = 0.06125 together with a high signal.1

1Of course, if strict truthfulness is not required, the naive mechanism that asks only for a signal report and
pays each agent a constant amount independent of the reported signal is a much simpler, weakly incentive
compatible solution.



While MRZ do not mention this, their direct-revelation approach can be made
strictly incentive compatible for admissible belief types by temporal separation. The
center must ensure that the agent reports her subjective prior before receiving her
signal. Nevertheless, this direct approach appears impractical because of its high re-
porting costs. Observe that in the case of 2 states and 2 signals, an agent has to report
three probabilities and a signal. These reporting costs grow with the number of states,
so that with 3 states and 2 signals, it would already require each agent to report five
probabilities and a signal.

Thus, we believe that a different approach is required for settings with subjective
priors, in order to design a mechanism that is both strictly incentive compatible, and
feasible with respect to the agents’ reporting costs.

4. PRIVATE-PRIOR PEER PREDICTION: THE BASIC MECHANISM
We deviate from the classical peer prediction method in two aspects. First, every agent
has her own subjective belief type in regard to the world state and the way in which
signals are generated given each state. Second, this belief type is private to an agent
and not known by other agents or the mechanism. The difficulty comes from the sec-
ond relaxation: if the mechanism knew each agent’s subjective beliefs, it could still
compute the possible posterior beliefs for the other agent’s signal and the classical
peer prediction method could be applied.

The Bayesian Truth Serum (BTS) [Prelec 2004] (for a large enough number of
agents) and the Robust Bayesian Truth Serum (RBTS) [Witkowski and Parkes 2012]
(for 3 or more agents) provide a solution when all agents share a common prior, but
where this prior is not known by the mechanism. In addition to the signal report, these
mechanisms ask agents to report their posterior signal beliefs and score agents on the
basis of both of these reports. The following table provides a summary of the different
settings:

Prior
common subjective

public Classical Peer Prediction (Classical Peer Prediction)
private (Robust) Bayesian Truth Serum this paper

In what follows we provide a first proposal, the basic private-prior peer-prediction
mechanism (BPP), for the setting of private and subjective priors.

4.1. The Basic Private-Prior Peer-Prediction Mechanism (BPP)
For every agent i, choose another agent j = i+ 1(modulo n).

(1) Ask agent i for her prior signal belief report yi ∈ [0, 1] that another agent will
receive a high signal.

(2) Agent i observes signal Si = si.
(3) Ask agent i for her posterior signal belief report y′i ∈ [0, 1], with y′i 6= yi, that another

agent will receive a high signal.
(4) Infer agent i’s implicit signal report xi by applying

xi = x(yi, y
′
i) =

{
h, if y′i > yi
l, if y′i < yi

(6)

Agent i’s score is calculated as:
ui = R(yi, xj) +R(y′i, xj), (7)

where R is a strictly proper scoring rule, and xj is the inferred signal report of agent j.



As we will show, the true prior signal belief and the true signal posterior cannot be
the same given admissible belief types, so that y′i 6= yi is not restrictive for a truthful
agent.2

4.2. Incentive Compatibility
It is critical for the incentive properties of BPP that Step (1) happens before the agent
observes signal Si and Step (3) happens after the agent has observed signal Si. This is
the property of temporal separation. In establishing incentive compatibility, we need
the following lemma:

LEMMA 4.1. [Witkowski and Parkes 2012] For every agent i with admissible belief
type, it holds that pi(h) > pi > pi(l).

In words, agent i’s belief that another agent receives a high signal strictly increases
from her prior belief in the event that she observes a high signal. Analogously, her
belief that another agent receives a high signal strictly decreases relative to her prior
belief if she observes a low signal.

In formalizing the equilibrium concept for the case of private priors, we recall that
each agent has an admissible belief type θi ∈ Θ. We will not require agent i to form any
beliefs about the type of another agent j. A strategy σi in the setting of BPP describes
an agent’s prior belief report yi ∈ [0, 1], and then for each signal si ∈ {0, 1}, an agent’s
posterior belief report y′i ∈ [0, 1]. Put together, we have strategy σi = (σ1

i , σ
2
i ), where

σ1
i : Θ → [0, 1] and σ2

i : Θ × {0, 1} → [0, 1]. Component σ1
i (θi) defines the agent’s report

yi for every possible belief type she might have, whereas component σ2
i (θi, si) defines

the agent’s report y′i for every possible belief type and every possible signal.

Definition 4.2. Strategy profile (σ1, . . . , σn) is an ex post subjective equilibrium of
BPP with n agents if, for every agent i, and every admissible belief type θi,

E[R(σ1
i (θi), Xj)] + E[R(σ2

i (θi, si), Xj) | Si = si] ≥ E[R(ŷi, Xj)] + E[R(ŷ′i, Xj) | Si = si],

where Xj = x(σ1
j (θj), σ

2
j (θj , sj)) is the signal reported by agent j given Sj = sj , and

where this holds for all admissible belief types θj , and all belief reports ŷi 6= σ1
i (θi) and

ŷ′i 6= σ2
i (θi, si) (where this second report can depend on agent i’s realized signal).

In this equilibrium concept, each agent i is best-responding to the strategy of every
other agent given common knowledge of rationality, common knowledge of admissible
types, and given knowledge of her own type (i.e., her own subjective prior). The equi-
librium is subjective because it allows for each agent to have a distinct belief type, and
ex post because it allows for strict uncertainty in regard to the types of other agents.
In particular, we are interested in ex post subjective incentive compatible mechanisms,
where the truthful strategy σ1

i (θi) = pi and σ2
i (θi, si) = pi(si) is an equilibrium. That

is, every agent reports her true prior signal belief pi = Pri(Si = h) and then her true
posterior signal belief pi(si) = Pri(Sj = h | Si = si). A mechanism is strictly incentive
compatible when the constraints defining the equilibrium hold strictly.

THEOREM 4.3. BPP is strictly ex post subjective incentive compatible if every agent’s
belief type is admissible given temporal separation.

2To keep the user interface simple, a practical deployment might allow the two reports from an agent to be
equal and still pay the agent as described. In this case, the method would skip the agent’s role as providing
a prediction target for another agent. In the extreme case, where there is some agent i for which all other
agents j 6= i report yj = y′j , a practical deployment could score i against a random signal. It bears emphasis
that these details do not affect the equilibrium analysis, but are all robustness issues in regard to a practical
deployment.



PROOF. Assume agent j 6= i is truthful. First, for agent j’s inferred signal report it
holds that xj = x(yj , y

′
j) = sj with Sj = sj . To see this, verify that by Lemma 4.1 it

holds that y′j = pj(sj) > pj = yj if and only if sj = h, and that y′j = pj(sj) < pj = yj
if and only if sj = l. It follows that agent i has strict incentives to report yi and y′i
truthfully, with respect to her subjective belief type because her score is the sum of
two proper scoring rules applied to xj and recognizing that the inference in regard to
xi does not affect agent i’s score.

4.3. Individual Rationality
In contrast to the classical peer prediction method, the particular choice of scoring
rule matters as to whether BPP provides individual rationality. In particular, the log-
arithmic scoring rule Rl cannot provide individual rationality for BPP. This is because
an agent’s signal posterior can take values arbitrarily close to 0, and thus there is no
suitable constant the mechanism could add to always make the score non-negative.
Instead, we can adopt a strictly proper scoring rule that guarantees non-negative val-
ues for every possible report, so that there is no need for adding a lower bound. For
example, we can adopt the binary quadratic scoring rule Rq, normalized to give scores
between 0 and 1:

Rq(y, ω = 1) = 2y − y2

Rq(y, ω = 0) = 1− y2.
(8)

PROPOSITION 4.4. [e. g., Selten 1998] The binary quadratic scoring rule Rq is
strictly proper.

Example 4. Consider again the setting of Example 1: suppose that an agent has prior
belief Pri(T = 2) = 0.7 and conditional signal beliefs Pri(S = h | T = 2) = 0.8 and
Pri(S = h | T = 1) = 0.1. Here, we situate the example concretely in the context of
the purchase of a digital camera online. The procedure using BPP together with the
quadratic scoring rule Rq is then as follows:

(1) Agent i buys a digital camera from an e-commerce platform.
(2) The platform asks the agent for her prior signal belief report and she truthfully

reports yi = 0.59.
(3) Some days later, the agent receives and experiences the camera. She is disap-

pointed with the picture quality, so her signal is low. She updates her signal belief
to pi(l) = 0.34 and truthfully reports y′i = 0.34.

(4) Another agent j buys the same camera on the platform, and also follows Steps (1)
to (3), with potentially different beliefs and experiences.

(5) Agent i is scored against agent j’s implicitly reported signal xj . Thus, in the case
where agent j was happy with the camera, agent i is paid Rq(0.59, 1)+Rq(0.34, 1) =
2− 0.592 − 0.342 = 1.54.

5. PRIVATE-PRIOR PEER PREDICTION: THE SHADOW MECHANISM
In Section 4 we have seen that subjective and private priors can be handled, but with
higher reporting costs compared to the classical peer prediction method. Whereas clas-
sical peer prediction requires a report of an agent’s signal, BPP requires an agent to
report a prior signal belief and a posterior signal belief. In this section we modify the
basic mechanism so that an agent’s second report is a signal report rather than a belief
report. We first introduce a candidate “shadow peer-prediction” mechanism, in which
the equilibrium provides strict incentives for truthful signal reports but not for truth-
ful belief reports. Section 5.2 provides an analysis of this mechanism, identifying the



optimal deviation from the true prior belief report. By making an appeal to the reve-
lation principle from mechanism design theory, we then construct the shadow private-
prior peer-prediction mechanism, which is strictly incentive compatible for both re-
ports. This is presented in Section 5.3. In Section 5.4, we present a compact variation
of this mechanism, in which the payment rule consists of only a single application of
the quadratic scoring rule. In Section 5.5, we show that this compact variant is indi-
vidual rational and provide an illustrative example.

5.1. The Candidate Shadow Private-Prior Peer-Prediction Mechanism (Candidate SPP)
To begin, we introduce the candidate shadow private-prior peer-prediction mechanism
(Candidate SPP) which is a building block towards a fully incentive-compatible mech-
anism. Candidate SPP is parametrized by δ > 0:

For every agent i, choose another agent j = i+ 1(modulo n).

(1) (Stage 1) Ask agent i for her prior signal belief report yi ∈ [0, 1] that another agent
will receive a high signal.

(2) Agent i observes signal Si = si.
(3) (Stage 2) Ask agent i for her signal report xi ∈ {0, 1}, and calculate shadow poste-

rior belief

y′i = y′(yi, xi) =

{
yi + δ, if xi = 1
yi − δ, if xi = 0

(9)

where δ > 0 is a parameter of the mechanism.

Agent i’s score is then
ui = Rq (yi, xj) +Rq (y′i, xj) , (10)

where Rq(·, ·) is the quadratic scoring rule and xj is the signal report of agent j.

The shadow posterior y′i in Candidate SPP might fall outside [0, 1]. For this reason,
we extend the definition of the quadratic scoring rule to allow belief reports outside
[0, 1], noting that the score for both ω = 0 and ω = 1 remains well defined.

5.2. Equilibrium Analysis
The subjective equilibrium concept and strict ex post subjective incentive compatibility
extend in the natural way from Section 4: as in BPP, each agent is best-responding to
the strategy of every other agent given knowledge of her own belief type, and with
strict uncertainty on the belief types of other agents other than their admissibility.
The only difference to the concepts used in Section 4 is that an agent’s second report is
now a signal and not a belief.

From a game-theoretic point of view, the key difference between Candidate SPP and
BPP is that in Candidate SPP there is an interdependency between an agent’s first and
second report. Agent i’s first report yi has an influence on the payment that she will
receive for her second report xi through its effect on y′i. This requires careful incentive
analysis. We begin with a technical lemma, slightly adapted from Friedman [1983] to
accommodate out-of-bounds values.

LEMMA 5.1 (MINIMIZE DISTANCE). [Friedman 1983] Let p ∈ [0, 1] be an agent’s
true belief about a binary future event. If the center scores the agent’s belief report ac-
cording to the quadratic scoring rule Rq but restricts the set of allowed reports to Y ⊆ R,
a rational agent will report a y ∈ Y with minimal (y − p)2 and thus minimal absolute
difference |y − p|.

PROOF. First observe that the quadratic scoring rule’s two equations are well-
defined for any y ∈ R, including values of y outside [0, 1]. The expected score of



reporting y if p is the true belief is E[y] = p
(
2y − y2

)
+ (1 − p)

(
1− y2

)
. Let’s sub-

tract this from the expected score given that the agent can submit a truthful report:
E[p] − E[y] = p

(
2p− p2

)
+ (1 − p)

(
1− p2

)
− p

(
2y − y2

)
− (1 − p)

(
1− y2

)
= (p − y)2.

Maximizing E[y] is equivalent to minimizing E[p]−E[y], and so we see that a rational
agent will seek to minimize (p− y)2 and thus minimize absolute difference |p− y|.

This property is specific to the quadratic scoring rule. In particular, the logarithmic
rule does not satisfy it. This lemma does not require the set of Y to lie in [0, 1], and
holds for values y outside this range. This is helpful because it allows the incentives
for truthful stage 2 reports to be analyzed without requiring a particular condition on
δ > 0 (and in particular without requiring that δ depends on the stage 1 report, which
would complicate the incentive analysis).

LEMMA 5.2. In Candidate SPP, given signal belief report yi and realized signal si
and assuming agent j is truthful, agent i’s optimal signal report xi depends on her prior
signal belief report yi as follows:

(1) If yi < pi(si), then she has a strict preference to report xi = h.
(2) If yi = pi(si), then she is indifferent between xi ∈ {l, h}.
(3) If yi > pi(si), then she has a strict preference to report xi = l.

In particular, if pi(l) < yi < pi(h), then the truthful report xi := si is optimal.

PROOF. Fix belief report yi and true signal si, and assume j’s signal report is truth-
ful. From Lemma 5.1 it follows that agent i should report xi that leads to a shadow pos-
terior y′i with minimal distance to agent i’s true posterior pi(si) = Pri(Sj = h | Si = si).
Consider two cases:

(1) If yi < pi(si) then yi − pi(si) < 0, and |yi + δ − pi(si)| < |yi − δ − pi(si)| and xi = h is
strictly optimal. The case of yi > pi(si) is symmetric.

(2) If yi = pi(si) then the distance is the same for either report, and so indifference.

This completes the proof.

Lemma 5.2 gives a hint as to what we’re looking for— conditions on δ and an agent’s
subjective prior, such that pi(l) < yi < pi(h), and the agent’s signal report is truthful.

PROPOSITION 5.3. In Candidate SPP, if mechanism parameter 0 < δ ≤ 2
(
pi(h) −

pi(l)
)
, agent i’s strict best response to a truthful signal report by agent j is to make belief

report yi = pi(1− δ) + δ
2 and truthful signal report xi = si.

PROOF. First of all, let us constrain agent i’s strategy to reporting the true
signal xi = si. Given this, the expected score for reporting yi in stage 1
is: Utruesignal(yi) = pi

(
2yi − y2i

)
+ (1 − pi)

(
1− y2i

)
+ pi

(
2(yi+δ)−(yi+δ)

2
)

+ (1 −
pi)
(
1−(yi−δ)2

)
. Taking the derivative with respect to yi, and setting to zero,

∂Utruesignal(yi)
∂yi

= 2 (pi − yi − 2δpi + δ + pi − yi) = 0 ⇔ yi = pi + δ(1−2pi)
2 = pi(1 − δ) + δ

2 ,
and a maximum by checking second-order conditions.

It is reassuring to confirm that for δ ≤ 2
(
pi(h) − pi(l)

)
, we have pi(l) < yi < pi(h),

and thus not only a feasible report, i.e. in the [0, 1] bound, but also consistency with
Lemma 5.2: first, observe that for pi = 0.5, it holds that yi = 0.5 for any δ, so that yi is
in bounds. Second, observe that for pi > 0.5, it holds that yi < pi, and for pi < 0.5, it
holds that yi > pi. Because of symmetry, it is then sufficient to show that yi < pi(h) for



pi < 0.5, and thus pi(l) < pi < yi < pi(h). We have,

yi = pi +
δ(1− 2pi)

2
≤ pi +

2
(
pi(h)− pi(l)

)(
1− 2pi

)
2

= pi +
(
pi(h)− pi(l)

)
(1− 2pi)

= pi + pi(h)− 2pipi(h)− pi(l) + 2pipi(l) = pi − pipi(h)− pi(l) + pipi(l) + pi(h)

+ pipi(l)− pipi(h) = pi(h) + pipi(l)− pipi(h) < pi(h).

For the final equality, we need that pi = pipi(h) + (1 − pi)pi(l) and thus pi − pipi(h) −
pi(l) + pipi(l) = 0, and the strict inequality follows from pi > 0 and pi(h) > pi(l), which
holds for admissible belief types.

What other strategy might be better for the agent? We know from Lemma 5.2 that
the only other case to consider is yi ≤ pi(l) (or symmetrically, yi ≥ pi(h)), where
the optimal signal report is xi = h, independent of realized signal si. Given this,
let’s now constrain agent i’s strategy to always reporting h. Given this, the expected
score for reporting yi in stage 1 is Ualwayshigh(yi) = pi

(
2yi − y2i

)
+ (1 − pi)

(
1− y2i

)
+

pi
(
2(yi+δ)−(yi+δ)

2
)

+(1−pi)
(
1−(yi+δ)

2
)
. Taking the derivative with respect to yi,

and setting to zero, ∂Ualwayshigh(yi)
∂yi

= 2(pi − yi − δ + pi − yi) = 0 ⇔ yi = pi − δ
2 , and

a maximum by checking the second-order conditions. However, Candidate SPP insists
on yi ∈ [0, 1] and so for δ > 2pi this is not feasible. Therefore, the expected utility
given yi = pi − δ/2 is an upper bound on the actual utility available when playing the
“always-high” strategy in stage 2.

Continuing, we establish that the expected loss, relative to being able to report yi =
pi in stage 1 and y′i = pi(si) in stage 2 is greater under the “always-high” strategy than
the “true signal” strategy. The expected loss for the “true signal” strategy is:

Ltruesignal =

(
δ(1− 2pi)

2

)2

+ pi

(
pi(h)−

[
pi(1− δ) +

δ

2
+ δ
])2

+(1− pi)
(
pi(l)−

[
pi(1− δ) +

δ

2
− δ
])2

For the always high strategy, the expected loss is:

Lalwayshigh ≥
(
δ

2

)2

+ pi

(
pi(h)−

[
pi −

δ

2
+ δ
])2

+ (1− pi)
(
pi(l)−

[
pi −

δ

2
+ δ
])2

This is a lower bound on loss, because the optimal yi in this case may be out of the
[0, 1] bound and thus the agent’s utility is upper-bounded by assuming yi = pi − δ/2 is
feasible. Combining, we have:

Lalwayshigh − Ltruesignal ≥
(
δ

2

)2

−
(
δ(1− 2pi)

2

)2

+ pi

((
pi(h)−

[
pi +

δ

2

])2

−
(
pi(h)−

[
pi(1− δ) +

3δ

2

])2
)

+ (1− pi)

((
pi(l)−

[
pi +

δ

2

])2

−
(
pi(l)−

[
pi(1− δ)−

δ

2

])2
)

= δ2pi(1− pi) + δ(1− pi)pi
((
−δ + pi(h)− pi

)
+ δ(pi − 1) + pi(h)− pi

)
− δ(1− pi)(1 + pi)

(
pi(l)− pi + δpi + pi(l)− pi

)
= 2δ(1− pi)

(
pi − pi(l)− δpi + pi(h)pi − pi(l)pi

)
.



Since 2δ(1− pi) > 0, for Lalwayshigh − Ltruesignal > 0 we need
pi − pi(l)− δpi + pi(h)pi − pi(l)pi ≥ 0⇔

(
pi − pi(l)

)
+ pi

(
pi(h)− pi(l)

)
≥ piδ

⇔pi
(
pi(h)− pi(l)

)
+ pi

(
pi(h)− pi(l)

)
≥ piδ ⇔ δ ≤ 2

(
pi(h)− pi(l)

)
.

This establishes that a prior signal belief report yi = pi + δ(1−2pi)
2 and the truthful

signal report constitute a strict best response to a truthful signal report by agent j.

We immediately have the following:

THEOREM 5.4. In a strict ex post subjective equilibrium of Candidate SPP, and
given temporal separation, every agent i reports her true signal si if mechanism pa-
rameter 0 < δ ≤ 2

(
pi(h)− pi(l)

)
for all i ∈ {1, . . . , n}.

This provides partial incentive compatibility: an agent has strict incentives to report
her true signal in stage 2 but should deviate to yi = pi + δ(1−2pi)

2 in stage 1. The only
informational requirement on the mechanism is that it must pick a δ small enough,
depending on knowledge of a valid ε > 0 such that ε ≤ pi(h)− pi(l) for all i ∈ {1, . . . , n}
(with δ ≤ 2ε being sufficient). Certainly, admissibility implies pi(l) < pi < pi(h) for
all belief types. What is required in addition is knowledge of this minimal “degree of
informativeness” of a signal, valid for every belief type in the population.

5.3. The Shadow Private-Prior Peer-Prediction Mechanism (SPP)
We can now apply the revelation principle and achieve strict incentive compatibility
in regard to both the belief report and the signal report. The crucial observation is
that the optimal misreport yi = pi + δ(1−2pi)

2 depends only on the agent’s prior signal
belief pi and parameter δ of the mechanism. It does not depend on any other aspect of
the agent’s belief type. For this reason, the mechanism can simply compute yi directly
on behalf of the agents on the basis of pi. This leads us to the shadow private-prior
peer-prediction mechanism (SPP):
For every agent i, choose another agent j = i+ 1(modulo n).

(1) (Stage 1) Ask agent i for her prior signal belief report yi ∈ [0, 1] that another agent
will receive a high signal.

(2) Agent i observes signal Si = si.
(3) (Stage 2) Ask agent i for her signal report xi ∈ {0, 1}, and calculate shadow poste-

rior belief
y′i = y′(yi, xi) =

{
yi + δ(1−2yi)

2 + δ, if xi = 1

yi + δ(1−2yi)
2 − δ, if xi = 0,

(11)

where δ > 0 is a parameter of the mechanism.

Agent i’s score is then

ui = Rq

(
yi +

δ(1− 2yi)

2
, xj

)
+Rq (y′i, xj) , (12)

where Rq(·, ·) is the quadratic scoring rule, and xj the report of agent j.

Observe that, for δ = 1, the transformed prior belief report yi + δ(1−2yi)
2 becomes 1

2
which does not depend on yi. This would mean that while agent i still cannot do better
than reporting yi = pi, the prior report would not be strictly incentivized. Excluding
this case, the following theorem then follows immediately from Proposition 5.3 and the
equilibrium analysis of Candidate SPP:

THEOREM 5.5. SPP is strictly ex post subjective incentive compatible given temporal
separation, if mechanism parameter δ 6= 1 and 0 < δ ≤ 2

(
pi(h) − pi(l)

)
for all i ∈

{1, . . . , n}.



5.4. The Compact Shadow Private-Prior Peer-Prediction Mechanism (Compact SPP)
In SPP, the signal prior report yi affects both parts of agent i’s score while signal report
xi only affects the second part. This raises the question as to whether the second part
alone could suffice for strict truth-telling incentives. That is, whether Candidate SPP’s
payment rule can be shortened to Rq (y′i, xj).

In fact, this is possible. First observe that Lemma 5.2 still holds since this analysis
pertained only to the score for the signal report. Given this, the outline of the analysis
follows as before. Full details are deferred to the full version of the paper. First, we
can derive (a) the optimal report yi given that the agent reports her true signal si,
and (b) the optimal report yi given that the agent always reports a high signal (or
symmetrically, always reports a low signal.) Ignoring the symmetric case of “always
low”, this yields:

(1) If xi = h (independent of si), the optimal belief report is yi = pi − δ.
(2) If xi = si, the optimal belief report is yi = pi(1− 2δ) + δ.

Considering the expected loss relative to being able to make perfect reports pi(l) or
pi(h) in stage 2 (depending on the observed signal), and requiring that the loss from
reporting the true signal and yi = pi(1 − 2δ) + δ is strictly less than that of always
reporting a high signal and yi = pi − δ, the constraint on parameter δ is 0 < δ ≤
pi(h) − pi(l).3 Given this, and adopting the revelation principle as before, we have the
following compact shadow private-prior peer-prediction mechanism (Compact SPP):

For every agent i, choose another agent j = i+ 1(modulo n).

(1) (Stage 1) Ask agent i for her prior signal belief report yi ∈ [0, 1] that another agent
will receive a high signal.

(2) Agent i observes signal Si = si.
(3) (Stage 2) Ask agent i for her signal report xi ∈ {0, 1}, and agent i’s score is

ui = Rq
(
(1− 2δ)yi + 2δxi, xj

)
, (13)

where δ > 0 is a parameter of the mechanism, Rq(·, ·) is the quadratic scoring rule,
and xj is the signal report of agent j.

Analogous to SPP, the transformed prior report in Compact SPP is independent of yi
if δ = 1

2 , so that, in that case, the prior belief report yi would only be weakly truthful.
We thus exclude δ = 1

2 in the following theorem which we state without proof:

THEOREM 5.6. Compact SPP is strictly ex post subjective incentive compatible given
temporal separation if parameter δ 6= 1

2 and 0 < δ ≤ pi(h)− pi(l) for all i ∈ {1, . . . , n}.

The payment rule of Compact SPP has a very nice and intuitive interpretation: not-
ing that it can be written as Rq

(
(1− η)yi + ηxi, xj

)
with η = 2δ and observing that the

expected value of xi is pi, then—given that agent i is truthful—the expected belief re-
port that is applied to the quadratic scoring rule is E

[
(1− η)yi + ηxi

]
= pi. This makes

sense given that the quadratic scoring rule is strictly proper, and pi is agent i’s best
prediction for the signal report xj at stage 1 given that agent j is truthful. The role of
η > 0 is to put some “weight” on the signal report, so that the agent has an incentive to
use the signal report in obtaining better accuracy in regard to her posterior signal be-
liefs. On the other hand, if η gets too large relative to the effect of an agent’s signal on
her posterior signal belief, then the agent prefers not to “adjust” her shadow posterior

3For 0 < δ ≤ pi(h) − pi(l), one can again confirm that yi = pi(1 − 2δ) + δ is a feasible report. As in the
analysis of SPP, it is irrelevant that yi = pi − δ may not be in the [0, 1] range since requiring a report inside
the range can only further reduce an agent’s utility.



through reporting a signal in a way that depends on the observed signal. Instead, in
this situation where the two possible signal posteriors are relatively close to each other,
she will set E

[
(1 − η)yi + ηxi

]
= pi by choosing xi = h (always) and yi = pi−η

1−η = pi−2δ
1−2δ .

By applying this to the transformation due to the direct-revelation approach, one re-
discovers the optimal misreport given a high signal report pi−2δ

1−2δ (1− 2δ) + δ = pi − δ.
An interesting special case is choosing δ = 0.5, which is a valid parametrization for

weakly truthful prior belief incentives when 0.5 ≤ pi(h) − pi(l) and thus pi(h) > 0.5
and pi(l) < 0.5. In this case, the effect of belief report yi disappears and the shadow
belief report that is adopted in the scoring rule is 1 if the signal report is h and 0 if the
signal report is l. It makes sense that this would retain strict incentives in regard to
the signal report in this case, since pi(h) > 0.5 and pi(l) < 0.5 and so shadow posteriors
1 and 0 are minimizing the distances to pi(h) and pi(l), respectively.

5.5. Individual Rationality
In BPP, which utilizes two belief reports, using the normalized quadratic scoring rule
Rq giving scores between 0 and 1 ensures ex post individual rationality. For the mech-
anisms from Section 5, it is no longer obvious that this still holds because there could
be out-of-bound shadow posterior reports (outside of [0, 1]), so that the ex post scores
may be negative. For Compact SPP and δ > 0.5, this can indeed be the case. The lowest
possible score is attained through the lowest possible (1 − 2δ)yi + 2δxi and xj = 1, or
through the highest possible (1− 2δ)yi + 2δxi and xj = 0. For δ > 0.5, (1− 2δ)yi + 2δxi
is minimized by reporting yi = 1 and xi = 0, and maximized by reporting yi = 0 and
xi = 1. Applied to Rq together with xj = 1 and xj = 0, respectively, one obtains the
lowest possible score as 2(1− 2δ)− (1− 2δ)2 = 1− (2δ)2 = 1− 4δ2. Therefore, by adding
|1 − 4δ2| = 4δ2 − 1 to every agent’s score, Compact SPP can be made individual ra-
tional in the δ > 0.5 case. For δ ≤ 0.5, however, Compact SPP’s score is in between 0
and 1 without such a workaround. To see this, consider the range of possible values
for (1 − 2δ)yi + 2δxi: the signal report xi is either 0 or 1, and so this becomes either
(1 − 2δ)yi or (1 − 2δ)yi + 2δ, with the latter being strictly larger than the former. For
δ ≤ 0.5, then (1 − 2δ)yi ≥ 0 and (1 − 2δ)yi + 2δ ≤ 1 for all yi ∈ [0, 1]. Moreover, 0 and 1
is obtained by reporting xi = yi = 0 and xi = yi = 1, respectively, so that for δ ≤ 0.5,
Compact SPP attains scores between 0 and 1.

Example 5. Consider again the earlier example, with an agent having prior state
belief Pri(T = 2) = 0.7 and conditional signal beliefs Pri(S = h | T = 2) = 0.8 and
Pri(S = h | T = 1) = 0.1. Consider again the context of the purchase of a digital camera
online. The procedure using Compact SPP with δ = 0.2, such that δ ≤ pi(h)−pi(l) = 0.42
and δ ≤ 0.5 (for individual rationality) is:

(1) Agent i buys a digital camera from an e-commerce platform.
(2) The platform asks the agent for her prior signal belief report and she truthfully

reports yi = 0.59.
(3) Some days later, the agent receives and experiences the camera. She is disap-

pointed with the picture quality, so her signal is low. She updates her signal belief
to pi(l) = 0.34.

(4) In contrast to the basic mechanism, she then reports only her signal xi = l.
(5) Another agent j buys the same camera on the platform, and also follows Steps (1)

to (4), with potentially different beliefs and experiences.
(6) Agent i is scored against agent j’s reported signal xj . Thus, in the case where agent

j reported xj = h, agent i is paid Rq (0.59 + 2(0.2)(0− 0.59), 1) = Rq (0.354, 1) =
2(0.354)− 0.3542 = 0.583



6. DISCUSSION: APPLICATIONS
In this section we offer some remarks in regard to considerations when making use of
shadow peer prediction mechanisms in practical applications.

Information aggregation. In the classical peer prediction method, the center uses
the common prior to compute the signal posteriors and publish this information. In
our setting with private and subjective priors, the only objective information, i.e. the
only information stemming from the world, are the signals. The center can therefore
simply publish the percentage of positive signal reports, allowing each agent to in-
corporate this information into her own subjective prior. Note that this is common
practice. Hotwire, for example, publishes the percentage of customers who have re-
ported that they were satisfied with their stay at a given hotel. Another example is
eBay, which publishes the percentage of positive reports for a given seller.

User interface (UI). The shadow peer-prediction mechanisms introduced in this pa-
per require users to make reports about probabilistic beliefs. While it would be difficult
to come up with a UI that makes reporting full distributions user friendly, we believe
there are UIs that can achieve this for our setting, in which only a single probability
is required. The user interface we suggest “hides” the probabilities from the users by
adopting a point scale from 0 to 10. These points would directly correspond to probabil-
ities, and allow users to interact with the system in a way they are familiar with from
other online rating sites (albeit introducing a forced approximation to their reports).

Of course, the right choice of UI depends on the application, and probability reports
may sometimes be feasible. For example, when booking a hotel on Expedia or Hotwire,
the following question seems reasonably easy to answer: “What is your prediction that
another customer will recommend this hotel to a friend?” Note that our shadow peer
prediction mechanisms (SPP and Compact SPP) have the same type of reports as the
Bayesian Truth Serum [Prelec 2004]: a “prediction report” about the experiences of
other agents and an “experience report.” In a recent study with inexpert human raters
on Amazon Mechanical Turk, it has been shown that human agents can indeed report
such information successfully [Shaw et al. 2011]. In fact, in their experimental compar-
ison of different incentive schemes, the Bayesian Truth Serum elicited the responses
with highest quality among all tested schemes.

7. CONCLUSION
In this paper, we have presented two incentive compatible mechanisms for the elicita-
tion of truthful user feedback that escape the strong common knowledge assumptions
of classical peer prediction. We believe that this development is of significant practi-
cal importance. The compact private-prior peer-prediction mechanism (Compact SPP)
provides a particularly simple intuitive interpretation, is easy to analyze, and aligns
incentives with truthful reporting of a belief on signals and then a signal. To the best
of our knowledge, in terms of belief structure, the setting we study is the most general
that has been studied in the context of peer prediction mechanisms. The theoretical
analysis adopts a solution concept that is weaker than dominant strategy equilibrium
but stronger than Bayes Nash equilibrium.

We believe that an important direction for future work is to design domain-specific
mechanisms that allow the elimination of the belief report. For crowdsourcing applica-
tions, for example, it is oftentimes sufficient for the center to elicit information about
the relative rank of two items. In the example of crowdsourced image tagging, the re-
quester may have two sets of tags for an image and may want to know which to choose.
By presenting agents with both sets, and asking for a report as to which of the two is
better, an agent’s prior belief on signal should be uninformed (and thus 0.5) and we
believe strict incentive compatibility can be achieved with just a signal report.
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