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Abstract. Studies of the effect of climate change on fine
particulate matter (PM2.5) air quality using general circula-
tion models (GCMs) show inconsistent results including in
the sign of the effect. This reflects uncertainty in the GCM
simulations of the regional meteorological variables affect-
ing PM2.5. Here we use the CMIP3 archive of data from fif-
teen different IPCC AR4 GCMs to obtain improved statistics
of 21st-century trends in the meteorological modes driving
PM2.5 variability over the contiguous US. We analyze 1999–
2010 observations to identify the dominant meteorological
modes driving interannual PM2.5 variability and their syn-
optic periods T. We find robust correlations (r > 0.5) of an-
nual mean PM2.5 with T, especially in the eastern US where
the dominant modes represent frontal passages. The GCMs
all have significant skill in reproducing present-day statistics
for T and we show that this reflects their ability to simulate
atmospheric baroclinicity. We then use the local PM2.5-to-
period sensitivity (dPM2.5/dT) from the 1999–2010 observa-
tions to project PM2.5 changes from the 2000–2050 changes
in T simulated by the 15 GCMs following the SRES A1B
greenhouse warming scenario. By weighted-average statis-
tics of GCM results we project a likely 2000–2050 increase
of ∼ 0.1 µg m−3 in annual mean PM2.5 in the eastern US aris-
ing from less frequent frontal ventilation, and a likely de-
crease albeit with greater inter-GCM variability in the Pa-
cific Northwest due to more frequent maritime inflows. Po-
tentially larger regional effects of 2000–2050 climate change
on PM2.5 may arise from changes in temperature, biogenic
emissions, wildfires, and vegetation, but are still unlikely to
affect annual PM2.5 by more than 0.5 µg m−3.

1 Introduction

Air pollution is strongly sensitive to weather conditions and
is therefore affected by climate change. A number of stud-
ies reviewed by Jacob and Winner (2009) have used chem-
ical transport models (CTMs) driven by general circulation
models (GCMs) to diagnose the effects of 21st-century cli-
mate change on air quality at northern mid-latitudes. These
GCM-CTM studies generally concur that 2000–2050 climate
change will degrade ozone air quality in polluted regions by
1–10 ppb, but they do not agree on even the sign of the ef-
fect for fine particulate matter (PM2.5). Change in ozone is
largely driven by change in temperature, but for PM2.5 the
dependence on meteorological variables is far more complex,
including different sensitivities for different PM2.5 compo-
nents (Liao et al., 2006; Dawson et al., 2007; Heald et al.,
2008; Kleeman, 2008; Pye et al., 2009; Tai et al., 2010).

Tai et al. (2012) proposed an alternate approach for diag-
nosing the effect of climate change on PM2.5 through iden-
tification of the principal meteorological modes driving ob-
served PM2.5 variability. For example, it is well known that
cold fronts associated with mid-latitude cyclones drive pol-
lutant ventilation in the eastern US (Cooper et al., 2001; Li
et al., 2005). Tai et al. (2012) found that the frequency of
cold fronts was a major predictor of the observed interannual
variability of PM2.5 in the Midwest. GCMs project a gen-
eral 21st-century decrease in mid-latitude cyclone frequency
as a result of greenhouse warming (Bengtsson et al., 2006;
Lambert and Fyfe, 2006; Christensen et al., 2007; Pinto et
al., 2007; Ulbrich et al., 2008), from which one could de-
duce a general degradation of air quality. This cause-to-effect
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relationship has been found in a few GCM-CTM studies
(Mickley et al., 2004; Murazaki and Hess, 2006).

However, there is substantial uncertainty in regional pro-
jections of future cyclone frequency (Ulbrich et al., 2009;
Lang and Waugh, 2011). Indeed, a general difficulty in pro-
jecting the effect of climate change on air quality is the
underlying GCM uncertainty in simulating regional climate
change. This uncertainty arises both from model noise (cli-
mate chaos) and from model error (physics, parameters, nu-
merics). Model noise can be important. Tai et al. (2012) con-
ducted five realizations of 2000–2050 climate change in the
GISS GCM 3 (Rind et al., 2007) under the same radiative
forcing scenario and found that the frequency of cyclones
ventilating the US Midwest decreased in three of the realiza-
tions, increased in one, and had no trend in one. All GCM-
CTM studies to date examining the effect of climate change
on PM2.5 have used a single climate change realization from
a single GCM (Jacob and Winner, 2009), so it is no sur-
prise that they would yield inconsistent results. This is less
of an issue for GCM-CTM projections of ozone air quality
because ozone responds most strongly to changes in temper-
ature (Jacob and Winner, 2009), and all GCMs show consis-
tent warming for the 21st-century climate even on regional
scales (Christensen et al., 2007).

The standard approach adopted by the Intergovernmen-
tal Panel on Climate Change (IPCC) to reduce uncertain-
ties in GCM projections of regional climate change is to use
multiple realizations from an ensemble of GCMs, assum-
ing that model diversity provides some measure of model
error (Christensen et al., 2007). Such an ensemble analy-
sis is not practical for GCM-CTM studies of air quality be-
cause of the computational expense associated with chem-
istry and aerosol microphysics. An alternative is to focus on
GCM projections of the meteorological modes determining
air quality. A resource for this purpose is the World Cli-
mate Research Programme’s (WCRP’s) Coupled Model In-
tercomparison Project phase 3 (CMIP3) multi-model dataset
of 2000–2100 climate change simulations produced by the
ensemble of GCMs contributing to the IPCC 4th Assessment
Report (AR4).

Here we use this multi-model ensemble to project the
responses of PM2.5 air quality in different US regions to
2000–2050 climate change. We focus on annual mean PM2.5,
which is of primary policy interest (EPA, 2012). We first ex-
amine the observed sensitivity of annual mean PM2.5 to the
frequencies of the dominant meteorological modes in differ-
ent US regions. We then use the CMIP3 archive of 15 GCMs
to project the effect of climate change on these frequencies,
and from there we deduce the corresponding effect of climate
change on PM2.5.

2 Observed sensitivity of PM2.5 to meteorological
modes

Previous studies have demonstrated the importance of syn-
optic weather in controlling PM2.5 variability (Thishan Dhar-
shana et al., 2010; Tai et al., 2012). Tai et al. (2012) identi-
fied cyclone passage with associated cold front as the me-
teorological mode whose period T (length of one cycle,
i.e., inverse of frequency) is most strongly correlated with
interannual variability of PM2.5 in the US Midwest. They
proposed that the corresponding PM2.5-to-period sensitivity
(dPM2.5/dT) could be used to project the response of PM2.5
to future climate change; a change1T in cyclone period
would cause a change1PM2.5 = (dPM2.5/dT)1T . This as-
sumes that the local dPM2.5/dT relationships will remain un-
changed, and that the same meteorological modes will re-
main dominant for PM2.5 variability. The physical meaning
of dPM2.5/dT is clear when the meteorological mode acts as
a pulse, either ventilating a source region (as in the case of a
cold front) or polluting a remote region (as in the case of a
warm front).

Daily mean PM2.5 data for 1999–2010 were obtained from
the EPA Air Quality System (AQS) (http://www.epa.gov/ttn/
airs/airsaqs/) Federal Reference Method (FRM) network of
about 1000 sites in the contiguous US. The daily site mea-
surements were interpolated following Tai et al. (2010) onto
a 4◦

× 5◦ latitude-by-longitude grid, and annual means for
each of the 12 yr were calculated for each grid cell. Such spa-
tial averaging can smooth out local effects and yields more
robust correlation statistics of PM2.5 with synoptic weather
(Tai et al., 2012). Figure 1 shows as an example the 1999–
2010 time series of annual mean PM2.5 for the 4◦ × 5◦ grid
cell centered over Chicago (asterisk in Fig. 2). Linear regres-
sion indicates a downward trend of−0.34 µg m−3 a−1, re-
flecting the improvement of air quality due to emission con-
trols (EPA, 2012). Superimposed on this long-term trend is
interannual variability that we assume to be meteorologically
driven. The standard deviation of the detrended annual mean
PM2.5 is 0.79 µg m−3, or 5.3 % of the 12-yr mean PM2.5. For
the ensemble of 4◦ × 5◦ grid cells in the US we find that the
interannual standard deviation of the detrended data ranges
from 3 to 19 % of 12-yr mean PM2.5. Relative interannual
variability is largest in the western US but there it could be
driven in part by forest fires (Park et al., 2007).

We follow the approach of Tai et al. (2012) to deter-
mine the dominant meteorological modes for interannual
PM2.5 variability on the 4◦ × 5◦ grid. Daily meteorologi-
cal variables for 1981–2010 (Table 1) were obtained from
the National Center for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) Reanal-
ysis 1 (http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.
reanalysis.html) (Kalnay et al., 1996; Kistler et al., 2001). We
regridded the original 2.5◦ × 2.5◦ data onto the 4◦ × 5◦ grid
and deseasonalized them by subtracting the 30-day moving
averages.
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Table 1. Variables used to define meteorological modes for PM2.5
variabilitya.

Variable Description

x1 Surface air temperature (K)b

x2 Surface air relative humidity (%)b

x3 Precipitation rate (mm d−1)

x4 Sea level pressure (hPa)
x5 Sea level pressure tendency dSLP/dt (hPa d−1)

x6 Surface wind speed (m s−1)b,c

x7 East-west wind direction indicator cosθ (dimensionless)d

x8 North-south wind direction indicator sinθ (dimensionless)d

a From the National Center for Environmental Prediction/National Center for
Atmospheric Research (NCEP/NCAR) Reanalysis 1 for 1981–2010. All data are
24-h averages and are deseasonalized as described in the text.
b “Surface” data are from 0.995 sigma level.
c Calculated from the horizontal wind vectors (u, v).
d θ is the angle of the horizontal wind vector counterclockwise from the east.
Positive values ofx7 andx8 indicate westerly and southerly winds, respectively.

Fig. 1. Observed 1999–2010 time series of annual mean PM2.5
and synoptic period T of the dominant meteorological mode (cold
frontal passage) for the 4◦

× 5◦ grid square centered over Chicago
at 42◦ N, 87.5◦ W (asterisk in Fig. 2). Linear regression lines are
shown as dashed. The detrended variables have a correlation of
r = 0.62.

Following Tai et al. (2012), we decomposed the daily
time series of the meteorological variables (Table 1) for each
4◦

× 5◦ grid cell to produce time series of eight principal
components (U1, ...,U8):

Uj (t) =

8∑
k=1

αkj

xk(t) − x̄k

sk
(1)

wherexk is the deseasonalized meteorological variable,x̄k

andsk are the temporal mean and standard deviation ofxk,
αkj describes the elements of the orthogonal transformation
matrix defining the meteorological modes (Tai et al., 2012),
andt is time. EachUj (t) represents the principal component
time series for a distinct meteorological mode. We then ap-
plied Fourier transform toUj (t) with a second-order autore-
gressive (AR2) filter to obtain a smoothed frequency spec-
trum for each year (Wilks, 2011), and extracted the median
AR2 spectral frequency (f ) to calculate the corresponding
period of the meteorological mode (T= 1/f ). See Tai et
al. (2012) for further description and example application, in-

Fig. 2. Interannual correlation of annual mean PM2.5 with the pe-
riod T of the dominant meteorological mode for 1999–2010 ob-
servations: correlation coefficients (top) and reduced-major-axis re-
gression slopes dPM2.5/dT (bottom). Only values significant with
90 % confidence (p-value< 0.1) are shown. The asterisk marks the
Chicago grid cell for which the time series of PM2.5 and T are
shown in Fig. 1.

cluding justification for extracting median frequency instead
of mean.

From there we applied reduced major axis regression to
the 1999–2010 annual time series of detrended PM2.5 and
T in each 4◦ × 5◦ grid cell to determine dPM2.5/dT. The
dominant meteorological mode for each grid cell was iden-
tified as that whose period is most strongly correlated with
annual mean PM2.5 and explains more than 25 % of inter-
annual PM2.5 variability (p-value< 0.095). Figure 1 shows
as an example the time series of the period of the domi-
nant meteorological mode in the Chicago grid cell (frontal
passage). The detrended variables correlate withr = 0.62
and dPM2.5/dT= 2.9± 1.4 µg m−3 d−1 (95 % confidence in-
terval), reflecting the importance of the frequency of frontal
ventilation in controlling interannual PM2.5 variability in the
Midwest.

Figure 2 shows the interannual correlations between PM2.5
and T, and the corresponding slopes dPM2.5/dT, for the dom-
inant meteorological modes across the US. The mean val-
ues of T range from 5 to 9 days (Fig. 3), a typical synop-
tic time scale for frontal passages. There are two outlying
grid cells in the interior Northwest where T exceeds 13 days
and the physical meaning is not clear. The slopes dPM2.5/dT
are usually positive in the eastern US, reflecting the venti-
lation associated with frontal passage. Negative dPM2.5/dT
values in two Northeast grid cells may reflect transport of
pollution in southwesterly flow behind warm fronts. Positive
dPM2.5/dT in the Northwest can be understood to reflect pe-
riodic ventilation by maritime inflow and scavenging by the

www.atmos-chem-phys.net/12/11329/2012/ Atmos. Chem. Phys., 12, 11329–11337, 2012



11332 A. P. K. Tai et al.: Impact of climate change on PM2.5 air quality

Fig. 3. Mean synoptic periods T of the dominant meteorological
modes for interannual PM2.5 variability in NCEP/NCAR Reanal-
ysis 1 observations for 1981–2000. Also shown is the latitudinal
profile of maximum Eady growth rateσE as calculated by Eq. (2)
for 0–180◦ W and 850–500 hPa.

accompanying precipitation (Tai et al., 2012). In other parts
of the western US with weak frontal activity, the physical in-
terpretation of dPM2.5/dT is less clear, and the PM2.5 data
may not be representative of the 4◦

× 5◦ scale because of
sparsity of observations, urban bias, and complex topogra-
phy (Malm et al., 2004; Tai et al., 2010). Nevertheless, we
often find significant PM2.5-T correlations in these regions.

3 GCM simulations of meteorological modes relevant to
PM2.5

We first examined the ability of the IPCC AR4 GCMs to
reproduce the present-day synoptic periods of the dominant
meteorological modes for PM2.5 interannual variability. We
used the 15 IPCC AR4 GCMs from the CMIP3 multi-model
dataset (https://esg.llnl.gov:8443/index.jsp) that had archived
all the daily variables from Table 1 needed to project the
GCM data onto the meteorological modes defined by the
NCEP/NCAR observations. The GCM data have original
horizontal resolution ranging from 1◦

× 1◦ to 4◦
× 5◦ and

were all regridded here to 4◦
× 5◦, recognizing that such re-

gridding might have some effect on the GCM meteorologi-
cal modes and their variability. We analyzed the 20th century
simulations (20C3M) for 1981–2000, generated the principal
component time seriesUj (t) for the meteorological modes
defined by the NCEP/NCAR observations, and obtained the
median periods of these modes on the 4◦

× 5◦ grid to com-
pare to observations.

Figure 4 compares the GCM median periods T of the dom-
inant meteorological modes with the NCEP/NCAR observa-
tions of Fig. 3. The models show strong skill in reproduc-
ing the spatial variability of T, especially in the eastern US.
We see from Fig. 3 that much of this variability is driven
by a meridional gradient in synoptic periods, with shorter
periods at higher latitudes. This gradient appears in turn to
reflect the baroclinicity of the atmosphere. Mid-latitude syn-
optic weather is mostly driven by baroclinic instability that
arises from strong meridional temperature gradients (Holton,

2004) and can be measured by the maximum Eady growth
rate (σE) (Lindzen and Farrell, 1980):

σE = 0.31
g

NT

∣∣∣∣∂T

∂y

∣∣∣∣ (2)

whereg is the gravitational acceleration,N is the Brunt-
Väis̈alä frequency,T is the zonal mean temperature, andy

is the meridional distance. As shown in Fig. 3,σE calcu-
lated from the NCEP/NCAR data at 850–500 hPa increases
sharply between the tropics and 40◦ N, consistent with the
decreasing trend of T. All models can reproduce this ob-
served latitudinal trend in baroclinicity very well, withR2

values ranging between 0.72–0.95 across the 15 GCMs (see
the Supplement). We further found that for a given 4◦

× 5◦

grid cell, the inter-model variability across the 15 GCMs in
the period T of the dominant meteorological mode is corre-
lated with modeled baroclinicity as measured byσE. This is
illustrated in Fig. 5 for the Chicago grid cell (see the Supple-
ment for the correlation for other grid cells). Thus the ability
of the GCMs to reproduce T and its variability reflects their
ability to reproduce atmospheric baroclinicity.

4 Effect of climate change on PM2.5

The general skill of the IPCC AR4 GCMs to reproduce
present-day synoptic periods relevant to PM2.5 variability
lends some confidence in their ability to project future
changes in these periods. Following the general IPCC strat-
egy, we can expect the ensemble of 15 GCMs to provide a
better projection than any single GCM. However, as Fig. 4
shows, some models perform better than others, and we
should give less weight to poorly performing models. We
use here the approach by Tebaldi et al. (2004, 2005), which
combines Bayesian analysis with the reliability ensemble av-
erage (REA) method (Giorgi and Mearns, 2002) to discount
models with large biases (with respect to observations) and
outliers (with respect to future projections). This produces
weighted averages and confidence intervals for future pro-
jections of synoptic periods.

We used the CMIP3 archive of GCM data for 2046–2065
following the SRES A1B greenhouse warming scenario,
which assumes CO2 to reach 522 ppm by 2050 (Nakicenovic
and Swart, 2000). Comparison to the GCM data for 1981–
2000 (Sect. 3) gives a measure of 2000–2050 climate change.
The top panel of Fig. 6 shows the weighted-average changes
in periods (1T) of the dominant meteorological modes for
interannual PM2.5 variability, and the bottom panel shows
the corresponding changes in annual PM2.5 concentrations
(1PM2.5) obtained by1PM2.5 = (dPM2.5/dT)1T where
dPM2.5/dT is the observed local relationship (Fig. 2). If two
or more modes are similarly dominant in a given grid cell,
we calculate an average effect from these modes. Figure 7
shows the aggregated results for nine regions in the US in-
cluding the spread across GCMs.

Atmos. Chem. Phys., 12, 11329–11337, 2012 www.atmos-chem-phys.net/12/11329/2012/
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Fig. 4. Scatterplots of modeled vs. observed synoptic periods T of the dominant meteorological modes for interannual PM2.5 variability in
the US for 1981–2000. Observed values are from NCEP/NCAR Reanalysis 1, and modeled values are from 15 IPCC AR4 GCMs. GCM
names are given in each panel, and the symbol above each name is used to identify the model in Figs. 5 and 7. Each data point represents T
for one 4◦ × 5◦ grid cell, and the ensemble of points represents the continental US separated as eastern (east of 95◦ W), central (110–95◦ W),
and western (west of 110◦ W). The solid black line is the reduced major-axis regression slope, with coefficient of variation (R2) also given.
The 1: 1 line is shown as dashed.

Fig. 5.Relationship between atmospheric baroclinicity and synoptic
period T of the dominant meteorological mode for PM2.5 variabil-
ity in the Chicago grid cell as simulated by 15 IPCC AR4 GCMs
for 1981–2000. The observed value from the NCEP/NCAR Reanal-
ysis 1 is also indicated. Baroclinicity is measured as the maximum
Eady growth rateσE for 44–48◦ N and 850–500 hPa. Each symbol
represents an individual GCM (see Fig. 4). Correlation coefficient
and reduced-major-axis regression slope are also shown.

We see from Fig. 6 that the future climate features a gen-
eral increase in PM2.5-relevant synoptic periods in the east-
ern US, reflecting a more stagnant mid-latitude troposphere
with reduced ventilation by frontal passages. This is a robust
result which follows from reduced baroclinic instability and
poleward shift of storm tracks associated with greenhouse
warming (Geng and Sugi, 2003; Mickley et al., 2004; Yin,
2005; Lambert and Fyfe, 2006; Murazaki and Hess, 2006;
Pinto et al., 2007; Ulbrich et al., 2008). This in turn leads to
a likely (74–91 % chance) increase in annual mean PM2.5,
with a weighted mean increase of about 0.1 µg m−3 (North-
east, Midwest, and Southeast in Fig. 7). In the Northwest
(Pacific and Interior NW in Fig. 7), we find a likely (71–
83 % chance) decrease in PM2.5 with a weighted mean of
about−0.3 µg m−3 due to reduced synoptic periods, albeit
with greater inter-model variability than in the eastern US.
This reflects more frequent ventilation by maritime inflows
and scavenging by the associated precipitation, and is con-
sistent with the general IPCC finding of increasing westerly
flow over the western parts of mid-latitude continents in the
future climate (Christensen et al., 2007; Meehl et al., 2007).
Projections for other parts of the western US are more uncer-
tain. As pointed out earlier, the physical meaning of synoptic
periods in the West is less clear than in the East, and the skill
of GCMs to reproduce present-day synoptic periods is gen-
erally lower (Fig. 4).

www.atmos-chem-phys.net/12/11329/2012/ Atmos. Chem. Phys., 12, 11329–11337, 2012
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Fig. 6. Projected 2000–2050 changes in the periods of the dom-
inant meteorological modes for PM2.5 variability (top), and im-
plied changes in annual mean PM2.5 (bottom). The changes in
synoptic periods (1T) are weighted averages from the ensem-
ble of IPCC AR4 GCMs calculated using the Bayesian-REA ap-
proach of Tebaldi et al. (2004, 2005). The implied changes in
PM2.5 (1PM2.5) are calculated as1PM2.5 = (dPM2.5/dT)1T
where dPM2.5/dT is the local relationship from Fig. 2. When two
or more meteorological modes have similar correlation with annual
PM2.5, an average effect from these modes is calculated.

GCM-CTM studies in the literature have reported±0.1–
1 µg m−3 changes in annual mean PM2.5 resulting from
2000–2050 climate change, with no consistency across stud-
ies (Jacob and Winner, 2009). As pointed out in the Intro-
duction, such inconsistency is to be expected since individ-
ual studies used a single future-climate realization from a
single GCM. Our multi-model ensemble analysis allows us
to conclude with greater confidence that changes in synop-
tic circulation brought about by climate change will degrade
PM2.5 air quality in the eastern US but that the effect will be
small (∼ 0.1 µg m−3). Effects in the western US are poten-
tially larger but of uncertain sign even when the ensemble of
IPCC GCMs is considered.

Figure 8 summarizes the projected effects of 2000–2050
climate change on annual PM2.5 in the US, drawing from
this work for circulation changes (including modulation of
precipitation frequency) and from previous studies for other
climatic factors. Tai et al. (2012) pointed out that increasing
mean temperature, independently from changes in circula-
tion, could have a large effect on PM2.5 in the Southeast and
some parts of the western US through changes in emissions,
wildfires, and nitrate aerosol volatility. Temperature-driven
changes in the Southeast may reduce ammonium nitrate by
∼ 0.2 µg m−3 due to increased volatility (Tagaris et al., 2007;
Pye et al., 2009), but increase organic PM by∼ 0.4 µg m−3

due to increased biogenic emissions (Heald et al., 2008).

Fig. 7. 2000–2050 regional changes in annual mean PM2.5
(1PM2.5) due to changes in the periods of dominant meteorologi-
cal modes for nine US regions. Regional division follows that of Tai
et al. (2012). Symbols represent individual IPCC AR4 GCMs (see
Fig. 4). Weighted averages and confidence intervals are calculated
using the Bayesian-REA approach from Tebaldi et al. (2004, 2005).

Fig. 8. Summary of projected effects of 2000–2050 climate change
on annual PM2.5 in the US as driven by changes in circulation,
temperature (biogenic emissions and PM volatility), vegetation dy-
namics, and wildfires. The affected regions and PM2.5 components
are identified (OC≡ organic carbon; BC≡ black carbon). Error
bars represent either the approximate range or standard deviation of
the estimate. Estimates are from this work (circulation); Tagaris et
al. (2007), Heald et al. (2008) and Pye et al. (2009) (temperature);
Wu et al. (2012) (vegetation); Spracklen et al. (2009) and Yue et
al. (2012) (wildfires). All studies used the IPCC SRES A1B sce-
nario for 2000–2050 climate forcing.

Wu et al. (2012) projected a 0.1–0.2 µg m−3 increase in or-
ganic PM in the Midwest and western US due to climate-
driven changes in ecosystem type. Spracklen et al. (2009)
and Yue et al. (2012) projected a∼ 1 µg m−3 increase in sum-
mertime carbonaceous aerosols in the Northwest due to in-
creased wildfire activities. Tagaris et al. (2007) and Avise
et al. (2009) predicted an average decrease of summertime
PM2.5 by ∼ 10 % and∼ 1 µg m−3 by 2050, respectively,
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caused primarily by higher precipitation in their GCMs, but
trends in precipitation in most of the US are highly uncertain
(Christensen et al., 2007). All in all, none of these effects
(or their ensemble) is likely to affect annual mean PM2.5 by
more than 0.5 µg m−3 (∼ 3 % of the current annual standard
of 15 µg m−3). Therefore, for PM2.5 regulatory purpose on
an annual mean basis, 2000–2050 climate change will rep-
resent only a modest penalty or benefit for air quality man-
agers toward the achievement of PM2.5 air quality goals. Of
potentially greater concern would be the effect of increased
wildfires on daily PM2.5 in the western US (Spracklen et al.,
2009).

5 Conclusions

PM2.5 air quality depends on a number of regional meteoro-
logical variables that are difficult to simulate in general circu-
lation models (GCMs). This makes projections of the effect
of 21st-century climate change on PM2.5 problematic. Con-
sideration of a large ensemble of future-climate simulations
using a number of independent GCMs can help to reduce
the uncertainty. However, this is not computationally prac-
tical in the standard GCM-CTM studies where a chemical
transport model (CTM) is coupled to the GCM for explicit
simulation of air quality. We presented here an alternative
method by first using climatological observations to identify
the dominant meteorological modes driving PM2.5 variabil-
ity, and then analyzing CMIP3 archived data from 15 GCMs
to diagnose the effect of 2000–2050 climate change on the
periods of these modes.

We focused on projections of annual mean PM2.5 over a
4◦

× 5◦ grid covering the contiguous US. We showed that the
observed 1999–2010 interannual variability of PM2.5 across
the US is strongly correlated with the periods (T) of the
dominant synoptic-scale meteorological modes, particularly
in the eastern US where these modes correspond to frontal
passages. The observed local relationship dPM2.5/dT then
provides a means to infer changes in PM2.5 from GCM-
simulated changes in T. We find that all GCMs have signif-
icant skill in reproducing T and its spatial distribution over
the US, reflecting their ability to capture the baroclinicity of
the atmosphere. Inter-model differences in synoptic periods
can be largely explained by differences in baroclinicity.

We then examined the 2000–2050 trends in synoptic pe-
riods T across the continental US as simulated by the en-
semble of GCMs for the SRES A1B greenhouse warming
scenario. We find a general slowing down of synoptic cir-
culation in the eastern US, as measured by an increase in T.
We infer that changes in circulation driven by climate change
will likely increase annual mean PM2.5 in the eastern US by
∼ 0.1 µg m−3, reflecting a more stagnant mid-latitude tropo-
sphere and less frequent ventilation by frontal passages. We
also project a likely decrease by∼ 0.3 µg m−3 in the North-
west due to more frequent ventilation by maritime inflows.

Potentially larger regional effects of climate change on PM2.5
air quality may arise from changes in temperature, biogenic
emissions, wildfires, and vegetation. Overall, however, it is
unlikely that 2000–2050 climate change will modify annual
mean PM2.5 by more than 0.5 µg m−3. These climate change
effects, independent of changes in anthropogenic emissions,
represent a relatively minor penalty or benefit for PM2.5 reg-
ulatory purposes. Of more potential concern would be the
effect of increased wildfires on daily PM2.5.

An important caveat in our approach is the assumption
that the dPM2.5/dT will remain unchanged and that the same
meteorological modes will remain dominant for PM2.5 vari-
ability in the future climate. Very large changes in emissions
could affect the validity of these assumptions. This could be
explored in future work using GCM-CTM studies with per-
turbed emissions.

Supplementary material related to this article is
available online at:http://www.atmos-chem-phys.net/12/
11329/2012/acp-12-11329-2012-supplement.pdf.
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