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Abstract

Theoretical analyses of party positions commonly assume that parties act as teams to

maximize their legislative representation. This assumption runs counter to another line of

theorizing in which individual legislators maximize their own chances of winning reelection.

To resolve this tension, the paper presents a model of party platform choice that relaxes only

the assumption that parties are teams in the classical two-party spatial model. Platforms

are chosen by majority rule among all legislators within a party. Politicians seek to win their

own seats in the legislature, but they must run under a common party label. In both single-

member district and proportional representation systems, equilibrium platforms are shown to

diverge substantially, with one party located near the 25th percentile of the voter distribution

and the other near the 75th percentile, rather than converge to the median. The model

also yields predictions concerning short-term economic shocks, incumbency advantages, and

gerrymandering.
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1. Introduction

This paper presents a model of ideological voters choosing between two competing par-

ties. These parties are made up of election-oriented, self-interested incumbents running for

re-election in districts. Furthermore, the model assumes that voters, possibly due to infor-

mational constraints, can only observe one universal party position for each party. That

is, members of each party are forced to run under one common “platform.” However, the

candidates of the party do not have identical goals - each candidate represents a particular

district, and wishes to win her particular district. The model assumes that the party posi-

tion that voters use to decide which party to support is determined by current incumbents

in the party. This can either be interpreted literally, as incumbents voting based on majority

rule on a platform, or as an approximation of voters perceiving the aggregate behavior of

partisans during the last legislative session and thereby observing the implicit party posi-

tions. (For ease of argument the model uses the literal interpretation.) Finally, the model

assumes that incumbents are not certain about voter choices. This is represented by a va-

lence term in voter utilities that makes all voters more likely to support one party over the

other, independent of ideology. These and other supporting axioms are formalized in section

three.

The basic argument is as follows. In this setup, there exists a cut-point such that all

voters left of the cut-point support the left party, and all voters right of the cut-point

support the right party. We will show that each incumbent has induced ordinal preferences

that correspond to the preferences of the median voter of the district she represents. As long

as each party won at least some districts in the last election, the median incumbent in the

left (right) party will desire a platform left (right) of the preferences of the median voter in

the median district. Since one platform is left of center, and the other platform is right of

center, the platforms are diverged.

While the basic argument above for divergence is fairly simple, working through the model

in detail yields other, more subtle, testable predictions. These predictions are discussed in

sections four and five. The degree of divergence remains large even as the uncertainty about
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valence becomes small (unlike Calvert (1985) and similar models). In section four we will

show that if the distribution of districts is symmetrical, there is a sense in which platforms at

the first and third quartiles of district medians is stable. We will show the ordering of parties

(left and right) endures over time. We will show that parties that do well in the past tend

to moderate and therefore do better than they would have otherwise in the future. Perhaps

most surprisingly of all, we will show that if the distribution of districts is asymmetrical (as

might be caused by majority-minority districting), a party can be permanently electorally

disadvantaged, even with ideological voters and flexible party platforms.

In section six, we will contrast the districted case above with a party list, proportional

representation system. Surprisingly, most of the conclusions remain the same, with the

distribution of voters replacing the role of the distribution of district medians. Of course, if

the distribution of districts does not equal the distribution of voters, there may be significant

policy implications. For example, party positions may be further apart, and election results

may be less sensitive to economic shocks.

2. Previous Literature

The seminal analytical model of electoral competition among parties, due to Hotelling

(1929) and Downs (1957), begins with the assumption that parties are teams. All candidates

and legislators within a party unite around a common goal of winning control of government

and present a common ideological position. Voters choose among parties on the basis of their

relative distance from the national party platforms. These assumptions lead to a powerful

prediction – the Median Voter Theorem. When electoral competition in a two-party system

is waged along one dimension ideological spectrum, the parties will converge to the ideal

point of the median voter. Many variants on this model have been developed, allowing, for

example, open entry, multiple numbers of parties, varieties of electoral laws, and strategic

voting.1 This important line of inquiry, however, retains the assumption that political parties

1There is an extensive theoretical literature predicting platform divergence based factors such as entry
deterrence, politicians’ policy preferences, voter abstention, primary elections, valence issues, party activists,
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act as teams. Every politician within a party works for the common good in her or his party,

even at the expense of the individual’s own electoral fortunes.

The assumption that parties are teams runs counter to a second line of analytical inquiry

in Political Science. Politicians, David Mayhew famously argued, single-mindedly seek elec-

tion. They are self-interested and act in ways to protect and improve their own positions.

As a result, in a system like the U.S., legislators are very responsive to the preferences of

the voters in their own districts, and parties resemble somewhat disorganized groups more

than teams. (See also, Fiorina, 1980, and Krehbiel, 2000). Robertson (1976) criticizes the

application of the Downsian model to the United Kingdom because, even in a parliament

with strong parties, the parties are internally divided into factions and individual politi-

cians’ interests; they are not teams. Surprisingly little theoretical research has approached

the tension between the rational choice models of parties and the rational choice models of

candidates.

Ours is not, of course, the first model to extend the Downsian framework by examining

internal party conflicts and organization. There are three important strands of theorizing

about internal party decisions. The first line of theory assumes competition across many

different districts or constituencies. Snyder (1994) analyzes a model similar to ours, but his

model is deterministic. That model yields indifference or flat parts of politicians’ revealed

preferences and multiple equilibria. Under voter uncertainty, though, politicians running for

single member districts are never indifferent about what position their party takes. Even a

little uncertainty on the part of candidates induces politicians to maximize their probabilities

and produces strong preference orderings over the party platforms.

In fact, the relevant literature goes back much farther, at least to Robertson’s (1976)

informal discussion of the logic of party strategy. He argues that one of the crucial functions of

and special interest groups. Examples include Aranson and Ordeshook (1972), Wittman (1977, 1983),
Enelow and Hinich (1981), Aldrich (1983), Palfrey (1984), Bernhardt and Ingberman (1985), Calvert (1985),
Aldrich and McGinnis (1989), Cox (1990), Ingberman and Villani (1993), Londregan and Romer (1993),
Baron (1994), Snyder (1994), Snyder and Ting (2002), Poutvaara (2003), Schofield (2004), Serra (2005), and
Callander (2005). With the exceptions of Snyder (1994) and Snyder and Ting (2002), however, these models
either explicitly or implicitly deal with a single district or parties with collective preferences.
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political parties is to establish connections across the potentially unrelated races for different

legislative seats, that one means of doing this is to provide national party positions on salient

issues, and that natural intra-party divisions will arise in deciding what these positions

should be. Austen-Smith (1984, 1986) extends and refines Robertson’s insights by analyzing

game-theoretic models in which candidates announce individual platforms to appeal to their

districts, but must also commit to an aggregate party platform that will be implemented as

policy.2 Calvert and Isaac (1981) model the potential tensions between a party’s legislators

and the president.3 We will assume a simpler structure. Politicians decide using majority

rule within their legislative caucus what platform they wish to implement.

A second strand of the literature assumes that politicians or party activists themselves

have policy preferences. Aldrich (1983), Aldrich and McInnis (1989), Poutvaara (2003),

Gomberg et al. (2004), and others treat parties as collections of “activists” or primary

voters with policy preferences, and endogenize both party membership and party positions.

Most recently, Roemer (1998, 2002) models internal party decision-making using a solution

concept he calls “Party Unity Nash Equilibria.” He assumes that parties are composed of

three types of actors – militants who care about “publicity,” reformists who care about policy

outcomes, and opportunists who care only about winning office – and choose their platforms

by unanimity rule. In these models there is just one constituency, and internal party conflict

is driven by differences in party members’ policy preferences (or lack of such preferences).

We will maintain the assumption that politicians solely seek to win their own seats, and

show that they most want a party platform equal to their own districts’ median. This may

2Austen-Smith (1984) models two parties that compete for control of an n-member legislature by running
candidates in each of n single-member districts. Each candidate chooses an individual platform, and these
platforms are then aggregated via a “party constitution” into a single position. This is the position that
all members of the party will support once elected. Voters know the party constitutions, and vote accord-
ingly. Austen-Smith shows that the parties’ positions converge in equilibrium, but individual candidates’
platforms do not. He also shows that (pure-strategy) equilibria may fail to exist even if the policy space is
unidimensional.

3Calvert and Isaac (1981) consider a model in which candidates announce their own platforms, but
where candidate’s from the president’s party must contend with an exogenous party reputation given by
the president’s record. They analyze the promises made within each district and show that candidates will
overcompensate. This model does not endogenize the overall party label.
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appear as if politicians have their own preferences, but in fact they merely want to do what

gets them elected.

A third strand of the literature focuses on bargaining by parties after elections are held,

in multi-party situations where no party wins an outright majority of the seats. In these

situations the politicians and voters understand that any platforms announced by individual

parties prior to the election are unlikely to be enacted in their stated form – instead, these

platforms constitute initial positions from which the parties will then negotiate when forming

a government. So, while these models do not directly conflicts inside parties, they do model

conflicts inside governing coalitions. Early work in this vein includes Austen-Smith and

Banks (1988) and Baron and Diermeier (2001), and more recent work includes Baron et al.

(2011).

3. Basic Model

There are two parties, X and Y , that compete for control of government. The parties

choose policy platforms from a policy space Z = R.4 Lower case z denotes a generic policy

position, and x and y denote the platforms of the parties.

Every candidate for office belongs to one and only one party. All politicians in a party run

under that party’s label and can not distinguish themselves from that label. Each politician

seeks to win his or her own seat in the legislature. The utility of politician j in party X is

Qj
X = Pr(j Wins), and the utility of politician j in party Y is Qj

Y = Pr(j Wins).5

Voters choose between the parties on the basis of two factors. First, voters compare

parties’ policy platforms. We will make the standard assumption that voters have single-

peaked policy preferences, but allow a general functional form. Each voter has an ideal

policy platform, denoted as w. Write the spatial component of the utility function, using

the lower case u, as −u(z − w). Thus, −u(d) is maximized at 0, is increasing for d < 0 and

decreasing for d > 0. Assume u is strictly convex, so −u is strictly concave. Also assume u is

4We could also make Z a closed interval in R.
5It is possible generalize to more complex objectives, such as seeking to be in the majority. We leave this

to future work.
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continuous. Second, a valence term captures short-term stochastic shocks, such as economic

fluctuations or scandals. These shocks arise exogenously; neither party can influence their

occurrence or values. The valence shocks are realized after parties announce their policies.

Each party may have separate valence shocks, written vX and vY . Let v = vx− vy designate

the net valence advantage of party X. The random variable v may take on any value in R,

and has cumulative density G(v). For now we make no additional assumptions about G (e.g.

it can be discontinuous); we will add assumptions where necessary below.

The overall utility that a voter receives, denoted with an upper case U , is the sum of

their valence and spatial preferences. The utility a voter receives if party X holds office

is U(x,w, vx) = vx − u(x − w) and the utility a voter receives if party Y holds office is

U(y, w, vy) = vy − u(y − w). The differential in utility between party X and Y is denoted

∆U(w;x, y, v) = v − u(x − w) + u(y − w). A voter chooses party X if ∆U is positive and

chooses party Y if ∆U is negative.

The policy preference of the indifferent or pivotal voter is of particular interest. Denote

the “cut-point”, c, as the policy such that all voters with w < c vote for the party on the

left along the line Z and all voters with w > c vote for the party on the right. The cut-point

depends on the values of x, y, and v, and can therefore be written as a function c(x, y, v).

The cut-point can be thought of as the point along Z such that any voter with an ideal

point at that point is indifferent between the parties. Given policy positions, the cut-point

depends on the random variable v, and the expected value of the cut-point can be written

E[c].

Stronger assumptions about the utility function allow for explicit solutions for the cut-

point c. With quadratic utilities, which are commonly assumed in the literature,

c =
x+ y

2
+

v

2(y − x)
.

In examples below we will use this characterization of the cutpoint. Inspection of this result

reveals that the cut-point need not lie between the two parties. For example, suppose that

x = 0 and y > 0. If v > y2, then c > y.
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Three propositions that characterize electoral competition generally follow from the more

generic assumptions. These propositions characterize properties of the cut-point that are not

dependent on the electoral system. The first proposition guarantees that the cut-point is

well defined, or only one party holds seats.

Proposition 3.1. For fixed x, y, and v, if x < y then ∆U(w;x, y, v) is strictly decreasing

in w. If x > y then ∆U(w;x, y, v) is strictly increasing in w.

The second proposition establishes the monotonicity of the cut-point in terms of the

party positions for what one might consider normal politics. If the valence shock is not too

large, then if both parties shift in a certain direction, the cut-point between them will shift

in that direction. Formally, this is stated as follows.

Proposition 3.2. Let x < y, x′ < y′, x′ > x, and y′ > y, then there exists ε > 0 such that

if |v| < ε then c(x′, y′, v) > c(x, y, v) or all voters vote for party X.

Large valence shocks result from dramatic changes in the economy, foreign policy catas-

trophes, and large scandals, such as Watergate, that might affect an entire party. Normal

times correspond to situations when the valence shocks are not too large. Of course nor-

mal times are relative to the particular electoral alignment. If the parties are very close to

each other then a large valence shock might eliminate most of the disadvantaged party’s

legislative seats. This is why if v is large, increasing the platforms of both parties (but

decreasing the distance between them, or more generally if there is enough asymmetry in

u) can actually decrease the cut-point. For example, consider the case of quadratic util-

ity. Let x = 0, y = 100, x′ = 99, y′ = 101, v = −400. Then by the formula given above

c(x, y, v) = 50 − 2 = 48 while c′(x′, y′, v) = 100 − 100 = 0. This example shows how

diverging party platforms can help insulate parties from disastrous scandals.

Third, when neither party has an advantage a priori, the expected cut-point is simply the

average of the two party’s positions. We say the function G−1/2 is odd if G(v) = 1−G(−v)
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for all v.6 Note that if G is differentiable with density function g = G′, then G−1/2 is odd

if and only if g is symmetric about 0.

Proposition 3.3. If u is symmetric and G−1/2 is odd, then E[c] = x+y
2

.

Proposition 3.3 offers an important reference case. Most models of spatial voting assume

symmetric spatial preference functions, especially the quadratic, and assume that the mean

of the valence shock is zero. When preference functions are symmetric, the parties can

anticipate that the ideal point of the voter who is indifferent between the parties lies half

way between the two parties’ announced policy positions.

The obverse of the proposition is also of interest. A party gains electoral advantages

from asymmetries in the distribution of valence shocks or in the spatial utility function. For

example, if the mean of the valence shock is non-zero and both parties are converged to the

same point, then voters prefer the party with the advantage in the valence shock.

The above definitions and results refer to properties of the model without respect to time.

In what follows, we will consider the strategies of the parties across two election cycles. Each

cycle is, in turn, divided into two parts. In the first part of an election cycle, the platform

is determined. In the second part, the valence shock is realized and therefore the cut-point

is determined. The two time periods are indexed with the subscript t = [0, 1]. They differ

slightly. In the first period the parties’ policy positions x0 and y0 are exogenously determined.

Then, the valence shock v0 is realized, which determines the cut-point c0 = c(x0, y0, v0) and a

division of seats between parties X and Y. The division of seats equals the fraction of voters

or districts below the cut-point, c0. In the second time period, the elected officials within

each of the two parties choose their parties’ policy platforms x∗1 and y∗1 via majority rule.

The asterisks indicate that these platforms represent the endogenous, equilibrium outcome

of intra-party decision making. After the parties choose their platforms, the valence shock v1

is realized, which yields a cut-point c1 = c(x∗1, y
∗
1, v1) as an election result. Wherever possible

we will drop the subscript t to avoid clutter.

6Thus, φ(v) ≡ G(v)−1/2 = 1/2−G(−v) = −φ(−v) for all v, so φ satisfies the usual definition of an odd
function.
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4. Platform Choice in the Single-Member District System

In districted systems, candidates run and individuals vote within particular districts;

votes are not transferable across districts; the candidate who wins the most votes in a

district wins the seat; and the total number of seats won is the total number of districts

won.

Let the median voter of a district be designated by m, and let H(z) be the CDF of district

medians. Assume H is continuous. The cut-point for a given election and the median voter

of a given district jointly determine which party wins that district for that election. (Since

H is continuous we can ignore district medians exactly on the cut-point since they constitute

measure zero) For example, if x < y then all districts such that m < c choose the candidate

of party X and all districts such that m > c choose the candidate of party Y . Given voters’

assumed strategies, candidates’ expected utility functions are easily described. A candidate,

j, from party X has expected utility

Qj
X(x; y,m) = Prob(∆U(m;x, y, v) ≥ 0)

Similarly, the expected utility of a candidate, j, from party Y is

Qj
Y (y;x,m) = Prob(∆U(m;x, y, v) ≤ 0)

Let x̃(y,m) be the most-preferred platform of party X’s candidate in a district with

median at m, and let ỹ(x,m) be the most-preferred platform of party Y ’s candidate. As the

following proposition shows, x̃(y,m) = m and ỹ(x,m) = m.

Proposition 4.1. In equilibrium, if v has full support, the ordinal preferences on party

X’s platform of an incumbent in party X who represents a district with median voter m are

described by u(x − m); i.e., the preferences of a voter with median point at m for policy

x. Similarly, the ordinal preferences on party Y ’s platform by an incumbent in party Y

are described by u(y − m). In general, even if v does not have full support, platform m

maximizes the incumbent’s utility.
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Proposition 4.1 immediately implies that it is natural to describe incumbents as having

an “induced ideal point” equal to his or her district median. Uncertainty, which enters

through the term v, produces the well-defined preference function described in Proposition

3.1. Legislators will have strong orders over the platform choices because their probability

of winning declines smoothly as the cut-point moves away from the district’s median voter’s

ideal point. The amount of uncertainty affects the shape of the preference function of

each legislator, but even a little uncertainty will generate a well-defined preference function

in which legislators have strong preference orders over alternative policy platforms.7 A

legislator’s ordinal preferences, then, will be the same as the median voter of his or her

district, but the legislator and voter won’t have the same cardinal utility – that will depend

on the probability function, G.8

This result is distinct from two other lines of thinking. First, uncertainty guarantees a

well-ordered preference function and prevents multiple equilibria. In a deterministic model

(Snyder, 1994), the induced utility function of incumbents may have “flat spots” or “regions

of indifference.” The intuition is that, for a given value of y, if valence “jumps” at some

points then there are regions of x that induce the same probability of winning for a candidate

with given m. Full support of v guarantees that incumbent preferences are well-behaved.

The equilibrium derived below would still exist, but there may be others.

Second, Proposition 4.1 differs qualitatively from the assumption that politicians have

their own personal preferences over policy, as in Wittman (1977, 1983), Calvert (1985), and

Roemer (2002). In those models, the politicians in a party have common policy preferences

and want policy to move in that direction. Uncertainty may lead to divergence, but the

7It is worth noting that candidate cardinal utility is not the same as a representative voter’s cardinal
utility. Candidate utility is filtered through the distribution of potential valence shocks. Only the ordinal
preferences are preserved. While this distinction does not matter for purposes of this paper, it may be
important when thinking about extensions (such as platforms maximizing average incumbent utility) or
welfare analysis of the results. The loss of cardinal information also implies that thinking of our legislature
as a “citizen” legislature made of representative citizens with policy preferences is not quite correct.

8It is also worth noting that the induced ideal points of candidates are independent of the other party’s
platform. This does not mean, of course, that a candidate is indifferent about the other party’s platform. In
fact, all candidates in a party prefer the other party’s platform to be as extreme as possible, as that increases
the probability of winning.
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degree of divergence is a function of the variance of the distribution of the shocks.9

Proposition 4.1 ensures that incumbent preferences are well defined, single-peaked, with

ideal points equal to the district medians the incumbents represent. The assumption of

majority rule within parties yields an explicit characterization of the equilibrium platforms

of the parties and leads to the prediction that when parties are not unified teams they will

diverge.

We can now make use of the two period structure introduced at the end of section 3.

There are two time periods 0, 1 such that x0 and y0 are determined exogenously and x∗1

and y∗1 are determined via majority rule by the incumbents from period 0.10 Assume that

0 < H(c0) < 1 so neither party was completely wiped out in the period 0 election.

Assume the inverse of H(z), H−1(θ) exists for θ ∈ (0, 1). By the median voter theorem,

each party’s platform in period 1 (x∗1, or y∗1) will be the median of the induced ideal points

of candidates of that party who won in period 0.

Proposition 4.2. Suppose x0 < y0, 0 < H(c0) < 1, and v has full support. Then x∗1(c0) =

H−1(H(c0)/2) and y∗1(c0) = H−1((H(c0) + 1)/2) are the unique core outcomes of majority-

rule bargaining among incumbents.

A symmetric result holds if x0 > y0.

Proposition 4.2 has three immediate implications for the platforms chosen by the parties.

• x∗1 6= y∗1: Party platforms are diverged.

• If x∗0 < y∗0, then x∗1 < y∗1: Party order is preserved over time.

• x∗1 ≤ H−1(1/2) ≤ y∗1: Parties take positions on opposite sides of the median district.

9In this model the irrelevance of degree of uncertainty relies on the assumption that candidates do not
have direct policy preferences. Suppose one extended the model to give incumbents a direct preference for a
particular platform in addition to being reelected. The less uncertainty, the more a candidate could afford
to support a policy that deviates from the median voter of her district. Whether this would lead to more or
less divergence depends on whether incumbents tend to be more moderate or extreme than their districts.

10We will assume throughout that x0 6= y0. If x0 = y0, the party that receives the favorable shock will
win all of the seats. It is unclear, then, what a party is if it has no seats.
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With the introduction of a stability concept, one can derive a very simple characterization

of the party platforms: one party will locate at the 25th percentile of the distribution of voter

ideal points and the other at the 75th percentile.

Consider the case when cut-point in period 0 is H−1(1/2). That is, districts left of

the median voted for one party while the other districts voted for the other party; each

party won 50% of the vote. Then the party platforms for period 1 are x∗1 = H−1(1/4) and

y∗1 = H−1(3/4). The left party platform is the first quartile of districts and the right party

platform is the third quartile. If H−1/2 is an odd function, then there is a sense in which

this outcome is stable.

Define platforms x′, y′ as “zero-valence stable” if whenever v0 = v1 = 0, x0 = x′, and

y0 = y′ then x∗1 = x0 and y∗1 = y0.
11

Proposition 4.3. (“Quartile Voter Theorem”). Suppose u is symmetric and H−1/2

is odd. Then x = H−1(1/4) and y = H−1(3/4) are zero-valence stable.

This result provides an interesting analogy to the Median Voter Theorem. When parties

are not unified teams but their members must run under a common label, and when the

distribution of district median ideal points is symmetric, the cut-point between the parties

will divide the electorate equally at 1/2, but the party platforms will not converge. Rather,

one will locate at the ideal point of the 25th percentile voter and the other will locate at the

ideal point of the 75th percentile voter, which correspond to the medians within each of the

parties.

5. Comparative Statics and Empirical Implications

The model carries predictions about the equilibrium platforms or policies of the parties,

the shares of the votes, and the effects of changes in the exogenous features. We will focus

on two such features, the valence shock v and the distribution of district medians H.

11Whether platforms are in any sense dynamically stable over time for a particular stochastic process
defining v is an interesting question beyond the scope of this paper.
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5.1. Effects of Short-term forces

Party platform choices depend on the random valence term v, which reflects economic

times, scandals, and other factors that indicate the ability of the party to produce commonly

shared benefits to the voters. Realizations of v0 affect the cut-point between the parties at

time 0, c0. One can use changes in c0, then, to study the effects of short-run national forces

on the positions of the parties and their electoral fortunes.

An interesting and subtle implication of the model is that short-term forces and party

positioning interact in their effects on aggregate vote shares or seat shares. To see this clearly,

consider the case of quadratic utilities. As noted earlier, the cut-point will be of the form

c = x+y
2

+ v
2(y−x)

. The first term is just the mid-point between the parties, but the second

term is the valence shock weighted by the distance between the parties. Consideration of

this last term indicates that the more converged the parties are the more a valence shock

will affect changes in the cut-point and, thus, party platform strategies in later elections.

However, if parties take highly divergent positions, short-term forces will have muted effects

on the cut-point, and thus on fluctuations in the division of the vote.

To our knowledge, this point has not been appreciated in the voluminous empirical lit-

erature on economic voting. It suggests that the effect of the economy on aggregate vote

shares of parties is magnified by the ideological distance between the parties. Depending on

party platform choice the economy may matter a lot or little.

One can also analyze the formula for c to study how valence directly affects positioning.

Four comparative-static type results deserve emphasis.

Proposition 5.1. Restrict attention to values of c0 such that 0 < H(c0) < 1, 0 <

H−1(H(c0)/2) < 1, and 0 < H−1((H(c0) + 1)/2) < 1. Suppose x0 < y0, H is strictly

increasing for all values z such that 0 < H(z) < 1, and v has full support, then:

• x∗1 and y∗1 are strictly increasing in c0. (Past good performance causes a party to

moderate; past bad performance causes a party to move to the extreme.)
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• If c′0 > c0, then ∃ ε such that if | v1 |< ε then c∗1(c
′
0, v1) > c∗1(c0, v1). (For small valence

shocks, past good performance causes good current performance.)

• If u is symmetric and G!1/2 is odd, then E(c∗1) is increasing in c0. In particular,

E(c∗1) = (1/2)[H−1(H(c0)/2) + H−1((H(c0) + 1)/2)]. (Past good performance causes

good future performance, on average.)

• Suppose that H is continuously differentiable, v1 = 0 and u is symmetric, and de-

note the first derivative of H as h. The derivative of c1 with respect to c0 is c′1 =

(1/4)h(c0)[
1

h(H−1(H(c0)/2))
+ 1

h(H−1(H(c0)/2+1/2)
].

The first part of Proposition 5.1 indicates that party platform choices depend on past

party performance. If times are good for one party, say the party to the right, both parties

will move away from that party’s direction, to the left, and the party to the right can expect

to gain seats in the next election. Parties that do well tend to moderate, while parties that do

poorly tend to move to the extreme. As a party shrinks, the few remaining incumbents tend

to come from more extreme districts. In their pursuit of their own individual re-election,

these incumbents pull their party further to the extreme.

The second and third parts of Proposition 5.1 describe a force that can create longevity

for the majority party. As noted in Proposition 3.3 symmetry in u and G means that one

can expect an even split in the shares of seats won. But, as the second and third results

suggest, the actual division of seats depends on the values of the shocks. If a party enjoyed a

positive shock in period 0 and the party platforms were at the first and third quartile, then

the advantaged party will win a majority. If v1 is not sufficiently negative, then that party

will win a majority again in period 1.

While a party gains an advantage from past electoral success, the fourth part of Proposi-

tion 5.1 shows that under many circumstances the advantage is less than the original surge.

For example, when the distribution of ideal points is uniform, the derivative of c1 with re-

spect to c0 equals 1/2. Hence, the period 1 cut-point, if v1 = 0, corrects half of the gain from

15



the period 0 shock. While the formula above is not always less than 1 for all distributions,

it is for several commonly assumed distributions, such as the uniform, normal, and logistic.

This result is consistent with observed mid-term seat loss observed in the U.S., France,

and other nations. Suppose during a typical election v ≈ 0. However, if a party wins the

presidency in a given year, that is evidence that the valence shock was in favor of that party

for that year. One should therefore expect a coattail effect of more members of that party

winning legislative seats that year. However, in the upcoming election the valence shock will

tend back toward its typical value of zero, and some of the legislative gains will be lost. This

will be observed as a mid-term seat loss - although, according to the model, the loss will

typically be less than the coattail effect.

While this paper does not model long-term strategic consequences of repeated play, the

above process suggests that a party could be wiped out by repeated negative shocks. There

are several possible reactions to this prediction. First, in many specific cases these shocks

would have to be very large. For example, if H is uniform, a party could repeatedly sustain

negative valence shocks equal to one quarter of the seats indefinitely without being wiped

out. Second, as a party grows smaller, the assumption that platforms are determined by in-

cumbents and only incumbents becomes more strained. This assumption was made to clarify

and simplify the argument of the paper, but could of course be relaxed. An obvious extension

to the model is to give some weight to challengers in the party, and have that weight increase

as the number of challengers relative to incumbents increases. This will cause a badly beaten

party to eventually begin to moderate, and thus bounce back. Finally, one could keep the

model as is and embrace the prediction. Two-party democracies are not necessarily perfectly

stable for all time. Just as in the long-run we are all dead, perhaps two-party systems, with

sufficiently pernicious H and G distributions, are doomed to eventually experience the slow

collapse of one of the paries. In particular, a sufficiently perverse gerrymander could lead to

the complete and nearly inevitable destruction of one of the parties.

These results should be contrasted with the Downsian model. In that framework, because

the platforms are the same, shocks cause one party to win all seats, and shocks will change
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all seats or none.

The dependence of current party performance on past party performance in the model

has wide-reaching implications for many empirical studies of elections. At the very least, one

should expect autocorrelation over time of party electoral performance. Studies of elections

over multiple years (such as measures of swing-ratios) that ignore such auto-correlation

may understate standard errors. Studies that use lagged election results as a proxy for

omitted independent variables should observe a positive correlation between current and

past elections. However, such a correlation does not imply that the lagged election results

are actually correlated with the omitted variable.

The cross time-dependence of cut-points predicted by the model suggests at least two di-

rect empirical tests. At the very least one should look for and measure cut-points, and check

to see if they follow an auto-regressive process. If one is willing to take the model very seri-

ously, one could also test the specific formula E(c∗1) = (1/2)[(H−1(H(c0)/2) +H−1((H(c0) +

1)/2)].

Of course to perform the regressions suggested above one would need estimates of c and

H. Here is one possible approach. Label the parties as X and Y and assume x < y. Let m̂i

be the estimated ideology of district i.12 A natural estimator for H would be the empirical

distribution of districts Ĥ(z); the fraction of districts with ideology less than z. To estimate

c pick a non-decreasing loss function L(z). Then, ĉ = argminz

∑
i(L(|z − m̂i|)δi(z) Where

δi(z) = 1 if m̂i < z and district i voted for party Y or m̂i > z and district i voted for party

X. Otherwise δi(z) = 0. In other words, district i contributes loss if it votes for the “wrong”

party. In this paper’s stylized model, districts never vote for the wrong party, and so such a

correction would be unnecessary.

5.2. Implications for Theories of Gerrymandering and Electoral System Bias

One of the functions of gerrymandering is to alter legislative district lines so as to benefit

12Alternatively, one could use a “corrected” estimate for m that accounts for district specific factors other
than ideology, such as incumbency.
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one party over another. Most of the extensive literature on gerrymandering focuses on a

particular definition of this concept – electoral system bias. A system is unbiased if, in a

hypothetical election in which the parties split the vote evenly, the parties win equal shares

of the seats. Deviations in seat shares from 50-50, when the votes are split 50-50, are taken as

the degree of bias. This is a characteristic of the function H. Empirical research implements

this definition by regressing seat shares on vote shares and then examining the predicted

seat shares of a party when its vote share equals .5. This idea is used to compare electoral

systems broadly.

The model suggests an alternative way to think about the overall degree of electoral bias

produced by gerrymandering. As noted above, most analysts think of partisan gerryman-

dering only in terms of the direct mapping from votes to seats, or more precisely what is the

value of H(c) when the parties divide the electorate evenly.

Spatial models that predict convergence are uninformative about this question. In

Downs’s model, where parties are teams, gerrymandering has no affect on electoral out-

comes.13 The parties converge to the national median and elections in all districts end in

ties, regardless of H. The same is true in models where there are no parties and candidates

are free to choose whatever position they want within their districts.14

In this model, gerrymandering can have two affects. First, it alters the seat shares

received by each party directly by changing the shape of H. Second, altering the shape of H

can indirectly affect the share of seats won by a party because it can lead parties to adopt

new platforms. The full effect of the gerrymander, then, would be the change in seats of the

party that resulted from the change in H and the change in platforms.

The first effect is the effect most political scientists look for. Does the shape of H created

by a districting plan imply a disadvantage for one of the parties, holding the parties fixed at

13Non spatial models of voter behavior, such as voters with fixed partisan loyalty, can predict electoral
outcome changes from gerrymanders. For an example see Shotts (2001).

14Note in a Downsian model, Gerrymanders can still effect policy outcomes by moving the median legis-
lator. Shotts (2002) provides a formal model describing gerrymandering given purely ideological legislators.
Epstein and O’Halloran (1999) provide an empirical case of the median legislator being moved to accom-
modate racial minority-majority districts. In their example the median legislator becomes, perversely, less
friendly to minority rights.
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their positions.

The second effect, however, has been missed in the voluminous formal literature on

districting and gerrymandering. A gerrymander can force the opposing party to adopt a

platform that makes it a permanent minority. Consider the possible effect of racial districting.

Racial gerrymandering may change the makeup of Democratic incumbents by creating a

disproportionate number of extremely left-wing districts in that party. That, in turn, might

change the platform of the Democratic party as well, most likely shifting it to the left. Thus,

the party balance can depend on the shape of how districts are distributed, in addition to

the median (or average) district.

To illustrate this more precisely, consider the following examples.

Example 5.1. Let voter utility be symmetric and let H(z) = z where z ∈ [0, 1].

The uniform distribution implies that the zero-valence stable cut-point is 1/2, the parties

will locate at 1/4 and 3/4, and the parties will each win half of the seats.

Example 5.2. Let voter utility be quadratic, and let H(z) = z2 where z ∈ [0, 1].

As shown in the appendix, the cut-point corresponding to the unique zero-variance stable

platforms (given x < y) is approximately .653. The left party locates at .462; the right party

is at .845; and the right party wins approximately 57% of the seats (i.e., H(c) ≈ 0.427).15

Assume, for the sake of simplicity, that the underlying distribution of voters’ ideal points

is the same in both of these circumstances but that a clever political cartographer managed

to reshape district lines so that the initial uniform distribution of district medians became

quadratic. Doing so has several effects.

15Example 5.2 is by no means unique. Another good example is a piecewise uniform district density with
support between 0 and .75, median at 0.5, and density of 1 in [0, 0.5) and 2 in (0.5, 0.75]. In other words,
example 5.1 with the right most districts “compressed.” Analogous examples can be constructed where the
left most districts have been “expanded.” In this example, it is easy to show that the unique zero valence
stable platforms for quadratic utility are 0.2 and 0.6, the corresponding cut-point is 0.4, and H(0.4) = 0.4.
That is, the left party with its long tail of districts becomes relatively more extreme, the right party relatively
more moderate, and the left party receives only 40% of the vote.
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First, it changes the quantiles of the distribution of district medians. In example 4.1.,

the median district is at .707, instead of .5, the 25th percentile district is at .5, and the 75th

percentile is at .866.

Second, relative to these quantiles, the left party is more extreme and the right party is

more moderate. The left party is .207 units below the median district, while the right party

is .159 units above the median.

Third, the right party gains an electoral advantage. The cut-point between the two

parties lies to the left of the median. The left party becomes something of a permanent

minority, as its zero-order stable seat share fell from 50 percent to 43 percent. This, then, is

the effect of redistricting on the electoral system.

This analysis also highlights some difficulties with the traditional seats-votes measure

of bias. Interpreting the relationship between seats-votes requires mapping the distribution

of voters as well as districts. There is the further problem with interpreting the hypothet-

ical case when the vote is evenly divided. Suppose the parties have taken diverging and

asymmetric positions around the median. Then, only a large and asymmetric shock would

produce the 50-50 division of the vote, but such as shock would necessarily lead the parties

to alter their policy platforms (in equilibrium). Hence, the hypothetical 50-50 division of

the electorate would be out of sample in two respects: not observed in the data, and very

unlikely to be observed as it is not in equilibrium.

An example demonstrates a situation where this is clearly the case. Assume that voters’

ideal points are uniform, as in Example 4.0, and unchanged by redistricting. Call the distri-

bution of voters’ preferences F (z). However, redistricting alters the distribution of district

medians from uniform on Z to quadratic, H(z) = z2. In the pre-redistricting state the par-

ties locate at the quartiles and each party wins half of the vote and half of the seats. Under

the gerrymander, as already shown, the cut-point between the parties is .653, and the left

party will receive 43 percent of the seats. This would be an extreme gerrymander: party X

wins 65 percent of the vote and 43 percent of the seats.

Now consider the traditional definition of party bias. Holding fixed the parties’ positions
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under example 4.1, what is the division of the seats occurs if the division of the votes equals

.5? In the terms of the model, there must be a valence shock that makes the vote division

equal, holding the parties at platforms x = .43 and y = .84. This would require a large

negative valence shock. Again assuming uniform voter ideal points, a cut-point of .5 would

produce vote shares of F (.5) = .5, and party X’s seat share would fall to just .25. This

would mean an enormous “bias” of .25. The zero-order stable definition leads to a much

smaller bias of .07.

One could argue that the measure offered above – the expected or zero-order seat loss

associated with the change in H – is preferable to the traditional definition of bias. The

enormous bias predicted by the traditional measure is not usually in empirical analyses an

in-sample value. But, as our discussion highlights, there is a conceptual problem as well:

traditional bias does not account for the fact that the parties have changed their positions

to accommodate the new districting map.

As discussed above, the model also provides a specific formula for the effects of gerry-

mandering: E(c∗1) = (1/2)[H−1(H(c0)/2) + H−1((H(c0) + 1)/2)]. In this case H is what

is being varied. One could either use the formula as a way to predict the consequences of

a proposed future gerrymander, or test the model by testing the formula against historical

gerrymanders. Note that in any given election with a given cut-point in the prior election,

only certain parts of H impact the current cut-point. For example, if a gerrymander only

tinkered with districts in the extreme left tail while leaving the rest of the distribution the

same, the model would only predict an impact when the previous election went strongly

against the left party. A gerrymander that has a small impact one year might have a major

impact the next. Or, districting plans that only operate in the tail of the distribution of

one party’s districts and change the party median little, may have no substantial effect on

electoral competition.

The gerrymander suggested by these examples is severe in another sense. It substantially

altered the policy outcomes relative to the preference of the median voter. Assuming, for

the sake of argument, that the median is at z = .5. In example 5.1, policy will be either
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z = .25 or .75, depending on which party wins. In example 5.2, the right party will win and

policy will be at z = .845. This is very extreme relative to the median voter’s preferences,

and all voters but those to the right of the z = .8(= (.845 + .75)/2) will be worse off.

This contrast raises a deeper welfare issue. In assessing gerrymandering, one should first

ascertain whose benefit is at stake. If one cares first and foremost about elites – about elected

officials and parties – then the definition of bias as seat loss may make sense. However, if

the ultimate goal is representational bias and we care about voter utility, then the relevant

comparison is not between seats and votes or even seat loss but how far party platforms

deviate from the median.16

6. Extension: Platform Choice in the Party List System

In the list system, the parties offer a list of candidates running under their label, and the

entire national electorate votes for one of the two parties. Parties win shares of seats equal

to their shares of the vote. The number of seats won by the party equals the number of seats

times the share of seats it deserves. An individual candidate within a party wins a seat if

that candidate’s rank on the list is higher than total number of seats the party won in the

election.

Party list systems are often viewed as having a very different sort of politics than districted

systems because the candidates face very different electorates and are chosen through a

very different sort of mechanics. Surprisingly, an analogous logic and results characterize

politicians’ induced preferences and party positioning in party list and districted systems.

Slightly different notation is required to describe the electoral competition in list systems.

Parties win seats in proportion to their votes in the national electorate, rather than the

fraction of districts won. As before, the cut-point c defines the ideal point along Z of the

voter indifferent between the two parties, X and Y . The cumulative density of the voters’

16For an example of thinking about bias in terms of voter welfare, see Coate and Knight (2005). They
show that in some circumstances a biased seats/votes curve can actually increase voter welfare. However, in
their model party platforms are fixed. The model indicates that to fully assess the welfare implications of
bias, one must also account for how the shape of districts impacts party platforms.
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ideal points evaluated at the cut point c determines the fraction of seats won by the left

party X, and the right party, Y , wins the remaining seats. Denote the cumulative density

of voters ideal points as F (z), and assume F (z) is continuous and has inverse for τ ∈ (0, 1)

F−1(τ).17 The left party wins a share s of votes (and of seats) equal to s ≡ F (c) and the

right party wins 1− F (c) share of votes.

In the party list case, F (z) plays the same role as H(z) in the districted case. Nevertheless

it is important to remember the distinction. F (z) is a description of voter ideal points across

an entire nation; H(z) is a description of median voter ideal points, district by district.

We will represent the positions on each party’s list as the interval [0, 1], where 0 denotes

the top of the list and 1 denotes the bottom. A candidate at the λth position on the list

wins a legislative seat if and only if the candidate’s party receives a vote (and seat) share

larger than the candidate’s position on the list, i.e., λ < s. The λth candidate on party X’s

list has the following utility function

QX = Prob(s ≥ λ)

The λth candidate on party Y ’s list has the following utility function

QY = Prob(1− s ≥ λ)

The above equations define candidates’ preferences over party platforms. As in the single-

member district model, candidates’ expected utilities can be written in terms of voters’ utility

functions. For x < y, λ ∈ (0, 1):

QX(x, y, λ) = Prob(∆U(x, y, v, F−1(λ)) ≥ 0)

and

QY (x, y, λ) = Prob(∆U(x, y, v, F−1(1− λ)) ≤ 0).

Symmetric equations hold for x > y.

17Unless the policy space Z is bounded, F−1(τ) may be undefined at τ = 0 and τ = 1. Since these
represent measure zero worth of candidates on the party list one can safely ignore these cases.
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Let x̃(y, λ) be the most-preferred platform of a candidate who is at position λ on party

X’s list, and let ỹ(x, λ′) be the most-preferred platform for a candidate at position λ′ on

party Y ’s list. As the following proposition shows, x̃(y, λ) and ỹ(x, λ′) are well-defined. We

require G to be strictly increasing for the results in this section (v has full support).

Proposition 6.1. For all λ ∈ (0, 1) and y, QX(x, y, λ) is either double-peaked or single-

peaked in x. Furthermore, if u is symmetric around 0, and F −1/2 is an odd function

around a given point z with y > z, then there is a unique global maximum attained at

x̃(y, λ) = max(F−1(s), y).

A symmetric result holds for the case y ≤ 0, and an analogous proposition holds for

QY (x, y, λ). The preferences of the person exactly at the top and bottom of the list are

somewhat pathological, but they constitute a set of measure zero and so are ignored.18

This result has an interesting implication for the understanding politicians’ preferences

under list systems. There is a seeming divide among political scientists studying districted

and list systems. Those studying districted systems, such as the United States, frequently

assert that politicians just want to win office, while those studying list systems often maintain

policy-oriented politicians. Proposition 5.1 suggests that the difference is more apparent than

real. Election oriented politicians’ positions on the list induce policy-oriented preference

functions.

Candidates near the top of their party’s list have the strongest preference for adopting

extreme policies. The intuition is straightforward, and reflects the trade-off between a party’s

expected vote-share and the variance of the party’s vote-share. Consider a candidate at the

25th percentile on the party X’s list (λ = 1/4). This candidate wins a seat as long as X

wins at least 25% of the vote. If X chooses a platform that diverges considerably from Y ’s

platform, then there will be a subset of voters with a strong policy-based preference for party

X. If x < y, for example, then voters with z < (x+y)/2 all prefer X to Y on policy grounds,

18Unless one requires the support of F to be bounded, the person on the top of the list wants infinite
divergence; the person at the bottom wants full convergence, and is indifferent among all other platform
choices.
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and this preference grows more intense the smaller is z. Voters with a strong policy-based

preference for party X are very likely to vote for X, since it will require a large, negative

valence shock to cause them to change their minds and vote for Y . Thus, even if party X is

unlikely to win a majority of the vote, it might be very likely to win 25 percent or more of

the vote. On the other hand, if X’s platform is close to Y ’s, then there is a higher degree of

uncertainty about X’s vote-share, since the valence shocks dominate voter choices. Although

X expected vote-share may be higher, the variance of it’s vote-share will also be higher, and

the probability that X wins at least 25% of the vote may fall. As shown in Proposition 5.1,

if y > 0 then the probability that X wins at least 25 percent of the vote is maximized when

x is equal to the 25th percentile of the voter ideal-point distribution.

By contrast, candidates low on their party’s list all want the same platform, a “me too”

platform equal to that of the other party. Such candidates actually welcome some degree

of electoral uncertainty, since their only chance of winning a seat in the legislature lies in a

favorable valence shock for their party.

Suppose that each party’s incumbent legislators are placed at the top of the party’s

list. Recall that each party’s platform is chosen by simple majority rule among the party’s

incumbents. Denote the current period as period 1, and let s0 be party X’s seat-share from

the election in period 0. Assume that s0 ∈ (0, 1), so neither party was completely wiped

out in period 0’s election. Although some incumbents do not have single-peaked preferences,

their preferences satisfy a weaker condition that guarantees the existence of a unique majority

winner. The equilibrium platforms are simply characterized, as follows.

Proposition 6.2. Suppose u is symmetric around 0, and F−1/2 is an odd function around

a given point z. Suppose further that F−1 and u are differentiable, s0 6= 0.5, and 0 < s0 < 1.

Then the equilibrium core platforms for the current election satisfy (i) x∗1 = F−1(s0/2) and

y∗1 = F−1(s0/2 + 1/2), or (ii) x∗1 = F−1(1− s0/2) and y∗1 = F−1((1− s0)/2).

According to Proposition 6.2 each party’s platform for the election at time 1 is equal to the

median of the ideal points of the voters who supported the party in the election at time 0.
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In case (i) x∗1 < 0 < y∗1, and in case (ii) y∗1 < 0 < x∗1. Note that the equilibrium platforms

are always on opposite sides of the overall median ideal point.19

Proposition 6.2 is nearly identical to Proposition 4.2 (as long as the cut-point is never

exactly at the median,) and so most the conclusions that derive from Proposition 4.2 (di-

vergence, past performance effects current platforms and performance, and performance

depends on the entire distribution of voters) apply, with one major exception: there is no

guarantee that party ordering will be the same. If one were to exogenously impose party

ordering then the standard predictions would apply. If one does not impose the restriction

exogenously, then there is nothing about the model that prevents party’s in part-list systems

from “swapping” left-right positions.

Although similar results on party-positioning hold for list and districted systems, the

model also helps clarify the differences between them.

First, induced preferences are well-defined and concave for all legislators in the districted

system, but oddities arise in the list system. Most notably, those legislators on the bottom of

the list want perfect convergence exactly, as that plus a favorable shock is their only hope of

winning a seat. The analogous legislators in districted systems are those in moderate districts

or districts leaning toward the other party. Those in moderate districts want moderate

platforms, while those in the “wrong districts” (left party politicians in districts right of the

median and vice versa) want their party to be more conservative than the median district.

Second, electoral competition in the list system depends only on the distribution of voters’

preferences, not the intermediary mapping of voters’ preferences into districts and then into

seats. Propositions 3.2 and 5.2 show that the platforms adopted by the parties depend

on the relevant electoral distribution functions – either of voters’ ideal points or of district

median ideal points. If a particular country were to switch from a list system to a districted

system or vice versa, party platforms may change significantly depending on the mapping of

voters into districts. If, for example, voter ideology were driven by income, the distribution

19If the cut-point is at the median, there exists a convergent equilibrium as well as two divergent equilibria.
The intuition is that the pivotal incumbent has a 50 percent chance of winning in both the convergent and
divergent equilibria.
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of ideology in the entire nation may have a thick right tail. A districted system, on the

other hand, might be, district median by district median, more balanced. As example 3.1

illustrates, a right-skewed distribution can result in a small right-party. It is possible that

this result may give some intuition for why socialist parties are relatively weak in districted

systems and strong in party list systems.

7. Concluding Remarks

The Median Voter Theorem has provided a focal point for the spatial theory of politics.

Two parties, acting as teams to control government, will converge to the ideal point of the

median voter in the electorate. But, parties are not teams - at least not in the strict sense that

Downs and others have expressed it. Rather parties are collections of politicians motivated

by their personal desire to hold office as well as grander ideological goals. Legislators benefit

from and enjoy personal benefits from holding their own seat in the legislature. Starting

from this assumption, we have arrived at a strikingly different conclusion.

When parties are not teams, parties will represent the median of their elected officials,

rather than the median of the electorate as a whole. This result applies equally to single

member district systems and party list systems, which suggests that party divergence is a

universal phenomenon driven by the personal interests of politicians. Politicians’ desire to

hold office will lead parties to diverge. The degree of divergence expected is approximately

the inter-quartile range within the electorate.

Electoral systems themselves determine whether parties are teams. The relevant question

is this. If all politicians seek to win office, are their induced preferences over policy identical

within each party? In neither districted nor list systems was this true. Hence, in neither

system should the team assumption be taken lightly. There are, however, some electoral

systems that would produce parties as teams. Consider, for example, a system in which

all legislators are elected at-large from the nation as a whole, voters have as many votes as

positions, and voters must vote for all candidates. The theory predicts parties as teams in

this circumstance because all candidates will have the same induced policy preferences.
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We hope our model provides a good starting point for the empirical and theoretical work

on parties that does not assume unified times. Empirically, the model generates several

predictions that agree with the basic facts of electoral competition. Most notably, elections

are not ties in all districts, and the parties are diverged. The simple spatial model in which

parties are teams or in which candidates compete district-by-district do not generate these

predictions, but instead predict that all elections end in ties, which is clearly false.

As a theoretical matter, the model has been simplified in several respects in order to

clarify the importance of the team assumption. Many analytical extensions are possible and

desirable. They produce a wider range of predictions, but are cases of the general results

here. First, we have assumed only two parties, following much of the literature. Multiple

parties or a system with entry is much more complicated, and requires assumptions about

coalition formation and voter sophistication. Second, one can expand the party beyond the

incumbent members of the legislature to incorporate Presidents, non-incumbent candidates,

multi-body legislatures, and activists. Some of these extensions, such as a President, will

create pressures for convergence, while others create centripetal forces. Third, politicians

might have objectives beyond winning their own seats, including their own policy preferences

and desire for more power within the legislature. Again, some of these extensions, such as

winning a majority, push the model in the direction of the team assumption, while others

create more dissention within the party. Fourth, a variety of technical complications are

likely of interest, including longer time horizons and multiple dimensions.

While we have focussed primarily on positive implications of the model, there are nor-

mative implications as well. For example, in the world of our model, most incumbents are

significantly better off than they would be if parties were forced to maximize seat shares, or

if parties did not have to run under a common banner. In those cases, in equilibrium, each

incumbent would only have a 0.5 chance of winning each election. In our framework, all but

the most marginal incumbents will have a greater chance of winning their own personal seat.

There is a welfare implication for voters as well. When parties are not teams, the parties

diverge, and one of the two parties’ policy platforms will win and become law. The winning
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platform will deviate considerably from the median, and thus a majority of the voters would

prefer a policy that is closer to the median. There is little voters can do to change this

situation. The majority of politicians within each party support the divergent positions that

the parties take: those positions maximize the politicians’ chances of winning office. Voters

cannot achieve the same degree of coordination. They are left with a policy that is less than

optimal for a large majority.

29



Appendix

Proof of Proposition 3.1. We will only show the case x < y here. Consider two values z

and z′, where, without loss of generality, z′ > z. Then either z′− x > z− x ≥ z′− y > z− y

or z′ − x > z′ − y > z′ − y > z − y. We need to show that

∆U(z;x, y, v) > ∆U(z′;x, y, v) ,

that is,

v − u(z − x) + u(z − y) > v − u(z′ − x) + u(z′ − y)

u(z′ − y) + u(z − x) < u(z − y) + u(z′ − x) .

Define α and α′ implicitly by

z′ − y = α(z − y) + (1− α)(z′ − x)

z − x = α′(z − y) + (1− α′)(z′ − x) .

Adding the two relations above and manipulating yields

(α + α′ − 1)(z − y) = (α + α′ − 1)(z′ − x) .

Since (z′ − x) > (z − y) this implies α + α′ = 1. By strict convexity

u(z′ − y) < αu(z − y) + (1− α)u(z′ − x)

u(z − x) < α′u(z − y) + (1− α)u(z′ − x) .

Adding the two relations above and using the result α + α′ = 1 yields

u(z′ − y) + u(z − x) < u(z − y) + u(z′ − x)

as desired.

To prove Proposition 3.2 we will first prove two lemmas.
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Lemma 3.1a. Let x < x′ < y. ∃ε > 0 such that if either c(x, y, v) > x′ or |v| < ε then

either c(x′, y, v) > c(x, y, v) or all voters vote for party X.

Proof of Lemma 3.1a. There are two cases. Case one is c(x, y, v) > x′. Then the voter

with ideal point c(x, y, v) strictly prefers x′ to x and therefore ∆U(c(x, y, v);x′, y, v) > 0.

By proposition 2.1 ∆U is strictly decreasing in ideal points, and therefore the solution z∗

to ∆U(z∗;x′, y, v) = 0 must be greater than c(x, y, v) or not exist. But if z∗ exists it is by

definition the cut-point c(x′, y, v). If it does not exist then ∆U(z;x′, y, v) > 0 for all z. That

is all voters prefer party X.

Case two is c(x, y, z) ≤ x′. If v = 0 a voter with ideal point x′ strictly prefers party X

to Y . That is ∆U(x′;x′, y, 0) > 0. By continuity of ∆U with respect to v, there exists ε > 0

such that ∀|v| < ε, U(x′;x′, y, v) > 0. Then for such v by a similar argument as case one,

c(x′, y, v) > x′ or all voters support party X. But in this case c(x′, y, z) > x′ ≥ c(x, y, z).

Lemma 3.1b. Let x < y < y′. If c(x, y, v) < y then either c(x, y′, v) > c(x, y, v) or all

voters vote for party X. Furthermore, ∃ε > 0 such that if |v| < ε then c(x, y, v) < y and

therefore either c(x′, y, v) > c(x, y, v) or all voters vote for party X.

Proof of Lemma 3.1b. First consider the case where c(x, y, v) < y. Then the voter with ideal

point c(x, y, v), given v, strictly prefers y to y′, is indifferent between x and y (by definition

of cut-point), and therefore strictly prefers x to y′. Therefore ∆U(c(x, y, v);x, y′, v) > 0.

By proposition 2.1 ∆U is strictly decreasing in ideal points, and therefore the solution z∗

to ∆U(z∗;x, y′, v) = 0 must be greater than c(x, y, v) or not exist. But if z∗ exists it is by

definition the cut-point c(x, y′, v). If it does not exist then ∆U(z;x, y′, v) > 0 for all z. That

is all voters prefer party X.

For the second part, if v = 0 and party X’s platform is at x and party Y ’s platform

is at y, then a voter with ideal point at y strictly prefers party Y to X and a voter with

ideal point x strictly prefers party X to Y . Therefore by proposition 2.1 c(x, y, 0) exists and

x < c(x, y, 0) < y. By continuity of ∆U(y;x, y, v) and ∆U(x;x, y, v) with respect to v, ∃ε
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such that ∀|v| < ε a voter with ideal point at x still strictly prefers x to c(x, y, v) and a voter

with ideal point at y still strictly prefers y to c(x, y, v). Therefore x < c(x, y, v) < y.

Note, Lemmas 3.1a and 23.1b imply that as long as the original cut-point lies between

the two platforms, and platform shifts do not cross the cut-point, then the cut-point is

monotonic in platforms. Roughly speaking, we need either small v combined with potentially

large platform changes, or small to medium sized v (such that the cut-point stays between

the parties) combined with small changes in platforms to ensure monotonicity.

Proof of Proposition 3.2. Case one is y′−y < x′−x. Let δ = y′−y. Since ∆U(z;x, y, v) =

∆U(z+δ;x+δ, y+δ, v), c(x+δ, y+δ, v) = c(x, y, v)+δ. Therefore c(x+δ, y′, v) > c(x, y, v).

For this case x′ > x+δ. Then apply Lemma 2.1a to show ∃ε such that ∀v such that if v > −ε

then c(x′, y′, v) > c(x+ δ, y′, v) or all voters vote for party X.

Case two is x′−x < y′−y. Let δ = x′−x. Since ∆U(x, y, v, z) = ∆U(x+δ, y+δ, v, z+δ),

c(x+ δ, y+ δ, v) = c(x, y, v)+ δ. Therefore c(x′, y+ δ, v) > c(x, y, v). For this case y′ > y+ δ.

Then apply Lemma 2.1b to show ∃ε such that ∀v such that if v < ε then c(x′, y′, v) >

c(x′, y + δ, v)

Case three is x′−x = y′−y. Let δ = x′−x. Since ∆U(x, y, v, z) = ∆U(x+δ, y+δ, v, z+δ),

c(x+ δ, y + δ, v) = c(x, y, v) + δ. Therefore for this case c(x′, y′, v) > c(x, y, v).

Proof of Proposition 3.3. Recall that a cut-point is defined as the solution to −u(z−x)+

u(z− y) + v = 0. Since u is symmetric, when v = 0 the solution is z = (x+ y)/2. For v 6= 0,

write the solution as c(x, y, v) = (x+y)/2+δ+. Then−u((x−y)/2+δ++u((y−x)/2+δ+)+v =

0. But by symmetry of u the following must hold

−u((y − x)/2− δ+) + u((x− y)/2− δ+) + v = 0

u((y − x)/2− δ+)− u((x− y)/2− δ+)− v = 0

But this implies that the cut-point for−v is c(x, y,−v) = (x+y)/2−δ+. Therefore c(x, y, v)+

c(x, y,−v) = x+ y = 2c(x, y, 0). If G−1/2 is odd, then the expected value of the cut-point
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is:

E(c(x, y)) =

∫ ∞

−∞
c(x, y, v)dG

=

∫ ∞

0

c(x, y,−v)dG(v) +

∫ ∞

0

c(x, y, v)dG(v)

= 2c(x, y, 0)

∫ ∞

0

c(x, y,−v)dG(v)

= 2c(x, y, 0)(1/2)

= c(x, y, 0) .

Proof of Proposition 4.1. The expected utility of a candidate from party X with district

median m is

QX(x, y,m) = Prob(∆U(m;x, y, v) ≥ 0)

= 1−G(u(x−m)− u(y−m))

Since in equilibrium y is treated as a constant, u(x−m) − u(y−m) represents the same

preferences as u(x−m). G is a CDF and therefore is monotonic. Any maximum of −u(x−m)

is a minimum of u(x−m), a minimum of G(u(x−m)) (by monotonicity), and a maximum

for 1 − G(u(x−m)). Since m is a maximum for −u(x−m), it is also a maximum for

QX(x, y,m). If v has full support, then G is strictly increasing. Now, u(x−m) represents the

opposite preferences to −u(x−m), G(u(x−m)) represents the same preferences as u(x−m) by

strict monotonicity, and 1−G(u(x−m)) represents the opposite preferences to G(u(x−m)).

Therefore, QX(x, y,m) represents the same preferences as −u(x−m). Similar arguments

apply for QY (y, x,m).

Proof of Proposition 4.2. Since 0 < H(c0) < 1, each party has positive vote share. Since

x0 < y0 every district with median less than c0 votes for party X in period 0. Since v

has full support, by Proposition 3.1 party X ideal points correspond to district medians in

equilibrium. Therefore, incumbent members of party X have ideal points given by the CDF

H(z)/H(c0) for z < H(c0). The median incumbent ideal point is defined by the equation
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H(z∗m)/H(c0) = 1/2. Solving yields z∗m = H−1(H(c0)/2). Consider any alternative platform

x′. If x′ > z∗m then there exists ε that defines a majority coalition strictly preferring z∗m to x′.

This coalition consists of all incumbents with districts from H−1(0) to H−1(H(c0)/2+ε) < x.

A similar coalition exists if x′ < z∗m. However, there does not exist a majority coalition that

prefers any x 6= z∗m. Therefore, z∗m is the unique core point. A similar argument applies to

show y∗1(c0) = H−1((H(c0) + 1)/2). Strict monotonicity of H and H−1 implies x∗1 < y∗1.

Proof of Proposition 4.3. The result is immediate from Proposition 4.2 and the definition

of zero-valence stable.

Proof of Proposition 5.1.

• From Proposition 4.2, x∗1(c0) = H−1(H(c0)/2) and y∗1(c0) = H−1((H(c0) + 1)/2). H is

strictly increasing and continuous. The inverse of a strictly increasing and continuous

function is a strictly increasing function, therefore H−1 is a strictly increasing function.

The composite function of two strictly increasing functions is also strictly increasing.

Therefore, x∗1 and y∗1 are strictly increasing in c0.

• From the above result, x∗1(c
′
0) > x∗1(c0) and y∗1(c′0) > y∗1(c0). From Proposition 4.2,

x∗1(c
′
0) < y∗1(c′0) and x∗1(c0) < y∗1(c0). c

∗
1(c
′
0, v1) = c∗(x∗1(c

′
0), y

∗
1(c′0), v1) and c∗1(c0, v1) =

c∗(x∗1(c0), y
∗
1(c0), v1) by definition. Apply Proposition 3.2 to get the result.

• Apply Proposition 3.3 to the formula from Proposition 4.2.

• Since v1 = 0 and u is symmetric, c1 is the midpoint of the two party platforms

c1 = (1/2)(x∗1(c0) + y∗1(c0)). From Proposition 4.2, x∗1(c0) = H−1(H(c0)/2) and

y∗1(c0) = H−1((H(c0)+1)/2), therefore c1 = (1/2)(H−1(H(c0)/2)+H−1((H(c0)+1)/2).

Differentiation yields the result.

Proof of claims in Example 5.2. Suppose z ∈ [0, 1] and H(z) = z2. Then the PDF is

h(z) = 2z, and the inverse is H−1(θ) =
√
θ. The average is z =

∫ 1

0
zh(z)dz = 2

3
. The median

is determined by the equation 1
2

= z2
m, so zm =

√
2

2
.
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By Proposition 4.2, the definition of zero-variance stable platforms, and the formula for

cut-point with quadratic utility,

c =
1

2
(

√
c2

2
) +

1

2
(

√
c2

2
+

1

2
)

After some algebra this simplifies to

c =

√
2

2
(

1√
4− 2

√
2

) <

√
2

2
= zm .

The formulas in the text follow immediately.

Proof of Proposition 6.1.

First, suppose x = y. Then sX = 1 if v > 0, sX = 0 if v < 0, and sX = 1/2 if v = 0.

Thus, QX(x, y, s) = Prob(v ≥ 0) = 1−G(0) for all s.

Next, consider x < y. Then

QX(x, y, s) = Prob(∆U(F−1(s);x, y, v) ≥ 0)

= Prob(v > u(x− F−1(s))− u(y − F−1(s)))

= 1−G(u(x− F−1(s))− u(y − F−1(s))) (A1)

Next, consider x > y. Then

QX(x, y, s) = Prob(∆U(F−1(1−s);x, y, v) ≥ 0)

= Prob(v > u(x− F−1(1−s))− u(y − F−1(1−s)))

= 1−G(u(x− F−1(1−s))− u(y − F−1(1−s))) (A2)

Note, QX(x, y, s) is always of the form 1−G(∆U). Since G is strictly monotonic, we can

focus on finding the extreme values for ∆U :

If x = y then ∆U = 0

If x < y then ∆U = u(x− F−1(s))− u(y − F−1(s))

And if x > y then ∆U = u(x− F−1(1−s))− u(y − F−1(1−s)

35



Each part of ∆U is continuous. Therefore, limx→y u(x−F−1(s))− u(y−F−1(s)) = 0 for

the x < y part of ∆U) and limx→y u(x − F−1(1−s)) − u(y − F−1(1−s)) = 0 for the x > y

part of ∆U . Since the limits are equal to the value at x = y, all of ∆U is continuous.

Furthermore, ∆U has one unique maximum in x for x ≤ y. The maximum is either at

x̃(s, y) = F−1(s) or at the “corner” x̃(s, y) = y. Similarly, ∆U has one unique maximum in

x for x ≥ y. The maximum is either at x̃(s, y) = F−1(1−s) or at the “corner” x̃(s, y) = y.

Without loss of generality, assume the point that around which F−1/2 is odd is z = 0.

Therefore, y ≥ 0 and 1−F (y) ≤ 1/2 ≤ F (y). Divide the interval [0, 1] into [0, 1−F (y)), [1−

F (y), F (y)], and (F (y), 1]. These intervals correspond to cases (i), (ii) and (iii), respectively.

The characterizations for cases (ii) and (iii) are easily derived from the results above. For

case (ii), where s ∈ [1−F (y), F (y)], QX(x, y, s) reaches an interior maximum at x = F−1(s)

on the interval (−∞, y), and it reaches a corner maximum at x = y on the interval [y,∞).

Thus, QX(x, y, s) is single-peaked, attaining its global maximum at with x̃(y, s) = F−1(s).

For case (iii), where s > F (y), QX(x, y, s) reaches a corner maximum at x = y on both

(−∞, y] and [y,∞). Thus, QX(x, y, s) is single-peaked and attains its global maximum at

with x̃(y, s) = y.

For case (i), where s < 1− F (y), QX(x, y, s) is double-peaked, reaching an interior local

maximum at x = F−1(s) < y and at x = F−1(1−s) > y. All that remains is to show that

QX(F−1(s), y, s) > QX(F−1(1−s), y, s); then x̃(y, s) = F−1(s) is the global optimum for all

s in case (i), and x = F−1(s) is only a local optimum. Substituting, we have

QX(F−1(s), y, s) = 1−G(−u(y − F−1(s)))

and

QX(F−1(1−s), y, s) = 1−G(−u(y − F−1(1−s))) .

These two equations imply that QX(F−1(s), y, s) > QX(F−1(1−s), y, s) if and only if −u(y−

F−1(s)) < −u(y − F−1(1−s)). Since F−1/2 is odd, 1− F (y) = F (−y). Also, s < 1− F (y)

for the case under consideration, so we have F−1(s) < −y < 0 < y < F−1(1−s). Again

using the fact that F −1/2 is odd, −y − F−1(s) = F−1(1−s) − y. Thus, y − F−1(s) =
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2y + F−1(1− s) − y > F−1(1− s) − y. Thus, since −u is symmetric and single-peaked,

−u(y − F−1(s)) < −u(y − F−1(1−s)). Thus, QX(F−1(s), y, s) > QX(F−1(1−s), y, s) as

desired.

Parts (i)′-(iii)′, for the case y ≤ 0, are proved in a similar fashion.

Proof of Proposition 6.2. From equations A1 and A2 of the proof of Proposition 6.1,

and the fact that ordinal utility functions are preserved from monotonic transformations,

the preferences of candidates in party X can be written as

−u(x− F−1(s)) + u(y − F−1(s))

if x < y and

−u(x− F−1(1−s)) + u(y − F−1(1−s))

if x > y. Assume y > F−1(1/2). Consider x∗1 ≡ F−1(s0/2). We will show there exists a

majority coalition preferring x∗1 to any other platform x′. There are four cases:

(i) if x′ ≤ x∗1, then all candidates in party X with s′ ≥ s0/2 prefer x∗1 to x′

(ii) if x0 < x′ ≤ y, then all candidates in party X with s′ ≤ s0/2 prefer x∗1 to x′

(iii) if y < x′ ≤ F−1(1− s0/2), then all candidates in party X with s′ ≤ s0/2 prefer x∗1 to x′

(iv) if x′ > y and x′ > F−1(1− s0/2), then all candidates in party X with s′ ≥ s0/2 prefer

x∗1 to x′.

Cases (i) and (ii) are immediate from single peakedness (since x′ ≤ y and x∗1 < y). For

cases (iii) and (iv) a candidate in party X at position s strictly prefers x∗1 to x′ if

−u(x∗1 − F−1(s)) + u(x′ − F−1(1−s))− u(y − F−1(1−s)) + u(y − F−1(s)) > 0 .

In the proof of Proposition 6.1 we showed −u(y−F−1(s)) < −u(y−F−1(1−s)). Therefore

a sufficient condition for the above relation to hold is

−u(x∗1 − F−1(s)) + u(x′ − F−1(1−s)) ≥ 0 .
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At s = s0/2 the above expression is satisfied. Taking derivative with respect to s yields

dF−1

ds
(s)u′(x∗1 − F−1(s)) +

dF−1

ds
(1−s)u′(x′ − F−1(1−s)) .

Note that dF−1/ds > 0 and u′(z) < 0 if z < 0 and u′(z) > 0 if z > 0.

For case (iii) for the proposed coalition s < s0/2, the derivative is negative. Since the

condition above is satisfied at s0/2, and the condition is decreasing in s, it must be satisfied

for all s < s0/2. Therefore everyone in the proposed coalition strictly supports x∗1 over x′.

For case (iv) the derivative is positive for s > s0/2 and therefore everyone in the coalition

supports x over y.

By a similar argument, one can show if y < F−1(1/2) then x∗1 = F−1(1− s0/2) beats all

other x′. The proof for y∗1 is also similar.
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