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The morphological properties of axons, such as their branching patterns
and oriented structures, are of great interest for biologists in the study
of the synaptic connectivity of neurons. In these studies, researchers use
triple immunofluorescent confocal microscopy to record morphological
changes of neuronal processes. Three-dimensional (3D) microscopy im-
age analysis is then required to extract morphological features of the
neuronal structures. In this article, we propose a highly automated 3D
centerline extraction tool to assist in this task. For this project, the most
difficult part is that some axons are overlapping such that the boundaries
distinguishing them are barely visible. Our approach combines a 3D dy-
namic programming (DP) technique and marker-controlled watershed al-
gorithm to solve this problem. The approach consists of tracking and up-
dating along the navigation directions of multiple axons simultaneously.
The experimental results show that the proposed method can rapidly and
accurately extract multiple axon centerlines and can handle complicated
axon structures such as cross-over sections and overlapping objects.
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1 Introduction

The morphological properties of axons, such as their branching patterns
and oriented structures, are of great interest to biologists who study the
synaptic connectivity of neurons. As an example, the orientation of mo-
tor axons is critical in understanding synapse elimination in a developing
muscle (Keller-Peck et al., 2001). At neuromuscular junctions of developing
mammals, the axonal branches of several motor neurons compete with each
other, which may result in withdrawal of all branches but one (Kasthuri &
Lichtman, 2003). The 3D image reconstruction technique has been widely
used to visualize the geometrical features and topological characteristics of
3D tubular biological objects to help in understanding how the morpho-
logical properties of axons change during the development of the neuronal
system.

Digital fluorescent microscopy technique offers tremendous value to lo-
calize, identify, and characterize cells and molecules in brain slides and
other tissues, as well as in live animals. Accordingly, microscopy imaging
and image analysis would be a powerful combination that allows scientists
and researchers to gather objective, quantitative, and reproducible informa-
tion, thereby obtaining stronger statistical evidence faster and with fewer
experiments. Today the bottleneck in realizing this work flow is the fully
automated analysis of large volumes of axon images. However, it still re-
mains difficult to design a fully automated image analysis algorithm due
to the limitations of computing techniques and the complexity of 3D neu-
ronal images. The Vidisector (Coleman, Garvey, Young, & Simon, 1977;
Garvey, Young, Simon, & Coleman, 1973) and the automatic neuron-tracing
system (Capowski, 1989) represent early research work on the 3D neu-
rite tracing problem. These methods have not been widely used due to
their poor tracing performance and frustrating use. Cohen, Roysam, and
Turner (1994) proposed a tracing algorithm for 3D confocal fluorescence
microscopy images using segmentation and skeleton extraction algorithm.
He et al. (2003) extended the work of Cohen et al. using an improved skele-
tonization algorithm. They combined an automatic method with semiau-
tomatic and manual tracing in an interactive way in case the dendritic
fragments were missed by the automatic process. Al-Kofahi et al. (2002)
and Lin et al. (2005) proposed methods that are superior in terms of speed
and accuracy to the work of He et al. and Cohen et al. for tracing neurite
structures by automatic seed point detection and adaptive tracing tem-
plates of variable sizes. Other 3D neuron structure analysis algorithms
were based on vectorization (Can, Shen, Turner, Tanenbaum, & Roysam,
1999; Andreas, Gerald, Bernd, & Werner, 1998; Shen, Roysam, Stewart,
Turner, & Tanenbaum, 2001; F. Xu, Lewis, Chad, & Wheal, 1998). These
methods modeled the dendritic structure as cylinders, and the tracing was
conducted along these cylinders. Recently, Cai et al. (2006) proposed a
method based on repulsive snake model to extract 3D axon structures. They
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extended the gradient vector flow (GVF) model using repulsive force among
multiple objects. In their method, users needed to define initial bound-
aries and centerline points from the first slice. Their method performed
poorly at locations where the axons changed shape irregularly or when
the boundaries of the axons were blurred, common cases in the test axon
images.

Many available software tools, such as NeuronJ (Meijering et al., 2004),
Reconstruct (Fiala, 2006), and Imaris (Bitplane, 2006), can extract the center-
lines of neuron segments in a semiautomatic manner. For instance, NeuronJ
can accurately extract the centerlines of the line structures in the z-projected
2D image, requiring that users manually select the starting and ending
points. Reconstruct (Fiala, 2006), a software tool that can extract the center-
lines from a 3D image volume, also requires users to manually segment
different objects if they are attached or overlapped. Imaris, a commer-
cial software package working interactively with the users, still requires
that users estimate the orientation and branching patterns of the 3D ob-
jects. These software tools require intensive manual segmentation of huge
amounts of 3D image data, a painstaking task that can lead to fatigue-related
bias.

A fully automated 3D extraction and morphometry of tubelike structures
usually requires a huge amount of processing time due to the complexity
and dimensionality of the 3D space. The performance is somewhat mod-
erate, especially with the presence of sheetlike structures and spherelike
shapes in 3D image volumes. Sometimes researchers are interested only in
particular tubelike structures on or near a particular area, so a complete
extraction of all the tubelike structures is not necessary. Another important
observation is that it is sometimes difficult for users to select the start-
ing point and the ending point for a line structure in 3D space, especially
when this 3D line structure is interwoven with a multitude of other 3D
line structures (see the sample images in Figure 1). We have developed a
semiautomated tool to facilitate manual extraction and measurement of
tubelike neuron structures from 3D image volumes. This tool is some-
what similar to the 2D tracking tool proposed in Meijering et al. (2004),
but for the analysis of 3D line structures in 3D image volumes. With
this tool, users need only to interactively select an initial point for one
line structure, and then this line structure can be automatically extracted
and labeled for further usage. The ending points of the 3D objects are
detected automatically by the algorithm, and thus users need not select
these points manually. The axon geometry such as curvature and length
can also be measured automatically to further reduce tedious manual
measurement process. Section 2 describes our proposed algorithm for 3D
axon structure extraction using DP and marker-controlled watershed seg-
mentation. The experimental results and comparisons are presented in
section 3. Section 4 concludes the article and discusses potential future
work.
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Figure 1: (a) The projection view (maximum intensity projection, or MIP) of
a sample 3D axon image volume. (b) An example on how the 3D axon image
volume is formed. The 3D axon image volume consists of a series of images
obtained by imaging the 3D axon objects along the z-direction and projecting
onto the x-y plane. Each slice contains a number of 3D axon objects projected
onto the x-y plane, as shown in the figure.

2 Method for 3D Centerline Extraction

2.1 Test Images. To record morphological changes of neuronal pro-
cesses, images are acquired from neonatal mice using laser scanning im-
munofluorescent confocal microscopes (Olympus Flouview FV500 and

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2008.05-07-519&iName=master.img-000.jpg&w=305&h=357
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Bio-Rad 1024). The motor neurons expressed yellow fluorescent proteins
(YFP) uniformly inside each cell. The YFP was excited with a 488 nm line
of argon laser using an X60 (1.4NA) oil objective and detected with a 520 to
550 nm bandpass emission filter. Figure 1a shows the projection view (max-
imum intensity projection, MIP) of one sample 3D axon image volume.
Three-dimensional volumes of images of fluorescently labeled processes
are obtained using a confocal microscope. Figure 1b shows an example on
how the 3D volume is formed. The left image is a 3D projection view on the
x-z plan. The 3D axon image volume consists of a series of images that are
obtained by imaging 3D axon objects along the z-direction and projecting
onto the x-y plane. Each slice contains a number of 3D axon objects pro-
jected onto the x-y plane, as shown in Figure 1. The 3D axon image contains
a number of axons that are interwoven, either attached or detached, and
may go across others in the 3D space.

2.2 Image Preprocessing. In the digital imaging process, noise and ar-
tifacts are frequently introduced in images, so preprocessing is usually a
necessary step to remove noise and undesirable features before any further
analysis of images. In this project, a two-step method is used to enhance
the image quality and highlight the desired line structures. In the first step,
we apply intensity adjustment to all pixels in the image. Analysis of the
histograms from the test images indicates that most images have their 8-bit
intensity values in the range [0, 127]. We map the intensity values to fill the
entire intensity range [0, 255] to improve image contrast.

In the second step, we apply gray-scale mathematical morphological
transforms to the image volume to further highlight axon objects. The mor-
phological transforms are widely used in detecting convex objects in digital
images (Meyer, 1979). The top-hat transform of an image I is

I → Itop : I − max
R

{
min

R
{I }} (2.1)

where Itop is top-hat transformed image and R is a structuring element
chosen to be larger than the potential convex objects in the image I . We ap-
ply decomposition using periodic lines (Adams, 1993) as follows. A disk-
shaped flat structuring element with a radius of 3 is used to generate a
disk-shaped structuring element. Another important morphological trans-
form, bottom-hat transform, can be defined in a similar way. The top-hat
transform keeps the convex objects, and the bottom-hat transform contains
gap areas between the objects. The contrast of the objects is maximized by
adding together the top-hat transformed image and the original image and
then subtracting the bottom-hat transformed image,

J = I + Itop − Ibot, (2.2)
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Figure 2: Image quality comparison for two slices using image preprocessing.
For each example, the image on the top is the original slice, and the image at
the bottom is the enhanced slice.

where Ibot is the bottom-hat transformed image. Figure 2 compares the
image quality of two sample slices before and after the preprocessing.

2.3 Centerline Extraction in 3D Axon Images. We have discussed the
dynamic programming (DP) technique for 2D centerline extraction in Zhang
et al. (2007). Dynamic programming (Bellman & Dreyfus, 1962) is an opti-
mization procedure designed to efficiently search for the global optimum
of an energy function. In the field of computer vision, dynamic program-
ming has been widely used to optimize the continuous problem and to find
stable and convergent solutions for the variational problems (Amini, Wey-
mouth, & Jain, 1990). Many boundary detection algorithms (Geiger, Gupta,
Costa, & Vlontzos, 1995; Mortensen, Morse, Barrett, & Udupa, 1992) use
dynamic programming as the shortest or minimum cost path graph search-
ing method. The DP technique is able to extract centerlines accurately and
smoothly if both starting and ending points are specified. However, direct
use of conventional DP technique is not suitable for the problem of extract-
ing centerlines in 3D axon image volumes. First, given the complexity and
dimensionality of a 3D image volume, it is usually difficult for users to
select the correct pair of starting-ending points. Second, due to the limita-
tion of imaging resolution, some axon objects are seen overlapping (i.e., the
boundaries separating them are barely visible from the slices), even though
in reality they belong to different axon structures. If the DP search is ap-
plied on such image data, it will follow the path that leads to the strongest
area, which may result in missing axon objects. Third, the DP technique is
computationally expensive if the search is for all the optimal paths for each
voxel in the 3D image volume.

To solve these problems, we combine the DP searching technique with
marker-controlled watershed segmentation. Our proposed method is based
on the following assumptions: (1) each axon has one, and only one, bright
area on each slice, that is, each axon goes through each slice only once;
(2) the axons change directions smoothly along their navigations; (3) all the

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2008.05-07-519&iName=master.img-001.jpg&w=215&h=95
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axons start at the first slice, that is, no new axons appear during the rest of
the slices in the 3D image volume. The satisfaction of these assumptions
can be easily observed from many 3D axon images. We consider it as our
future work if the 3D axon images have more complicated structures that
do not meet the above assumptions.

Our proposed method can be briefly described as follows. The user
selects a set of seed points (the center points of the search regions, also
called starting points), one point for each axon object, from the first slice of
the image volume. The extraction starts from these seed points: from each
seed point, instead of searching for all the optimal paths for the entire 3-D
volume, we dynamically search for optimal paths for the candidate points
within a small search region on the current slice. The search region is defined
as a 10 × 10 neighborhood centered at the point estimated from the previous
seed point. A cost value is calculated for each candidate point based on its
optimal path; the point with the minimum cost value and the estimated
point are used as the marker, and the watershed method is applied to
segment different axon objects on the current 2D slice. The centroids of
the segmented regions are used as the detected centerline points if certain
predefined conditions are satisfied. New searching is applied starting from
the detected centerline points until the last slice. We provide details of the
method in the following sections.

2.3.1 Optimal Path Searching and Cost Value Calculation. In conventional
DP, searching for the optimal path involves all the neighborhoods of the
current point. In this project, we have assumed that axons change directions
smoothly and enter each slice only once. Thus, we can ignore the previous
slice and examine only the points on the following slice. We further reduce
the computation by considering only a set of neighboring points within a
small region centered at the estimated seed point. We call this region the
search region, denoted as S. In this work, the small region has a size of 10 × 10.
The size of the search region is estimated based on manual examination of
the axon objects. That is, 10 × 10 is large enough to cover the area occupied
by one axon and where it may move on to the next slice (it can be enlarged
for applications with larger objects than ours). In general, if there are k seed
points (that is, k axons), then there are k such small regions, and the search
region consists of k regions: S = ⋃k

i=1 si , where si , i = 1, . . . k represents the
ith small 10 × 10 region.

As mentioned in section 2.3, the seed points on the first slice are manually
selected by the user. The seed points on the other slices are estimated from
the centerline points and tracking vector detected on the previous slice. Let
q i−1 and q i represent the centerline points on the slice (i − 1) and slice (i),
respectively, and �Vi−1,i represent the linking directional vector from q i−1 to
q i . Then the seed points bi+1 on the slice (i + 1) are estimated as the points
obtained by tracking from q i along the directional vector �Vi−1,i to the slice
(i + 1).
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Figure 3 illustrates how seed points and DP searched points are estimated
for overlapping axon objects as well as a single axon object. The dashed ar-
row lines represent the directional vectors that link the two centerline points
on the previous two slices. The points obtained by searching from the cen-
terline points on the previous slice along the dashed directional vectors to
the current slice are used as the estimated seed points. The solid arrow lines
represent the directional vectors that link the two centerline points on the
previous slice and on the current slice, which could be seen as “corrected”
directional vectors for the current slice. The dashed square regions repre-
sent the search regions centered at the estimated seed points. It can be seen
that these search regions are large enough to cover the axon objects.

We also illustrate the case of overlapping multiple axon objects. In this
situation, the search regions of such axon objects will have a significant
overlap. Thus, the DP search may result in a possible miss of axon objects.
To address this problem, we propose marker-controlled watershed segmen-
tation to distinguish overlapping axon objects. Thus, the DP searched points
can be adjusted to the correct centerline points.

A special case is for the second slice. Since there is no linking directional
vector from the previous slice, we use the directional vector that is parallel
to the z-axis to estimate the seed points on the second slice. Later in this
article, we show that the estimated seed points are also used as part of the
markers (see section 2.3.2).

Searching for the optimal path consists of two steps. In the first step,
every point in the image volume is assigned a similarity measurement to
3D line structures using the 3D line filtering method. Previous research in
modeling multidimensional line structure is exemplified by the work of
Steger et al. and Sato et al. (Haralick, Watson, & Laffey, 1983; Koller, Gerig,
Szekely, & Dettwiler, 1995; Lorenz, Carlsen, Buzug, Fassnacht, & Weese,
1997; Sato, Araki, Hanayama, Naito, & Tamura, 1998; Sato, Nakajima et al.,
1998; Steger, 1996, 1998). In this project, the 3D line filtering is achieved by
using the Hessian matrix, a descriptor that is widely used to describe the
second-order structures of local intensity variations around each point in
the 3D space. The Hessian matrix for a pixel p at location (x, y, z) in a 3D
image volume I is defined as

∇2 I (p) =




Ixx(p) Ixy(p) Ixz(p)

Iyx(p) Iyy(p) Iyz(p)

Izx(p) Izy(p) Izz(p)


 , (2.3)

where Ixx (p) represents the partial second-order derivative of the image at
point p along the x direction and Iyz (p) is the partial second-order deriva-
tives of the image along the y and z directions, and so on. The eigenvalues of
∇2 I (p) are used to define a similarity that evaluates how close a point is to a
3D line structure. Figure 4 shows the geometric relationship between three
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Figure 3: Selection of marker points for (a) single axon object and (b) two
attaching axon objects. The solid arrow lines represent true tracking vectors
between two adjacent slices. The dashed lines represent the vectors used by the
current slice to estimate marker points from the previous slice. This point, DP
searched point, and the line linking them define the marker used in watershed
segmentation. Notice that since the two axon objects may be very close to each
other, the DP tracking may find centerline points that are very close or even the
same for different axon objects. This will lead to missing axons. When marker-
controlled watershed segmentation is used, different axons can be distinguished
to ensure correct extraction.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2008.05-07-519&iName=master.img-002.jpg&w=305&h=391
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Figure 4: Geometric relationship between 3D objects and their eigenvalues and
eigenvectors of the Hessian matrix. (a) 3D line. (b) 3D sphere. (c) 3D sheet. The
length and direction of the vectors show the eigenvalues and eigenvectors for
each 3D object.

3D objects (3D line, 3D sphere, and 3D sheet) and their eigenvalues and
eigenvectors. The length and direction of the arrows in the figure represent
eigenvalues and eigenvectors. Denote the three eigenvalues as λ1, λ2, λ3

in descending order (that is, |λ1| ≥ |λ2| ≥ |λ3|); it is clear that an ideal 3D
line has the following properties:|λ1| ≈ |λ2| � |λ3| ≈ 0. Then the similarity
measure η (p) for point p is calculated as follows:

η(p) =




|λ2| + λ3, if λ1 < 0, λ2 < 0, λ3 ≤ 0

|λ2| − λ3

4
, if λ1 < 0, λ2 < 0, 0 < λ3 < 4|λ2| .

0 otherwise

(2.4)

Notice that the value of η(p) is always greater than or equal to zero. We
include the second case (that is, if λ1 < 0, λ2 < 0, 0 < λ3 < 4|λ2|) due to the
reason that when λ3 > 0, the corresponding 3D line structure has concavity
involved. If we use |λ2| − λ3 to calculate the similarity measure in this case,
the true line structure could be fragmented at concave locations. Thus, we
need to reduce the influence of λ3 when λ3 is large and positive. Experiments
show that by using |λ2| − λ3

4 as the similarity measure, the fragmentation
can be reduced to better segment 3D line structures.

By defining this measure, it is possible that the algorithm distinguishes
3D line structures from sheetlike and spherelike structures. The higher the
value of η(p), the more likely it is that the point belongs to a 3D line structure.
The highest value of η(p) is expected to indicate a centerline point that is
located near or on the centerline, a filled tubelike structure commonly seen
in our 3D axon images. We further convert η(p) to a cost value c(p) for point
p as follows:

c(p) = 1 − η(p)
maxp∈I {η(p)} . (2.5)

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2008.05-07-519&iName=master.img-003.jpg&w=305&h=115
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The value of c(p) decreases if the point goes near the centerline of the 3D
line structure, and it is minimized on the centerline.

In the second step, we search for an optimal path for each point within
the search region on the current slice to the centerline points on the previous
slice. The searching method is similar to the DP technique for 2D centerline
extraction, as described in Zhang et al. (2007). The difference is that the
searching is applied on the 3D space, and we search for the optimal paths
for multiple axons simultaneously, not one by one. Only two slices are
involved in the search. Thus, the processing time is significantly reduced.
The cost of linking from point p to point q in the 3D space is determined
by the gradient directions of the two points. Let �dp denote the unit vector
of the gradient direction at p and �np the unit vector perpendicular to �dp.
Then:

�dp = [ux(p), uy(p), uz(p)]

�np =




[uz(p), uy(p), ux(p)], if ux(p) = 0 and uy(p) = 0,[
ux(p)uz(p)

uxy(p)
,

uy(p)uz(p)
uxy(p)

,−uxy(p)
]

, otherwise
(2.6)

where ux(p), uy(p), uz(p) represent the unit vectors along x, y, z directions
of p, respectively. �np is obtained by rotating �dp 90 degrees counterclockwise
on the x-y plane and dividing uz (p) into two components along the x and y

directions, respectively. uxy(p) =
√

u2
x(p) + u2

y(p). The linking cost between
p and q is

d(p, q ) = 2
3π

[
cos−1 ( �np • �vpq

) + cos−1 ( �vpq • �nq
)]

, (2.7)

where �vpq is the normalized bidirectional link between p and q :

�vpq =




�q − �p
‖�p − �q‖; if �np • (�q − �p) ≥ 0

�p − �q
‖�p − �q‖; if �np • (�q − �p) < 0

, (2.8)

where �p = [px, py, pz] and �q = [qx, qy, qz] are the vectors of the two points
(p, q ) represented by their coordinates. �vpq is calculated such that the dif-
ference between �p and the linking direction is minimized. The linking cost
between p and q , if calculated by formula 2.7, yields a high value if the two
points have significantly different gradient directions or the bidirectional
link between them is significantly different from either of the two gradient
directions. The coefficient 2

3π
is used to normalize the linking cost d(p, q ). It
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is obtained from the fact that (1) the minimum possible angle between �vpq

and �np is 0 degree such that �np • �vpq → 0 and cos−1( �np • �vpq ) → π
2 , and (2)

the maximum possible angle between �vpq and �nq is 180 degrees, such that
�vpq • �nq → −1 and cos−1( �vpq • �nq ) → π . Thus, the maximum possible value

of cos−1( �np • �vpq ) + cos−1( �vpq • �nq ) is 3π
2 .

The total cost value of linking point p and q can be calculated as follows:

Cost(p, q ) = wc[c(p) + c(q )] + wdd(p, q ), (2.9)

where c(p) is the local cost of p and can be calculated by formula 2.5, and
d(p, q ) is the linking cost from p to q and is calculated by formula 2.7. wc, wd

are weights of local cost and linking cost, respectively. By default, wc =
0.4, wd = 0.2. wc, wd are selected based on how the two factors (local cost
and linking cost) are expected to affect the DP search result. If the DP search
is affected more by local cost than by linking cost, then wc should increase
and wd should decrease, and vice versa, as long as condition 2wc + wd = 1
is satisfied. The DP searched point for an axon object (denoted as e j for the
jth slice) is selected as follows:

e j = arg min
p∈S

{Cost(p, q j−1)}, (2.10)

where q j−1 denotes the jth centerline point on the jth slice. That means that
the point with the minimum overall cost to the previous centerline point is
selected as the DP searched point.

In summary, the steps of DP-based optimal path searching are as follows:

Step 1: Calculate the Hessian matrix for all image slices using formula
2.3.

Step 2: Calculate the similarity measure for each point in the image
volume using formula 2.4, and convert it to the cost value using
formula 2.5.

Step 3: Search for an optimal path for each point within the search region
on the current slice to the centerline points on the previous slice.

Step 4: Find the optimal path with minimal overall cost calculated by
formula 2.9. The corresponding point is used as the DP searched
point and will be adjusted in the following marker-controlled
watershed, segmentation.

2.3.2 Marker-Controlled Watershed Segmentation. One difficult problem
about 3D centerline extraction is that some 3D objects may overlap or
go across others in 3D space. If two centerlines are close enough, the
extraction process described may combine two centerlines as one cen-
terline, and the other centerline will be completely missed (see Figure 8
as an example). We address this problem by using the marker-controlled
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watershed to segment different axon objects on one slice. The centroids of
segmented regions are then used to refine the locations of the centerline
points.

The watershed transform has been widely used for image segmentation
(Gonzalez & Woods, 2002). It treats a gray-scale image as a topographic
surface and floods this surface from its minima. If the merging of the wa-
ter coming from different sources is prevented, the image is then parti-
tioned into different sets: the catchment basins and the watershed lines
that separate different catchment basins. Watershed transformation has
been used as a powerful morphological segmentation method. It is usu-
ally applied to gradient images due to the reason that the contours of a
gray-scale image can be viewed as the regions where the gray levels exhibit
the fastest variations, that is, the regions of maximal gradient (modulus).
The major reason to use watershed transformation is that it is well suited
to the problem of separating overlapping objects (Beucher & Meyer, 1990;
Dougherty, 1994; Yan, Zhao, Wang, Zelenetz, & Schwartz, 2006). These
methods calculate from an original image its distance transform (i.e., to
transform each pixel to its minimal distance to the background). If the op-
posite of the distance transform is regarded as the topological surface, the
watershed segmentation can well separate overlapping objects from the
image.

However, if the watershed transform is directly applied on gradient im-
ages, it usually results in oversegmentation: the images get partitioned in
far too many regions. This is mainly due to noise and inhomogeneity in
images: noise and inhomogeneity in original images result in noise and
inhomogeneity in their gradient images, and this will lead to far too many
regional minima (in other words, far too many catchment basins). The
major solution to the problem of oversegmentation is a marker-controlled
watershed, which defines new markers for the objects and floods the to-
pographic surface from these markers. By doing this, the gradient function
is modified such that the only minima are the imposed markers. Thus, the
most critical part of the method is how to define markers for the objects to
be extracted. In this project, for each axon object, two points can be found
automatically: a seed point estimated from the previous image slice and a
DP searched point from DP-based optimal path searching. These two points
can be used as the object markers for watershed transform.

The marker-controlled watershed procedure in this work is as follows:

1. Calculate the gradient image from the original image slice. The mag-
nitude of the image gradient at point p is calculated as follows:

|∇ I (p)| =
√(

∂ I (p)
∂x

)2

+
(

∂ I (p)
∂y

)2

. (2.11)

2. Calculate foreground markers. Foreground markers consist of esti-
mated seed points, DP searched points, and the line linking them. We
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Figure 5: Foreground marker selection.

involve both the estimated seed point and DP searched point as fore-
ground markers to ensure that the watershed segmentation is correct
if the DP searched point is located near the boundary of axon objects.
Figure 5 shows how the foreground marker is selected.

3. Calculate background markers. First, the original image is segmented
into foreground and background using a global threshold (Otsu,
1979). Second, we apply distance transform to image background.
Third, we apply conventional watershed transform to the result of
distance transform and keep only the watershed ridge lines as back-
ground markers.

4. Modify the gradient image so that the regional minima are at the
locations of foreground and background markers.

5. Apply marker-controlled watershed transform to the modified gra-
dient image.

6. Calculate the centroids of the segmented regions, and use the results
to adjust DP searched points to centerline points if necessary.

Let q j
i denote the ith centerline point on slice ( j), e j

i denote the ith DP
searched point on slice ( j), and g j

i denote the ith centroid point on slice ( j).
Then q j

i is determined as follows:

q j
i =

{
g j

i if
∥∥g j

i − q j−1
i

∥∥ ≤ εi and
∥∥g j

i − e j
i

∥∥ ≤ εi ,

e j
i otherwise

(2.12)

where ‖g j
i − q j−1

i ‖ is the 2D distance between the two points g j
i and q j−1

i ,
that is, the distance between two voxels if only the x-y coordinates are
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considered. εi is the maximum centerline point deviation for the ith axon
object. Equation 2.12 means that if the distance between segmented centroid
point and previous centerline point or DP searched point is within the
maximum possible deviation, the centroid point will then be used as the
detected centerline point; otherwise, DP searched point will be used as the
detected centerline point. This is important in ensuring the robustness of
the algorithm in case the watershed segmentation goes wrong on a certain
slice. The value of εi is determined as

εi = max
{∣∣x1

i − xZ
i

∣∣ , ∣∣y1
i − yZ

i

∣∣}
Z

(2.13)

for an image volume with Z number of slices, with each slice having a
size of M × N. The values of x1

i , xZ
i , y1

i , yZ
i can be determined by manu-

ally examining the first and the last slice for each axon object in the image
volume. In this work, we use εi = ε = maxi {εi } for simplicity. That is, the
users need to find one centerline point on the first slice and another cen-
terline point on the final slice so that the two points are the farthest among
all possible pairs of centerline points. Note that the two points need not
belong to the same axon object. The total centerline deviation is obtained
by examining the coordinate difference between these two points. Then ε

is calculated as the total centerline deviation divided by total number of
slices.

It may be possible that the number of segmented regions is smaller than
that of the axon objects after the marker-controlled watershed segmen-
tation. This could happen when the global threshold calculated by Otsu
(1979) is relatively high for some object regions with low-intensity values.
Thus, the foreground marker may locate inside the background area. To ad-
dress this problem, we iteratively reduce the threshold value to 90% of the
previous threshold value until we obtain the same number of segmented
regions as the number of axon objects, or until a predefined maximal it-
eration loops. If the loop reaches the predefined maximal iteration and
the number of segmented regions is still fewer than that of previous slice,
we use just the DP searched point for the missing region as the centerline
point.

Figure 6 illustrates the above marker-controlled watershed segmentation
procedure. Figure 6a is the original image slice, and Figure 6b gives the
segmentation result using conventional watershed. It is obvious that the
image is oversegmented. Figures 6c and 6g are the gradient images before
and after the modification using markers. We observe that the regional
minima are better defined by the markers in Figure 6g than those in 6c.
Figure 6e shows five foreground markers. These markers are obtained by
detecting five minimal cost points if connected to five centerline points
in the preceding slice. Figure 6h gives the marker-controlled watershed
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Figure 6: Example of marker-controlled watershed segmentation. (a) Origi-
nal image slice. (b) Conventional watershed segmentation result. (c) Gradient
image. (d) Distance transform of image background. (e) Foreground markers.
(f) Background markers. (g) Modified gradient image. (h) Marker-controlled
watershed segmentation result.

segmentation result. The five smallest regions are considered to adjust the
centerlines for the current slice.

3 Results

3.1 Three-Dimensional Axon Extraction Results. We apply our 3D cen-
terline extraction algorithm on test image volumes obtained partially from
the 3D axon images as shown in Figure 1. A typical test image volume has
a total of 512 slices (43 × 512 for each slice). Figure 7 shows three extraction
results along with 3D views of image surface rendering. The number of axon
objects in the test image volumes is 5, 6, and 4, respectively. Our method can
completely extract all the centerlines for multiple axons in 3D space. The
extraction is accurate when the axons are overlapping or going across each
other, as shown in the figure. Figure 8 shows partial extraction results with
and without marker-controlled watershed segmentation. It shows that the
marker-controlled watershed helps to segment overlapping axon objects.
Without watershed segmentation, DP search gives the wrong extraction at
locations where multiple axons are overlapping. Figure 9 shows extraction
results on 2D slices for overlapping multiple axons. The extracted centerline
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Figure 7: 3D centerline extraction results for (a) data#116, (b) data#242,
(c) data#260. The results are shown in different gray scales. For each example,
the image on the top is the 3D view of the surface rendering for the original
image; the image at the bottom is the extracted centerlines.
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Figure 8: Two partial 3D centerline extraction results to show the power of
marker-controlled watershed segmentation. (a) Surface rendering of the original
3D axon image volume. (b) Extracted 3D centerlines without marker-controlled
watershed segmentation. (c) Extracted 3D centerlines with marker-controlled
watershed segmentation. Notice that the axons are overlapped at the location
indicated by arrows. We observe that one axon (indicated by dotted circles) is
missing in each example without marker-controlled watershed segmentation.

points are labeled by gray scales and are superimposed on the original im-
age to show the extraction performance. Different gray scales represent
different axon objects. Our method can accurately extract centerline points
and distinguish different axon objects in these slices.

3.2 Result Comparison. We have tested and compared our result with
those of the repulsive snake model (Cai et al., 2006) and region-based
active contour (RAC) method (Li, Kao, Gore, & Ding, 2007). Snakes are de-
formable curves that can move and change their shape to conform to object
boundaries. The movement and deformation of snakes are controlled by
internal forces, which are intrinsic to the geometry of the snake and in-
dependent of the image, and external forces, which are derived from the
image. As an extension of the conventional snake model, the gradient vec-
tor flow (GVF) model (C. Xu & Prince, 1998) uses the vector field as the
external forces such that it yields a much larger capture range than the stan-
dard snake model and is much less sensitive to the choice of initialization,
to improve the detection of concave boundaries. To extend the GVF model
to address the problem of 3D axon extraction, Cai et al. (2006) proposed a
GVF snake model based on repulsive force among multiple objects. They
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Figure 9: 3D centerline extraction results are displayed and superimposed on
the original image slices. Different gray-scale points represent centerline points
for different axon objects. Notice that when the axons are attaching together,
our proposed method is able to accurately separate them and correctly extract
the centerline points. (a) Results for data#116. The left column shows the results
from slice#97 to slice#123; the right column shows the results from slice#251 to
slice#262. (b) Results for data#260. It shows the results from slice#61 to slice#83
(not all the slices in the range; only typical ones are shown).

exploit the prior information of the previously separated axons and em-
ploy a repulsive force to push the snakes toward their legitimate objects.
The repulsive forces are obtained by reversing the gradient direction of
neighboring objects. In their method, the users need to define the initial
boundaries and centerline points for the first slice. They use the final con-
tour of slice n as the initialization contour for slice (n+1), assuming that the
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axons do not change their positions and shapes much between consecutive
slices. Their method fails at locations where the axons change shape irreg-
ularly or when the boundaries of the axons are blurred, common cases in
the test axon images. Another problem of their method is that it involves
several parameters that may significantly affect the extraction performance,
for example, the weighting factor θ and the reliability degree d (i) used to
adaptively adjust the repulsive force. Users need to iteratively adjust these
parameters in order to run the snakes, and the values may not be consistent
throughout the entire image slices.

The region-based active contour method (Li et al., 2007) is able to accu-
rately segment images with noise and intensity inhomogeneity using local
image information. The local image information is obtained by introducing
a kernel function of local binary fitting energy and incorporating it into a
variational-level set formulation. Such a variational-level set formulation
does not require reinitialization, which significantly reduces running time.
This method, however, requires manual settings of initial contours for all
the image slices.

To compare our method with the method proposed by Cai et al. (2006)
and Li et al. (2007), we carefully adjust the parameters to an optimal state
for the methods and fix them for the image volume. Since the programs
provided by Cai et al. and Li et al. only give boundaries of the detected
objects, we assume that the centroids of the areas circled by the detected
boundaries are the detected centerline points. The results by the three meth-
ods are compared in Figure 10. The test images set used are slices 53 and
106 in data set #116 and slice 10 in data set #260. It shows that the repulsive
snake model cannot accurately extract axon boundaries for some slices in
the image volume; thus, the detected centerline points are not accurate.
The RAC contour method can accurately extract boundaries but fails to
separate overlapping axon objects. Our method outperforms the repulsive
snake model and RAC method in both extraction performance and the re-
quirement of manual initialization (it requires centerline points only on the
first slice).

To quantitatively compare our method with the above two methods, we
use the number of topological mistakes as the measure. It is defined as the
number of manually labeled axons minus number of automated labeled
axons. We use four full data sets to do the comparison. Table 1 shows
the number of axon objects extracted and the topological mistakes for two
independent manual extractions, snake-based method, RAC method, and
our method. It is clear that our proposed method can extract all the axon
objects seen by manual extraction.

3.3 Validation. Apart from visual inspection of the automatic results
and manual results, we use the following experiment to quantitatively
evaluate our proposed method for 3D axon extraction. We randomly se-
lect 10 different axon objects from the processed image volumes using our
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Figure 10: Result comparison among our proposed method, the method by Cai
et al. (2006) and the method by Li et al. (2007). From top to bottom, boundary
extraction results by Cai et al. and Li et al. and centerline point extraction results
by our method for (a) slice 53 in dataset #116, (b) slice 10 in dataset #260, and (c)
slice 106 in dataset #116. For each test result, the image on the left is obtained by
Cai et al.’s method; the image in the middle is obtained by Li et al.’s method; the
image on the right is obtained by our method. It is clear to see that Cai et al.’s
method performs poorly in a and b. Li et al.’s method can accurately extract
boundaries but fails to separate overlapping objects, as shown in a and c.
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Table 1: Result Comparison Using Number of Axon Objects Extracted and
Topological Mistakes.

Method Manual 1 Manual 2 Snake RACa Ours

Data #116 5 5 3 3 5
Data #242 6 6 4 5 6
Data #260 4 4 4 4 4
Data #279 7 7 4 5 7
Total extracted 22 22 15 17 22
Topological mistakes 0 0 7 5 0

Note: The region-based active contour method.

method. Two independent individuals manually select the centerline points
slice by slice for those 10 axon objects. The manual labeling processes are
completely independent and blind to the automated results. We then use
length difference and centerline deviation to quantitatively measure the
difference between automated results and manual results. The length dif-
ference (φ) is defined as follows: φ = |1 − L M

L A
|, where L M is the length of

one axon centerline extracted manually and L A is the length of the same
axon centerline generated by the algorithm, both in 3D space. The centerline
deviation (ϕ) is calculated as the number of pixels in the region surrounded
by automated centerline and manually labeled centerline per automated
centerline length:

ϕ = Pix(lA, lM)
L A

, (3.1)

where lA and lM are the automated axon centerline, and the manual axon
centerline, respectively, for the same axon object. Pix(lA, lM) represents the
number of pixels in the region surrounded by lA and lM. Since it is difficult
to count the number of pixels between two 3D lines, we use the following
method to estimate Pix(lA, lM): let pn denote the automated centerline point
on slice (n) and q n the manual centerline point on the same slice. Then the
two 3D centerlines from slice (n) to slice (n+1) are defined as pn ↔ pn+1 and
q n ↔ q n+1, where a ↔ b indicates a line with two ending points a , b. The
total number of pixels (pixn,n+1) surrounded by pn ↔ pn+1 and q n ↔ q n+1

is estimated as the number of pixels in a 2D square, which can cover all
of four points, pn, pn+1, q n, q n+1, if projected onto the same slice. Then we
have

Pix(lA, lM) =
Z−1∑
i=1

pixi,i+1, (3.2)

where Z is the total number of slices.
Figure 11 shows the mean and standard deviation for length difference

(φ) and centerline deviation (ϕ) and compares the results of the two manual
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Figure 11: Box plots for the length difference and centerline deviation between
two manual extractions. The middle line is the mean value for each data set.
The upper line of the box is the upper quartile value. The lower line of the box is
the lower quartile value. (a) Length difference comparison between two manual
results. (b) Centerline deviation comparison between two manual results.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2008.05-07-519&iName=master.img-010.png&w=277&h=451


1922 Y. Zhang et al.

Table 2: Mean and Standard Deviation Values for the Two Manual Results.

φ ϕ

Mean SD p-value Mean SD p-value
Result 1 0.0515 0.0861 0.3352 2.3381 0.4293 0.6661
Result 2 0.0622 0.0654 2.1758 0.3686

Table 3: Pearson Linear Correlation Coefficients Among the Automated Result,
the Manual Result 1, and Manual Result 2.

φ ϕ

Auto Result 1 Result 2 Auto Result 1 Result 2
Auto result - 0.9873 0.9907 - - -
Result 1 0.9873 - 0.9993 - - 0.9660
Result 1 0.9907 0.9993 - - 0.9660 -

extractions. We can observe that the two manual results are very similar in
terms of φ and ϕ. Table 2 shows the values of mean and standard deviation
for φ and ϕ. We calculate the p-values of φ and ϕ using the two-sided paired
t-test and list the result in Table 2. The p-values are all greater than 0.05,
which quantitatively proves that the two manual results are similar. Table 3
lists the Pearson linear correlation coefficients of φ and ϕ, which shows that
there exists a strong correlation in the automated results and the manual
results. We calculate the cumulative distribution of φ and ϕ, respectively,
using Kolmogorov-Smirnov goodness-of-fit hypothesis test (Nimchinsky,
Sabatini, & Svoboda, 2002) and compare the quantile-quantile plots of the
two manual results in Figure 12. It shows a linear-like quantile-quantile
plots and similar cumulative distribution functions for the three sets of
results.

4 Conclusion

We presented a novel algorithm for extracting the centerlines of the ax-
ons in the 3D space. The algorithm is able to automatically and accu-
rately track multiple 3D axons in the image volume using 3D curvilin-
ear structure detection. Our proposed method is able to extract centerline
and boundaries of 3D neurite structures in 3D microscopy axon images.
The extraction is highly automated, rapid, and accurate, making it suit-
able for replacing the fully manual methods of extracting curvilinear struc-
tures when studying 3D axon images. The proposed method can handle
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Figure 12: Quantile-quantile plots of the length of the axon centerlines for
(a) automated versus manual result 1. (b) Automated versus manual result 2.
Quantile-quantile plots of the centerline deviation for (c) manual result 1 versus
manual result 2. Cumulative distributions of the length of the axon center-
lines for (d) automated (circle markers) versus manual result 1 (star markers);
(e) automated (circle markers) versus manual result 2 (star markers). Cumu-
lative distributions of the centerline deviation for (f) manual result 1 (circle
markers) versus manual result 2 (star markers).

complicated axon structures such as cross-over sections and overlapping
objects.

Future work will focus on extracting more complicated axon struc-
tures in the 3D space. An example of more complicated cases is shown in
Figure 13. Some axon structures go through the same slice twice and may
change directions sharply. We will study a sophisticated model for extract-
ing such axon structures.
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Figure 13: An example 3D axon image volume with very complicated axon
structures. In this case, one axon may go across the same slice twice and may
change directions very sharply.
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