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Abstract

A number of ecosystems can exhibit abrupt shifts between alternative stable states. Because of their important ecological
and economic consequences, recent research has focused on devising early warning signals for anticipating such abrupt
ecological transitions. In particular, theoretical studies show that changes in spatial characteristics of the system could
provide early warnings of approaching transitions. However, the empirical validation of these indicators lag behind their
theoretical developments. Here, we summarize a range of currently available spatial early warning signals, suggest potential
null models to interpret their trends, and apply them to three simulated spatial data sets of systems undergoing an abrupt
transition. In addition to providing a step-by-step methodology for applying these signals to spatial data sets, we propose a
statistical toolbox that may be used to help detect approaching transitions in a wide range of spatial data. We hope that our
methodology together with the computer codes will stimulate the application and testing of spatial early warning signals
on real spatial data.
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Introduction

A range of ecosystems, from lakes and forests to rangelands and

coral reefs, can exhibit multiple stable states [1]. In such

ecosystems, abrupt shifts between ecological states may lead to

ecological and economic losses. This happens when ecosystems

reach a ‘tipping point’, at which they may rapidly reorganize into

an alternative state with contrasting features. Such shifts have been

documented not only in ecosystems, but also in a wide spectrum of

complex systems including physiological systems, financial mar-

kets, and human societies [1]. However, the enormous complexity

of such systems and the lack of detailed understanding of their

underlying processes make it difficult to identify the points at

which these systems may experience major changes. To circum-

vent this problem, recent research has focused on devising early

warning signals of imminent transitions [2].

A number of early warning signals for ecological transitions has

been proposed based on a phenomenon called ‘critical slowing

down’ that generally occurs prior to a ‘bifurcation’ [3,4]. The

closer a system is to a bifurcation point, the longer time it takes to

recover to its stable state upon any disturbance. Theoretical studies

of ecological models suggest that either a direct measure of slow

recovery rate [3–5] or its manifestations in the temporal and

spatial dynamics of the system can potentially act as generic early

warning signals of an impending transition [2,6–8]. This

phenomenon of slowing down is expected to occur before a broad

range of transitions, including, but not limited to, the so-called

‘catastrophic shifts’ [9]. Catastrophic shifts are a particular case of

transitions that are especially relevant because of their possible

association with hysteresis and their lack of reversibility [1].

Generic early warning signals evaluated on time series have

attracted a lot of attention in the literature [2]. However, recent

theoretical studies suggest that for ecosystems that are not well-

mixed (such as drylands, boreal wetlands, or heterogeneous

habitats which host mobile predators), changes in spatial

characteristics of the system could provide early warnings of

approaching transitions as well [5,10–13]. More generally, the

spatial structure of ecosystems can provide information about the

ecosystem degradation level [14–22]. Spatial information allows us

to devise additional kinds of indicators thus adding to our arsenal
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of early warning signals. At the same time, well-resolved spatial

data is becoming increasingly available at low cost due to

improved technology (such as remote sensing).

Empirical verification of these indicators, however, has not been

able to keep pace with the rapid growth in theoretical studies, and

a number of recent studies question the ability and practical

efficiency of these indicators to anticipate upcoming regime shifts

in real systems [23,24]. A few recent laboratory and field

experiments [25–29], as well as analysis of climatic paleo-records

[30], suggest that generic leading indicators (i.e. variance, skewness

and autocorrelation at-lag-1) may indeed be detected in time series

of real systems prior to transitions, but the empirical validation of

the spatial indicators remains scarce [15,17,20,21,25,31].

The discrepancy between theoretical developments and their

empirical validation arises from a number of issues, such as the

lack of sufficiently resolved and long term data, as well as the lack

of a coherent methodological framework that outlines the steps

and statistical tools necessary to detect those signals. For indicators

based on time series, these issues have been addressed in a recent

paper which provides a methodological guide to practitioners and

managers to detect early warnings in time series [32] (see also

http://www.early-warning-signals.org).

Here, we complement the previous work on detecting early

warnings in time series data by providing a step-by-step

methodology for detecting early warning signals in spatial data

sets. We gather, for the first time, all the early warning signals

proposed in the literature so far in a spatial context. We apply

these metrics on model-generated data sets along a degradation

gradient, and we discuss their interpretation based on a few

potential null models. Our analysis mimicks a situation where an

ecosystem would be degrading and where we would have access to

several snapshots of an ecosystem’s spatial structure taken over a

period of time, or at different locations along a degradation

gradient. We hope that our methodology together with the

computer codes will stimulate testing and applications of spatial

early warning signals on spatial data (R-code for the spatial

analysis can be found at https://github.com/

earlywarningtoolbox/spatial_warnings).

Methods

Spatial indicators
We first give a brief overview of the spatial early warning signals

proposed in the literature so far. More details about the indicators

and their precise mathematical formulation are provided in

Appendix S1. Table 1 summarizes the spatial indicators and their

expected trends along a degradation gradient.

Slowing-down based indicators: spatial correlation and

spectral properties (DFT). Due to increased recovery time to

local equilibrium after a perturbation, neighboring units become

more like each other when a system approaches a bifurcation

point, i.e. they become increasingly correlated [5]. The increasing

spatial coherence can be quantified by the spatial correlation

function, or Moran’s I, between ecological states separated by a

certain distance. The near-neighbor spatial correlation, the analog

of autocorrelation at lag 1 for time series, is calculated for the

distance between nearest neighboring units of the system.

Spatial spectral properties change as the system approaches a

tipping point [13]. To quantify spectral properties, we compute

the Discrete Fourier Transform (DFT) that decomposes spatial

data into components of sine and cosine waves of different

wavenumbers [33]. A wavenumber can be thought of as a ‘spatial

frequency’, or the number of times that a pattern is repeated in a

unit of spatial length. In a spatial data set, periodicity is visualized

as wavelength, which is inversely related to wavenumber (i.e., a

small wavenumber corresponds to a large wavelength and vice-

versa). As DFT is generally a complex number, we often plot the

power spectrum (also 2D-periodogram) which is the magnitude of

the complex DFT matrix (see Appendix S1 for details). Increased

memory manifests itself as spectral reddening, i.e. spatial variation

becomes increasingly concentrated at low wavenumbers [13]; in

other words, long wavelength fluctuations become dominant prior

to a transition [34].

Two metrics that help characterize spatial patterns for

periodicity and directionality can be evaluated from the power

spectrum. First, the radial-spectrum (r-spectrum) is obtained by

summing the power spectrum at constant distances from the origin

of the power spectrum, i.e. along concentric circles at different

distances from the center. It allows evaluating the periodicity of the

patterns. Periodic patterns are characterized by a peak in the

power spectrum. The wavenumber at which a peak occurs

corresponds to the number of times that a pattern reproduces itself

within a unit area of the spatial data, and therefore contains

information about the scale of the pattern. Second, the angular-

spectrum (h-spectrum) is obtained by summing the values of the

power spectrum using angular sectors. It allows evaluating the

isotropy (orientation) of the spatial pattern. For an isotropic data

set, the h-spectrum will show uniform amplitude at all angles,

whereas for an anisotropic data set, the amplitude of the spectrum

will show strong amplitudes for specific orientations [35].

Variability based indicators: Spatial variance and spatial

skewness. Increased recovery time enroute to a bifurcation

point may lead to stronger fluctuations around the equilibrium

state of the system [36]. This can cause spatial variance of the

system to increase prior to a transition [10,11]. Spatial variance is

formally defined as the second moment around the spatial mean of

the state variable. It has also been shown that the fluctuations

around the mean can become increasingly asymmetric as the

system approaches a bifurcation point. This is because the

fluctuations in the direction of the alternative stable state take

longer to return back to the equilibrium than those in the opposite

direction [11]; this asymmetry can also arise due to local flickering

events (i.e. occasional jumps of local units between their current

and alternative state) [37]. The spatial asymmetry can be

measured by spatial skewness, which is the third central moment

scaled by the standard deviation.

Patch based indicators: shapes and sizes of

patches. Many ecological systems, such as shrublands in semi-

arid ecosystems and mussel beds in the intertidal, exhibit striking

spatial self-organized patterns [38]. It has been suggested that the

nature of local ecological interactions, such as the relative scales of

competition and facilitation, can strongly influence the type of

emerging spatial patterns, leading to i) regular, periodic patches

with a characteristic patch size [22,38–40], or to ii) no

characteristic scale of patchiness [15,39–42]. These different types

of spatial structures have been observed in a range of ecosystems,

however their use as potential indicators of degradation has mostly

been developed in the case of drylands, where both types of spatial

structures exist. In drylands, it has been shown that the early

warnings depend on the type of patchiness exhibited by the

ecological system [12].

In ecosystems exhibiting periodic patterns, as the level of

external stress increases, a predictable sequence of self-organized

patterns based on ‘Turing instability’ occurs. In isotropic areas (i.e.

no preferred orientation of the pattern) the shape of the patterns

shifts from gaps to labyrinths and to spots as the system becomes

more degraded. Thus, spotted vegetation patterns have been

proposed to be an early warning signal of imminent desertification

Detecting Spatial Early Warnings
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in drylands characterized by periodic patterns [16,22]. In

anisotropic areas with band-like patterns, the wavelength increases

as the system approaches a transition [43].

In contrast to periodic patterns, there are cases where spatial

processes give rise to non-periodic (irregular) patterns. In these

cases, we can quantify the size of each patch and calculate the

frequency of occurrence of different patch sizes. It is common

practice to characterize the patchiness of these systems by a

function that best describes the distribution of patch sizes.

Irregular patterns may be characterized by a scale-free patch-size

distribution, which means that there is no typical patch size in the

ecosystem. Such a distribution may be well approximated by a

pure power law [44] or by other heavy-tailed functions, such as a

log-normal, a stretched exponential or a power law with cutoff

[44,45]. Scale-free patch-size distributions have been observed in

several ecosystems [15,20,41,42]. Computational models of dry-

lands predict that larger vegetation patches become fragmented

into smaller ones as aridity or grazing pressure increases and show

an increasing deviation from a theoretical power law as the

ecosystem approaches the desertification point [15,46]. Therefore,

it has been hypothesized that an increasing deviation from power-

law distribution of patch sizes can signal increasing degradation

(but see [17,18]).

Statistical significance tests
There are two steps in computing the spatial indicators. The

first one is to compute the spatial metrics for a given snapshot. The

second is to evaluate the trend of the spatial metrics along a

degradation gradient (see Table 1). In doing so, we need to ensure

that the spatial metrics for each snapshot and their trends differ

from what would be expected by chance. A standard way to

produce null models is to generate surrogate data and compare the

trends in the indicators obtained from the original data to the

trends obtained from the surrogate data [32]. Here, we discuss

ways of obtaining null models for spatial early warning signals.

Null models. One way of obtaining a null model is to

randomly permute or shuffle the elements of the spatial matrix,

and this is also called bootstrapping. This is equivalent to a

randomization procedure that removes any spatial structure from

the original data but conserves the values of spatial variance and

spatial skewness since these moments do not depend on the spatial

arrangement of the data points. Therefore, such surrogate data

cannot act as a null model for spatial variance or skewness but only

for other metrics such as spatial autocorrelation, DFT, and patch-

size distribution.

To devise a null model for spatial variance and skewness, Eby,

Guttal and others (unpublished data) propose a coarse-graining

method which should be applied for both the reshuffled matrix

and the real data matrix. In this method, we first divide the full

matrix of dimension n|n into nonoverlapping submatrices of size

s|s. We then replace each submatrix by its average to obtain a

smaller ‘coarse-grained matrix’ of size cg|cg (note that cg~n=s).

The basic intuition behind the method is as follows: consider any

two non-overlapping submatrices of dimension (e.g. 5|5) from

the reshuffled matrix. Since the reshuffled matrix is equivalent to a

random matrix, the average of the entries of the two sub-matrices

chosen would be roughly equal to the average of the full matrix.

This exercise of ‘coarse-graining’ necessarily reduces variability

across submatrices in the case of a reshuffled (thus, random)

matrix. Now, consider two non-overlapping submatrices in the

real data. If we expect that the real data contains a non-random

spatial pattern, the average of the entires of the two submatrices

need not be of comparable value to each other nor with the

average of the full real data matrix. Therefore, in contrast to the

reshuffled matrix case, coarse-graining will not necessarily reduce

variability in the real data, especially if it contains a spatial pattern.

Since variability determines spatial variance and skewness, the

coarse-graining applied to the reshuffled matrix provides a null

model for spatial variance and spatial skewness.

An alternative method of building null models is to construct a

spatial matrix from a continuous stochastic process. This method is

applicable when continuous data (such as biomass density) is

available at each spatial point as in data set 1 and 3. More

specifically, we construct a null model matrix where each entry is a

random number (e.g., from a normal distribution) whose mean

and variance are equal to the mean and variance of the original

data matrix, respectively. This approach provides a null model for

spatial skewness, correlation, and DFT, but not for spatial variance

since variance is, by construction, fixed to be the same as the one

from the original matrix (see figures in Appendix S3). However, it

may be claimed, following the same arguments as above, that the

coarse-graining method can help estimate statistical significance of

spatial variance.

Table 1. Early warning signals of transitions in spatial data.

Method/Indicator Phenomenon Expected trend Ref.

Rising memory Rising variability Patchiness

Spatial correlation x increase [5]

Return time x increase [12]

Discrete Fourier Transform x spectral reddening [13]

Spatial variance x x increase [10,11]

Spatial skewness x x peaks (see caption) [11]

Patch-size distributions x change in shape of the dist. [15]

Regular spotted patterns x change in patch shape [22]

Power spectrum x spectral reddening [43]

Leading spatial indicator, the primary underlying phenomenon, the expected trend along a degradation gradient, and the original references in which these were
proposed. The trend of spatial skewness depends on the nature of test data: It can show a nonmonotonic behavior (thus, a peaking) for transition from a low density
state to higher density state. For discrete data, it typically shows a monotonic behavior (increasing or decreasing depending on whether it is transitioning from fully
covered to bare state or the other way transition).
doi:10.1371/journal.pone.0092097.t001

Detecting Spatial Early Warnings
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The particular case of patchy ecosystems. A system with

patchiness may show characteristic scales in the r- and h-spectra.

These r- and h-spectra of the data can be compared to those

obtained from a null model. In the case where there is no spatial

structure, it is known analytically that the values of the scaled

power spectrum observed in each bin when calculating the r- or h-

spectrum should be distributed as
x2

2k

2k
with k the number of values

in the bin (see for instance [35,47]; this gives very similar results as

the confidence intervals presented in Appendix S3).

Once the patches are identified and their size evaluated, various

heavy tailed (e.g. power law, power law with a cut-off, log-normal,

etc) and non-heavy tailed distributions (e.g. exponential) can be

fitted to the patch-size distribution. One way of fitting a given

distribution to data has been to use ordinary least square

regression on the log-log transformed probability distribution

function of patch sizes. However, this method is known to have

substantial bias in estimating the parameter values, especially for

small data sets [44,45]. Maximum likelihood methods or least-

square fits of the inverse-cumulative distribution (which quantifies

the number of patches whose size is larger than a given value s for

different values of s) provide more accurate estimates of the

parameters of most heavy-tailed functions [48].

Trends. The above methods inform us about whether the

spatial indicators for a given spatial data set are significantly

different from those of random patterns. However, to anticipate

ecological transitions, we also need to know how these spatial

indicators are changing along a degradation gradient. Trend

statistics like the Kendall’s t [12,30] or Pearson’s correlation

coefficient [25,49] can be used to quantify the strength of the trend

in the indicator along the gradient.

Simulated spatial data sets
Spatial data in ecology are typically obtained by field studies,

data collecting devices placed at various locations of an ecosystem

or extracted from spatial imagery. In any of these cases, the nature

of data at a given spatial location can be of two types: (a) a discrete

occupancy data, such as presence or absence of vegetation (or

species) at each pixel of an image, or (b) a continuous variable,

such as NDVI (Normalized Difference Vegetation Index) at each

pixel or nutrient concentration at each sampling point.

Here, to serve better our method-illustration purposes, we chose

to work on model-generated data rather than real data. We

thereby circumvent limitations of missing or noisy data, and avoid

issues of misinterpretation arising from potential insufficient

knowledge about the underlying degradation gradients in real

data. We generated three synthetic data sets using three

representative models of tipping points and self-organization in

ecological systems. The three models treat ecological variables in a

spatially-explicit framework with stochasticity. They all describe

vegetation dynamics under resource limitation or grazing pressure,

but they differ in the nature of ecological interactions and the

emerging spatial vegetation structure. A detailed description of the

models can be found in Appendix S2 but a brief description

follows.

N Data set 1 was obtained from a local positive feedback model

resulting in a non-patchy vegetation structure [50,51] (Fig. 1

first row). Space is represented as a two-dimensional lattice

[52,53]. Locally, vegetation density grows logistically and is

lost due to grazing. Biomass and water are exchanged between

neighboring sites at a certain rate, such that a site with high

biomass (or water) will have the tendency to diffuse biomass (or

water) to its neighboring sites. As rainfall falls below a certain

threshold, the ecosystem undergoes an abrupt transition from a

globally high vegetation density to a bare state due to the

nearly synchronous shifts of each of the sites to a desert state

[52].

N Data set 2 is based on a local facilitation model that exhibits

spatial patterns characterized by a scale-free patch-size

distribution [15]. In this stochastic cellular automaton model,

an ecosystem is represented by a grid of cells, each of which

Figure 1. Spatial patterns along a degradation gradient in the three data sets. In each row, the system approaches the bifurcation point
from left to right (see Fig. S1 in Appendix S2 to visualize the location of the four snapshots along the degradation gradient.) First row: local positive
feedback model (data set 1). Middle row: local facilitation model (data set 2). Bottom row: scale-dependent feedback model (data set 3). In each
panel, darker cells correspond to higher vegetation biomass.
doi:10.1371/journal.pone.0092097.g001
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can be in one of three discrete states: vegetated (+), empty (o)

or degraded (2). Empty cells represent fertile soil whereas

degraded cells represented eroded soil patches unsuitable for

recolonization by vegetation. A key ecological mechanism is

the positive effect of vegetation on its local neighborhood

through increased regeneration of degraded cells. Because of

this local facilitation, vegetated cells tend to form clusters (Fig. 1

second row). When the environmental conditions become

harsher, there is a point at which the vegetation dies out and

the system becomes a desert resembling a saddle-node (or fold)

bifurcation.

N Data set 3 is based on a scale-dependent feedback model that

results in periodic (Turing-like) spatial vegetation patterns [54].

This model is based on a three partial differential equations

model describing the dynamics of vegetation biomass, soil

water and surface water. Plants grow due to soil water

availability and die due to natural mortality and/or grazing.

The infiltration rate of water in the soil is higher in areas with

vegetation than in bare soil, leading to the accumulation of

water under vegetation and to its depletion further away,

resulting in a scale-dependent feedback responsible for the

formation of regular vegetation patterns [54] (Fig. 1 last row).

When water availability becomes limited, a homogeneous

vegetated state becomes unstable leading to self-organized

patterns such as gaps, labyrinths and spots. A further reduction

in water availability leads to a transition into a desert state,

again mimicking a fold-like bifurcation.

The three models exhibit a bifurcation from one state (e.g.,

vegetated) to an alternative state (e.g., desert) as an external

parameter (such as rainfall, grazing, etc) changes. See Appendix S2

for underlying mathematical equations and parameter values of

these models. In a previous study [12], it has been shown that the

three systems take increasingly longer to recover to their

equilibrium after perturbation, thus demonstrating that critical

slowing down is a generic feature of the transitions observed in

these three ecological models, regardless of their different

underlying mechanisms and their different types of spatial

structures.

For our analysis, we selected ten snapshots (i.e. two-dimentional

space discretized into matrices recording the spatial spread of the

vegetation at the end of the simulation) for each of these models at

different points along a gradient of degrading conditions prior to

the transition. We illustrate our analyses using only ten of these

points which are not equally spaced along the gradient (their

location is shown on Fig. S1 in Appendix S2).

We are interested in quantifying how the spatial characteristics

of these matrices change when approaching a tipping, or

bifurcation, point. We are considering cases where the whole

ecosystem shifts to an alternative state. In our mathematical

representation of the ecosystem, this is equivalent to the entire

matrix undergoing a shift. The degradation sequence of the

matrices might correspond to snapshots in time (e.g. temperature

changing through time) or in space (e.g. herbivory pressure

changing in space depending on a distance to a water point). Both

types of data are relevant to evaluate and test early warning

signals. However, shifts of a given spatial ecosystem in time are

more commonly the type of phenomena that we are trying to

anticipate.

Results

We suggest a step by step process to decide which spatial

indicators should be used (Fig. 2). The spatial statistics that need to

be evaluated depend on the type of data set (with discrete or

Figure 2. Flow chart of analysis to perform on a spatial data set.
doi:10.1371/journal.pone.0092097.g002
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continuous values) at hand. Two of the three datasets used in this

paper provide quantitative, continuous data, i.e. vegetation

biomass (data set 1 and 3), whereas data set 2 gives qualitative,

discrete data indicating the presence or absence of vegetation in

each cell. For this latter data set, we transformed the original

matrix by the coarse-graining procedure described in ‘‘Stastistical

significance tests’’. More specifically, we used submatrices of 565

cells in which we counted the number of cells occupied by

vegetation [12]. We obtained matrices that were 25 times smaller

than the original ones and where values in each of the cells ranged

between 0 and 25, indicating the local abundance of vegetation.

The size of the submatrix used to transform the original data may

affect the behavior of the indicators.

The first question to ask is whether the patterns observed are

periodic or not. The r-spectrum obtained from the DFT analysis

provides information about whether the patterns are periodic,

while the h-spectrum indicates whether the patterns are isotropic

(i.e. with no specific orientation) or anisotropic (i.e. with a specific

orientation, e.g. band-like patterns). If the patterns are not

periodic, the generic leading indicators (i.e. spatial variance,

spatial skewness and spatial correlation between nearby sites) may

be used [12] and the power spectrum should be checked for

possible reddening [13]. In addition, if the patterns are not only

irregular but also patchy (e.g. can be characterized by two phases,

one vegetated and one bare), the patch-size distribution may be

plotted and estimated [15,46]. If the patterns are periodic and

anisotropic, the wavelength of the pattern should be evaluated.

The wavelength is equivalent to the dominant length scale of the

pattern provided by the r-spectrum [43]. For periodic isotropic

patterns, the skewness of the distribution of values of the data set

(e.g. grey pixels in the case of a greyscale image) indicates the type

of patterns (i.e. spots, gaps or labyrinths) [43]. Additionally, it is

noteworthy that if the data set includes several replicates at each

stress level, potential analysis may be performed [55–57] (see more

details in Appendix S1).

Next, we present how this methodology can be applied to our

three data sets.

1. Distinguishing periodic from non-periodic patterns
We used DFT analysis to estimate the r-spectra as a function of

wavenumbers for all the three data sets (Fig. 3). The first and

second data sets (Fig. 3, first and second row) show a noisy pattern

indicating that contribution to r-spectra is not significant for all

wavenumbers. However, the r-spectrum for the third data set, the

scale-dependent feedback model, shows a clear peak (Fig. 3 last

row) even far from the transition. The peak indicates that there is

dominant wavelength (corresponding to a characteristic patch size)

which is a signature of periodic patterns. Note that periodicity can

Figure 3. Radial-spectrum along a degradation gradient in the three data sets. In a row, each panel corresponds to the radial-spectrum of
the system at a different location along the degradation gradient. The system approaches the bifurcation point from left to right column (as in Fig. 1).
First row: local positive feedback model. Middle row: local facilitation model (original data transformed using 565 submatrices). Bottom row: scale-
dependent feedback model. Gray areas correspond to 95% confidence intervals obtained using 200 simulations of a null model (i.e. data sets of same
size generated by reshuffling the original data set).
doi:10.1371/journal.pone.0092097.g003
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also be seen by plotting the power spectrum, where the periodicity

is visible as a ring corresponding to the dominant wavelength of

the data set (see upcoming paragraph ‘‘DFT and reddening’’).

Therefore, we conclude that the two first data sets are not periodic

whereas the last one shows some spatial periodicity.

2. Probing spatial early warnings for non-periodic
patterns

We first focus on the case of the non-periodic patterns, i.e. data

set 1 showing no clear spatial structure and data set 2 with

vegetation clusters.

Spatial correlation, variance and skewness. In data set 1,

spatial correlation at lag 1 and spatial variance increase whereas

spatial skewness decreases toward the bifurcation point (Fig. 4), as

expected from theory. The behavior of these indicators is very

similar for data set 2, except that the spatial variance decreases just

before the collapse. This difference in the behaviour of the spatial

variance is due to the fact that data set 2 measures only presence

or absence of vegetation (i.e qualitative data) whereas data set 1

provides biomass density at each location in space (i.e. quantitative

information). We note that the spatial variance and skewness for

data set 1 are identical to those of null model which was obtained

by a random reshuffling; therefore, we do not see error bars.

However, we used the coarse-graining method for the discrete

data set 2 which provides a null model for spatial variance and

skewness. See a later section on ‘Probing statistical significance’ for

further comments.

DFT and reddening. The spatial power spectrum (or 2D-

periodogram, see Eq. 5 in Appendix S1) shows a reddening of the

signal, i.e., the amplitude of the power spectra increases at low

wavenumbers, as the system approaches the bifurcation point

(Fig. 5 first and second rows). The reddening of the power spectra

provides advance warning of the transition in all data sets. That

trend is even clearer on the r-spectra, which sums the values of the

2D-periodogram for all the wavenumbers and shows that the

lower wavenumbers contribute more to the total variance of the

data set as the system approaches the bifurcation point (Fig. 3 first

and second rows).

Non-periodic and patchy: patch-size distribution. Data

set 2 was not only characterized by non-periodic patterns, but our

visual examination reveals that it also exhibits distinct patches of

vegetation and bare ground. In that case, it makes sense to look at

the distribution of patch sizes. A way of plotting such data is to

calculate the inverse cumulative distribution, i.e. plotting the

number of patches whose size is larger than a given value s as a

function of s. The inverse cumulative distribution is nearly scale-

free far from the bifurcation point, while its slope decreases and

the distribution becomes bent (toward less large patches) as the

system approaches the bifurcation point (Fig. 6 top row) [46].

For comparison, we plotted the inverse cumulative patch-size

distribution of data set 3 that is also patchy but periodic. Far from

the transition, after the onset of pattern formation, the periodic

patterns presented a patch-size distribution characterized by a

sharp cutoff (Fig. 6 bottom row). As the system approaches the

bifurcation point, the value of the cutoff decreases indicating

decreasing patch size in the periodic pattern.

3. Probing spatial early warnings for periodic patterns
In contrast to the first two data sets, data set 3 exhibits periodic

patterns (Fig. 1 and 3 last rows). The h-spectra does not indicate a

strong and clear signal at any specific angle, suggesting that the

patterns do not have a clear orientation, i.e. patterns are isotropic

(Fig. 7 first row). When the system approaches the bifurcation

point (from left to right panel on Fig. 7 second row), the

distribution of values of the data set goes from one peak reflecting

the absence of patterns, to a two-peak distribution due to the

occurrence of both vegetation and bare soil in the system after the

emergence of spatial patterns, and finally to a distribution that is

skewed toward small values because of the dominance of bare soil

in the system. The last distribution observed before the bifurcation

point characterizes spot patterns [43] which has been hypothe-

sized to be an indicator of imminent desertification [22].

Figure 4. Generic leading indicators in data sets 1 and 2 along
a degradation gradient. In each panel, the x-values correspond to
the rank of the snapshot of the system along the degradation gradient.
This mimicks a scenario where we would not know the exact value of
the driver but where we can order the data set along a degradation
gradient and see Fig. S1 in Appendix S2 to visualize the location of the
four snapshots along the degradation gradient. For each of the three
data sets, 10 snapshots were used. Left: local positive feedback model
(data set 1). Right: local facilitation model (data set 2; original data
transformed using 565 sub-matrices). First row: spatial variance. Second
row: spatial skewness. Third row: spatial correlation at lag one. In each
panel, Kendall’s t, quantifying the trend of the indicator, is indicated.
Gray areas correspond to 95% confidence intervals obtained using 200
simulations of a null model (i.e. data sets of same size generated by
reshuffling the original data set).
doi:10.1371/journal.pone.0092097.g004
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4. Probing statistical significance
We make further comments on the statistical significance for

indicators of spatial data, especially in the context of null models

for spatial variance and spatial skewness. As an illustration of the

coarse-graining method proposed in the ‘‘Methods’’ section, we

compared the trends in the generic leading indicators on coarse-

grained matrix obtained by different dimensions of submatrix,

s|s with s~1 (in this case the coarse-grained matrix is identical to

the original matrix), 2 and 5 but starting from the same original

matrix of size 100|100 from our data set 2. As shown in the first

row of Fig. 8, the values of spatial variance along the degradation

gradient differ substantially from the ones of the null model only in

the coarse-grained case (second and third column). The same

result seems to be true, although the differences are not as

pronounced, for spatial skewness (second row). In contrast, the

coarse-graining method does not offer a good null model for

spatial correlation (last row, Fig. 8). In summary, a random matrix

that has the same dimensions and average as the original spatial

data can act as a null model for computing spatial correlation only.

On the other hand, a comparison between indicators of coarse-

grained matrices of both original and random matrix data can act

as a null model for spatial variance and spatial skewness.

Discussion

In this manuscript, we presented a systematic methodology for

applying spatial early warning signals of abrupt ecological

transitions. To demonstrate the methods, we employed data

generated from simulations of spatially-explicit ecological models

with stochasticity that showed abrupt transitions from one state to

an alternative state. It is increasingly being recognized that spatial

dynamics pose challenges and provide opportunities for both basic

science as well as management [58]. Research on spatial dynamics

in ecology is continually uncovering new patterns and mecha-

nisms. Some of these processes are likely related to regime shifts. In

this context, the main objective of this manuscript was to provide a

methodological guide that can stimulate the application of spatial

indicators for ecological transitions on empirical data sets from real

case studies.

In recent years, much effort has been devoted to the search for

‘generic’ indicators based on the idea that there are some common

behaviors across a range of complex systems as they approach a

bifurcation point [59]. Taking into account the spatial organiza-

tion of natural systems has revealed that many indicators may not

behave in spatially-structured systems as they would in other

systems. More specifically, recent theoretical studies have suggest-

ed that trends of generic leading indicators (spatial variance,

spatial skewness, and spatial correlation between nearby sites)

could be different in self organized patterned systems [12]. For

such ecosystems, system-specific indicators may be more appro-

priate. In particular, when spatial patterns are periodic or regular

(Turing-like), the shape of the patterns may give an idea of the

proximity to the threshold where the system may undergo a

regime shift [22]; specifically, spots could warn of approaching

Figure 5. Power spectrum along a degradation gradient in the three data sets. In a row, the system approaches the bifurcation point, from

left to right column (as in Fig. 1). For a data set of size M|N , the power spectrum is typically plotted for wavenumbers up to p~
M

2
and q~

N

2
[47]

and is scaled by the spatial variance s2 (i.e. the scaled power spectrum is evaluated as
I

s2
) [35]. Red color indicates higher values of the scaled power

spectrum,
I

s2
. The x and y-axis correspond to the wavenumbers along these directions. First row: local positive feedback model (data set 1). Middle

row: local facilitation model (data set 2; original data transformed using 565 sub-matrices). Bottom row: scale-dependent feedback model (data set
3).
doi:10.1371/journal.pone.0092097.g005
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desertification [16,22]. If the patterns are non-periodic or irregular

(in particular, if the patch-size distribution is described by a heavy-

tailed distribution), the patch size distribution may contain

information about the degradation level of the ecosystem but

more needs to be known about the underlying ecological

mechanisms to interpret the changes in the shape of this

distribution [15,20,46,60]. In other words, the nature of spatial

organization of ecosystems seems to be a key factor in determining

what type of indicators may be employed to detect an impending

ecological transition in spatially-structured systems. Therefore, a

first and essential step when starting to analyze a spatial data set is

to get an idea of the type of spatial organization that one is dealing

with. A good knowledge of the system and its underlying ecological

mechanisms (specifically those responsible for the spatial structure)

are required to know which indicator to use and how to interpret

the changes. Theoretical studies have started developing method-

ologies for inferring underlying mechanisms from a limited

number of spatial snapshots [61,62]. Such knowledge will facilitate

to assess the risks of ecological transitions while accounting for

potential false and failed alarms.

Clearly, the usefulness of the indicators presented here depends

greatly on the underlying mechanisms driving the change in the

ecosystems studied. In all our analyses, we assumed that a single

driver is monotonically changing, while the underlying environ-

mental conditions are assumed relatively stable and the environ-

mental stochasticity relatively weak. This may not always be the

case. For example, spatial correlation can increase due to changes

in the underlying spatial heterogeneity of the environment, or due

to alterations in local ‘mixing’ (or diffusion) levels in the landscape

[5]. Effects of increasing spatial variance near a critical point could

be confounded by various intrinsic factors such as demographic

noise arising from changes in population sizes, state-dependent/

multiplicative noise. The nature of the dispersal processes between

patches in fragmented landscapes may affect expected trends in

the indicators. In addition, extrinsic factors such as environmental

fluctuations that vary in space and time can complicate our

interpretations of early warning signals. In a similar way, system-

specific conditions may affect the behavior and thereby interpre-

tation of the indicators. For example, in Mediterranean drylands,

degradation is accompanied by a change in the patch-size

distribution toward less large patches, whereas the opposite was

Figure 6. Inverse cumulative patch-size distributions along a degradation gradient in data sets 2 and 3. Along each row, the system
approaches the bifurcation point from left to right colum (as in Fig. 1)n. First row: local facilitation model (original data not transformed). Bottom row:
scale-dependent feedback model. Gray areas corresponds to 95% confidence interval obtained using 200 simulations of a null model (i.e. data sets of
same size generated by reshuffling the original matrix).
doi:10.1371/journal.pone.0092097.g006
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observed in salt marshes because the underlying mechanisms

driving the formation of the patterns differ in the two ecosystems

[15,46,60]. Therefore, our interpretations of leading indicators are

prone to both false positives and false negatives.

To prevent such errors, knowledge of the underlying heteroge-

neity, repeated observations of the system [60], or a sufficiently

well-described system so that it can be modelled are necessary to

know what to expect along a degradation trend. As this is not

usually the case, general models have been suggested to be fitted to

time series data[63,64] to simulate surrogate scenarios for

comparing trends obtained from the original data sets. In this

case the model provides an expectation of i) whether and when a

shift is likely, and ii) what trends should look like as the system is

approaching a shift. Such approaches, however, are yet to be

developed for spatially-explicit systems. Although we presented a

couple of ways to develop null models, these are rather simplistic

as they entirely neglect any underlying spatial structuring.

Therefore, the design and selection of null models for spatial

data, which is an area of active research in ecology, is another

important avenue for further research [65]. There are other

promising avenues of research to be pursued. Composite metrics

that combine spatial patterns with their temporal dynamics could

potentially offer new and potentially more reliable indicators of

imminent transitions [66]. Ecological transitions and leading

indicators in the context of metapopulation dynamics, where

factors that stabilize or make species more vulnerable to extinction

have been extensively studied, may be a fertile ground for further

research.

More importantly, despite a few recent studies, we still lack

empirical tests of spatial early warnings. Researchers have studied

spatial warnings in laboratory populations of microbial organisms

such as Daphnia and yeast [25,31]. In these studies, individual

populations are maintained in locally well-mixed small beakers or

petri-dishes and they are ‘connected’ to other populations by

‘controlled dispersal’ where the researcher transfers a fraction of

the local population to its nearest neighbors. In the field,

researchers have employed space-for-time substitution; in this

approach, it is assumed that spatial patterns at locations with

different values of stressors (e.g. grazing or rainfall) are equivalent

to the dynamics of spatial patterns where the stressor is changing

with time. This is a widely used approach in ecology as an

alternative to long term ecological studies, for example to

investigate ecological succession or how ecosystems may respond

to climate change [67]. In the context of alternative stable states

and tipping points, this method has been employed to establish the

existence of (multiple) stable states in savanna ecosystems as a

function of rainfall [57,68], and to forecast how spatial self-

organization of semi-arid vegetation may respond to increasing

stressors such as grazing [15]. However, the application of space-

for-time method is not without limitations [69]. One needs to be

cautious about the possibility of existence of various other sources

of heterogeneity, both biotic and abiotic, along a spatial gradient

of stressor. As we have argued before, the interpretation of the

Figure 7. Analysis of the periodic patterns of data set 3. In a row, the system approaches the bifurcation point from left to right column (as in
Fig. 1). First row: h-spectrum. Gray areas corresponds to 95% confidence interval obtained using 200 simulations of a null model (i.e. data sets of same
size generated by reshuffling the original matrix). Second row: histogram of the values of the data set (or pixels of the image).
doi:10.1371/journal.pone.0092097.g007
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trends of early warnings are crucially dependent on the nature of

local ecological interactions and the patterns they produce.

Therefore, sources of heterogeneity, especially those that alter

the ecological processes generating spatial patterns, may therefore

compound the complexity of interpretation of results based on

space-for-time substitutions.

In conclusion, both the theory and the application of the spatial

indicators lag behind the development of the temporal ones.

Spatial patterns may however offer advantages for anticipating or

detecting ecological transitions of the types studied here [11,32].

Unlike temporal indicators which require long, unbroken time

series of frequent observations, spatial indicators may be evaluated

even if measurements are irregular or infrequent over time. While

spatial pattern measurements require intensive data collection at

each time point, in many cases this may be easier than high-

frequency time series sampling [5,11,13]. In both space and time,

more empirical validation of the indicators currently proposed in

the literature is needed. We do not yet have an example where

early warning signals were used to avert an upcoming shift (they

have been used in models, experiments or retroactively). We hope

that this work will stimulate further development, testing and

application of spatial indicators in a broad range of ecosystems.
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