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Abstract

Currently, no available pathological or molecular measures of tumor angiogenesis predict response to antiangiogenic
therapies used in clinical practice. Recognizing that tumor endothelial cells (EC) and EC activation and survival signaling are
the direct targets of these therapies, we sought to develop an automated platform for quantifying activity of critical
signaling pathways and other biological events in EC of patient tumors by histopathology. Computer image analysis of EC in
highly heterogeneous human tumors by a statistical classifier trained using examples selected by human experts performed
poorly due to subjectivity and selection bias. We hypothesized that the analysis can be optimized by a more active process
to aid experts in identifying informative training examples. To test this hypothesis, we incorporated a novel active learning
(AL) algorithm into FARSIGHT image analysis software that aids the expert by seeking out informative examples for the
operator to label. The resulting FARSIGHT-AL system identified EC with specificity and sensitivity consistently greater than
0.9 and outperformed traditional supervised classification algorithms. The system modeled individual operator preferences
and generated reproducible results. Using the results of EC classification, we also quantified proliferation (Ki67) and activity
in important signal transduction pathways (MAP kinase, STAT3) in immunostained human clear cell renal cell carcinoma and
other tumors. FARSIGHT-AL enables characterization of EC in conventionally preserved human tumors in a more automated
process suitable for testing and validating in clinical trials. The results of our study support a unique opportunity for
quantifying angiogenesis in a manner that can now be tested for its ability to identify novel predictive and response
biomarkers.
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Introduction

Cancers are a complex community of different cell types with

the transformed tumor cell population usually receiving primary

attention. Cells of the tumor stroma, often considered secondary,

provide essential support for tumor cells and are increasingly

recognized for their contributions to the malignant behavior of

cancers [1]. Among stromal cells, the importance of endothelial

cells (EC) is widely recognized, which has led to the development

[2,3] and clinical adoption [4,5] of treatments targeting tumor EC

as a way of controlling tumor growth and spread. The

pathophysiologic and therapeutic significance of EC in cancer

biology suggests the need to study and characterize EC in patient

tumors. However, there have been few efforts to study these cells

in human cancers beyond assessing the density and limited

characteristics of microvessels [6,7,8]. Low numbers, inconspicu-

ous and pleiomorphic appearance and dispersal throughout the

disorganized architecture of tumors make systematic visual

identification of EC in histopathology very challenging. Biomarker

staining can facilitate EC identification but adds to the complexity

of visual inputs that observers must process (Fig. S1). Given the

necessary expertise, time, and labor, visual analysis of cancer EC is

not practical on a clinical scale.

Based on prior studies in mouse tumor models [9,10], we

wanted to examine biological events, such as proliferation and

activation of signaling pathways, in EC of human tumors to
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understand their biology in real cancers and identify potential

metrics of tumor angiogenic activity. EC in human renal cell

carcinomas (RCC) were of particular interest because deregulated

angiogenesis features prominently in the pathogenesis of these

tumors [11], and anti-angiogenic agents are preferred treatment

for patients with metastatic RCC [12]. The goal of characterizing

RCC EC in patients entered in therapeutic clinical trials meant

that tumors from many patients would need to be studied, and a

computer-assisted approach to analysis would be needed. To this

end, we developed a novel image analysis platform to perform

selective molecular imaging of patient tumor tissue, accurately

delineating structures and reliably identifying cell types of interest

using the FARSIGHT software platform [13].

Performing comprehensive, cytometric analysis of EC from

tumor images is predicated on the identification of individual cells

present in the tumor and their classification into cell types of

interest. We developed a hybrid nuclear segmentation algorithm

(Methods Section) that delineates individual nuclei in the image

resulting in a label map that defines the presence of all nuclei. The

label map allows the computation of quantitative measurements

(referred to as features) that describe the shape, size, texture and

intensity of associated biomarkers for individual nuclei. These

features are provided as an input to a classification algorithm that

learns different classes of cells from the training examples and

labels provided by an expert. In the traditional classification

paradigm, the user sifts through a pool of unlabeled cells and

provides class labels (e.g. endothelial cell or tumor cell) for a subset.

The labeled subset is provided as an input to the algorithm which

uses these features and labels to construct a mathematical model

and classify all the cells present in the dataset. However, human

trainers can spend considerable effort providing many uninfor-

mative examples, because they cannot judge the quantitative

contribution of an example to the learning task. Also, when the

analysis is performed at the scale of clinical trials with hundreds of

thousands of cells, selecting useful examples can be an effort-

intensive proposition. Unaided, they can introduce subjectivity

and selection bias into the learning process which might hurt

classification performance. In order to make the training objective

and minimize the training effort, we adapted and improved a

novel active learning algorithm developed originally for Unexplod-

ed Ordnance Cleanup [14].

The fundamental idea behind active learning (AL) is that not all

training examples are equally useful for classification. Based on

what we know about the cells by observing the labels for a few

training examples, labels of certain examples are more useful than

others. By focusing on these examples iteratively, the algorithm

can learn the problem more quickly and classify the data more

accurately. AL algorithms sequentially select the most informative

cells from the large unlabeled pool and query the user for their

labels. Based on how the notion of information is defined, several

active learning methods have been proposed. One of the most

popular frameworks is the Uncertainty Sampling where the

algorithm queries for examples that it is most uncertain about. It is

commonly used with margin based classifiers like SVM [15] and

also with probabilistic classifiers where the notion of uncertainity is

easily defined in terms of probabilities of the class. Query by

Committee methods [16,17] use an ensemble of classfiers and

query training examples that have the maximum disagreement in

their labeling by the committee members. Expected Error

Reduction methods [18,19] query those examples that reduce

the future generalization error of the classifier and are computa-

tionally expensive. The proposed approach falls under the

category of Variance Reduction methods where examples that

reduce the variance and thereby the uncertainty in the parameter

estimates are chosen for labeling and information is quantified as a

derived quantity of the Fisher Information Matrix (Methods

Section). Active learning methods have found success in several

domains like text classification [15,17], microarray analysis [20],

information retrieval [21], recommender systems [22] etc. Active

learning methods have also been applied in the field of

histopathology with considerable sucess [23,24].

Traditionally, supervised classification algorithms also require

the users to select the best set of features that will help differentiate

between different cells of interest. The more discriminative the set

of features selected, the better the classification accuracy.

However, most feature selection algorithms require a representa-

tive training set apropri to select the best set of features for

classification. Other feature reduction methods involve exploiting

the information in the eigenstructure of the data and project the

original data into a latent space where the new features are linear/

non-linear combination of original features. Although effective, the

transparency of features is lost when latent space methods are used

and additional effort is required to interpret these results. Most

feature selection algorithms require the user to perform offline

analysis. To select the important features on the fly and obviate the

offline feature selection process, we improved the active learning

algorithm to automatically select the important features for

classification also, thereby freeing the user from expending

additional effort for deciding the relevant features for different

cell classification problems. The complex mathematics of the

proposed algorithm (see Methods for details) is hidden from the

user and it is integrated into the FARSIGHT software system with

graphical user interfaces that constantly update the user about the

progress of classification and the parameters being used, making

the classification process transparent and practically usable. The

results of our study indicate that the proposed approach enables

characterization of EC in human tumors that can be tested and

validated in clinical trials.

Results

Endothelial cell identification in human tumor
histopathology

Our study requires analysis of vascular EC in patient ccRCC

through automated analysis of large batches of multi-spectral

images of tumor slides immunostained for CD34 to reveal EC

(250–500 images/batch are common). We previously developed

FARSIGHT to analyze images and classify carcinoma cells based

on morphometric characteristics and association with epithelial

cytokeratin or other biomarker staining [25]. When we used

similar association rules to classify EC on a subset of ccRCC

images, the resulting classification had many errors when

compared to expert human EC classification of the same images.

To improve automated EC classification, we incorporated

supervised machine learning classifier algorithms (Kernel Partial

Least Squares, KPLS [26]) into FARSIGHT and developed

protocols for providing examples of EC and non-EC for training.

EC classification improved, but the primary goal of high specificity

of EC classification (.0.95) was achieved only in very few images,

and these tended to be the actual images used for training or

different images from the same or similar tumors. It also came with

considerable sacrifice in sensitivity. Results did not improve

substantially with the addition of carbonic anhydrase (CA) IX and

smooth muscle actin (SMA) immunostaining to highlight tumor

cells and pericytes, respectively, for exclusion during EC classifi-

cation. More training with additional examples of EC and non-EC

in the same or new images only improved classification marginally

or not at all. On closer inspection, the poor performance of these

Active-Learning- Endothelial Cell Characterization
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algorithms was discovered to be a result of the immense diversity

in both CD34 biomarker staining patterns as well as features of the

cells in the large image set, all part of the inescapable

heterogeneity of patient tumor samples. The training set, by

necessity, identified only a minor sub-group of EC that may not

exemplify the critical features or criteria for accurate classification

and, hence, performed poorly when applied on the entire dataset.

Supervised machine learning algorithms are effective only when

provided with labeled examples that capture all essential

information about the data for which predictions are sought. As

training samples selected exclusively by humans did not produce a

classifier that could classify EC in RCC reliably, we hypothesized

that performance would be optimized by incorporating a novel

active learning algorithm based on the logistic regression classifier

in FARSIGHT (FARSIGHT-AL).

To teach FARSIGHT-AL to classify EC in a set of tumor

images, the trainer provides one initial example of EC and non-

EC nuclei. The system then displays a list of cell features that can

be utilized for the current classification task. Since the algorithm

automatically selects the important features, we initially performed

a ‘‘blind’’ analysis where all the computed features (Table S1 in

File S1) were provided as inputs to the algorithm. We refer to this

mode of the algorithm as ‘‘auto-select’’ mode in contrast to

‘‘manual-select’’ mode where an expert personally selects the

relevant features for classification. In our study, experts were

trained pathologists and an analyst trained in EC analysis in

human histopathology specimens. The algorithm searches the

feature measurements of all segmented cells and presents the cells

with features that result in the maximum information gain

(computed via the Fisher information matrix) for the trainer to

label. Based on the response of the trainer, the algorithm updates

its parameters, selects the best set of features that explain the

classification of the current labeled set and also computes the most

informative cells for the user to label in the next iteration. After

each iteration, the algorithm computes the increase in maximum

information gain and automatically senses convergence of its

evolving EC classification model when the increase in information

gain attains a plateau. The algorithm also updates the user

interface that displays a set of informative plots and heatmaps

indicating the state of the algorithm. The interface also allows the

user to explore the features of cells in different views allowing the

user to explore the parameter space comprehensively (Fig. 1).

Upon convergence, FARSIGHT-AL proceeds to classify all cells

as EC or non-EC and overlays a class-specific color-coded dot on

the cells for user verification. The EC classification model

developed by FARSIGHT-AL using one set of images can be

archived and used to classify EC in other images.

We created a set of 20 images of stained ccRCC tumors from

five different patients (ccRCC20 image set) with which to train and

test the program (Fig. S1 shows a typical image analyzed). A total

of 8,360 cells segmented by the FARSIGHT-AL nuclear

segmentation algorithm were manually classified by a pathologist

(trainer 2 in subsequent results) to train and evaluate the

performance of the algorithm. 50 active learning iterations were

performed to select the most informative cells from the unlabeled

pool. The algorithm automatically weighted the features based on

their discriminative capacity for the classification task and

automatically set the weight of uninformative features to (nearly)

zero, thereby nullifying their participation in the learning process.

The performance of our algorithm was evaluated using classifica-

tion accuracy as the metric and compared to that of the

‘‘standard’’ logistic regression classifier that chooses training

examples randomly without any explicit criterion to select

discriminative features. The proposed algorithm outperformed

standard logistic regression and its performance was more reliable

(Fig. 2 (A)). We also compared the performance of our algorithm

with other feature selection algorithms: Prinicpal Component

Analysis (PCA), Univariate Feature selection via t-test (T-Test)

[27] and Minimum Redundancy-Maximum Relevance (MRMR)

[28]. PCA uses the spectral information and captures the direction

of maximum variance in the data by projecting the data on the

principal components which are the eigen vectors of the

covariance matrix of the data. The simple univariate feature

selection method assumes that there is no interaction between the

features and applies a univariate criterion i.e., the t-test on each

feature and compares the p-value for each feature to determine its

effectiveness in separating the classes. The MRMR feature

selection algorithm uses mutual information criteria to compute

the optimal set of features that are maximally different from each

other but at the same time highly correlated with the classification

variable. The comparison of performance of these feature selection

algorithms with the proposed algorithm for ccRCC (in addition to

three other datasets; see Endothelial cell classification in different

tumor types section for details) is shown in Figure 2(a). It can be

seen that, although the proposed algorithm starts off slowly, after

enough number of training examples (50 in our experiments), our

algorithm performs as well as or better than the other algorithms.

In our experiments, MRMR and T-test achieved optimum

performance faster in all cases, although performance is matched

by our active learning algorithm eventually. For the STS dataset,

both MRMR and T-Test selected the same features and hence the

classifier performance is identical for both these feature selection

methods and the accuracy curve in orange indicates the

performance of both MRMR and T-Test. The ‘‘slow start’’ of

the active learning algorithm can be attributed to the fact that the

proposed algorithm is working on the full training set using all the

features and gradually makes decisions about the importance of

features, whereas with the other algorithms the feature selection

has already been performed and the classifier is working off the

reduced feature set from the beginning. However, the proposed

algorithm is much easier to use as the user can simply load the

feature data and classify the data. The proposed algorithm

achieved an estimated sensitivity of 0.942, specificity of 0.978,

positive predictive value (PPV) of 0.883 and negative predictive

value (NPV) of 0.989 (estimations used a model-based approach

that accounts for correlation between nuclei due to clustered

sampling). The results showed that the machine achieved the

desired high level of specificity accompanied by excellent

sensitivity. We also compared the performance of algorithms on

the Wisconsin Breast Cancer (Diagnostic) dataset from the UCI

Machine Learning Repository [29]. The features in this dataset

are computed from a digitized image of a fine needle aspirate

(FNA) of a breast mass and describe characteristics of the cell

nuclei present in the image. The performance of the proposed

algorithm is again similar to its performance on previous datasets,

and in case of the UCI-II (UCI Wisconsin Diagnostic Dataset), the

proposed algorithm outperforms the others (Fig. S2).

Although the performance of the algorithm in auto-select mode

met expectations in all the datasets, we wanted to compare its

classification performance in manual-select mode. To test this

approach, the trainer selected the features to be used for EC

classification (CD34 average, CD34 total, CD34 surround and

elongated morphology) and allowed the algorithm to select only

the informative training examples for which the user provided the

labels. When compared with the auto-select mode, the algorithm

with manual feature selection achieved a comparable specificity

value (0.998) and PPV (0.99) but the performance degraded

slightly with respect to sensitivity (0.93) and NPV (0.988). (Table 1).

Active-Learning- Endothelial Cell Characterization
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Aware that human experts disagree frequently on which cells

are EC in images, we evaluated how machine EC classification

depended on its training. Two additional experts trained FAR-

SIGHT-AL (in auto-select mode) to classify EC using the

ccRCC20 image set and also personally classified EC in these

images. Venn diagrams (Fig. 3) show the differences in EC

classification by the three trainers and by the FARSIGHT-AL

classification models created by them. For example, of cells

classified as EC by at least one expert, ,64% were classified as EC

by all three, and ,21% were classified as EC by only one. Trainer

1’s manual classification calls agreed more with those of trainer 2

(,73%) than with those of trainer 3 (,70%). Interestingly, EC

classification by each version of FARSIGHT-AL models agreed

better among each other than the manual classification by their

trainers. Once again, trainer 1’s classification model agreed better

with that of trainer 2 than trainer 3. Since classification models are

mathematical rules, they tend to smooth out inconsistent

classification calls, to which humans are susceptible, but preserve

the overall preferences and idiosyncrasies of trainers. When

agreement was quantified by pair-wise Cohen’s kappa statistics

(Table 2), the best agreement with each trainer’s classification was

achieved by the FARSIGHT-AL version that he/she trained

(0.926 for trainer 1, 0.888 for trainer 2, 0.856 for trainer 3),

meaning that the model generated by FARSIGHT-AL based on a

trainer’s selection conformed more closely to his/her preferences

than any other trainer or model. Table S3 in File S1 shows the

agreement matrices for EC classification with the FARSIGHT-AL

models created by the three trainers.

Figure 1. FARSIGHT–AL software interface. The FARSIGHT-AL software interface integrates multiple views of the image data in a linked manner.
Image view (A) allows the user to adjust the complexity of visual input with respect to the number of biomarkers he/she wishes to view. It also shows
the pre-algorithm mask image to illustarte the detection capability of the software. The Scatterplot view (B), Histogram view (C), and Table View (D)
enable the user to visualize the data in ways intended to extract different types of information. All the views are hot-linked i.e., a cell selected in
the image view is highlighted in the scatter plot and table views as well (indicated by arrows). FARSIGHT-AL query window (shown in (E)) displays the
informative examples selected by the algorithm for labeling along with an image snapshot of the cell. The 5 most important features selected by the
algorithm are also displayed to the user. The evolving heatmap (F) shows an emerging structure with the active learning iterations (from i-vi) that
provide an indication of convergence of classification.
doi:10.1371/journal.pone.0090495.g001

Figure 2. Comparison of FARSIGHT-AL performance with other feature selection algorithms. Mean classification accuracy of 25
independent simulations plotted as a function of number of training examples for differnet automated feature selection algorithms including
FARSIGHT AL (blue lines) on four different datasets. FARSIGHT-AL selected 50 training examples sequentially based on the increase in information
gain whereas logistic regression was used to classify examples after feature selection by PCA (green), T-Test (purple), MRMR (Orange). Standard
Logistic regression (red) with no feature selection performs poorly compared to other algorithms. The bars indicate standard error of the mean of
classification accuracy. For the STS dataset, the features chosen by MRMR and T-Test were identical which result in identical classifier performance
indicated by the orange line.
doi:10.1371/journal.pone.0090495.g002
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Endothelial cell classification in different tumor types
With FARSIGHT-AL trained to classify EC in ccRCC tumors,

we tested its ability to classify EC in other tumor types that had

been similarly stained. Since the cell-type identifications of the

three pathologists agreed reasonably, we used the classification

models obtained by training against trainer 2’s interpretations

only. We compared models where features were auto-selected or

manual-selected with human EC classification. EC were classified

in 22 images containing a total of 13,585 cells taken from seven

RCC tumors that were subtyped as non-clear cell (non-ccRCC

image set) and included papillary type I and type II and

chromophobe RCC. Comparison of the two models (Table 1)

with human classification revealed that both the classification

models achieved a high degree of specificity and sensitivity with

the model with manual feature selection outperforming the

automatic one slightly. The same models were also tested and

shown to be able to classify EC with high accuracy in a set of 25

images with 8,111 cells taken from several different soft tissue

sarcomas (STS image set) and a set of 20 images with 17,244 cells

taken of stained K1735 murine melanoma tumors (K1735 image

set). Thus, the classification model trained to classify EC in one

type of human tumor can classify EC accurately in other tumor

types, including those from other species. Table S2 in File S1

shows the agreement matrices with total cell numbers for each of

the tumor types.

Analysis of analyte expression in cells (analyte
classification)

Accurate classification of EC in tumors using FARSIGHT-AL

sets the stage for obtaining biologically meaningful information on

these cells. Our interest in and the potential clinical significance of

the biological activity of EC in tumors led us to train FARSIGHT-

AL to determine their cell proliferative and signal transduction

activities as reflected in EC expression of Ki67 and activated

signaling intermediates, p-ERK and p-STAT3. The characteristic

subcellular distribution and staining intensity of these analytes in

immunostained ccRCC tumors dictated how EC were assessed for

their presence: Ki67 and p-STAT3 are nuclear, and their

expression was assessed by quantifying staining within nuclear

boundaries drawn during segmentation; p-ERK is found in the

nucleus, cytoplasm or both and was assessed by quantifying

staining within a perimeter of two pixels (0.5 micron in images

taken at 400X magnification) beyond nuclear boundaries.

These factors and other distinctive characteristics of analyte

immunostaining (see Fig. S3) led us to analyze datasets for analytes

individually. The FARSIGHT user interface was modified to

allow the user to navigate through hundreds of images and specify

a threshold to classify cells as analyte-positive or analyte-negative.

An issue with quantifying analyte expression is the variability in

analyte background signal (DAB staining) among different tumors

and even among images from different regions of the same tumor.

Selecting a threshold to classify analyte-positive cells without

compensating for the background can result in many cells being

incorrectly classified as analyte-positive. We observed this effect in

Ki67 and p-STAT3 analyte channels with the p-ERK channel

being relatively free of background staining effects. Therefore,

both Ki67 and p-STAT3 channels were processed with a

background subtraction algorithm that computes the average

background signal (pixel intensity) and subtracts this value from

the pixel intensities of the image. Figure 4 shows the results of the

algorithm. It can be seen that when there is spurious background

signal present in the spectrally unmixed analyte channel, the

algorithm eliminates these effects (Fig. 4(A–C)) and does not

modify analyte images without spurious background signal

(Fig. 4(D–F)).

After performing background subtraction, cells classified as

analyte-positive were the ones with analyte expression greater

than the specified threshold. Trainer 2 manually classified every

cell in the ccRCC20 image set as analyte- positive or negative

and, treating this labeled set as ground truth, we validated the

thresholding method against it. The method yielded excellent

specificity and sensitivity (Table S3 in File S1). Figure 5(A)

shows plots of EC classification and analyte expression

performed on an image set from 22 ccRCC tumors (10–12

images/tumor). Figure 5(B) shows the plots in the case where

ECs were identified by the FARSIGHT-AL trainer 2 manual-

select model. The auto-select and manual-select models yielded

similar results, suggesting that FARSIGHT-AL auto-select

model does not exhibit substantial bias towards classifying

analyte-positive or -negative cells as EC. These results showed

that the fraction of segmented cells identified as EC in the 22

tumors varied considerably (Figure 5; range 0.0386–0.3085,

median 0.1294), but the median was significantly higher in these

ccRCC tumors (p = 0.0015, Wilcoxon rank sum test) than in six

papillary RCC tumors (range 0.0121–0.1126, median 0.0258)

that we also studied (Fig. S4). In a tumor that had both

ccRCC and papillary histologies, areas of the former had a

significantly higher percentage of EC than areas of the latter.

These results agree with the exceptional hypervascularity of

tumors with clear cell histology and support the accuracy of

FARSIGHT-AL EC analysis. Also notable is the wide variation

in expression of EC activation antigens among tumors from

different patients, with some showing comparatively low levels

of the parameters measured. Substantial variation among

different images from the same tumor also is evident for some

tumors, suggesting regional heterogeneity in analyte expression

and the possibility of ‘‘hot spots’’ of EC activation.

Discussion

We present a software system with a sophisticated machine

learning algorithm that is scalable and enables rapid, reproducible

and accurate classification of cells with selective quantification of

molecular analytes over subpopulations. It is responsive and

searches features of hundreds of thousands of cells in a matter of

seconds to present the user with the most informative cells for

labeling. A critical requirement of any algorithm when dealing

with human tumors is to adapt to the inherent variability present

in the tissue samples, and our results on ccRCC tumors indicate

that the algorithm performs very well in this regard. Moreover, the

classifier model generated to identify EC in ccRCC performed

similarly on data from different tumors from different species.

Since cancer histopathology studies often examine similar cells in

different tumor tissues, FARSIGHT-AL may save researcher time

and effort in cell classification by creating representative cell type

classification models that are broadly applicable and yield accurate

results when the imaging protocols are similar. Our studies with

multiple experts indicate that FARSIGHT-AL is malleable and

learns the nuances of trainer interpretations. The algorithm is

consistent and, as long as the initial examples and the labels

provided by the trainer are the same, the algorithm queries for the

same cells and yields the same final EC classification result; this

contrasts with human EC classification, which often shows

differences from occasion to occasion (data not shown).

An attractive feature of our system is the complete flexibility it

provides to the user in terms of automation and robustness to user-

selected settings. The auto-select mode requires minimal supervi-
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sion from the user; this ability of the algorithm may be especially

useful in cases where cell types of interest have not been stained

with a specific marker and training relies heavily on morphological

features that might not be easily specified. The system can be

integrated in clinical workflow and used by researchers easily as it

works without the need for careful parameter adjustments or

specialized training. The auto-select mode allows development of

accurate classification models when only images with the labeled

cells are available. The pathologist labeling the cells need not be

an expert in software, the software operator need not be expert in

histopathology, and the two only have to communicate and grade

results. All the algorithms and software have been integrated into

the open-source FARSIGHT toolkit (www.farsight-toolkit.org).

We quantified antigen expression in cells of interest by

determining the fraction of cells expressing a threshold level of

antigen. FARSIGHT-AL permits antigen quantification in other

ways. For example, the level of antigen expression in cells can be

determined just as easily and expressed numerically as the mean or

median or displayed graphically, resembling how flow cytometry

results are usually displayed. Had we interest in an additional cell

type in the tumors studied and could identify these cells with

specificity, FARSIGHT-AL permits classification of additional cell

types and allows characterization of two or more cell subpopu-

lations using the same images. Similarly, additional analytes can be

stained for and studied on the same slide and images, allowing

examination of analyte co-expression by cells. These potentials of

the ‘‘histocytometry’’ platform require development of corre-

sponding multiplex immunostaining protocols and minor modifi-

cation of existing FARSIGHT-AL algorithms.

The analytes chosen for initial study represent EC proliferation

and signaling pathways activated by mitogens and found in

angiogenic endothelium of mouse tumors and are expected to

report endothelial activation and angiogenic activity in human

tumors. Heterogeneity in their expression among patient ccRCC,

a cancer known for hypervascularity and involvement of

deregulated hypoxia response and angiogenesis in its pathogenesis,

was not anticipated. On the other hand, finding differing levels of

angiogenic activation and activity in patient tumors also should

not surprise considering the variation in histopathology among

ccRCC tumors, tumor size and stage at the time of resection, and

clinical behavior and course among patients. However, another

factor that may artifactually contribute to measurement variability

must be considered; how patient specimens are handled prior to

analysis. Tissue antigens are subject to enzymatic and oxidative

degradation, and phospho-antigens may be particularly susceptible

and labile. While we adopted stringent protocols for handling

tumor slides (e.g. immunostaining was performed soon after

cutting), information was unavailable about how tumors were

handled prior to fixation and embedding. As quantitative analysis

of biologically important antigens in patient cancers becomes

feasible, it highlights the need for quality control and standards in

the handling of clinical specimens to limit preanalytic variables.

Management of advanced RCC has been transformed by the

advent of therapeutic agents that target components of the VEGF

and other important EC signaling pathways [7]. Response to

treatment with these agents, however, is variable and cannot be

predicted for individuals on the basis of clinical, pathological or

tumor genetic data. The ability of FARSIGHT-AL to identify and

characterize EC in conventional histopathology specimens makes

it possible to study EC biology in patient tumors and analyze and

quantify activity of pathways that are either targeted or report on

the activity of molecules targeted. We are awaiting clinical data

about the patients whose tumors were characterized using

FARSIGHT-AL to determine whether the measured parameters

correlate with clinical outcome. This illustrates the opportunity for

insight into the vascular biology of cancers of individual patients

and potential discovery of rational predictive biomarkers of

antiangiogenic therapeutic response.

Materials and Methods

Ethics statement
The Institutional Review Board of the University of Pennsyl-

vania approved this study of renal cell carcinoma tumor samples

previously collected by the Eastern Cooperative Oncology

Group (ECOG) in their multi-institutional study protocol

ECOG2804. Patients enrolled in ECOG2804 provided written

informed consent for ECOG to collect tumor tissue previously

removed.

Tissue source
Human renal cell carcinoma specimens were obtained from the

University of Pennsylvania’s Department of Pathology & Labora-

tory Medicine’s clinical paraffin archive and the Eastern Coop-

erative Oncology Group (ECOG) pathology core lab (Northwest-

ern University, Chicago, IL) under IRB approval.

Tissue staining
5 micron sections of formalin-fixed, paraffin embedded tumor

tissues were deparaffinized and treated with citric acid monohy-

Table 1. FARSIGHT-AL EC classification performance metrics.

Sensitivity* Specificity{ PPVm NPVN Non-EC EC

Manual-select
Auto-
select Manual-select

Auto-
select Manual-select

Auto-
select Manual-select

Auto-
select (number) (number)

ccRCC20 image
set

0.93 0.942 0.998 0.978 0.990 0.883 0.988 0.989 7,037 1,323

non-ccRCC image
set

0.965 0.941 0.999 0.997 0.982 0.934 0.998 0.998 13,070 515

STS image set 0.966 0.933 0.997 0.994 0.960 0.922 0.997 0.995 7,415 696

K1735 image set 0.925 0.896 0.998 0.996 0.942 0.911 0.997 0.996 16,553 691

*Sensitivity = True Positive/(True Positive + False Negative).
{Specificity = True Negative/(True Negative + False Positive).
mPPV = True Positive/(True Positive + False Positive).
NNPV = True Negative/(True Negative + False Negative).
doi:10.1371/journal.pone.0090495.t001
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drate buffer (pH 6) at 75uC for 11 minutes prior to staining. The

antibodies used for immunostaining included rabbit monoclonal

anti-phospho-extracellular-signal-regulated-kinase (p-ERK), rabbit

monoclonal anti-phospho-signal transducer and activator of

transcription 3 (p-STAT3), mouse monoclonal anti-human Ki67

(Dako, Carpenteria, CA, USA), rabbit monoclonal anti-CD34

(Epitomics, Burlingame, CA, USA), mouse monoclonal anti-

carbonic anhydrase 9 (CA IX) [30], and Cy3-conjugated anti-

smooth muscle actin (SMA) (Sigma Life Science, St. Louis, MO,

USA). p-ERK, p-STAT3, and Ki67 analytes were detected by

immunohistochemistry with biotinylated species-specific secondary

antibodies and avidin-linked horseradish peroxidase (HRP) (ABC

kit, Vector Laboratories), followed by 3,3 diaminobenzidine (DAB,

Vector Laboratories). CD34 and CA IX were detected by 3-step

immunofluorescence using biotinylated species-specific secondary

antibodies followed by fluorescently-labeled streptavidin conju-

gates (Alexa Fluor 488 and Alexa Fluor 647) (Invitrogen, Carlsbad,

CA, USA). All slides were counterstained with hematoxylin after

immunostaining.

Multiplex staining protocols were developed to stain slides with

combinations of the above antibodies and chemicals to reveal

cellular compartments and antigens that report on cell type and

molecular analytes. A frequently used combination included

staining for a molecular analyte with DAB, CD34 with Alexa

Fluor 488, CA IX with Alexa Fluor 647, SMA with Cy3, and

nuclei labeled in hematoxylin (Fig. S1).

Tissue imaging
Multispectral images were captured using a VectraH multispec-

tral microscope and camera (PerkinElmer, Waltham, MA) at

400X magnification (8 bits/pixel depth) from 420 nm-720 nm at

20 nm wavelength intervals (brightfield mode) or 10 nm wave-

length intervals (fluorescence mode). NuanceH software (PerkinEl-

mer, Waltham, MA) was used to spectrally unmix the image cubes

into individual channels corresponding to hematoxylin, DAB, and

the fluorochromes (Alexa Fluor 488, Alexa Fluor 647, Cy3).

Unmixing was based on the pure spectra of the respective

chromogens and fluorochromes.

Image processing
The spectral unmixing procedure results in multiple non-

overlapping channels including a nuclear channel. We employed a

hybrid segmentation algorithm that combines the algorithms

proposed by Al-Kofahi et al [31] and Lin et al [32] to segment

nuclei. The segmentation algorithm models the image intensities

as a mixture of Poisson distribution and finds a threshold value

based on minimum error thresholding. The initial binarization is

refined using Graph Cuts [33]. The binarized image is then

convolved with a Laplacian-of-Gaussian filter at different scales to

detect seeds and compute initial segmentations (via local

maximum clustering [34]) that are refined using a model based

approach. In the refinement stage, adjacent fragments that share

boundary pixels are merged and the scores of the merged nuclei

are compared against the scores of individual fragmented nuclei. If

the score of the merged nucleus is greater than the individual

scores, then the nuclei are merged together in the final

segmentation. The scores are evaluated using a training set of

accurately segmented nuclei. Interested readers can refer to [31]

and [32] for more details of the individual stages of the hybrid

algorithm. For each segmented nucleus, we generate a range of

‘‘intrinsic’’ features that quantify their intensity, shape, size and

chromatin texture (Table S1 in File S1) along with associative

features that describe their association with multiple proteins

across all the unmixed channels.

Active learning for logistic regression
Each cell is denoted by a vector of cell measurements - xi, where

the subscript i denotes the ith cell. Considering a binary

classification problem, the labels of the cells are denoted by yi

and +1 label indicates that the cell is an EC and a 21 label

indicates that the cell is a non-EC. Following a standard logistic

regression model notation, we can write

Figure 3. Venn diagrams for patterns of agreement in ccRCC20
dataset. Patterns of agreement between the classification calls made
by each of the three experts and the FARSIGHT-AL classification models
trained by them. The agreement was quantified based on a subset of
cells in the ccRCC20 image set with cells that were classified as non-EC
by all three experts being excluded in the analysis. (A) When classifying
cells in this subset as EC or non-EC, the three experts agreed with one
another only in ,64% of the cases. (B) The agreement in FARSIGHT-AL
classification models trained by each of the experts was ,74%. Trainer
2 exhibits the least degree of ‘‘idiosyncrasy’’ in terms of classification
calls and agrees better with trainer 1 than trainer 3.
doi:10.1371/journal.pone.0090495.g003
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P(yi Dxi)~s(yiw
T xi),

Where P(:) denotes the probability of an event, w is a vector of

classifier parameters that need to be estimated and

s(p)~1=(1ze{p ) is the sigmoid function. For convenience, the

intercept term has been accommodated by setting the first element

of xito always be 1. Assuming that the distribution of cell features

are drawn independently and identically from the same distribu-

tion, the log-likelihood function can be written as

l(w)~
XN

i~1

ln (yiw
T xi), ð1Þ

where
P

indicates summation over all N cells being analyzed and

ln denotes the natural logarithm. In traditional supervised

learning, the user provides a labeled set of examples to the

algorithm with the goal of finding the value of w that maximizes

(1); i.e.,

woptimal~ argw max
XN

i~1

ln s(yiw
T xi):

In the proposed method, training examples are selected actively

based on the Fisher information matrix and this approach is called

active learning. We denote the Fisher information matrix by Q

and by definition of the Fisher information matrix [35], we have

Q~Eyf
Ll

Lw

Ll

Lw

T

g,

where Ey denotes the expectation operator with respect to the cell

labels. It is well known that the inverse of the Fisher information

matrix is a lower bound of the covariance matrix of the

estimatedw. In particular, ½det (Q)�{1
be a lower bound of the

product of variances of the elements inw. By selecting the cells that

maximize det (Q), we can reduce the variances or uncertainty in

the elements of w. For logistic regression, Q is given by

Table 2. Quantifying trainer agreement evaluation using Kappay (k) statistic.

Trainer-1 FARSIGHT-AL (1) Trainer-2 FARSIGHT-AL (2) Trainer-3 FARSIGHT-AL (3)

Trainer -1 1.000 0.926 0.850 0.915 0.789 0.848

FARSIGHT-AL(1) 0.926 1.000 0.822 0.894 0.763 0.846

Trainer -2 0.850 0.822 1.000 0.888 0.826 0.860

FARSIGHT-AL(2) 0.915 0.894 0.888 1.000 0.808 0.901

Trainer-3 0.789 0.763 0.826 0.808 1.000 0.856

FARSIGHT-AL(3) 0.848 0.846 0.860 0.901 0.856 1.000

yKappa Statistic is the ratio of observed agreement between raters to perfect agreement, controlling for agreement expected by chance alone. Refer to the ‘‘Kappa
Statistics and Inter-Observer Agreements’’ sub-section in the Methods section to understand how Kappa values are calculated. The values in the above table reflect the
agreement between the raters for EC classification in ccRCC20 image set. The diagonal values in the above table are all 1 as every rater agrees perfectly with himself/
herself.
doi:10.1371/journal.pone.0090495.t002

Figure 4. Background subtraction for analyte channels. To
correct for background DAB staining in Ki67 and pSTAT3 (A), an
extranuclear background subtraction algorithm was applied to the
spectrally unmixed analyte channel (B), resulting in a new, ‘‘back-
ground-subtracted’’ analyte channel (C). Images with little to no DAB
background (D) show almost no difference between the pre-
subtraction analyte channel (E) and the background-subtracted analyte
channel (F). Images in panels (A),(B), (C) display the same cropped
region from a sample image. Images in panels (D),(E), (F) display the
same cropped region from another sample image. The cropped regions
are of different sizes which is reflected in the calibration bars.
doi:10.1371/journal.pone.0090495.g004
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Q~
XN

i~1

s(wT xi)(1{s(wT xi))xix
T

i :

The selection of training examples proceeds in a sequential

fashion where examples that maximize the determinant of the

Fisher information criterion are queried for their labels; i.e., the

algorithm queries the user for labls of those examples that

maximize, in every iteration, the value of the expression

detfQzs(wT xi)(1{s(wT xi))xixi
Tg. In the spirit of sequential

optimal experiment design [36], we use the value of w estimated

from the labeled data selected until the current iteration.

FARSIGHT-AL in auto-select mode uses L1-regularized logistic

regression [37] which promotes sparse solutions and sets w values

of irrelevant features to zero thereby effectively selecting the

features for classification. The maximization problem for training

this classifier is,

woptimal~ arg max (
XN

i~1

ln s(yiw
T xi){lDDwDD1),

where DD:DD1 denotes the L1 norm and l is a free parameter that can

be used to control the degree of sparsity; i.e., a greater value of l
results in large number of w values being set to zero resulting in

fewer features explaining the classification. To deal with the n on-

differentiability of the L1- norm, we use the eps-L1 approximation

to maximize the log-likelihood function. Finally, the Fisher

Information matrix in auto-select mode is given by

Q~
XN

i~1

s(wT xi)(1{s(wT xi))xixi
T{diag(

leffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(w2ze)3

q ),

where diag(:)denotes a diagonal matrix and eis a very small real

number (of the order 1029 ).

Kappa statistics and inter-observer agreements
Cohen’s Kappa (k) [38] is a measure of agreement between two

raters, ranging potentially from 21 to 1, with larger values

indicating better agreement. It is defined as the ratio of observed

agreement to perfect agreement, controlling for the level of

agreement that would be expected by chance alone (i.e., as if the

two ratings were independent). If we denote Po as the observed

proportion of classification calls that are the same between two

raters and Pe as the proportion of classification calls that would be

the same by chance given the observed data, then

K~
(Po{Pe)

(1{Pe)
,

The numerator in this expression represents the proportion of

observed agreement minus the agreement expected by chance

assuming the fractions of observed positive ratings in the two

classifiers, and the denominator represents the highest possible

agreement minus the agreement expected by chance. If the raters

agree as well as if they simply flipped coins i.e., completely

randomly, Po will equal Pe and k will be zero. Although in general

the interpretation of k depends on the prevalence of a positive

rating and the bias (the difference between raters in the proportion

of positive ratings), a k value of 0.6 or greater between raters is

generally regarded as substantial agreement.
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Supporting Information

Figure S1 Multispectral image of a multiplex-stained
ccRCC tumor with results of spectral unmixing. A clear

cell renal cell carcinoma (ccRCC) slide was stained for an analyte

(Ki67) and nuclei using chromogens DAB (brown) and hematox-

ylin (blue), respectively, and for antigens that mark different cells

types (CD34, SMA, CA IX) using different fluorochromes. After

spectral unmixing, the brightfield image (A) yielded hematoxylin

(B) and DAB (C) chromogen channels, which were used for

nuclear segmentation and analyte determination, respectively.

After spectral unmixing, the fluorescent image (D) yielded the

Alexa Fluor 488 (E), Cy3 (F) and Alexa Fluor 647 (G) channels,

which were used to stain CD34 (endothelial cell), SMA (pericyte)

and CA IX (tumor cell) antigens, respectively.

(TIF)

Figure S2 Comparison of FARSIGHT-AL performance
with other feature selection algorithms for UCI machine
learning breast cancer datasets. Mean classification accura-

cy of 25 independent simulations plotted as a function of number

of training examples for different automated feature selection

algorithms including FARSIGHT AL (blue lines) on the UCI

Breast Cancer Datasets. FARSIGHT-AL selected 50 training

examples sequentially based on the increase in information gain

whereas logistic regression was used to classify examples after

feature selection by PCA (green), T-Test (purple), MRMR

(Orange). Standard Logistic regression (red) with no feature

selection performs poorly compared to other algorithms. The bars

indicate standard error of the mean of classification accuracy.

(TIF)

Figure S3 Subcellular distribution of different analytes.
The diversity in the staining patterns of different analytes is

illustrated in the above figure. The nuclear stain appears blue in

color whereas the analyte stain appears brown. Ki67 (A) and

pSTAT3 (B) are predominantly nuclear bound whereas pERK (C)

IS found in both the cytoplasmic and nuclear regions.

(TIF)

Figure 5. Analysis of analyte expression for 22 ccRCC tumors. (A) Results of endothelial cell (EC) classification and analysis of EC analyte
expression performed on 22 ccRCC by Farsight-AL using the auto-select trainer 2 EC classification model and models for analyte classification specific
to each analyte with operator-defined thresholds. Shown are the proportion of total cells classified as EC (top) and of EC staining positively for Ki67,
p-ERK, and p-STAT3. Identifying codes for individual tumors are provided along the horizontal axis. EC proportions are represented by the median
(solid circles) and the 75th and 25th percentile (upper and lower bars) values for the 10–12 image set collected for each tumor-analyte. (B) Similar
results as in (A) for manual feature selection.
doi:10.1371/journal.pone.0090495.g005
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Figure S4 Comparison of ccRCC and non-ccRCC tu-
mors for hypervascularity. The whisker plot shows the

proportion of EC as a percentage of total number of cells in 22

ccRCC tumors (left) and 6 non-ccRCC tumors (right). In both the

panels, the dot and the whiskers follow standard notation i.e., the

dot indicates the median value of the proportion of cells and the

top and bottom whiskers indicate the 25th and 75th percentile.

Visual inspection of these plots suggests that the proportion of EC

is higher in the ccRCC case. Comparison of the median values

from each group using the Wilcoxon rank sum test revealed

statistically significant differences between the groups with a p-

value of 0.0015.

(TIF)

File S1 File containing Tables S1–S4.

(DOC)
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