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Abstract: The Fusarium mycotoxin deoxynivalenol (DON) can cause cell death in wheat 

(Triticum aestivum), but can also reduce the level of cell death caused by heat shock in 

Arabidopsis (Arabidopsis thaliana) cell cultures. We show that 10 μg mL−1 DON does not 

cause cell death in Arabidopsis cell cultures, and its ability to retard heat-induced cell death 

is light dependent. Under dark conditions, it actually promoted heat-induced cell death. 

Wheat cultivars differ in their ability to resist this toxin, and we investigated if the ability 

OPEN ACCESS



Toxins 2014, 6 680 
 

of wheat to mount defense responses was light dependent. We found no evidence that light 

affected the transcription of defense genes in DON-treated roots of seedlings of two wheat 

cultivars, namely cultivar CM82036 that is resistant to DON-induced bleaching of  

spikelet tissue and cultivar Remus that is not. However, DON treatment of roots led to  

genotype-dependent and light-enhanced defense transcript accumulation in coleoptiles. 

Wheat transcripts encoding a phenylalanine ammonia lyase (PAL) gene (previously 

associated with Fusarium resistance), non-expressor of pathogenesis-related genes-1 

(NPR1) and a class III plant peroxidase (POX) were DON-upregulated in coleoptiles of 

wheat cultivar CM82036 but not of cultivar Remus, and DON-upregulation of these 

transcripts in cultivar CM82036 was light enhanced. Light and genotype-dependent 

differences in the DON/DON derivative content of coleoptiles were also observed. These 

results, coupled with previous findings regarding the effect of DON on plants, show that 

light either directly or indirectly influences the plant defense responses to DON.  

Keywords: Arabidopsis; β-1,3-glucanase; cell death; Fusarium; light; non-expressor of 

pathogenesis-related genes-1 (NPR1); peroxidase; phenylalanine ammonia lyase; wheat 
 

1. Introduction 

Fusarium graminearum Schwabe [teleomorph Gibberella zeae (Schweinitz) Petch] and  

F. culmorum (W.G. Smith) Saccardo cause diseases on the roots, stems and heads of cereal plants [1]. 

Fusarium head blight (FHB) receives significant attention because of both the yield losses and 

mycotoxin contamination of grain associated with this disease. F. graminearum and F. culmorum 

commonly produce the trichothecene mycotoxin deoxynivalenol (DON) in infected plant tissue and 

this toxin acts as an aggressiveness factor for the pathogen during the development of root rot and 

FHB disease [2,3]. DON inhibits protein synthesis and its effect on wheat (Triticum aestivum L.) head 

tissue is similar to that of FHB disease, in that it bleaches the tissue [4,5]. Wheat genotypes differ in 

their response to DON; resistance to DON-induced bleaching is associated with resistance to the 

spread of FHB disease (type II resistance to FHB), but not with resistance to Fusarium infection (type I 

resistance to FHB) [4].  

Studies have shown that DON treatment induces defense gene transcription in wheat [5–7], the 

production of reactive oxygen species (ROS) and, thereafter, an increase in programmed cell death 

(PCD) [6]. Diamond et al. [8], however, showed that lower levels of DON (10 vs. 100–200 μg mL−1) 

and a DON-producing strain of F. graminearum did not cause cell death in Arabidopsis thaliana cell 

cultures, but they did reduce the level of cell death caused by heat shock. The opposing effects of DON 

on cell viability and death in Arabidopsis and wheat may be due to many factors, including the 

differences in DON concentrations used. We postulated that it might in part be due to light-dependent 

signaling. The Arabidopsis experiments were conducted using light-grown cell cultures (that contained 

mature chloroplasts), while the wheat experiments were conducted using seedlings. Therefore, the 

light exposure of cells was quite different, and it is known that DON-induced bleaching of barley 

tissue is light dependent [9]. The opposing effects of DON on cell death in Arabidopsis vs. wheat may 
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also reflect host-dependent responses to the toxin, or a specific type of resistance to DON that is 

inherited in a genotype-dependent manner. DON resistance inherent to some wheat genotypes is 

associated with the capacity to convert DON to the less toxic DON-3-glucoside and co-segregated  

with the QTL Fhb1 [4]. This may be in and of itself a light-dependent phenomenon, because, in 

Arabidopsis, a UDP glucosyltransferase (UGT) catalyzes the glucosylation of DON [10] and an 

analysis of Arabidopsis microarray experiments available in public repositories shows that the 

transcription of the encoding gene is light regulated. 

The first objective of this work was to try and determine if light plays a role in how DON influences 

plant cell death. We show the ability of DON and DON-producing F. graminearum to retard cell death 

caused by heat shock in Arabidopsis cell cultures is light dependent, and that DON actually enhanced 

heat-induced cell death in dark-grown cells. The fact that the effect of DON and DON-producing 

Fusarium on cell viability was light dependent, coupled with the previously reported light-dependent 

bleaching of barley leaves by DON [9], indicated that light might be an important determinant of the 

plant response to this toxin and its producer fungi. The second objective was to determine if light 

influences the ability of wheat seedlings to mount defense in response to DON treatment. Using 

seedlings whose roots were treated with DON, we show that light does enhance defense transcript 

accumulation in coleoptiles and increases the DON metabolite content of coleoptiles. The extent to 

which light influences defense transcript accumulation and DON metabolite translocation in  

DON-treated seedlings, however, is wheat genotype-dependent. The implications of these results 

are discussed.  

2. Results  

2.1. The Effect of DON on the Viability of Heat-Shocked Arabidopsis Cell Cultures Is Light Dependent 

We used heat as an abiotic cell death inducer and determined whether light was necessary for  

DON-mediated inhibition of heat-induced cell death (a phenomenon previously discovered by 

Diamond et al., [8]). We compared light- and dark-incubated Arabidopsis thaliana ecotype Landsberg 

erecta cell cultures with respect to the effect of 10 μg mL−1 DON on heat-induced cell death. Light-

grown cultures contained mature chloroplasts, while dark-grown cultures contained plastids, as 

determined by electron microscopy [11]. Cell cultures were treated with 10 μg mL−1 DON or water 

(controls) 24 h prior to heat treatment (55 °C for 10 min). Cells were treated with fluorescein diacetate 

and cell fluorescence and morphology (epifluorescent microscopy) were used to distinguish between 

viable and non-viable cells and to determine whether non-viable cells displayed apoptotic-like cell 

death morphology or necrotic morphology (Figure S1) [8]. Results showed that the effect of DON on cell 

death was light-dependent. When cells were incubated in the dark (Figure 1A, B), DON pre-treatment did 

not enhance the viability of heat-shocked cells. Indeed, when comparing DON and water-pretreated 

cells examined 5 h post-heat treatment, toxin treatment resulted in 2.6-fold higher numbers of cells 

exhibiting apoptotic-like cell death morphology and reduced cell viability by 5.94-fold (P ≤ 0.01). 

However, in light-grown cells harvested 5 h post-heat treatment, DON, as compared to water, reduced 

cell mortality (6.2 and 2.8-fold reductions, respectively in cells exhibiting apoptotic-like cell death and 

necrotic morphology) and enhanced the level of cell viability (by 5.0-fold; P ≤ 0.02; Figure 1C). Another 

interesting observation was that the ability of DON to inhibit heat-induced cell death in light-grown 
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cultures was temporal. At 24 h post-treatment, the DON (relative to water) pretreatment did not 

influence the viability of heat-shocked cells (P ≥ 0.31) (Figure 1D).  

Figure 1. The effect of DON on the viability of heat-stressed Arabidopsis cells. Cells were 

cultured under dark conditions (A and B) or light conditions (C and D) and were treated 

with DON (10 μg mL−1) or water (controls) 24 h pre-heat treatment (55 °C, 10 min) and 

cells were examined at either (A and C) 5 h, or (B and D) 24 h post-heat treatment. Cells 

were treated with fluorescein diacetate and examined under phase contrast microscopy 

with or without UV fluorescence (490 nm) in order to determine if cells were viable, or 

non-viable and exhibiting either programmed cell death (PCD) or necrotic morphology. 

Results represent the mean percentage (+/− standard error) of cells in a given state, based on 

five independent experiments, and in each experiment 200 cells were scored per treatment 

per time point. In control, water-treated, non-heat shocked cells, ≥84% were viable and ≤14 

and 3% respectively displayed PCD or necrotic morphology in dark-/light-grown cultures at 

the time points analyzed. 

 

 

Diamond et al. [8] showed that, like DON, pre-treatment with DON-producing F. graminearum 

reduced the level of PCD caused by subsequent heat treatment in Arabidopsis cell cultures. We conducted 

similar experiments, where light- and dark-incubated Arabidopsis cell cultures were pre-treated with 
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conidia of wild-type DON producing F. graminearum (strain GZ3639) or its DON-minus mutant 

derivative (strain GZT40), 20 h prior to heat treatment (55 °C, 10 min). Cell viability was assessed at 5 h 

post-heat treatment, as described above (Figure 2). For dark-grown cultures, neither the wild type nor 

mutant Fusarium significantly affected either cell viability or the morphology of dead cells (P ≥ 0.30) 

(Figure 2A). This contrasted with the DON which enhanced death under dark conditions (Figure 1). In 

light grown cultures, the wild-type, but not the mutant, significantly enhanced cell viability (by 2.5-fold) 

and reduced cell necrosis (by 1.6-fold; P ≤ 0.05; Figure 2B). Neither fungal strain significantly 

influenced the level of apoptotic-like cell death morphology observed in heat-shocked cells at this time 

point (P ≥ 0.27). Therefore we concluded that the effect of toxigenic F. graminearum on plant cell 

death is light dependent, possibly dependent on chloroplasts, and under light conditions, the ability of 

DON to prevent cell death caused by abiotic stress is temporal.  

2.2. DON Induction of Defense Gene Expression in Wheat Is Light Enhanced and Genotype Dependent 

The second objective was to determine if light influenced the wheat response to DON. In this study, 

we used two wheat cultivars which differ with respect to the ability of their spikelets to resist DON; 

cv. CM82036 is DON-resistant, while cv. Remus is susceptible [4,5]. The response analyzed was 

defense gene expression, namely genes encoding POX, PAL, NPR1 and GLC1. These were analyzed 

because a previous study showed that these were all DON-upregulated in wheat spikelets, and that 

NPR1 transcription was more highly DON-upregulated in the toxin-treated spikelets of cv. CM82036, 

as compared to cv. Remus ([12]). Furthermore, the upregulation of the PAL gene is associated with 

two quantitative trait loci (QTL) that confers spikelets of cv. CM82036 with enhanced resistance to 

both FHB and DON [13]. In this study, the roots of seedlings grown under light or dark conditions 

were treated with DON and defense gene transcription in both roots and coleoptile was analyzed at 4 

and 24 h post-treatment. The localized effect of DON on defense gene expression in roots of the two 

cultivars was not light enhanced (results not shown). In coleoptiles of cv. Remus, GLC1 was the only 

transcript that was significantly DON-upregulated; this phenomenon was light-enhanced (3.1-fold 

higher in DON vs. water treated, light-grown cells observed 24 h post-treatment; P = 0.02) (Figure 3). In 

coleoptiles of dark-grown cv. CM82036 seedlings, POX was the only transcript significantly 

upregulated in response to DON treatment (2.3-fold at 24 h, P = 0.05). But, under light conditions, and 

by 24 h post-root treatment, DON had transcriptionally upregulated all four defense genes in 

coleoptiles of this cultivar (2.0–4.3-fold upregulation; P ≤ 0.02) (Figure 3). Moreover, the highest 

transcript levels were detected at 24 as compared to 4 h post-treatment.  

2.3. Both Genotype and Light Affect the Movement of DON Metabolites within Wheat Seedlings 

Using an ELISA test, we determined the level of DON and DON derivatives in coleoptiles 24 h 

post-root treatment with toxin. The test used did not discriminate between DON and DON 3-glucoside 

(and thus compounds detected are described as DON metabolites). Both the incubation conditions 

(light/dark) and wheat genotype influenced the level of DON metabolites detected within coleoptiles 

(Figure 4). Coleoptiles of cv. CM82036 contained more DON metabolites than those of cv. Remus, 

irrespective of incubation conditions (≥1.7-fold more; P = 0.003) and coleoptiles of cv. CM82036, but 

not of cv. Remus, accumulated significantly more DON metabolites by this time when incubated under 
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light as compared to dark conditions (1.4-fold more; P = 0.046). By 24 h post-DON treatment, neither 

light nor cultivar-dependent differences in coleoptile dry weight were observed (mean = 32–35 mg;  

P ≥ 0.20). However, coleoptiles of cv. CM82036 were more elongated than those of cv. Remus (results 

not shown). 

Figure 2. The effect of DON production by Fusarium graminearum on the viability of 

heat-stressed Arabidopsis cells. Cells were cultured under dark conditions (A) or light 

conditions (B) and were treated with either water, or conidia of either wild type,  

DON-producing F. graminearum (strain GZ3639) or its mutant, non-DON-producing 

derivative (strain GZT40). After 20 h, cells were incubated at either 23 or 55 °C for 10 min, 

and thereafter at 23 °C. Cells were examined at 5 h post-heat treatment. Cells were treated 

with fluorescein diacetate and examined under phase contrast microscopy with or without 

UV fluorescence (490 nm) in order to determine if cells were viable, or non-viable and 

exhibiting either programmed cell death (PCD) or necrotic morphology. Results represent 

the mean percentage (+/− standard error) of cells in a given state, based on five 

independent experiments, and in each experiment, a minimum of 200 cells were scored per 

treatment. In control, water-treated, non-heat shocked cells, ≥94% were viable and ≤4.6 and 

1.4% respectively displayed PCD or necrotic morphology in dark-/light-grown cultures. 
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Figure 3. Influence of light on deoxynivalenol (DON)-induced accumulation of defense 

transcripts in coleoptiles of wheat cultivars CM82036 and Remus. (A) Visualization and 

(B–E) quantification of the respective POX, PAL, NPR1 and GLC1 transcript (relative to 

Act1 transcript) levels. Results represent the mean (+/− standard error), based on two 

independent experiments, each including two replicates per treatment. The roots of 

germinated seedlings (48 h) were incubated in DON (20 μgmL−1) or water under light or 

dark conditions at 20 °C. RNA extracted from coleoptiles at either 4 or 24 h post-treatment 

was used for RT-PCR analyses. Gene codes: Act1 = actin; POX = class III plant peroxidase; 

PAL = phenylalanine ammonia lyase; NPR1 = a non-expressor of pathogenesis-related 

genes-1; GLC = β-1,3-glucanase. Arrows indicate Act1, POX, PAL, NPR1 and GLC1  

RT-PCR products (270, 272, 241, 219 and 201 bp, respectively).  
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Figure 4. The translocation of DON metabolites within seedlings of wheat cultivars 

CM82036 and Remus. The roots of germinated seedlings (48 h) were incubated in DON 

(20 μg mL−1). Coleoptiles were harvested 24 h post-treatment and DON was extracted and 

quantified by ELISA analysis. Results represent the mean (+/− standard error), based on 

two independent experiments, each including two replicates per treatment. 

 
3. Discussion 

This research has established that light is an important determinant of how plants cells respond to 

the Fusarium mycotoxin DON and that wheat genotypes differ with respect to their ability to mount 

light-dependent defense responses to DON. Plant defense responses against pathogens, including the 

activation of PAL, the accumulation of SA, expression of PR proteins and the hypersensitive response, 

are often light dependent [14,15–18]. Light can influence defense responses via its effects on chloroplast 

metabolism, ROS generation and phytochrome signaling [19]. Light influences chloroplast function and 

several lines of evidence point to the possible role of the chloroplast as an important determinant of the 

plant response to DON. The light-grown Arabidopsis cells used in this study contained chloroplasts, 

while the dark-grown did not. DON damage of chloroplasts is a light-dependent phenomenon [9]. This 

could result in the accumulation of photosensitive pigments, and these can directly generate ROS in the 

light [20]. DON has been shown to induce ROS production in plants [6]. Excess energy produced via the 

photosynthetic electron transport chain [19] may contribute to the DON-induced ROS accumulation.  

It is difficult to screen for the inhibition of cell death; such a phenomenon may be interpreted as a 

null effect and would only be obvious in situations where cell death is induced by other factors, such 

as heat stress. We thus used heat to induce PCD as it provided a means to activate this conserved 

pathway in plants. The fact that DON and DON-production inhibits heat-induced PCD supports the 

previous deduction from gene expression studies. Based on microarray studies, it was deduced that 

ROS scavenging and the promotion of cell survival are key early defense strategies that are more 

effectively employed by DON-resistant as compared to susceptible wheat genotypes [7]. It would be 

logical for Fusarium-resistant plants to promote the survival, and hence the potential for defense, of 

cells that are being attacked by necrotrophic Fusarium fungi that can colonize dead plant tissue. 

Babaeizad et al. [21] showed that overexpression of a gene encoding a cell death suppressor, BAX 

inhibitor-1, retarded F. graminearum colonisation of barley seedlings. While traditionally regarded as 
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a necrotroph, there is increasing evidence and belief that F. graminearum is actually a hemibiotrophic 

pathogen, with a short biotrophic phase preceding the necrotrophic phase of disease spread. DON 

suppression of death suggests that the role of DON may be to disable PCD during the initial biotrophic 

infection stages in plant cells, with the accumulation of higher concentrations causing PCD and facilitating 

nectrotrophism and disease spread. In the dark, DON enhanced the rate of apoptotic cell death. However, 

the fungal DON-producing strain did not do so relative to the mutant strain. There are many possible 

reasons for these contradictory results, including the variation in DON concentrations in toxin versus 

fungal studies and the fact that fungal factors other than DON are also very likely to affect cell death. 

This study showed that defense genes were light regulated and that NPR1, POX and PAL were more 

DON responsive in seedlings of the DON-resistant cultivar CM82036, as compared to the susceptible 

cultivar Remus. NPR1 and PAL genes have been associated with enhanced FHB resistance, but not 

with enhanced DON resistance. NPR1 is a central regulator of plant defense responses, including 

systemic acquired resistance (SAR), induced systemic resistance (ISR) and salicylic acid 

(SA)/jasmonic acid (JA) cross-talk [22]. An Arabidopsis npr1-1 mutant was more susceptible to  

F. graminearum and accumulated higher concentrations of DON in buds and flowers than did wild 

type plants [23]. Overexpression of Arabidopsis NPR1 (AtNPR1) transcript in wheat conferred 

heritable resistance to FHB disease spread, but not initial infection [24]. These data, together with the 

facts that DON is associated with disease spread and that it induces the accumulation of NPR1 

transcript in wheat, suggest that the NPR1 protein is linked to Type II resistance to FHB (resistance to 

disease spread). In rice, overexpression of a NPR1 homolog led to the constitutive expression of 

defense genes, including POX and PAL [25].  

Steiner et al. [13] showed that a PAL transcript was Fusarium responsive in wheat spikelets and its 

responsiveness was associated with the presence of two quantitative trait loci that confer enhanced 

resistance to FHB, namely Fhb1 and Qfhs-ifa-5A. This transcript is 100% homologous to that used 

herein for PCR primer design. The results of Steiner et al. [13] and the higher accumulation of 

cinnamic acid, benzoic acid, and glutamine in F. graminearum-infected spikelets of the FHB resistant 

wheat cv. Sumai-3 (a parent of cv. CM82036 that carries QTL Fhb1) than in spikelets of the 

susceptible cv. Roblin [26] provide evidence that the phenylpropanoid pathway plays a role in host 

defense against DON-producing Fusaria. QTL Fhb1 also confers wheat with enhanced resistance to 

DON-induced bleaching of spikelets [4]. It is therefore likely that components of phenylpropanoid 

pathway play a light-dependent role in wheat resistance to DON. This is independent of DON 

conversion to DON-3-glucoside as Gunnaiah et al. [27] recently showed that Fhb1 derived from the 

wheat genotype Nyubai is mainly associated with cell wall thickening due to deposition of 

hydroxycinnamic acid amides, phenolic glucosides and flavonoids, but not with the conversion of 

DON to less toxic DON-3-glucoside. 

The cv. CM82036 differs from cv. Remus in its enhanced ability to convert DON to  

DON-3-glucoside [4]. This derivative is detected by the ELISA test [28] and, based on spikelet studies [4], 

it is likely to be the predominant DON metabolite in cv. CM82036, though not in cv. Remus coleoptiles. It 

is possible that light affects the conversion of DON to DON-3-glucoside in a genotype-dependent manner. 

The light-enhanced translocation in cv. CM82036 may be an indirect consequence of enhanced sugar 

availability for the formation of the DON-3-glucoside. Whether or not translocated DON metabolites 

contributed to the light-enhanced defense transcript accumulation in coleoptiles is unknown.  
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4. Experimental Section 

4.1. Maintenance, Growth and Treatment of Arabidopsis Cells 

Arabidopsis thaliana (ecotype Landsberg erecta) cells were grown in liquid Murashige and Skoog 

(MS) media ([29,30]. Cells were sub-cultured by pipetting 10 mL of culture into 100 mL of fresh 

media every 7 days, and were grown on a rotary shaker at 100 rpm (5 cm rotation), a constant 

temperature of 23 °C, and either in darkness or at a continuous light intensity of approximately  

4 μmol photons m−2 s−1. DON (Sigma, UK) was dissolved in water at a concentration of 2000 μg mL−1 

and stored at 4 °C. Conidia of Fusarium graminearum strain GZ3639 and its trichothecene-minus 

mutant derivative (strain GZT40) [31] were produced as described previously [32] and adjusted to a 

concentration of 5 × 104 mL−1 H2O (fresh conidia were prepared for each experiment). Arabidopsis 

cell samples (10 mL) were transferred to sterile 100 mL conical flasks and were treated with 0.5 mL 

DON 24 h prior to heat treatment or with 2 mL of conidial inoculum 20 h prior to heat treatment. 

Controls were treated with equivalent volumes of water. For heat treatment, cell culture flasks were 

placed in a shaking water bath (80 rpm) that was pre-equilibrated to either 23 or 55 °C, for 10 min. 

Between DON/fungal and heat treatment, and subsequent to heat treatment, samples were returned to 

their prior growth conditions (as above, either light or dark). Samples were morphologically analyzed 

at either 5 or 24 h after heat treatment. Five independent experiments compared the effect of DON and 

water on heat/non-heat-treated cells, and another five compared the effect of F. graminearum wild 

type, mutant and water on heat/non-heat-treated cells. Each experiment included one flask per 

treatment per harvest time point and 200 cells were morphologically analyzed per treatment per time 

point per experiment. 

4.2. Morphological Analysis of Arabidopsis Cells 

Cells were examined under a Leica DM LB microscope with an attached fluorescence lamp and 

camera (Leica Microsystems GmBH, Wetzlar, Germany). Cells were scored as being viable or  

non-viable and exhibiting either necrotic or apoptotic-like cell death morphology. The vital stain 

fluorescein diacetate (FDA) was used to assay for live cells [30]. When FDA is excited by light at a 

wavelength of 490 nm, a bright green fluorescence is observed in viable cells whose plasma membrane 

is intact. Cells that die by necrosis do not display the protoplast retraction associated with apoptotic-like 

cell death and do not fluoresce, while cells that have undergone apoptotic-like cell death show a 

characteristic retraction of the protoplast away from the cell wall and cannot cleave FDA [8] (Figure S1).  

4.3. Growth and Treatment of Wheat Seedlings 

Wheat (Triticum aestivum) cvs. CM82036 and Remus were used in this study. Cultivar CM82036 

carries a major quantitative trait locus (QTL) on the short arm of chromosome 3B that is associated 

with resistance to both FHB disease and DON-induced bleaching of spikelets (Fhb1; syn. Qfhs.ndsu-3BS) 

and it carries another QTL on chromosome 5A that is associated with FHB resistance but not with 

DON resistance [4,33]. Cultivar Remus is susceptible to FHB and DON-induced bleaching [4,33]. 

Seeds were pre-germinated in the dark at 20 °C for 48 h in Petri dishes containing filter paper 

moistened with 7 mL of sterile water (12 seeds per plate). Germinated seeds were then air-dried for  
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10 min on filter paper and carefully placed in Petri dishes containing 7 mL of either water or DON  

(20 μgmL−1 water) (12 seeds per plate) such that coleoptiles were not in contact with the treatment 

solution. Wheat seedlings are less sensitive to DON than Arabidopsis cell cultures ([34]), hence the 

reason for the higher concentration as compared to the Arabidopsis studies. Plates were incubated  

at 20 °C under either constant darkness or constant light (~110 μmol m−2 s−1). The roots and coleoptile 

were harvested at 4 or 24 h post-treatment, flash frozen in liquid N2 and stored at −70 °C prior to either 

RNA or DON extraction. Seedling experiments conducted for RNA and DON analysis each included 

two replica plates per treatment and each experiment was conducted twice.  

4.4. Quantification of DON 

Freeze-dried coleoptile tissue was homogenized as previously described [5]. DON/DON derivatives 

was extracted from coleoptiles and quantified using the Ridascreen® DON Fast immunoassay  

(R-Biopharm AG, Darmstadt, Germany) according to the manufacturer’s instructions. The antibodies 

used in this assay detect DON and DON derivatives including the less phytotoxic DON-3-glucoside [27]. 

Values were based on the average obtained for two replicates per sample. 

4.5. RNA Extraction and Gene-Specific RT-PCR Analyses 

Freeze-dried root or coleoptile samples were homogenized and total RNA was extracted and 

DNase1-treated as described by Ansari et al. [5]. Reverse transcription of total RNA was conducted as 

described by Ansari et al. [5], except that the primer used was oligo dT12–18 (Life Technologies, 

Paisley, UK). Both the genes of interest and wheat actin (Act1) were PCR-amplified (separately) using 

gene-specific primers (Supplemental Table S1 lists GenBank accession numbers, gene-specific primer 

sequences and expected product sizes); Act1 served as a control gene that was constitutively expressed 

in roots, coleoptile and head tissue. RT products were diluted to 100 μL and 3 μL was PCR-amplified in 

a 10 μL reaction containing 1 unit of Taq DNA polymerase and 1× PCR buffer (Life Technologies, 

Paisley, UK), 1.5 mM MgCl2, 150 μM each of dATP, dGTP, dCTP and dTTP, and 100 nM each of 

forward and reverse transcript-specific primers. PCR reactions were conducted in a Peltier thermal 

cycler DNA engine (MJ Research, St. Bruno, Canada) and the programme constituted 30 cycles of 94 °C 

for 30 s, 60 °C for 20 s and 72 °C for 45 s, with a final extension at 72 °C for 5 min. PCR products were 

electrophoresed through 2% (w v−1) agarose gels containing 0.5 μg mL−1 ethidium bromide and 

visualized using Imagemaster VDS and Liscap software (GE Healthcare Life Sciences, 

Buckinghamshire, UK).  

4.6. Data Analysis 

All data analyses were conducted using Minitab (Minitab release 13©, 1994 Minitab Ltd, Coventry, 

UK). No data set followed a normal distribution, as determined using the Normality test and none 

could be transformed to fit a normal distribution using the Johnson Transformation tool.  

Non-normally distributed data (cell viability and morphology data, gene expression data 

(transcript/Act1 levels in DON relative to water-treated samples) and DON data) were analyzed using 

the Mann-Whitney Rank sum test (confidence level 95%, alternatives of greater than, less than or 

equal chosen as appropriate).  
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5. Conclusions 

We have shown that the effect of DON on the viability of abiotically stressed cells and on defense 

gene expression in wheat is light enhanced. Future studies should investigate the role of cell death 

suppression, cell survival pathways and light-regulated pathways in the resistance of wheat to 

Fusarium fungi. The combination of DON and heat stress offers a valuable means by which to unravel 

some of the complexity of plant programmed cell death.  

Acknowledgements 

This research was funded by Science Foundation Ireland Principal Investigator project (10-IN1-B3028) 

and EU FP5 project FUCOMYR (QLRT-2000-02044). We thank Hermann Buerstmayr (IFA-Tulln, 

Austria) for providing wheat seed and Robert Proctor (USDA Agricultural Research Service, Peoria, 

IL, USA) for providing the Fusarium strains used in this work. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Parry, D.W.; Jenkinson, P.; McLeod, L. Fusarium ear blight (scab) in small-grain cereals—A 

review. Plant Pathol. 1995, 44, 207–238. 

2. Langevin, F.; Eudes, F.; Comeau, A. Effect of trichothecenes produced by Fusarium 

graminearum during Fusarium head blight development in six cereal species. Eur. J. Plant Pathol. 

2004, 110, 735–746. 

3. Wang, H.; Hwang, S.F.; Eudes, F.; Chang, K.F.; Howard, R.J.; Turnbull, G.D. Trichothecenes 

and aggressiveness of Fusarium graminearum causing seedling blight and root rot in cereals. 

Plant Pathol. 2006, 55, 224–230. 

4. Lemmens, M.; Scholz, U.; Berthiller, F.; Dall’Asta, C.; Koutnik, A.; Schuhmacher, R.; Adam, G.; 

Buerstmayr, H.; Mesterhazy, A.; Krska, R.; et al. The ability to detoxify the mycotoxin 

deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight 

resistance in wheat. Mol. Plant. Microbe Interact. 2005, 18, 1318–1324. 

5. Ansari, K.I.; Walter, S.; Brennan, J.M.; Lemmens, M.; Kessans, S.; McGahern, A.; Egan, D.; 

Doohan, F.M. Retrotransposon and gene activation in wheat in response to mycotoxigenic and 

non-mycotoxigenic-associated Fusarium stress. Theor. Appl. Genet. 2007, 114, 927–937. 

6. Desmond, O.J.; Manners, J.M.; Stephens, A.E.; MaClean, D.J.; Schenk, P.M.; Gardiner, D.M.; 

Munn, A.L.; Kazan, K. The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide 

production, programmed cell death and defence responses in wheat. Mol. Plant Pathol. 2008, 9, 

435–445. 

7. Walter, S.; Brennan, J.M.; Arunachalam, C.; Ansari, K.I.; Hu, X.; Khan, M.R.; Trognit, Z.F.; 

Trognitz, B.; Leonard, G.; Egan, D.; et al. Components of the gene network associated with 

genotype-dependent response of wheat to the Fusarium mycotoxin deoxynivalenol. Funct. Integr. 

Genomics 2008, 8, 421–427. 



Toxins 2014, 6 691 
 

8. Diamond, M.; Reape, T.J.; Rocha, O.; Doyle, S.M.; Doohan, F.M.; McCabe, P.F. The mycotoxin 

Deoxynivalenol produced by necrotrophic Fusarium species can inhibit plant apoptotic-like 

programmed cell death. PLoS ONE 2013, doi:10.1371/journal.pone.0069542. 

9. Bushnell, W.R.; Seeland, T.M.; Perkins-Veazie, P.M.; Krueger, D.E.; Collins, J.K.; Russo, V.M. 

The effects of deoxynivalenol on barley leaf tissues. In Genomic and Genetic Analysis of Plant 

Parasitism and Defence; Tsuyumu, S., Leach, J.E., Shiraishi, T., Wolpert, T., Eds.; APS Press:  

St. Paul, MN, USA, 2004; pp. 270–284. 

10. Poppenberger, B.; Berthiller, F.; Lucyshyn, D.; Sieberer, T.; Schuhmacher, R.; Krska, R.; Kuchler, 

K.; Glössl, J.; Luschnig, C.; Adam, G. Detoxification of the Fusarium mycotoxin Deoxynivalenol 

by a UDP-glucosyltransferase from Arabidopsis thaliana. J. Biol. Chem. 2003, 278, 47905–47914. 

11. Doyle, S.M.; Diamond, M.; McCabe, P.F. Chloroplast and reactive oxygen species involvement 

in apoptotic-like programmed cell death in Arabidopsis suspension cultures. J. Exp. Bot. 2010, 61, 

473–482. 

12. Doohan, F.M. University College Dublin, Dublin, Ireland, Unpublished data, 2008. 

13. Steiner, B.; Kurz, H.; Lemmens, M.; Buerstmayr, H. Differential gene expression of related wheat 

lines with contrasting levels of head blight resistance after Fusarium graminearum inoculation. 

Theor. Appl. Genet. 2009, doi:10.1007/s00122-008-0935-8. 

14. Chamnongpol, S.; Willekens, H.; Langebartels, C.; VanMontagu, M.; Inze, D.; VanCamp, W. 

Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces 

pathogenesis-related expression under high light. Plant J. 1996, 10, 491–503. 

15. Genoud, T.; Buchala, A.J.; Chua, N.H.; Metraux, J.P. Phytochrome signalling modulates the  

SA-perceptive pathway in Arabidopsis. Plant J. 2002, 31, 87–95. 

16. Metraux, J.P.; Nawrath, C.; Genoud, T. Systemic acquired resistance. Euphytica 2002, 124, 237–243. 

17. Zeier, J.; Pink, B.; Mueller, M.J.; Berger, S. Light conditions influence specific defence responses 

in incompatible plant-pathogen interactions: Uncoupling systemic resistance from salicylic acid 

and PR-1 accumulation. Planta 2004, 219, 673–683. 

18. Griebel, T.; Zeier, J. Light regulation and daytime dependency of inducible plant defenses in 

arabidopsis: Phytochrome signaling controls systemic acquired resistance rather than local 

defense. Plant Physiol. 2008, 147, 790–801. 

19. Roberts, M.R.; Paul, N.D. Seduced by the dark side: Integrating molecular and ecological 

perspectives on the influence of light on plant defence against pests and pathogens. New Phytol. 

2006, 170, 677–699. 

20. Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. 

Annu. Rev. Plant Biol. 2004, 55, 373–399. 

21. Babaeizad, V.; Imani, J.; Kogel, K.H.; Eichmann, R.; Hückelhoven, R. Over-expression of the 

cell death regulator BAX inhibitor-1 in barley confers reduced or enhanced susceptibility to 

distinct fungal pathogens. Theor. Appl. Genet. 2008, 118, 455–463. 

22. Durrant, W.E.; Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 2004, 42, 185–209. 

23. Cuzick, A.; Lee, S.; Gezan, S.; Hammond-Kosack, K.E. NPR1 and EDS11 contribute to host 

resistance against Fusarium. culmorum in Arabidopsis buds and flowers. Mol. Plant Pathol. 2008, 

9, 697–704. 



Toxins 2014, 6 692 
 

24. Makandar, R.; Essig, J.S.; Schapaugh, M.A.; Trick, H.N.; Shah, J. Genetically engineered 

resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol. Plant 

Microbe Interact. 2006, 19, 123–129. 

25. Chern, M.; Fitzgerald, H.A.; Canlas, P.E.; Navarre, D.A.; Ronald, P.C. Overexpression of a rice 

NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. 

Mol. Plant-Microbe Interact. 2005, 18, 511–520. 

26. Hamzehzarghani, H.; Kushalappa, A.C.; Dion, Y.; Rioux, S.; Comeau, A.; Yaylayan, V.; 

Marshall, W.D.; Mather, D.E. Metabolic profiling and factor analysis to discriminate quantitative 

resistance in wheat cultivars against Fusarium head blight. Physiol. Mol. Plant Pathol. 2005, 66, 

119–133. 

27. Gunnaiah, R.; Kushalappa, A.C.; Duggavathi, R.; Fox, S.; Somers, D.J. Integrated  

metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) 

contributes to resistance against Fusarium graminearum. PloS One 2012, 7, e40695. 

28. Ruprich, J.; Ostry, J. Immunochemical methods in health risk assessment: Cross reactivity of 

antibodies against mycotoxin deoxynivalenol with deoxynivalenol-3-glucoside. Cent. Eur. J. 

Public Health 2008, 16, 34–37. 

29. May, M.J.; Leaver, C.J. Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana 

suspension cultures. Plant Physiol. 1993, 103, 621–627. 

30. McCabe, P.F.; Leaver, C.J. Programmed cell death in cell cultures. Plant Mol. Biol. 2000, 44, 

359–368. 

31. Proctor, R.H.; Hohn, T.M.; McCormick, S.P. Reduced virulence of Gibberella zeae caused by 

disruption of a trichothecene toxin biosynthetic gene. Mol. Plant-Microbe Interact. 1995, 8, 593–601. 

32. Li, W.L.; Faris, J.D.; Muthukrishnan, S.; Liu, D.J.; Chen, P.D.; Gill, B.S. Isolation and 

characterization of novel cDNA clones of acidic chitinases and beta-1,3-glucanases from wheat 

spikes infected by Fusarium graminearum. Theor. Appl. Genet. 2001, 102, 353–362. 

33. Buerstmayr, H.; Steiner, B.; Hartl, L.; Griesser, M.; Angerer, N.; Lengauer, D.; Miedaner, T.; 

Schneider, B.; Lemmens, M. Molecular mapping of QTLs for Fusarium head blight resistance in 

spring wheat. II. Resistance to fungal penetration and spread. Theor. Appl. Genet. 2003, 107,  

503–508. 

34. Doohan, F.M. University College Dublin, Dublin, Ireland, Unpublished work, 2010. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


