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The effects of dislocation climb on plastic deformation during loading and unloading are studied

using a two-dimensional discrete dislocation dynamics model. Simulations are performed for

polycrystalline thin films passivated on both surfaces. Dislocation climb lowers the overall level of

the stress inside thin films and reduces the work hardening rate. Climb decreases the density of

dislocations in pile-ups and reduces back stresses. These factors result in a smaller Bauschinger

effect on unloading compared to simulations without climb. As dislocations continue to climb at

the onset of unloading and the dislocation density continues to increase, the initial unloading slope

increases with decreasing unloading rate. Because climb disperses dislocations, fewer dislocations

are annihilated during unloading, leading to a higher dislocation density at the end of the unloading

step. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4861147]

I. INTRODUCTION

The use of metal thin films in micro-electronic and

micro-electro-mechanical systems (MEMS) has motivated

research on their mechanical properties. Thin films on sub-

strates often experience temperature cycles that lead to plastic

deformation because of differential thermal expansion

between film and substrate. As plastic deformation directly

impacts the level of stress in a film and hence its reliability,

there has been a strong drive to study plasticity in thin films.

The structure of thin films also makes them excellent vehicles

to probe fundamental problems in materials science: The grain

size of a thin film is often much smaller than that of the same

material at the macro-scale and grains are often columnar.

The resulting proximity of free surfaces and the high density

of interfaces in thin films have a profound impact on their me-

chanical behavior that is not yet fully understood.1

In general, thin films can support much higher stresses

than their bulk counterparts, and their mechanical response

is size dependent. Because the constitutive equations in clas-

sical continuum theories do not have internal length scales,

these theories cannot predict size-dependent responses.

There have been a considerable number of attempts to de-

velop continuum theories that incorporate one or more length

scales into the constitutive equations, including nonlocal2

and strain-gradient theories.3–9 Despite these attempts, there

is no continuum theory that can predict the behavior of mate-

rials in all experiments.

It is well known that in crystalline solids plasticity at

small scales takes place by the same fundamental mecha-

nisms observed in bulk materials: plastic flow proceeds

mainly by the collective motion of dislocations. This obser-

vation affords the use of discrete dislocation dynamics

(DDD) to study plasticity in thin films. In the DDD

approach, dislocations are modeled as line singularities in an

isotropic, elastic solid. The behavior of the dislocations is

governed by a set of simple constitutive equations that

describe how they move, nucleate, and interact with

obstacles. Although three-dimensional DDD models capture

the physics of problems more accurately than two-

dimensional models, they are computationally demanding

and are not easily applied to thin films. Therefore, most

three-dimensional models are limited to single crystals, very

small strains, small volumes of material, and low dislocation

densities. For example, ParaDis, a powerful three-

dimensional DDD code that was originally developed at the

Lawrence Livermore National Laboratory,10 can only model

single-crystal materials. Two-dimensional discrete disloca-

tion dynamics models, on the other hand, can model poly-

crystalline materials, realistic dislocation densities, and

relatively large strains with much less computational effort.

If a metal is deformed plastically in one direction, plas-

tic deformation often starts at a much lower stress level upon

reversal of the load, a phenomenon known as the

Bauschinger effect. Departure from the linear unloading

curve during reverse deformation sometimes begins before

the stress changes sign. The Bauschinger effect is a natural

consequence of the inhomogeneous nature of plastic flow;

understanding the fundamental causes of the effect is an

essential step towards developing better strain hardening the-

ories and constitutive models for cyclic deformation.11 The

Bauschinger effect is generally ascribed to either short-range

effects, such as the directionality of mobile dislocations in

their resistance to motion or the annihilation of dislocations

during reverse loading, or to long-range effects such as back

stresses caused by dislocation pile-ups at grain boundaries or

obstacles. Both effects assist plastic deformation in the

reverse direction and can give rise to a Bauschinger effect.12

Xiang and Vlassak13,14 reported the first direct observa-

tions of the Bauschinger effect in thin films. They found that

the effect could be quite significant in thin films, especially

if the films were passivated. Their findings were explained as

the result of large back stresses caused by dislocation pile-
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ups at the passivation layers. The Bauschinger effect in thin

films was modeled using two-dimensional15,16 and 2.5-

dimensional17 DDD simulations. These simple two-

dimensional models captured the size dependence of the

yield stress of thin films,15 but they overestimated the

stresses caused by work hardening because they lacked any

softening or recovery mechanisms. Recently, dislocation

climb was introduced to two-dimensional DDD by Davoudi

et al.18 for polycrystalline thin films and by Deshpande

et al.19,20 for single crystals. In this paper, we use discrete

dislocation dynamics to investigate the Bauschinger effect in

polycrystalline thin films. The analyses have been carried

out using a two-dimensional DDD model that includes dislo-

cation climb to better describe strain-hardening behavior.

While the analyses focus on the effects of dislocation climb,

climb may be taken as representative of a range of softening

mechanisms that occur in a material.

II. DISCRETE DISLOCATION DYNAMICS
FRAMEWORK

In discrete dislocation dynamics, a material is generally

modeled as an elastic solid containing dislocations. As a load

is applied to the material, the dislocations are allowed to

move and evolve incrementally. At any instant in time, it is

assumed that the material is in equilibrium and that the dis-

placement and stress fields are known. An increment of strain

is prescribed and the positions of the dislocations, the dis-

placement field, and the stress field are updated using the fol-

lowing procedure: (1) The Peach-Koehler force is calculated

along the length of each dislocation; (2) the dislocation struc-

ture is allowed to evolve in response to the Peach-Koehler

force by a number of mechanisms including dislocation nucle-

ation, motion, and annihilation; (3) the stress state in the solid

is calculated for the updated dislocation arrangement. Steps 1

and 3 follow from elasticity; step 2 requires the formulation

of constitutive rules for dislocation behavior. In this paper, we

follow the rules suggested by Kubin et al.21 for dislocation

glide, dislocation annihilation, and dislocation nucleation.

Determining the stress state at each time step requires

the solution of an elastic boundary value problem. In the

two-dimensional DDD framework developed by Van der

Giessen and Needleman,22 the displacement, strain, and

stress fields are written as the superposition of two fields

u ¼ ~u þ û; e ¼ ~e þ ê; r ¼ ~r þ r̂: (1)

The (�) fields are obtained by summing the fields associated

with the individual dislocations in the material under the

assumption of an infinite medium

~u ¼
XN

I¼1

uðIÞ; ~e ¼
XN

I¼1

eðIÞ; ~r ¼
XN

I¼1

rðIÞ; (2)

where u(I), e(I), and r(I) are the fields due to dislocation I, an-

alytical expressions for which can be found in standard texts

(see, e.g., Ref. 23). The (^) fields represent the image fields

that enforce the correct boundary conditions. They are

smooth and are readily calculated using the finite element

method or a boundary element analysis. The Peach-Koehler

force on a dislocation I is given by

FðIÞ ¼ r̂ þ
X
J 6¼I

rðJÞ
� �

� b
� �

� n; (3)

where n is the local tangent to the dislocation line and b is

the Burgers vector. The glide component of this force is

FðIÞg ¼ FðIÞ � ðn� nÞ and the climb component FðIÞc ¼ FðIÞ � n,

where n ¼ b� n=kb� nk is the unit vector perpendicular to

the glide plane of the dislocation.

Simulations typically start with the material in a

dislocation-free state. Dislocation sources are randomly dis-

tributed on the slip planes with each source characterized by

nucleation strength, snuc. When the glide component of the

Peach-Koehler force on a dislocation source exceeds bsnuc

during a time tnuc, two dislocations of opposite sign are

nucleated on the glide plane. The distance between the newly

formed dislocations

Lnuc ¼
l

2pð1� �Þ
b

snuc
(4)

is taken such that the attraction between the two dislocations

is balanced by snuc, where l is the shear modulus and � is

Poisson’s ratio of the material. When two dislocations of op-

posite sign come closer to each other than a critical distance

Lann, they annihilate each other and are removed from the

model. According to experimental24 and computational evi-

dence,25 the glide velocity in an fcc material without internal

obstacles is a linear function of the glide force. This is also

the relationship used in this DDD model, i.e., Vg
(I)¼Fg

(I)/B,

where B is called the drag coefficient, a quantity that

increases linearly with temperature.24

Dislocation climb is implemented in the DDD simula-

tions using the following model.18 Consider a dislocation as

a perfect source or sink of vacancies at the center of a cylin-

der of radius R, and take the equilibrium concentration of

vacancies in the cylinder to be c0. When a force Fc, is sud-

denly applied to the dislocation in the direction perpendicu-

lar to the dislocation glide plane, the dislocation starts to

climb, absorbing or emitting vacancies until a concentration

of c¼ c0 exp(�Fcb
2/kBT) is reached near the dislocation

core. In this expression, kB is the Boltzmann constant, T
refers to the absolute temperature, and b is the magnitude of

the Burgers vector of the dislocation. At that vacancy con-

centration, the chemical force due to the departure from the

equilibrium concentration balances the mechanical force Fc.
As a result of the ensuing gradient in chemical potential,

there is a diffusive flux of vacancies, which determines the

rate of climb. Assuming steady-state diffusion inside the cyl-

inder and further assuming that the concentration at a dis-

tance R remains c0, the climb velocity is given by26–28

Vc ¼
2pD0

b lnðR=bÞ exp �DEsd

kBT

� �
exp

Fcb2

kBT

� �
� 1

� �
; (5)

where DEsd is the vacancy self-diffusion energy, and D0 is

the pre-exponential diffusion constant. The climb force is

taken positive when it favors vacancy emission.
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At each time step, the glide and climb velocities of the

dislocations in the simulation are calculated and the positions

of the dislocations are updated accordingly. Because the

climb velocity is typically much smaller than the glide veloc-

ity, different time steps are used for climb and glide. In this

paper, the time step for climb is taken 100 times larger than

the time step for glide.

When one of the dislocations in a dislocation dipole

climbs out of its original glide plane, simple superposition of

the individual displacement fields of these two dislocations

does not provide the correct discontinuity in the displace-

ment field of the non-planar dislocation dipole. To overcome

this shortcoming and to find the correct displacement field

due to a dislocation dipole, where one of the dislocations

climbs from (x0,y0) to (x0,y1), the following terms need to be

added to the x-component of the displacement field pub-

lished in most texts on dislocations, for example, Eq. (2.15)

of Ref. 29

b

2p
tan�1 y� y1

x� x0

� �
� tan�1 y� y0

x� x0

� ��

þ tan�1 x� x0

y� y1

� �
� tan�1 x� x0

y� y0

� �#
: (6)

These extra terms account for the displacement caused by

the emission or absorption of vacancies during climb.18

III. THIN FILM MODEL AND SELECTION OF
PARAMETERS

Simulations were carried out on freestanding polycrys-

talline films passivated on both surfaces. The films were sub-

jected to plane-strain tension as illustrated schematically in

Fig. 1. In line with Nicola et al.,15 the film was modeled as a

two-dimensional array of rectangular grains of thickness h.

In doing so, a periodic unit-cell of width w consisting of six

randomly oriented grains of uniform size d was considered.

Plane-strain conditions were assumed normal to the xy-plane.

Grain boundaries and passivation layers were assumed

impenetrable to dislocations. Each grain had three sets of

slip planes that differed by an angle of 60�.30 As mentioned

earlier, the grains were initially dislocation free, but Frank-

Read sources were distributed randomly on the slip planes in

the grains. No obstacles were present to impede dislocation

motion. Tension was imposed by prescribing a constant dis-

placement rate difference between the left and right edges of

the unit-cell. The top and bottom surfaces of the unit-cell

were taken to be traction-free. The average stress in the film,

r, is calculated as

r ¼ 1

h

ð
h

rxxðw; yÞdy; (7)

where the integral over the film thickness excludes the passi-

vation layers.

The physical properties that were used for the film mate-

rial are representative of aluminum and are given in Table I.

The passivation layers were assumed to remain elastic and

had the same elastic properties as the film material. The

thickness of the film and the passivation layers on both film

surfaces were 750 nm and 20 nm, respectively; the grain

size was taken as 1.0 lm. All simulations were run at a tem-

perature of 900 K. The drag coefficient was taken as

3.2� 10�5 Pa s.18 The annihilation distance Lann and the

nucleation time tnuc were chosen as 6b and 10 ns, respec-

tively. The density of dislocation sources was 15mm�2 in all

simulations. The source strength snuc was randomly chosen

from a Gaussian distribution of strengths with an average

value of 100 MPa and a standard deviation of 20 MPa. The

values of these parameters were estimated by fitting simu-

lated curves to experimental stress-strain curves for thin films

deformed under tension at room temperature.15 Because

climb allows dislocations to leave their glide planes, disloca-

tions can occur on all possible glide planes in the material,

not just those with dislocation sources. The spacing between

glide planes was taken equal to b in all simulations. To limit

computation time, a high strain rate j_ej ¼ 4000 S�1 was used

for all simulations except otherwise indicated; the time step

was taken to be 0.5 ns. To reduce the statistical effects of the

initial conditions, at least four realizations of the model that

differed from each other with respect to the locations of the

dislocation sources were run for each set of parameters.

IV. RESULTS AND DISCUSSION

Figure 2(a) shows two stress-strain curves for a 750 nm

film passivated on both surfaces, one curve for the case,

where dislocations are allowed to glide and one curve, where

they can both glide and climb. The dashed lines represent

linear elastic unloading and have slopes given by the plane-

strain modulus of the film, E/(1-�2). Figure 2(b) is the same

as Fig. 2(a), but here the stress is plotted against the plastic

strain. The vertical dashed lines represent elastic unloading.

It is evident from the figures that the strain-hardening rate is

much reduced if dislocations are allowed to climb out of

their glide planes. This behavior is of course consistent with

the notion that climb is a softening mechanism that results in

a more realistic simulation of work hardening.15,18 Two

more features are noteworthy: (1) the stress-strain curves

FIG. 1. Schematic representation of the thin film model.

TABLE I. Materials properties taken in the simulations.

Parameter Value Parameter Value

l 26 GPa DEsd 1.28 eV

� 0.35 D0 0.1185 cm2/s

b 2.86 Å
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show a significant Bauschinger effect that increases with

increasing strain and (2) forward plastic flow continues dur-

ing initial unloading when climb is allowed.

We define the Bauschinger strain, erp, as the difference

between the actual unloading strain and the elastic unloading

strain. Figure 2(c) shows erp as a function of the plastic strain

in the film. Evidently dislocation climb reduces the

Bauschinger strain significantly. As the deformation pro-

ceeds and the stress in the film increases, more dislocation

pile-ups are formed, back stresses increase, and the

Bauschinger effect becomes more pronounced. Climb allows

some dislocations in areas with high stresses such as the tips

of dislocation pile-ups to leave their glide planes. This pro-

cess reduces the back stress on the other dislocations in the

pile up and on any dislocation source in that glide plane, as

illustrated in Fig. 3. On unloading, the lower back stress

reduces the magnitude of the Bauschinger effect compared

to the case, where dislocations can only glide. Since the

Bauschinger effect is induced by back stresses and back

stresses are proportional to the density of dislocations in

pile-ups, the results in Figure 2(c) suggest that the total den-

sity of dislocations in pile-ups should be smaller when climb

is allowed. Figure 4 illustrates that this is indeed the case:

there is a significant drop in the density of dislocations that

are part of a pile-up when dislocations are allowed to climb.

The observation that climb reduces the Bauschinger strain,

should be contrasted with a recent finding by Deshpande

et al. that the Bauschinger effect in single crystals with per-

meable passivation layers is more pronounced for climb-

assisted glide than for glide only, even though climb reduces

back stresses.19 They attribute this apparent contradiction to

the permeability of the passivation: Climb-assisted glide

FIG. 2. The average stress as a function of (a) the applied strain (b) the plas-

tic strain for the case of glide only and glide with climb. The dashed curves

show the fully elastic unloading. (c) The Bauschinger strain versus the plas-

tic strain in the film either dislocation climb is enabled or disabled. Error

bars represent the standard error.

FIG. 3. Distribution of the back stress on a slip system in a single grain at

e¼ 1.2% for the case of (a) glide only, and (b) glide and climb. The back

stress is defined as the difference between the local shear stress and the

applied normal stress resolved on a given glide plane. Only dislocations and

sources on one set of glide planes are displayed. Positive and negative dislo-

cations are depicted by the “þ” and “.” symbols, respectively. Open circles

denote dislocation sources. The unit of length in the figure is 1 mm.
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results in shorter pile-ups with dislocations spreading them-

selves more evenly over the film. As a result, the stress act-

ing on the leading dislocations in a pile up is smaller and

fewer dislocations can penetrate the passivation layers.

Fewer dislocations exit the film and the stored dislocation

density is greater than in the absence of climb. This

increased dislocation storage enhances the Bauschinger

effect. This explanation does not, however, hold for impene-

trable passivation layers, for which they also report enhanced

dislocation densities in the case of climb-assisted glide. The

passivation layers in this study are impenetrable, and an

enhanced dislocation density is not observed here.

From the stress-strain curves in Figure 2(b), it is evident

that forward plastic flow continues for a while, during

unloading when dislocations can climb. This feature becomes

more noticeable at slower unloading rates. To illustrate the

effect of unloading rate, we have plotted the film stress versus

the plastic strain for three different unloading rates in Fig. 5.

Because the change in the stress-strain curve is negligible as

the loading rate is reduced from 4000 s�1 to 400 s�1, only one

loading curve is shown in Fig. 5.

In the limit of a zero unloading rate, such as in a stress-

relaxation-experiment, the stress decreases in proportion to

the creep-induced plastic strain rate and the slope of the

unloading curve in Fig. 5 approaches the plane-strain modu-

lus E/(1 -�2). Conversely, if unloading happens infinitely

fast, dislocations do not have time to move, the process is

entirely elastic, and the unloading curve in Fig. 5 has an infi-

nite slope. Therefore, the beginning of any unloading curve

should lie between these two limiting cases. When the

motion of dislocations is limited to glide, slower loading or

unloading rates have a negligible effect on the stress-plastic

strain curves. To get more insight in this behavior, the cumu-

lative distance, Lc, swept by climbing dislocations is shown

as a function of plastic strain in Fig. 6(a). As expected, the

figure shows a gradual increase in the cumulative distance

during loading. When unloading starts, however, dislocations

continue to climb and Lc continues to increase, albeit at a

much-reduced rate. Dislocation climb does not lead to an im-

mediate build up of back stresses that shut down the climb

process and dislocations climb at a rate commensurate with

the local stress, even on unloading. The smaller the unload-

ing rate, the longer the unloading process, and the greater the

distance swept by climbing dislocations. The connection

between the climb distance and the forward plastic flow on

unloading is then made via Orowan’s equation, which links

FIG. 4. Total density of dislocations in pile-ups versus plastic strain for the

case of glide only and glide with climb. The markers indicate the unloading

curves.

FIG. 5. Stress vs. plastic strain for different unloading rates. The dashed

curve and the vertical line show the loading segment, where _e ¼ 4000 s�1

and the elastic unloading, respectively.

FIG. 6. (a) Cumulative distance swept by dislocation climb as a function of

plastic strain; (b) total dislocation density versus stress. The dashed curves

show the loading segment, where _e ¼ 4000 s�1.
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the plastic strain to the dislocation motion: since Lc contin-

ues to grow during initial unloading, so does the plastic

strain. In addition to dislocation climb, an increase in dislo-

cation density also contributes to the forward plastic flow on

unloading. This point is illustrated in Fig. 6(b), which shows

a small increase in total dislocation density during initial

unloading—the slower the unloading, the greater the

increase. The increase in dislocation density is again a direct

consequence of climb: As dislocations climb out of their

glide planes at the onset of unloading, the back stresses on

the dislocation sources decrease allowing them to emit more

dislocations.

Considering the changes in Lc and q during unloading

(Figs. 6 and 7), the unloading segment of the stress-strain

curves in Fig. 2(a) is now readily explained. In general, we

have that _r ¼ E=ð1� �2Þ _e � _epð Þ, where dots indicate incre-

mental changes. At the onset of unloading, both Lc and q
increase, _ep > 0 and dr/de>E/(1 -�2). As unloading pro-

ceeds, Lc approaches a constant value, while q decreases

very slowly; the plastic strain rate is very small, _ep � 0 and

dr/de�E/(1 -�2). Toward the end of the unloading process,

dislocations reverse their direction of glide because of back

stresses and start to annihilate each other. The dislocation

density decreases more rapidly, _ep becomes negative, and the

unloading slope decreases steadily until eventually it

becomes smaller than the elastic slope, leading to the

Bauschinger effect.

In Fig. 7, which plots the dislocation density as a func-

tion of applied strain, two observations are worth noting: (1)

Although the film is initially dislocation free, many disloca-

tions still exist in the film for both cases when the average

stress in the film is reduced to zero. These dislocations

remain in the film because stresses induced by other disloca-

tions prevent them from going back even in the presence of

back stresses. Furthermore the model lacks line tension,

which normally provides a driving force for dislocation

loops to collapse, and would be expected to overestimate the

number of dislocations that remain in the two-dimensional

model. If line tension were incorporated in the model, a

more pronounced Bauschinger effect would be observed. (2)

Because dislocations become more dispersed when climb is

allowed, the dislocation density decreases less during

unloading compared to the glide only case. One would

expect this trend to be even more pronounced when switch-

ing to a three-dimensional discrete dislocation model, as

there are many more mechanisms in a three-dimensional

model by which dislocations can be retained in the material.

V. CONCLUSIONS

We have evaluated the effect of dislocation climb on the

unloading behavior of thin films using two-dimensional dis-

crete dislocation simulations. Unloading curves obtained in

discrete dislocation simulations often have a strong

Bauschinger effect. Because dislocation climb results in a

more dispersed distribution of dislocations in the film, the

total density of dislocations in pile-ups and the magnitude of

the back stresses are reduced. As a result, the Bauschinger

effect will be less pronounced if the dislocation climb is

allowed. At the onset of unloading, dislocations keep climb-

ing, and the dislocation density initially increases, resulting

in forward plastic flow during initial unloading, an effect

especially pronounced at slow unloading rates. As the

unloading process continues, dislocations start to move in

the reverse direction and the slope of the stress-strain curve

continuously decreases.
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