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PHYSICS OF CHEMORECEPTION

HOWARD C. BERG AND EDWARD M. PURCELL, Department ofMolecular,
Cellular, and Developmental Biology, University ofColorado, Boulder,
Colorado 80309 and the Department of Physics, Harvard University,
Cambridge, Massachusetts 02138 U.S.A.

ABSTRACT Statistical fluctuations limit the precision with which a microorganism can,
in a given time T, determine the concentration of a chemoattractant in the surround-
ing medium. The best a cell can do is to monitor continually the state of occupation
of receptors distributed over its surface. For nearly optimum performance only a
small fraction of the surface need be specifically adsorbing. The probability that a
molecule that has collided with the cell will find a receptor is Ns/(Ns + wa), if N
receptors, each with a binding site of radius s, are evenly distributed over a cell of
radius a. There is ample room for many independent systems of specific receptors.
The adsorption rate for molecules of moderate size cannot be significantly enhanced
by motion of the cell or by stirring of the medium by the cell. The least fractional
error attainable in the determination of a concentration c is approximately
(ThaD)-/2, where D is the diffusion constant of the attractant. The number of
specific receptors needed to attain such precision is about a/s. Data on bacteriophage
adsorption, bacterial chemotaxis, and chemotaxis in a cellular slime mold are evalu-
ated. The chemotactic sensitivity of Escherichia coli approaches that of the cell of
optimum design.

INTRODUCTION

In the world of a cell as small as a bacterium, transport of molecules is effected by
diffusion, rather than bulk flow; movement is resisted by viscosity, not inertia; the
energy of thermal fluctuation, kT, is large enough to perturb the cell's motion. In
these circumstances, what are the physical limitations on the cell's ability to sense and
respond to changes in its environment? What, for example, is the smallest change in
concentration of a chemical attractant that a bacterium could be expected to measure
reliably in a given time? We begin our analysis by reviewing some relevant features
of diffusive transport and low Reynolds number mechanics. This will lead to certain
conclusions about selective acquisition of material by a cell and how this acquisition
may be influenced by the cell's movement. We then develop a theory of the signal-to-
noise relation for measurement of concentration by a cell with specific receptors,
discuss its implications for chemotactic behavior, and compare theory with experi-
ment.

DIFFUSIVE INTAKE

Consider a spherical cell of radius a immersed in an unbounded medium. The
medium contains in low concentration some molecules of species X with diffusion
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constant D. The local concentration of X will be denoted by c and expressed in
molecules per cubic centimeter (1 M = 6 x 1020cm-3). The spatial and temporal
variation of c is governed by the diffusion equation

DV2c = ac/lt. (1)

Suppose the cell is a perfect sink for the molecules X, sequestering or otherwise im-
mobilizing every X molecule that reaches its surface. Then in the steady state the
current J of molecules to the cell, in molecules per second, is given by

J = 4iraDc.,, (2)

where c. is the concentration far from the cell, assumed to be maintained at a steady
value.'

For our purposes it will be useful and instructive to relate this formula to an elec-
trical analogue. Comparing the time-independent diffusion equation V 2c = 0 with
Laplace's equation for the electrostatic potential X in charge-free space, V20 = 0,
we observe that the diffusive current density F = -D grad c is the analogue of the
electric field vector E = -grad+. The total diffusive current J entering a closed
surface S is given by J = fSF ds, whereas the total electric charge Q on a surface is
given by Q = 1/4w- Js E - ds. Because the cell is a perfect sink, c must be zero at its
surface, which therefore corresponds to a surface at constant potential. We see that
Eq. 2 is equivalent to the statement that the static charge Q on a spherical conductor in
vacuum is 00a, if 0. is the difference in potential between the conductor and points
far away. And in general, the steady-state diffusive current to a totally absorbing body
of any shape and size can be written as

J = 47rCDc., (3)

where C is the electrical capacitance (in cgs units of centimeters) of an isolated con-
ductor of that size and shape.

Solutions are available for the capacitances of a variety of conductors. As an ex-
ample, the capacitance of an isolated thin conducting disk of radius b, 2b/w in cgs units
(1), provides us with the diffusive current to both sides of a disk-like sink: J = 8bDc,.
The same result provides us with the current through a circular aperture of radius b in a
thin membrane which separates regions of concentration c, and c2: JI,2 = 4bD(c, -

C2).
Another simple result, perhaps not quite so familiar, is easily obtained by way of the

electrical analogy. Consider again the completely absorbing sphere of radius a in an
unbounded medium. Let a molecule X be released at a point in the medium a distance
r from the center of the sphere. What is the probability PC that the molecule will
eventually be captured by the sphere? The exact answer, which we shall make use of

' If a steady state has been established, the right-hand side of Eq. I is zero. Then a solution with spherical
symmetry and with c = 0 at r = a is c = c,,, (I - a/r). The density of inward current, Ddc/dr, is c X /r2, giv-
ing for the total inward current the result in Eq. 2.
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later, is

P, = a/r. (4)
It can be found by considering the capacitance of concentric spherical shells.2 Notice
that the result has nothing to do with the solid angle subtended by the absorber as seen
from the point of release; with increasing distance, P, goes down not as l/r2, but
only as 1/r.
The electrical analogy does not extend to time-dependent diffusion. The relaxation

of a charge distribution within a homogeneous poor conductor, which might be
thought to resemble superficially the relaxation by diffusion of a spatially varying con-
centration, is governed by a first-order equation and is characterized by a size-inde-
pendent time constant. In contrast, the characteristic time for a change brought about
by diffusion in a region of size a is a2/D.

Absorption by Specific Receptors

Let us apply some of this to a cell that carries on its surface specific receptors for species
X. Each receptor has a binding site that we shall idealize as a circular patch of radius s.
Suppose N receptors are distributed more or less uniformly over the surface of the cell.
The cell's radius is again a; the fraction of its surface occupied by binding sites is
Ns2/4a2. Any X molecule that touches a binding site is immediately (or within a
time short compared to the interval between arrivals) captured and transported
through the cell wall, clearing the site for its next catch. The surface of the cell between
these absorbent patches is impermeable to and does not bind X molecules. Under these
rules, what is the total current of X molecules assimilated by the cell, in a medium of
X concentration co?

For N = 1, and if s << a, the current is the same as that to one side of the disk-like
sink already mentioned, and is given by

J, = 4Dsc.. (5)

With only a few widely separated receptors the total current J will be almost N times
as great. But as N increases, the receptors will begin to interfere with one another, the
presence of one sink depressing the concentration in the vicinity of a neighboring sink,
and vice versa. IfN is so large that the surface is entirely covered by absorbent patches,
the whole cell becomes a spherical sink, and the current, which is the largest current a
cell of that size, however equipped, could collect by diffusion, is given by Eq. 2 as

"max = 4raDc.. (6)

2To derive this, consider the diffusive current from a continuous source distributed uniformly over a shell
of radius r. The probability sought is the ratio of the inward current flowing to the sphere of radius a to
the total current, inward plus outward. The electrical equivalent is a spherical capacitor with the inner con-
ductor at zero potential, the same as the potential at infinity. The ratio of the inward diffusive current to
the total current is the same as the ratio of the charge on the inner surface of the outer conductor to the to-
tal charge on that conductor, namely a/r.
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We can find the current for any number N of receptors by solving the following
analogous problem in electrostatics: Over the surface of an insulating sphere of radius
a are evenly distributed N conducting disks of radius s, connected together by in-
finitesimal wires so as to form a single conductor. The insulating sphere is itself im-
permeable to electric field, which is to say that its dielectric constant is zero, requiring
the electric field just outside the surface of the dielectric to have vanishing normal com-
ponent. What is the capacitance of this object? The answer, derived in Appendix A, is

C = Nsa/(Ns + Wra). (7)

The only assumption made in the derivation of this equation is that the distance be-
tween neighboring disks is large compared with the size of a disk, or equivalently, that
the fraction of the sphere's surface covered by disks is small. This condition will be
satisfied in all our applications of Eq. 7. Translating Eq. 7 into a formula for the cell's
intake ofX molecules by diffusion, we find

J = 47rDc. Nsa/(Ns + 7ra) = JmaxNs/(Ns + Wa). (8)

For large N the intake approaches that of the completely absorbing cell, as it ought
to. But it can become almost that large before more than a small fraction of the cell's
surface is occupied by absorbent patches. A reasonably generous allotment of area for
one patch might be a few hundred square angstroms. Let us take the patch radius s
equal to 10 A and the cell radius a equal to 1 ztm. According to Eq. 8, the intake is
half of Jmax for N = Wra/s = 3,100. The receptor patches then occupy somewhat less
than 1/ 1,000 of the cell's surface. The distance between neighboring patches is about
60 times the patch radius. It is important that the receptor patches be well dispersed.
If they were combined into a single absorbent patch of the same total area, the current
would be severely reduced, from Jmax/2 down to Jmax/(3,100)1/2. If the same number
of receptors were distributed randomly over the surface of the cell, rather than uni-
formly, as assumed in the derivation of J/Jmaxo the current would be only slightly
smaller than Jmax/2. A numerical calculation comparing uniformly distributed with
randomly distributed receptors showed that the difference in current, for the same
number of receptors N, does not exceed a few percent ifN is larger than 50.

Qualitatively the outcome reflects the fact that a diffusing molecule that has bumped
against the surface of the cell is by that very circumstance destined to wander around
in that vicinity for a time, most likely hitting the cell many times before it wanders
away for good. Insight is gained by developing this idea quantitatively. Fig. 1 shows
the path of a diffusing molecule that has touched the cell's surface at a sequence of
points A, B, . . . F, none of which happened to lie in a receptor patch. This hypo-
thetical path is unrealistic in one respect: the total number of distinct encounters with
the surface in a finite interval after one encounter is really very large-in the limit of
continuous diffusion, infinite. But clearly, that does not give the molecule an infinite
number of independent tries at hitting an absorbent patch. Two contacts such as C
and D, close together compared to the dimension s of a patch, must count as only one
try. The effective number of independent tries must be something like the number of
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FIGURE 1 The path of a diffusing molecule that has touched the surface of a cell of radius a
at a sequence of points A, B, . . . F. The receptor patches, shown shaded, are of radius s. A and B
constitute independent tries at hitting a patch, but C and D do not. Note between A and B
the excursion of distance s perpendicular to the surface of the sphere.

path segments whose ends on the cell surface are separated by a distance greater
than s. Such a path segment is likely to include an excursion of similar magnitude
perpendicular to the surface. Let us therefore assume, for a rough calculation, that ex-
tension out to a distance s from the surface will serve as the necessary and sufficient
condition for the ends of a segment to be at least a distances apart.
How many such excursions are to be expected after a molecule has once touched the

cell? The probability P, that a molecule now located a distance s from the surface of a
sphere of radius a will hit the surface of the sphere at least once before escaping to in-
finity is precisely equivalent to the "capture probability" Pc given by Eq. 4, which we
now rewrite as

P, = a/(a + s). (9)

The probability that a molecule now at r = a + s will execute exactly n excursions to
the surface, separated by reappearances at r = a + s and followed by diffusion to in-
finity, is Pn(1 - P3). It follows that the average number of such excursions is

n= Z nPn(l - P3) = P3/(l - P,) = a/s. (10)
n-O

The probability of not hitting a receptor patch in a single random encounter is
= 1 - (Ns2/4a2). If the contacts we have just enumerated can be taken as inde-

pendent tries, the probability that a molecule starting at r = a + s survives all sub-
sequent contacts until it escapes to infinity is

ao

p E MnPS(1 -ps ) = (1 - Ps)/(l - PS) (11)
n-0

Eq. 11 reduces to

Psc= 4a/(4a + Ns). (12)
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Since 1 - P.. is the fraction of all arriving molecules that ultimately are captured, we
have for the resulting current

J/Jmax = Ns/(4a + Ns), (13)

to be compared with our exact formula, Eq. 8. The close numerical agreement is
fortuitous. But this does show clearly how the remarkable effectiveness of dispersed
receptors arises from the multiplicity of encounters of a single diffusing molecule with
the surface of the cell. The number n! would be about 1,000 in our earlier example.
Some general conclusions can now be drawn. The number of receptors a cell can

usefully employ is not much larger than the ratio of cell diameter to patch diameter;
more receptors than that fail to increase the intake much. Receptor patches of ade-
quate number cover only a small fraction of the surface of the cell. Hundreds of such
receptor systems can be accommodated, each capable of collecting its particular mo-
lecular species almost as effectively as if the entire surface of the cell were dedicated to
that single task. Other constraints aside, the best arrangement of receptors of a given
type is maximum dispersal, with different receptor systems thoroughly intermingled.

Two-Stage Capture

Adam and Delbruck (2) considered a two-stage capture process involving adsorption
followed by diffusion of the adsorbed molecule over the surface of the cell. Suppose
that an X molecule that touches the cell at any point becomes attached, but so weakly
that it can migrate by two-dimensional diffusion until it either desorbs or encounters
an X-receptor. This will increase the rate at which molecules are captured by re-
ceptors by an amount that depends on the coefficient of surface diffusion, D', and the
mean time of residence on the surface before desorption, t,. Of course, a molecule
just desorbed has a very good chance of diffusing back to the surface and being re-
adsorbed, so the total time available to a particular molecule for random exploration
of the cell surface will be many times 4,. But that time and 4, itself do not need
to be involved explicitly in the result, as we shall see.

Following Adam and DelbrUick, we consider first the mean time 4, between adsorp-
tion on the cell's surface and capture, by a receptor, of a molecule that never de-
sorbs. This time 4, is to be averaged over all possible starting positions, that is, over
the whole surface of the cell. An approximate formula for 4, agreeing closely with
the one given by Adam and Delbruick, is

4, = (1.1 a2/ND')ln (1.2 a2/Ns2). (14)

As before, N is the number of X receptors on the cell, a is the radius of the cell, and s
is the radius of the binding site. The receptors are assumed to be uniformly distrib-
uted; the binding sites take up only a small fraction of the cell's surface (Ns2 <<
4a2). Eq. 14 has been adapted from an exact formula that can be derived for the
case of an absorber in the center of a disk with an impermeable perimeter, as ex-
plained in Appendix B. The result was checked for a square lattice of absorbers
in an independent computation by a relaxation method, and also by a Monte Carlo
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calculation. The latter confirmed that the distribution of times-to-capture is ex-
ponential. That simplifies our problem, for it implies that, averaged over all positions,
the probability for capture within an interval dt is dt/li, independent of the start-
ing time; the mean rate at which X molecules are being captured by receptors at any
time depends only on the number of X molecules on the cell's surface at that time.
Denote that number by m and its time average by N. Let J' be the average current
absorbed by the cell by way of the two-stage process. Then

it = mn/it. (15)
As long as J' is small compared with Jmax = 4wraDc., the number m- will be

close to its equilibrium value for the given concentration of X molecules in the
medium. In that case we expect mi to be given approximately by

m 47ra2dc. exp(EA/kT), (16)

where EA is the energy of adsorption and d is a distance of molecular size. The fac-
tor 4ira2d is roughly the volume accessible to a molecule adsorbed but still free to
move over the surface. When Eqs. 14-16 are combined, we find

J ' - 47rND'dc. exp (EA/kT)/ln (a2/Ns2). (17)

Let us compare this with the current that would be collected without the aid of sur-
face diffusion (Eq. 8), which for small J/Jmax is

J = 4NDsc.. (18)

The two-step process will be dominant if J' exceeds J, that is, if

(7rd/s)(D '/D) exp (EA/kT) > ln (a2/Ns2). (19)

In order of magnitude, the logarithm will by typically around 10, the factor rd/s
roughly unity. Suppose D'/D is as large as 0.1. Then the two-stage process will be
important if EA is greater than kTln (100), about 3 kcal/mol.
There may well be a number of systems that rely on the two-stage process. On the

other hand, as we have shown, it is not necessary to invoke a two-stage process to
explain efficient collection by a cell with many receptors. Nor is the advantage of a
two-stage process-when Eq. 19 is satisfied and such an advantage exists-to be at-
tributed simply to a reduction from a three-dimensional to a two-dimensional diffu-
sion process, as Adam and Delbruck implied. They noted that the logarithmic factor
in Eq. 14, which they called the "tracking factor," is a measure of the difficulty of
"finding the target" in a two-dimensional random walk, and that the corresponding
factor for three-dimensional diffusion is much larger, being of order (space size/
target size), rather than the logarithm of that ratio. But target finding in three dimen-
sions, that is, finding the cell itself, is required as a first step in both the two-stage
and the one-stage processes. Any X molecule that arrives at the surface of the cell
has already overcome the difficulty of that three-dimensional search and is now assured
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a period of diffusion in close proximity to the surface, which it will probe at a large
number of points. Indeed, one could regard this motion close to the cell wall as
quasi-two-dimensional diffusion-not quite as effective, to be sure, as an equally rapid
diffusion on the surface itself, but by no means as poor a substitute as the contrast of
the two- and three-dimensional tracking factors might suggest.

These results have been derived for receptors with binding sites that are perfect
sinks. It is not obvious how they apply in chemotaxis, where we are concerned with
the time-average occupation of receptors that bind molecules of attractant tempo-
rarily, subsequently releasing them to the medium. It will turn out, however, that the
formula for the current absorbed by receptors with binding sites that are perfect sinks
is precisely what we shall need to analyze the fluctuations in the occupation of re-
ceptors in the more general case.

EFFECT ON INTAKE OF ACTIVE MOVEMENT

It is natural to ask whether a cell cannot, by some movement of its own, increase its
intake of X molecules. Before addressing that question, we remind the reader that in
the environment of the microorganism the mechanics of the medium is dominated by
viscosity. The ratio of inertial forces to viscous forces is expressed in the Reynolds
number:

R = Lvp/l = Lv/v, (20)

where L and v are a length and a velocity typical of the motion under consideration, x7
is the viscosity of the fluid, and p is its density. The kinematic viscosity v is defined
as i7/p. The smallest kinematic viscosity we need to consider is that of water, about
10-2 cm2/s, and the largest velocities we shall encounter are well below 10-2 cm/s.
Then, even ifL is as large as lo-3 cm, we have R < lo0-. In most cases the Reynolds
number will be smaller by one or two orders of magnitude. Inertia is utterly negligible
in all the processes we shall consider. To emphasize that, we may remark that if a bac-
terium the size of E. coli, swimming in water at top speed, about 30 ,m/s, were sud-
denly to stop moving its flagella, it would coast less than 10-9 cm!

Stirring
Consider first what might be called local stirring. Let the organism be equipped with
suitable active appendages with which to manipulate the fluid in its vicinity. Can it
thereby significantly increase the rate at which molecules reach its receptors? This has
been suggested as a possible major function of flagella (3,4). Consider the following
rather loose dimensional argument: Transport by stirring is characterized by some
velocity Vj, the speed of the appendage, and by a length L, its distance of travel, which
determine a characteristic time t, = L/ V, On the other hand, movement of mole-
cules over a distance L by diffusion alone is characterized by a time tD = L2/D.
Roughly speaking, stirring will be more effective than diffusion only if t, < tD, which
is to say, only if

V, > DIL. (21)
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FIGURE 2 Relative concentration in the vicinity of a spherical absorber, for three cases: (1) No
stirring; the current absorbed is JO = 4raDc. (2) Volume between r1 and r2 stirred infinitely
rapidly, fluid stationary elsewhere; current absorbed is 2Jo. (3) Finite stirring speed; region inside
r I still dominated by diffusion; current absorbed is 2Jo.

For local stirring the distance L cannot be much larger than the size of the organism
itself. With L = 1 Am and D = 10- cm2/s, Eq. 21 calls for speeds of order 103
Am/s. That is faster than any motions bacterial cells exhibit. However, for larger
organisms lower speeds suffice. In fact, the feasibility of effective local stirring depends
on size even more strongly than Eq. 21 might suggest. That becomes clear when we
reckon the cost in energy dissipated in viscous friction, energy which the organism
itself is obliged to supply if it is doing the stirring.

Consider a spherical cell of radius a that is a perfect sink for molecules X. Without
stirring the cell collects a current of X molecules given by Eq. 2: Jo = 4wraDc.. The
concentration in the neighborhood of the cell is given by c = c. (1 - a/r), shown as
curve 1 in Fig. 2. Now let us introduce local stirring with the aim of doubling the cell's
steady intake. The object is to transfer fluid from a distant region of relatively high
concentration to a place much closer to the cell, thereby increasing the concentration
gradient near the absorbing surface. Of course, the depleted parcels of fluid must be
carried back again-some more or less complicated pattern of circulation must be
maintained by means we need not specify.
An idealized limiting case of this process could be described as follows. Let the

stirred volume extend from a sphere of radius r, > a out to a sphere of radius r2, and
let the stirring be so vigorous as to keep the concentration uniform at all times
throughout this region. Elsewhere, that is, both for a < r < r, and r > r2, the
fluid is stationary and transport of X molecules is effected by diffusion only. If the
current is to be twice JO, r, and r2 are related as follows:

r, = 2ar2/(r2 + 2a). (22)

The dependence of relative concentration on distance is shown by curve 2 in Fig. 2.
This case demanded unlimited rapidity of stirring, and hence unlimited expenditure

of energy. We should expect that in a practical case the concentration c(r), which
now must be understood as a mean concentration at any given r, will behave more like
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curve 3 in Fig. 2, rising somewhat with increasing r through the stirred volume. The
boundary at r = r,, though no longer sharp, still locates the essential transition from
diffusion-dominated transport to convective transport. We can express this by the
condition that at r = r, half the current density be due to diffusion and half to fluid
motion, that is, by the condition D dc/dr = cV,/4. Here V, is the maximum radial
velocity of flow at r,. The factor 4 derives from the assumption of a sinusoidal
pattern of radial velocities over the spherical surface, together with an assumption that
fluid parcels having the greatest outward velocity are fully depleted. Since the con-
vective current at r1, 47rr2 c(rl) V,/4, is equal to half of the total current, 47r aDc.,
and c(r,) is approximately 2c. (1 - a/r,), we get

V, = 2aD/r, (r, - a). (23)

This is a specific example of the general relation expressed by Eq. 21.
Whatever the pattern of circulation, the region from r = a out to at least r = r, +

(r, - a) must contain velocity gradients and, in particular, rates of shearing defor-
mation, as large as V,/(r, - a). The square of the rate of shearing deformation
determines the local rate of energy dissipation in a viscous fluid (ref. 5, p. 54). Thus,
Eq. 23 implies a lower bound on the rate at which energy must be expended in stirring.
The mean rate of energy dissipation per unit volume of fluid is approximately

Pi[Vr/(r, - a)]2 = 277a2D2/rl(r1 - a)4. (24)

The volume involved is approximately 8irr 2(r, - a), so the total stirring power ex-
pended in this region is.l67ri7a2D2/(r, - a)3. We neglect the dissipation in the larger
portion of the stirred volume that extends from 2r, - a out to r2, since the velocity
gradients there can be much smaller. Using Eq. 22 to express the result in terms of r2,
the outer limit of the stirred volume, we find as a lower bound on the stirring power, S,
required to double the cell's intake

Il67rqD2 (r2 + 2a \3
a r2 - 2a) (25)

The energy cost per unit volume of cell is

S 12nD2 (r2 + 2a 3

(47r/3)a3 ~ a4 r2 - 2a

For example, if r2 = 6a, which would call for a rather extensive stirring apparatus,
the specific power demand would be at least 100 qD2/a4. For 7 = 10-2 P, D =

10-5cm2/s, and a = 1 ,um, this amounts to 0.1 W/cm3, more than I04 times the spe-
cific power demand required to propel the sphere at a speed vo = 30 .m/s.3

For an organism as small as a bacterium in a medium like water, the cost of increas-

3The force required to propel a sphere at speed vo is 62rqavo (Stokes' law). The power dissipated is 6-r?aVO2.
Division by the volume of the sphere gives the specific power demand: 9nV1O2/2a2.
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ing the intake by local stirring would appear to be prohibitive. The prospect is some-
what more favorable if the viscosity of the medium is high. Since D varies as 1/t,
the product fD2 also varies as l/v. Stirring may also be more useful if the molecule
in question is so large that its diffusion constant is small. Note, however, that for any
molecule whose configuration is such that it can be enclosed in a sphere of radius R,
the product vD2 cannot be smaller than (kT/67rR)2/n.
The most striking aspect of Eq. 26 is the strong dependence of the specific energy

demand on cell radius. If the cell in our previous example had had a radius of 10 4m,
the stirring power required would have been reduced to 10-5 W/cm3. Local stirring
for the purpose of increasing intake changes from a hopelessly futile to a possibly use-
ful activity somewhere in the range of cell size between a few microns and a few tens of
microns. We emphasize that this conclusion does not depend on the details of the
stirring mechanism. It should be noted, as well, that the largest possible gain in in-
take, even if all other constraints could be ignored, would be by the factor r2/a, be-
cause the current is limited ultimately to what can diffuse into the stirred region.

Stirring of the fluid on a larger scale by some external agent can in principle increase
the current absorbed by the cell, but to be effective, it must convey fresh solution
into the region of low concentration around the cell faster than diffusion into the
absorber depletes it, that is, in a time short compared to a2/D. What is required is a
continuous shearing deformation with a transverse velocity gradient greater than D/a2.
It is shown in another article4 that if a suspension of spheres of radius a is stirred
vigorously enough to double the rate at which diffusing material is absorbed, the
mechanical power expended in agitating the fluid must be approximately 500 iD21/a4
ergs/cm3 per s. For the same values of q, D, and a as we assumed in our previous
example, the external stirring power required is 0.5 W/cm3 of fluid stirred. Here again
we find strong dependence on the size of the absorbing particles.

Swimming
Can a cell in a medium of uniform concentration increase its material intake by swim-
ming? One is tempted to suppose that a moving cell might scoop up the X molecules
that lie in its path (3) or move suddenly to a region in which the local concentration
is c. (4). This is not the case. The molecules in front of the cell are carried out of its
way along with the fluid it must push aside to move. The cell carries with it a layer of
liquid that is practically stationary in its frame of reference. Every molecule that
reaches the surface of the cell must cross this layer by diffusion. The controlling rela-
tions are essentially the same as those involved in stirring, of which swimming could be
viewed as a special case. But here the question can be formulated and answered
more precisely.

Let a spherical cell of radius a be propelled at constant velocity v0 through a fluid
containing at concentration c. molecules for which the cell is a perfect sink. By adopt-

4Purcell, E. M. 1978. The effect of fluid motions on the absorption of molecules by suspended particles.
J. Fluid Mech. In press.
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FIGURE 3 A sphere moving at constant velocity through a viscous fluid. Flow lines show the
direction of flow in a frame of reference fixed to the sphere. In that frame the components of
fluid velocity are given by Eq. 27.

ing the frame of reference of the cell and polar coordinates, as shown in Fig. 3, the flow
around the sphere is the Stokes' velocity field described (ref. 5, p. 65) by

v, = -vocosO(l - 3a/2r + a3/2r3),

V9 = vo sin O(I - 3a/4r - a3/4r3).

To find the current to the cell, the equation to be solved is

2

0

"I
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(27)

FIGURE 4 The increase in current to a spherical absorber resulting from motion at speed vo. J
and Jo are the currents collected by moving and stationary spheres, respectively. The curve
is a log-log plot of the fractional increase, J/JO - 1, as a function of the dimensionless velocity
parameter avO/D, where a is the radius of the sphere and D the diffusion constant of the molecules
absorbed. The fractional increase J/JO - 1 is proportional to v02 for vo << D/a and to v1/3 for
vo >> D/a.
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DV2c - v * grad c = 0, (28)

with the components of v given by Eq. 27. An approximate solution has been ob-
tained by a relaxation method. Thanks to the axial symmetry, the three-dimensional
problem can be reduced to diffusion with drift on an appropriately modified two-
dimensional grid. The result for J/JO - 1, the fractional increase in the current
collected by the moving sphere compared with that collected by a stationary sphere
in the same medium, is plotted in Fig. 4 against the dimensionless velocity parameter
avo/D. For avo/D << 1, the increase in current, J-J0, is proportional to (avo/D)2.
That was to be expected. The increase cannot depend on the direction of motion and
can hardly have a singularity at v0 = 0; therefore, it must depend on even powers of v0
in the neighborhood of v0 = 0. There is, to be sure, an increase in current to the
forward half of the sphere that is linear in v0; our solution shows a fractional increase
of approximately 1.5 avo/D. There is a corresponding linear decrease in current to
the rear half of the sphere, leaving the total current with an initial quadratic rise. But
our major concern is with values of avo/D large enough to make an appreciable dif-
ference in J-J0. Here the current increases much more slowly with v0. One can show
that in the high-velocity limit J/JO is proportional to (av0/D)'/3. For values of avo/D
as large as 10, our numerical solution exhibits that behavior.5

For a bacterium in pursuit of a typical nutrient, a = 1 ym, v0 = 30 am/s, D =
10-5 cm2/s, and avo/D = 0.03. The increase in intake is only 2.5% (Fig. 4). The
speed required to double the intake is enormous, about 3 mm/s. The situation is
somewhat more favorable if the diffusion constant D is very small. For example, if
a = 1 zm and D = 5 x 10-8 cm2/s, the intake is doubled at a speed of only
15 ,m/s.
At the speed v0 = 2.5D/a, the speed required to double the intake, the specific

power demand is 28n1D2/a4; see footnote 3. This is to be compared with the result
from our earlier example of stirring, 100 ?7D2/a4. The mechanical efficiency of
flagellar propulsion is at best a few percent (8), so the actual power requirement lies
well above our estimated lower bound for stirring in general.
We conclude that in a uniform medium motility cannot significantly increase the

cell's acquisition of material. At least that is true for a cell as small as a bacterium
and for molecules of moderate size. In a nonuniform medium, on the other hand, a
motile organism can seek out, as in chemotaxis, more favorable regions. The search
must involve the detection of changes in concentration, a comparison of concentra-
tions at different places or different times.

*5Approximate analytical treatments of this problem have been published, for example, by Friedlander (6)
and Acrivos and Taylor (7). Their results are expressed in terms of the Nusselt number, in our notation
2J/JO, and the Peclet number, in our notation 2avo/D. While agreeing that for large values of vo J/Jo is
proportional to vo/3, the papers cited predict a linear dependence of J-Jo on vo for small values of vo. We
do not understand how that dependence can arise.

H. C. BERG AND E. M. PURCELL Physics ofChemoreception 205



MEASUREMENT OF CONCENTRATION

The Perfect Instrument

We want to see how well a microorganism can determine the concentration of mole-
cules X in its vicinity. We shall assume that the organism derives its information
from the state of occupation of specific receptors, and we shall study presently the
capability of such a measuring procedure. But it will be instructive to consider first
a hypothetical instrument, a device that can instantly count all the X molecules in
some fixed volume V of medium. The expected count is Vc, where c is the "true"
concentration of X molecules, the mean over a very long time. At the dilutions with
which we are concerned there is no doubt that the X molecules diffuse independently.
If the concentration is inferred from the result of a single count, a fractional error of
magnitude Ac/IJ (VU)-'12 is probable. However, given a sufficient length of time
to make the determination, we could by repeating the count reduce the uncertainty-
provided that we wait long enough between counts to insure that the next population
counted is statistically independent of the previous one. The waiting time required
is approximately the time it takes a molecule to diffuse out of the sample volume,
roughly v2/3/D. That is, we can make about TD/V213 independent counts in the
alloted time T, which will reduce the rms fractional error in the determination of c to
something like

Aclc = ( TD/V213)-2(Vc)-i/2 = (TDc)-'/2 V-'1/6 (29)

If the sample space is a spherical volume of radius a, this gives

Ac/c = (1.61 TDja)-112. (30)

Ifa = 1 um and D = i-O cm2/s, a concentration of 10-6 M (c = 6 x liol cm-3)
could be measured with I% uncertainty in something like 0.01 s.
Numerical factors of order unity would appear in such relations if they were for-

mulated precisely. A "perfect" instrument whose performance can be described pre-
cisely is a counter that registers at every instant the exact number m of X molecules
that are at that moment inside a spherical region of radius a. The function m(t), the
instrument's output, contains all the information about the ambient concentration c
that can be obtained without looking outside that sphere. If we are given the output
for time T, starting at tl, the best estimate of c is c = (3/47ra3)mT, where mT is the
average ofm(t) over the time of observation:

tl +T

MT =-T m(t) dt. (31)

The question now becomes, if we repeat this operation many times, starting at widely
separated times tk, what is the expected fluctuation in the values of mT? We need to
compute the mean square deviation of mT, <mT> - <mT >2 The brackets idi-
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cate an average over a large number of independent runs, each of duration T. The
average of the mT's, <mT >, is of course just (47/3)a31.
A useful tool is the autocorrelation function ofm(t), defined by

G(T) = <m(t)m(t + T) >, (32)

in which the average indicated by the brackets is over an unlimited time. G(r) is an
even function of T: G(T) = G(-T). From the definition ofmT it follows that

1lJ tltTJ1T1T
MT = T2 dt' m(t)m(t') dt, (33)

from which by introducing the autocorrelation function G(r) we obtain

<m2 dt' G(t - t)dt, (34)

reducing our problem to the determination of G(T).
To find G(r), consider a large number N of X molecules confined to a spherical

volume of radius R >> a within which lies our spherical sample volume of radius a.
Let wj(t) be the function which is 1 if molecule j is inside the smnaller sphere at
time t and 0 if it is not. Then the correlation function of m(t) can be written as fol-
lows:

<m(t)m(t + T)>= g wi(t)wi(t + Tw + < E w(t)wi(t + ) (35)
X- l l i-1

Clearly <wi> = a3/IR3, and since Wj and w, are independent, the average of the dou-
ble sum, in which there are N(N - 1) terms, is N(N - l)a6/R6, or (Na3I/R3)2 for large
N. In the single sum the average of one of the N terms is (a3/R3)u(r), where u(r) is
the probability that if a certain molecule is found inside the sample volume at time t,
it will be found inside it at the later time t + T, this probability having been averaged
over a uniform distribution of initial positions throughout the spherical volume r < a.
We now have

<m(t)m(t + T)> = (Na3/R3)u(') + (Na3/R3)2. (36)

But Na3/R3 is just <m >, so the correlation function is

G(r) = <m>u(T) + <Mr>2. (37)

Actually we shall not need u(T) itself but only the characteristic time T0 defined by

O= fu (r) dT, (38)

which is easier to calculate. The value of r0, derived in Appendix C, is *a2/D.
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It is an appropriate measure of the time for the contents of the sample volume to be
renewed by diffusion in and out.

Returning to Eq. 34, let us consider observation times T much longer than rT. In
that case, remembering that G(-T) = G(T), the integral becomes

<m2 > = (1/T2) T dt'(T<m >2 + 2TO <m >)

= <mT> + (2To/T)<mT>. (39)

This gives us an exact formula for the mean square fluctuation in mT:

<AM2 > = M2 > _ mT2 = (2To/T)<mT> = (4a /5DT)mi, (40)
from which we obtain the rms fractional error in concentration e in one such mea-
surement:

ACrms/C = (57rTDja/3)-1/2 (41)

The rms error is smaller by a factor 0.55 than the estimate of Eq. 30.
This result for the perfect instrument will provide us with a convenient standard

of comparison. For instance, any procedure capable of determining the concentra-
tion with an rms error of 1% in an observation time T may be said to be equivalent
to a perfect instrument sampling a spherical volume of radius about 2,000/Tc.

A Single Receptor
We assume that a receptor has a binding site capable of binding one, but only one, X
molecule. We shall describe the history of this site by a function p(t) that has the
value 1 when the site is occupied and 0 when it is empty. The time average occupation
pj is determined by a single dissociation constant K, the concentration in moles per
liter for which p = 0.5. Let us denote by Cl/2 the same concentration in molecules
per cubic centimeter. In equilibrium at concentration c the expected average occu-
pancy is

p = c/(c + C1/2). (42)

After a molecule has become attached to a binding site there is a constant proba-
bility, per unit time, that it will be released. Let the probability of detachment in an
interval dt be dt/Tb. Then Tb is the average time a molecule stays bound to a
site. As before, we shall describe the binding site as a circular patch of radius s. If
the patch were a sink, the current to it would be 4Dsc, as in Eq. 5. Suppose that a
molecule that arrives at a vacant binding site sticks with probability a. If it doesn't
stick on its first contact, it may very soon bump into the site again and again. If
these encounters occur within a time interval short compared to Tb, their result is
equivalent merely to a larger value of a. As we have no independent definition of the
patch radius s, we may as well absorb the effective a into s, writing for the proba-
bility that a vacant patch becomes occupied during dt simply 4Dsc dt. Since p is
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the probability that a receptor patch is occupied and 1 - A the probability that it is
empty, in the steady state the following relation must hold:

P/Tb = 4(1 - p) Dsc. (43)
In particular, sincep = ' for c = cl/2,

Tb = (4Dsc,12)'. (44)

Thus for K = 10-6M, D = 105cm2/s, ands = IOA, wewouldhave Tb = 4 x 10-4s.
If the only information about the ambient concentration c is the function p(t) for

one receptor recorded for a time T, the best use that can be made of it is to form
the average,

f tI+T
PT = (I/T) p(t)dt, (45)

I'

take that as an estimate ofp, and use Eq. 42 to derive c:

C/C112 = PTA/( - PT)- (46)

To compute the uncertainty in such a determination of c we proceed exactly as we
did above with the measurement of mT. All we need is the correlation function for
p(t), for which we shall use the same symbol, G(T):

G(T) = <p(t)p(t + T)>. (47)
Consider data from a large number n of pairs of observations, one at t, the other at
I + T, with random values of t but always the same value of r. Segregate those pairs
in which the first observation found p = 1 and ignore the others. If n is very large,
there will be about np such pairs. Of these, according to the definition of G(r),
the number with p(t + T) also equal to 1 will be nG(T). These "1,1" pairs are
the only ones for which p(t)p(t + T) # 0. Now consider the result of shifting
the time of the second observation from t + T to t + T + dT. Some of the nG(T)
1,1 pairs will become 1,0 pairs; nG dTITb of them will do so. Some of the 1,0
pairs, of which there were np - nG, will become 1,1 pairs; the number doing so will
be n(p - G)[p/(I - P)]dr/Tb. We should now have nG(T + dT) 1,1 pairs, which
requires that

dG = -GdT/Tb + (jp - G)[pj/(1 - jp)] dT/Tb- (48)

Integrating and requiring that G(0) = F, we obtain

G(T) = p2 + p-(l - p) exp [- IT /(1 - P)TbI. (49)

We now use Eq. 34 to calculate <p2 >, assuming T» Tb, with the result

<P T - <PfT>2 = (2/ 7)p(1 - )2T (50)
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For the rms error in c inferred from such a measurement we get

ZCrms/C = (2TbITp)'12. (51)

This result can be expressed in a surprisingly simple and illuminating form. Using
Eqs. 42 and 44, we can transform Eq. 51 into

ACrmsl/ _ (v/2) 1/2, (52)

where

v = 4Dsc(I - p)T. (53)

The current 4 Dsc is the rate at which molecules would be captured by the receptor
patch if it were a perfect sink. It is therefore the rate at which molecules arrive at the
receptor if we only count "new" molecules, those that have not been there before.
Since the probability that the patch is already occupied when any molecule arrives
is p, the rate at which new molecules are captured by the patch is 4 Dsc(l - p).
Hence the number v is just the total number of new molecules that have occupied
the receptor patch during the observation period T. We see that the fractional error in
the determination of e depends on this number v and nothing else! Evidently, once
a particular molecule has occupied a receptor patch, subsequent visits by the same
molecule contribute no information whatever about the concentration in the medium.
Indeed, that ought to be true if the molecules are diffusing independently. Such
diffusion is a Markov process, which is to say that the probability of a future con-
figuration is determined completely by the present configuration, regardless of the past.
It follows that we can draw from the molecule's future behavior no inference about
the past that is not already implied by its present position. This observation is the
key to the generalization of our result to include cells with many receptors.

It is interesting to compare the performance of one receptor, as a "c-measuring"
device, with the perfect instrument described earlier. Using Eq. 41, we find that the
single receptor is equivalent to a perfect instrument with a spherical sampling volume
of radius (6/57r)(1 - p)s, a radius approximating that of the single receptor patch.
Withp = , s = 10 A, and D = 10- cm2/s, a concentration of 10-6 M could be mea-
sured with 1% uncertainty in about 17 s.

A System ofMany Receptors
As we turn toward our ultimate goal, assessing the performance of a cell with many
receptors, a formidable complication looms ahead. The "signal" from which c is to be
determined is now the total instantaneous occupation of the N receptors on the cell,
that is, the function

N

P(t) = E p1(t). (54)
j-1

Now the histories of the occupation of two receptors on the same cell, especially of
two receptors relatively close to one another, are not statistically independent. A
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molecule just released at receptor j is necessarily favorably situated to wander into
receptor k. Put another way, we should expect the two fluctuations, pj(t) - p
and Pk(t) - p, to exhibit some positive cross-correlation. The effect would depend
on the distance between the receptors and would be extremely difficult to handle
rigorously. Fortunately, this threatening complication vanishes when we realize that,
as we have just learned in the case of the single receptor, we need be concerned only
with the capture of new molecules. Here "new" molecules are those that have not
previously occupied any receptor on the cell. For once a particular molecule has
occupied a receptor anywhere on the cell, its subsequent history is statistically de-
termined and can convey no further information about the ambient concentration.
The current of new molecules to a receptor patch is equal to the current that would
reach that patch if all the receptor patches on the cell were perfect absorbers. The
capture rate for the receptor patch is this current times (1 - p). Therefore, the rate
at which new molecules are captured by the receptor system is just J(1 - p), where J
is given by Eq. 8 and p is given, as before, by Eq. 42. This does not mean that the cell
is obliged to identify the new molecules and avoid counting the others. What we are
asserting is that the statistical error in the cell's inferred value of c, given the receptor
occupation history P(t), will be the same as if new molecules only had been recorded.
The capture of a new molecule by one receptor and the capture of a new molecule

(necessarily a different molecule) by another receptor are statistically independent
events. With respect to such events, the history of N receptors observed for time T is
statistically indistinguishable from that of a single receptor observed for time NT. It
follows that the probable error in a value of c inferred from this information will be
the same as Eq. 52 predicts for a single receptor if IJ = TJ(1 - p). Thus we arrive
rather suddenly at our final result:

ACrms/C = [JTJ(1 _ p)]-1/2 = [2rTDRENsa(l -P)/(Ns + 7ra)]-'/2. (55)

If the number of receptors, N, is such as to make J/Jmax =, namely N = wa/s, this
becomes

AC ms/c= [7rTDca(l - p)] (56)

On comparing this with Eq. 41, we find that the equivalent sample volume for the
perfect instrument would be a sphere of radius 3(1 - p)a.

APPLICATIONS

Bacteriophage Adsorption
Eq. 8 provides a solution to a classic problem in bacteriophage adsorption (see ref. 9).
Why is the initial rate of adsorption of phage to a bacterium so close to the diffusion-
limited rate for a perfectly adsorbing cell, given that the receptor binding sites cover
only a small fraction of the surface? As we have seen, the answer lies in the large
number of independent tries that each diffusing particle has at hitting a binding site
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once it has bumped into the surface of the cell. This is a statistical property of dif-
fusion per se; it is true regardless of the structure of the diffusing particle. Schwartz (9)
found a hyperbolic dependence of the initial rate of adsorption of bacteriophage A
on the number of A-receptors in samples of E. coli grown under different cultural
conditions (his Fig. 2 a). A least-squares fit (10) of Eq. 8 to this data gives J/c< =
(2.14 ± 0.10) x 10 -10 cm3/s and ra/s = 483 : 79. With a = 8 x 10 -5 cm, we find
s = 52 A. Recall that s is an effective radius; it depends on the size of the bind-
ing site and of the phage and on the probability that a phage, having arrived at a bind-
ing site, is adsorbed. Adsorption occurs at the half-maximum rate with fewer than 500
receptors per cell, when only 0.5% of the surface is specifically adsorbing. The
value for J/c. determined by the data is larger than the value computed from Eq. 2,
5.03 x 10-"1 cm3/s, by a factor of 4. The diffusion constant for bacteriophage A
is quite small, 5 x 10-8 cm2/s; in this case, the specific energy demand for stirring
(Eq. 26) is not prohibitive, and the bacterium could double the adsorption rate by
swimming (Fig. 3, avo/D = 3). But we do not know whether Schwartz's bacteria
were motile. A systematic error in the measurement of the number of phage or bac-
teria could explain the discrepancy.

Bacterial Chemotaxis
Studies of chemotaxis are most advanced for the enteric bacteria Escherichia coli and
Salmonella typhimurium (for reviews, see refs. 11-14). These cells execute a three-
dimensional random walk (15). They swim steadily along smooth trajectories (run),
move briefly in a highly erratic manner (tumble or twiddle), and then run in new direc-
tions. They sense concentrations of attractants or repellents as a function of time
(16,17) and bias their random walk accordingly. Runs that carry a cell to higher
concentrations of an attractant or to lower concentrations of a repellent are extended.
The available evidence is consistent with a model in which a bacterium measures the
difference in the fraction of receptors bound in successive intervals of time (17-19), i.e.,
in which the response is proportional to dF/dt. The random walk can be biased most
effectively if the measurements are made in a time interval short compared to the mean
run length (ref. 17, Fig. 3); information gathered during a run is of little value once
the cell has chosen a new direction at random. The time available for gradient deter-
mination and chemotactic response could not, in any case, exceed the time, Trot,
which characterizes the Brownian rotation of the cell. There is no way, even in
principle, for a bacterium to preserve an orientation reference frame for a time much
longer than r,o,-unless, of course, it could use some external clue such as the direc-
tion of illumination. In the case of E. coli, Trot is typically a few seconds, somewhat
longer than the length of a run (15), so the run length remains the controlling limit on
gradient measurement and response time.

Let the period of time devoted to each measurement ofp be T. The difference be-
tween two successive measurements will be significant if that difference is larger than
the standard deviation in the difference, i.e., if
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(57)

This inequality places a condition on Tthat can be found by substitution of Eq. 55:

T> (Ns ) Za)(. 12)( d)Jl (58)

If the temporal gradient is generated by the movement of the cell at velocity v through
a spatial gradient aJ/Ox, (1 /c) Oc/6t = (v/c) dc1/dx. The time required to complete
the temporal comparison is 2 T.
Working with enzymatically generated temporal gradients of the attractant L-glu-

tamate, Brown and Berg (ref. 17, Fig. 1) found that the mean run length doubled
(increased from 0.67 to 1.34 s) for dfp/dt = 1.05 x 10-3 s-', i.e., for c= 1.61 mM,
(I/l)ai/Ot = 4.35 x 10-3 s'1, and c112 = 2.3 mM. If a = 0.8 ,um, D = 9 x 10-6
cm2/s, and Ns/(Ns + 7ra) = 0.5, we find 2T > 0.087 s. The time required to
detect a temporal gradient of Aj the magnitude would be 102/3 = 4.64 times longer,
or about 0.4 s.
Working with defined spatial gradients of the attractant L-serine, Dahlquist et al.

(18) found that a trajectory of length 10 Am was doubled by a gradient of decay length
about 1.4 cm. With C112 = 1.0 mM, (1/cE)Oe/Ox = 0.7 cm-', v = 15 Am/s,
a = 0.8 gm, D = 10-5 cm2/s, and Ns/(Ns + ira) = 0.5, we find 2T > 0.27 s. A
gradient Y6 as steep could be detected in about 1.2 s.

Using the capillary assay and attractants detected by the aspartate and galactose
chemoreceptors, Mesibov et al. (19) found threshold responses for DL-a-methylaspar-
tate and D-galactose at concentrations (the initial concentration in the capillary)

c- 4 x 10-7M and 2.5 x 10-8 M, respectively, with CI/2 _ 1.3 x 10-4 M and 6 x
10-7 M, respectively. These experiments are difficult to analyze, because the response
is complex and the gradient near the mouth of the capillary is hard to define. Using
Adler's interpolation (ref. 20, Fig. 5), we estimate c = 10-2 o and (l/i)&c/Ox =
80 cm '. As before, we assume Ns/(Ns + ira) = 0.5. With a = 0.8 ,m, D =
10-5 cm2/s, and v = 15 um/s, we find for a-methylaspartate 2T > 0.6 s, for
galactose 2 T > 1.4 s.
Taken together, these results imply that E. coli and S. typhimurium are able to make

temporal comparisons of concentrations in time intervals of about 1 s. If times much
longer than this were required, cells in spatial gradients could not effectively bias their
random walks; for E. coli, even 5 s would be prohibitive (17). Thus, the design of the
chemotaxis machinery appears to be nearly optimum. This implies, for example, that
the receptors are dispersed widely over the surface of the cell, rather than concentrated
at the base of each flagellum, and that essentially every capture of a molecule by a
receptor contributes to the signal controlling the direction of rotation of the flagella.

It is of interest to ask whether, in principle, a bacterium could navigate by com-
paring the concentration at the front to that at the back, that is, by a strictly spatial
mechanism. In this case we require
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(a/c)d/8x > VACrms/C,(59
where Acr,,s is the standard deviation in the measurement made by half of the cell.
A condition on Tis obtained by substituting Eq. 55 and using for J the current to one
half of the cell:

T > [ 7ra3D (N )) 12g2(1dc)]- (60)/+i21i\CTX)J
For the experiment of Dahlquist et al. (18), we find T > 1.7 s. The comparison
probably could be made in less time, since the length of the cell is roughly twice its
diameter. Thus, on the basis of this analysis a mechanism involving spatial compari-
sons remains feasible.
But there is a much more serious problem: motion of the cell will generate an ap-

parent spatial gradient. As noted in our discussion of swimming, the flux to a perfectly
absorbing sphere of radius a moving at velocity vo in a solution of uniform concen-
tration is greater in the front than in the back by a factor of about 1 + 3avo/D.
As shown in Appendix D, the flux to a stationary perfectly absorbing sphere of radius a
in a spatial gradient of decay length L is greater in the front than in the back by a
factor 1 + alL. Thus, the moving sphere finds itself in an apparent spatial gradient of
decay length D/3v. In the experiment of Dahlquist et al. (18), this decay length is of
order 2 x 10-3 cm: the apparent gradient is 600 times steeper than the real gradient!
The problem remains severe but is less dramatic when we realize that the cell takes up
only a few percent of the molecules that reach its surface (ref. 4, Table 3); molecules
not absorbed by the front half of the cell could still be counted by a receptor system
operating independently at the back.

Slime Mold Chemotaxis
The spatial mechanism is much more effective if the cell is large. Mato et al. (21), work-
ing with the cellular slime mold Dictyostelium discoideum, observed a threshold re-
sponse for cyclic AMP (with cells 0.6 cm away from a point source of the attractant)
when e = 4.3 x 10i- M, a0/ax = 3.6 x 10-8M/cm, and c1/2 - 10-8 M. Assuming
a = 5 ,m, D = 5 x 10-6 cm2/s, and Ns/(Ns + 7ra) = 0.5, we find, using Eq. 60,
T > 16 s. This interval is short compared to the duration of the wave of cyclic AMP
diffusing past the cells. If the cells absorb (or destroy) an appreciable fraction of the
cyclic AMP, then an apparent gradient of decay length 0.8 cm would be generated were
they to crawl through a solution of uniform concentration at about 0.2 ,m/s, their
usual speed during a chemotactic response. This is comparable to the decay length
of the threshold gradient in the experiment of Mato et al. (1.2 cm).
How long would it take the slime mold to sense the spatial gradient by making

temporal comparisons? If the crawl velocity is 0.2 ,m/s, the spatial gradient of Mato
et al. could be detected in about 17 s (Eq. 58). A pseudopod of one-fourth the radius
moving twice as fast would require a similar time. This analysis does not allow us to
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rule out a temporal mechanism. But note that whatever the mechanism, the measure-
ment must be made over an appreciable period of time.

We thank Steven M. Block and Francis D. Carlson for comments on the manuscript.

Computations were performed with facilities supported by National Science Foundation Grant PCM 74-
23522. Other aspects of the work were supported by National Science Foundation Grants BMS 75-05848
and PCM 77-08543.

Receivedforpublication 13 May 1977.

REFERENCES

1. SMYTHE, W. R. 1950. Static and Dynamic Electricity. McGraw-Hill Book Company, New York.
2nd edition. 114, where Cis given in inks units.

2. ADAM, G., and M. DELBRUCK. 1968. Reduction of dimensionality in biological diffusion processes. In
Structural Chemistry and Molecular Biology. A. Rich and N. Davidson, editors. W.H. Freeman &
Company, Publishers, San Francisco, Calif. 198-215.

3. CARLSON, F. D. 1962. A theory of the survival value of motility. In Spermatozoan Motility. D.W.
Bishop, editor. American Association for the Advancement of Science, Washington, D.C. 137-146.

4. KOCH, A. L. 1971. The adaptive responses of Escherichia coli to a feast and famine existence. Adv.
Microb. Physiol. 6:147-217.

5. LANDAU, L.D., and E. M. LiFsclmTz. 1959. Fluid Mechanics. Pergamon Press, Ltd., Oxford, Great
Britain.

6. FRIEDLANDER, S. K. 1957. Mass and heat transfer to single spheres and cylinders at low Reynolds
numbers. Am. Inst. Chem. Eng. J. 3:43-48.

7. AcRivos, A., and T. D. TAYLOR. 1962. Heat and mass transfer from single spheres in Stokes flow.
Phys. Fluids. 5:387-394.

8. PURCELL, E. M. 1976. Life at low Reynolds number. In Physics and Our World: A Symposium in
Honor of Victor F. Weisskopf. AIP Conference Proceedings, No. 28. K. Huang, editor. American
Institute of Physics, New York. 49-64. Reprinted: 1977. Am. J. Phys. 45:3-11.

9. SCHWARTZ, M. 1976. The adsorption of coliphage Lambda to its host: Effect of variations in the sur-
face density of receptor and in phage-receptor affinity. J. Mol. Biol. 103: 521-536.

10. WILKINsoN, G. N. 1961. Statistical estimations in enzyme kinetics. Biochem. J. 80:324-332.
11. ADLER, J. 1975. Chemotaxis in bacteria. Annu. Rev. Biochem. 44:341-356.
12. BERG, H. C. 1975. Bacterial behavior. Nature (Lond.). 254:389-392.
13. BERG, H. C. 1975. Chemotaxis in bacteria. Annu. Rev. Biophys. Bioeng. 4:119-136.
14. KoSHLAND, D. E., JR. 1977. A response regulator model in a simple sensory system. Science (Wash.

D.C.). 196:1055-1063.
15. BERG, H. C., and D. A. BROWN. 1972. Chemotaxis in Escherichia coli analysed by three-dimensional

tracking. Nature (Lond.). 239:500-504.
16. MACNAB, R., and D. E. KOSHLAND, JR. 1972. The gradient-sensing mechanism in bacterial chemo-

taxis. Proc. Natl. Acad. Sci. U.S.A. 69:2509-2512.
17. BROWN, D. A., and H. C. BERG. 1974. Temporal stimulation of chemotaxis in Escherichia coli. Proc.

Nati. Acad. Sci. U.S.A. 71:1388-1392.
18. DAHLQUIsT, F. W., R. A. ELWELL, and P. S. LOVELY. 1976. Studies of bacterial chemotaxis in defined

concentration gradients. A model for chemotaxis toward L-serine. J. Supramol. Struc. 4:329-342.
19. MESIBov, R., G. W. ORDAL, and J. ADLER. 1973. The range of attractant concentrations for bacterial

chemotaxis and the threshold and size of response over this range. J. Gen. Physiol. 62:203-223.
20. ADLER, J. 1974. A method for measuring chemotaxis and use of the method to determine optimum

conditions for chemotaxis by Escherichia coli. J. Gen. Microbiol. 74:77-91.
21. MATO, J. M., A. LOSADA, V. NANJUNDIAH, and T. M. KONUN. 1975. Signal input for a chemotactic

response in the cellular slime mold Dictyostelium discoideum. Proc. Natl. Acad. Sci. U.S.A. 72:4991-
4993.

H. C. BERG AND E. M. PURCELL Physics of Chemoreception 215



APPENDIX A

The Capacitance ofN Conducting Disks ofRadius s on an Insulating Sphere
ofRadius a and Dielectric Constant Zero

We first treat the N disks as a system of independent conductors with different charges qj
and potentials 'j, j = 1, 2,. .. N. The charges and potentials are connected by linear relations
involving the so-called potential coefficients, hjk:

Oj = S> hjkqk. (Al)
k

Put zero charge on all but the kth disk. Then kk = hkkqk. The presence of the N - I un-
charged disks can affect kk only through dipole or higher moments induced in them by the
field of the lone charge qk. That is a second-order effect which can be neglected if, as
we shall now assume, the disk radius s is small compared to the distance between neighboring
disks, approximately a(47r/N)"12. If the other disks were not there, the capacitance of a single
disk on the insulating sphere would be just half that of an isolated conducting disk, or s/lr. So
we must have, to first order in the ratio Ns2/47ra2, hkk = r/s. As the disks are all equivalent,
this holds for all k = 1, . . . N. Now the potential of one of the uncharged disks is

i= hjkqk- (A2)
Consider the sum

[1/(N - 1)] 5 j = [qk/(N - 1)] 5 hjk. (A3)
j#k j jok

If N is large, this is essentially the average over the spherical surface of the potential due
to the single charge qk. If the sphere were empty space with dielectric constant unity in-
stead of zero, that average would be simply qk/a, because the average of a harmonic func-
tion over a sphere is equal to its value at the center of the sphere. In our case, however, the
electric field outside the sphere is not that of a single charge qk, but rather that plus the
field of a set of "image charges" within the sphere, the combined field being such as to satisfy
the boundary condition of zero normal component at the spherical surface. So we should add
to qk/a the contribution of the image-charge distribution to the average potential. But
that contribution is zero, since the net charge of the image distribution is zero. (If a sphere
contains no net charge, the average of the potential over the surface is that due to external
charges alone.) Hence we are left with

[qk/(N - 1)] E2 hjk = qk/a. (A4)
jok

We have tacitly assumed that N is large, so we can write

E hjk = N/a. (A5)
j#k

Referring back to Eq. Al, if we now put the same charge q on every disk so that the total
charge is Nq, the common potential X will be

0 = Xk = hkkq + E qhjk = irq/s + Nq/a, (A6)j'k
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from which we obtain the capacitance of the combination:

C = Nq/l = Nsa/(Ns + 7ra). (A7)

APPENDIX B

The Mean Time to Capture in Two-Dimensional Diffusion
In a space of two dimensions a particle is released at time t = 0 at the point x, y. The
particle then diffuses at a rate determined by a two-dimensional diffusion constant D' until
it eventually blunders into the boundary of an absorber, where, at time t, it is captured. Let
this be repeated very many times, starting always at the same point x, y. Let W denote the
mean of all the observed times-to-capture for this starting point. To find the equation satisfied
by the function W(x,y), picture the diffusion as a random walk on a square lattice, with
step length 6 and step time At. Consider a particle now at the lattice point x, y, from
which the mean time to capture is W(x,y). One step-time later this particle will be with
equal probability at one of the four lattice points x a 6, y + 6. It must therefore be true
that

W(x,y) = At + 1[W(x + 6,y) + W(x - 6,y)

+ W(x,y + 6) + W(x,y - 6)]. (Bi)
Ifwe now shrink the step-length and step-time so as to approach the continuous diffusion limit
with D' = 62/4At, Eq. B1 becomes

D'V2W + 1 = 0. (B2)

In electrical terms, this is just Poisson's equation for a region of uniform charge density, with
W the potential and 1/4irD' the charge density. As boundary conditions we require W =
0 on all absorbing boundaries. On a line of symmetry the normal component of grad W must
vanish. The same condition holds at an impermeable, nonabsorbing boundary.
A number of cases are now almost trivially soluble, including the case of diffusion in an

annular region treated by Adam and DelbrUck (2): a circular absorber of radius s (a in their
notation) centered within an impermeable boundary of radius b. All we need is the electrical
potential +(r) between concentric cylinders, the space being filled with uniform space charge
opposite in sign and equal in total amount to the charge on the inner cylinder (thus insuring
zero gradient at r = b). In this way we find

W(r) = (2b2Inr - 2b2lns - r2 + s2)/4D'. (B3)

We seek the mean of W over all starting points in the annular space, the quantity Adam and
Delbruck call T(2) and we call t,v In this case

4b 2 2

t= 1 2rrW(r)dr= b In b 3b 5 (B4)
-rb S2) 2D'(b2 S2) s 8D'

For our application we might have defined tc as the average of W over the whole region
r < b, including the absorber, but the distinction is unimportant if b >> s, which is the
case of interest. In this limit Eq. B4 reduces to

tc = (b2/2D')[ln(b/s) - ]. (B5)
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Adam and DelbrUck's approximate result for this case, obtained by rather laborious means,
is in our notation

tc I (0.5b2/D')[In(b/s) - 0.5], (B6)
in excellent agreement with Eq. B5 as far as the logarithmic term.
Our actual problem was concerned with an unbounded array of evenly spaced absorbers.

Let these be circular patches of radius s on a square lattice of spacing d >> s. We need
only solve Eq. B2 in the unit cell, a square of edge b with the absorber at its center. W is
zero at the absorber and its normal derivative vanishes on the unit cell boundary. An approxi-
mation that ought to be adequate for b >> s is obtained simply by taking over Eq. B5 for a
circular boundary and setting b2 = (4/r)d2. Another approach is to subdivide the unit cell
with a grid and solve Eq. B2 numerically. Such a treatment has been carried out by a relaxa-
tion method for meshes as fine as b/40 and for absorbers consisting of a square set of mesh
points ranging in size from a single point to 72 points. Both of these approaches gave results
adequately represented by Eq. 14, as did a Monte Carlo study of random walks on a square grid
with a central sink. The Monte Carlo results included information about the distribution of
times-to-capture, in the form of the first four moments of the distribution of all path lengths to
capture with all starting points equally weighted. The ratios of the observed moments corre-
sponded closely to those for an exponential distribution, i.e., a distribution in which the
probability of a time-to-capture greater than tc is proportional to exp (-tac/7c).
The derivation of Eq. B2 generalizes easily to spaces of higher or lower dimensionality.

Eq. B2 remains unchanged, it being understood that in v dimensions V2 is the v-dimensional
Laplacian and D' the v-dimensional diffusion constant. For a spherical absorber of radius a
in a spherical vessel of radius b we find

W(r) = (2b3/a - 2b3/r + a2 - r2)/6D, (B7)

which leads to the mean time to capture

3Da(b3 - a3)( S -b 5 (B8)

This reduces to b3/3aD in the limit b >> a. Thus, the three-dimensional "tracking fac-
tor" of Adam and Delbruck is b/3a.

APPENDIX C

Calculation of rO Defined by Eq. 38.

Let a sphere of radius a contain at time t = 0 unit amount of a uniformly distributed dif-
fusing substance. The function u(T) is defined as the fraction of the original material that
remains inside the sphere at t = r. If a concentrated source of unit amount were released at
any point P at time zero, the concentration in the neighborhood of some other point Q at a
later time would be

f(p, Tr) = (4 rDT)-3/2 exp (_p2/4DT) (Cl)

where p is the distance between P and Q. We can use this to express u(T) as follows:

u(T) = J dv (3/4ra )f( r - rI ,r)dv', (C2)
both integrals to be extended throughout the volume of the sphere.
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We want to calculate To defined by

r0
To = u(r) d-r. (C3)

Substitute from Eqs. Cl and C2 into Eq. C3 and carry out the integration over T first:

j f(p,r-)dT = (l/4Dpw3/2) £ (ex'dx/vx/7x) = l/4wDp. (C4)

Then

To = ( 1/4rD) f dvf (3/4ra 3) (d v'/ r - r' I) (C5)

The integral over v' can be recognized as the potential at r within a uniform spherical charge
distribution of total charge unity, which is 3/2a - r2/2a3. The integration over v now yields

to= a2/D. (C6)

APPENDIX D

Diffusive Current to Two Halves ofa Stationary, Perfectly
Absorbing Sphere in a Uniform Gradient

Let a sphere of radius a be immersed in a uniform gradient ac/lz = co/L, with L >> a. The
solution to the equation V2c = 0, with boundary conditions c = O at r = a and ac/lz - coI/L
at r - 00, is

c = co(l - a/r) + (c0a3/L)(z/r3 - z/a3). (Dl)

The current density at the surface of the sphere is

D = Dco(I/a + cosO/L), (D2)

where 0 is the angle measured from the +z-axis (spherical coordinates). The current to the
forward half of the sphere, J+, is obtained by integrating Eq. D2 over the surface from
0 = 0 to 0 = w/2; the current to the rear half of the sphere, J_, is obtained by integrating
Eq. D2 over the surface from 0 = ir/2 to 0 = -r. We find

= 27raDco(1 a a/2L), (D3)
and

J+/J = 1 + a/L. (D4)
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