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Abstract

In this thesis, we investigate modularity of elliptic curves over a general totally real

number field, establishing a finiteness result for the set non-modular j-invariants. By

analyzing quadratic points on some modular curves, we show that all elliptic curves

over certain real quadratic fields are modular.
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1. Introduction

The classical Shimura-Taniyama conjecture [18] is the statement that every elliptic

curve E over Q is associated to a cuspidal Hecke newform f of the group Γ0(N) ⊂

SL2(Z). Here the meaning of “associated” is that there is an isomorphism between

compatible systems of l-adic representations of GQ

ρE,l ' ρf,l

where the left-hand side is the representation on the l-adic Tate module of E and

the right-hand side is the l-adic representation, constructed by Eichler-Shimura, at-

tached to f , or rather the corresponding cuspidal automorphic representation πf of

GL2(AQ). In the pioneering work [53], [50], Wiles and Taylor-Wiles established the

conjecture for all semi-stable E, which forms the heart of Wiles’proof of Fermat’s

Last theorem. After many gradual improvements [17], [13], the full conjecture is

finally proven in [10]. It is then natural to try to study the generalization of the

conjecture to more general number fields F , that is to show that all elliptic curves

over F have compatible systems of l-adic representations of GF associated to a cusp-

idal automorphic representation π of GL2(AF ). Unfortunately, in this generality the

existence of Galois representations associated to π is not known. However, when F

is totally real, the required Galois representations have been constructed for some

time by Carayol, Wiles, Blasius-Rogawski and Taylor [12],[52], [7] [47], [48], while

when F is CM, the Galois representations have only been constructed very recently

[28], [39]. In this paper, we focus our attention on the case F totally real. Previous

results in this direction include [30], [29], [19], [3], establishing modularity under local

restrictions on the elliptic curves or over particular fields. On the other hand, in the

contemporary work [25] the authors establish modularity for elliptic curves over real
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quadratic fields with full 2-torsion over the base field, as well as a finiteness state-

ment regarding possible non-modular elliptic curves with full 2-torsion over a general

totally real field. In this work, we establish the following:

Theorem 1.1. (see Theorem 4.6) Let F be a fixed totally real number field. Then,

up to isomorphism over F ,there are only finitely many elliptic curves E defined over

a totally real extension F ′/F of degree at most 2 that are not modular.

An immediate consequence is that there are only finitely many isomorphism classes

(over Q) of elliptic curves E over (an unspecified) real quadratic field such that E

is not modular. Under some restrictions on the field, we can show that no such

exceptions exists:

Theorem 1.2. (see Theorem 5.4) If F is real quadratic such that 5 and 7 are un-

ramified in F , then any elliptic curve E defined over F are modular.

In fact, with the methods in this paper, it suffices to assume 5 is unramified, see

Remark 5.2. In joint work with N.Freitas and S.Siksek, we show that all elliptic

curves over real quadratic fields are modular [24] by slightly different computations.

The proof of the above theorems follows the framework introduced by Wiles in [53].

To prove E is modular, it suffices to show any particular ρE,l is modular. Modularity

is then established in three steps:

• Automorphy lifting: If ρE,l is congruent mod l to an automorphic l-adic rep-

resentation then ρE,l is also automorphic, under suitable hypotheses.

• Establish residual automorphy (“Serre’s conjecture”): ρE,l is is automorphic

for some prime l, and such that the previous step applies.

• Understanding which elliptic curves can not be accessed by the previous two

steps, and (ideally) establish automorphy for them by other means.

For the first step, the technology for automorphy lifting has improved greatly since

[53], in our context the most important improvements are in [33]. This supplies
2



very strong lifting statements by combining existing statements in the literature,

under usual largeness (“Taylor-Wiles”) assumptions of the residual image. We note

however that automorphy lifting for small residual images in the literature remain too

restrictive for our needs, see Remark 5.1. In Section 2.3, we will state the statements

that we need and show how to deduce them from the literature.

For the second step, we follow prime switching arguments of Wiles [53] and Manohar-

mayum [36]. The basis of such methods is the possibility to find lots of solvable points

on modular curves, and as such is known to apply to very few modular curves. Details

of the process is content of Section 3.

Having done the first two steps, we are left with understanding elliptic curves for

which we fail to establish modularity. These curves are naturally interpreted as points

on some special modular curve. Thus we have reduced the problem of establishing

modularity of all elliptic curves to determining rational points on a handful of (com-

plicated) modular curves. The curves that arises in this study have very high genus.

This is both a blessing and a curse: On the one hand, the study of their arithmetic

seems impossibly complicated, but on the other hand, their complexity will force

them to have very few rational points. Indeed a study of gonality of the relevant

curves in Section 4 allows us to use a theorem of Faltings to establish Theorem 1.1.

Due to the dependence on Faltings’ theorem, the finiteness statement in Theorem 1.1

is ineffective. Over a general totally real field, it seems hopeless at present to deter-

mine all rational points on the modular curves that we need. However, we managed

to determine real quadratic points on enough of these modular curves, which in con-

junction with some modularity lifting theorems with small residual image, allows us

to prove Theorem 1.2. This is carried out in sections 5 and 6. The essential miracle

that made the determination of quadratic points possible is that the Jacobians of the

modular curves we need to study all have abelian surface factors with Mordell-Weil

rank 0 over Q, and that the quadratic points in the resulting list always correspond

3



to an elliptic curve where either a modularity lifting theorem applies or has CM or

is a Q-curve. We remark that there are infinitely many quadratic points of the last

type. The modularity of Q-curves follows from Serre’s conjecture over Q, which is

now a Theorem of Khare-Wintenberger [31]. Conjecturally (and certainly verifiably

by a finite computation for each fixed field), there are infinitely many number fields

F over which the Jacobian of our modular curves still have relevant abelian surface

factors with Mordell-Weil rank 0. The computational determination of their qua-

dratic points over F then carries over for such F , at least in theory. We remark that

it is practical to check when a GL2-type abelian variety over Q has Mordell-Weil

rank 0, by showing that the L-function does not vanish at 1, and this computation

can be carried out on a computer. Given any j-invariant, one has in principle an

algorithmic procedure for establishing its modularity. However, the presence of the

infinite families of degree 2 points corresponding to F -curves poses a problem, since

we do not know Serre’s conjecture for F .

We have made extensive use of the computer algebra system Magma [9] to perform

our computations.
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2. Background

Throughout this section we let F be a totally real number field, and GF =

Gal(F/F ) the absolute Galois group of F and AF the adeles ring of F . For each

place v of F let Fv be the corresponding completion of v. If v is non-archimedean,

let $v denote a uniformizer of Fv, Ov its ring of integers, κv its residue field and

Nv = |κv| the size of κv. We will fix a choice of decomposition group GFv in GF

for each finite v, and let Frobv denote a choice of arithmetic Frobenius in GFv . We

normalize the local and global Artin maps by the requirement that arithmetic Frobe-

nius and inverses of uniformizers match. For each prime l, fix once and for all an

isomorphism of fields ιl : C ∼= Ql. We denote by εp the p-adic cyclomotic character.

If K is a finite extension of Qp, ρ is a continuous de Rham (equivalently, potentially

semi-stable) representation of GK on a Qp-vector space W , and τ : K ↪→ Qp, the

multi-set of τ -Hodge-Tate weight of ρ is the multi-set that contains the number i

with multiplicity dimQp(W ⊗τ,K K̂(i)). In particular, with this convention εp has

τ -Hodge-Tate weight −1.

2.1. Automorphic Galois representations. In this section we recall what it means

for a Galois representation ρ : GF → GL2(Q) to be automorphic.

Let K∞ be a maximal compact subgroup of GL2(F ⊗ R). Under an identification

GL2(F ⊗ R) ∼= GL2(R)[F :Q], we maybe pick K∞ = O2(R)[F :Q], a product of compact

orthogonal groups. Let H denote the complex upper half-plane.

A cuspidal automorphic representation π of GL2(AF ) is an irreducible (Lie(GL2(F⊗Q

R))C, K∞) × GL2(A∞F )-module appearing as a subquotient of the space of cuspidal

automorphic forms A0(GL2(AF )) (see [8]). It has a central character ωπ which is a

Hecke character. There is a decomposition

π ∼= ⊗′πv
5



into a restricted tensor product over the places of F , where the local representations

πv are irreducible ((gl2(R))C,O2(R))-modules if v is archimedean, and a smooth ir-

reducible representation of GL2(Fv) if v is finite.

For almost all places v, the representation πv is unramified, in the sense that πKvv 6=

0, where Kv = GL2(Ov). In this case, it is known that this space is 1-dimensional.

The Hecke algebra Hv at v is the algebra C∞c (Kv \GL2(Fv)/Kv) of locally constant,

Kv bi-invariant C-valued functions, with product given by convolution (where the

Haar measure is normalized so that Kv has volume 1). The Satake isomorphism (see

[26]) shows that there is an isomorphism

Hv
∼= C[Tv, S

±1
v ]

where Sv, Tv are the characteristic functions of Kv ($v 0
0 1 )Kv and Kv

(
$v 0
0 $v

)
Kv re-

spectively. In particularHv is commutative, and hence its action on the 1-dimensional

vector space πKvv correspond to an algebra homomorphism θv : Hv → C. It deter-

mines πv up to isomorphism.

If π is a cuspidal automorphic representation, we say that π is regular algebraic if

for each place v|∞, the module πv restricted to the subgroup SL±2 (R) is a discrete

series representation Dkv described in [34] (kv ≥ 2), and the subgroup R>0 ⊂ Z(R)

of the center acts via an algebraic character x → xwv for some integer wv such that

kv = wv mod 2. This is equivalent to saying that the infinitesimal character of πv

is the same as the infinitesimal character of an algebraic representation of GL2(R).

The condition that the central character ωπ is a Hecke character implies that wv = w

is independent of v, because F totally real. We call the tuple (k, w) = ((kv)v, w) the

weight of π.

A regular algebraic cuspidal automorphic representation π is related to the space

of classical Hilbert modular forms (as defined in [48], say) in the following manner:

There is an operator N ∈ Lie(GL2(F ⊗Q R))C such that πN=0
∞ is 1-dimensional and
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for each open compact subgroup K∞ ⊂ GL2(A∞F ), πN=0,K∞ is identified with a

space of classical Hilbert modular form on GL2(F )\(C \ R)[F :Q] × GL2(AF )/K∞,

the latter being a finite union of quotients of H[F :Q] by congruence subgroups. This

correspondence respects Hecke operators. Conversely, a cuspidal Hilbert eigenform

determines a unique regular algebraic π (which is a bijection if we restrict to the set

of normalized newforms).

For each v such that πv is unramified, the local L-factor is the function in s ∈ C

defined by

Lv(π, s) = (1− θv(Tv)Nv−s + θv(Sv)Nv
1−2s)−1

With a suitable definition of Lv(π, s) for the remaining finite places (depending only

on πv), taking products over finite v we obtain

L(π, s) =
∏

Lv(E, s),

the (a twist of the principal) L-function associated to π. It is known [1] that L(π, s), a

priori only a holomorphic function on some half-plane, admits a holomorphic contin-

uation to all of C, and satisfies a functional equation relating L(π, s) and L(π, 2− s).

The following theorem is the combination of the work of many people [12],[52], [7]

[47], [48]

Theorem 2.1. Fix a prime l and an isomorphism of fields ιl : C ∼= Ql. Let π is a

cuspidal automorphic representation of GL2(AF ) which is regular algebraic of weight

(k, w). Then there exists a continuous irreducible Galois representation

ρπ,l : GF → GL2(Zl)

such that
7



• ρπ,l is unramified at all places v 6 |l where πv is unramified, and in which case

det(1− ρπ,l(Frobv)X) = 1− ιlθv(Tv)X + ιlθv(Sv)NvX2.

• For v|l, the representation ρπ,l|GFv is potentially semi-stable with τ -Hodge-Tate

weight (kι−1
l τ + w − 2)/2, (w − kι−1

l τ )/2

• For any complex conjugation c ∈ GF , det ρπ,l(c) = −1.

Remark 2.1.

(1) By the Chebotarev density theorem, knowing the equality above for a density

one set of places v determines ρπ,l up to semi-simplification, and hence ρπ,l.

(2) det ρπ,l correspond via class field theory to the l-adic character associated to

the algebraic Hecke character ωπ||−1.

(3) It is known that for π regular algebraic, the collection θv(Tv), θv(Sv) generates

a number field, and hence the ρπ,l form a weakly compatible system in the

sense of [49]. They in fact form a strongly compatible system.

(4) (Local-global compatibility) The (Frobenius-semisimplification of the) Weil-

Deligne representation associated to ρπ,l|GFv and πv determine each other via

the Local Langlands Correspondence.

2.2. Modular elliptic curves. Let E be an elliptic curve defined over F . The l-adic

Tate module TlE is defined as

TlE = lim←−E[ln](F )

where the transition maps are multiplication by l. It is a free Zl-module of rank 2

with a continuous action of GF , hence a 2-dimensional l-adic representation ρE,l of

GF . It is known that
8



• For all places v 6 |l such that E has good reduction, ρE,l is unramified at v,

and

det(1− ρE,l(Frobv)X) = 1− av(E)X + NvX2,

where av(E) = 1 + Nv − |Ev(kv)| and Ev is the reduction of E mod v.

• For all places v|l, the representation ρE,l|GFv is potentially semi-stable with

τ -Hodge-Tate weight 0, -1 for any τ : Fv ↪→ Ql. It is (potentially) reducible if

and only if E has multiplicative or potentially good ordinary reduction at v.

• det ρE,l = εl is the l-adic cyclotomic character.

• ρE,l is irreducible.

For v 6 |l a place of good reduction, the local L-factor at v is the function in s ∈ C

Lv(E, s) = (det(1− ρE,l(Frobv)Nv−s))−1 = (1− av(E)Nv−s + Nv1−2s)−1

With a suitable definition of Lv(E, s) for the remaining finite places (depending only

on the local behavior of E at v), taking products over all finite v we obtain

L(E, s) =
∏

Lv(E, s),

the L-function of E. The product converges on <s > 3/2 to a holomorphic func-

tion. It is a central problem is to establish holomorphic (or at least meromorphic)

continuation of L(E, s) to the whole complex plane, e.g. to formulate the Birch-

Swinnerton-Dyer conjecture for E. We come to the following central definition

Definition 2.2. An elliptic curve E defined over F is called modular if for one (equiv-

alently, any) prime l, there is a regular algebraic cuspidal automorphic representation

π of GL2(AF ) such that there is an isomorphism of Galois representations

ρE,l ∼= ρπ,l.

9



Remark 2.2.

(1) Since ρπ,l determines π, there is at most one π satisfying the above. Such a π

must have Hecke eigenvalues in Z, have trivial central character and weight

((2, 2, .., 2), 0) (i.e. correspond to a Hilbert eigenform of parallel weight 2).

(2) By a theorem of Faltings, ρE,l determines E up to F -isogeny. Thus if ev-

ery elliptic curve over F is modular then we have an injection from the set

F -isogeny classes of elliptic curves over F to the set of normalized Hilbert

newforms with rational Hecke eigenvalues. It is expected to be a bijection, as

discussed in the remark below.

(3) If E is modular, L(E, s) = L(π, s), and thus the L-function of E has holomor-

phic continuation and expected functional equation. The only known method

to establish these analytic properties for L(E, s) is via modularity of E.

(4) Over Q, the above is one possible formulation of modularity of E [18]. An

equivalent formulation for modularity of an elliptic curve E defined over Q

is that there is a non-constant morphism of algebraic curves (either over C

or Q) X0(N) → E, where X0(N) is the standard modular curve of level

Γ0(N) ⊂ SL2(Z), i.e. E is dominated by a modular curve. Furthermore,

given a weight 2 modular form on Γ0(N), there is a construction of an elliptic

curve Ef with the same l-adic representation as ρf,l, and modularity of E is

equivalent to E being isogenous to one such Ef .

Over a general totally real field, one does not know how to construct an

elliptic curve from a parallel weight 2 Hilbert eigenform (or the corresponding

automorphic representation π). One difficulty is that one does not expect to

find E in the Albanese variety of any Shimura variety (and in fact, it seems

that the motive of some E does not show up in any Shimura variety at all.

We learnt this from [6]). However, when [F : Q] is odd, or πv is essentially

square-integrable at some finite v, one can construct an elliptic curve Eπ in
10



the Jacobian of a suitable Shimura curve, exactly as in the situation over Q.

Consequently, if either [F : Q] is odd or E has multiplicative reduction at

some finite place, then modularity of E is equivalent to E being dominated

by a Shimura curve over F . In general, Blasius [6] has shown that E exists

conditional on Deligne’s conjecture that all Hodge cycles are absolutely Hodge.

Definition 2.3. An elliptic curve E defined over Q is called a Q-curve if Eσ =

E ⊗Q,σ Q is isogenous to E for all σ ∈ GQ.

In particular, an elliptic curve over Q is a Q-curve, but the converse is false. The

following proposition collects some general facts that will be used later:

Proposition 2.4. Let E be an elliptic curve defined over a totally real field F .

(1) If E has CM, then E is modular.

(2) If E is a Q-curve then E is modular.

(3) If E is modular and E ′ is another curve such that j(E ′) = j(E) then E ′ is

modular.

Proof.

(1) If E has CM by an order in an imaginary quadratic field K, then ρE,l|GFK has

abelian image, hence ρE,l is isomorphic to the induction of a character of GK ,

which corresponds to an algebraic Hecke character by class field theory. The

automorphic induction of this Hecke character gives the required automorphic

representation π.

(2) It is shown in [38] that Serre’s modularity conjecture over Q (proven in [31],

[32]) implies that any Q-curve is an isogeny factor of the Jacobian of a modular

curve X0(N) over Q. In [23], it is shown how to extend the Galois representa-

tion ρE,l : GF → GL2(Ql) to an l-adic representation ρl : GQ → GL2(Ql), and

that the modularity of E (in the sense of [38]) is equivalent to ρl being auto-

morphic. Thus there is a cuspidal automorphic representation π of GL2(AQ)
11



such that ρπ,l ∼= ρl. By [?], there exists a cuspidal automorphic representation

BC(π) of GL2(AF ) such that ρBC(π),l
∼= ρπ,l|GF , and hence E is modular.

(3) If j(E) = 0 or 1728 then E is CM and thus is modular. Otherwise, E ′ must be

a quadratic twist of E, so ρE,l ∼= ρE′,l⊗χ for a quadratic character χ, because

the automorphism group of E is {±1}. χ corresponds to a Hecke character

which we abusively also call χ. If ρE,l ∼= ρπ,l then ρE′,l ∼= ρπ⊗χ,l.

�

2.3. Modularity lifting theorems. If ρ : GF → GL2(Zp) is a continuous repre-

sentation and ρv = ρ|GFv is the local representation at a place v|p, recall that ρv is

ordinary if

ρv ∼=
(
ψ
(v)
1 ∗
0 ψ

(v)
2

)
,

where ψ
(v)
1 , ψ

(v)
2 are Hodge-Tate characters of GFv with τ -Hodge-Tate weights kτ,1 <

kτ,2, for each τ : Fv ↪→ Qp. In this case, we say that ρv is distinguished if the reduction

of the characters ψ
(v)

1 6= ψ
(v)

2 . If ρ′ : GF → GL2(Zp) is another representation lifting

ρ, we say that ρ′ is a ψ2-good lift of ρ if ρ′v
∼=
(
φ1 ∗
0 φ2

)
and φ2 is lifts ψ2.

We record the following modularity lifting statement which is optimized for our

purposes:

Theorem 2.5. Let p > 2 be prime, F a totally real field, ρ : GF → GL2(Zp) a

continuous representation. Assume

• ρ is unramified for almost all places v of F .

• For each place v|p, ρv = ρ|GFv is potentially semi-stable of with τ -Hodge-Tate

weight 0, -1 for each embedding τ : Fv ↪→ Qp.

• det ρ ∼= ε is the (p-adic) cyclotomic character.

• ρ|GF (ζp)
is absolutely irreducible.

12



• ρ is modular of weight 2, that is there exists a regular algebraic cuspidal auto-

morphic representation π of GL2(AF ) of weight ((2, 2, · · · 2), 0) with associated

Galois representation ρπ,p such that ρπ,p
∼= ρ.

Then ρ is modular

Proof. This is the combination of various theorems in the literature. When p 6= 5,

this follows from Theorem 3.2.3 of [11] (when ρv is potentially crystalline for all v|p

and ρ admits an ordinary lift then it follows from the main result of [33]). For the

convenience of the reader, we now give a summary of the argument in [11].

The essential point is to find (after a totally real solvable base change) an auto-

morphic representation π0 with the property that for all v|p, the local representa-

tions ρπ1,p|GFv and ρ|GFv lie in the same irreducible component inside the semi-stable

(framed) deformation space with τ -Hodge-Tate weights 0, -1 of the trivial mod p GFv -

representation. This deformation space has exactly three irreducible component when

Fv is large enough (which we can assume after a solvable base change), corresponding

to ordinary crystalline lifts, non-ordinary crystalline lifts and lifts that are extensions

of the trivial character by ε. Call Sord, Snord and Sst the set of places v|p where ρ is

ordinary crystalline, non-ordinary crystalline and semi-stable non-crystalline, respec-

tively. From our hypothesis, [5] shows that we can find an automorphic representation

π1 such that ρπ1,p lifts ρ and is ordinary crystalline at all v|p. After a further solvable

base change one can construct an automorphic representation π2 for D×A , with D the

quaternion algebra ramified at ∞ and at v ∈ Sst, such that (π2)v is trivial at v ∈ Sst

and is ordinary at all other v|p. Exactly the same argument as in Corollary (3.1.6)

[33] for the space of automorphic forms on D then produces the desired π0. The

theorem now follows from an Rred = T theorem similar to the one in [33], with the

difference that at places v ∈ Sst we use the non-crystalline component of the local

deformation space.
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We now show what needs to be done when p = 5. In [11], the authors assumed

that the projective image of ρ|GF (ζ5)
in PGL2(F5) is not isomorphic to PSL2(F5). This

is only used to assure the existence of Taylor-Wiles systems as in [33] 3.2.3. We now

show that we can still choose Taylor-Wiles systems without this hypothesis, but with

the assumption that ρ has cyclotomic determinant. With the notation in [33] 3.2.3

and following the proof of Theorem 2.49 in [15], what we need to show is that we can

find for each n and a non-trivial cocycle ψ ∈ H1(GF,S, ad0ρ(1)), we can find a place

v /∈ S of F such that

• |k(v)| = 1 mod pn and ρ(Frobv) has distinct eigenvalues.

• The image of ψ under the restriction map

H1(GF , ad0ρ(1))→ H1(GFv , ad0ρ(1))

is non-trivial.

Let Fm be the extension of F (ζpm) cut out by ad0ρ, then the argument in [15] works

once we can show that the restriction of ψ to H1(GF0 , ad0ρ(1)) is non-trivial. To do

this we want to show that H1(Gal(F0/F ), ad0ρ(1)GF0 ) = 0. Because GF0 acts trivially

on ad0ρ, the coefficient module vanishes unless ζp ∈ F0. We now assume that ζp ∈ F0.

Let χ : PGL2(Fp)→ F×p /(F×p )2 be the character induced by the determinant. Because

H1(PSL2(F5), Sym2F2
5) = H1(PGL2(F5), Sym2F2

5(χ)) = F5 does not vanish, the extra

hypothesis when p = 5 was needed to exclude the possibility that Gal(F0/F ) =

PSL2(F5) or PGL2(F5) and ζ5 ∈ F0. However, under our cyclotomic determinant

assumption, these cases can not occur: If Gal(F0/F ) = PSL2(F5), the determinant of

ρ must take value in (F×5 )2, and thus
√

5 ∈ F . But ζ5 ∈ F0 \ F implies Gal(F0/F ) =

PSL2(F5) = A5 has a quotient of order 2, a contradiction. If Gal(F0/F ) = PGL2(F5),

the determinant of ρ takes non-square values, and hence
√

5 /∈ F . It follows that

Gal(F0/F ) = PGL2(F5) admits a surjection onto F×5 , which is impossible. �
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Remark 2.3. The lifting theorem in [33] requires one to have a modular lift which lies

in the same connected component (”ordinary” or ”non-ordinary”) as ρ at all places

above v. guarantees such a lift once we have an ordinary automorphic lift of ρ. In

general, one can appeal to [4], for the existence of ordinary lifts, however in situations

when we apply Theorem 2.5, we could always guarantee an ordinary automorphic lift

(either by Hida theory or by choosing our auxilliary elliptic curves in the argument

below judiciously).

The following is an immediate corollary of Theorem 2.5, the above remark and

the fact that the representation ρE,p coming from an elliptic curve E is potentially

semi-stable at all v|p with Hodge-Tate weights 0, −1:

Corollary 2.6. Let E be an elliptic curve defined over a totally real field F and p > 2

is a prime such that ρE,p|GF (ζp)
is absolutely irreducible, and ρE,p is modular. Then

E is modular.

We now recall the following theorem of Skinner-Wiles [44], as corrected in Theorem

1, [42].

Theorem 2.7. Let p > 2 ρ : GF → GL2(Zp) be a continuous representation such

that

• ρ is unramified for almost all places v of F .

• For each place v|p, ρv is ordinary and distinguished.

• det ρ = ψεw−1 for some w ∈ Z and ψ a finite order character, and det ρ(c) =

−1 for all complex conjugation c ∈ GF .

• ρ is absolutely irreducible.

• There is a cuspidal automorphic representation π of GL2(AF ) such that ρπ is

a ψ
(v)

2 -good lift of ρ for all v|p.

• If ρ|GF (ζp)
is reducible and the quadratic subfield F ∗ of F (ζp)/F is a CM ex-

tension, then not every place v|p of F splits in F ∗.
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Then ρ is modular.

Compared to Theorem 2.5, the most important difference is that we require a

weaker hypothesis on ρ, at the expense of more restrictive condition on the local

representations at v|p.

Corollary 2.8. Let p > 2 be a prime, and F a totally real number field such that

p is unramified in F . Let E be an elliptic curve defined over F such that E has

multiplicative or potentially good ordinary reduction at all places v|p, and that the

representation ρE,p is irreducible. If ρE,p|GF (ζp)
is absolutely irreducible, assume fur-

thermore that ρE,p is modular. Then E is modular.

Proof. Put ρ = ρE,p. In view of Corollary 2.6, we only need to consider the case ρ

is irreducible, but absolutely reducible when restricted to GF (ζp). Since the latter is

a normal subgroup of GF , this can only happen if ρ is the induction of a character

of GF ∗ , where F ∗ is the quadratic subextension of F (ζp)/F . Since p is unramified in

F , the extension F ∗/F is totally ramified at all places v|p, so the last condition in

theorem 2.8 holds. The assumption on the local behavior of E at v|p implies (in fact,

is equivalent to) that ρ is ordinary at all v|p. Furthermore, we know that for some

finite Galois extension F ′v/Fv, there is a line L ⊂ VpE in the rational Tate module of

E which is GF ′v -stable on which IF ′v acts via the cyclotomic character, and IF ′v acts

trivially on VpE/L. As GF ′v is a normal subgroup of GFv , this implies that L is in

fact stable under GFv .

We claim that ρv is distinguished. Since ρv preserves the flag L ⊂ VpE and det ρ =

ε, we see that

(
εψ−1 ∗
0 ψ

)
where ψ is a Z×p -valued character. If ρv were not distinguished, that means ε = ψ2

mod p, contradicting the fact that ε(GFv) = F×p , since Fv and Qp(ζp) are linearly
16



disjoint. Finally, it remains to find a ψ-good automorphic lift of ρ. This is possible

by the following lemma (see Lemma 5.1.2 of [3])

Lemma 2.9. If ρ has dihedral image, then ρ admits a (ψ-)good p-ordinary regular

algebraic cuspidal lift.

Thus all conditions of Theorem 2.8 are satisfied and E is modular. �

3. Residual modularity and prime switching

If ρE,p is a Galois representation coming from the Tate module of an elliptic curve

over E, then the first three items of 2.5 are satisfied, and it remains to consider the

last two items. In particular, we need to have access to enough mod p modular Galois

representations (of weight 2). The basic starting point is

Theorem 3.1. (Langlands-Tunnell [35], [51]) If F is a totally real field and ρ :

GF → GL2(C) is an odd Artin representation with solvable projective image then ρ

is modular.

Using this, the argument at the beginning of [53], Chapter 5 shows that if E is an

elliptic curve F then ρE,3 is congruent to the Galois representation ρπ associated to

a Hilbert modular form of weight 1. Such a representation is ordinary at all places

v|3, and hence [52], Theorem 1.4.1 shows that ρπ is obtained by the specialization of

a Hida family to parallel weight 1. Specializing the family at parallel weight 2 then

shows that ρE,3 is in fact modular of weight 2. Thus ρE,3 is always modular of weight

2. Starting from this, we can propagate residual modularity:

Proposition 3.2. Let E be an elliptic curve over a totally real field F . Then

(1) There exists an elliptic curve E ′ over F such that

• ρE,5 ∼= ρE′,5

• Im ρE′,3 ⊃ SL2(F3)
17



In particular, ρE,5
∼= ρE′,5 is modular of weight 2.

(2) There exists an elliptic curve E ′ over a solvable extension F ′ of F such that

• ρE,7|GF ′ ∼= ρE′,7

• Im ρE′,7 = Im ρE,7

• Im ρE′,3 ⊃ SL2(F3)

Before giving the proof, we first collect various facts that we will use.

Given an elliptic curve E over F , we have a finite (étale) group scheme E[p] over

F , and thus we have a twisted modular curve XE(p) defined over F which classifies

isomorphism classes of (generalized) elliptic curves E ′ together with a symplectic

isomorphism of group schemes

E[p] ∼= E ′[p]

Indeed one has such a twisted modular curve over F for any Galois representation

ρ : GF → GL2(Fp) with cyclotomic determinant, by replacing E[p] with the group

scheme G with descent data given by ρ. Then:

• XE(5) has genus 0 and has a rational point (corresponding to E), hence is

isomorphic to P1 over F . The variety parameterizing bases (P,Q) of the 3-

torsion subscheme of the universal elliptic curve over XE(5) is defined over F

and has two geometric connected components, which are covers of XE(5) of

degree |SL2(F3)| (each component is isomorphic to X(15) over C).

• The modular curve Xρ for the mod 7 Galois representation ε7⊕1 is isomorphic

(over F ) to the Klein quartic

X3Y + Y 3Z + Z3X = 0

in P2. The twisted modular curve XE(7) is thus a form of the Klein quar-

tic over F , and hence is a smooth non-hyperelliptic curve of genus 3. The

canonical embedding realizes C = XE(7) as a plane quartic C ↪→ P2 over F .

18



Lemma 3.3. Let C be the Klein quartic over C. Let L = PH0(C,Ω1) ↪→ Sym4C and

Z = L×Sym4C C
4 be the space of ordered quadruple of collinear points on C. Then Z

irreducible and Z → L is generically Galois with Galois group S4.

Proof. Let Σ ⊂ C × L be the incidence correspondence of pairs (P, l) where P is

a point on C and l is a line passing through P . The projection Σ → C realizes Σ

as a P1-bundle over C, hence is irreducible. We claim that the monodromy group

of the degree 4 covering Σ → L is S4. The plane quartic C has only finitely many

bitangents and finitely many flexes (over C) [22], hence for a general point in the

plane, the projection from the point gives a ramified covering C → P1 which is

simply ramified, that is each fiber has at most one ramification point, and if there

is one it has ramification index 2. The monodromy group of this cover must be S4,

as it is a subgroup of S4 which is transitive and is generated by transposition (see

the lemma below). The above covering can be realized as the the pullback of the

covering Σ → L over the P1 of lines passing through the chosen general point, and

thus the monodromy group of this cover must be all of S4, and its Galois closure

must be birational to Z and Z must be irreducible. �

We thank Omar Antolin Camarena for showing us the following lemma and its

proof:

Lemma 3.4. If G is a subgroup of the symmetric group Sd which is transitive and

is generatd by transpositions, then G = Sd.

Proof. Draw a graph on {1, ...d}, where there is an edge between i and j if there is

a transposition (ij) in the generating set of G. Because G is transitive, the graph is

connected. Given any vertices i, j there is thus a path i0 = i, i1, · · · , in = j joning

them. Then (inin−1) · · · (i2i1)(i0i1)(i2i1) · · · (inin−1) = (ij) is in G, hence Gcontains

all transpositions. �
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Lemma 3.5. Let C = X(7) be the modular curve with full level 7 structure over

C. Fix a non-trivial ζ ∈ µ3(C), and let Tζ denote the space parameterizing bases

(P,Q) of the 3-torsion subgroup of the universal elliptic curve over C, such that the

Weil pairing e3(P,Q) = ζ. Let Z ↪→ C4 denote space of ordered quadruples which

are collinear (under the canonical embedding of C). Put Y = Z ×C4 T 4
ζ . Then each

irreducible component of Y has degree ≥ 244/3 over Z.

Proof. Put G = SL2(F3). G̃ = G4 o S4, where S4 acts by permuting the coordinates

on G4. Let L = PH0(C,Ω1) ↪→ Sym4C as in the previous lemma. The cover Y → L

is generically étale with Galois group G̃. Let Y0 be an irreducible component of Y ,

then Y0 → L is generically étale with Galois group a subgroup H̃ ⊆ G̃, which surjects

onto S4. Let H = H̃ ∩ G4.Now for each pair (i, j) with 1 ≤ i, j ≤ 4 we have a

comutative diagram

Y0

��

// T 4
ζ

��

prij
// T 2

ζ

��

Z // C4
prij
// C2

The composition map Z → C2 is generically a 2 to 1 cover. Because G/[G,G] ∼=

Z/3Z, G × G has no non-trivial homomorphism to Z/2Z, hence the function fields

C(Z) and C(T 2
ζ ) are linearly disjoint over C(C2). It follows that via the projection to

the (i, j) factors, there is a surjection H � G2. Let us now consider the image H of

H under the projection to any 3 coordinates G3. Then for each a, b ∈ G, there is some

(a, 1, φ1(a)) ∈ H and (b, φ2(b), 1) ∈ H. Thus the commutator (aba−1b−1, 1, 1) ∈ H.

It follows that H ⊇ [G,G]3. Now for any a ∈ [G,G], b ∈ G we have some

(a, 1, 1, ψ1(a)) ∈ H by what we just proved, and some (b, ψ2(b), ψ3(b), 1) ∈ G. Taking

commutators and noting that [G, [G,G]] = [G,G] we see that H ⊃ [G,G]4 strictly.

The image of H in (G/[G,G])4 is an F3-vector space, whose projection to any two co-

ordinates are surjective. Because the composition factor of the natural representation
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of S4 on F4
3 consists of the trivial representation and a three-dimensional representa-

tion, the image of H must be either an irreducible three-dimensional subrepresenation

or all of F4
3. In particular, the index of H in G4 is at most 3. �

Lemma 3.6. (see [37]) Let C be a smooth plane quartic defined over Fq. If q > 300,

then there exists a line l that intersects C at 4 distinct rational points.

Finally, we record a variant of Ekedahl’s effective version of Hilbert’s irreducibility

theorem:

Lemma 3.7. Let X be a geometrically irreducible variety over a number field K.

Assume X satisfies weak approximation. Let G be a finite group and Y → X a G-

torsor defined over K. Let H be the stablilizer of an irreducible component of Y ⊗KC.

Then the set of rational points x ∈ X(K) such that each point in the fiber Yx has

degree ≥ |G|/|H| satisfies weak approximation.

Proof. The cover Y → X is Galois of degree |G| and the number of geometrically

irreducible component of Y is |G|/|H|. Let us pick a large number field K ′ such that

Y ⊗K ′ is isomorphic to a disjoint union Y =
∐
Y0, and the map Y → L factorizes

as
∐
Y0 →

∐
L→ L over F ′. Now the (proof of) the main result of [20] shows that

the fiber of a point u L(F ′) in Y0(F
′) (for the covering Y0 → L coming from the first

term in the above disjoint union) is connected as long as u is chosen to lie in a finite

list of suitable (v-adic) open subsets of L(F ′v) for a finite list of finite places v with

large norm. We can then in particular assume in addition that the v we choose above

are lying over primes in F that are completely split in F ′. This allows us to identify

Uv ⊂ L(Fv). Now if we pick a rational point l ∈ L(F ) such that l ∈ Uv ⊂ L(Fv) for

the above chosen Uv, it follows that the fiber over l must contain a point of degree

≥ g/h ≥ 245/3 over F . But as the Galois group of the cover act transitively on

this fiber, the same must hold for all other points in the fiber. Since L satisfy weak
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approximation, we could furthermore require l to land in small neighborhood at any

given finite list of places. �

Proof. (1) (see [53]) The variety parameterizing bases (P,Q) of the 3-torsion sub-

scheme of the universal elliptic curve over XE(5) has 2 geometric connected

components, which are covers of XE(5) of degree |SL2(F3)| (they are geomet-

rically isomorphic to X(15)). Hence Hilbert’s irreducibility theorem shows

that one can find an F -rational point on XE(5), corresponding to an elliptic

curve E ′ such that the field cut out by E ′[3] has degree ≥ 24 over F , giving

the desired curve because SL2(F3) is the unique proper subgroup of GL2(F3)

of size ≥ 24. Theorem 2.5 then shows that E ′ is modular, hence the last

assertion.

(2) This is a more elaborate version of the above argument. We will follow the

general approach in [36], giving some further details. Let L denote the space

of lines inside this P2, then L is the dual projective space and is isomorphic to

P2. Let Z ↪→ C4 be the subvariety consisting of ordered quadruple of points

on C that are collinear. Note that Z = L×Sym4CC
4, where Sym4C = C4/S4 is

the fourth symmetric power of C. By lemma 3.3 Z is geometrically irreducible

and the cover Z → L is generically Galois with Galois group S4.

Let T denote the variety parameterizing bases (P,Q) for the 3-torsion sub-

scheme of the universal elliptic curve over C, it is a GL2(F3)-torsor over the

complement of the cusps on C. Define Y = Z ×C4 T 4. By lemma 3.5, each

geometric irreducible component of Y has degree ≥ 245/3 over L. We claim

that the subset of F -rational lines l such that the fibers in Y over l each have

degree ≥ 245/3 and the fiber in Z over l is connected also satisfies weak ap-

proximation. Indeed, the cover Y → L is Galois of degree g, and suppose h is

the number of geometrically irreducible component of Y . Let us pick a large

number field F ′ such that Y ⊗F ′ is isomorphic to a disjoint union Y =
∐
Y0,
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and the map Y → L factorizes as
∐
Y0 →

∐
L→ L over F ′. Now the (proof

of) the main result of [20] shows that the fiber of a point u L(F ′) in Y0(F
′)

(for the covering Y0 → L coming from the first term in the above disjoint

union) is connected as long as u is chosen to lie in a finite list of suitable

(v-adic) open subsets of L(F ′v) for a finite list of finite places v with large

norm. We can then in particular assume in addition that the v we choose

above are lying over primes in F that are completely split in F ′. This allows

us to identify Uv ⊂ L(Fv). Now if we pick a rational point l ∈ L(F ) such that

l ∈ Uv ⊂ L(Fv) for the above chosen Uv, it follows that the fiber over l must

contain a point of degree ≥ g/h ≥ 245/3 over F . But as the Galois group

of the cover act transitively on this fiber, the same must hold for all other

points in the fiber. Since L satisfy weak approximation, we could furthermore

require l to land in small neighborhood at any given finite list of places.

If a line l has the above properties, l intersects C at four points whose

residue field is an S4 Galois extension of F ′ of F . The 4 intersection points give

rise to 4 elliptic curves Ei over F ′, which are conjugates of each other, hence

the degree d of the extension F ′(Ei[3]) obtained by adjoining the 3-torsion

points of Ei is independent of i. On the other hand, the extension over F ′

generated by adjoining all the 3-torsion points of all the Ei has degree ≥ 244/3

over F ′, thus we have d4 ≥ 244/3. But any subgroup of GL2(F3) of such size

d must contain SL2(F3). Thus to finish the proof, we only need to arrange

that the intersection points are defined over a totally real extension of F , and

that the mod 7 Galois representation of the elliptic curves corresponding to

the intersection points have as large image as Im ρE,7. This will be done by

using the weak approximation property to find a line l as above which lies in

open subsets Uv for v running over a finite set of places of F chosen as follows:
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• For each v|∞, because ρE,7 has cyclotomic determinant,

XE(7)×F Fv is actually isomorphic to the Klein quartic, and thus we find

an explicit line lv which intersects C at 4 non-cuspidal real points, for

example the line 3X + Y = 0. Every line in a small open neighborhood

(for the strong topology) of lv will then have the same property. Shrinking

Uv, we can assume it contains no line passing through a cusp.

• By the Chebotarev density theorem, for each element g ∈ Im ρE,7, there

are infinitely many places v such that ρ|GFv is unramified and the image

of Frobv is conjugate to g. Pick such a v for each g, such that C has good

reduction and reduces to a smooth plane quartic C. If a Galois extension

F ′ of F is such that all places v in this list splits completely, then F ′ is

linearly disjoint from F kerρ. By lemma 3.6, if we pick v with Nv > 300,

the reduction C will contain four collinear rational points. By Hensel’s

lemma, any line that reduces to the line going through these four points

will intersect C ×F Fv at four Fv- rational points. This gives an open

subset Uv of L(Fv) all whose members have intersect C at Fv-rational

points and does not contain a line passing through a cusp.

It is now clear that if an F -rational line l is in Uv for the above choice, the 4

intersection points of l with C will have coordinates in a totally real extension

F ′ of F , and the image of the mod 7 representation corresponding to each

intersection point is the same as that of E.

�

4. Gonality of modular curves

Fix a totally real field F . In view of Theorem 2.5 and section 3, an elliptic curve E

over F is modular, unless ρE,p|GF (ζp)
is not absolutely irreducible for each p = 3, 5, 7.
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Lemma 4.1. If G is a subgroup of GL2(Fp) which is not absolutely irreducible then

G is a subgroup of a Borel subgroup or a non-split torus.

Proof. Let V be the underlying Fp-vector space. We know G preserves a line L in

V ⊗ Fp. If L is rational then G acts reducibly on V and G is a subgroup of a Borel

subgroup. If L is not rational, it has a Galois conjugate distinct from it, which is

also preserved by G. Thus G is a subgroup of a torus. �

Thus the elliptic curves that we don’t yet know to be modular gives rise to non-

cuspidal F (ζ105)-points on the modular curves X(3∗, 5∗, 7∗), where ∗ ∈ {b, ns}, in-

dicating a Borel level structure and non-split Cartan level structure respectively. To

analyze rational points on those curves, it is useful to understand how their Jacobians

decompose into isogeny factors. We now explain how this can be done in general.

Let Γ be a congruence subgroup of SL2(Z) of square-free level N such that the

image of Γ mod p is either the Borel, the normalizer of the split or non-split Cartan

subgroup of SL2(Fp) for each prime p|N . The modular curve X(Γ) = H∗/Γ has

a canonical model defined over Q, because for each prime p dividing the level, the

corresponding subgroup in SL2(Fp) admits an extension to a subgroup of GL2(Fp)

with determinant surjecting onto F×p , and the corresponding (open) modular curve

is identified with the Shimura variety ShK = GL2(Q) \GL2(A)/R×O(R)K, where K

is the unique open compact subgroup of GL2(Ẑ) lifting each subgroup of GL2(Fp)

as above. Note because det(K) is surjective, the Shimura variety is geometrically

irreducible, and its C-points are naturally given by H/Γ. We will use both notations

when talking about modular curves.

Given a list of distinct primes pi and label ∗ ∈ {b, s+, ns+}, we write X(pi∗) to

denote the modular curve of the above kind such that mod pi the congruence subgroup

is Borel, normalizer of split or non-split Cartan respectively.
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For a prime p, denoting the Borel, normalizer of split/non-split Cartan subgroups

of G = GL2(Fp) by B, S and N , we have a relation (see [16])

πN + πB = vπSv
−1 + πG

inside the group algebra Q[G], where πH denotes the projector onto the H-invariant

part, and v is an invertible element in Q[G]. Applying this relation onto End(ShK(N))⊗

Q, we can thus express (up to isogeny) the Jacobian of each modular curve of the

kind we are considering in terms of Jacobian the modular curves of the same kind,

but where only Borel or normalizer of split Cartan level structures appear. Let K(ps)

and K(p+) be the open compact subgroups of GL2(Ẑp) coming from the split Cartan

and normalizer of split Cartan subgroup in GL2(Fp). Let K0(p
r) be the subgroup of

matrices that are upper triangular mod pr. Then we have

K(ps) =
(
p 0
0 1

)
K0(p

2)
(
p 0
0 1

)−1
K(ps+) =

(
p 0
0 1

)
〈K0(p

2),
(

0 −1
p

p 0

)
〉
(
p 0
0 1

)−1
,

Thus the modular curves with normalizer split Cartan level at p are isomorphic to

one with level K0(p
2)+ (that is, the level generated by K0(p

2) and
(

0 −1
p

p 0

)
).

The modular curve ShK0(pm)Kp has a moduli interpretation in terms of elliptic

curves with a cyclic subgroup Cpm of order pm and level structure Kp away from p,

and the Atkin-Lehner involution wpm given by

(E,Cpm , K
p)→ (E/Cp, E[pm]/Cpm , K

p),

which corresponds to right multiplication by
(

0 −1
pm 0

)
at the level of the double coset

description. Thus we have
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Lemma 4.2. If p is any prime and Kp is a level structure away from p, up to isogeny

over Q

Jac(ShK(pns+)Kp)× Jac(ShK0(p)Kp) ∼ Jac(ShK(ps+)Kp)× Jac(ShGL2(Zp)Kp)

Jac(ShK(ps+)Kp) ∼ Jac(ShK0(p2)Kp)wp2

Recall that a curve is hyperelliptic (resp. bielliptic) over a field k if it is a double

cover of P1 (resp. an elliptic curve) over k.

Lemma 4.3. None of the modular curves X(3∗, 5∗, 7∗) above are hyperelliptic or

bielliptic over C.

Proof. We will make use of the following two facts

Proposition 4.4. (Castelnuovo-Severi inequality) Let F , F1, F2 be function fields

of curves over a field k, of genera g, g1, g2, respectively. Suppose that Fi ⊆ F and

F = F1F2. Let di = [F : Fi]. Then

g ≤ g1d1 + g2d2 + (d1 − 1)(d2 − 1)

Proof. See [46], III.10.3. �

Theorem 4.5. (Abramovich [2]) Let Γ ⊂ PSL2(Z) be a congruence subgroup of index

d. Then the C-gonality of the modular curve associated to Γ is at least 7
800
d.

Recall that the gonality of a curve defined over a field k is the smallest d such that

there exists a map from the curve to P1 defined over k of degree d. Hyperelliptic

and bielliptic curves have gonality ≤ 4. A non-split Cartan subgroup of GL2(Fp) has

index p(p− 1) and a Borel subgroup has index p+ 1. Both groups contain the center

and have surjects onto F×p . Consider the following cases:

• X(3∗, 5∗, 7∗) where either 5∗ = 5ns or 7∗ = 7ns: The index of the corre-

sponding subgroup of PSL2(Z) is at least 640 or 1008 respectively, and hence
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Abramovich’s bound gives a C-gonality ≥ 5. Thus the lemma holds in this

case.

• X(3b, 5b, 7b):

The space of cusp forms for Γ0(105) has dimension 13. The subspace fixed

by the Atkin-Lehner operator w35 has dimension 3, with the q-expansion of a

basis (computed by Magma) given by

f1 = q − q2 − q3 − q4 + q5 + q6 − 7q7 + 3q8 + q9 − q10−

− 4q11 + q12 − 2q13 + 7q14 − q15 − q16 + 2q17 − q18 + 4q19 +O(q20),

f2 = q − q2 + q3 − q4 + 3q5 − q6 − q7 + 3q8 + q9 − 3q10

+ 4q11 − q12 − 2q13 + q14 + 3q15 − q16 − 6q17 − q18 + 4q19 +O(q20),

f3 = q + q2 + q3 − q4 + q5 + q6 + q7 − 3q8 + q9 + q10

− q12 − 6q13 + q14 + q15 − q16 + 2q17 + q18 − 8q19 +O(q20)

These cusp forms form a basis for H0(X0(105)/w35,Ω
1), and the q-expansion

is the expansion in the formal neighborhood of the image of the cusp ∞. If

the forms fi satisfy a homogenous quadratic relation, then so will their power

series expansion. A linear algebra check by Magma shows that there is no

such relation between the q-series. Thus the canonical map of X0(105)/w35

does not factor through a conic, hence it must be a quartic plane curve, and

not hyperelliptic. Now suppose there exists a map π : X0(105)→ P1 of degree

d ≤ 4. Of π does not factor through the quotient map, the Castelnuovo-Severi

inequality for π and the quotient map to X0(105)/w35 would imply

13 = g(X0(105)) ≤ 0 + 2× 3 + (d− 1)
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which is a contradiction. Thus π factor through the quotient map, and in

particular d = 2 or 4. But that would imply X0(105)/w35 is either rational or

hyperelliptic, a contradiction.

• X(3ns, 5b, 7b):

If X(3ns, 5b, 7b) were hyperelliptic or bielliptic, so is any curve dominated

by it, by Proposition 1 of [27].

Thus it suffices to show the curve X(3ns+, 5b, 7b) is not hyperelliptic or biel-

liptic. Using lemma 4.2, we have up to isogeny

Jac(X(3ns+, 5b, 7b))× Jac(X(3b, 5b, 7b))

∼ Jac(X(3s+, 5b, 7b))× Jac(X(5b, 7b))

∼ Jac(X(9b, 5b, 7b)/w9)× Jac(X(5b, 7b))

and

Jac(X(3ns+, 5b))× Jac(X(3b, 5b))

∼ Jac(X(9b, 5b)/w9)

The space of cusp forms for Γ0(315) has dimension 41, and the subspace fixed

by w9 has dimension 21. The space of cusp forms for Γ0(35) had dimension

3, thus X(3ns+, 5b, 7b) has genus 11. The w9-fixed subspace of cusp forms for

Γ0(45) has dimension 1, and the space of cusp forms of Γ0(15) has dimension 1,

thus X(3ns+, 5b) has genus 0. Suppose there is a map π : X(3ns+, 5b, 7b)→ C

of degree 2, where C has genus g ≤ 1. If the forgetting level structure at 7 map

X(3ns+, 5b, 7b)→ X(3ns+, 5b) (which has degree 8) does not factor through
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π, the Castelnuovo-Severi inequality would imply

11 ≤ 2g + 0 + 7

which is a contradiction. Thus the forgetting level structure at 7 map factors

through π. But such a factorization would correspond to a subgroup of SL2(Z)

containing the congruence subgroup corresponding to X(3ns+, 5b, 7b) with

index 2. However, the table in [14] shows no such groups exists.

�

Theorem 4.6. There is a finite list of pairs (j, F ′) where F ′/F is a totally real

quadratic extension and j ∈ F ′, such that an elliptic curve E over any totally real

quadratic extension of F is modular unless j(E) is in the list.

Proof. From what we have said, an elliptic curve E over F ′ will be modular unless it

gives rise to a F ′(ζ105)-rational point on one of the modular curves X = X(3∗, 5∗, 7∗)

above. Such a point is the same as a F (ζ105)-rational effective degree 2 divisor, that is

a F (ζ105)-rational point of Sym2X. By the above lemma, none of them are bielliptic

or hyperelliptic, hence Collorary 3 of [27] applies and gives the desired finiteness.

�

Remark 4.1. The finiteness result in [27] hinges on Faltings’ theorem on subvarieties

of abelian varieties, and thus the above theorem is ineffective for a general totally

real field F . However in good cases (e.g. F = Q), one can make the list computable,

and we will attempt to do this with some other simplifying assumptions in the next

section.

5. Modularity over real quadratic fields

By the previous section, we see that there are only finitely many pairs (j, F ) where

F is a real quadratic field and j ∈ F is the j-invariant of an elliptic curve over F
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that is not modular, namely the ones whose mod p Galois representation have small

image for all p =3, 5, 7. However this finiteness statement is ineffective due to the

use of Falting’s theorem. The goal of this section is to make the exceptional pairs

explicit and proving modularity of the corresponding curves, under the simplifying

assumption that F is a totally real quadratic field unramified above 5 and 7.

Let E be an elliptic curve over a totally real field F such that
√

5 /∈ F . If E were

to be not modular, by theorem 2.5 and section 3, ρE,p|F (ζp) must be not absolutely

irreducible for all p ∈ {3, 5, 7}, equivalently, the mod p Galois representation be-

comes absolutely reducible over the quadratic subextension of F (ζp)/F . This means

that either ρp is absolutely reducible (hence reducible since it is odd), or absolutely

irreducible but becomes absolutely reducible over F (
√

(−1)(p−1)/2p) (because this is

the unique quadaratic subextension of F (ζp) under our assumptions). In the latter

case, ρp is the induction of a character from the Galois group of F (
√

(−1)(p−1)/2p),

and this character is valued either in F×p or valued in F×p2 but not in F×p . The above

possibilities are reflected in terms the image of ρ as being conjugate to a subgroup

of the Borel subgroup (reducible case), the normalizer of a split torus (irreducible

but becomes reducible over F×p ), or the normalizer of a non-split torus (irreducible,

becomes irreducible but absolutely reducible over F×p ) of GL2(Fp). Note that in the

case p = 5, the restriction of ρ5 to F (
√

5) is still odd, and hence this restriction will

be absolutely irreducible if it is irreducible. We say that the elliptic curve E has small

image at p for each p=3, 5, 7 if ρE,p has one of the above form. Oberserve that the

normalizer of a split torus in GL2(F3) is a subgroup of index 2 in the normalizer of

a non-split torus in GL2(F3), as the latter are the 2-Sylow subgroups. Thus we only

need to consider the Borel and normalizer of non-split Cartan level structures at 3,

and Borel and normalizer of split Cartan level structure at 5.

We have the following observation over general totally real fields:
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Proposition 5.1. Let F is any totally real field where 5, 7 are unramified, and E

is an elliptic curve defined over F with small image at 3, 5, 7. Then E is (nearly)

ordinary at all places v|5 or is (nearly) ordinary at all places v|7.

Proof. We first recall some facts about the type of a p-adic Galois representation.

E gives rise to a strictly compatible system of Galois representation ρE,l defined

over Q, which in particular means that for each finite place v of F , there exists

a 2-dimensional Weil-Deligne representation WDv of WFv with rational traces such

that WDFv is the Weil-Deligne representation associated to the Galois representations

ρl|GFv via Grothendieck’s l-adic monodromy theorem if v6 |l or via a recipe of Fontaine

if v|l. In the case v6 |l, if the monodromy operator N = 0, then the Weil-Deligne and

the Galois representation agree on the inertia subgroup IFv , and in particular is a

representation defined over Ql. Note that as the compatible system has cyclotomic

determinant, WDv|IFv has trivial determinant.

Lemma 5.2. If v is a place of F above a prime p > 3 then the inertial type WDv|IFv ∼=

φ⊕ φ−1 where φ is a character of IFv which has order dividing 4 or 6.

Proof. We know that the inertia type is a finite image representation with trivial

determinant. Because it also has a model over Z2, the size of the image can not

be divisible by p, hence the representation factors through the tame quotient of IFv ,

which is pro-cyclic, with a topological generator u. The eigenvalues of u must be ζ,

ζ−1 for some root of unity ζ, and since the trace of u is rational, this forces ζ to have

order dividing 4 or 6.

Alternatively, one could work with (reduced) minimal Weiestrass equations to show

that any elliptic curve over Fv acquires semi-stable reduction over an extension with

ramification index dividing 4 or 6, see [41] �

Observe that the lemma shows that the image of the inertia in WDv must be a

subgroup of Imρl ∩ SL2(Fl) if l > 3 and v 6 |l, since the kernel of the reduction map
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GL2(Zl) → GL2(Fl) is a pro-l group. When l = 3 and the inertial type has order

divisible by 3, the same statement still holds, because if g ∈ GL2(Z3) with g3 = 1

then g must reduce to a non-trivial unipotent element in GL2(F3) (because such g

gives an isomorphism of Z2
3
∼= Z3[ζ3] identifying g with ζ3, and the mod 3 reduction

of multiplication by ζ3 is a non-trivial unipotent element).

We now prove the proposition. We split into the following cases:

• E admits a Borel level structure at 3 and either a Borel or normalizer of split

Cartan level structure at 7.

For any place v|7 of F , the image of WDv|IFv has order dividing 6. If E has

potential multiplicative reduction at v then E is potentially ordinary, hence is

nearly ordinary at v. So we assume now that E has potential good reduction

at v. Suppose E has minimal Weierstrass equation

y2 = x3 + Ax+B

over OFv . Let v(∆) = v(4A3 + 27B2) < 12 be the valuation of the minimal

discriminant. The order of the image of WDv|IFv is the degree of the smallest

extension of F nr
v such that E acquires good reduction [40]. It is also the

minimal e such that 12|v(∆)e. Since E has potential good reduction, v(A3) ≥

v(∆). Replacing E with a quadratic twist, it suffices to consider the cases

e = 3 or e = 1.

If e = 3, v(∆) is 4 or 8, and hence v(A3) 6= v(B2), since otherwise v(A3) ≥

v(∆) ≥ v(A3) = min{v(A3), v(B2)} which forces v(A3) = v(∆) = v(B2),

a contradiction. Thus v(∆) = min{v(A3), v(B2)} is not divisible by 3, so

v(A3) > v(B2), and thus j(E) = 0 mod v. But this means E has potential

good ordinary reduction, hence E is nearly ordinary at v.

If e = 1, E has good reduction. Because Fv is unramified over Q7 and

ρE,7|GFv is crystalline with Hodge-Tate weight 0, -1, (ρE,7|IFv )ss ∼= ω2 ⊕ ω7
2 or
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∼= ω1⊕ 1, where ωn is the tame character of niveau n of Gal(Q7/Qur
7 ). If first

case occur, the image of ρE,7 contains an element which has non-zero trace

and irreducible characteristic polynomial, hence can not be a subgroup of the

Borel or normalizer of split Cartan subgroup. Hence the second case occur,

which means that E has good ordinary reduction, and hence is ordinary.

• Either E admits a normalizer of non-split Cartan level structure at 3, or a

normalizer of non-split Cartan level structure at 7.

For any place v|5 of F , the image of WDv|IFv must be a 2-group, and hence

has order dividing 4. Let e denote its order, as above. As above, we work with

the minimal Weierstrass equation of E and we can assume E has potential

good reduction. Replacing E with a quadratic twist, we can assume e = 4 or

e = 1.

If e = 4, v(∆) is 3 or 9, and hence v(A3) 6= v(B2), since otherwise v(A3) ≥

v(∆) ≥ v(A3) = min{v(A3), v(B2)} which forces v(A3) = v(∆) = v(B2),

a contradiction. Thus v(∆) = min{v(A3), v(B2)} is not divisible by 2, so

v(A3) < v(B2), and thus j(E) = 1728 mod v. But this means E has potential

good ordinary reduction, hence E is nearly ordinary at v.

If e = 1, E has good reduction at v. By exactly the same argument as in

the previous case, the fact that E admits either a Borel or normalizer of split

Cartan level structure at 5 forces E to have good ordinary reduction, hence

E is nearly ordinary at v.

�

Remark 5.1. Being nearly ordinary at all places v above a prime is the crucial lo-

cal condition to apply the modularity lifting theorems with small residual images of

Skinner-Wiles [43], [44]. Under our assumptions, their modularity lifting theorems

for irreducible residual representations apply. Unfortunately the very restrictive con-

ditions required in the residually reducible case (namely, that the splitting field of
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the ratio of the characters occurring in the residual representation is required to be

abelian over Q. This is only an issue for p > 3) prevents us from fully exploiting the

above proposition.

Proposition 5.3. Let F be a totally real quadratic field where 5 and 7 are unramified,

and E is an elliptic curve over F . Then E is modular unless j(E) is the j-invariant

of a degree at most 2 point on one of the following curves

• X(3b, 5s+)

• X(3ns+, 7s+)

• X(5b, 7b)

• X(5b, 7ns+)

Proof. We already know that E is modular unless it has small image at all primes

p=3, 5, 7. There are 12 possible combination of level structures at 3, 5, 7, and hence

E is modular unless it has the same j-invariant as an elliptic curve that comes from an

F -point of X(3∗, 5∗, 7∗) where the choice of the level structure ∗ ∈ {b, ns+} at 3;∗ ∈

{b, s+} at 5, and ∗ ∈ {b, s+, ns+} at 7. The 12 curves are listed in Table 1 below, and

the rightmost column gives a curve in {X(3b, 5s+), X(3ns+, 7s+), X(5b, 7b), X(5b, 7ns+)}

that it covers. if there is one. We see that either E gives rise to a quadratic point on

one of the four curve listed, or on one of the curves X(3b, 5b, 7s+), X(3ns+, 5s+, 7b),

X(3ns+, 5s+, 7ns+)

By Proposition 5.1 (or rather, its proof), we can apply Theorem 2.7 for the prime

5 for the last two curves, and for the prime 7 for the first curve. �

Theorem 5.4. Suppose F is a totally quadratic field such that 5 and 7 are unramified

in F . Then every elliptic curve over F is modular.

Proof. This follows from Proposition 5.3 and the study of quadratic points on some

modular curves in section 6 below. �
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p 3 5 7

b b b X(5b, 7b)
b b s+

b b ns+ X(5b, 7ns+)
b s+ b X(3b, 5s+)
b s+ s+ X(3b, 5s+)
b s+ ns+ X(3b, 5s+)
ns+ b b X(5b, 7b)
ns+ b s+ X(3ns+, 7s+)
ns+ b ns+ X(5b, 7ns+)
ns+ s+ b
ns+ s+ s+ X(3ns+, 7s+)
ns+ s+ ns+

Table 1.

Remark 5.2. As the proof of proposition 5.3 shows, to get modularity for a real

quadratic field different from Q(
√

5), we only need to study quadratic points on the

four curves listed there and X(3b, 5b, 7s+), X(3ns+, 5s+, 7b), X(3ns+, 5s+, 7ns+).

We can further reduce to understanding quadratic points on the curves X(3b, 7s+),

X(3ns+, 7b) and X(5s+, 7ns+).

• The curve X(3b, 7s+) has genus 6, its Jacobian decomposes up to isogeny as

Jac(X(3b, 7s+)) ∼ E1 × A1 × A2 × E2

where the first three factors have conductor 147 while the last one has con-

ductor 21, the factors Ei are elliptic curves while the factors Ai are abelian

surfaces. All factors except for A1 has rank 0 over Q. An approach similar to

the one used to handle the curve X(3ns+, 7s+) below allows one to explicitly

write down maps from X(3b, 7s+) to the elliptic curves E1, E2, and hence find

its quadratic points by the same method.

• The curve X(3ns+, 7b) has genus 2, and its Jacobian has rank 0 and the

hyperelliptic involution given by the Atkin-Lehner involution w7. Using the

same method for the curve X(5b, 7b) below, we can determine all the quadratic
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points on it that does not come from the hyperelliptic class, while the points

coming from the hyperelliptic class only gives rise j-invariants of Q-curves,

and hence the corresponding elliptic curves are modular by lemma 6.1.

• The curve X(5s+, 7ns+) has genus 19, and its Jacobian admits two abelian

surface factors that has rank 0 over Q. Thus it is in theory possible to de-

termine all quadratic points on it. However due to practical (computational)

complications in executing this, we have not done it here.

In particular, using the methods in this paper, for modularity of elliptic curves over

all real quadratic fields different from Q(
√

5), the only curve we can not directly

handle is the genus 19 curve X(5s+, 7ns+). However, proposition 5.1 shows that an

elliptic curve corresponding to a quadratic point defined over a field unramified at 5

on this curve is ordinary at all places above 5, and Theorem 2.7 shows such curves a

modular. The methods of this paper can be adapted to show that all elliptic curves

over a real quadratic field unramified at 5 are modular (that is, we do not need the

field to be unramified at 7).

6. Quadratic points on modular curves

The goal of this section is to show that any elliptic curve that gives rise to a real

quadratic point on one of the modular curves in Proposition 5.3 are modular. For

each such modular curve X, at each prime p such that X has a Borel level structure

at p, there is an Atkin-Lehner involution wp which is an involution of X over Q,

which in the moduli interpretation of X correspond to

(E, φ) 7→ (E/Cp, φ
′)

where Cp is the line that defines the Borel subgroup in the level structure at p. The

Atkin-Lehner involutions generate an elementary abelian 2−subgroup of
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Aut(X/Q). We call any non-trivial element of this subgroup an Atkin-Lehner invo-

lution. We have the following useful fact

Lemma 6.1. Let E is an elliptic curve over a quadratic field F that gives rise to a

point P ∈ X(F ). Assume that there is an Atkin-Lehner involution w such that P

maps to a rational point in X/w. Then E is modular

Proof. We only need to consider the case that E has no CM.

Let σ ∈ Gal(F/Q) denote the non-trivial element. Then Eσ gives rise to the point

P σ ∈ X(F ), and P σ = w(P ) or P σ = P . In either case, a quadratic twist of Eσ must

be F -isogenous to E. Thus for any τ ∈ GQ, Eτ is isogenous to E over Q, that is E

is a Q-curve defined over F . By Proposition 2.4 , E is modular.

�

In the following sections, the assertions regarding Mordell-Weil ranks of modular

abelian varieties are obtained by the procedure mentioned in the introduction, and

the results can be found in William Stein’s database [45].

6.1. The curve X(5b, 7b). The curve X = X(5b, 7b) has Jacobian Jac(X) ∼ E ×A

where E is an elliptic curve and A is an abelian surface of conductor 35. Both E and

A has rank 0 over Q. A corresponds to a pair of conjugate newforms with coefficient

field Q[x]/(x2+x−4). The pair of Atkin Lehner involutions (w3, w5) has sign (1,−1)

and (−1, 1) on E and A respectively. It follows that w35 = w5w7 is the hyperelliptic

involution on X, as the quotient X/w35 has genus 0. The q-expansion of a basis for

H0(X,Ω1) is given by

f1 = q + q3 − 2q4 − q5 + q7 − 2q9 − 3q11 +O(q12)

f2 = 2q − q2 − q3 + 5q4 + 2q5 − 8q6 − 2q7 − 9q8 + 3q9 − q10 + q11 +O(q12)

f3 = q2 − q3 − q4 + q8 + q9 + q10 + q11 +O(q12)
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where the f1 corresponds to E and f2, f3 corresponds to A. The canonical map is

given by X → X/w35 ↪→ P2 as a double cover of the conic

−4X2 + Y 2 + 2Y Z + 17Z2

The quotient X/w7 is a genus 2 curve with Jacobian isogenous to A. Putting x =

f3/f2, y = 4dx/(f2dq/q), an equation for this curve is given by

y2 = −7599x6 − 3682x5 − 1217x4 − 284x3 − 17x2 − 2x+ 1

The group of rational points of Jac(X/w7) has order 16, and the rational degree

2 divisors that are not the hyperelliptic class is given by in Mumford’s notation

(divisors of degree 2 on a hyprelliptic curve are represented by (p(x), q(x)) where p, q

are polynomials of degree 2 and 1. It desribes the effecive divisor such that p(x) = 0

and y = q(x) on the hyperelliptic curve):

(x2 + 7/50x+ 3/50, 701/2500x− 121/2500), (x2,−x+ 1),

(x2 + 5/58x+ 3/58,−3345/3364x− 905/3364), (x2 + 4/19x+ 1/19,−776/361x+ 72/361)

(x2 + 1/8x+ 1/8,−55/64x+ 145/64), (x2 + 2/15x+ 1/15, 2/75x− 14/75)

(x2 + 1/3x,−3x− 1), (x2 + 2/17x+ 1/17, 0).

or their images under the hyperelliptic involution.

Thus if P ∈ X(F ) is a quadratic point, then P +P σ must become one of the above

15 divisors, or becomes the hyperelliptic class in X/w7. But in the latter case, because

the hyperelliptic involution on X/w7 is induced by w5, this means that there is an

Atkin-Lehner involution on X such that wP = P σ, hence all such points must come

from a modular elliptic curve by lemma 6.1. Since we are only interested in quadratic

points defined over totally real fields, we only need to consider the cases where the

image of P + P σ is 2(0, 1), 2(0,−1), (0,−1/3) + (−1/3, 0) or (0, 1/3) + (−1/3, 0).
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However since X → X/w7 is a double cover, the second case can not happen since

the fiber of a rational point on X/w7 is stable under the Galois action, hence if P

occurs in a fiber then P σ occurs in the same fiber. Thus the only case left is when

P , P σ are in the fiber of (0, 1) or (0,−1), but in that case P = w7P
σ and hence the

corresponding elliptic curve is modular, again by lemma 6.1.

6.2. The curve X(3b, 5s+). We haveX = X(3b, 5s+) ∼= X0(75)/w52 , hence Jac(X(3b, 5s+)) ∼

E1 × E2 × E3 in the isogeny category. Here E1 is isogenous to X0(15) while E2 and

E3 are elliptic curves of conductor 75, and each of them have rank 0 over Q.

The q-expansion of the three newforms corresponding to Ei are

f1 = q − q2 − q3 − q4 + q5 + q6 + 3q8 + q9 − q10 − 4q11 +O(q12)

f2 = q + q2 + q3 − q4 + q6 − 3q8 + q9 − 4q11 +O(q12)

f3 = q − 2q2 + q3 + 2q4 − 2q6 + 3q7 + q9 + 2q11 +O(q12)

Those can be thought of as the formal expansion around the cusp ∞ of the curve

X0(75). Using that X = X0(75)/w25 and the description of w25 in terms of double

cosets, we find that a basis or H0(X,Ω1) is given by (−5f1(z)+f1(z/5))dz, f2(z/5)dz

and f3(z/5)dz. Using their q-expansion, we see there are no degree 2 relations between

them and there is a degree 4 relation, hence the canonical map realizes X as the

quartic

9X4 + 30X2Y 2 + 108X2Y Z − 48X2Z2 + 25Y 4 − 60Y 3Z − 80Y 2Z2 + 16Z4

and thus X is not hyperelliptic. Over Q, the automorphism group of X has an

element order 2, generated by the Atkin-Lehner involution w3, which in the above

model correspond to [X : Y : Z] 7→ [−X : Y : Z]. Using Magma we find that the
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quotient curve is the elliptic curve E1 with equation

y2 + xy + y = x3 + x2 − 5x+ 2

and the quotient map φ1 : X → E1 is given in terms of homogenous coordinates by

[− 9/4X2Y 2 − 15/2Y 4 + 9/20X2Y Z − 51/2Y 3Z + 9/50X2Z2 + 18Y 2Z2 − 6/25Y Z3

− 24/25Z4 : 45/16X2Y 2 + 135/16Y 4 + 9/10X2Y Z + 39Y 3Z − 81/100X2Z2 − 39/10Y 2Z2

− 363/25Y Z3 + 93/25Z4 : −9/4X2Y 2 − 15/2Y 4 + 9/5X2Y Z − 21Y 3Z − 9/25X2Z2

+ 162/5Y 2Z2 − 348/25Y Z3 + 48/25Z4]

We have E1(Q) ' Z/2Z⊕Z/8Z. Over Q(
√

5), the automorphism group of X contains

an S3, andan automorphism of order 3 given by

[X : Y : Z] 7→ [−1/2X +
√

5/2Y : −3
√

5/10X − 1/2Y : Z]

the quotient curve is the elliptic curve E2 with equation

y2 + y = x3 + x2 + 2x+ 4
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and the quotient map φ2 : X → E2 is given by

[− 12/5X3Y 4 − 36/5XY 6 − 357/250X3Y 3Z − 1719/50XY 5Z + 27/25X3Y 2Z2

− 687/125XY 4Z2 + 402/625X3Y Z3 + 2268/125XY 3Z3 + 12/125X3Z4 + 864/625XY 2Z4

− 984/625XY Z5 − 144/625XZ6 : −3/4X3Y 4 + 81/100X2Y 5 − 9/4XY 6 + 63/20Y 7

− 12/25X3Y 3Z − 81/50X2Y 4Z − 54/5XY 5Z + 117/50Y 6Z − 81/25X2Y 3Z2 − 84/25XY 4Z2

− 891/25Y 5Z2 + 48/625X3Y Z3 − 162/125X2Y 2Z3 + 144/125XY 3Z3 − 702/25Y 4Z3

+ 12/625X3Z4 + 396/625XY 2Z4 + 1188/125Y 3Z4 + 48/625XY Z5 + 216/25Y 2Z5

− 144/125Y Z6 − 288/625Z7 : 3/2X3Y 4 + 9/2XY 6 + 24/25X3Y 3Z + 108/5XY 5Z

+ 168/25XY 4Z2 − 96/625X3Y Z3 − 288/125XY 3Z3 − 24/625X3Z4 − 792/625XY 2Z4

− 96/625XY Z5]

We have E2(Q) ' Z/5Z is cyclic of order 5, generated by the point [−1 : 1 : 1].

If P , P σ is a pair of conjugate quadratic points, then φi(P ) + φi(P
σ) is a rational

torsion point on Ei, thus we have φ2(P ) − a[−1 : 1 : 1] = −(φ2(P
σ) + a[−1 : 1 : 1])

for some integer a mod 5, while 2φ1(P ) − b[0 : 1 : 1] = −(2φ1(P
σ) − b[0 : 1 : 1])

for b = 0 or 1. The two equality implies φi(P ), φi(P
σ) have the same image under

a suitable two-to-one map Ei → P1, thus P , P σ have the same image under a map

C → P1×P1, where the two coordinate map have degree 6 and 16. Depending on the

value of a, b, this maps X birationally onto its image or maps X/w3 birationally onto

its image. Thus, either P and P σ map to the same point in X/w3, or they map to the

same singular point (which is necessarily defined over Q) in the image of the map.

Using Magma, under a birational isomorphism P1×P1 ' P2, we find the plane curve

which is the image of X, and find its singular points over Q. The resulting quadratic

points that we get either satisfies w3P = P σ (hence correspond to Q-curves), are

CM or is defined over a real quadratic field with 5 ramified, except for two conjugate
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pair of points defined over Q(
√

41). For the last two conjugate pair of points, we

check directly that the j-invariant is not in the image of a Q(
√

41)-point of X(7b),

X(7s+) or X(7ns+) (using the equations in [22]), so that the image of the mod 7

representation is large and hence the points are modular by Corollary 2.6. Thus all

points defined over quadratic fields where 5 is unramified gives rise to modular elliptic

curves.

Remark 6.1. The interested reader can see the table in [24] for the full list of quadratic

points on X.

6.3. The curve X(3ns+, 7s+). We compute an equation for X = X(3ns+, 7s+) by

a method due to Noam Elkies (private communication), which is reproduced below.

The modular curve X0(49) is isomorphic to the elliptic curve

y2 + xy = x3 − x2 − 2x− 1

The only rational points on X0(49) are the origin O and the 2-torsion poin T =

[2 : −1 : 1]. Under a suitable identification, O and T are the two cusps and the

Atkin-Lehner involution w49 must be P 7→ T − P , since it acts as −1 on the space

of holomorphic differentials and swaps the cusps. The quotient of X0(49) by w7 is

the genus 0 curve with coordinate h = (1 + y)/(2− x). The q-expansion of h can be

computed from the modular parametrization of X0(49), and gives

h = q−1 + 2q + q2 + 2q3 + 3q4 + 4q5 + 5q6 + 7q7 + 8q8 + · · ·

Writing j(q7) as a rational function of degree 28 of h by solving a linear system of

equations in the coefficients we have

j(q7) =
(h+ 2)((h+ 3)(h2 − h− 5)(h2 − h+ 2)(h4 + 3h3 + 2h2 − 3h+ 1))3

(h3 + 2h2 − h− 1)7
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One the other hand the curve X(3ns+) is the cyclic triple cover of the j-line obtained

by adjoining j1/3. Hence the curve X is a cyclic triple cover of the h-line, obtained by

adjoining a cube root of (h3 + 2h2 − h− 1)/(h+ 2). This gives the following quartic

model for X

(h+ 2)g3 = (h3 + 2h2 − h− 1).

Using lemma 4.2, we compute up to isogeny over Q

Jac(X) ∼ E × A

where E is an elliptic curve of conductor 441 (and has rank 1) while A is an abelian

surface of rank 0 and conductor 63. To determine the quadratic points on X, we wish

to compute a model for A and a map X → A. The abelian surface A is (isogenous

to) the Weil restriction of a Q-curve E defined over K = Q(ζ3). There is a map

X0(441) → X via the identification X0(441) = X(3s, 7s) and the map is obtained

by containment of the corresponding congruence subgroups. Thus it suffices to write

down a parametrization of E by X0(441) which factors through X. Below we describe

a procedure to get such a parametrization.

Let f1dz, f2dz be an integral basis of a Hecke-stable two dimensional subspace

of H0(X0(63),Ω1) on which the Hecke operators act through the system of Hecke

eigenvalues correspond to A. We normalize this choice by requiring the q-expansion

f1 = q+· · · and f2 = q2+· · · . Let π1, π2 denote the two degeneracy maps X0(441)→

X0(63) (where π1 is the quotient map from the inclusion of congruence subgroups).

Putting

Ω = (π∗1 − π∗2)(f1 + (2− ζ−13 )f2)
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we compute the integration map
∫
i∞Ω : X0(441) → C. Up to high precision, the

image of the homology of X0(441) is a lattice Λ with

g2(Λ) =
7
√
−3− 41

6144

g3(Λ) =
42
√
−3− 43

884736

Suppose that D
∫
i∞Ω : X0(441) → C/Λ = {y2 = 4x3 − g2x − g3} factors through

X0(441) → X, for some integer D. This is equivalent to a map X → {y2 = 4x3 −

g2D
4x− g3D6} such that the pullback of dz is Ω. The coordinates x, y of such a map

must satisfy the differential system

y2 = 4x3 − g2D4x− g3D6

dx/y = Ω

This system has a unique solution with x = q−2 + · · · in the ring of Laurent series

K((q)), but only for suitable choice of D will the formal solution lie in the function

field of X. Note that there is an automorphism of X of order 3, defined over K

given by g → ζ3g. This automorphism fixes the cusps ∞, hence is continuous for

the q-adic topology on the formal neighborhood at ∞. From the q-expansion, we see

that the automorphism must be q → ζ3q, because this is q-adically continuous and

sends (g, h) 7→ (ζ3g, h). Hence given a formal solution (x, y) to the above differential

system, we can recognize whether (x, y) lives in the function field of X by separating

the q-expansion into 3 pieces according to the exponent of q mod 3, and testing

whether each piece is a rational function of h times gi.

Using this procedure, we found that for D = 12, the formal solution is actually

in the function field of X, and subsequent direct algebraic manipulation verifies that

we indeed have a map of curves φ : X → E defined over K given by those functions.

The group E(K) is trivial, hence for any pair of conjugate quadratic points P , P τ
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satisfies φ(P ) = −φ(P σ), in particular they map to the same point after composing

φ with the x-coordinate map E → P1. Our computation shows that this composition

map is of the form

P0(h)2 + P1(h)g + P2(h)g2

where Pi(h) are rational functions in h of degree 13, 29, 29. Note that the same

argument applies to the maps φ ◦ c and φ ◦ c2, where c is the automorphism (g, h) 7→

(ζ3g, h), and also when we replace φ with the map φσ, where σ is the non-trivial

automorphism of K. But this implies that the all three functions P0(h)2, P1(h)g,

P2(h)g2 and their σ-conjugates take the same values at P and P σ, because the system

of linear equations

(P0(h)2 − P0(h
τ )2) + (P1(h)g − P1(h

τ )gτ ) + (P2(h)g2 − P2(h
τ )(gτ )2) = 0

(P0(h)2 − P0(h
τ )2) + (P1(h)g − P1(h

τ )gτ )ζ3 + (P2(h)g2 − P2(h
τ )(gτ )2)ζ23 = 0

(P0(h)2 − P0(h
τ )2) + (P1(h)g − P1(h

τ )gτ )ζ23 + (P2(h)g2 − P2(h
τ )(gτ )2)ζ3 = 0

only has trivial solution. This forces the h-coordinate of P to be a zero of a suitable

resultant, from which we easily get the list of possible h-coordinates of a P . We end

up with the following list of quadratic points [1 : h : g]

[0 : 1 : 0], [0 : 0 : 1], [1 : −1 : 1], [1 :
−1 +

√
5

2
:

1−
√

5

2
], [1 :

−3−
√

5

2
:

1−
√

5

2
],

[1 :
−1 +

√
13

2
: 1], [1 :

√
5 :

1 +
√

5

2
], [1 :

3 +
√

17

2
:

5 +
√

17

4
].

From the formula for j in terms of h, we check that all the above points gives rise to

cusps or CM j-invariants, hence the corresponding elliptic curves are modular.

6.4. The curve X(5b, 7ns+). Throughout this section we use the abbreviation X =

X(5b, 7ns+), α = −1+
√
−7

2
, K = Q(

√
−7) and σ the non-trivial automorphism of
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K/Q. First we recall that the modular curve X(5b) = X0(5) is isomorphic to P1 over

Q, and an explicit rational coordinate x such that

j =
(x2 + 10x+ 5)3

x
,

see [21]. The Atkin-Lehner involution on X0(5) = X(5b) in terms of this coordinate

is given by x 7→ 125/x. The modular curve X(7ns+) parameterizing normalizer of

non-split Cartan level structure at 7 is also isomorphic to P1 over Q, with a rational

coordinate φ such that

j = 64
(φ(φ2 + 7)(φ2 − 7φ+ 14)(5φ2 − 14φ− 7))3

(φ3 − 7φ2 + 7φ+ 7)7
.

The normalizer of non-split Cartain subgroup of PSL2(F7) is not maximal, but is con-

tained in a subgroup of order 24 isomorphic to S4. All such subgroups are conjugate

under PGL2(F7), but breaks up into two conjugacy class in PSL2(F7). A choice of

this conjugacy class gives a modular curve that parameterizes an ”S4” level structure

at 7 is defined over Q(
√
−7), and has coordinate ψ such that

ψ =
(2 + 3α)φ3 − (18 + 15α)φ2 + (42 + 21α)φ+ (14 + 7α)

φ3 − 7φ2 + 7φ+ 7

j = (ψ − 3(1 + α))(ψ − (2 + α))3(ψ + 3 + 2α)3

(We refer the reader to [22] for these facts). Thus X has is birational to the plane

curve given by

(x2 + 10x+ 5)3

x
= 64

(φ(φ2 + 7)(φ2 − 7φ+ 14)(5φ2 − 14φ− 7))3

(φ3 − 7φ2 + 7φ+ 7)7

and if we let Y denote the modular curve with Borel level structure at 5 and ”S4”

level structure at 7, Y has birational model

(x2 + 10x+ 5)3

x
= (ψ − 3(1 + α))(ψ − (2 + α))3(ψ + 3 + 2α)3
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We have a map π : X → Y given by

(x, φ) 7→ (x,
(2 + 3α)φ3 − (18 + 15α)φ2 + (42 + 21α)φ+ (14 + 7α)

φ3 − 7φ2 + 7φ+ 7
)

and its conjugate πσ : X → Y σ.

Using lemma 4.2, we have up to isogeny over Q

Jac(X) ' A1 × A2 × A3

where Ai are the abelian surface factors of J0(245)new on which w7 acts trivially, and

the action of w5 is 1,-1,-1 respectively. Checking for inner twists of the newforms

contributing to X, we see that theAi are absolutely simple, are non-isogenous over

Q, but A1 is isogenous to A2 over K. A3 is not isogenous to A1 even over C. The

factors A2, A3 have rank 0 over Q, and the order of the group A2(Q) divides 7. The

Hecke field of A1, A2 are Q(
√

2) (These facts can be extracted from the tables in [45],

the assertion about the rank follows from numerically computing the value at s = 1

of the L-function)

Let us now consider the three open compact subgroups G1, G2, H of GL2(Ẑ) given

by the following local conditions

• The component at p6 |35 is GL2(Zp)

• The component at 5 is the inverse image of the upper triangular matrices

under the reduction map GL2(Z5)→ GL2(F5)

• The component at 7 of G1 is the subgroup of GL2(Z7) that reduces to the

normalizer of a non-split Cartan subgroup of GL2(F7)

• The component at 7 of G2 is the subgroup of GL2(Z7) that reduces to the

normalizer of the subgroup of the non-split Cartan subgroup of GL2(F7) whose

determinant is a square in F7.

• The component at 7 of H is the subgroup of GL2(Z7) that reduces to the

subgroup of GL2(F7) which under the projection map to PGL2(F7) is the
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subgroup of order 24 of PSL2(F7) containing the normalizer of non-split Car-

tan subgroup defining G2.

We have the containments G2 ⊂ G1, G2 ⊂ H, and detG1 = Ẑ× while detG2 =

detH is the subgroup of index 2 of Ẑ× consisting of elements whose component at 7

reduces to a square. Thus the Shimura variety ShG1 = X is geometrically connected

while ShG2 , ShH have 2 connected component over Q(
√
−7). Since the element

( 0 −1
5 0 )5 normalizes all three open compact subgroup and has determinant 5 /∈ (F×7 )2,

it induces an involution w over Q on all three Shimura varieties, and permutes the

geometric connected components transitively. Putting ΓG = G1 ∩ SL2(Q) = G2 ∩

SL2(Q) and ΓH = H∩SL2(Q), we have a commuting diagram of complex curves with

involution w:

(6.1) ShG2 = ΓG \Hq ΓG \H

��

// ShG1 = ΓG \H

��

ShH = ΓH \Hq ΓH \H // X(5b)

where the vertical map is given by the quotient map on each component, while the

horizontal map is the identity on the first component and w on the second component.

The above diagram descends to K. The Q-structure on ShG1 = X is determined by

the subfield Q(x, φ) inside its function field over C. Since all arrows respect the

Q-structures, we see that there is an isomorphism of curves over K

d : Y ∼= Y σ = Y ×K,σ K

and a commutative diagram of curves over K

(6.2) X
π
//

w
��

Y

d
��

X
πσ
// Y σ
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such that d(x) = 125/x. Note that there is at most one d with such property, and

using Magma we compute that

d(−ψ) =
P (x, ψ)

(x2 + 4x− 1)(x2 + 10x+ 5)2

with

P (x, ψ) = 4xψ6 + (−9x2 − 48x + 25)ψ5 + (1/2(3
√
−7 + 3)x3 + (22

√
−7 + 22)x2 +

1/2(177
√
−7 + 33)x)ψ4 + (−x4− 24x3 + 1/2(135

√
−7− 453)x2 + (336

√
−7− 536)x+

1/2(−375
√
−7 + 375))ψ3 + ((−3

√
−7− 3)x4 + 1/2(−97

√
−7 + 47)x3 + (−252

√
−7 +

894)x2+1/2(−459
√
−7+6621)x+(125

√
−7−125))ψ2+((−

√
−7−1)x5+(−21

√
−7−

30)x4+(−99
√
−7−363)x3+1/2(727

√
−7−1923)x2+(1512

√
−7+2208)x+1/2(−1125

√
−7−

5625))ψ + ((−3
√
−7 − 69)x4 + (−180

√
−7 − 1092)x3 + (−2331

√
−7 − 4761)x2 +

(−6228
√
−7− 3444)x+ (750

√
−7 + 750)).

Lemma 6.2. Inside H0(XK ,Ω
1) = H0(X,Ω1)⊗Q K we have

π∗H0(Y,Ω1) ∩ w∗π∗H0(Y,Ω1) = 0

Proof. By looking at the pullbacks of differentials in the diagram (6.1), we see that

V ∩w∗V is stable under the anemic Hecke algebra T (the algebra generated by Hecke

operators at good primes), we see that V ∩w∗V is T-stable. Because the Hecke fields

of Ai are totally real quadratic fields, the H0(Ai,Ω
1)⊗K are exactly the irreducible

T⊗K submodules of H0(XK ,Ω
1). Hence if V ∩ w∗V 6= 0, it must be 2-dimensional

and hence V = w∗V = V σ must be H0(Ai,Ω
1) ⊗ K for some i. But a non-zero

element of this intersection gives rise to a vector v ∈ πi which is unramified away

from 5 and 7, fixed under the Iwahori open compact at 5, the normalizer of the non-

split Cartan open compact at 7 n and also under an S4 subgroup of PSL2(F7). The

last two condition however forces v be invariant under GL2(Z7), contradicting the

fact that πi,7 has conductor 72 (since it appears in the new part of X0(245)). �
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The lemma implies

π∗H0(Y,Ω1)⊕ w∗π∗H0(Y,Ω1) = (H0(A1,Ω
1)⊕H0(A2,Ω

1))⊗K

Lemma 6.3. Let D be a degree 1 divisor on X. Then the map ΠD : X → J(Y )

given by

P 7→ πσ(P )− πσ(wP )− (πσ(D)− πσ(wD))

factorizes through the composition of AJD : X → J(X) and a Q-quotient of J(X)

isogenous to A2, and in particular through a quotient that has Q-rank 0.

Proof. Since D maps to 0 in J(Y σ), there is a factorization through the Abel-Jacobi

map associated to D. Let I be the ideal of T which cuts out the Hecke field of A3.

The observation after the previous lemma shows that IJ(X) gets killed in J(Y σ).

On the other hand, the image of (w+ 1)(P −D) = (wP −D) + (P −D)− (wD−D)

in J(Y σ) is

πσ(wP )− πσ(w2P ) + πσ(P )− πσ(wP )

− (πσ(wD)− πσ(w2P ))− (πσ(D)− πσ(wD)) = 0

hence the map in consideration factors through J(X)/((w+ 1)J(X) + IJ(X)). This

factor is defined over Q and is Q-isogenous to A2. �

A convenient choice for the base divisor D is given below

Proposition 6.4. Let

X3 − 7X2 + 7X + 7 = (X − φ1)(X − φ2)(X − φ3)

X2 + 22X + 125 = (X − x1)(X − x2)

• In terms of the coordinate (x, φ), the 6 cusps of X are given by (0, φi) and

(∞, φi)
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• In terms of the coordinate (x, ψ), the 2 cusps of Y are given by (0,∞) and

(∞,∞)

• Put D = (0, φ1) + (0, φ2) + (0, φ3) − (x1, 3) − (x2, 3) is a rational divisor of

degree 1 on X, and

πσ(D)− πσ(wD) = 3((0,∞)− (∞,∞))

is a torsion point of exact order 7 in J(Y σ).

Proof. The first two statements are clear: Note that in terms of the singular plane

model with coordinates (x, φ), the points (∞, φi) are singular points which are of the

type x5 = y7, and the singularity is resolved after 3 blowups, and at each step there

is a unique point in the pre-image of the singularity. Hence each (x, φi) actually gives

exactly 1 point in the smooth curve X (alternatively, one could check that X has

exactly 6 cusps, and we have written down at least 6 of them). A similar analysis

gives the statement for Y and Y σ. Because the involution w on X descends to the

Atkin-Lehner involution on X(5b), we see that w switches the fibers of X → X(5b)

above x = 0 and x = ∞. On the other hand, one checks that (xi, 3) are the only

Q(
√
−1)-rational points with x = xi, and hence w must switch them. From this the

equality in the last item follows. Finally, we have 7((0,∞) − (∞,∞)) = div(x) is

principal, and (0,∞)− (∞,∞) is not principal since Y σ has genus 2. �

Let us now take D as in the proposition and consider the map Π = ΠD defined

above. If P , Q = P τ are a conjugate pair of quadratic points on X, AJD(P + Q) is

a rational point on J(X) and hence must map to a 7-torsion point in J(Y σ) under

Π, since it factors through a quotient isogenous to A2. On the other hand wD is also

rational and maps to 6((0,∞)− (∞,∞)), which has exact order 7 in J(Y σ), thus we

have

πσ(P ) + πσ(Q)− πσ(wP )− πσ(wQ) ∼ a((0,∞)− (∞,∞))
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for some a ∈ Z. Thus P and Q maps to the same point in the Kummer surface

K(Y σ) = J(Y σ)/± under the map Πb

P 7→ πσ(P )− πσ(wP )− b((0,∞)− (∞,∞))

for some suitable integer b.

By finding an explicit basis Ω1, Ω2 for the space of homolorphic differentials on Y σ

using Magma, we compute in terms of x, ψ a double cover map

u : Y σ → P1

and a rational function v realizing Y σ as a hyperelliptic curve of genus 2 of the form

v2 = sextic in u

Lemma 6.5. The map Πb : X → J(Y σ) is birational onto its image.

Proof. Suppose the contrary, so we have infinitely many pairs (Pi, Qi) of distinct

points which have the same image via Πb. We have

πσ(Pi) + πσ(wQi) ∼ πσ(wPi) + πσ(Qi)

Suppose first that for infinitely many i, this effective degree 2 divisor is not the hyper

elliptic class in Y σ. This forces the above linear equivalence to be an equality of

divisors. Note that πσ has degree 3, so πσ ◦ w 6= πσ. Hence for infinitely many i we

must have πσ(Pi) = πσ(Qi), π
σ(wPi) = πσ(wQi).

If the above case does not happen, πσ(Pi) + πσ(wQi) and πσ(wPi) + πσ(Qi) must

be the hyperelliptic class for infinitely many i, as the hyperelliptic class is the unique

g12 on a genus 2 curve. This forces Pi 6= wQi =: Q′i for all but finitely many i, and we
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have

u(πσ(Pi)) = u(πσ(Q′i))

u(πσ(wPi)) = u(πσ(wQ′i))

Thus in either case we see that the map

(u ◦ πσ, u ◦ πσ ◦ w) : X → P1 × P1

is not generically injective. However a Magma computation shows that the pair

(u ◦ πσ, u ◦ πσ ◦ w) generates the function field of X, a contradiction. �

Consequently, composing the above map with the quotient map to the Kummer

surface, we get a map X → K(Y σ) which is either birational onto its image or factors

through X/w, which then is birational onto its image (since X → X/w is the only

degree 2 map from X to any curve). The second case happens if and only if pairs of

the form (P,wP ) have the same image, and this happens if and only if b = 0.

We are therefore reduced to finding conjugate pairs of quadratic points (P,Q = P τ )

on X which maps to the same point in the Kummer surface via one of the above maps

(note that we only need to consider b ∈ {0, 1, 2, 3}, by replacing P , Q with wP , wQ

if needed).

Let us first study the case b = 0. The same argument in the proof of lemma 6.5

implies that either P ,P τ or P , wP τ have the same image under the map

(u ◦ πσ, u ◦ πσ ◦ w) : X → P2

which is birational onto its image. One checks that u◦πσ realizes K(X) as a degree 6

extension of K(u ◦πσ ◦w) and vice versa, and hence the image of X is an irreducible

plane curve of degree 12. Using Magma, we computed this plane curve explicitly and

determined all its singular points defined over a quadartic extension of K. Hence
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either P 6= P τ and P 6= wP τ , their common image must be one of the above singular

points of the image of X in P2; or P = P τ or P = wP τ . One checks that the elliptic

curves corresponding to such P must be either a Q-curve or have CM.

Finally, we now turn to the case b 6= 0. We are looking for pairs (P,Q) such that

πσ(P ) + πσ(Q)− πσ(wP )− πσ(wQ) ∼ 2b((0,∞)− (∞,∞))

and we know a priori that there are only finitely many such pairs (P,Q = P τ ) (note

that this was not true when b = 0). By enumerating such pairs (P,Q) over some

primes p split in K where the whole situation has good reduction, we found for some

primes p there were no pairs (P,Q) ∈ X(Fp)2 or conjugate pairs (P, P τ ) ∈ X(Fp2)

satisfying the above equation, and hence there are no conjugate pairs of quadratic

points on X of this type. For b = 2, a similar enumeration for the prime p =

71 shows that the pairs (P,Q) mod p satisfying the linear equivalence relation for

b = 2 are either the cusps or the mod p reduction of the pair of conjugate points

corresponding to the CM point P = (125
√

5 + 250,−1
2
(
√

5 − 1)) in the coordinates

(x, φ). Furthermore, one checks that these are only possible pairs in Q712 lifting the

pairs mod 71. This shows that in this case all pairs of conjugate quadratic points we

look for gives rise to CM elliptic curves.

Putting everything together, we found that all quadratic points on X gives rise to

modular j-invariants.

55



References

[1] Automorphic forms on GL(2). Lecture Notes in Mathematics, Vol. 114. Berlin.

[2] D. Abramovich. A linear lower bound on the gonality of modular curves. International Mathe-
matics Research Notices, (20):1005–1011, 1996.

[3] P. B. Allen. Modularity of nearly ordinary 2-adic residually dihedral Galois representations.
arXiv e-print 1301.1113, Jan. 2013.

[4] T. Barnet-Lamb, T. Gee, and D. Geraghty. Congruences between Hilbert modular forms: con-
structing ordinary lifts. arXiv e-print 1006.0466, June 2010.

[5] T. Barnet-Lamb, T. Gee, and D. Geraghty. Congruences betwen Hilbert modular forms: con-
structing ordinary lifts II. arXiv e-print 1205.4491, May 2012.

[6] D. Blasius. Elliptic curves, Hilbert modular forms, and the Hodge conjecture. In Contributions
to automorphic forms, geometry, and number theory, pages 83–103. Johns Hopkins Univ. Press,
Baltimore, MD, 2004.

[7] D. Blasius and J. D. Rogawski. Motives for Hilbert modular forms. Inventiones Mathematicae,
114(1):55–87, 1993.

[8] A. Borel and H. Jacquet. Automorphic forms and automorphic representations. In Automorphic
forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ.,
Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, page 189–207. Amer.
Math. Soc., Providence, R.I., 1979. With a supplement “On the notion of an automorphic
representation” by R. P. Langlands.

[9] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. the user language.
Journal of Symbolic Computation, 24(3-4):235–265, 1997. Computational algebra and number
theory (London, 1993).

[10] C. Breuil, B. Conrad, F. Diamond, and R. Taylor. On the modularity of elliptic curves over Q:
wild 3-adic exercises. Journal of the American Mathematical Society, 14(4):843–939 (electronic),
2001.

[11] C. Breuil and F. Diamond. Formes modulaires de Hilbert modulo p et valeurs d’extensions
Galoisiennes. arXiv e-print 1208.5367, Aug. 2012.

[12] H. Carayol. Sur les représentations l-adiques attachées aux formes modulaires de
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