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Regeneration of Elliptic Chains with Exceptional Linear Series

Abstract

We study two dimension estimates regarding linear series on algebraic curves. First,

we generalize the classical Brill-Noether theorem to many cases where the Brill-

Noether number is negative. Second, we extend results of Eisenbud, Harris, and

Komeda on the existence of Weierstrass points with certain semigroups, by refining

their dimension estimate in light of combinatorial considerations. Both results are

proved by constructing chains of elliptic curves, joined at pairs of points differed by

carefully chosen orders of torsion, and smoothing these chains. These arguments lead

to several combinatorial problems of separate interest.
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Notation and conventions

Throughout this thesis, we work over an algebraically closed field K of arbitrary

characteristic, except in section 4, where we will assume that K is characteristic 0. A

curve will always mean a projective curve over K, with at worst nodes as singularities.

For convenience, we collect here some of the main notation.

Symbol Definition

ρ(g, r, d) The Brill-Noether number. p.3

ρ(g, S) The once-pointed Brill-Noether number. p.7

ρ(g, S : T ) The twice-pointed Brill-Noether number. p.24

wt(S) The weight of a numerical semigroup. p.14

ε(S) The effective weight of a numerical semigroup. p.20

grd Linear series of rank r and degree d. p.2

|L| The complete linear series of a line bundle. p.2

aLi (p) ith vanishing order of a linear series. p.5

Gr
d(C) Scheme of grds on C. p.2

Grd,g Moduli of curves with a grd, over Mg. p.2

GSg Moduli of pointed curves with a grd with specification ramification. p.7

GS
d (f) Once-pointed limit linear series over a family f. p.27

WS Moduli of Weierstrass points. p.13

(if 0 6∈ S) moduli of twisted Weierstrass points. p.78

BS:T
g Moduli of twice-pointed linear series. p.23

BS:T
d (f) Twice-pointed limit linear series over a family f. p.27

d(P ) Displacement distance of a partition P . p.90

δ(P ) Displacement difficulty of a partition P . p.90

A tilde over a symbol will always denote an open version of a given space (for

example, W̃S denotes the pointed curves with Weierstrass semigroup exactly S, not
vi



the closure of this locus). The word “sep” in a superscript will indicate the subspace

parametrizing only separable objects, e.g. Gr,sep
d (C) denotes the scheme of separable

grds on a curve C. This distinction does not exist in characteristic 0.

The word stack will always refer to a Deligne-Mumford stack. A point will mean

a closed (geometric) point unless otherwise stated.

vii



1. Introduction

The roots of our main results are classical. In the following two subsections, we

summarize the background material and previous work. We also state our main

results, theorems A, B and C.

This rest of this thesis is organized as follows. Section 2 states and proves the main

lemma about regeneration of elliptic chains used to prove the main result. Sections 3

and 4 concern the existence and deformations of Weierstrass points: section 3 proves

theorems B and C, while section 4 is largely speculative and explores extremal cases to

which these theorems cannot be extended. This leads to some purely combinatorial

conjectures. Section 5 gives the proof of theorem A, by introducing the notion of

twisted Weierstrass points. The proof requires some combinatorial analysis, which is

deferred to section 6. Finally, section 6 provides the necessary combinatorial analysis

for theorem A, as well as exploring several cases of a combinatorial problem about

partitions that naturally arises from it. Stronger results about this combinatorial

problem would improve theorem A, and also give generalizations in the context of

pointed curves.

1.1. Brill-Noether theory. We will begin with a brief introduction to Brill-Noether

theory. This section will also serve to introduce notation that will be used throughout

the thesis.

Brill-Noether theory is concerned with curves in projective space. There are two

typical ways to study these curves. The most “extrinsic” approach is to study the

Hilbert scheme. The second approach is more intrinsic: one studies an abstract

algebraic curve, together with a choice of map to projective space.

The basic objects of study in Brill-Noether theory are linear series. A linear series

is characterized by two integers, traditionally denoted r (called the rank) and d (called

the degree). Given a smooth curve C, any two nonnegative integers d and r give rise

to the following set.
1



Gr
d(C) = {(L, V ) : L a degree d line bundle,

V ⊆ H0(L) an (r + 1)-dimensional subspace}

A map f : C → Pr has a naturally associated linear series, namely (f ∗OPr(1), V ),

where V is the image of the induced map H0(OPr(1))→ H0(f ∗OPr(1)). This linear

series uniquely determines f up to automorphisms of Pr. Not all linear series arise

in this was, however; those that do arise are said to be base point free. Although

it is tempting to view linear series with base points as pathological, we will see the

possibility of base points in linear series is a feature, not a bug, as it makes many

useful constructions possible.

Any line bundle determines a linear series |L|, given by (L, H0(L)). This is called

the complete linear series of L. A curve in projective space which is embedded by a

complete linear series to usually called linearly normal.

Classically, an element of this set is called a grd on C. This set also has a natural

scheme structure (see [ACGH]). This scheme structure globalizes nicely to a Deligne-

Mumford stack Grd,g →Mg, whose geometric points correspond to triples (C,L, V ),

where C is a genus g curve, L ∈ Picd(C), and V ⊆ H0(L) has dimension (r + 1)

(details can be found in [ACG]). We will also make use of the following open subset.

G̃r
d(C) = {(L, V ) ∈ Gr

d(C) : V = H0(L)}

These are called complete linear series can be identified with line bundles, hence

G̃r
d(C) may be regarded as a locally closed subscheme of Picd(C).

Brill and Noether [BN] estimated the dimension of the scheme Gr
d(C), and arrived

at the following number, now called the Brill-Noether number. We will see one

derivation of this estimate (and a proof that it is a local lower bound) in lemma 1.9.

2



ρ(g, d, r) = g − (r + 1)(g − d+ r)

This number is a lower bound for dimGr
d(C), when Gr

d(C) is nonempty. The

estimate is sharp for general curves of genus g, as the following theorem shows.

Theorem 1.1 (Brill-Noether-Petri theorem). Suppose that g, r, d are fixed integers.

• (Existence) If ρ(g, d, r) ≥ 0, then Gr
d(C) is nonempty, and all components

have dimension at least ρ(g, d, r).

• (Non-existence) For C general, Gr
d(C) has no components of dimension greater

than ρ(g, d, r).

• (Irreducibility) For C general, Gr
d(C) is irreducible.

• (Smoothness) For C general, Gr
d(C) is smooth.

Despite being named for its classical conjecturers, this theorem is an amalgama-

tion of several results from the 1970s and early 1980s. Brill and Noether proved the

dimension bound in the existence theorem, assuming the (not yet proved) first part

of the existence theorem. The first part of the existence theorem was proved inde-

pendently by Kempf [K71] and Kleiman-Laksov [KL72, KL74]. The non-existence

theorem was proved by Griffiths and Harris [GH80] (see also a recent combinatorial

proof [CDPR] using tropical curves). The smoothness theorem was conjectured by

Petri [P24] (who asserted in an offhand remark that it is “known to hold”) and proved

by Gieseker [G82] (a shorter proof, by theory of limit linear series, can be found in

[EH83]). Fulton and Lazarsfeld [FL81] proved that for C general, Gr
d(C) is connected,

which, together with smoothness, implies the irreducibility theorem. More recently,

Osserman [Oss11] gave a short proof of the existence and non-existence portions of

this theorem using limit linear series. The papers mentioned so far study degenera-

tions to singular curves; a non-degenerative proof of theorem 1.1 was later provided

by Lazarsfeld [L86].
3



We will use the following terms to describe linear series, in terms of how unusual

they are from the standpoint of Brill-Noether theory.

• A linear series is non-special if ρ(g, d, r) = g.

• A linear series is special if ρ(g, d, r) < g.

• A linear series is exceptional if ρ(g, d, r) < 0.

The Brill-Noether theorem asserts the existence (in great abundance) of special

linear series; one of the main results of this thesis is the construction of exceptional

linear series. More specifically, we will study exceptional linear series where the Brill-

Noether dimension estimate is sharp. To preface our new result, observe that the

ρ ≥ 0 case of the Brill-Noether theorem can be re-stated in a global way as follows.

Definition 1.2. A geometric point (C,L) ∈ Grd,g is called dimensionally proper if the

local dimension of Grd,g at this point is exactly dimMg+ρ(g, d, r). An irreducible com-

ponent of Grd,g is called dimensionally proper if it has dimension dimMg + ρ(g, d, r).

Corollary 1.3 (Restatement of theorem 1.1 when ρ ≥ 0). Suppose that g, d, r are

fixed integers such that ρ(g, d, r) ≥ 0.

• (Existence) Grd,g has an irreducible component that dominates Mg.

• (Non-existence) No dimensionally improper component of Grd,g dominatesMg.

• (Irreducibility) The component dominating Mg is unique.

• (Smoothness) The component dominating Mg has smooth general fiber.

When ρ < 0, there can no longer be components dominating Mg, so it is no

longer sufficient to study general curves. Instead, we work globally, and construct

dimensionally proper components of Grd,g.

Theorem A. Suppose that g, d, r are positive integers with 0 > ρ(g, d, r) ≥ − r
r+2

g+

3r−3. If r = 1 or g−d+r = 1, then Grd,g is empty. Otherwise Grd,g has an irreducible

component of dimension dimMg + ρ, whose image in Mg has codimension equal to

−ρ, and whose general member is complete and separable.
4



The lower bound on ρ here is almost certainly far from sharp. Indeed, it could

be improved by a purely combinatorial analysis, as we will see is section 6. This

result was proved in the case ρ = −1 be Eisenbud and Harris [EH89], and a slightly

different statement was proved by Edidin [E93] in the case ρ = −2. Similar results

(with different sorts of bounds) have been obtained by Sernesi [S84], Pareschi [P89]

and Lopez [L91, L99] by a different method.

Actually, theorem A will be deduced from a stronger result (corollary 5.17) about

pointed curves. For the rest of this subsection we will discuss the generalizations of

the main notions of Brill-Noether theory to this setting. This more general setting

allows more versatile arguments by induction, and is essential for studying limits at

the boundary of Mg. As a first demonstration of the utility of this perspective, we

will derive the Brill-Noether dimension estimate and prove that it is a local lower

bound on the dimension of Gr
d(C).

Given a linear series L = (L, V ) on C, and a marked point p ∈ C, the vanishing

orders are the r + 1 nonnegative integers a such that

V ∩H0(L(−ap)) 6= V ∩H0(L(−(a+ 1)p)).

These numbers will be denoted in increasing order as aL0 (p), aL1 (p), · · · , aLr (p). We

will almost always work with separable linear series, defined as follows.

Definition 1.4. A point p is called a ramification point for L if aLr (p) > r. A linear

series L is separable if not every point p ∈ C is a ramification point for L. For any

moduli stack of linear series, a superscript “sep” indicates the substack where the

linear series are separable, e.g. Gr,sep
d (C) denotes the moduli scheme of separable grds

on C.

In characteristic 0, all linear series are separable. In characteristic p, separable

linear series form an open substack of Grd,g (see [Oss06]).
5



For notational reasons (see the remark below) we will find it convenient in this

thesis to consider the equivalent sequence {d − aLi (p)}. Therefore we introduce the

following notation.

Definition 1.5. For a smooth pointed curve (C, p) of genus g and finite set S, let

G̃S
d (C, p) denote the subscheme of G

|S|−1
d (C) parameterizing linear series L such that

the vanishing orders of L at p are precisely (d− S). Let GS
d (C, p) denote the scheme

parameterizing linear series (separable or otherwise) with vanishing orders at least

(d− S).

Clearly G̃S
d (C) is an open subscheme of GS

d (C).

Remark 1.6. The reason that it will be particularly convenient to denote the set S

rather than the set of vanishing orders is that it is well-behaved under the addition

of base points. More precisely, the map

ι : Gr
d(C) ↪→ Gr

d+1(C)

(L, V ) 7→ (L(p), V )

(by abuse of notation, sections of L may be identified with sections of L(p) which

vanish at p) induces isomorphismsGS
d (C, p)

∼−→ GS
d+1(C, p) and G̃S

d (C, p)
∼−→ G̃S

d+1(C, p).

These isomorphisms also preserve the respective separable loci. So in fact the number

d is redundant, and we will often omit it.

Definition 1.7. The notation GS(C, p) denotes GS
d (C, p), where d is any integer

greater than or equal to the largest element of S. The different possible choices of d

are identified by the isomorphism described in the remark above.
6



The following example shows how the study of the schemes GS(C, p) subsumes the

study of the schemes Gr
d(C) from the non-pointed case. Therefore we lose nothing

by focusing attention on the pointed situation.

Example 1.8. Fix positive integers g, r, d and a curve C. Let S be the set {d−r, d−

r + 1, · · · , d}. Then for any point p ∈ C,

GS(C, p) ∼= Gr
d(C).

Under this isomorphism, G̃S(C, p) consists of those grds which are unramified at p.

Assume now that g− d+ r ≥ 1 and r ≤ g− 1. Let T be the set S ∪{g+ r+ 1, g+

r + 2, · · · , 2g − 1}. Then

GT (C, p) ∼= W r
d (C),

where W r
d (C) ⊆ Picd(C) is the locus of degree d line bundles L with h0(L) ≥ r + 1.

Under this isomorphism, G̃T (C, p) consists of those line bundles L for which p is not

ramified in either |L| or |ωC ⊗ L∧|. C

The second case in the example above is the basis of our analysis in section 5.

This construction can also be relativized. The resulting stacks will be denoted

GSg →Mg,1 and G̃Sg →Mg,1.

The Brill-Noether number has the following analog for pointed curves. Here, the

elements of S are denoted s0 < s1 < · · · < s|S|−1.

ρ(g, S) := g +

|S|−1∑
i=0

(si − i− g)

To demonstrate the techniques we will use extensively later, we will give a proof

that this gives a bound on the dimension of GSg .

Lemma 1.9. Let π : C → B be a flat family of smooth curves of genus g over a

scheme B, with a section s : B → C, and let GSg (C, s)→ B denote the pullback of GSg
7



to B. Then the following inequality holds locally at every point.

dimGSd (C) ≥ ρ(S, g) + dimB

Proof. We will describe GSg (C, s) as the pullback of a Schubert cell from a certain

Grassmannian bundle over the relative Picard scheme of C. The dimension estimate

will follow from a computation of the dimension of this Schubert cell.

Fix an integer N ≥ 2g − 1 (so that all line bundles of degree N are nonspecial).

Let r = |S| − 1. Let PN → B denote the relative Picard scheme of degree N line

bundles on C, and let M denote a relative Poincaré line bundle on PN ×B C. Let

π : PN×B C → PN be the projection, and let S denote the pushforward π∗M. Notice

that the fiber of S over a point L of PN is naturally identified with the space of global

sections of L. In particular, ever fiber is a vector space of dimension N + 1− g (since

N was chosen large enough that L is guaranteed to be non-special).

By the theorem on cohomology and base change ([H77] theorem 12.11), S is a

vector bundle of rank N + 1 − g. Let P ⊆ C be the image of the section s, and

define the vector bundle T → PN of “Taylor expansions” of sections at P , given by

T = π∗(M/M(−(N + 1)P )). There is a natural map of vector bundles t : S → T .

The map t must in fact be an injection, since a section of a degree N line bundle on

a curve vanishing to order N + 1 at a point must vanish entirely. Therefore t induces

a map τ on Grassmannian bundles:

τ : Gr(r + 1,S)→ Gr(r + 1, T ).

The vector bundle T has a natural filtration by sub bundles {0} = T−1 ⊂ T0 ⊂

· · · ⊂ TN = T , where Tn = π∗(M(−(N − n)P )/M(−(N + 1)P )). This filtration

defines Schubert cells Σ(a0, · · · ar) ⊆ Gr(r + 1, T ) for any sequence 0 ≤ a0 < a1 <

· · · < ar ≤ N , defined by the condition that a section of Σ(a0, · · · , ar) over PN

(regarded as a sub-bundle of T ) must meet Tan in a sub-bundle of rank at least n+1,

8



for all n = 0, 1, · · · , r (this index convention is slightly non-standard, but it will be

convenient for our purposes). It is a standard fact that

codim (Σ(a0, · · · , ar) ⊆ Gr(r + 1, T )) =
r∑

n=0

(N − r + n− an).

Observe that GSN,g(C) is isomorphic to (indeed, the scheme structure can be defined

to be) the inverse image of Σ(s0, s1, · · · , sr) under τ . Therefore we conclude that:

dimGSN,g(C) ≥ dim Gr(r + 1,M)−
r∑

n=0

(N − r + n− sn)

= dimPN + (r + 1)(N − g − r)−
r∑

n=0

(N − r + n− sn)

= dimB + g +
r∑

n=0

[(N − g − r)− (N − r + n− sn)]

= dimB + g +
r∑

n=0

(sn − n− g)

= dimB + ρ(g, S).

�

Throughout this thesis, we will be particularly interested in cases where this di-

mension estimate is sharp. Such linear series are particularly useful in smoothing

arguments.

Definition 1.10. A geometric point (C, p, L) of GSg is called dimensionally proper if

the local dimension of GSg at this point is exactly ρ(g, S) + dimMg,1.

The Brill-Noether theorem has a several extensions for pointed curves, based on

this notion of “dimensionally proper.” One version is the following. A more general

version (for arbitrarily many marked points) is true in characteristic 0 only, and was

proved by Eisenbud and Harris ([EH86], theorem 4.5 and the subsequent remark).
9



In arbitrary characteristic, a version for up to two marked points (implying this

statement) was proved by Osserman [Oss11].

Theorem 1.11 (Eisenbud,Harris,Osserman). Suppose that g is a positive integer, S

is a finite set of nonnegative integers such that maxS ≤ |S|+ g− 1, and d ≥ maxS.

Then:

• (Existence) If ρ(g, S) ≥ 0, then GSd,g has a component dominating Mg,1.

• (Dimension) If ρ(g, S) ≥ 0, at least one such component dominating Mg,1 is

dimensionally proper.

• (Non-existence) No dimensionally improper dominates Mg,1 (in particular, if

ρ(g < S) < 0 then no component dominates Mg,1).

Remark 1.12. By letting S be the sequence {d−r, d−r+1, · · · , d−1, d} and forgetting

the marked point, theorem 1.11 implies most of the Brill-Noether theorem. It has

nothing to say about irreducibility or smoothness, however.

Remark 1.13. The hypothesis maxS ≤ |S| + g − 1 simply means that points of GSd,g
have the possibility of being complete. It can be weakened, but not removed entirely;

for example, if S contains both 0 and 1 and one extremely large element, it could

occur that ρ(g, S) ≥ 0 even though such a linear series is impossible on a curve of

positive genus.

We will generalize this theorem as well (corollary 5.17); the statement requires

combinatorial terminology that we introduce in section 5. The generalized form,

together with some combinatorial analysis, will give theorem A.

1.2. Weierstrass points. The second main result of this thesis concerns the exis-

tence and deformations of Weierstrass points. We now briefly survey the background

on this subject.
10



Throughout this thesis, a numerical semigroup is a set S of nonnegative integers

such that S + S = S (in particular, 0 ∈ S) and N\S is finite. The size of the

complement will be called the genus of S (for reasons that will be clear shortly).

Weierstrass points are reflect a curious feature of algebraic curves: although every

point of a smooth curve is (étale-)locally isomorphic, there are a finite number of

distinguished points, called Weierstrass points. The fact that these points are dis-

tinguished makes them helpful props in proving that algebraic curves of genus g ≥ 2

have finitely many automorphisms. For other background and early applications, see

the expository article [dC].

Definition 1.14. Given a geometric point p on a smooth curve C of genus g, the

Weierstrass semigroup is the set S(C, p) = {n : h0(np) > h0((n − 1)p)}. The point

p is called a Weierstrass point if S(C, p) 6= {0, g + 1, g + 2, · · · }.

In other words, the Weierstrass semigroup is the set of pole orders at p of regu-

lar functions on C\{p}. Because functions can be multiplied together, S(C, p) is a

numerical semigroup.

Remark 1.15. Definition 1.14 is slightly non-standard in characteristic p. In particu-

lar, it is possible for a curve over a field of positive characteristic to consist entirely of

Weierstrass points (by this definition). Other authors define the Weierstrass points

of such a curve to be those points whose Weierstrass semigroup differs from that of a

general point on the curve. However, we will use the definition above in this thesis,

since we are mainly interested in characteristic 0 anyway, and we will be working

globally in Mg,1, rather than focusing attention on a fixed curve.

Example 1.16. Let C be a hyperelliptic curve of genus g ≥ 2. Then the double

cover π : C → P1 has 2g+2 ramification points, by Riemann-Hurwitz. For each such

point p, it follows that h0(2p) = 1, hence 2 ∈ S(C, p). Since S(C, p) is a semigroup,

it must contain all positive even numbers. On the other hand, it can contain no odd
11



numbers less than 2g (this follows from Clifford’s inequality), and must contain all

integers greater than 2g (by Riemann-Roch). It follows that at these ramification

points,

S(C, p) = {0, 2, 4, · · · , 2g − 2, 2g, 2g + 1, 2g + 2, · · · }.

This semigroup is called the hyperelliptic semigroup of genus g. As long as the

canonical series is separable (for example, in characteristic 0), there are no other

Weierstrass points (this can be shown, for example, using the Plücker formula 1.1).

So a curve is hyperelliptic if and only if it has a point with the hyperelliptic semigroup,

and once one Weierstrass point has this semigroup, all Weierstrass points must have

the same semigroup. C

Example 1.17. Let C be a non-hyperelliptic curve of genus 3. Then the canonical

bundle embeds C as a smooth quartic curve in P2. For simplicity, consider the case

where the canonical series is separable (or work in characteristic 0). It follows from the

geometric Riemann-Roch formula that the Weierstrass points of C are precisely the

inflection points of C in this embedding. For C general, there will be 24 ordinary flex

points (where the tangent line meets with contact of order 3), which have Weierstrass

semigroup N\{1, 2, 4}. Some curves C may instead have some number of hyperflexes,

where the tangent line has contact of order 4. These have Weierstrass semigroup

N\{1, 2, 5}. C

An easy fact (which follows quickly from the Riemann-Roch formula) is that the

complement of the Weierstrass semigroup always has exactly g elements, often called

the Weierstrass gaps.

|N\S(C, p)| = g
12



In other words: the genus of the Weierstrass semigroup is equal to the genus of

the curve1. Another fact, directly following from Riemann-Roch, is that S(C, p) ⊃

{2g, 2g + 1, · · · }. So S is determined by its intersection with {0, 1, 2, · · · , 2g − 1}; it

contains exactly half of the elements of this set (in fact an easy exercise in combina-

torics is to prove that that the largest gap of any numerical semigroup of genus g is at

most 2g − 1; the equality cases are called symmetric semigroups and are interesting

special cases; see [S93, CS13] and [B13]).

A basic question is the classification of Weierstrass semigroups.

Question 1.18. For which numerical semigroups S of genus g does there exist a

pointed curve (C, p) with Weierstrass semigroup S?

Theorem C makes substantial progress on this question, but most cases remain

open. The only large family of semigroups such that W̃S = ∅ was provided by Buch-

weitz [B80], but Kaplan and Ye [KY13] have shown that these counterexamples oc-

cupy a proportion 0 subset (asymptotically in the genus) of all numerical semigroups.

On the other hand, Kaplan and Ye also proved that the families of semigroups such

that W̃S is known to be nonempty also occupy a proportion 0 subset of all numerical

semigroups.

Secondly, we will consider the abundance of particular semigroups, i.e. the dimen-

sion of the corresponding locus in moduli.

Definition 1.19. Denote be W̃S the (open) substack of Mg,1 consisting2 of pointed

curves (C, p) such that S(C, p) = S.

1This appears to the be origin of the word “genus” in the context of numerical semigroups, although
the author has heard the joke that the reason the number of gaps of a semigroup is called the genus
is because it is “the number of holes” in the semigroup.
2A technical remark: this definition only states what the geometric points of W̃S should be. To
define the stack structure, simply construct an appropriate map of vector bundles and pull back the
appropriate (open) Schubert cell.
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Question 1.20. How many irreducible components does W̃S have? What are their

dimensions?

One easy dimension estimate comes from Brill-Noether theory. Notice that there

is an isomorphism to a pointed Brill-Noether variety as follows.

W̃S
∼−→ G̃S∩{0,1,··· ,2g−1}

2g−1,g

(C, p) 7→ (C, p, |OC((2g − 1)p)|)

Therefore it follows from lemma 1.9 that the codimension of any component of W̃S

is bounded by the following number.

−ρ(g, S ∩ {0, 1, · · · , 2g − 1}) = −g +

g−1∑
i=0

(g + i− si)

=

g−1∑
i=1

(g + i− si)

=

g−1∑
i=1

(number of gaps larger than si)

= |{(s, t) : s ∈ S, t 6∈ S, 0 < s < t}|

This quantity is called the weight of S, and is denoted wt(S). Notice that if p

is not a Weierstrass point, then all the positive gaps come before all of the positive

semigroup elements, so the weight is 0. The weight is important partly because it

serves as an appropriate notion of multiplicity for Weierstrass points. Indeed, in

characteristic 0 we have the following Plücker formula (see [ACGH], exercise E-8 for

a derivation). Here KC is a canonical divisor on C.
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(1.1)
∑
p∈C

wtS(C, p) · p ∼
(
g + 1

2

)
KC

In particular,
∑

p∈C wtS(C, p) = g3−g. This is one way to show that (in character-

istic 0) there are finitely many Weierstrass points on a given curve. In characteristic

p, we have an inequality
∑

p∈C wtS(C, p) ≤ g3 − g, as long as the canonical series is

separable (see [Oss06], proposition 2.4).

A Weierstrass point is called dimensionally proper if the corresponding point in

GS∩{0,1,··· ,2g−1}
2g−1,g is dimensionally proper; in other words, if the local codimension of

W̃S in Mg,1 is exactly wt(S). Semigroups of low weight very frequently belong only

to dimensionally proper points. However, the weight is not always equal to the

codimension.

Example 1.21. Let S be the hyperelliptic semigroup of genus g. Then W̃S →Mg is

an étale map of degree 2g+2, whose image is the hyperelliptic locus. The hyperelliptic

locus has codimension g − 2 in Mg. Therefore the codimension of W̃S in Mg,1 is

g − 1. However, wt(S) =
(
g
2

)
. Therefore if g ≥ 3, W̃S has no dimensionally proper

points. We will see that hyperelliptic Weierstrass points do satisfy a different, more

broadly applicable condition: they are effectively proper. C

To illustrate questions 1.18 and 1.20, we will enumerate all numerical semigroups

of genus up to 4 and describe the corresponding locus in moduli. In these genera,

the answer to question 1.18 is that all semigroups S correspond to nonempty loci

W̃S, and the answer to question 1.20 is that these loci are irreducible but not always

dimensionally proper. The result is summarized in figure 1. This tree organizes all

numerical semigroups of genus up to 4, by assigning to every semigroup its “parent,”

obtained by filling in the last gap of the semigroup.
15



generic
N\{1}
wt = 0

codim= 0

simple
N\{1, 3}
wt = 1

codim= 1

generic
N\{1, 2}
wt = 0

codim= 0

generic
N\{1, 2, 3}

wt = 0
codim= 0

simple / flex
N\{1, 2, 4}

wt = 1
codim= 1

hyperflex
N\{1, 2, 5}

wt = 2
codim= 2

hyperelliptic
N\{1, 3, 5}

wt = 3
codim= 2

hyperelliptic
N\{1, 3, 5, 7}

wt = 6
codim= 3

cone-flex
N\{1, 2, 4, 7}

wt = 4
codim= 3

flex
N\{1, 2, 4, 5}

wt = 2
codim= 2

überstall
N\{1, 2, 3, 7}

wt = 3
codim= 3

hyperstall
N\{1, 2, 3, 6}

wt = 2
codim= 2

simple/“stall”
N\{1, 2, 3, 5}

wt = 1
codim= 1

generic
N\{1, 2, 3, 4}

wt = 0
codim= 0

Figure 1. Semigroups of genus 1 through 4.
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Remark 1.22. It is an easy combinatorial exercise to show that a semigroup S of genus

g has exactly one child (of genus g + 1) in this tree for each “effective generator,”

defined to be a generator of S (that is, a positive element that is not the sum of

two other positive elements) that is larger than all gaps of S. One can attempt to

enumerate numerical semigroups of genus g by studying the branching of this tree, i.e.

by studying how the number of effective generators changes with each descent in the

tree. Bras-Amorós [BA08] observed that this method might be used to determine the

asymptotic growth rate of the number of numerical semigroups of genus g, which was

successfully carried out by Zhai [Z13]. In fact, the number of numerical semigroups

of genus g is asymptotic to a constant times the gth Fibonacci number.

In the casework below, we will assume that we are working in characteristic 0, to

simplify special cases. We also remark that not all of these names are standard.

• The generic semigroups. These form the “spine” of the semigroup tree;

they are semigroups of the form N\{1, 2, · · · , g}. For S generic, W̃S is a dense

open subset of Mg,1, consisting of the non-Weierstrass points.

• The hyperelliptic semigroups. For every genus, there is a hyperelliptic

semigroup N\{1, 3, · · · , 2g− 1}, which can exist only on hyperelliptic curves.

Its weight is
(
g
2

)
, but the codimension of W̃S in Mg,1 is g − 1, by an easy

calculation of the moduli of double-covers of P1. Therefore for all g ≥ 3, the

weight is not equal to the codimension.

• The simple semigroups. For every genus, there is a unique weight-1 semi-

group N\{1, 2, · · · , g − 1, g + 1}. This semigroup exists is codimension 1 in

Mg,1, and a general curve of genus g has only simple Weierstrass points.

• Genus 3: flexes and hyperflexes. In genus 3, non-hyperelliptic curves

can have only two types of Weierstrass points, with semigroups N\{1, 2, 4}

or N\{1, 2, 5}. These have a nice geometric interpretation. If C is not hy-

perelliptic, its canonical series embeds it as a smooth plane quartic curve. By
17



Riemann-Roch, the number γ is a gap of the Weierstrass semigroup if and

only if γ − 1 is the order of vanishing of a global 1-form, i.e. if and only if

some line in P2 meets C to order γ−1. This shows that N\{1, 2, 4} (which is

also the genus 3 “simple” semigroup) corresponds to points which have lines

meeting them to orders 0, 1 and 3, which are called flex points. On the other

hand, those with semigroup N\{1, 2, 5} have lines meeting them to orders

0, 1, and 4; these are called hyperflexes. The Plücker formula implies that, if

hyperflexes count as two flexes, there are 24 total flexes on a plane quartic

(and there is a sextic curve, the Wronskian, which intersects C transversely at

flexes and meets it to order 2 at hyperflexes). For both these semigroups, the

weight is equal to the codimension, as some elementary dimension calculations

in the plane easily show.

• Genus 4: stalls, hyperstalls, and überstalls. If a genus 4 curve C is

not hyperelliptic, then its canonical model is a degree 6 curve in P3. The

complement of the Weierstrass semigroup at p ∈ C is given by the contact

orders of hyperplanes with the curve at p, incremented by 1. Classically, a

point p ∈ C is called a stall if it is not an inflection point (i.e. the tangent

line meets to order 2), but there is a plane that meets the curve to order

4. This plane is the osculating plane to C at p; the terminology presumably

comes from the fact that (over R) the osculating plane is the unique plane

containing the tangent line such that the curve crosses from one side to the

other (like an airplane gently ascending), while at a stall the curve meets the

osculating plane to high order and then comes back down on the same side

(its flight has “stalled”). An ordinary stall corresponds to the “simple” genus

4 semigroup N\{1, 2, 3, 5}. There are two higher types of stalls, where the

point still is not a flex point, but the osculating plane meets to even higher

order: these correspond to the hyperstall semigroup N\{1, 2, 3, 6} and the
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überstall semigroup N\{1, 2, 3, 7} (the author has invented this word, as far

as he knows). These three types of stalls have weight 1, 2, 3 respectively, and

in all cases the weight is equal to the codimension in Mg,1.

• Genus 4: flexes and cone-flexes. There remain only two semigroups in

genus 4, namely those that contain the number 3. These are N\{1, 2, 4, 5}

and N\{1, 2, 4, 7}, which we shall call the flex and cone-flex semigroups (for

reasons to be explained). A curious feature, which we have not yet seen in non-

hyperelliptic semigroups, is that these semigroups are consecutive children of a

common parent in the semigroup tree, yet their weights differ by 2 rather than

by 1. The reason for this is that their missing middle sibling N\{1, 2, 4, 6}

is not a semigroup: 6 cannot be a gap once 3 is in the semigroup. In fact,

this missing sibling makes itself felt in a geometric fashion as well. Once the

gaps {1, 2, 4} are fixed, the point p ∈ C is necessarily an inflection point,

meaning that its tangent line meets it to order 3. Now we use the geometry of

canonical curves in P3: an easy dimension count shows that there is exactly

one quadric surface containing C. For C to be inflected at p, the tangent

line must lie entirely within the quadric: it must be a ruling line. Now, one

can consider the tangent plane to the quadric at p; if the quadric is smooth,

then this tangent plane meets the quadric as a union of two lines (one from

each ruling); one must be the tangent line to C at p, and the other must

be transverse; hence this plane meets C at p to order 4, and the Weierstrass

semigroup must be the flex semigroup. On the other hand, if the quadric is

singular, then the tangent plane meets it as the ruling line to multiplicity 2,

hence meets the curve C to order 6 at p. As a result, an inflection point of C

has the flex semigroup if the quadric is smooth, and the cone-flex semigroup

if the quadric is in fact a quadric cone (hence our terminology). Therefore

a single equation on the moduli of C (namely, the condition that the unique
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quadric containing it is singular, i.e. a quadric cone) forces the weight of the

Weierstrass semigroup at a flex to jump by 2. Indeed, one may verify along

these lines that the flex semigroup occurs as a codimension 2 locus in M4,1

(codimension is equal to weight), while the cone-flex semigroup occurs as a

codimension 3 locus, despite being of weight 4.

Those low-genus examples suggest that when the combinatorics of the semigroup

become nontrivial (which is seen in the semigroup tree when a semigroup has “miss-

ing” siblings which would not be closed under addition), the codimensions of the

corresponding loci become smaller than the weight would predict. Using the hy-

perelliptic and cone-flex semigroups as our model, we use this idea to define a new

quantity, called the effective weight.

Question 1.20 was given a substantial partial answer by Eisenbud and Harris

[EH87], and Komeda [K91], stated in the following theorem. A semigroup is called

primitive if the sum of any two positive elements exceeds the largest gap. It is easy

to check that a semigroup is primitive if and only if its weight and effective weight

coincide.

Theorem 1.23 (Eisenbud,Harris,Komeda). If S is a primitive semigroup with wt(S) ≤

g − 1, then W̃S has a dimensionally proper component.

Our main result on Weierstrass points is to calculate the exact minimum dimension

of a component of W̃S for wt(S) ≤ g − 1 (and in a wider range of cases as well). To

state the result, we first define our notion of the effective weight.

Definition 1.24. A generator of a semigroup S is an element that is not a sum of

two positive elements of S. The effective weight of a semigroup S, denoted ε(S), is

the following number.

ε(S) = |{(s, t) : s ∈ S a generator of S, t 6∈ S, 0 < s < t}|
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The author chose the term effective weight to refer to the combinatorial notion

of effective generators. Specifically, the definition is chosen so that two consecutive

children of a given semigroup in the semigroup tree (which correspond to two con-

secutive effective generators) always have consecutive effective weight (whereas their

weights may differ by more than 1 if the effective generators are not consecutive).

Observe that if S is the hyperelliptic semigroup, then ε(S) = g − 1, which is

the exact codimension of W̃S in Mg (see example 1.16). Our main theorems on

Weierstrass points are the following.

Theorem B. If X is any irreducible component of W̃S, then

dimX ≥ dimMg,1 − ε(S).

Theorem C. If S is a numerical semigroup of genus g with ε(S) ≤ g − 1, then W̃S

has a component of dimension exactly dimMg,1 − ε(S).

The proofs of these theorems will occupy section 3. One special case of theorem C

(in the non-primitive case) was studied by Bullock his his thesis [B13]: he considered

the case where 2g − 1 ∈ S (such semigroups are called symmetric semigroups, and

the points are sometimes called subcanonical points).
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2. Elliptic chains

The main results of this thesis give results about smooth curves by constructing,

and then smoothing, limit linear series on elliptic chains. Elliptic chains are very

convenient curves to work with from the standpoint of limit linear series; their use as

central fibers of degenerations was first leveraged by Welters [W85] to study Prym

varieties, and their use was in the background of Eisenbud and Harris’s work on

Weierstrass points [EH87]. The main result of this section is lemma 2.10, which will

drive our main results in subsequent sections.

2.1. Limit linear series on elliptic chains. The theory of limit linear series was

first proposed by Eisenbud and Harris in characteristic 0 (see [EH86] for a detailed

treatment, or [HM] for an informal exposition of the underlying ideas). Recently,

Osserman [Oss06] gave a more general and powerful construction, valid over an ar-

bitrary algebraically closed field. The objective of limit linear series is to provide a

partial compactification of the moduli space of linear series, allowing the underlying

curves to become mildly singular (specifically, degenerations are allowed to curves of

compact type).

We will give a rapid summary of the theory of limit linear series in this subsection.

However, the only part of this analysis that is logically necessary for the rest of this

thesis is lemma 2.10; the reader may therefore read the statement of this lemma and

move on to the next subsection if desired.

While powerful and relatively elementary, the theory of limit linear series can be

intimidating simply by virtue of its extremely cumbersome notation. For this reason,

we will not make definitions in full generality, but restrict to the case of chains of

elliptic curves.

p0 p1 p2 p3
· · ·

pg−1 pg

E1 E2 E3 Eg
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Let X denoted the chain of elliptic curves shown above. The chain X consists of g

elliptic curves E1, · · · , Eg, joined at points p1, · · · , pg−1. We also mark two additional

points p0 ∈ E1 and pg ∈ Eg.

To describe limit linear series on X, we must parameterize linear series on each

component Ei according to their ramification at both their marked points pi−1 and

pi. We will use a notation convention that appears bizarre at first, but will turn out

to be very convenient, as follows. Informally speaking, we identify the ramification

at pi−1 using order of zeros, and the ramification at pi using orders of poles (where

pole orders arise by regarding sections of a degree d line bundle L as rational sections

of L(−dpi) instead).

Definition 2.1. Suppose that S, T are two sets of nonnegative integers, with |S| =

|T | = r+1. Let BS:T
d,g denote the substack of Grd,g×MgMg,2 parameterizing curves with

two marked points and a linear series (C, p, q, L) such that the following vanishing

conditions hold (here, s0 < · · · < sr and t0 < · · · < tr are the elements of S and T

arranged in increasing order).

aLi (p) ≥ si

aLi (q) ≥ d− tr−i

Further, let B̃S:T
d,g denote the substack consisting of linear series where equality

holds. Let BS:T
d,g (C, p, q) denote the fiber of BS:T

d,g over (C, p, q) ∈Mg,2.

As usual, we will call a point of BS:T
d,g dimensionally proper if the local dimension is

given by the expected dimension from Brill-Noether theory. This expected dimension

can be expressed as follows.
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expected dimension = dimMg,2 + ρ(g, S : T )

where ρ(g, S : T ) := g +
r∑
i=0

(ti − si − g)

Let X be our elliptic chain. We first define refined limit linear series on X, which

are the most important special case of limit linear series (and sufficient for our main

theorems). Suppose that we have chosen a linear series Li on each Ei individually.

Suppose that its ramification at pi−1 and pi is such that (Ei, pi−1, pi, Li) ∈ B̃Si:Ti
d,g (of

course this will be true for a unique pair of sets Si and Ti). We will say that the

g-tuple L = (L1, · · · , Lg) of linear series is a refined limit linear series on X if

Ti = Si+1 for all i ∈ {1, 2, · · · , g − 1}.

The individual linear series Li on the component Ei is called the Ei-aspect of L.

In other words, according to our convention of thinking of pole orders at the right

side and zero orders at the left: a refined limit linear series is a set of linear series,

one one each component, so that the pole orders on the left of any node equal the

zero orders on the right of the node.

For obvious reasons, we will regard the elements of S1 and Tg as the zero orders at

p0 and pole order at pg of the limit linear series L. Therefore we make the following

definition. Note that throughout this thesis, we will use fraktur letters for spaces of

limit linear series.

Definition 2.2. Given a chain X of elliptic curves as above, any two sets of nonneg-

ative integers S, T , and any integer d ≥ maxS ∪ T , define:

B̃S:T
d (X, p0, pg) =

∐
S1,S2,···Sg−1⊆N

(
g∏
i=1

B̃
Si−1:Si

d (Ei, pi−1, pi)

)
,
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where S0 = S and Sg = T . Elements of this scheme are called refined limit

linear series with ramification (S : T ) at (p0, pg). Given a refined limit linear series

L = (L1, L2, · · · , Lg), the series Li ∈ BSi−1:Si

d (Ei, pi−1, pi) is called the Ei-aspect of L.

Of course one may define a one-pointed version as well. It is easy to see, in fact,

how this definition can be generalized to any number of marked points.

Definition 2.3. Given X,S, and d as above, define

G̃S
d (X, p0, pg) =

∐
S1,S2,···Sg−1⊆N

(
GS1
d (E1, p1)×

g∏
i=2

B̃
Si−1:Si

d (Ei, pi−1, pi)

)
,

where Sg = S. As before, the individual series are called the Ei-aspects.

Remark 2.4. The reader will observe that it was not really necessary for the compo-

nents Ei to be genus 1; the same definitions can be used for any chain of positive-genus

curves.

These schemes are obviously not proper. Eisenbud and Harris made use of the

following compactification, although it has the substantial defect of failing to globalize

well (this defect was rectified by Osserman, by a more intricate construction). A

collection L = (L1, · · · , Lg) is called an EH-coarse limit linear series if there are sets

Si, Ti such that Li ∈ B̃Si:Ti
d (Ei, pi−1, p), and

Ti ≤ Si+1 for all i ∈ {1, 2, · · · , g − 1}

Here, Ti ≤ Si+1 means that, once both sets are sorted into increasing order, the

kth element of Ti is at most the kth element of Si.

Definition 2.5. Define an Eisenbud-Harris coarse limit linear series on X with

ramification at least (S : T ) at p0, pg to be an element of the following space.
25



BS:T,EH
d (X, p0, pg) =

⋃
S1,S2,···Sg−1⊆N

(
g∏
i=1

B
Si−1:Si

d (Ei, pi−1, pi)

)
,

regarded as a subscheme of

g∏
i=1

Gr
d(Ei).

The scheme GS,EH
d (X, pg) can be defined similarly.

The Eisenbud-Harris spaces are easy to work with on the level of individual curves,

but they are problematic from the standpoint of globalization, although Eisenbud

and Harris were nevertheless able to prove very strong regeneration theorems in

characteristic 0. Osserman’s construction works in any characteristic and also gives

a nice moduli scheme. However, we will not need the details of his construction,

so we will content ourselves to state the following theorem without giving further

details about the construction. The following theorem follows easily for the results

of Osserman’s [Oss06], although we state it in our notation and in our special case.

Black box. Osserman defines a certain type of family of pointed curves as a

smoothing family. We will omit the definition of this term, but we will use it in the

theorem below; the following lemma shows that the specific definition will not matter

for us.

Lemma 2.6 (Osserman). Suppose that B is a regular connected scheme, and B →

Mg,n is a morphism to the moduli stack of 2-pointed genus g stable curves, whose

image is contained in the locus of curves that are chains of curves joined at nodes.

Let b ∈ B be any geometric point.

There exists an étale map B′ → B, with b in its image, such that the composition

B′ →Mg,n is a smoothing family.

Theorem 2.7 (Osserman). For any smoothing family f : B →Mg,2, whose image

consists of chains of smooth curves with the two marked points on opposite ends, and

any S, T, d as above, there exists a scheme
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BS:T
d (f)→ B,

proper over B and of dimension at least dimB + ρ(g, S : T ) at all geometric

points. These schemes are compatible with base change, and if the image of f is

contained in Mg,2, then BS:T
d (f) → B is isomorphic to the scheme BS:T

d (f) (the

usual scheme of limit linear series with ramification). Also, BS:T
d (f) has an open

subscheme B̃S:T
d (f), whose geometric fibers are isomorphic to the spaces of refined

limit linear series described above.

There is a corresponding statement about the globalization of GS
d , and indeed

similar statements for any number of marked points; the statement it completely

analogous.

Although we will not need it in this thesis, we also mention the following result,

which shows that analysis of Eisenbud-Harris coarse series (which are relatively easy

to study directly) gives information about Osserman’s coarse linear series.

Lemma 2.8 (Osserman). Let X be a chain of smooth curves with two marked points

p, q. There is a set-theoretic map of geometric poitns

e : BS:T
d (X, p, q)(K)→ BS:T,EH

d (X, p, q)(K)

such that for any limit linear series L ∈ BS:T
d (X, p, q), the local dimension of

BS:T
d (X, p, q) at L satisfies

dimLB
S:T
d (X, p, q) ≤ dime(L) B

S:T,EH
d (X, p, q) +

∑
ρ(0, Ti : Si−1),

where the sets Si, Ti are the orders of zeros at the left endpoint and poles at the

right endpoint of the aspects of e(L) on the components of X.
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One way to view this lemma is that Osserman’s limit linear series constitute a sort

of blow-up of the Eisenbud-Harris limit linear series, where the fibers have dimension

bounded by the extent to which an Eisenbud-Harris coarse series fails to be a fine

limit linear series. For a nice application of this last lemma, see Osserman’s recent

simple proof of the Brill-Noether theorem in arbitrary characteristic [Oss11]. The

analysis in that paper essentially amounts to proving the following lemma.

Lemma 2.9. If X is a chain of g elliptic curves as above, and on curve Ei the two

points pi−1, pi do not differ by a torsion element of the Jacobian, then no scheme

BS:T
d (X, p0, pg) has a dimensionally improper component.

This lemma can be proved by induction on g. That this lemma implies the Brill-

Noether theorem 1.11 follows by taking a versal deformation of the curve and using

theorem 2.7.

The upshot of all this, for our purposes, is the following lemma. After this section,

we will not need to refer to limit linear series directly, but will instead be content to

cite this fact.

Lemma 2.10 (Regeneration). Let S, T, U be arbitrary sets of integers of the same

size, and d, g, h any positive integers.

• If B̃S:T
d,g and B̃T :U

d,h both have a dimensionally proper component, then so does

B̃S:U
d,g+h.

• If G̃Sd,g and B̃S:T
d,h both have dimensionally proper points, then so does G̃Td,g+h.

Call a component of BS:T
d,g full-rank if it either dominatesMg,2 or has finite fibers over

it, and call a component of GSd,g full-rank if it either dominatesMg,1 or has finite fibers

over it. Then in both of the above statements, if the two postulated components are

full-rank, and either both have positive Brill-Noether numbers or both have negative

Brill-Noether numbers, then the resulting component is also full-rank.
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Proof. We will discuss a proof of the first bulleted statement; the second bulleted

statement follows from a similar argument. Let (Xi, pi, qi, Li) for i = 1, 2 be dimen-

sionally proper geometric points of B̃S:T
d,g and B̃T :U

d,h , respectively. Let f1 : B1 →Mg,2

and f2 : B2 → Mh,2, where B1, B2 are regular connected schemes, be versal defor-

mations of (Xi, pi, qi), where bi ∈ Bi corresponds to (Xi, pi, qi). Let f : B1 × B2 →

Mg+h,2 be obtained by composing f1× f2 : B1×B2 →Mg,2×Mh,2 with the gluing

map that attaches q1 to p2. After an appropriate étale base change, B̃S:T
d,g ×B̃T :U

d,h may

be identified as an open subscheme of B̃S:U
d,g+h(f). An elementary calculation shows

that

ρ(g + h, S : U) = ρ(g, S : T ) + ρ(h, T : U)

(Eisenbud and Harris refer to this fact in [EH86] as the “additivity of the Brill-

Noether number”), and therefore B̃S:U
d,g+h(f) has a dimensionally proper component.

Perhaps after an additional étale base change, we may embed B1 × B2 as a divisor

in a versal family f3 : B3 → Mg+h,2. Denote by C an irreducible component of

BS:U
d,g+h(f3) containing the (base change of) the product of our two dimensionally

proper components of B̃S:T
d,g and B̃T :U

d,h . Then the local dimension of C is at least

dimB3 +ρ(g+h, S : U), which is at least dimB1×B2 +ρ(g+h, S : U) + 1; therefore

since the part of C lying above B1×B2 has dimension equal to dimB1×B2+ρ(g+h, S :

U), it follow that C cannot lie entirely over B1×B2, and its dimension must be exactly

dimB3 +ρ(g+h, S : U) = dimMg+h,2 +ρ(g+h, S : U). Therefore, restricting to the

smooth locusMg+h,2, we have proved that there is a dimensionally proper component

of BS:U
d,g+h. In addition, since we started from a point in the open substack B̃S:U

d,g+h(f3),

the general point of this component must lie in B̃S:U
d,g+h. This establishes the claim in

the first bullet point. The proof of the second bullet point is similar.

The last claim (about full rank components) follows from the upper semicontinuity

of dimensions of fibers of BS:U
d,g+h over Mg,2 and of fibers of GSd,g+h over Mg,1. �
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2.2. The displacement lemma. The main result of this section is lemma 2.15,

which is the essential geometric input in the proofs of theorems A and C. I refer

to this lemma as a “displacement” lemma, because it concerns the following general

situation. We have a linear series LA on a smooth curve A of genus g, with known

ramification at p ∈ A.

p

A

We wish to prove the existence of curves in higher genus, together with linear series

with ramification at a marked point given by a slight modification of the ramification

at p. To achieve this, we begin by constructing a nodal curve X of compact type by

gluing a curve B to A at p, and marking a second point q ∈ B.

p q

A B

Now a refined limit linear series can be constructed on X with the desired rami-

fication at q. In this situation, we will say that the B-aspect of this series displaces

the ramification of LA from the point p to the point q.

If S is a sequence of pole orders so that (A, p, LA) ∈ G̃Sd,g′ , and T is the displaced

sequence, so that we wish to construct a limit linear series L on X with (X, q, L) ∈

G̃T
d,g′+g, then it follows that we should choose (B, q, LB) from B̃S:T

d,g , defined as in the

previous section. The letter B here is chosen to stand for “bridge.”

Definition 2.11. A pair of sets (S : T ) is called g-valid if B̃S:T
d,g has a dimensionally

proper point, for some d ≥ max(S ∪ T ).

Notice that “for some d” is equivalent to “for all d,” since BS:T
d,g
∼= BS:T

d+1,g, by adding

a base point at q. The reader may also verify that adding 1 to all the elements of S

and T also results in an isomorphic space.
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We will also make use of a slightly more refined notion, which essentially states

that the image in Mg,2 is as large as possible.

Definition 2.12. A pair of sets (S : T ) is called strictly g-valid if B̃S:T
d,g has a dimen-

sionally proper point x such that either:

• ρ(g, S : T ) ≥ 0 and the fiber of x over Mg,2 is ρ(g, S : T )-dimensional, or

• ρ(g, S : T ) < 0 and x is an isolated point in its fiber over Mg,2.

A large supply of valid pairs (S : T ) allows dimensionally proper linear series (with

ramification) to be constructed by inductive arguments. The following lemma makes

this precise.

Lemma 2.13. Let S, T, U be three finite sets of integers of the same size.

(1) If G̃Sd,g has a dimensionally proper point, and (S : T ) is h-valid, then G̃Td,g+h
has a dimensionally proper point.

(2) If (S : T ) is g-valid and (T : U) is h-valid, then (S : U) is (g + h)-valid.

Proof. Immediate from lemma 2.10. �

There is also a “strict” version of this lemma, taking fiber dimensions into account.

Lemma 2.14. Let S, T, U be three finite sets of integers of the same size.

(1) If G̃Sd,g has a dimensionally proper point x lying in a fiber whose local di-

mension at x is min(0, ρ(g, S)), (S : T ) is h-valid, and the numbers ρ(g, S)

and ρ(h, T ) are either both nonnegative or both nonpositive, then G̃Td,g+h has

a dimensionally proper point y lying in a fiber whose local dimension at y is

min(0, ρ(g, T ))

(2) If (S : T ) is strictly g-valid and (T : U) is strictly h-valid, and the numbers

ρ(g, S : T ) and ρ(h, T : U) are either both nonnegative or both nonpositive,

then (S : U) is strictly (g + h)-valid.
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Proof. Immediate from lemma 2.10. �

In other words, valid pairs have a sort of composition law, corresponding to gluing

curves together. In particular, a large supply of 1-valid pairs will give a large supply

of g-valid pairs for all positive g. Lemma 2.15 gives a versatile set of 1-valid pairs,

sufficient for our applications but somewhat more general.

In the following statement, an arithmetic progression is a subset of N, possibly

empty or with only one element, such that Λ− Λ is closed under addition.

Lemma 2.15 (The displacement lemma). Suppose that S, T are two finite sets of

nonnegative integers, such that si ≤ ti ≤ si+1 (where s0 < · · · < sr and t0 < · · · < tr

are the elements of S and T ). Let Λ(S : T ) be the arithmetic progression generated

by {si : si = ti}. Then (S : T ) is 1-valid if and only if the the following conditions

hold.

(1) There are at most 2 values of i such that si = ti, and these are non-consecutive.

(2) If ti = si + 1 and ti ∈ Λ(S : T ), then si+1 = ti.

(3) If ti = si + 1 and si ∈ Λ(S : T ), then ti−1 = si.

Proof. Fix d ≥ max(S ∪ T ). The stack BS:T
d,1 has a map to Pd1,2 (the moduli stack of

genus 1 curves with two marked points and a chosen degree d line bundle). Denote

by B(E, p, q,L) a fiber of this map. We will now compute explicitly the dimension

of this fiber (which will depend on the choice of (E, p, q,L)). Since we are concerned

only with dimension, we may work set-theoretically, and regard B(E, p, q,L) as a

subvariety of the Grassmannian Gr(r + 1, H0(L)). For brevity (and to distinguish

the variety from the scheme structure), denote the reduced structure of B(E, p, q,L)

simply by B (the data E, p, q,L will remain fixed). Denote the points of B by [V ],

where V ⊆ H0(L). Denote by B̃ the open subvariety where equality holds in all

ramification conditions.
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Let Λ = {n : L ∼= OE(n · p + (d − n) · q)}. This is an arithmetic progression, in

the sense described before the statement of the lemma (possibly empty, possibly with

only one element), and it is guaranteed to be a proper subset of N. Every element

λ ∈ Λ ∩ {0, 1, · · · , d} corresponds to a nonzero section µλ ∈ H0(L), unique up to

scale, with divisor of zeros given by (n · p+ (d− n) · q). Choose one such section µλ

for each λ ∈ Λ ∩ S ∩ T (notice that if µλ ∈ V , then certainly λ ∈ S and λ ∈ T ).

Any point [V ] ∈ B̃ has µλ ∈ V for some elements λ, but not for others. We

will see that some of the elements µλ must be present, but any choice of a subset

of the remaining elements of Λ ∩ S ∩ T gives a distinct irreducible component of

B, and all of these components have the same dimension. In order to study each

possibility separately, let M ⊆ Λ∩S ∩ T be any subset, and denote by BM the locus

in B consisting of those [V ] such that V ∩ {µλ} = {µλ : λ ∈ M}. Again, we are

working at the level of geometric points; therefore we will study BM as a locally closed

subvariety of Gr(r + 1, H0(L)). Not surprisingly, we will let B̃M denote BM ∩ B̃.

Suppose that [V ] ∈ B̃M . We will analyze the structure of V by breaking into a

direct sum in a particular way.

Consider subspaces of V of the following form. Here i, j are elements of {0, 1, · · · , r}

with i ≤ j.

Vi,j = V ∩H0(L(−sip− (d− tj)q)

By definition of vanishing sequences, the codimension of Vi,r in V is exactly i,

while the codimension of V0,j is exactly (r − j). Therefore, since Vi,j = Vi,r ∩ V0,j,

dimVi,j ≥ (j− i+ 1). In fact, we will see shortly that equality holds in a broad range

of cases.

The orders of vanishing at p of sections in Vi,j must all be at least si (by definition)

and at most tj (since the orders of vanishing at q are at least d− tj). Therefore these

orders of vanishing are a subset of {si, si+1, · · · , sj, sj+1}, where sj+1 occurs if and
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only if sj+1 = tj = λ ∈ M . In particular, if j is selected so that either sj+1 6= tj

or tj 6∈ M , then the orders of vanishing of sections in Vi,j at p must be precisely

{si, si+1, · · · , sj}. Similarly, if I is selected so that si 6= tj−1 or si 6∈ M , then the

order of vanishing at q are precisely d− {ti, ti+1, · · · , tj}. In either case, the number

of orders of vanishing is (j − i+ 1), hence dimVi,j = (j − i+ 1).

In light of the above considerations, call two adjacent indices i, i + 1 linked if

ti = si+1 and ti ∈ M . We have shown that if i is not linked to i − 1 and j is not

linked to j+1, then Vi,j has dimension equal to (j−i+1), vanishing orders {si, · · · sj}

at p and vanishing orders d − {ti, · · · , tj} at q. Call the subspace Vi,j a linked block

if i is not linked to i− 1, j is not linked to j + 1, but for all k ∈ {i, i+ 1, · · · , j − 1},

k is linked to k + 1.

Observe that any two linked blocks have disjoint sets of vanishing orders at p (or

q), and that every possible order of vanishing (each value in {s0, · · · sr} at p, each

value of d−{t0, · · · , tr} at q) occurs in some linked block. It follows that V is a direct

sum of its linked blocks.

Suppose that there are ` linked blocks, and label them Va1,b1 , Va2,b2 , · · · , Va`,b` . In

particular, 0 = a1, b` = r, and ak = bk−1 + 1. Notice that the values ak, bk do not

depend on V : they are determined by M , S, and T .

Each block Vak,bk must contain the sections µλ for all λ ∈ {tak = sak+1, tak+1 =

sak+2, · · · , tbk−1 = sbk}. Together, these sections span a subspace Wak,bk of dimension

(bk−ak), which does not depend on V . The dimension of Vak,bk is (bk−ak+1). There-

fore the linked block Vak,bk determines, and is determined by, a one-dimensional sub-

space of Qk := H0(L(−sakp− (d− tbk)q))/Wak,bk . The vector space Qk, as well, does

not depend on the choice of V , but only on M . So the block Vak,bk determines, and is

determined by, an element of PQk. Note that the vanishing orders of sections inWak,bk

are precisely {sak+1, sak+2, · · · , sbk} at p and d−{tak , tak+1, · · · , tbk−1} at q. So the el-

ement of PQk must be represented by a class of sections of H0(L(−sakp− (d− tbk)q)
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which have vanishing order exactly sak at p and tbk at q. Such elements form an open

subset Uk of PQk (the complement of two linear subspaces).

To summarize: the choice ofM determines a number ` and vector spacesQ1, · · · , Q`.

The element [V ] ∈ B̃M is determined uniquely by a choice of a single element from

each of the sets U1, · · ·U`, where Uk is an open subset of PQk.

Conversely, suppose that we have selected an element from each Uk (implicit in

this assumption is that each Uk is nonempty; we will presently determine when this

obtains). These choices produce a space V ⊆ H0(L) with vanishing orders precisely

given by S at p and d − T at q. So [V ] ∈ B̃. The point [V ] need not be in B̃M

specifically, but it is easy to check when this is the case. If λ ∈ M , then either

λ = ti = si+1 for some i or λ = si = ti for some i. In the former situation, i and i+ 1

are linked, and so µλ lies in some Wak,bk and therefore lies in V . In the latter case,

there must be a singleton block ak = bk = si = ti. In this case, the only possible

divisor of zeros for a section in this block is sip+ (d− ti)q, hence µλ spans this block

and is guaranteed to be in V . So µλ ∈ V for all λ ∈M . On the other hand, suppose

that λ ∈ (S ∩ T ∩ Λ)\M . From the construction of V , it is apparent that the only

way that µλ could “accidentally” be present in V is if there is a singleton block Vi,i

such that si = ti (this is because the construction of V specifies a basis of V , all of

whose members have distinct orders of zero at p and q, so the order of zero at p of

a linear combination of these basis elements is equal to the lowest order of vanishing

of any of the basis elements involved; since the orders of vanishing of µλ at p and q

add up to d, the only way that µλ can be a linear combination of the basis elements

is if it is a scalar multiple of one basis element). And indeed, if si = ti for some i,

then the block Vi,i must be precisely the span of µλ.

It follows from the discussion above that:

(1) If M does not contain all the elements {λ : si = ti = λ for some i}, then B̃M

is empty, and
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(2) Otherwise, B̃M is isomorphic to
∏̀
k=1

Uk.

It remains to determine when all the open sets Uk are nonempty, and then to

determine the dimension of each set Uk.

First, Uk is nonempty if and only if both of the following inequalities hold.

h0(L(−(sak + 1)p− (d− tbk)q)) < h0(L(−sakp− (d− tbk)q))

h0(L(−sakp− (d− tbk + 1)q)) < h0(L(−sakp− (d− tbk)q))

By Riemann-Roch, these inequalities fail to hold in precisely two situations.

(1) sak = tbk and sak 6∈ Λ

(2) sak = tbk − 1 and either sak ∈ Λ or tbk ∈ Λ

Notice that if situation 2 holds, then either bk = ak or bk = ak + 1; but the latter

case is impossible since it would imply that sak = tak and thus ak would not be linked

to ak + 1. Therefore, Uk is nonempty for all values of k if and only if the following

three conditions hold.

(1) If si = ti then si ∈M .

(2) If si + 1 = ti ∈ Λ, then ti ∈M .

(3) If si = ti − 1 ∈ Λ, then si ∈M .

Note that implicit in (2) is that si+1 = ti, and implicit in (3) is that ti−1 = si.

If these three conditions hold, then it also follows that B̃M
∼=
∏`

k=1 Uk, by earlier

remarks. Each Uk is a dense open subset of a projective space. We can also find their

dimensions explicitly. In the computation below, we use the fact that if tj = si for

j ≥ i, then j = i and si = ti ∈M , so in particular si ∈ Λ.
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dimUk = dim PQk

= dimQk − 1

= h0(L(−sakp− (d− tbk)q))− dimWak,bk − 1

=


(tbk − sak) if tbk 6= sak

1 if tbk = sak

− (bk − ak)− 1

= (tbk − sak)− (bk − ak)− 1 + δ(tbk − sak)

Here δ is the Dirac function. Adding these dimensions together, we obtain the

dimension of B̃M .

dim B̃M =
∑̀
k=1

(tbk − sak)−
∑̀
k=1

(bk − ak)− `+ |{i : si = ti}|

=
∑̀
k=1

(tbk − sbk + tbk−1 − sbk−1 + · · ·+ tak − sak)

−(b` − a0)−
`−1∑
k=1

(bk − sk+1)− `+ |{i : si = ti}|

=
r∑
i=0

(ti − si)− (r − 0)−
∑̀
k=1

(−1)− `+ |{i : si = ti}|

=
r∑
i=0

(ti − si − 1) + |{i : si = ti}|

= ρ(1, S : T )− 1 + |{i : si = ti}|

In particular, this dimension does not depend on the set M . It follows that if B̃

is nonempty, then it is of pure dimension ρ(1, S : T )− 1 + |{i : si = ti}|. It has one

component for each possible choice of set M , each of which is a isomorphic to a dense

open subset of a product of projective spaces.
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Whether or not B̃ is nonempty depends on the arithmetic progression Λ. The stack

Pd1,2 of genus 1 curves with two marked points and a degree d line bundle is a disjoint

union of locally closed substacks Pd1,2(Λ), parameterizing those choices such that the

arithmetic progression {n : L ∼= OE(np + (d− n)q)} is equal to Λ. It is easy to see

that the dimension of these substacks is given as follows.

dimPd1,2(Λ) =


3 if Λ = ∅

2 if |Λ| = 1

1 if |Λ| =∞

As we have seen, every fiber of BS:T
d,1 over a given substack Pd1,2(Λ) is isomorphic.

These fibers are nonempty if and only if Λ contains {si : si = ti} but does not contain

any elements of {ti : si + 1 = ti and si+1 6= ti} or {si : si + 1 = ti and ti−1 6= si},

because these are precisely the cases in which a set M can be selected so that B̃M is

nonempty. The hypotheses of the lemma guarantee that there is some Λ such that

the fibers over Pd1,2(Λ) are nonempty. In fact, there is a minimal such Λ, generated

by {si : si = ti}, and the closure of Pd1,2(Λ) contains all points with nonempty fibers

above them. The size of Λ is 0 if |{i : si = ti}| = 0, 1 if |{i : si = ti}| = 1, or ∞ if

|{i : si = ti}| ≥ 2. It follows that, for this minimal progression Λ,

dim B̃S:T
d,1 = dimPd1,2(Λ) + ρ(1, S : T )− 1 + |{i : si = ti}|

= 3−min(|{i : si = ti}| , 2) + ρ(1, S : T )− 1 + |{i : si = ti}|

= 2 + ρ(1, S : T ) + max(0, |{i : si = ti}| − 2)

= dimM1,2 + ρ(1, S : T ) + max(0, |{i : si = ti}| − 2).

Therefore if the hypotheses are met, then B̃S:T
d,1 has dimensionally proper points,

i.e. (S : T ) is 1-valid.
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Conversely, if hypothesis (2) or (3) fails, then there is no Λ such that the fibers

over Pd1,2 are nonempty. If hypothesis (1) fails, then either Λ = N (in which case

B̃S:T
d,1 is empty) or else the dimension computation above shows that no component

of B̃S:T
d,1 is dimensionally proper. Therefore the hypotheses are both necessary and

sufficient. �

The proof of the displacement lemma, with a few modifications, also yields the

following “strict” version.

Lemma 2.16. Suppose that S, T are two finite sets of nonnegative integers such that

si ≤ ti ≤ si+1 (where s0 < · · · < sr and t0 < · · · < tr are the elements of S and T ).

• If there are 0 or 1 indices i such that si = ti, then (S : T ) is strictly 1-valid.

• If there are exactly 2 indices i such that si = ti, then (S : T ) is strictly 1-valid

if and only if

(1) These two values of i are not consecutive,

(2) For all other indices i, ti = si + 1,

(3) If ti = si + 1 and ti ∈ Λ(S : T ), then si+1 = ti, and

(4) If ti = si + 1 and si ∈ Λ(S : T ), then ti−1 = si,

where Λ(S : T ) is the arithmetic progression generated by the two values si

such that si = ti.

Proof. Observe in the proof of lemma 2.15 that, in the cases where (S : T ) is 1-

valid, the map B̃S:T
d,1 → Mg,2 is either surjective or has image of codimension 1

(corresponding to twice-pointed curves with the points differing by some specific

torsion order). The map is surjective if there are 0 or 1 indices with si = ti (in which

case ρ(1, S : T ) ≥ 0), and has image of codimension 1 if there are two such indices (in

which case ρ(1, S : T ) = −1 if and only if ti = si + 1 for all other i). Therefore there

are no additional constraints on S and T when at most one index i gives si = ti, but
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in the case where there are two such indices, the condition that si = ti + 1 for all

other indices must be added to insure strictness. �

Example 2.17. Lemma 2.16 implies the existence and dimension portions of the

generalized Brill-Noether theorem 1.11. These two statements amount to the follow-

ing: if S is a finite set of nonnegative integers such thet maxS ≤ |S| + g − 1 and

ρ(g, S) ≥ 0, then there is a dimensionally proper component of GSd,g that dominates

Mg,1. In fact, we can prove something slightly stronger: there is a dimensionally

proper component of G̃S,sep
g which dominates Mg,1. For convenience, denote |S| − 1

by r and the set {0, 1, · · · , r} by [r]. What we shall show is that the pair ([r] : S)

is strictly g-valid. Therefore there is a dimensionally proper component X of B̃[r]:S
g .

The forgetful map X → G̃Sg has all fibers of dimension 1, since the forgotten point is

unramified, hence the linear series is separable and thus all but finitely many points

of the curve are unramified. Since X dominates Mg,2, it must also dominate Mg,1.

Therefore it suffices to show that if ρ(g, S) ≥ 0, then ([r] : S) is strictly g-valid.

This follows by induction on g. The base case g = 1 is easy: for given value of r,

there are only two possible sets S, namely {1, 2, · · · , r + 1} and {0, 2, · · · , r + 1}. In

both cases ([r] : S) is strictly 1-valid. For the inductive step, construct a set S ′ from

S be decreasing all element of S by one, except the minimum element s ∈ S such

that (s + 1) 6∈ S. The assumptions that maxS ≤ r + g and ρ(g, S) ≥ 0 imply that

S ′ can contain no negative elements. It is easy to check that ρ(g − 1, S ′) = ρ(g, S).

Also maxS ′ = maxS−1, unless S consists of a contiguous block of integers, in which

case maxS ′ = maxS. Therefore S ′ will satisfy the hypotheses of the claim, unless

S = {g, g + 1, · · · , g + r}. In this latter case, simply take S ′ to be S − 1 instead.

Lemma 2.16 implies that in either case, (S ′ : S) is strictly 1-valid. By inductive

hypothesis, ([r] : S ′) is strictly (g − 1)-valid. Since ρ(g − 1, S ′) and ρ(g, S ′ : S) are

both nonnegative, lemma 2.14 implies that ([r] : S) is strictly g-valid, completing the

induction. C
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Example 2.18. The following situation will be used to construct Weierstrass points.

Suppose that m > 1 and that S = {0,m, s2, s3, · · · , sr}, where sk > m and m - sk for

k ≥ 2. Define T to be {0,m, s′2, s′3, · · · , s′r}, where s′k =


sk + 1 if m - (sk + 1)

sk + 2 otherwise

.

Then (in the notation of the statement of the displacement lemma) Λ(S : T ) consists

of all multiples of m. There are exactly two places where si = ti, and no other places

where S or T meet Λ(S : T ). Therefore (S : T ) is 1-valid. Notice however that

(S : T ) is not strictly 1-valid. Indeed, our constructions in section 3 will lead to

linear series which are dimensionally proper, do not extend to all ofMg,1, but always

lie in components with positive-dimensional fibers over Mg,1. C
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3. Effectively proper Weierstrass points

In section 1, we defined the effective weight ε(S) of a numerical semigroup S to be

the number of pairs (s, t) ∈ S × (N\S) such that s is a generator and s < t. In this

section we prove the following two theorems about the effective weight.

Theorem B. If X is any irreducible component of WS, then

dimX ≥ dimMg,1 − ε(S).

Theorem C. If S is a numerical semigroup of genus g with ε(S) ≤ g − 1, then W̃S

has a component of dimension exactly dimMg,1 − ε(S).

The following terminology will be convenient.

Definition 3.1. A component of W̃S or WS is called effectively proper if it has

codimension exactly ε(S) in Mg,1.

3.1. Restricted Weierstrass sequences. The proof of theorem C proceeds by de-

ducing the existence of effectively proper Weierstrass points from the existence of

dimensionally proper linear series of a different sort. In this subsection we prove

that the effective weight is a bound on codimension (theorem B), and we also prove

corollary 3.4, which will be used in the proof of theorem C.

The construction is as follows: beginning with the complete linear series of the line

bundle O(Np) (for suitably large n), we can project down to a subseries that includes

enough vanishing orders at p to completely determine the Weierstrass semigroup.

More specifically, we shall consider points of GTg , where T is taken to be a restricted

Weierstrass sequences, as defined below.

Definition 3.2. Let S be a numerical semigroup, and T ⊂ S a finite subset. Call T

a restricted Weierstrass sequence of S if

• T contains 0 and all generators of S.
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• T does not contain any non-generators of S that are less than the largest gap

of S.

The following lemma demonstrates the close link between restricted Weierstrass

sequences and the effective weight of a semigroup.

Lemma 3.3. Suppose that S is a numerical semigroup of genus g, and T ⊂ S is a

restricted Weierstrass sequence.

(1) G̃T (C, p) is nonempty if any only if (C, p) ∈ W̃S.

(2) If (C, p) ∈ W̃S, then the reduced structure of G̃T (C, p) is isomorphic to affine

space of dimension ρ(g, T ) + ε(S).

Proof. Fix an integer d, at least as large as the maximum value in T , and regard

G̃S(C, p) as a subschema of G
|S|−1
d (C).

First consider part 1. If G̃T (C, p) contains a point L = (L, V ), then since 0 ∈ T ,

L ∼= O(dp). Hence for all t ∈ T , there is a rational function on C with pole of order

exactly t at p, and no other poles. So the Weierstrass semigroup of (C, p) contains

all the generators of S. Therefore the Weierstrass semigroup of (C, p) is contained

in S; since both have genus g, they must be equal. So (C, p) ∈ W̃S. Conversely, if

the Weierstrass semigroup of (C, p) is S, then for all t ∈ T , there exists a rational

function ft on C with pole of order t at p and no other poles. Regarded as sections

of O(dp), these sections are linearly independent (since they have different orders of

vanishing at p), and their span gives a linear series L = (O(dp), V ) in G̃T (C, p).

Now consider part 2. Assume that (C, p) ∈ W̃S. Since 0 ∈ T , each L in G̃T (C, p)

is given by (O(dp), V ), for some V ⊆ H0(O(dp)). The vector space H0(O(dp)) has a

complete flag given by the spacesH0(O(sp)), where s is an element of S∩{0, 1, · · · , d},

and those subspaces V ⊆ H0(dp) such that (O(dp), V ) ∈ G̃T (C, p) form an open

Schubert cell in Gr(|T |, H0(O(dp))) with respect to this filtration, hence isomorphic

to an affine space.
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To facilitate computations, define the following notation: for any two sets A,B of

integers, let λ(A,B) be the number of pairs (a, b), where a ∈ A, b ∈ B, and a < b.

Also, partition the set {0, 1, 2, · · · , d} into three sets, as follows.

S = T ∪ T ′ ∪G, where

T ′ := (S ∩ {0, 1, 2, · · · , d})\T

G = {0, 1, 2, · · · , d}\S

The codimension in Gr(|T |, H0(O(dp))) of this Schubert cycle can be described as

the number of pairs (t, s), where t ∈ T , s ∈ S such that s ≤ d and s 6∈ T . In other

words, this codimension is λ(T, T ′). The dimension of Gr(|T |, H0(O(dp))) is |T | · |T ′|,

so it follows that the dimension of G̃T
d (C, p) is λ(T ′, T ). On the other hand, ε(S) and

ρ(g, T ) are expressed in this notation as follows.

ε(S) = λ(T,G)

ρ(g, T ) =
r∑
i=0

(ti − i)− (r + 1)g

= λ(T ′ ∪G, T )− |T | · |G|

= λ(T ′, T ) + λ(G, T )− |T | · |G|

ρ(g, T ) + ε(S) = λ(T ′, T ) + λ(G, T ) + λ(T,G)− |T | · |G|

= λ(T ′, T )
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Therefore dim G̃T
d (C, p) = ρ(g, T ) + ε(S), as claimed. �

This lemma rapidly gives a proof of theorem B.

Proof of theorem B. Let X be any irreducible component of WS, and let X̃ be the

intersection with W̃S (which is dense and open). Let T be the set of generators

of S, plus 0, and let d be the maximum element of T . Consider the forgetful map

π : G̃Tg → Mg,1. By lemma 3.3, the image of this map is precisely W̃S, and all the

fibers are irreducible of dimension ρ(g, T ) + ε(S). Hence π−1(X̃) is irreducible of

dimension dimX+ρ(g, T )+ε(S). On the other hand, the dimension of π−1(X̃) must

be at least dimMg,1 + ρ(g, T ). It follows that dimX ≥ dimMg,1 − ε(S). �

Lemma 3.3 and the remarks in the proof of theorem B also give the following

corollary, which will be used to establish the existence of effectively proper Weierstrass

points.

Corollary 3.4. A pointed curve (C, p) ∈ W̃S is effectively proper if and only if

(C, p, L) is dimensionally proper for all L ∈ G̃T (C, p). In particular, W̃S has a

dimensionally proper point if and only if G̃Tg has a dimensionally proper point.

Before discussing the proof of the existence of effectively proper points in general,

we show how it will work on two examples of non-primitive semigroups. Of course

the results of both examples are obvious by other methods, but the examples will

demonstrate a more general approach.

Example 3.5. Consider the genus g hyperelliptic semigroup S = {2, 4, 6, · · · , 2g, 2g+

1, · · · }. A reduced Weierstrass sequence for S is simply T = {2, 2g+1}. If we know of

the existence of an effectively proper hyperelliptic Weierstrass point in genus g, then

G̃Tg has a dimensionally proper point. Lemma 2.15 shows that for T ′ = {2, 2g + 3},

the pair (T : T ′) is 1-valid. Notice that T ′ is a restricted Weierstrass sequence for

S ′ = {2, 4, · · · , 2g + 2, 2g + 3, · · · }, i.e. the hyperelliptic semigroup of genus g + 1.
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It follows from lemma 2.13 that G̃T ′g+1 has a dimensionally proper point. Therefore

by corollary 3.4, WS′ has an effectively proper point. By induction, the hyperelliptic

semigroup of genus g has effectively proper points for all g. C

Example 3.6. Consider the first example of a non-hyperelliptic semigroup that is

not primitive: the cone-flex semigroup S = N\{1, 2, 4, 7} = {0, 3, 5, 6, 8, 9, · · · }.

Then ε(S) = 3 and wt(S) = 4. One restricted Weierstrass sequence for S is

T = {0, 3, 5, 8, 10} (shorter sequences will also work).

To show that WS has effectively proper points, we begin with the genus 3 hyper-

flex semigroup S ′ = N\{1, 2, 5} = {0, 3, 4, 6, 7, · · · }. It has restricted a Weierstrass

sequence T ′ = {0, 3, 4, 7, 8}. If we know that WS′ has effectively proper points, then

G̃T ′3 has dimensionally proper points. By lemma 2.15, the pair (T ′ : T ) is 1-valid, so

by lemma 2.13, G̃T4 has dimensionally proper points. Therefore by corollary 3.4, WS

has effectively proper points. C

3.2. Semigroups of low effective weight. This subsection collects some combina-

torial properties of semigroups of low effective weight, needed in the proof of theorem

C. Most of the arguments are fairly mechanical, so the reader may wish to skip this

section and take the statements as black boxes.

The proof of theorem works by induction on the genus, using the fact that a genus

g semigroup S with ε(S) ≤ g − 1 can be built up by a “displacement” process from

a trivial semigroup, increasing the effective weight and genus by 1 at each step.

Recall that a generator of S is a positive element that is not a sum of two positive

elements, a “gap” is an element of the complement, and the effective weight ε(S) of a

semigroup is defined to be the number of pairs (s, t), where s is a generator, t is a gap,

and s < t. So ε(S) measures how much the gaps intermingle with the generators.
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First of all, semigroups with ε(S) ≤ g−1 satisfy a combinatorial condition slightly

weaker than primitivity. The author has invented the term “secundive” by replacing

the Latin root primus (“first”) in “primitive” with secundus (“second”).

Definition 3.7. Let S ⊆ N be a numerical semigroup. Then S will be called

primitive if the largest gap is smaller than twice the smallest generator, and

secundive if the largest gap is smaller than the sum of the two smallest generators.

Example 3.8. The hyperelliptic semigroup {0, 2, 4, · · · , 2g, 2g+ 1, · · · } is secundive,

of effective weight g − 1. C

Lemma 3.9. If ε(S) is less than the genus of S, then S is secundive.

Proof. Suppose that S is a non-secundive numerical semigroup. Let E ⊂ S × (N\S)

denote the set {(x, y) : 0 < x < y, x is a generator }. By definition, |E| = ε(S). We

will explicitly construct g(S) distinct elements of E, which will show that ε(S) ≥ g

and establish the lemma.

Let m and n be the smallest and second-smallest generators of S, respectively.

Let f denote the largest gap of S. Since S is not secundive, f > m + n. Let

T = {n, n + 1, n + 2, · · · , n + m− 1}\{m · d n
m
e}. Observe that no element of T is a

multiple of m, and each is smaller than m+n; therefore any element of T ∩S cannot

be a sum of two nonzero elements of S (n being the smallest non-multiple of m in S).

In other words, every element of T is either a gap or a generator. For every element

t ∈ T , define an element e(t) ∈ E as follows.

e(t) =


(t, f) if t ∈ S

(n, t) if t 6∈ S

Notice that the pairs e(t) are all distinct. Now, define two subsets of E as follows.
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E1 = {(m,x) : x > m, x 6∈ S}

E2 = {e(t) : t ∈ T}

These two sets are disjoint. Therefore

|E| ≥ |E1|+ |E2|

= (g(S)− (m− 1)) + (m− 1)

= g(S).

Therefore ε(S) ≥ g(S). �

Remark 3.10. The construction in the proof shows that this result is sharp – there

exist non-secundive semigroups with ε(S) = g for all g ≥ 6, and it is easy to see from

the proof how to enumerate them. For g ≤ 5, all numerical semigroups are secundive.

Due to this lemma, we may confine our attention to secundive semigroups, which

we will build up by an inductive procedure.

Definition 3.11. For S a subset of N, and any nonnegative integer k, define the

upward and downward displacement across k as follows. Here 0 ≤ s0 < s1 < s2 < · · ·

denote the elements of S in sorted order.

D+(S, k) = {s+
i }

where s+
i =


si if k|si and (si − 1) 6∈ S

si + 1 otherwise
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D−(S, k) = {s−i }

where s−i =


si if k|si and (si + 1) 6∈ S

si − 1 otherwise

Technically speaking, the downward displacement may no longer be a set of non-

negative integers (specifically, in case 0 and 1 are both in S). This is no obstacle,

since the definition above is easily generalized to any set of integers.

From this definition, the following lemma is easy to verify.

Lemma 3.12. If S ⊆ N contains all nonnegative multiples of k and has complement

(in N) of size g, then

(1) D+(D−(S, k), k) = S = D−(D+(S, k), k),

(2) D+(S, k) has complement of size g + 1,

(3) If 1 6∈ S, then D−(S, k) has complement of size g − 1.

Secundive semigroups behave well under displacement, as displayed in the following

lemma.

Lemma 3.13. Let S be a secundive semigroup, with smallest generator m. Then

(1) D+(S,m) is a secundive semigroup, with genus g + 1 and effective weight

ε(S) + 1, and

(2) if (m+ 1) 6∈ S, then D−(S,m) is a secundive semigroup with genus g− 1 and

effective weight ε(S)− 1.

Proof. Let u : N → (N\mN) be the order-preserving bijection between nonnega-

tive integers and nonnegative integers not divisible by m (that is, f(0) = 1, f(1) =

2, · · · , f(m − 2) = m − 1, f(m − 1) = m + 1, f(m) = m + 2, and so forth). Let
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T = u−1(S). Notice that all elements of T are at least m − 1 and the difference

between the last gap of T and the smallest element of T is less than m − 1 (since

u(k +m− 1) = u(k) +m for all nonnegative integers k).

Conversely, if T ⊂ N is any cofinite set such that minT ≥ m−1 and max(N\T )−

minT < m−1, then mN∪u(T ) is a secundive semigroup with smallest generator m.

So secundive semigroups with first generator m are in bijection with sets T such that

minT ≥ m− 1 and max(N\T )−minT < m− 1. Notice that g(S) = g(T ) (since no

multiples of m are gaps in S). Also ε(S) = g(S)− (m− 1) + wt(T ), because any pair

(x, y) where 0 < x < y, x is a generator, and y 6∈ S either satisfies x = m (there are

g(S) − (m − 1) such pairs), or m - x and m - y. All pairs of the latter sort occur in

T , and all elements of S that are less than the last gap and not multiples of m are

necessarily generators, so the pairs (x, y) where x 6= m are precisely in bijection with

pairs (x′, y′), where x′ < y′, x′ ∈ T , and y′ 6∈ T , of which there are precisely wt(T ).

Now, observe that if S = mN ∪ u(T ) (where T is as above), then D+(S,m) =

mN∪u(T +1) and D−(S,m) = mN∪(T−1). It follows from the previous paragraph

that D+(S,m) is a secundive semigroup with smallest generator m, while the same is

true of D−(S,m) if and only if (m−1) 6∈ T , i.e. (m+1) 6∈ S. Since g(T±1) = g(T )±1

and wt(T ± 1) = wt(T ), the genus and effective weights of the displacements are as

stated. �

Under the stronger hypothesis that S is primitive, there is more flexibility in choos-

ing the displacement. The following statement is sufficient for the application in this

paper.

Lemma 3.14. Let S be a primitive semigroup of genus g with smallest generator m

such that (m + 1) ∈ S and ε(S) > 0 . Let M be the largest element of S that is

smaller than some gap of S.
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(1) If ε(S) ≤ g − 2, then D−(S,M) is a primitive semigroup of genus g − 1 and

effective weight ε(S)− 1.

(2) If ε(S) = g − 1, then the same conclusion as above holds, unless S has the

form {0,m,m+ 1, 2m, 2m+ 1, 2m+ 2, · · · }.

Proof. Suppose that D−(S,M) is not a primitive semigroup. Let f be the largest

gap of S. Then the smallest positive element of D−(S,M) is m − 1 and the largest

gap is

f ′ =


f − 2 if f = M + 1

f − 1 otherwise.

Since D−(S,M) is a not a primitive semigroup, 2(m − 1) ≤ f ′. Since 2m > f ,

this implies that f ′ = f − 1 and f = 2m − 1. Therefore m,m + 1 ∈ S, while

2m− 2, 2m− 1 6∈ S, and 2m− 2 > m+ 1.

Let T = S ∩ {m + 2,m + 3, · · · 2m − 3}. Observe that g(S) = (m − 1) + (m −

4 − |T |) + 2 = 2m − 3 − |T |. The weight of S (equal to ε(S) since S is primitive)

is the size of the set W = {(x, y) : 0 < x < y, x ∈ S, y 6∈ S}. This set contains

the four elements (m, 2m − 2), (m, 2m − 1), (m + 1, 2m − 2), (m + 1, 2m − 1). For

each z ∈ {m + 2,m + 3, · · · 2m− 3}, either z ∈ T and (z, 2m− 2), (z, 2m− 1) ∈ W ,

or else z 6∈ T and (m, z), (m + 1, z) ∈ W ; either way z appears in two distinct

elements of W . Taken together, this accounts for 4 + 2(m − 4) = 2m − 4 distinct

elements of W , hence ε(S) ≥ 2m − 4 = g(S) − 1 − |T |. Therefore ε(S) ≥ g − 1,

with equality if and only if T is empty, in which case S is precisely the semigroup

{0,m,m+ 1, 2m, 2m+ 1, 2m+ 2, · · · }. �

The exceptional case in part 2 of lemma 3.14 is the reason that Eisenbud and

Harris originally proved their results in [EH87] only for the case wt(S) ≤ g − 2.
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3.3. Existence of effectively proper points. This subsection gives the proof of

theorem C. The proof is by induction. Each inductive step replaces a semigroup S

by a new semigroup D+(S, k) (in the notation of the previous subsection).

There will be two sorts of inductive steps, corresponding to the following two

lemmas (we state them next to each other to show the similarity, and then prove

each individually).

Lemma 3.15. If S is secundive with smallest generator m and W̃S has an ef-

fectively proper component, then W̃S′ has an effectively proper component, where

S ′ = D+(S,m).

Lemma 3.16. If S is primitive and W̃S has an effectively proper component, then

for any k ∈ S such that (k− 1) 6∈ S, W̃S′ has an effectively proper component, where

S ′ = D+(S, k).

Proof of lemma 3.15. Let g be the genus of S. By lemmas 3.12 and 3.13, S ′ is a

secundive semigroup of genus g+ 1. Let f be the largest gap of S. Let T ⊂ S consist

of all elements of S that are less than or equal to f + m + 1 except multiples of m

larger than m. Observe that T contains all generators of S (no generator can exceed

f + m, since n > f + m implies n − m ∈ S). Also, the only non-generators of S

less than f must be multiples of m, since S is secundive. Therefore T is a restricted

Weierstrass sequence of S.

Similarly, let f ′ be the largest gap of S ′. Let T ′ ⊂ S ′ consist of all elements of S ′

that are less than or equal to f + m + 2 except multiples of m larger than m. Since

f ′ ≤ f + 2, T ′ contains all generators of S ′ less than or equal to f ′ + m, therefore

all generators of S ′. The set S ′ is a secundive semigroup, so it follows that T ′ is a

restricted Weierstrass sequence of S ′.

Notice that if T = {t0 = 0, t1 = m, t2, · · · , tr} and T ′ = {t′0 = 0, t′1 = m, t′2, · · · , t′r}

(in increasing order), then for i ≥ 2,
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t′i =


ti if ti = 0 or ti = m

ti + 2 if m|(ti + 1)

ti + 1 otherwise

.

It follows from the displacement lemma 2.15 that (T : T ′) is 1-valid. By corollary

3.4, G̃Tg has a dimensionally proper point. It follows from lemma 2.15 that G̃T ′g+1 has

a dimensionally proper point. By corollary 3.4 again, W̃S′ has an effectively proper

point. �

Proof of lemma 3.16. Assume that k is not the smallest positive element of S; oth-

erwise the result follows from lemma 3.15.

Let g be the genus of S. Then S ′ is a primitive semigroup of genus g+ 1 by lemma

3.14. Let T ⊂ S consist of all elements less than or equal to N , and T ′ ⊂ S ′ consist of

all elements less than or equal to N + 1, where N is chosen large enough that both T

and T ′ contain all generators of S and S ′, respectively. Since S and S ′ are primitive,

T and T ′ are restricted Weierstrass sequences for S and S ′, respectively.

Notice that if T = {t0, t1, · · · , tr} and T ′ = {t′0, t′1, · · · , t′r} (in increasing order),

then

t′i =


ti if ti = 0 or ti = k

ti + 1 otherwise

.

Since all multiples of k are at least two more than any gaps of S ′, it follows from

the displacement lemma 2.15 that (T : T ′) is 1-valid. By corollary 3.4, G̃Tg has a

dimensionally proper point. It follows from lemma 2.15 that G̃T ′g+1 has a dimensionally

proper point. By corollary 3.4 again, W̃S′ has an effectively proper point. �
53



Remark 3.17. Eisenbud and Harris [EH87] used a statement essentially equivalent to

this lemma ([EH87], theorem 5.4) in their proof of the existence of primitive Weier-

strass semigroups. The main difference is that they consider (complete) canonical

series (whose ramification at p determines the Weierstrass semigroup), whereas we

consider subseries of the complete linear series |OC(Np)| for large integers N . These

two methods are essentially dual to each other, via Serre duality.

Proof of theorem C. By induction on the genus of S. There are two base cases.

(1) For some m, S = {0,m,m+ 1, 2m, 2m+ 1, 2m+ 2, · · · }. Then S is primitive,

and Komeda [K91] proved that W̃S has an effectively proper component in

this case.

(2) ε(S) = 0. In this case, W̃S is dense in Mg,1 (it includes all but finitely many

points on a dense open substack of curves), and the result is obvious3.

The inductive step has two cases.

In the first case, suppose that (m + 1) 6∈ S, where m is the smallest generator of

S. By lemma 3.9, S is secundive, so by lemma 3.13, the semigroup S ′ = D−(S,m)

is secundive of genus g − 1 and ε(S ′) = ε(S) − 1 ≤ (g − 2). Also, by lemma 3.12,

D+(S ′,m) = S. By inductive hypothesis, W̃S′ has an effectively proper component,

so lemma 3.16 now implies that W̃S has an effectively proper component.

In the second case, suppose that (m+1) ∈ S. By lemma 3.9, S is secundive. By def-

inition, this means that S contains all integers greater than or equal to 2m+1; hence

S is in fact primitive. We may assume that S 6= {0,m,m+ 1, 2m, 2m+ 1, · · · }, since

otherwise we could apply the first base case; hence by lemma 3.14 S ′ = D−(S,M)

(where M is the largest element of S that is smaller than some gap) is a primitive

semigroup of genus g − 1 and with ε(S ′) = ε(S) − 1. Lemma 3.12 implies that

D+(S ′,M) = S. Of course (M − 1) 6∈ S ′, so we can apply lemma 3.16: by inductive

3In characteristic p, it is not the case that W̃S surjects onto Mg, since some curves consist entirely
of Weierstrass points. Nevertheless, non-Weierstrass points are still dense in Mg,1.
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hypothesis W̃S′ has an effectively proper component, so in turn W̃S has an effectively

proper component. �
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4. Semigroups of large effective weight

This section is largely experimental and speculative. The goal is to reveal certain

patterns which may suggest the next direction in which theorems B and C might be

extended.

Throughout this section we will assume that our field K has characteristic 0 (and

we assume it is algebraically closed, as we do throughout the thesis). This assumption

is necessary to apply Bertini’s theorem to prove that certain curves are smooth.

We have shown elsewhere in this thesis (theorem B) that for any semigroup S of

genus g such that WS is nonempty, the codimension of WS in Mg,1 is bounded by

the effective weight ε(S), and that this bound holds exactly in many cases (especially

when the effective weight is low). One of the main motivations for the definition

of effective weight was the case of hyperelliptic semigroups: those which contain 2.

There is one such semigroup for every genus g, and they are notable in that they are

precisely the semigroups of maximal weight, given by wt(S) =
(
g
2

)
. One reason that

the new figure ε(S) is so compelling is that it is precisely equal to the codimension

g− 1 in the case of hyperelliptic curves: the effective weight tames the semigroups of

extremal weight.

With this in mind, we may naturally ask if we can tame the case of extremal

effective weight. We will see that like the maximum weight in a given genus, the

maximum effective weight in a given genus also grows quadratically. However, an

examination of the maximal effective weights in genus up to 10 suggests that the

classification is not as simple as the case of weight (see figure 2).

However, starting in genus 10, a simple pattern emerges in the semigroups of large

effective weight; see figure 3.

On the basis of these data, we make the following combinatorial conjectures.
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genus max ε(S) gaps generators
1 0 1 〈2, 3〉
2 1 1, 3 〈2, 5〉
3 2 1..5 〈3, 4〉

1, 3, 5 〈2, 7〉
4 3 1..7 〈4..6〉

1..4, 7 〈3, 5〉
1, 3, 5, 7 〈2, 9〉

5 4 1..9 〈5..8〉
1..5, 9 〈4, 6, 7〉
1..6, 7 〈4..11〉
1..4, 5, 8 〈3, 7, 11〉
1, 3, 5, 7, 9 〈2, 11〉

6 6 1..8, 9 〈5..7〉
1..5, 7, 11 〈4, 6, 9〉
1..6, 7, 11 〈4, 5〉
1..4, 5, 8, 11 〈3, 7〉

7 8 1..10, 11 〈6..9〉
1..5, 7, 9, 13 〈4, 6, 11〉

8 10 1..12, 13 〈7..11〉
1..5, 7, 9, 11, 15 〈4, 6, 13〉

9 12 1..14, 15 〈8..13〉
1..11, 12, 13 〈7..10〉
1..9, 10..17 〈6..8〉
1..5, 7, 9, 11, 13, 17 〈4, 6, 15〉

10 15 1..13, 14, 15 〈8..12〉

Figure 2. Semigroups of maximal effective weight, up to genus 10.

Conjecture 4.1. For all positive integers g, the maximum value of ε(S), where S

ranges over over all numerical semigroups of genus g, is

⌊
(g + 1)2

8

⌋
.
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genus max ε(S) gaps generators
11 18 1..15, 16, 17 〈9..14〉
12 21 1..17, 18, 19 〈10..16〉
13 24 1..19, 20, 21 〈11..18〉

1..16, 17..19 〈10..15〉
14 28 1..18, 19..21 〈11..17〉
15 32 1..20, 21..23 〈12..19〉
16 36 1..22, 23..25 〈13..21〉
17 40 1..24, 25..27 〈14..23〉

1..21, 22..25 〈13..20〉
18 45 1..23, 24..27 〈14..22〉
19 50 1..25, 26..29 〈15..24〉
20 55 1..27, 28..31 〈16..26〉
21 60 1..29, 30..33 〈17..28〉

1..26, 27..31 〈16..25〉
22 66 1..28, 29..33 〈17..27〉
23 72 1..30, 31..35 〈18..29〉
24 78 1..32, 33..37 〈19..31〉
25 84 1..34, 35..39 〈20..33〉

1..31, 32..37 〈19..30〉
26 91 1..33, 34..39 〈20..32〉
27 98 1..35, 36..41 〈21..34〉
28 105 1..37, 38..43 〈22..36〉
29 112 1..39, 40..45 〈23..38〉

1..36, 37..43 〈22..35〉
30 120 1..38, 39..45 〈23..37〉

Figure 3. Semigroups of maximal effective weight, genus 11 through 30.

Conjecture 4.2. If g(S) ≥ 10, then ε(S) =

⌊
(g + 1)2

8

⌋
if and only if S is one of

the following semigroups.

S = 〈d− r + 1, d− r + 2, · · · , d− 1, d〉

= N\ ({1, 2, · · · , d− r} ∪ {d+ 1, d+ 2, · · · , 2(d− r + 1)− 1})

where d =
5

4
g +

1

4
− 3

4
η

and r =
1

2
g +

1

2
− 1

2
η

for some integer η such that |η| ≤ 2.
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Note in particular that in conjecture 4.2, η must be selected such that η ≡ 3 − g

mod 4 among the choices {−2,−1, 0, 1, 2}; this explains why there are two extremal

semigroups when g ≡ 3 mod 4, and there is only one otherwise. It is tedious but

easy to check that the semigroups defined in this way do indeed have effective weight

equal to

⌊
(g + 1)2

8

⌋
. In fact, they are also primitive, so their weight is equal to their

effective weight (but of course they are not extremal with respect to weight). We will

prove the following result about Weierstrass points with these extremal semigroups.

Proposition 4.3. Suppose that g ≥ 6 and S is one of the semigroups mentioned in

conjecture 4.2. Then W̃S has codimension 7
4
g − 17+η

4
in Mg,1.

This proposition will follow from corollary 4.13. It shows that the semigroups of

maximal effective weight present a challenge: to find a new refinement of the effective

weight that gives the correct codimension.

Question 4.4. Is there a combinatorial quantity ε′(S) associated to each semigroup

which is an upper bound on the codimension of W̃S in Mg,1, and which is equal to

7
4
g − 17+η

4
for any of the semigroups S described in conjecture 4.2?

The semigroups that appear as semigroups of maximal effective weight have a

structure that turns out to have interesting geometric implications. The rest of

this section is devoted to the study of a broad class of semigroups, including those

mentioned in conjecture 4.2, which give interesting loci W̃S that can be studied

rather explicitly. In particular, these semigroups provide a large class of examples of

Weierstrass points which occur in larger dimensional families than what is predicted

by the effective weight. They also provide a large class of semigroups for which W̃S

is reducible, and even has impure dimension. We begin by defining the semigroups

in this class.

Definition 4.5. Let d, r be positive integers such that r ≥ 2 and d ≥ 2r+ 1. Define

the semigroup S(d, r) as follows.
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S(d, r) = 〈d− r + 1, d− r + 2, · · · , d〉

Such semigroups will be called Castelnuovo semigroups.

We name these semigroups after Castelnuovo because we shall see that they can

only occur on Castelnuovo curves (which we will define and discuss presently; see

chapter 3 of [H82] for a thorough discussion).

The gaps of S(d, r) are arranged in several shrinking blocks of consecutive integers,

beginning with a block of length d− r and decreasing in size by r − 1 at each stage

(until they become empty). Therefore we can find the genus as follows.

g(S(d, r)) = (d− r) + (d− r − (r − 1)) + (d− r − 2(r − 1)) +

· · ·+ (d− r +m(r − 1))

=

(
m

2

)
(r − 1) +me

where m =

⌊
d− 1

r − 1

⌋
and e = (d− 1)−m(r − 1).

We can also easily compute the effective weight.

ε(S(d, r)) = r(g − d+ r)

Conjectures 4.1 and 4.2 are not difficult to verify for Castelnuovo semigroups.

Proposition 4.6. For any Castelnuovo semigroup S = S(d, r) of genus g (with r ≥ 2

and d ≥ 2r + 1 as usual), ε(S) ≤
⌊

(g+1)2

8

⌋
. If g ≥ 10, then equality holds only in the

cases mentioned in the statement of conjecture 4.2.

Proof. Fix positive integers d, e, and define integers m, e such that
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(d− 1) = m(r − 1) + e,

where e ∈ [0, r− 2]. Let S = S(d, r). Then using the formulas above for the genus

and effective weight of S, we can re-express ε(S) as follows.

ε(S) = r

((
m

2

)
(r − 1) +me−m(r − 1)− e+ r − 1

)
= r

((
m− 1

2

)
(r − 1) + (m− 1)e

)
=

m− 1

m
· r
(
m(m− 2)

2
(r − 1) +me

)
=

m− 1

m
· r
((

m

2

)
(r − 1)− m

2
(r − 1) +me

)
=

m− 1

m
· r
(
g +

m

2
− m

2
r
)

=
2(m− 1)

m2
·
(m

2
r
)(

g +
m

2
− m

2
r
)

Applying the arithmetic-geometric mean inequality, we obtain the following bound

on the effective weight in terms of g and m.

(4.1) ε(S) ≤ m− 1

2m2

(
g +

m

2

)2

Consider first the case m = 2. Then taking floors of both sides, inequality 4.1

gives the desired bound ε(S) ≤
⌊

(g+1)2

8

⌋
. Consider the equality case. Notice that⌊

(g+1)2

8

⌋
= (g+1)2

8
− ζ, where ζ is one of 1

8
, 1

2
, or 0, according to whether g is even,

1 mod 4, or 3 mod 4 (respectively). Looking at the last step of the derivation of

inequality 4.1 and setting m = 2, it follows that ε(S) − (g+1)2

8
is given exactly by

1
8
(g+1−2r)2. Therefore, ε(S) =

⌊
(g+1)2

8

⌋
if and only if |r− 1

2
(g+1)| ≤ 1. Also, since
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g = (r− 1) + 2e, it follows that g− r+ 1 must be even. Conversely, if g, r are chosen

such that |r − 1
2
(g + 1)| ≤ 1 and r ≡ (g + 1) mod 2, then letting e = 1

2
(g + 1 − r)

and d = 2(r− 1) + e gives a semigroup S = S(d, r) such that ε(S) =
⌊

(g+1)2

8

⌋
. Given

g, the possible choices of r are precisely r = 1
2
(g+ 1) + 1

2
η, where η is an integer such

that |η| ≤ 2 and η ≡ (g + 1) mod 4. Therefore, the equality cases such that m = 2

are precisely parameterized by

d =
5

4
g +

1

4
=

3

4
η

r =
1

2
g +

1

2
− 1

2
η

η ∈ Z, |η| ≤ 2.

Now consider the case m ≥ 3. We know that ε(S) ≤ m−1
2m2

(
g + 1

2
m
)2

(equation

4.1). First, we show that m−1
2m2

(
g + 1

2
m
)2 ≤ 1

9
(g + 3

2
)2. To see this, fix g and consider

the function f(x) = x−1
2x2

(g + 1
2
x)2. Taking the logarithmic derivative,

f ′(x)

f(x)
=

1

x− 1
− 2

x
+

2

2g + x

=
1

x− 1
− 4g

x(x+ 2g)

=
x2 − 2gx+ 4g

(x− 1)x(x+ 2g)

=
(x− g)2 − (g2 − 4g)

(x− 1)x(x+ 2g)
.

It follows from this that as long as g ≥ 5, f(x) is a decreasing function on the

interval (g−
√
g2 − 4g, g+

√
g2 − 4g), which contains the interval [3, g]. The formula

g =
(
m
2

)
(r− 1) +me implies that g ≤

(
m
2

)
≤ m (here we use m ≥ 3), so m lies in this

interval, and it follows that ε(S) ≤ f(m) ≤ f(3) = 1
9
(g + 3

2
)2, as claimed.

Next as long as g ≥ 11, the following inequality holds.
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1

9

(
g +

3

2

)2

<
1

8
(g + 1)2 − 1

2

Indeed, this inequality is equivalent to (g − 3)2 > 54, i.e. |g − 3| ≥ 8. It follows

that for all g ≥ 11, ε(S) < (g+1)2

8
− 1

2
≤
⌊

(g+1)2

8

⌋
.

Together with our enumeration of all semigroups of genus less than 11 (figure

2), this implies that ε(S) ≤
⌊

(g+1)2

8

⌋
for all Castelnuovo semigroups, and that if

g ≥ 10 then the only equality cases satisfy m = 2 and are precisely those described

in conjecture 4.2. �

The expression for the genus of S(d, r) is intriguing due to the following theorem

(which is our reason for naming these semigroups as we did).

Theorem 4.7 (Castelnuovo). Suppose that C is a reduced, irreducible, and non-

degenerate curve of degree d in Pr, where d ≥ 2r+ 1. Let m =
⌊
d−1
r−1

⌋
and let e be the

remainder. Then the arithmetic genus of C is bounded by:

pa(C) ≤
(
m

2

)
(r − 1) +me.

If equality holds in this expression, then the set-theoretic intersection of the quadric

hypersurfaces containing C is an irreducible and non-degenerate surface of degree

r − 1.

The curves where equality holds in theorem 4.7 are called Castelnuovo curves.

Lemma 4.8. Suppose that S = S(d, r) is a Castelnuovo semigroup of genus g, and

(C, p) ∈ WS is a Weierstrass point. Then OC(dp) is very ample, and embeds C in

Pr as a Castelnuovo curve.

Proof. By definition of the Weierstrass semigroup,
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h0(O(dp)) = r + 1, and

h0(O((d− 1)p)) = r.

Therefore OC(dp) is base point free, and does indeed give a map f : C → Pr. Let

N be an integer larger than 2g+1
d

, and let νN : Pr → PM be the Veronese map (here

M =
(
r+N
N

)
− 1). Then the composition νN ◦ f : C → PM is given by the linear

series (OC(Ndp), V ), where V is the image of SymNH0(OC(dp)) → H0(OC(Ndp)).

Regard sections of OC(dp) and OC(Ndp) as rational functions on C. The pole orders

of sections in H0(OC(dp)) include all generators of the Weierstrass semigroup, and

also 0. Therefore N -fold products of these sections give sections with all possible pole

orders up to Nd. This implies that in fact V is all of H0(OC(Ndp)). Since Nd ≥

2g + 1, it follows that OC(Ndp) is very ample, so νN ◦ f is an embedding. Therefore

f must also be an embedding. The fact that the image in Pr is a Castelnuovo curve

follows from the calculation of the genus of S(d, r) (which is also the genus of C). �

The reason that Castelnuovo curves are particularly easy to study explicitly is

that such a curve can be studied using the geometry of the surface cut out by the

quadrics containing the curve. In fact, this surface is of a very simple kind, due to

the following theorem. A proof of a more general statement, and a nice discussion of

the surrounding ideas, can be found in [EH85].

Theorem 4.9 (Bertini). If S is a reduced, irreducible, and non-degenerate surface

of degree r− 1 in Pr, then S must either be the Veronese surface in P5, or a rational

normal surface scroll.

We will now compute the dimension of W̃S, when S is a Castelnuovo semigroup.

This computation will reveal that these semigroups give a large supply of semigroups

whose points are not effectively proper. We begin from the following fact, which is
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a relatively straightforward calculation (the necessary formulas can be found in the

following two subsections). We simplify the statement slightly by restricting to the

case r ≥ 6, but the full statement simply has a few additional cases.

Proposition 4.10 ([H82] corollary 3.12). Let d, r be integers such that d ≥ 2r + 1

and r ≥ 6, define m, e as above, and let g =
(
m
2

)
(r − 1) + me. Let H denote the

union of the (open) components of the Hilbert scheme whose members correspond to

smooth, irreducible, and non-degenerate curves of degree d and genus g in Pr. Then:

(1) There is a component of H of dimension

C(d, r) =

((
m+ 1

2

)
+ r + 2

)
(r − 1) + (m+ 2)(e+ 2)− 4.

(2) If e = 0, then H has a second component of dimension C(d, r) + r − 3.

These are the only components of H (in particular, H is irreducible if e = 0).

Remark 4.11. Eisenbud and Harris prove in [H82] that the under weakened inequal-

ities on the genus, most of Castelnuovo’s argument remains valid, and it is still

possible to draw conclusions about the geometry of the curves in question (most no-

tably, about the rational normal scrolls they sit on). It would be interesting to try to

apply these results to a broader class of numerical semigroups than the Castelnuovo

semigroups.

If we denote by H′ the incidence correspondence parameterizing points [C] ∈ H,

points p ∈ C ⊆ Pr, and hyperplanes H containing p, an easy calculation shows

that dimH′ = dimH + r. We can consider the locus H′′ ⊆ H′ corresponding to

{(C, p,H) : C∩H = dp} (where this is equality as divisors). Since every Castelnuovo

curve lies on a unique surface scroll in Pr, there is a map from H′ to the parameter

space of triples (S,H, p), where S is a surface scroll, H is a hyperplane section, and

p ∈ H is a point. It follows from a dimension count in the following section that this

parameter space has dimension (r+1)(r+2)−7. We will show in theorem 4.20 that,
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for a general triple (S,H, p), the fiber of H′′ over (S,H, p) has codimension exactly

d in the fiber of H′ over (S,H, p). From this we obtain the following lemma.

Lemma 4.12. The locus H′′ (as defined above) has a component of dimension exactly

dimH− (d− r) + 1.

Notice that there is a surjective map fromH′′ to W̃S, all of whose fibers are orbits by

the action of PGLr+1. Therefore an easy calculation immediately shows the following.

Corollary 4.13. For any Castelnuovo semigroup S as above, with r ≥ 6, W̃S has

a component of codimension 2g − 2m − e in Wg,1. In case e = 0, there is a second

component of codimension 2g − 2m− e− r + 3.

Because the effective weight of these semigroups is unbounded, whereas these codi-

mension are all less than 2g, this shows that Castelnuovo semigroups are a large class

of semigroups whose codimensions in Mg,1 are much smaller than their effective

weight. Another intriguing consequence of corollary 4.13 is that it shows W̃S is

sometimes reducible, and sometimes does not have pure dimension.

The rest of this section contains an analysis of curves on rational normal surface

scrolls. Much of this analysis can be found in [H82], but we reproduce it here for our

convenience. The author believes that a more careful analysis of arbitrary fibers of

the map from H′ to the space of triples (S,H, p) can likely be used to show that the

components of WS described above are, in fact, the only components.

4.1. Background on rational normal scrolls. We recall some basic properties of

rational normal surface scrolls, needed in the analysis above. None of this is original,

but we have collected it in one place for convenience.

Let M be a 2× (r − 1) matrix of linear forms on Pr.

M =

 L11 L12 · · · L1,r−1

L21 L22 · · · L2,r−1

 Li,j ∈ H0(OPr(1))
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We will study the scheme S(M) cut out by the 2× 2 minors of M . In particular,

S(M) remains unchanged if row or column operations are performed on M . If M is

1-generic (defined below), S(M) will be called a rational normal surface scroll.

Call M 1-generic if there do not exist vectors v ∈ K2, and w ∈ Kr−1 such that

vTMw = 0. If M is 1-generic, then by multiplying by invertible matrices (with

coefficients in K) on the left and right, it can be arranged that L2,i = L1,i+1 for

all values of i in {1, 2, · · · , r − 2} except possibly one. Call this exception a (or

let a = r − 1 if there is no exception). That M is 1-generic implies that these

equalities span all K-linear relations between the forms Li,j. Therefore there is a

basis X0, X1, · · · , Xa, Y0, Y1, · · · , Yb (where a + b = r − 1) for H0(OPr) such that M

can be written in the following form.

M =

 X0 X1 · · · Xa−1 Y0 Y1 · · · Yb−1

X1 X2 · · · Xa Y1 Y2 · · · Yb


Without loss of generality, also assume that a ≤ b. An easy calculation shows that

S(M) is nonsingular if and only if b > 0, whereas if b = 0 then S(M) is a cone over a

rational normal curve, with vertex given by {Xi = 0}. Define δ = b−a; this measures

the extent to which the scrolls fails to be “balanced.”

Notice that, due to this parameterization, rational normal surface scrolls form a

dense open subset of a component of the Hilbert scheme, of dimension (r + 1)2 − 7

(this can be computed by parametrizing all ways of choosing Li,j, then adjusting for

scaling, row operations and column operations). Within this component, the number

δ is upper semicontinuous, hence the general member has δ ≤ 1 (note that δ is

always congruent to r − 1 modulo 2). We will not need it here, but it is not difficult

to determine that the locus of scrolls with invariant δ > 1 has codimension δ.

Let S denote the Hirzebruch surface P(OP1(a)⊕OP1(b)) over P1. Denote the tau-

tological line bundle of S by OS(H); then H0(OS(H)) ∼= H0(OP1(a))⊕H0(OP1(b)).
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Let {W,Z} be a basis for H0(OP1(1)), and define an isomorphism H0(OS(H)) →

H0(OPr) as follows.

H0(OP1(a)) → span〈X0, X1, · · · , Xa〉

W iZa−i 7→ Xi

H0(OP1(b)) → span〈Y0, Y1, · · · , Yb〉

W iZb−i 7→ Yi

One can verify that the image of the resulting map S → Pr is precisely S(M).

Indeed, the induced map ι : S → S(M) is an isomorphism if b > 0, while otherwise

it collapses the section [0, 1] (the directrix) to a single point, resulting in a cone over

a rational normal curve.

The Picard group of S has two generators: the directrix section D (given by [0, 1],

and unique if and only if δ > 0) and the fiber class F . The intersection pairing is as

follows.

D2 = −δ

F 2 = 0

D · F = 1

The canonical divisor is given as follows.

K = −2D − (δ + 2)F

Therefore the Euler characteristics and arithmetic genera of divisors on S are given

as follows.
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χ(αD + βF ) = (α + 1)(β + 1)−
(
α + 1

2

)
δ

pa(αD + βF ) = (α− 1)(β − 1)−
(
α

2

)
δ

Note in particular that the smooth members of |D + βF | are all rational: these

arise as hyperplane sections of S when it is embedded as a rational normal surface

scroll. We will see shortly that the series |D+ βF | has a smooth member if and only

if β = 0 or β ≥ δ.

For convenience, we will compute the dimension of the first cohomology of all

effective divisors on S. Together with Serre duality, this will make it possible to

compute the dimension of all linear systems on S. We begin by determining which

divisor classes are effective.

Lemma 4.14. The divisor αD+ βF satisfies h0(αD+ βF ) > 0 if and only if α ≥ 0

and β ≥ 0.

Proof. Since D and F are effective themselves, one direction is obvious. Conversely,

suppose that αD + βF is effective. Notice that both of the classes F and D + δF

are base point free: the first because |F | contains all fibers of the map S → P1, the

second because |D + δF | contains the images of all of the sections P1 → S given by

[z, w] 7→ [1, p(z, w)], where p is a degree δ homogeneous polynomial. Therefore

(αD + βF ) · F = α

(αD + βF ) · (D + δF ) = β

Therefore α ≥ 0 and β ≥ 0. �
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To state the computation of the first cohomology numbers, the following notation

will be useful.

Definition 4.15. Let fδ(n) denote the following piecewise-linear function.

fδ(n) =


0 if n < 0(
q+1

2

)
δ + (q + 1)r otherwise

where q =
⌊x
δ

⌋
and x = qδ + r.

Another way to describe the function fδ(n) is that fδ(0) = 0, and f is linear with

slope q+ 1 on the interval [qδ, (q+ 1)δ]. In fact, we have met this function elsewhere:

the value fr−1(d− r) computes the maximum genus of a smooth curve of degree d in

Pr. This appears to be a coincidence.

Lemma 4.16. Suppose that α, β ≥ 0. Then h1(αD + βF ) = fδ(αδ − β − 1). In

particular, h1(αD + βF ) = 0 if and only if β > αδ.

Proof. Proceed by induction on α. If α = 0, then the complete system |βF | consists

of the pullback of the complete linear system of β points on P1, hence h0(βF ) =

β + 1 = χ(βF ), and the result follows. Now assume that α > 0, and the result holds

for all smaller values of α.

We will make use of the following exact sequence of sheaves.

0→ OS((α− 1)D + βF )→ OS(αD + βF )→ OD(β − αδ)→ 0

By forming the associated long exact sequence in cohomology, we can draw two

conclusions.

• If β − αδ ≤ −1 then h0((α− 1)D + βF ) = h0(αD + βF ).

• If β − αδ ≥ −1 and h1((α− 1)D + βF ) = 0, then h1(αD + βF ) = 0.
70



If β ≥ αδ − 1, then the result follows immediately from conclusion 2 and the

induction hypothesis. Otherwise, we apply hypothesis 1 to deduce that

h1(αD + βF ) = h1((α− 1)D + βF ) + χ((α− 1)D + βF )− χ(αD + βF )

= h1((α− 1)D + βF ) + αδ − β − 1

Now let (αδ − β − 1) = qδ + r, where q, r are integers with 0 ≤ r < δ. Then if

q = 0, it follows that h1((α−1)D+βF ) = 0, hence h1(αD+βR) = r. Otherwise, the

inductive hypothesis implies that h1((α−1)D+βF ) =
(
q
2

)
δ+rq, hence h1(αD+βF ) =((

q
2

)
+ q
)
δ + r(q + 1), which is the desired result. This completes the induction. �

Corollary 4.17. The divisor class C = αD+ βF (with α, β ≥ 0) contains a smooth

member if and only if either β ≥ αδ or β − αδ = −δ. The series |C| cuts out a

complete linear series on the directrix D if and only if β ≥ αδ; otherwise all member

of |C| contain D as a component.

Proof. If C · D ≥ 0, then β ≥ αδ, and therefore h1(C − D) = 0, so the map

H0(OS(C)) → H0(OD(C · D)) is surjective. In particular, |C| has no base points

on D. Since |C| includes all curves of the form αD plus any β fibers, the only

possible base points of |C| lie on D. Thus the general member of |C| is smooth, by

Bertini’s theorem, and the series cuts out a complete linear series on D.

On the other hand, if C ·D < 0, then any member of |C| contains D as a component.

Hence this member can be smooth only if it is a union of D and a curve in the class

C −D that doesn’t meet D. This is possible if and only if (C −D) ·D = 0 and the

general member of C − D does not contain D; by the previous case, this is true if

and only if C ·D = −δ. In this case, the general member of |C| consist of the union

of D and a disjoint smooth curve. �
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Corollary 4.18. Suppose that H is a smooth curve of class D+ γF with γ > 0, and

C is any effective divisor class on S. Then |C| cuts out a complete linear series on

H if and only if either γ = δ or β − αδ + 1 ≥ γ − δ.

Proof. By the previous corollary, in fact γ must be at least δ. It follows that H ·C =

−αδ + αγ + β ≥ −1. Since pa(H) = 0, it follows that h1(OH(H ·C)) = 0. Therefore

H0(OS(C))→ H0(OH(H ·C)) is surjective if and only if h1(OS(C−H)) = h1(OS(C)).

Lemma 4.16 now gives the result. �

4.2. Castelnuovo Weierstrass points on balanced scrolls. We will now con-

sider the case of interest in the previous section: those curves on S which become

Castelnuovo curves under some embedding of S as a rational normal scroll.

Fix a surface S with a map ι : S → S(M) ⊆ Pr sending S to a rational normal

scroll, as in the previous subsection. Let the integers a, b, δ be as described there.

Recall that they satisfy the following relations.

0 ≤ a ≤ b

a+ b = r − 1

b− a = δ

Recall that the map ι : S → S(M) sends S to a rational normal scroll (possibly

contracting the directrix in the process) and that the hyperplane class in Pr pulls

back to a class H = D + bF .

Throughout this subsection, we will sometimes assume that S(M) is a balanced

scroll, i.e. that it belongs to the generic isomorphism type among surface scrolls in

Pr. This amounts to assuming that δ ≤ 1, so that a =
⌊
r−1

2

⌋
and b =

⌈
r−1

2

⌉
.
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Fix an integer d ≥ 2r + 1. Define numbers m, e as before: m =
⌊
d−1
r−1

⌋
and

e = (d − 1) − m(r − 1). Then a Castelnuovo curve on S(M) is a smooth and

irreducible curve C of degree d and genus g, where

g =

(
m

2

)
(r − 1) +me.

More intrinsically, a Castelnuovo curve C on S is a curve such that

C ·H = d, and

pa(C) = g.

First, we observe that there is at least one divisor class, and at most two of them,

whose smooth members are Castelnuovo curves.

Lemma 4.19. Let C be the divisor class αD + βF . Then the smooth members of

|C| are Castelnuovo curves (of degree d in Pr) if and only if the following conditions

hold.

β = d− α · a

α ∈ {m,m+ 1}

where α = m is allowed if and only if e = 0.

Proof. The equation β = d− α · a is equivalent to C ·H = d. Assume that it holds;

it suffices to determine the possible values of α. From the genus formula,
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pa(αD + βF ) = (α− 1)(β − 1)−
(
α

2

)
δ

= (α− 1)(d− αa− 1)− 1

2
(α− 1)αδ

=
1

2
(α− 1)(2d− 2− α(2a+ δ))

=
1

2
(α− 1)(2d− 2− α(r − 1))

Regarding this expression as a quadratic function of a real variable α, notice that

the maximum occurs at α = d−1
r−1

+ 1
2

= m+ e
r−1

+ 1
2
. Restricting α to integer values,

the maximum occurs at the nearest integer, or possibly occurs twice if there is a tie

for the nearest integer. Since 0 ≤ e < r − 1, we see that the maximum value occurs

at α = m+ 1 for certain; if e = 0 then the maximum occurs a second time at α = m.

In either case, the maximum genus is

1

2
m(2d− 2− (m+ 1)(r − 1)) = m(d− 1)−

(
m+ 1

2

)
(r − 1)

= m(m(r − 1) + e)−
(
m+ 1

2

)
(r − 1)

=

(
m

2

)
(r − 1) +me

This is the desired genus g, and therefore this value of pa(αD + βF ) occurs when

β = d− α · a and α = m+ 1, or e = 0 and α = m, and in no other cases. �

We now state a theorem about the existence of Castelnuovo Weierstrass points.

For simplicity, we assume that the scroll is balanced, but similar analysis would work

for scrolls of sufficiently low values of δ, given specific values of d and r.
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Theorem 4.20. Suppose that d, r are integers such that d ≥ 2r + 1 and r ≥ 3. Let

S be a balanced scroll, i.e. with δ ∈ {0, 1}, δ ≡ r − 1 mod 2. Let H be any smooth

member of the linear series |D + r−1+δ
2

F |, and p ∈ H any point.

For each divisor class C giving rise to Castelnuovo curves of degree d in Pr, there

is a codimension d subseries of |C| on S, whose general member is a smooth curve

meeting H to degree d at p.

Proof. First consider the case where r − 1 does not divide d − 1. Then by lemma

4.19, any such curve C has class αD + βF , where α and β are as follows.

α = m+ 1

β = d− (m+ 1)a

Therefore we can calculate that

β + 1− αδ = d+ 1− (m+ 1)b

= 2− δ + e+ (m− 1)a

Now, consider the map H0(αD+βF )→ H0(OH(d)). By corollary 4.18 in the case

γ = b, it follows that this map is surjective if 2 − δ + e + (m − 1)a ≥ a, which is

certainly true if δ ≤ 1. So |C| cuts out a complete linear series on H. In particular, a

codimension d linear series within |C| meets H to order d at p, and the general curve

in this series does not contain all of H. Call this linear series L.

It remains to show that the general member of L is smooth. To see this, notice

that L contains a sub series given by taking the complete linear series |C −H| and

adding H to it. Corollary 4.17 implies that |C−H| is base point free (since any base
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points would have to lie on the directrix D), hence any base points of L must lie on

H. In particular, since L also contains members that meet H only at p, the only

base point of L is the point p. Since the general member of |C −H| does not meet

p and p is a smooth point of H, it follows that the generic member of L is smooth

at p. Since p is the only base point, it follows by Bertini’s theorem that the general

member of L is smooth.

Now consider the case where r − 1 divides d − 1. In this case there is a second

divisor class to consider, where α = m. In this case,

β + 1− αδ = d+ 1−mb

= 2 + e+ma

The rest of the analysis is analogous to the previous case. �
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5. Twisted Weierstrass points

Our object in this section is the proof of theorem A. To prove it, we will instead

prove a somewhat more general result, corollary 5.17, which will imply theorem A

when combined with a combinatorial argument (lemma 6.20, proved in section 6).

Corollary 5.17 is a generalized form of the “pointed” Brill-Noether theorem 1.11 to

negative values of ρ. The strength of the resulting bound depends substantially on

some nontrivial combinatorics, which we study separately in section 6.

For this section, we change our vocabulary slightly (compared to section 1) and

discuss “twisted Weierstrass points” rather than linear series. The virtue of this

perspective is that displacement arguments will be easier to visualize (used extensively

in section 6), will immediately give linear series that are guaranteed to be complete,

and will possess an intriguing duality property (which we do not exploit in this thesis,

but will be useful in forthcoming work).

As discussed in section 1, every point p on a smooth curve C determines a numerical

semigroup called the Weierstrass semigroup of the point; it consists of those integers

n such that C has a rational function of degree n whose only pole is at p. For all but

finitely many points on a given curve C, this semigroup is S = {0, g + 1, g + 2, · · · };

the other points are called Weierstrass points. We will consider a generalization of

this concept, allowing sequences S that do not necessarily contain 0 (the special case

0 ∈ S will be precisely the same thing as a Weierstrass semigroup).

Let C be a smooth curve, L a degree 0 line bundle on C, and p ∈ C a point. The

twisted Weierstrass sequence of the triple (C,L, p) is the following set of nonnegative

integers.

S(C,L, p) = {n ∈ Z≥0 : h0(L(np)) > h0(L((n− 1)p))}

In other words, the twisted Weierstrass sequence is the set of possible pole or-

ders at p of rational sections of L that are regular away from p. In the special case

L = OC , the twisted Weierstrass sequence is the classical Weierstrass semigroup. By
77



the Riemann-Roch formula, the complement of S has precisely g elements, where g

is the genus of C. If twisted Weierstrass sequences are given the obvious partial or-

dering, then they are upper semi-continuous in families; therefore the general twisted

Weierstrass sequence is simply

S = {g, g + 1, g + 2, · · · }.

A triple (C,L, p) with a different sequence is called a twisted Weierstrass point. We

generalize the notation WS (denoting the moduli of Weierstrass points) as follows.

Definition 5.1. Given a set S ⊆ N with |N\S| = g, let W̃S denote the moduli stack

of triples (C,L, p), where C is a smooth curve, L is a line bundle of degree 0 and

p ∈ C, such that S(C,L, p) = S. LetWS denote the module of triples (C,L, p) where

S(C,L, p) ≤ S (element by element, when the elements of both are sorted).

This is a mild abuse of notation since, in the case 0 ∈ S, we previously definedWS

as a substack of Mg,1, not of the moduli stack of pointed curves with choice of line

bundle. However, the two definitions give stacks which are isomorphic (in the latter

definition, the line bundle would always be OC), so this will not create any issues.

We can also identify WS with a Brill-Noether variety, by truncating the sequence

S at some degree d ≥ 2g − 1.

WS
∼= GS∩{0,1,2,··· ,d}g

(C,L, p) 7→ (C, p, |L(dp)|)

Remark 5.2. Going in reverse, a Brill-Noether variety GTg can be identified with a

locus of twisted Weierstrass points as long as d ≥ 2g − 1 and |T | = d + 1 − g. This

is because these constraints guarantee that (C, p, L) ∈ GTg is a complete linear series,
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and for all n ≥ 0 the complete linear series of L(np) has no gaps in its vanishing

sequence besides those already visible in T .

We can and will describe a twisted Weierstrass sequence using the (equivalent) data

of a partition. Namely, the twisted Weierstrass partition P (C,L, p) is given by the

multiset {(n+ g)− sn} (restricted to positive entries), where the twisted Weierstrass

sequence is s0 < s1 < s2 < · · · . It will often be convenient to fix the partition P and

vary the genus g (producing a family of Weierstrass sequences, each a translation of

any other). For this reason, we introduce the following notation.

Definition 5.3. If P is a partition, the elements of P will be denoted P0, P1, P2, · · · , P`,

where P0 ≥ P1 ≥ · · · ≥ P` ≥ 1. For all k > `, Pk will be defined to be 0. Let |P |

denote
∑∞

k=0 Pk.

Definition 5.4. If P is a partition, and g is any integer with g ≥ P0, let SP,g denote

the set of integers

SP,g = {g + k − Pk : k ≥ 0},

and let

Wg(P ) =WSP,g
.

One convenient aspect of working with partitions rather than sequences is the Brill-

Noether dimension estimate, given by identifying WS with a Brill-Noether variety,

takes a particularly simple form.

(5.1) dim(C,L,p) W̃g(P ) ≥ (4g − 2)− |P |

As usual, a point (C,L, p) ∈ W̃g(P ) where equality holds in 5.1 is called a dimen-

sionally proper point.
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g g (g − d+ r)

(r + 1)

Wg(P ) ∼=Mg,1 Wg(P ) ∼= {Weierstrass points} Wg(P ) ∼=Wr
g ×Mg Mg,1

Figure 4. Three examples of partitions and the geometric interpre-
tation of Wg(P ).

Example 5.5. Let P = (g). Then 0 ∈ SP,g, and (C,L, p) ∈ W̃g(P ) if and only if

h0(L) = 1 and h0(L(gp) = 1). This is true if and only if L = OC and p is not a

Weierstrass point. So W̃g(P ) is isomorphic to the complement inMg,1 of the locus of

Weierstrass points, and Wg(P ) ∼=Mg,1. Therefore the local dimension at each point

is (3g − 2) = (4g − 2)− |P |, so every point is dimensionally proper. C

Example 5.6. Let P = (g 1). Then W̃g(P ) consists of triples (C,L, p) such that

h0(L) = 1, h0((g−1)p) = 1, and h0(gp) = 2. In other words, this is the locus inMg,1

of simple Weierstrass points. This is étale-locally isomorphic to Mg, so every point

has local dimension (3g− 3) = (4g− 2)− |P |, so all points are dimensionally proper.

C

We will now study twisted Weierstrass points with the particular type of partition

that will be relevant to theorem A. Let P = (mn) (i.e. the number m occurs n times).

This partition corresponds to the following twisted Weierstrass sequence.

S = {g−m, g−m+1, · · · , g−m+n−2, g−m+n−1, g+n, g+n+1, g+n+2, · · · }

Then (C,L, p) ∈ W̃g(P ) if and only if the following conditions hold.

• h0(L((g −m− 1)p)) < h0(L(g −m)p) = 1

• h0(L(g −m+ n− 1)p) = h0(L(g + n− 1)p) = n
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These conditions are equivalent to saying that L′ = L((g+n−1)p) is a line bundle

of degree (g−m+ n− 1) with h0(L′) = n, such that p is not a ramification point for

either the complete linear series |L′| or its dual |ωC ⊗ L′∧|. In particular, both |L′|

and |ωc ⊗ L′∧| are separable linear series.

Since any separable linear series has a finite number of ramification points, this

means that for any line bundle M on C of degree d = (g − m + n − 1) and rank

r = (n − 1), the triple (C,M(−dp), p) is a point of W̃g(P ) for all but finitely many

points p ∈ C. The upshot of this is the following.

Lemma 5.7. Let g, d, r be integers, and P be the partition ((g − d + r)r+1). Then

there is a map

f : W̃g(P ) → G̃r,sep
g

(C,L, p) 7→ (C, |L(dp)|)

which is surjective onto the open set {|L| : L∧ is also separable}, and whose fiber

over any point (C,L) ∈ G̃rg is isomorphic to C with finitely many punctures.

Notice that, in the notion of the lemma, |P | = (r + 1)(g − d + r) = g − ρ(g, d, r).

It follows from this that the map f in the lemma sends dimensionally proper points

to dimensionally proper points.

Corollary 5.8. The stack G̃r,sep
g has a dimensionally proper component if and only

if W̃g(P ) has a dimensionally proper component.

Remark 5.9. Notice that twisted Weierstrass points have a duality property: namely

if P ∗ is the dual partition of P (that is, P ∗n = |{m : Pm > n|), then W̃g(P ) ∼= W̃g(P
∗),

via the map (C,L, p) 7→ (C, ωC(−(2g − 2)p) ⊗ L∧, p). This duality is reflected, for

example, in the two perspectives by which one typically studies classical Weierstrass

points: in terms of pole order of rational functions or in terms of ramification of the

canonical series.
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Question 5.10. Let µ(P, g) be the maximum codimension of a component of Wg(P )

(or −∞ if there are none). When is µ(P, g) < |P |? Is there a purely combinatorial

description of which partitions P and integers g give strict inequality?

Another version of this question, which will be slightly more convenient for our

purposes, is the following.

Question 5.11. Let γ(P ) denote the minimum genus g such that Wg(P ) has a

dimensionally proper point. Can γ(P ) be determined (or bounded) by a combinatorial

procedure?

We will define in section 6 a function δ(P ) of partitions such that g ≥ 1
2
(|P |+δ(P )).

Bounding this function will give bounds on the function γ(P ) described above. In

particular, suitable bounds of γ(P ) for “box-shaped” partitions will give theorem A.

5.1. Displacement of twisted Weierstrass sequences. We will prove theorem A

using the displacement lemma 2.15. The proof will inductively construct dimension-

ally proper twisted Weierstrass points, with the twisted Weierstrass partition growing

at each step until eventually reaching a box-shaped partition.

The inductive steps will consist of displacing a twisted Weierstrass point of genus

g across an elliptic curve to obtain a twisted Weierstrass point of genus g + 1. We

illustrate this process in an example.

Example 5.12. Suppose that P = (6, 5, 2), and we have a dimensionally proper

point (C, p,L) of W̃g(P ), for some g. This corresponds to a point of x ∈ G̃Sg , where

d is chosen to be at least 2g, and S = SP,g ∩ {0, 1, · · · , d}.

p

C
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An elliptic curve with two marked points (one of which is identified with p) can be

glued to C to produce a genus g+ 1 curve of compact type. Under certain conditions

(analyzed by the displacement lemma), a dimensionally proper limit linear series can

be constructed on the new reducible curve such that, when the result is smoothed, it

will correspond to a point of W̃g+1(P ′) for some modified partition P ′.

p

C E

q

The new partition shown in this picture, namely (6, 6, 3), can indeed by obtained

from (6, 5, 2) from this procedure. This follows from the displacement lemma 2.15.

C

The following definition will make precise which sorts of modifications of partitions

can be accomplished in this way. Recall that W̃g(P ) can be identified with a Brill-

Noether variety GS(P,g,d)
g for any d ≥ 2g − 1, where S(P, g, d) = {g + k − Pk : k =

0, 1, · · · , d − g}. Meanwhile, W̃g+1(P ′) can be identified with GS(P ′,g+1,d)
g for any

d ≥ 2g+1. Observe that |S(P, g, d)| = d−g+1, while |S(P ′, g+1, d)| = d−g. Then,

in the language of section 2, the construction in the example above will successfully

give a dimensionally proper point ofWg+1(P ′) as long as, for some d ≥ 2g, (S(P, g, d) :

S(P ′, g + 1, d + 1)) is 1-valid. We will actually required that the pair is strictly 1-

valid, to obtain slightly stronger results. Lemma 2.15 actually shows that assuming

P ≤ P ′, the value of g does not matter, as long as g ≥ P0 and g ≥ P ′0 (so that all

elements of both sequences are nonnegative). Therefore the following is well-defined.

Definition 5.13. Let P, P ′ be two partitions with P ≤ P ′ and |P ′| ≤ |P | + 2.

Say that P is linked to P ′ if for all g ≥ max{P0, P
′
0}, there exists arbitrarily large
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integers d such that (S(P, g, d) : S(P ′, g + 1, d+ 1)) is strictly 1-valid. In addition, if

|P ′| − |P | = k, we say that P and P ′ are k-linked.

By lemma 2.16, there are precisely three situations where P can be linked to P ′,

given that P ≤ P ′. These are equivalent, respectively, to being 0−, 1−, or 2-linked.

• 0-linked: P = P ′.

• 1-linked: |P ′| = |P |+ 1.

• 2-linked: There are exactly two indices i such that P ′i = Pi + 1. For all other

indices j, P ′j = Pj+1. The arithmetic progression generated by {Pi−i : P ′i =

Pi + 1} is disjoint from the set {Pj − j : Pj = P ′j and Pj < Pj−1} and meets

the set {Pj − j − 1 : Pj = P ′j and Pj > Pj+1} only at the generators of the

arithmetic progression.

We will give a slightly different definition of “linked” in section 6; it is easy to

verify that the characterization above is equivalent to the definition given there.

The following lemma follows immediately from definition 5.13.

Lemma 5.14. Suppose that P ≤ P ′ and P is k-linked to P ′, where k ≤ 2. For any g,

if W̃g(P ) has a dimensionally proper point, then W̃g+1(P ′) also has a dimensionally

proper point.

In addition, suppose that W̃g(P ) has a dimensionally proper point, with local di-

mension equal to min(0, g − |P |) in its fiber over Mg,1. If either

• g − |P | ≤ 0 and P is either 1-linked or 2-linked to P ′, or

• g − |P | ≥ 0 and P is either 0-linked or 1-linked to P ′,

then W̃g+1(P ′) has a dimensionally proper point, with local dimension equal to the

minimum of 0 and g − |P ′| in its fiber over Mg,1.

Definition 5.15. Let P be any partition. Define the displacement distance of P ,

denoted d(P ), to be the minimum value d such that there is an increasing sequence
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of partitions 0 = P0 < P1 < · · · < Pd = P such that any two adjacent partitions in

this sequence are k-linked for some k ≤ 2.

It is obvious from the definition that

1

2
|P | ≤ d(P ) ≤ |P |.

In fact, we will see in section 6 that in many cases, the value of d(P ) is much closer

to the lower bound. Therefore we make the following definition.

Definition 5.16. The displacement difficulty δ(P ) of a partition is

δ(P ) = 2d(P )− |P |.

This terminology allows us to state the following corollary, which we will use to

prove theorem A.

Corollary 5.17. Let P be any partition. For all integer g ≥ 1
2
(|P |+ δ(P )), the stack

W̃g(P ) has a dimensionally proper component X, such that X

• dominates Mg,1 if g − |P | ≥ 0, and

• is generically finite over Mg,1 if g − |P | ≤ 0.

Proof. Immediate from induction on lemma 5.14. �

The machinery above can now be used to prove the first main theorem stated in

section 1. We reproduce the statement here for convenience.

Theorem A. Suppose that g, d, r are positive integers with

0 > ρ(g, d, r) ≥ − r

r + 2
g + 3r − 3.

If r = 1 or g − d + r = 1, then Grg is empty. Otherwise Grg has an irreducible

component of dimension dimMg + ρ, whose image in Mg has codimension equal to

−ρ, and whose general member is complete and separable.
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Proof. The cases r ≤ 1 and g− d+ r ≤ 2 are easy. Therefore assume that r ≥ 2 and

g − d+ r ≥ 3.

By corollary 5.8, it suffices to prove that W̃g(P ) has a dimensionally proper com-

ponent generically finite over Mg,1, where P = ((g − d + r)r+1). By corollary 5.17,

it suffices to prove that g ≥ 1
2
((r + 1)(g − d + r) + δ(P )). For convenience, denote

(g − d + r) by a and (r + 1) by b. Then the desired inequality is g ≥ 1
2
(ab + δ(ab)).

We will prove the following lemma in section 6.

Lemma 6.20. Let P be the partition (ab), i.e. the partition of the number ab into b

equal parts, where a, b ≥ 2. Then δ(P ) ≤ a+ 3b− 5.

Therefore is suffices to show that g ≥ 1
2
(ab + a + 3b − 5). We have assuming the

following.

ρ(g, d, r) ≥ − r

r + 2
g + 3r − 3

g − ab ≥ −b− 1

b+ 1
g + 3b− 6

2b

b+ 1
g ≥ ab+ 3b− 6

g ≥ 1

2
(a+ 3)(b+ 1)− 6 · b+ 1

2b

2g ≥ (a+ 3)(b+ 1)− 6− 6

b

= ab+ a+ 3b− 3− 6

b

The result now follows, since we assumed that b ≥ 3. �
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6. Displacement difficulty of partitions

This section is almost entirely self-contained and combinatorial. The purpose is

to provide the necessary combinatorial analysis for theorem A, and to formulate

and discuss a purely combinatorial problem (problem 6.6) that can generalize that

theorem to the case of pointed Brill-Noether theory (that is, moduli of linear series

with specified ramification) as well as improve the lower bound on ρ in theorem A.

After formulating problem 6.6, the next four subsections will study it in four special

cases to illustrate some of the interesting behavior that occurs. Of these, only the

fourth subsection (on rectangular partitions) is needed for theorem A; the others

serve mainly to illustrate problem 6.6, as well as to serve as a foundation for future

work that may improve theorem A.

We will use the following convention in this section: an arithmetic progression will

mean a proper subset Λ ⊂ Z such that Λ−Λ is closed under addition. In particular,

Λ may be empty or have a single element, but it cannot be all of Z. Also, we adopt

the following notational conventions: for a partition P , the partition elements are

denoted P0 ≥ P1 ≥ · · · ≥ Pn, and Pk is defined to be 0 for k > n and ∞ for k < 0.

Definition 6.1. Let P be a partition and Λ an arithmetic progression. Then define

the upward displacement P+
Λ and downward displacement P−Λ of P with respect to Λ

as follows. For all i ≥ 0,

(P+
Λ )i =

 Pi + 1 if (Pi − i) ∈ Λ and Pi−1 > Pi

Pi otherwise

(P−Λ )i =

 Pi − 1 if (Pi − i− 1) ∈ Λ and Pi+1 < Pi

Pi otherwise

This definition is much easier to understand visually; it is illustrated in figure

5. Here the partition P is represented by its Young diagram, and the arithmetic
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P = (8, 7, 1, 1, 1)

P−Λ = (8, 6, 1, 1) P+
Λ = (9, 7, 2, 1, 1)

Figure 5. An example illustrating the definition of displacement.
Here Λ = {2 mod 3}.

progression Λ is represented by an evenly spaced sequence of diagonal lines, whose

x-intercepts correspond to the values of Λ. Then the two displacements are obtained

by finding all places where the line of Λ meet the corners of P , and either “turning

the corners out” (in the case of P+
Λ ) or “turning the corners in” (in the case of P−Λ ).

Note that, by these definitions, there are always two inward corners that are not

immediately visible in the Young diagram: one at the end of the first row, and one

at the end of the first column.

Observe that if P ′ is any other partition such that P−Λ ≤ P ′ ≤ P+
Λ , then the upward

and downward displacements of P ′ are the same as those of P (with respect to Λ).

So displacement can be regarded as a sort of projection to the nearest partition that

is stable with respect to the given arithmetic progression.
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We will say that a partition P1 links to a partition P2 (or that P1 and P2 are linked,

where it is understood that the smallest partition links to the larger) if there is an

arithmetic progression Λ (proper but possibly empty or singleton) such that P2 is

the upward displacement of P1 and P1 is the downward displacement of P2. Note

that this implies that P1 is its own downward displacement and P2 is its own upward

displacement. Say that P1 and P2 are k-linked if they are linked and |P2| − |P1| = k.

It is easy to verify that if P1, P2 are any two partitions with P1 ≤ P2, then P1

can be connected to P2 by a sequence of 1-linked partitions. Indeed, the arithmetic

progressions can be taken to be singletons.

Example 6.2. Consider the partition (4, 4, 3, 1), shown by the following Young dia-

gram.

Remember that we consider the first row and first column to have inward corners at

their ends, so it may be helpful to extend the axes when drawing the Young diagram

to make these visible.

This partition is 0-linked to itself. It is 1-linked to 4 partitions (one for each inward

corner).
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There are therefore
(

4
2

)
possible choices of two boxes to add. Of these, three of

them give 2-linked partitions.

The other three do not give valid displacements, because the arithmetic progression

of slope-one lines determined by the added squares meets at least one other corner

of the partition (shown with bold lines).

C

For reasons related to our intended application, we are particularly interested in 2-

linked partitions. More specifically, we are interested in partitions that can be joined

by a path of 1-linked and 2-linked pairs, using as few 1-linked pairs as possible.

Therefore make the following definition, which corresponds to definition 5.16 from

section 5.

Definition 6.3. Call a sequence of partitions of increasing sum valid if any two

adjacent partitions in the sequence are 1-linked or 2-linked. Define the displacement

distance d(P ) to the smallest value d such that there is a sequence 0 = P0 < P1 <

· · · < Pd = P of 1− or 2−linked partitions.

Define the difficulty δ(P ) of a partition P to be 2d(P )− |P |.
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The difficulty δ(P ) quantifies how much the easy lower bound 1
2
|P | ≤ d(P ) fails to

be sharp. In practice, δ(P ) tends to be quite low for many types of partitions.

Example 6.4. Consider the 4 by 6 rectangular partition. A computer search reveals

that δ(P ) = 6. We computed this in less than a second using the Java code provided

in the appendix (in particular, by running the method difficulty, which computes

the shorted valid path by dynamic programming). One possible valid sequence, with

only 6 one-links, is shown below. There are, in fact, 882 such paths (this can be

found with the numPaths method in the code in the appendix).
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Remark 6.5. It is apparent from the definition that δ(P ) = δ(P ∗) where P ∗ is the

conjugate partition. This is not surprising, in light of the duality Wg(P ) ∼= W̃g(P
∗)

(see remark 5.9).

The function δ is our object of study throughout this section.

Problem 6.6. Find upper bounds for δ(P ), given basic information about the shape

of P .

The particular case needed for our application is that of a “box-shaped” partition,

but good bounds on difficulty of boxes will necessarily depend on bounds for the

intermediate partitions. Therefore we will discuss some special classes of partitions

to illustrate some of the phenomena that occur. The following subsections will each

deal with a particular “shape” of partition, as summarized below.

• Subsection 6.1 considers those partitions with a very long bottom row (i.e.

with one very large element). More specifically, we give an almost complete

classification of those partitions which satisfy d(P ) = P0. These partitions

turn out to correspond to primitive numerical semigroups.

• Subsection 6.2 computes the displacement difficulty of partitions with only two

parts. This analysis is related to certain combinatorial games. We show when

the two rows are nearly equal in size (more precisely, when the difference in

their sizes is smaller than the square root of the length of the shorter row) then

the displacement difficulty is asymptotic to
√
|P |, while when the difference

of the sizes of the two rows is large enough, this difference gives the main term

of an expression for δ(P ).

• Subsection 6.3 considers the displacement difficulty of staircase partitions

(n, n− 1, · · · , 2, 1). These all have displacement difficulty at most 3.
92



• Subsection 6.4 considers the partitions that are relevant to our main theorem

A, namely rectangular partitions. We give a relatively weak upper bound on

the difficulty of such partitions, and provide experimental evidence that this

bound should be able to be substantially improved.

6.1. Partitions with a long bottom row. The partitions we consider in this sec-

tion are those which come up (implicitly) in Eisenbud and Harris’s work on primitive

Weierstrass points [EH87]. Indeed, their theorem will follow from the main result of

this section, plus lemma 5.17.

We begin with the following easy observation.

(6.1) d(P ) ≥ P0

This follows because the total number of terms in a valid sequence is at least P0

(the bottom row can shrink by at most 1 square at at time).

In this subsection, we will give an almost complete classification of those partitions

where equality holds, i.e. where each link removes exactly one square from the bottom

row of the young diagram (and succeeds in removing all other squares in the process).

Recall that a numerical semigroup is a cofinite subset S ⊆ N containing 0, and

a semigroup is primitive if the sum of any two positive elements exceeds the largest

element of the complement. The genus of S is |N\S|, and the weight of S is∑
(N\S) −

(
g+1

2

)
. A semigroup S = {0 = s0, s1, s2, · · · } gives rise to a partition

given by Pk = (g + k − sk), and P uniquely determines S (since g = P0).

For convenience, we introduce the following terminology.

Definition 6.7. A partition P is primitive if P0 − P ∗0 ≥ 2P1 − 2. The weight of a

partition is wt(P ) = |P | − P0.

Figure 6 gives a visual explanation of the condition that a partition is primitive.
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equally spaced

Figure 6. Visual representation of the primitivity condition. Draw
diagonals through the corners at the ends of the first two rows of the
Young diagram, and also a third diagonal, equally spaced from the
second. Then the rest of the Young diagram must fit below this third
diagonal.

The reason for these terms is that a partition P arises from a primitive semigroup

if and only if P is primitive, and the weight of a semigroup is always equal to the

weight of the partition that it determines.

The partial classification we obtain is the following.

Proposition 6.8. Suppose that P is a partition.

(1) If d(P ) = P0, then P arises from a primitive semigroup of genus g and weight

at most g − 1.

(2) If P arises form a primitive semigroup of weight at most g−2, then d(P ) = P0.

This fact was implicitly proved and used by Eisenbud and Harris [EH87] (using

different terminology), who showed the existence of dimensionally proper Weierstrass

points with primitive semigroups of weight less than g− 2. The discrepancy between

g − 1 and g − 2 (which makes this proposition not a complete classification of the

equality cases d(P ) = P0) is why the existence of weight g−1 Weierstrass semigroups

was unknown until the work of Komeda [K91].

Proof. The result is obvious if P1 = 0, since any such partition is primitive, has weight

0, and has d(P ) = P0 = |P |. Next consider the case P1 = 1. In this case the partition
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is simply a “hook,” and it is obvious in this case that the following conditions are

equivalent.

• d(P ) = P0.

• P ∗0 ≤ P0.

• P is primitive.

• The weight of P is at most P0 − 1.

It remains the prove the proposition in the case P1 ≥ 2. We proceed by induction

on |P |. The base cases for this induction will be the cases where P1 ≤ 1.

Suppose P is a partition with P1 ≥ 2, and that the proposition holds for all

partitions P ′ with |P ′| < |P |.

First we shall prove part 1 of the proposition. Therefore assume that d(P ) = P0.

We must show that P is primitive of weight at most P0− 1. The fact that the weight

of P is at most P0 − 1 is easy to see directly: each displacement in a valid path to

P must add a square to the bottom row, and can add at most one square above the

bottom row. The first displacement (from the empty partition to a single square) adds

nothing above the bottom row, hence P0 = d(P ) ≥ 1+wt(P ). It remains to show that

P is primitive. Suppose for contradiction that P is not primitive. By the inductive

assumption, there must exist an arithmetic progression Λ such that P+
Λ = P , P−Λ is

a primitive partition with weight at most (P−Λ )0 − 1, and (P−Λ )0 = P0 − 1. Consider

the quantity (P0 − P ∗0 − 2P1 + 2) − ((P−Λ )0 − (P−Λ )∗0 − 2(P−Λ )1 + 2), which is equal

to 1 + (P−Λ )∗0 − P ∗0 + 2(P−Λ )1 − 2P1. If this quantity is nonnegative, then it follows

immediately that P is primitive, from the fact that P−Λ is primitive. The only way that

this expression can be negative is if P1 = (P−Λ )1 + 1, in which case it is equal to −1.

Therefore the only way that P could fail to be primitive is if (P−Λ )0−(P−Λ )∗0−2(P−Λ )1+2

is exactly equal to 0 (so P0 − P ∗0 − 2P1 + 2 = −1), and P is obtained from P−Λ by

adding one square to each of the first two rows. In this case, the progression Λ must be

generated by P0−1 and P1−2. Therefore Λ contains 2(P1−2)−(P0−1) = 2P1−P0−3,
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Figure 7. The only situation where primitivity may fail after dis-
placement, in the proof of theorem 6.8

which is equal to −P ∗0 . It follows that for i = P ∗0 , Pi − i = −P ∗0 ∈ Λ, hence

(P+
Λ )i = Pi + 1 = 1. This contradicts the assumption that P+

Λ = P . Therefore P

must in fact be primitive.

Now we shall prove that part 2 of the proposition holds for P . Therefore assume

that P is primitive of weight at most P0 − 2; we must show that d(P ) = P0.

Let k ≥ 1 be the largest integer such that Pk = P1. Then let Λ be the arithmetic

progression generated by P0−1 and Pk−k−1. The corresponding diagonal lines meet

the Young diagram of P at only two corners, both outward, at the ends of rows 0 and

k (since P is primitive, the next element to the left of Λ, namely 2(Pk−k−1)−(P0−1),

is strictly less than −P ∗0 , and hence meets no corners of P ; see figure 6). Thus

P+
Λ = P and P−Λ differs in exactly two places from P : P0 and Pk are both decreased

by 1. Now, it is immediate that |P−Λ | ≤ 2(P−Λ )0 − 2. It remains to show that

(P−Λ )0 − (P−Λ )∗0 ≥ 2(P−Λ )1 − 2. Since P0 decreased by 1 under the displacement, the

only way that this inequality could fail is if P ∗0 is unchanged, P1 is unchanged, and

the inequality was sharp before, i.e. P0 − P ∗0 = 2P1 − 2.

This would mean that P1 = P2 and the Young diagram meets the third diagonal

in figure 6; see figure 7. But in this case, we would have |P | ≥ P0 + 2P1 + (P ∗0 − 3) =

2P0 − 1, which contradicts the assumption that |P | ≤ 2P0 − 2. Hence P−Λ satisfies
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the hypotheses of the lemma. Also, it is clear that 2P0 − |P | is unchanged and

d(P ) ≤ 1 + d(P−Λ ) = P0, hence d(P ) = P0, completing the induction. �

6.2. Two-row partitions. A second class of partitions for which δ(P ) may be com-

puted quite efficiently (and given an exact asymptotic in closed form) are partitions

with only two rows. Throughout this section, we will use the abbreviated notation

δ(a, b) to denote the difficulty of the partition (a, b), where a ≥ b.

a

b

The simplest such partitions, namely 2×a rectangles, display an intriguing behavior

in the limit.

Proposition 6.9. The displacement difficulty of 2× a rectangles satisfies

lim
a→∞

δ(a, a)√
a

= 2
√
π.

This proposition will be an immediate consequence of proposition 6.12 and theorem

6.14. We also obtain the following more specific (but less asymptotically precise)

statement. It will follow from lemmas 6.15 and 6.16, together with proposition 6.12.

Proposition 6.10. For any positive integers a, b with a ≥ b,

δ(a, b) =


2 ·
⌈

b+1
a−b+1

⌉
+ (a− b)− 2 if a− b ≥

√
b+ 1− 1

C(a, b) ·
√
b+ 1− (a− b)− 4 if a− b <

√
b+ 1− 1

where C(a, b) is a number that satisfies 3.26 ≤ C(a, b) ≤ 4.
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ρn,m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0
3 5 4 3 0 0 0 0 0 0 0 0 0 0 0 0
4 9 8 6 4 0 0 0 0 0 0 0 0 0 0 0
5 11 10 9 8 5 0 0 0 0 0 0 0 0 0 0
6 17 16 15 12 10 6 0 0 0 0 0 0 0 0 0
7 21 20 18 16 15 12 7 0 0 0 0 0 0 0 0
8 29 28 27 24 20 18 14 8 0 0 0 0 0 0 0
9 33 32 30 28 25 24 21 16 9 0 0 0 0 0 0

10 41 40 39 36 35 30 28 24 18 10 0 0 0 0 0
11 47 46 45 44 40 36 35 32 27 20 11 0 0 0 0
12 57 56 54 52 50 48 42 40 36 30 22 12 0 0 0
13 59 58 57 56 55 54 49 48 45 40 33 24 13 0 0
14 77 76 75 72 70 66 63 56 54 50 44 36 26 14 0
15 81 80 78 76 75 72 70 64 63 60 55 48 39 28 15
16 101 100 99 96 95 90 84 80 72 70 66 60 52 42 30
17 107 106 105 104 100 96 91 88 81 80 77 72 65 56 45
18 117 116 114 112 110 108 105 104 99 90 88 84 78 70 60
19 131 130 129 128 125 120 119 112 108 100 99 96 91 84 75
20 149 148 147 144 140 138 133 128 126 120 110 108 104 98 90

Figure 8. Some values of ρn,m. The number n is the vertical axis.

More precisely, the lower bound for C(a, b) that we will obtain is
√

32/3. By propo-

sition 6.9, the limit of C(a, a) as a grows to infinity is 2
√
π, which is approximately

3.55.

We can state the exact values of δ(a, b) using the following notation.

Definition 6.11. For any two integers m,n, define an integer ρm,n recursively as

follows.

ρn,m =



0 if m > n

m if m = n

m ·
⌈
ρn,m+1 + 1

m

⌉
if m < n

For example, figure 8 shows the values ρn,m for n ≤ 20 and m ≤ 15.

Using this notation, we can exactly express the difficulty of 2-row partitions as

follows.
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Proposition 6.12. The difficulty of any two-part partition (a, b) is

δ(a, b) = 2 ·min{n : ρn,a−b+1 ≥ b+ 1} − (a− b)− 2.

Before proving proposition 6.12, we briefly remark on the ideas behind the proof.

One can prove that if one is looking for the shortest valid sequence from (a, b) to

(0, 0), then

• It is always better to take a two-link if it is available.

• If a two-link is not available, then it is better to remove a square from the top

row rather than the bottom row.

It would be possible to write a proof of proposition 6.12 along these lines. For the

sake of brevity, however, we give a proof by induction instead, which may seem more

opaque. Nevertheless, the inductive proof does reveal these two “strategic” facts on

a close reading. The proof of proposition 6.12 uses the following lemma.

Lemma 6.13. For any positive integer m and nonnegative integer k, let µ(m, k) =

min{n : ρn,m ≥ k}.

(1) For all k, µ(2, k) = µ(1, k + 1).

(2) For all m, k, µ(m, k) + 1 ≥ µ(m+ 1, k + 1).

(3) For all m, k such that m divides k, µ(m, k + 1) = µ(m+ 1, k).

(4) For all m, k such that m does not divide k, µ(m, k) = µ(m, k + 1).

(5) For all m, k, µ(m, k + 1) ≤ µ(m+ 1, k).

Proof. We consider each claim in turn.

(1) For all n, ρn,1 = ρn,2 + 1. The result follows immediately.

(2) This statement is equivalent to saying that if ρn,m ≥ k then ρn+1,m+1 ≥ k+ 1.

In other words, this amounts to saying that ρn,m + 1 ≤ ρn+1,m+1. This is

obvious for m > n, so assume m ≤ n. We can prove this statement by

induction on n − m. For n = m it follows from the definition of ρn,n. Now
99



suppose that m < n and ρn,m+1 + 1 ≤ ρn+1,m+2. Then ρn,m is the unique

multiple of m in the set {ρn,m+1 +1, ρn,m+1 +2, · · · , ρn,m+1 +m}. On the other

hand, ρn+1,m+1 is a multiple of (m+1) than is strictly larger than ρn,m+1. Since

ρn,m+1 itself is a multiple of (m+1), it follows that ρn+1,m+1 ≥ ρn,m+1+(m+1).

It follows that ρn+1,m+1 ≥ ρn,m + 1, completing the induction.

(3) The statement that µ(m, k + 1) = µ(m+ 1, k) is equivalent to the statement

that for all n, ρn,m ≥ k + 1 if and only if ρn,m+1 ≥ k. On the one hand, ρn,m

is always strictly greater than ρn,m+1. Conversely, if ρn,m+1 < k, then k is a

multiple of m strictly larger than ρn,m+1, hence ρn,m ≤ k. The desired result

follows by contrapositive.

(4) This follows since ρn,m is always a multiple of m, therefore ρn,m ≥ k if and

only if ρn,m ≥ k + 1.

(5) This follows because if ρn,m+1 ≥ k, then ρn,m ≥ k + 1.

�

Proof of proposition 6.12. We will use the notation µ(m, k) defined in lemma 6.13.

Therefore we wish to show that

δ(a, b) = 2µ(a− b+ 1, b+ 1)− a+ b− 2.

First, consider the case b = 0. In this case, δ(a, 0) = a, and µ(a − b + 1, b + 1) =

µ(a+ 1, 1) = a+ 1. The result follows.

Now assume that b > 0. We will proceed by induction on a+ b. The base cases are

provided by the case b = 0. Therefore assume that the result holds for all a′, b′ such

that a′+ b′ < a+ b. There are three possible partitions smaller than (a, b) that could

link to (a, b): these are (a− 1, b) (possible if and only if a > b), (a, b− 1) (possible if

and only if b > 0, which we have assumed) and (a− 1, b− 1) (possible if and only if
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0 < b < a and (a− b+ 1) - b). By the inductive hypothesis, these partitions (if they

exist) have the following difficulties.

δ(a− 1, b) = 2µ(a− b, b+ 1)− a+ b− 1

δ(a, b− 1) = 2µ(a− b+ 2, b)− a+ b− 3

δ(a− 1, b− 1) = 2µ(a− b+ 1, b)− a+ b− 2

We consider three cases.

First, suppose that a = b. In this case, there is only one possible downward

displacement; we have δ(a, a) = δ(a, a − 1) + 1 = 2µ(2, a) − 2. By lemma 6.13 part

1, this is equal to 2µ(1, a+ 1)− 2, as desired.

Next, suppose that a > b and that (a− b+ 1) divides b. Then it is not possible to

displace down to (a− 1, b− 1). Therefore

δ(a, b) = min{δ(a− 1, b), δ(a, b− 1)}+ 1

= min{2µ(a− b, b+ 1)− a+ b, 2µ(a− b+ 2, b)− a+ b− 2}

= 2 ·min{µ(a− b, b+ 1) + 1, µ(a− b+ 2, b)} − a+ b− 2.

By the third part of lemma 6.13, µ(a− b+ 1, b+ 1) = µ(a− b+ 2, b). Therefore

δ(a, b) = 2 min{µ(a− b, b+ 1) + 1, µ(a− b+ 1, b+ 1)} − a+ b− 2.

By the second part of lemma 6.13, µ(a − b, b + 1) + 1 ≥ µ(a − b + 1, b + 2), and

µ(a − b + 1, b + 2) ≥ µ(a − b + 1, b + 1) by definition. Hence in fact δ(a, b) =

2µ(a− b+ 1, b+ 1)− a+ b− 2, as desired.
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Finally, consider the case that a > b > 0 and (a − b + 1) - b. Then all three

displacements are available, and therefore

δ(a, b) = min{δ(a− 1, b) + 1, δ(a, b− 1) + 1, δ(a− 1, b− 1)}

= 2 ·min{µ(a− b, b+ 1) + 1, µ(a− b+ 2, b), µ(a− b+ 1, b)} − a+ b− 2.

Therefore it suffices to show that

min{µ(a− b, b+ 1) + 1, µ(a− b+ 2, b), µ(a− b+ 1, b)} = µ(a− b+ 1, b+ 1).

By the fourth part of lemma 6.13, µ(a− b+ 1, b) = µ(a− b+ 1, b+ 1). By the fifth

part of lemma 6.13, µ(a− b+ 2, b) ≥ µ(a− b+ 1, b+ 1). Finally, µ(a− b, b+ 1) + 1 ≥

µ(a− b+ 1, b+ 2), and this in turn is at least µ(a− b+ 1, b+ 1). It follow that this

minimum is indeed equal to µ(a− b+ 1, b+ 1), and the result follows. �

For example, to compute the difficulties δ(a, a) of two-row rectangles, it suffices to

compute the first column of figure 8. The numbers ρn,1 (the first column of figure

8) form a sequence 1, 3, 5, 9, 11, 17, · · · that determines the displacement difficulty

δ(a, a): the number ρn,1 is the minimal number a such that δ(a, a) ≥ 2n. The online

encyclopedia of integer sequences [OEIS] reveals that the sequence {ρn,1}n≥1 is called

the Sieve of Tchoukaillon, or the Smarandache consecutive sieve. More details can

be found in [BL95]. This sequence was studied in various guises by several authors;

the strongest asymptotic result is the following.

Theorem 6.14 (Broline and Loeb [BL95]). As n→∞, ρn,1 = n2/π +O(n).

This result was previous obtained with a weaker error term by Erdös and Jabotin-

sky [EJ58], who proved that ρn,1 = n2/π+O(n4/3) and conjectured the stronger result

proved by Broline and Loeb. We observe that Broline and Loeb study a sequence
102



defined in a completely different way (in terms of a certain solitaire game) that is not

obviously equivalent to the definition we give above, but it is an elementary exercise

to show that they are the same sequence.

A careful study of Broline and Loeb’s analysis would give more precise information

about ρn,1 for specific values of n (and hence about δ(a, a) for specific values of a),

and it has not escaped our notice that a similarly explicit analysis could be carried

out on the table ρn,m as a whole. Rather that doing this precise analysis, however, we

will content ourselves for the time being with some bounds sufficient for proposition

6.10.

Lemma 6.15. For any integers n,m such that m ≥ n+1
2

,

ρn,m = m(n−m+ 1).

Proof. Let r(n,m) = m(n−m+1) = (n+1
2

)2− (m− n+1
2

)2. Clearly r(n, n) = n. Also,

m divides r(n,m) for all m,n, and r(n,m) − r(n,m + 1) = 2m − n. So as long as

n+1
2
≤ m ≤ n, 1 ≤ r(n,m)− r(n,m+ 1) ≤ m. The result follows. �

Lemma 6.16. For any positive integers n,m such that m ≤ n+1
2

,

1

4
(n+ 1)2 ≤ ρn,m ≤

3

8
(n+ 1)2.

Note that these bounds do not depend on m. They could be improved to depend

on m, but it will be slightly cleaner this way.

Proof. Let ` =
⌈
n+1

2

⌉
. The previous lemma shows that ρn,` =

⌊
(n+1)2

4

⌋
. We have

m ≤ `, therefore ρn,m ≥ ρn,`. In case n is even, we have strict inequality m < `,

and thus ρn,m < ρn,`. This gives the first inequality. For the second, observe that

ρn,m ≤ ρn,1 ≤ ρn,` + (` − 1) + (` − 2) + · · · + 1 = ρn,` +
(
`
2

)
. If n is even, this upper

bound is 3
8
(n2 + 2n), while if n is odd this upper bound is 3

8
n2 + 1

2
n + 1

8
. In both

cases, we can conclude that ρn,1 ≤ 3
8
(n+ 1)2 to obtain the second inequality. �
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Proposition 6.10 follows immediately from these two lemmas.

6.3. Staircase partitions. A natural class of partitions, which turn out to have

extremely low displacement difficulty, are staircase partitions, of the form

Stn = (n, n− 1, · · · , 2, 1).

For example, the width-11 staircase has displacement difficulty equal to 2 (which

will follow from our results). Figure 9 shows one valid path with only 2 one-links

(there are many others).

Staircase partitions are potentially of interest as intermediate stages in displace-

ment to other partitions, especially given their very low displacement difficulty.

One can find by explicit enumeration the displacement difficulties for staircases

with bottom row up to size 11. These numbers are shown in figure 10. These difficul-

ties were computed using the difficulty method from the Java code in the appendix;

the computation took several minutes on a MacBook Pro (2.7 GHz processor).

In fact, the displacement difficulty of staircases can be determined explicitly.

Proposition 6.17. If n = 1 or n = 2, then δ(Stn) = 1. Otherwise,

δ(Stn) =


2 if n ≡ 0 or 3 mod 4

3 if n ≡ 1 or 2 mod 4

Proof. First, notice that the only partitions for which δ(P ) ≤ 1 are either empty or

have the form P = (n, 1, 1, · · · , 1) (where the number of 1’s is n− 1). Therefore for

all n ≥ 3, δ(Stn) ≥ 2. Also, it is always the case that δ(P ) ≡ |P | mod 2. Since

| Stn | =
(
n+1

2

)
, it follows that δ(Stn) is at least 2 when n ≡ 0 or 3 mod 4, and is at

least 3 when n ≡ 1 or 2 mod 4. Therefore to prove the proposition, it suffices to

show that δ(Stn) ≤ 3 for all n. Since we have seen that this holds for n ≤ 5 by brute

enumeration (figure 10), it suffices to establish the following lemma.
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Figure 9. An optimal valid path for a width-11 staircase. There are
only two one-links.

Lemma 6.18. For all even n, δ(Stn) ≤ δ(Stn−1). For all odd n ≥ 7, δ(Stn) ≤

δ(Stn−4).
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n δ(Stn) Number of optimal valid paths
1 1 1
2 1 1
3 2 2
4 2 4
5 3 84
6 3 1, 276
7 2 1, 072
8 2 499, 076
9 3 49, 006, 368, 136
10 3 958, 752, 905, 866, 440
11 2 842, 920, 611, 868, 327, 240

Figure 10. Displacement difficulties, and the number of optimal valid
paths, for small staircases.

For n even, the n boxes in Stn that are not in Stn−1 can be added in n/2 pairs, all

spaced the same distance apart. It is easy to verify that the arithmetic progression of

slope-1 lines through each pair does not meet the Young diagram in any other points.

This gives the first claim.

The second claim requires a more subtle construction. Figure 11 indicates the

order that boxes should be added to St7 to obtain St11.

This figure is meant to be interpreted as follows: the first three displacements from

St7 consists of adding one 1a block and one 1b block (paired so that the distance

between the two elements of any pair is the same); the order that this is done does

not matter. The next displacement adds 2a and 2b. The next adds 3a and 3b. The

next three add one 4a and one 4b each: again, they are paired so that each pair has

equal distance between its members, and the order does not matter. Continue in this

manner until all the indicated blocks are added. The reader may verify that each of

these displacements is valid.

To generalize this construction to all odd integers n ≥ 7, simply adjust the lengths

of the sequences of 1s, 4s, 6s, and 9s. In general, there with be 1
2
(n − 5) pairs of 1s

and pairs of 4s, and 1
2
(n− 3) pairs of 6s and pairs of 9s. There will always be exactly
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Figure 11. The displacement order to obtain one odd-width staircase
from an another of width four smaller, demonstrated in the case n = 11.

one pair of each of 2, 3, 5, 7, and 8. The reader may verify that this construction will

always give a valid sequence of 2-links from Stn−4 to Stn. �

6.4. Rectangular partitions. Now that we have seen some cases where δ(P ) can be

determined exactly, we proceed to the type of partitions that are relevant to theorem

A. We do not yet have a sharp result for these partitions (or even an exact asymptotic

result), so we will content ourselves with an easy bound. A sharper result should be

possible, and would improve theorem A.

Theorem A requires a bound of the difficulty of “rectangular partitions” ((a)b).

Experimental evidence suggests that such partitions have rather small difficulty when

a and b are both at least 3. Figure 12 shows the displacement difficulties of some

small rectangles, computed by dynamic programming using the difficulty method

from the Java code in the appendix. These values took approximately 5 minutes to

compute using a server in the Harvard math department.

In fact, we also have evidence that it is possible to get very short valid paths by

simply choosing random downward displacements. In figure 13 we show some upper
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2 3 4 5 6 7 8 9 10
2 2 4 4 6 6 6 6 8 8
3 4 5 6 7 6 7 8 7 6
4 4 6 4 6 6 8 4 6 6
5 6 7 6 7 6 5 6 5 4
6 6 6 6 6 6 4 4 4 4
7 6 7 8 5 4 7 4 5 6
8 6 8 4 6 4 4 4 4 4
9 8 7 6 5 4 5 4 5 4

10 8 6 6 4 4 6 4 4 4
11 10 7 6 5 4 5 6 5 4
12 10 6 4 6 4 6 4 4 6
13 10 7 6 5 6 5 6 5 6
14 10 6 4 6 4 4 4 4 4
15 10 5 6 5 4 5 4 5 4

Figure 12. Displacement difficulties of small rectangles.

bounds on the displacement difficulty of larger rectangles. These lower bounds were

found by finding 100 random valid paths from each partition to the empty partition

and taking the minimum length among these, where the random path is chosen by

choosing a random 2-link downward at each step (if one exists), or a random 1-link

if not, until the partition has size at most 10, after which an optimal valid path

is found by brute force enumeration. These values were computed by running the

method depthCharge from the appendix 100 times on each partition, supplying the

argument getCautious=10. The computation took several minutes on a Harvard

math department server.

On the basis of these data, it appears that box-shaped partitions have very low

displacement difficulty, when both sides are at least 3 units long. I previously con-

jectured that such difficulties are bounded by a constant, but this is not the case.

Proposition 6.19 (David Speyer, personal communication). The numbers δ(P ),

where P ranges over all partitions (ab) where a, b ≥ 3, are unbounded.

Nevertheless, we suspect that the growth rate is quite small.
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2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 2 4 4 6 6 6 6 8 8 10 10 10 10 10
3 4 5 6 7 6 7 8 7 6 7 8 7 8 7
4 4 6 6 8 6 8 6 8 8 8 6 8 6 8
5 6 7 8 9 6 5 8 5 6 7 6 5 8 7
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
7 6 7 8 5 4 7 8 5 8 7 8 7 8 5
8 6 8 6 8 4 6 10 6 6 8 4 6 6 6
9 8 7 8 5 6 5 8 7 6 7 6 7 8 7

10 8 6 6 6 8 6 6 6 8 6 8 6 4 8
11 10 7 8 5 6 7 6 7 6 9 6 7 6 5
12 10 8 6 6 6 6 4 6 8 6 6 6 6 8
13 10 9 8 5 6 7 6 7 8 7 8 9 6 7
14 10 8 6 6 6 8 8 6 6 8 8 8 6 8
15 10 7 8 7 6 7 6 7 8 7 8 7 8 5
16 10 8 6 6 6 6 6 4 6 6 4 6 4 6
17 12 9 8 7 8 5 6 7 8 5 6 5 6 7
18 12 8 8 8 6 6 8 4 6 8 4 8 4 6
19 12 7 8 7 6 7 6 7 8 5 6 7 8 5
20 12 8 8 8 6 8 4 6 6 8 6 8 6 6
21 14 7 8 7 6 5 8 5 4 7 6 9 6 5
22 14 8 8 6 6 8 6 6 6 6 8 6 4 4
23 14 9 10 7 6 7 6 7 6 7 6 7 6 5
24 14 10 6 8 6 8 6 4 6 6 4 8 6 6
25 14 9 8 7 6 9 8 7 6 7 8 7 6 7

Figure 13. Upper bounds on displacement difficulties of rectangular
partitions, found by computing lengths of 100 randomly chosen valid
paths from each Partition.

The following lemma gives a very weak bound on difficulty of boxes, but it is

nevertheless strong enough for our theorem A. This bound can certainly be improved.

Lemma 6.20. Let P be the partition (ab), i.e. the partition of the number ab into b

equal parts, where a, b ≥ 2. Then δ(P ) ≤ a+ 3b− 5.

Proof of lemma 6.20. The proof will be by explicit construction of a sequence of

partitions. First consider the case where a is even.

Define the following intermediate partitions: Pk,i = (ak (i + 1
2
a) i) (see figure 14),

for k ≥ 0 and i ∈ {0, 1, · · · , 1
2
a}.
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Pk,1 Pk,i Pk, 1
2
a

Figure 14. The intermediate partitions Pk,i used in the proof of
lemma 6.20, together with the progressions Λk,i. The partition is it’s
own upward displacement for all values of i except possibly one (shown
in the middle).

Let Λk,i denote the arithmetic progression generated by the two diagonals meeting

the outward corners of Pk,i at the ends of rows k and k + 1 (see figure 14). That is,

Λk,i is generated by the elements Pk−k−1 = i+ 1
2
a−k−1 and Pk+1−k−2 = i−k−2.

Then Λk,i = {n : n ≡ i − k − 2 mod (1
2
a + 1)}. Observe that if 1 ≤ i ≤ 1

2
a, then

Λk,i does not meet the other outward-facing corner of the Young diagram (because

Pk−1−(k−1)−1 = a−k 6∈ Λk,i, since the next largest element of Λk,i after i+ 1
2
a−k−1

is i+ a− k and we are assuming that i ≥ 1), so it follows that

(Pk,i)
−
Λk,i

= Pk,i−1 when i > 0.

Now consider the upward displacement. The only inward-turned corner that Λk,i

can meet is the one at the end of the first row of the Young diagram; this corresponds

to the value P0 − 0 = a. From this we can conclude that

(Pk,i)
+
Λk,i

= Pk,i unless k > 0 and a ≡ i− k − 2 mod (
1

2
a+ 1).

For a fixed positive value of k, there is at most one value i ∈ {1, 2, · · · , 1
2
a} such

that the congruence above holds. Therefore the sequence of partitions

Pk,0 < Pk,1 < · · · < Pk, 1
2
a

110



is nearly a valid sequence of partitions; at most one adjacent pair is invalid. By

inserting an intermediate partition at that place (if necessary), we obtain a valid

sequence of partitions with at most two steps increasing the sum by only 1. Therefore

δ(Pk, 1
2
a) ≤ 2+ δ(Pk,0). For k = 0, the original sequence is already valid, so δ(P0, 1

2
a) ≤

δ(P0,0).

Since Pk, 1
2
a = Pk+1,0, it follows from this analysis that

δ(Pb−1,0) ≤ 2(b− 2) + δ(P0,0).

Now, Pb−1,0 ≤ (ab) with |(ab)| − |Pb−1,0| = 1
2
a and |P0,0| = 1

2
a. From this it follows

(by a sequence of displacements along singleton progressions) that

δ((ab)) ≤ a+ 2b− 4 when a is even.

Now, if a is odd, then δ(((a − 1)b)) ≤ a + 2b − 5, and ((a − 1)b) can be linked to

(ab) by a length b sequence of length b. Therefore

δ((ab)) ≤ a+ 3b− 5 when a is odd.

So whether a is even or odd, δ((ab)) ≤ a+ 3b− 5. �
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Appendix: source code

The following java code was used to compute displacement difficulties of partitions,

cited elsewhere in this thesis. This code defines a class Verbatim, with methods which

compute the displacement difficulty via dynamic programming (more precisely, via

recursion with caching).

import java.util.*;

public class Partition {

//Positive partition elements, arranged in nonincreasing order.

private int[] parts;

//Arrays of inward and outward corners, from right to left.

private Corner[] iC,oC;

private int size;

//Constructs a partition from its elements.

//NOTE this constructor is very rarely called directly. Instead,

the lookup method is used to find the "standard" object (to

prevent repetition).

private Partition(int[] parts) {

parts = truncate(parts); //remove terminal zeros

this.parts = parts;

computeCorners(); //Initialize the corner arrays

size = 0;

for (int n : parts) size += n;

}
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//Either constructs a new Partition object from its parts, or else

returns the existing one.

//ALWAYS USE THIS to get Partitions from arrays of their parts.

public static Partition lookUp(int[] parts) {

PNode n = PNode.getNode(parts);

if (n.p != null) return n.p;

n.p = new Partition(parts);

return n.p;

}

//Modify the partition by turning corners in or out. Returns null

if the input is not the right kind of corner.

public Partition turnOut(Corner c) {

int[] newParts;

if (c.y == parts.length && c.x == 0) {

newParts = new int[parts.length+1];

newParts[parts.length] = 0;

}

else {

newParts = new int[parts.length];

}

for (int i=0; i<parts.length; i++) newParts[i] = parts[i];

if (c.y >= 0 && c.y < newParts.length && newParts[c.y] == c.

x && (c.y == 0 || c.x < newParts[c.y-1])) {

newParts[c.y]++;

return lookUp(newParts);

} else {
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System.out.println("Tried to turn out (" + c.x + ","

+ c.y + ") in " + toString());

return null; //Not actually an inward corner

}

}

public Partition turnIn(Corner c) {

int[] newParts = Arrays.copyOf(parts, parts.length);

if (c.y >= 0 && c.y < parts.length && parts[c.y] == c.x+1 &&

(c.y == parts.length-1 || parts[c.y+1] < parts[c.y])) {

newParts[c.y]--;

return lookUp(newParts);

} else {

System.out.println("Tried to turn in (" + c.x + "," +

c.y + ") in " + toString());

return null; //Not actually an outward corner

}

}

//Compute displacement along an arithmetic progression a mod m.

//The case m=0 means the singleton progression {a}.

public Partition displaceUp(int a, int m) {

Partition result = this;

for (Corner c : iC) {

if (APContains(a,m,c.x-c.y)) result = result.turnOut(

c);

}

return result;

}
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public Partition displaceDown(int a, int m) {

Partition result = this;

for (Corner c : oC) {

if (APContains(a,m,c.x-c.y)) result = result.turnIn(c

);

}

return result;

}

public Partition displaceUp(Corner c1, Corner c2) {

return displaceUp(c1.x-c1.y,c1.x-c1.y-c2.x+c2.y);

}

public Partition displaceDown(Corner c1, Corner c2) {

return displaceDown(c1.x-c1.y,c1.x-c1.y-c2.x+c2.y);

}

public static boolean APContains(int a, int m, int n) {

if (m == 0) return a == n;

else return ((a-n)%m == 0);

}

//Recursively compute difficulty. Caches results of previous calls.

private int diff = -1; //Set to -1 until computed, then the true

value is cached.

public int difficulty() {

if (diff != -1) return diff;

int bestFound = size; //Larger than difficulty could

possibly be.
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//Try all possible 2-links

for (int i=0; i<oC.length; i++) {

for (int j=0; j<i; j++) {

Partition parent = displaceDown(oC[i],oC[j]);

Partition child = displaceUp(oC[i],oC[j]);

if (parent.size == size-2 && equals(child)) {

//Make sure it’s really a link

int candidate = parent.difficulty();

if (candidate < bestFound) bestFound =

candidate;

}

}

}

//Try all 1-links

for (Corner c : oC) { //Try all 1-links

Partition parent = turnIn(c);

int candidate = parent.difficulty()+1;

if (candidate < bestFound) bestFound = candidate;

}

diff = bestFound; //We’ve found the difficulty, so cache it.

return diff;

}

//Computes the number of optimal paths

public int numPaths() {

int diff = difficulty();
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if (size == 0) return 1; //Base case.

int sum = 0;

//Try all possible 2-links

for (int i=0; i<oC.length; i++) {

for (int j=0; j<i; j++) {

Partition parent = displaceDown(oC[i],oC[j]);

Partition child = displaceUp(oC[i],oC[j]);

if (parent.size == size-2 && equals(child)) {

//Make sure it’s really a link

int candidate = parent.difficulty();

if (candidate == diff) sum += parent.

numPaths();

}

}

}

//Try all 1-links

for (Corner c : oC) { //Try all 1-links

Partition parent = turnIn(c);

int candidate = parent.difficulty()+1;

if (candidate == diff) sum += parent.numPaths();

}

return sum;

}

//Prints some optimal path

public void printPath() {
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int diff = difficulty();

if (size == 0) return; //Base case.

Partition par = null; //Will find a parent

//Try all possible 2-links

for (int i=0; i<oC.length; i++) {

for (int j=0; j<i && par == null; j++) {

Partition parent = displaceDown(oC[i],oC[j]);

Partition child = displaceUp(oC[i],oC[j]);

if (parent.size == size-2 && equals(child)) {

//Make sure it’s really a link

int candidate = parent.difficulty();

if (candidate == diff) par = parent;

}

}

}

//Try all 1-links

for (Corner c : oC) { //Try all 1-links

if (par != null) break;

Partition parent = turnIn(c);

int candidate = parent.difficulty()+1;

if (candidate == diff) par = parent;

}

System.out.println(this.toString());

par.printPath();

}
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//Computes an upper bound on difficulty, using randomization.

//Randomly displaces the partition down (by 2-links when possible)

to a partition of the chosen size, then computes difficulty

exactly.

public int depthCharge(int getCautious) {

if (size <= getCautious) return difficulty();

ArrayList<Partition> links = new ArrayList<Partition>();

for (int i=0; i<oC.length; i++) {

for (int j=0; j<i; j++) {

Partition parent = displaceDown(oC[i],oC[j]);

Partition child = displaceUp(oC[i],oC[j]);

if (parent.size == size-2 && equals(child)) {

//Make sure it’s really a link

links.add(parent);

}

}

}

if (links.size() > 0) {

int i = r.nextInt(links.size());

return links.get(i).depthCharge(getCautious);

}

//Otherwise, no 2-links; choose a random 1-link.

int i = r.nextInt(oC.length);

return 1+turnIn(oC[i]).depthCharge(getCautious);

}

public static Random r = new Random();
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//Computes the arrays of inward and outward corners. Invoked in the

constructor only.

private void computeCorners() {

ArrayList<Corner> inList = new ArrayList<Corner>();

ArrayList<Corner> outList = new ArrayList<Corner>();

for (int i=0; i<parts.length; i++) {

if (i==0 || parts[i] < parts[i-1]) inList.add(new

Corner(parts[i],i));

if (i==parts.length-1 || parts[i] > parts[i+1])

outList.add(new Corner(parts[i]-1,i));

}

inList.add(new Corner(0,parts.length));

iC = new Corner[inList.size()];

iC = inList.toArray(iC);

oC = new Corner[outList.size()];

oC = outList.toArray(oC);

}

//Just a container for two integers. These refer to the coordinates

of the lower-left corner of the square in question.

private static class Corner {

public int x;

public int y;

public Corner(int x, int y) {

this.x = x;

this.y = y;

}
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}

//Function for convenience: removes any zeros from the end of an

array.

//Assumes that arr is in nonincreasing order.

public static int[] truncate(int[] arr) {

int l = arr.length;

if (l == 0 || arr[l-1] > 0) return arr;

while (l>0 && arr[l-1] == 0) l--;

int[] result = new int[l];

for (int i=0; i<l; i++) result[i] = arr[i];

return result;

}

public String toString() {

String result = "(";

for (int i=0; i<parts.length; i++) {

result += parts[i];

if (i<parts.length-1) result += ",";

}

result += ")";

return result;

}

public boolean equals(Partition p) {

return (lookUp(parts) == lookUp(p.parts));

}
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//Inner class used to index the Partition cache for the lookUp

method.

private static class PNode {

private Partition p;

private int[] parts;

private PNode[] children;

private PNode(int[] parts) {

p = null;

this.parts = truncate(parts);

children = new PNode[(parts.length>0)? parts[parts.

length-1]+1 : 0]; //The node of the empty

partition has no children.

for (int i=0; i<parts[parts.length-1]; i++) children[

i] = null;

}

private static ArrayList<PNode> roots = new ArrayList<PNode

>(); //Nodes for one-row partitions, at the bottom.

public static PNode getNode(int[] parts) {

int bottom = (parts.length>0)? parts[0] : 0;

PNode root = getRoot(bottom);

return getNodeRec(parts,root,1);

}

private static PNode getRoot(int bottom) {

if (roots.size() > bottom) return roots.get(bottom);

else {

for (int n=roots.size(); n<=bottom; n++) {

int[] parts = new int[1];

122



parts[0] = n;

roots.add(new PNode(parts));

}

return roots.get(bottom);

}

}

private static PNode getNodeRec(int[] parts, PNode curr, int

startIndex) {

if (startIndex >= parts.length) return curr;

PNode nextNode;

int nextPart = parts[startIndex];

if (curr.children[nextPart] != null) {

nextNode = curr.children[nextPart];

} else {

int[] newParts = Arrays.copyOf(parts,

startIndex+1);

curr.children[nextPart] = new PNode(newParts);

nextNode = curr.children[nextPart];

}

return getNodeRec(parts,nextNode,startIndex+1);

}

}

}
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[EH86] D. Eisenbud, J. Harris: Limit linear series: basic theory. Invent. Math. 85, 337–371 (1986).
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