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Adaptation and Specialization in the Evolution of Bacterial Metabolism 

Abstract 

Specialization is a balance of evolutionary adaptation and its accompanying costs. Here 

we focus on the Lenski Long-Term Evolution Experiment, which has maintained 

cultures of Escherichia coli in the same, defined seasonal environment for 50,000 

generations. This dissertation explores the extent and means by which metabolic 

specialization occurs over an extended period in the same environment.  

Chapter 1 provides an overview and introduction of the problem. 

In Chapter 2 we investigated the acquired dependence on citrate for optimal growth of 

some of the adapting populations. Earlier work uncovered that one of the adapting 

populations gained the ability to utilize citrate as a sole carbon source. We showed that 

in addition to this population, three other lineages evolving in parallel began to rely on 

citrate as a chelator of iron for optimal growth on glucose. This specialization seemed to 

have occurred through loss of function, most consistent with the accumulation of 

mutations in iron transport genes that were obviated by abundant citrate.  

In Chapter 3 we examined changes in fitness of the evolving populations on carbon 

sources other than the glucose on which they adapted. We demonstrated that declines in 

performance were much less widespread than suggested by previous results, and 

surprisingly accompanied by improvements on a variety of substrates. Strains with 

higher mutation rate exhibited significantly more declines, and these were ameliorated 

by growth at lower temperature.  These findings suggested that specialization does not
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mainly result as a consequence of adaptive tradeoffs, but rather due to the gradual 

accumulation of disabling mutations in unused portions of the genome. 

In Chapter 4 we tested the ability of Flux Balance Analysis models to predict evolved 

changes in central metabolism. We measured metabolic fluxes for evolved populations 

from the Lenski experiment, and compared them along with datasets from two other 

experiments to flux predictions. We found that improved growth largely derived from 

increased rate of substrate use. Flux predictions were more accurate for two 

experiments initiated with relatively sub-optimal ancestors, whereas ancestors near the 

optimum tended to move away from predictions over experimental evolution. 
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Chapter 1 

Understanding the mechanisms underlying specialization 

Nicholas Leiby1,2 

1 Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA, 2 Systems 

Biology Graduate Program, Harvard University, Cambridge, MA, USA 

 

Microbes evolve quickly. To successfully control them in medicine and engineer 

them in industry, we need a predictive understanding of microbial evolution. 

Ideally, we could anticipate the adaptive genetic and phenotypic changes that 

occur in response to a given environment, on what time scale they occur, and 

with what degree of repeatability. 

While the same mutations responsible for adaptive improvement in one 

environment may provide benefit in alternative environments, we do not expect 

this to generally be the case. If there were no cost for improvements, there would 

be a single optimum genotype regardless of environment. Instead we expect 

adaptive improvements to one condition lead to costs in others. These costs may 

result from antagonistic pleiotropy, where the same mutations causing adaptive 

improvements in one environment are harmful in another. Antagonistic 

pleiotropy is also referred to as a tradeoff, and represents a direct cost. Adaptive 

costs may also be a result of mutation accumulation, where mutations with 



! 2!

neutral selective effect in the evolutionary environment have a detrimental effect 

in an alternative environment. Mutation accumulation is an opportunity cost- an 

absence of purifying selection resulting in the degradation of unused functions. 

These adaptive costs force organisms into one of two general groups- specialists 

and generalists. Specialists have a high fitness in a narrow range of niches, but 

not necessarily in others. Generalists maintain a moderate level of fitness across a 

broad range of environments. Tradeoffs and mutation accumulation prevent the 

rise of ‘Darwinian Demons’ [1] or super generalists- a single genotype that is 

optimally fit across all environments. These processes are fundamental to 

specialization and the rise and maintenance of global biodiversity. However, the 

relative role and mechanisms of tradeoffs and mutation accumulation are poorly 

understood.  

Our lack of understanding of specialization exists in part because it is challenging 

to study. The relative contributions of natural selection, random events, and 

constraints to adaptation and divergence are not easily separable, and the 

divergence of evolving populations may merely reflect their adaptation to 

different environments. Experiments testing hypotheses about specialization are 

also hampered by the glacial pace of evolution. An ideal model of specialization 

would provide a stable environment to which adaptation can occur, would be 

sufficiently long-running to allow adaptation, and would run in parallel to allow 

the differentiation between chance events and adaptive signal. 
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Fortunately, a model exists that allows us to test fundamental assumptions about 

specialization. In Richard Lenski’s Long-Term Evolution Experiment (LTEE) [2], 

12 parallel populations of Escherichia coli have been passaged daily in minimal 

glucose batch cultures for 26 years and ~58,000 generations of growth. Samples 

were frozen periodically, and they can be revived to study the populations at a 

given time or to rewind and replay evolution (e.g., [3-5]). Fitness of the evolved 

strains in the adaptive environment increased on average by approximately 80% 

in 50,000 generations [6], and the LTEE strains have been evolving in the same 

consistent environment for such a long time that we would expect specialization 

to that environment to have occurred.  

One environmental condition that drives microbial evolution and specialization is 

carbon source availability. In the LTEE, strains were propagated in glucose 

minimal media. One hypothesis is that evolution in this environment would yield 

adaptive improvements to glucose growth resulting in tradeoffs in the ability to 

use other carbon sources. In fact, this has been observed in specific cases, where 

adaptive improvement occurred at the cost of transport of non-glucose sugars 

such as maltose [7], or where portions of the ribose operon were deleted [8].  

A further hypothesis is that the parallel populations will have adapted in parallel 

ways. This has certainly been seen in the LTEE - the populations all improved 

their fitness in the evolutionary environment to similar extents [6]. Many known 

mutations driving the improvements were different between populations, but 

many occurred in more than one population, and at least three occurred in all 
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twelve parallel populations [9], including the above examples of maltose and 

ribose [7,10].  

A previous study attempted to assess the relative roles of mutation accumulation 

and tradeoffs behind the costs of adaptation in the Lenski LTEE [11]. This study 

used an assay of respiration as a proxy for fitness on a wide range of carbon 

sources, and tested performance of the evolved strains at different time points up 

to 20,000 generations. It found that the strains significantly reduced function 

across a wide range of substrates, that these reductions occurred in parallel 

across many or all strains, and that these reductions occurred early on in the 

course of evolution- in the timeframe associated with rapid increases in fitness in 

the evolutionary environment. The authors concluded that these findings were 

most consistent with antagonistic pleiotropy. A further feature of the LTEE 

allowed the authors of this study to assess the extent of costs associated with 

mutation accumulation. A number of the parallel populations had acquired a 

‘mutator’ phenotype caused by mutations to DNA repair genes, causing an 

increase in their mutation rate of approximately 100-fold [11,12]. If mutation 

accumulation played an important role in adaptive costs, it was expected that 

these mutator strains would have reduced catabolic function on more substrates 

than the non-mutators. However, after 20,000 generations, no significant 

differences in functional decreases were observed between the mutators and non-

mutators, and it was concluded that the direct costs of antagonistic pleiotropy 

were the main drivers of adaptive costs [11]. 
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Much has changed in the 13 years since the publication of this previous study. 

One of the LTEE populations acquired the novel ability to catabolize citrate as a 

sole carbon source [13], a finding that made the experiment widely famous. 

Another population was found to harbor a stable phenotypic polymorphism 

maintained in a negative frequency-dependent fashion. One of these 

subpopulations optimized its growth on the glucose in the media, while the other 

became a cross-feeder that cannibalizes resources and lysed cells in stationary 

phase [14-16]. Two more populations acquired the mutator phenotype [3,9], and 

those that were already mutators by the time of the previous study have had 

another 30,000 generations to accumulate mutations.  

This dissertation is a collection of 3 published journal articles that revisit the 

story of specialization in the LTEE. In chapter 3 I examine the roles of mutation 

accumulation and tradeoffs in specialization to the glucose carbon source niche. I 

find that, contrary to previous thinking, the costs of adaptation are driven largely 

by mutation accumulation. In chapter 2 I examine a different form of 

specialization- the narrowing of niche breadth based on an acquired dependence 

to a supplied environmental resource. In chapter 4 I discuss some of the 

underlying physiological changes involved in metabolic adaptation and 

specialization, and test models that attempt to predict these changes. 
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Chapter 2 

Multiple long-term, experimentally-evolved populations of 

Escherichia coli acquire dependence upon citrate as an iron 

chelator for optimal growth on glucose  

Nicholas Leiby1,2, William R. Harcombe2, and Christopher J. Marx2,3,* 

1Systems Biology Graduate Program, Harvard University, Cambridge, MA, USA, 2Department of 

Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA, 3Faculty of Arts 

and Sciences Center for Systems Biology, Harvard University, Cambridge, MA, USA.  

*Corresponding Author 

This chapter was originally published in BMC Evolutionary Biology.  I 

performed all of the experiments and analysis for this work, with the exception 

of those for Figure 2.3, which were performed in part by William Harcombe.  I 

was also the primary author of the manuscript.   

Specialization for ecological niches is a balance of evolutionary adaptation and its 

accompanying tradeoffs.  Here we focus on the Lenski Long-Term Evolution 

Experiment, which has maintained cultures of Escherichia coli in the same, 

defined seasonal environment for 50,000 generations.  Over this time, much 

adaptation and specialization to the environment has occurred.  The presence of 

citrate in the growth media selected one lineage to gain the novel ability to utilize 

citrate as a carbon source after 31,000 generations.  Here we test whether other 
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strains have specialized to rely on citrate after 50,000 generations. We show that 

in addition to the citrate-catabolizing strain, three other lineages evolving in 

parallel have acquired a dependence on citrate for optimal growth on glucose. 

None of these strains were stimulated indirectly by the sodium present in 

disodium citrate, nor exhibited even partial utilization of citrate as a carbon 

source. Instead, all three of these citrate-stimulated populations appear to rely on 

it as a chelator of iron.  The strains we examine here have evolved specialization 

to their environment through apparent loss of function.  Our results are most 

consistent with the accumulation of mutations in iron transport genes that were 

obviated by abundant citrate.  The results present another example where a 

subtle decision in the design of an evolution experiment led to unexpected 

evolutionary outcomes. 

Introduction 

Evolutionary adaptation to a new environment leads to changes that improve 

function and increase fitness, but it may also result in the deterioration of 

functions not needed in that selective environment. These declines in function 

that accompany adaptation – tradeoffs – are often considered inevitable costs or 

constraints of adaptation [1]. Tradeoffs can either result from antagonistic 

pleiotropy, when adaptive mutations in the selective environment are deleterious 

elsewhere, or from the accumulation of mutations that are neutral in the selective 

environment. A consequence of these tradeoffs is that they prevent ‘Darwinian 

demons’: single super-genotypes that are optimally fit across a spectrum of 
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environments [2]. Instead, there are usually ‘generalist’ organisms that perform 

adequately in a variety of environments that can coexist with ‘specialist’ 

organisms that occupy smaller niches but with greater effectiveness.  

Critical to the emergence of specialization is the constancy of an environment [3]. 

By occupying the same environment for an extended period of time, the 

advantage of maintaining fitness in alternate environments is not realized. 

Organisms may thus be expected to become increasingly specialized to their 

current, static environment. The most obvious form of specialization is a decline 

in the ability to utilize resources or exist in conditions that were not experienced 

during adaptation. Many such examples have been observed during laboratory 

evolution whereby organisms evolved to narrow or shift their range of preferred 

temperatures [4], carbon sources [5,6], host organisms [7], or even laboratory 

water supply [8]. Alternatively, organisms can lose the ability to grow well in the 

absence of a resource that is currently available. Although we are unaware of an 

experimental demonstration of a novel change to dependence upon a supplied 

resource, this has been dramatically and repeatedly observed for microbes 

infecting hosts. These microbes commonly lose the ability to synthesize a 

substantial number of components essential for growth because these are 

available in the host environment, such as the cytoplasm [9] or mouse gut [10]. 

One of the most prominent examples of prolonged adaptation to a single 

environment is the Lenski Long-Term Evolution Experiment (LTEE) [11]. In this 

experiment, 12 populations of Escherichia coli were founded with either the 
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arabinose-negative strain REL606 (populations A-1 to A-6) or the otherwise 

isogenic arabinose-positive derivative, REL607 (A+1 to A+6). These have evolved 

since 1988 in Davis-Mingioli (DM) minimal media [12] batch cultures containing 

glucose as a growth substrate. Over 50,000 generations, the fitness of the evolved 

strains in the evolutionary environment has increased substantially, and in fact 

continues to do so [13]. In line with the expectation of a generalist-specialist 

tradeoff, evolving strains have also specialized for aspects of their static 

environment. Evolved isolates have lower fitness in some alternative 

environments [4, 5, 14, 15], despite the fact that many individual mutations were 

generally beneficial across environments [16]. 

Perhaps the most surprising adaptive change to have occurred during the LTEE 

was the huge increase in fitness of one population due to evolving the ability to 

metabolize citrate, the “inert” metal chelator present in DM minimal medium. 

Disodium citrate (which we will hereafter refer to as citrate) was included in the 

evolutionary growth media as a historical artifact of the media’s original 

formulation for penicillin enrichment of auxotrophs [12, 17]. The common use of 

citrate in minimal media formulations owes to its ability to serve as a chelator of 

Fe (III). Indeed, no direct addition of iron is made to DM minimal media. Given 

the quite low level of glucose used in the LTEE (25 mg/L = 0.14 mM), 

substantially more citrate was present (1.7 mM) than glucose. A diagnostic trait of 

most E. coli strains is that they can only grow on citrate anaerobically, whereas 

Salmonella, for example, can grow on it aerobically. This inability of the ancestral 
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strain to grow on citrate during the aerobic conditions of the LTEE therefore 

initially rendered this organic acid an unavailable secondary resource. Incredibly, 

after 31,000 generations – and by just one of the 12 replicate populations (A-3) – 

the ability emerged to a utilize citrate as a sole carbon source during aerobic 

growth [18]. Interestingly, this was not even the first time E. coli has acquired the 

ability to aerobically utilize citrate. Cit+ E. coli K12 had previously been observed 

to arise spontaneously [19] or via the high expression of the anaerobic citrate 

transporter on multi-copy plasmids in E. coli B [20].  

Besides the remarkable story of novel aerobic utilization of citrate, it is unclear 

whether any of the LTEE lines may have changed in terms of use of citrate as an 

iron chelator. Bacteria commonly have multiple acquisition systems for various 

metals, particularly iron, which is required for aerobic respiration due to the 

hemes found in cytochromes. The acquisition of iron is particularly challenging 

for microbes because of the low solubility of the Fe (III) species that is available 

at neutral pH in oxygenated environments. Consequently, metals are often 

growth limiting in nature in environments ranging from the open ocean [21], to 

host infections [22]. In the context of infections, iron is sequestered by high-

affinity eukaryotic proteins, and the pathogenesis of many infectious diseases 

relies on the ability of bacteria to strip iron from their host. 

Consistent with the fundamental role that iron plays in microbial growth, and its 

relative scarcity, microbes have developed an arsenal of techniques to procure it. 

In E. coli, transcriptional regulators sensitive to the intracellular concentrations 
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of iron down-regulate iron uptake genes when supplies are adequate. Under 

conditions of iron deprivation, these same regulators simultaneously up-regulate 

iron acquisition systems while down-regulating proteins requiring iron [23, 24]. 

One mechanism to obtain iron is to secrete and reabsorb small molecules called 

siderophores that chelate extracellular Fe (III), as well as the transporters to 

utilize them. E. coli also has the ability to take up Fe (II), and a transport system 

to directly capture Fe (III) from host proteins like transferrin or lactoferrin, or 

from heme [25]. 

 

There is precedent for selection acting upon metal acquisition during 

experimental evolution. Growing Methylobacterium at low levels of cobalt 

repeatedly selected for transposition events upstream of a single cobalt 

transporter, leading to increased uptake rates [26]. Interestingly, the selective 

effect of these mutations was dependent upon both the carbon source and the 

growth rate of cells. Additionally, there have been mutations in metal acquisition 

as a social trait. Genotypes of Pseudomonas aeruginosa that fail to produce 

siderophores have emerged during adaption in laboratory conditions, as well as 

over the course of infection in the lungs of cystic fibrosis patients [27, 28]. 

Because excreted siderophores become public goods, in well-mixed 

environments, non-producing cheaters can have a selective advantage over 

producers [29].  
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Here we investigated whether other strains from generation 50,000 of the Lenski 

LTEE have evolved to become dependent on citrate for their performance 

growing on glucose. There are four non-exclusive hypotheses for the dependence 

of glucose growth of each population upon citrate. H0: The null hypothesis is that 

there is no significant stimulation (or perhaps even inhibition), H1: As disodium 

citrate is the sole source of sodium in the LTEE media, there may be stimulation 

by sodium ions in a manner independent of citrate itself, H2: Evolved strains use 

– at least partially – citrate as a growth substrate (e.g., the Cit+ A-3 population), 

and H3: Evolved strains have come to rely upon citrate to chelate iron present in 

the media.  

 

We found that the ancestors and most of the evolved populations were largely 

insensitive to the presence of citrate (H0). In contrast, however, three lineages in 

addition to the Cit+ A-3 population have evolved increased growth rate and yield 

in the presence of citrate. In no case was this was due to sodium ions (H1). Unlike 

the Cit+ A-3 (H2), however, these lineages neither grew on citrate directly nor 

incorporated isotopic label from citrate during growth on 100% U-13C-glucose. In 

contrast, these three lineages were at least partially rescued by the direct addition 

of Fe (II). These data are consistent with H3: these three populations have 

evolved to rely on citrate for its original intent, as a chelator of iron. As such, 

these three populations have evolved a novel dependence upon citrate due to 
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reduction in citrate-independent glucose growth rather than the gain of growth 

on citrate as a carbon and energy source. 

 

Results 

Evolved strains acquired dependence on citrate 

In order to test for acquired dependence upon citrate (i.e., rule out H0), we 

compared growth rate and yield on glucose either with or without citrate for the 

ancestors and 12 clonal isolates from the 50,000 generation LTEE populations 

(Figure 2.1). Growth rate is known to be strongly correlated with fitness in batch 

cultures in general, and in the LTEE in particular [30]. Yield, while not a 

component of fitness during batch culture, conveys additional information about 

cell physiology and was therefore also analyzed. Differences seen in apparent 

final yield was not explainable by the changed osmolality due to the addition of 

citrate to the media; citrate caused no detectable change in optical density 

(p=0.95, two-tailed paired T test). Both ‘small’ and ‘large’ clones from the A-2 

population were included [31] in the analysis.  
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Figure 2.1: Dependence of growth on glucose upon the presence of 

citrate for the ancestors and evolved strains. The ratio and error for 

growth parameters was calculated by fitting a log-linear model with the 

strain:media interaction terms and block as the dependent variables. Unlike the 

ancestors (first two values), strains from three of the evolved populations were 

strongly stimulated by citrate in terms of both (A.) growth rate and (B.) yield. The 

remaining nine Cit- lineages, like their ancestors, exhibit little to no dependence 

upon citrate. We tested both ‘large’ (A-2A) and ‘small’ (A-2C) clones from the A-2 

population, as it is known to have a stable, long-term polymorphism. Values 

represent the mean and 95% confidence intervals for the ratio of growth on 

glucose with citrate to growth without citrate for a given strain. 
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The Cit+ A-3 population was seen to grow faster and to a much higher final yield 

in the presence of citrate, as previously reported [18]. The growth rate of the 

ancestor REL606 was neither significantly decreased nor enhanced by the 

addition of citrate (P=0.71, two-tailed Welch’s T test unless stated otherwise), but 

there was a very slight, but significant increase in yield (P=0.0001). This 

difference in yield was not significant for the REL607 ancestor, for which we ran 

fewer replicates.  Nine of the 13 evolved strains had similarly small increases in 

rate or yield. While in some cases there were statistically significant increases, the 

effect was small. For the remaining three strains, however, the increase was much 

greater for both rate and yield. In the presence of citrate, A-2A, A-4 and A+6 all 

experienced significant increases in both rate and yield (Respectively, rate: 

P=1.6x10-7, P=5.3x10-13, and 3.1x10-12, yield 1.6x10-14, 1.7x10-7, and 1.8x10-9).  

Indeed, these effects were quite substantial: the growth rate of A+6 with citrate 

was 3.75 times faster than growth without citrate, and the final yield of A-2A 

increased by 80% by the addition of citrate. In comparison, at the 1mM 

concentration of glucose used, the Cit+ A-3 strain grew 1.2 times faster and 

increased in final yield by 100% with the addition of citrate.  To explore the 

nature of the citrate dependence, we focused on these three strains for which the 

effect was greatest, and omitted strains for which the effect was marginal (as well 

as the Cit+ A-3).  
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Disodium citrate dependence is not driven by sodium 

One possible explanation for the effect of citrate could be stimulation by the 

addition of sodium (3.4 mM Na+ cations), as disodium citrate was the only source 

of the cation in the medium (H1). In order to test for this possible effect, we 

compared the stimulatory effect of disodium citrate to citric acid of the same 

concentration (which was pH-normalized with KOH). Both growth rates and 

yields with citric acid for the three citrate-stimulated evolved strains were nearly 

identical to those from disodium citrate (Figure 2.2). The only differences that 

were statistically distinguishable were those for yield for A-2A (P=0.016) and A-4 

(P=0.004), which were in fact slightly higher on citric acid than on disodium 

citrate. This suggests that the growth phenotype we see in these evolved strains is 

related to citrate rather than a side-effect of sodium.  
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Figure 2.2: Dependence of growth on glucose is due to citrate itself 

rather than the coincidental addition of sodium. The ratio and error for 

growth parameters was calculated by fitting a log-linear model with the 

strain:media interaction terms and block as the dependent variables. Both the 

relative (A.) growth rate and (B.) yield on glucose for the three lineages that were 

strongly stimulated by the addition of sodium citrate (black circles) can be 

achieved by simply adding citric acid (white diamonds). Values represent the 

mean and 95% confidence intervals for the ratio of growth of that strain on 

glucose with the supplement to growth without. 
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Evolved strains are unable to utilize citrate as a carbon source 

Given that citrate stimulation of glucose growth was not due to sodium, we next 

examined whether or not strains could directly metabolize citrate (H2). First, we 

asked whether any of these three citrate-stimulated strains grow with citrate as a 

sole carbon source. When cultured in DM containing citrate but no glucose, there 

was no measurable increase in OD after 24 hours (A-2A P=0.45, A-4 P=0.40, 

A+6 P=0.72). Thus, unlike the Cit+ A-3 population, none of these isolates appear 

to be capable of growth on citrate alone.  

Although the three citrate-stimulated evolved isolates were found to still be Cit-, 

this result did not rule out possible co-metabolic use during growth on glucose. 

To explore this possibility, we determined whether carbon from the citrate was 

incorporated into biomass during growth on glucose. We grew cells in 100% U-

13C labeled glucose at 1 mM, both with and without unlabeled (i.e., ~99% 12C) 

citrate, and looked for differential incorporation of 13C into the amino acids of the 

growing cells under these two conditions. Using gas chromatography-mass 

spectrometry (GC-MS), we compared the mass distribution vectors for fragments 

of derivatized amino acids from the cultures (Figure 2.3). Since CO2-utilizing 

reactions represent a source of naturally occurring carbon, it is expected to 

observe less than 100% 13C in amino acid fragments. If citrate were co-utilized it 

would enter directly into the citric acid cycle and be incorporated into biomass, 



! 21!

which would dilute the incorporation of 13C from glucose into amino acids. We 

compared the peaks corresponding to fully-labeled fragments using a Wilcoxon 

signed-rank test.  For the Cit+ A-3 population, there was a significant difference 

in incorporated label in the presence of unlabeled citrate (P=0.0006), but for the 

other citrate-dependent strains there was no significant difference (A-2A: 

P=0.33, A-4: P=0.73, A+6: P=0.47) (Figure 2.3B-C). These data confirm that 

these three strains are not utilizing citrate as a carbon source to any measurable 

extent. 
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Figure 2.3: GC-MS technique to determine if citrate was incorporated 

into the amino acids of biomass during glucose growth. Amino acids 

from cells grown on 100% U-13C-glucose with or without citrate were analyzed via 

GC-MS. (A.) A representative GC-MS chromatogram of total ion intensity 

indicating the presence and separation of derivatized amino acids. (B) Mass 

spectra for an example fragment (from glycine) when A+6 was grown on glucose 

with citrate (black) or without (white), and (C) when the citrate-consuming A-3 

was grown with and without citrate. For each amino acid, one or more 

characteristic mass fragments are observed whose mass distribution spectra 
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Figure 2.3, continued: shows the relative amount of fully 13C-labeled fragment 

(peak at 248 for the M-57 fragment of glycine) compared to total of all ions for 

that fragment (sum of peaks 246 to 248). Across all amino acids, there was not 

significant decrease in 13C-labeling from glucose except in the REL-3 line where 

unlabelled citrate was clearly incorporated into biomass.  Error bars represent 

standard deviations of 3 biological replicates. 

Citrate dependence is related to its role as an iron chelator 

Having rejected hypotheses H0-H2 for the three citrate-dependent strains, we 

tested the remaining hypothesis that the effect of citrate is related to its role as a 

chelator in iron acquisition (H3). E. coli can take up ferrous iron with the Feo and 

Efe transporters without the involvement of citrate [25]. We first tested whether 

providing sufficient iron (as ferrous iron to 10 µM) in the absence of citrate would 

enhance growth on glucose of the three citrate-dependent evolved isolates 

(Figure 2.4). For one of the citrate-dependent strains, A-4, the iron greatly 

increased the growth rate and yield to values indistinguishable from that 

achieved via citrate (P=0.06 and P=0.11, respectively). A similar effect was seen 

for A-2A, where iron increased growth rate and yield to ~90% that achieved by 

citrate, a small, but significant difference (P=0.008 and P=5.6x10-5, respectively). 

For the third strain, A+6, the direct addition of iron significantly increased rate 

(P=5.6x10-8) and yield (P=0.0008), but this increase amounted to only ~40% of 

the yield increase and ~13% of the rate increase seen with the addition of citrate.  
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One possible explanation for the evolved strains’ acquired dependence upon 

citrate would be a defect in either production or uptake of iron chelating 

siderophores. To test whether the citrate-dependent strains had become deficient 

in their ability to secrete siderophores, we grew the three citrate-dependent 

evolved isolates in media without citrate that had been conditioned by the growth 

of the ancestral REL606 and then re-supplemented with glucose. Unlike what has 

been observed previously for siderophore-defective strains [32,33], none of the 

citrate-dependent strains grew faster or to a higher final yield on the spent media 

than on DM without citrate (at an 0.05 level, Welch’s 1-tail T test) (Figure 2.4). 

This argues against defects in siderophore production as the sole cause of citrate 

dependency, but does not rule out the possibility that it is related to the ability to 

transport iron-siderophore complexes.  
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Figure 2.4: Direct addition of iron, but not spent medium, stimulates 

growth on glucose for citrate-dependent evolved lineages. The ratio and 

error for growth parameters was calculated by fitting a log-linear model with the 

strain:media interaction terms and block as the dependent variables. Both the 

relative (A.) growth rate and (B.) yield of the three strains from populations 

stimulated by sodium citrate (black circles) are at least partially enhanced by 

direct addition of 10 µM Fe (II) (as ammonium iron sulfate, red squares). In 

contrast, growth in spent media re-supplemented with glucose (blue triangles) 

did not stimulate growth. Values represent the mean and 95% confidence 

intervals for the ratio of growth of that strain on glucose with the supplement to 

growth without. 
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Discussion 

Here we report that by 50,000 generations, three strains from the 11 LTEE 

populations not previously shown to be dependent on citrate now grow on 

glucose in a manner that is strongly dependent on the presence of citrate. Thus, 

eight of the populations have retained the ancestral phenotype of marginal - if 

any - stimulation by citrate (H0 above) and one has famously become Cit+ and 

can readily grow on it as a sole carbon and energy source (H2). For the remaining 

three populations whose glucose-growth was substantially enhanced by citrate, 

our experiments allowed us to reject both the hypothesis that this stimulation 

was due to a side-effect of adding sodium (H1) as well as that it was due to co-

metabolism during glucose growth (H2). The remaining hypothesis – citrate as 

an iron chelator (H3)– appears to best explain this phenotype, as direct addition 

of iron in the absence of citrate stimulated glucose growth. 

What physiological mechanism may have caused this evolved dependence on 

citrate? The ability of ferrous iron to largely restore the phenotype of rapid 

growth on glucose is the strongest evidence for a loss of function in metal 

acquisition. The primary iron acquisition system for E. coli under aerobic 

conditions is via siderophores [25]. The fact that citrate-dependent strains do not 

benefit from growth on media conditioned by their citrate-independent ancestor, 

however, suggests that their dependence is unlikely to be due to an inability to 

produce or secrete siderophores. The most plausible explanation for their citrate-

dependence would therefore be mutations involved in siderophore uptake. Since 
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strains A-2A and A-4 were almost completely rescued by ferrous iron, they 

appear to have no defects in their systems for direct iron uptake. On the other 

hand, A+6 was only mildly stimulated by ferrous iron, which would suggest this 

strain either has additional mutations in genes related to direct ferrous iron 

transport, defects in global regulators that stimulate up-regulation of iron-

acquisition genes under iron starvation [24], and/or another non-iron-related 

dependency on the presence of citrate. Given the large number of genes involved 

in iron transport (the ferric uptake regulon alone consists of ~30 iron-transport-

related genes [34]), the most useful first step for answering these questions will 

come from analysis of candidate causal mutations from the genome sequences 

from these lineages, which are in progress (personal communication, R.E. Lenski 

& D. Schneider). 

At this point, it is not possible to conclude whether the new citrate dependence 

during growth on glucose is the result of adaptation or the accumulation of 

mutations. Previous experiments in the LTEE have suggested that the 

predominant mechanism for tradeoffs in the evolved strains has been 

antagonistic pleiotropy, and not the accumulation of mutations [5]. However, 

since this initial study, 30,000 more generations have passed, and many more 

mutations have occurred. In the genome sequence published for the A-1 lineage, 

for example, there were only 29 nucleotide substitutions after the first 20,000 

generations, but 598 more accumulated in the subsequent 20,000 generations.  

This striking increase in mutation rate was due to acquiring a mutator phenotype 
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during the latter period [13]. In general, the respective impacts of mutation 

accumulation versus antagonistic pleiotropy should be revisited given the 

increased mutation rate in many of the strains, and the amount of time that has 

passed.  

Though definitive statements cannot be made, mutation accumulation seems like 

a plausible cause of the observed acquisition of citrate dependence. Iron 

transport genes were presumably superfluous in the constant presence of high 

levels of citrate for 50,000 generations. Additionally, the large number of genes 

involved in iron uptake would provide a reasonably large mutational target. 

Finally, all three of the strains that show strong citrate dependence during growth 

on glucose are amongst those that have also acquired a mutator phenotype; 

mutations to uvrD, mutL, and mutS have increased their mutation rates 100-

1000 fold [5, 35]. This result in itself is not statistically significant, as 6 of the 

parallel populations have acquired this phenotype by 50,000 generations, so the 

probability by chance that all three citrate-dependent strains are mutators is 0.1. 

The fact that they are all mutators, however, is consistent with the hypothesis 

that mutation accumulation drove the observed phenotypic changes. As with the 

above speculation about the identity of the mutational targets leading to citrate-

dependency, the selective mechanism leading to their incorporation will require 

identification and introduction into the appropriate backgrounds to test the 

fitness of the dependency-inducing mutations.  
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Conclusions 

We have uncovered a second form of interaction with citrate that occurred during 

the 50,000 generations of the LTEE: three of the 12 Cit- strains we examine now 

require its presence as an iron chelator for maximal growth on glucose. This 

interaction is due to an acquired dependence on citrate to carry out a function 

that populations have lost, which contrasts with the gain of novel function 

observed in the Cit+ A-3 population. Unlike the strong selection for the ability of 

A-3 to catabolize citrate, selection was likely either weak or absent in the loss of 

citrate-independent glucose performance. In this regard, the constant 

environment of the LTEE was perhaps not unlike that encountered along the 

evolutionary path to intracellular symbionts, whereby specialization emerges not 

so much from gain of new traits as from the persistent loss of traits rendered 

unnecessary. 

A final subtext for considering the emergence of citrate-dependence during 

glucose growth is that subtle decisions in the design of evolution experiments can 

have unpredictable impacts. By addressing one complication in experimental 

design, one can unknowingly create new adaptive opportunities. Citrate was 

present in DM media from the start of the experiment despite a quite small, 

marginal difference between growth of the ancestor in its presence or absence. 

This seemingly insignificant detail – combined with tens of thousands of 

generations of adaptation – has led to unexpected phenomena that range from 
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the incredible acquisition of aerobic citrate metabolism, to the dependence on 

citrate as an iron chelator. 

 

Materials and Methods 

Strains and LTEE conditions 

 

Escherichia coli B isolates were obtained from the Lenski LTEE [11] after 50,000 

generations. Briefly, 12 populations of E. coli were founded with either the 

arabinose-negative strain REL606 (populations A-1 to A-6) or the arabinose-

positive derivative, REL607 (A+1 to A+6). These have been evolved since 1988 in 

50 mL flasks containing 10 mL of modified Davis-Mingioli (DM) minimal media 

[36] (which we refer to as DM media) with 139 µM glucose (25 mg/L) as a growth 

substrate. One liter of DM consists of 7 g potassium phosphate (dibasic 

trihydrate), 2 g potassium phosphate (monobasic anhydrous), 1 g ammonium 

sulfate, 0.5 g disodium citrate, 1mL 10% magnesium sulfate, 1mL 0.2% thiamine 

(vitamin B1), and a carbon source- here glucose. These populations have been 

cultured at 37 °C while shaking at 120 rpm, and have been transferred daily via 

1:100 dilutions (~6.64 net doublings per day). 

The isolates analyzed in this experiment consisted of the ancestral lines REL606 

and REL607, as well as the ‘A’ clone frozen at 50,000 generations from 11 of the 

12 populations (A-1A: REL11330, A-2A: REL11333, A-3: REL11364, A-4A: 
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REL11336, A-5A: REL11339, A-6A: REL11389, A+1A: REL11392, A+2A: 

REL11342, A+3A: REL 11345, A+4A: REL11348, A+5A: REL11367, A+6A: 

REL11370). The A-2A clone is from the ‘large’ lineage that has coexisted with a 

cross-feeding ‘small’ lineage for tens of thousands of generations [31].  We 

therefore also examined an A-2C ‘small’ clone (REL11335).  

 

Before growth and GC-MS experiments, acclimation cultures were inoculated 

from freezer stocks and grown for 24 hours in DM 1 mM glucose without citrate.  

 

Growth Rate and Yield Experiments 

To measure growth rate and yield, cultures were grown in 50 mL flasks 

containing 10 mL of DM minimal media (the same media as the evolution 

experiment) with 1 mM glucose.  In order to avoid extremely low optical 

densities, growth assays were conducted at 1 mM, which is higher than the 25 

mg/L = 0.14 mM that was used in the “DM25” medium of the evolution 

experiment. It is, however, closer to the concentration of glucose in the 

evolutionary environment than either the 250mg/L or 1000mg/L that has 

previously been used for physiological assays on these strains [13, 30, 37]. 

DM+citrate media contained disodium citrate at a concentration of 1.7 mM, as 

normal. DM+iron was supplemented with ammonium iron sulfate, mixed fresh 

the day of the experiment, to 10 µM of Fe (II). Ammonium is already present in 

DM (as ammonium sulfate) at a concentration of 7.6mM, so 10 µM addition in 
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iron sulfate does not meaningfully change its concentration. DM+citric acid was 

DM supplemented with 1.7 mM citric acid and pH balanced with KOH.  Spent 

media was produced by growing the ancestral strain REL606 in DM 1 mM 

glucose without citrate for 24 hours, centrifuging to remove the majority of the 

cells, and then filtering with a 0.2 µm filter to sterilize. Citrate was omitted in 

order to ensure that it did not suppress siderophore production.  This spent 

media was supplemented to 1 mM glucose with filter-sterilized 10% glucose 

solution, and compared to DM without citrate identically supplemented with 

glucose.  

For growth rate experiments, OD600 was measured on a BioRad SmartSpec Plus 

(Philadelphia, PA) spectrophotometer every hour until there was a detectable 

increase in OD, then approximately every 30 minutes until stationary phase was 

reached. Yield was measured as OD600 after 24 hours. Growth rate was calculated 

with Growth Curve Fitter, an in-house software package that fits exponential 

curves using points in the log-linear range of observations (N.F. Delaney & CJM, 

unpublished).  To determine growth rates, we subtracted the blank (optical 

density at t=0), and fitted all points after a change in OD was measurable until 

the point before stationary phase was reached (4-6 points).  The exception was 

for the Cit+ A-3 strain, for which the growth rate was fitted for growth on only the 

glucose portion of the diauxic growth curve.  Between 4 biological replicates (for 

citrate-insensitive strains) and 19 (for the ancestor) were run for each condition. 

The statistical difference between growth parameters for different conditions was 
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calculated directly from the data using Welch’s T test.  In order to plot the 

relationship between the data in an intuitive way as a ratio, the ratio and error for 

growth parameters was calculated by fitting a log-linear model with the 

strain:media interaction terms and block as the dependent variables using R (R-

Project software).  

GC-MS analysis of incorporation of carbon from glucose versus citrate 

Incorporation of 13C was measured as previously described [38]. Strains were 

grown with or without citrate in 100 mL of Davis minimal media with 1 mM U-

13C glucose (Cambridge Isotope Laboratories, Andover, MA). At stationary phase, 

all cells were pelleted from the media, hydrolyzed overnight in 6 M HCl, and 

dried. The dry cell material was then derivatized for an hour at 85 °C with 40 µL 

each of dimethylformamide (DMF) and N-tert-butyldimethylsilyl-N-

methyltrifluoroacetamide with 1% tert-butyldimethyl-chlorosilane (TBDMSTFA). 

The derivatized cell material was injected into a Shimadzu QP2010 GC-MS 

(Columbia, MD). The injection source was 230 °C. The oven was held at 160 °C 

for 1 min, ramped to 310 °C at 20 °C min-1, and finally held at 310 °C for 0.5 min. 

The flow rate was 1 mL min-1 and the split was 10. The column was a 30 m Rx1-

1ms (Restek, Bellefonte, PA). Three biological replicates were run for each isolate 

(except A-2A in which one run failed). 

In all samples the percent of each amino acid that was uniformly labeled with 13-C 

molecules was determined using FiatFlux qualitycheck [38]. For each amino acid 



! 34!

fragment that was detected in all biological replicates, the difference in average 

percent of uniformly labeled fragment was determined for samples grown with 

and without citrate. Finally we used a non-parametric Wilcoxon signed-rank test 

to determine whether there was a significant difference in labeling between 

treatments. 
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Evolutionary adaptation to a constant environment is often accompanied by 

specialization and a reduction of fitness in other environments. We assayed the 

ability of the Lenski Escherichia coli populations to grow on a range of carbon 

sources after 50,000 generations of adaptation on glucose. Using direct 

measurements of growth rates, we demonstrated that declines in performance 

were much less widespread than suggested by previous results from Biolog assays 

of cellular respiration. Surprisingly, there were many performance increases on a 

variety of substrates. In addition to the now famous example of citrate, we 
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observed several other novel gains of function for organic acids that the ancestral 

strain only marginally utilized. Quantitative growth data also showed that strains 

with higher mutation rate exhibited significantly more declines, suggesting that 

most metabolic erosion was driven by mutation accumulation and not by 

physiological tradeoffs. These reductions in growth by mutator strains were 

ameliorated by growth at lower temperature, consistent with the hypothesis that 

this metabolic erosion is largely caused by destabilizing mutations to the 

associated enzymes. We further hypothesized that reductions in growth rate 

would be greatest for substrates used most differently from glucose, and we used 

flux balance analysis to formulate this question quantitatively. To our surprise, 

we found no significant relationship between decreases in growth and 

dissimilarity to glucose metabolism. Taken as a whole, these data suggest that in 

a single resource environment, specialization does not mainly result as an 

inevitable consequence of adaptive tradeoffs, but rather due to the gradual 

accumulation of disabling mutations in unused portions of the genome. 

 

Introduction 

Evolving populations face the fundamental dilemma that there is no single 

phenotype that is optimal in all environments. When an evolving population 

occupies the same selective environment for an extended period of time, no 

advantage is realized by maintaining fitness on resources it no longer encounters. 

Adaptation to a selective environment can result in correlated responses in 
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alternative environments. While these can be synergistic improvements, a 

response that decreases fitness in other environments is known as specialization. 

This prevents the rise of ‘Darwinian demons’: single super-genotypes that are 

optimized across all conditions [1]. It is critical to understand the origin of 

specialization because it underlies the origin and maintenance of diversity- it is 

why ‘the jack of all trades is a master of none’ [2]. 

Specialization can result from either selective or neutral processes. Antagonistic 

pleiotropy describes when natural selection favors changes that are beneficial in 

the current environment but reduce function in other environments. 

Alternatively, specialization may result from mutations that decrease fitness in 

alternative environments that are neutral in the selective environment. These 

mutations have the potential to either drift or hitchhike to fixation via “mutation 

accumulation”. As neutral mutations accrue in proportion to the mutation rate, 

the clearest evidence of mutation accumulation can come from excess 

specialization in mutator lineages, which contain defects in mutational repair 

that can elevate mutation rates ~100-fold [3]. In contrast, where specialization is 

rapid and occurs in parallel across lineages, a pattern commonly seen for 

adaptation itself, this has been cited as support of selection-driven antagonistic 

pleiotropy [4].  

The experimental evolution of 12 populations of Escherichia coli grown for 

thousands of generations on a single substrate has been used to distinguish 

whether selective or neutral processes drive metabolic specialization [4]. The 
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populations were part of the Lenski Long-Term Evolution Experiment (LTEE) 

[5], in which wild-type E. coli B have been diluted 1:100 daily and re-grown in 

well-mixed medium containing glucose as the sole usable carbon source. After 

20,000 generations (20k), competitive fitness on glucose had increased by ~70%. 

However, respiration assays in static 96-well Biolog plates (Hayward, CA) [6] 

suggested dramatic decreases in metabolic performance on alternative 

substrates. These declines occurred rapidly and in parallel across populations, 

coincident with the largest gains in fitness. This was suggested to indicate 

selection-driven antagonistic pleiotropy as the main mechanism of specialization. 

Furthermore, because there was only a weak, non-significant excess of declines 

by the populations which had become mutators earlier in the experiment [3], this 

suggested neutral mutation accumulation played little role, if any, in glucose 

specialization by 20k. 

In this study we have readdressed the basis of specialization in the LTEE 

populations, motivated by our discovery that the growth rates of isolates in well-

mixed media are poorly captured by assays of cellular respiration in static, 

proprietary media. Given this surprising finding, we analyzed the selected (i.e., 

glucose) and correlated responses of isolates from both 20k and 50,000 

generations (50k) from four perspectives: 

(i) Generality and parallelism of specialization- Is there an overall pattern of 

decreased growth performance on alternative substrates? Is the pace and pattern 

of declines in function consistent with antagonistic pleiotropy? 
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(ii) Novel gains of function- Besides the prior example of evolution to catabolize 

citrate present in the medium [7], are there any other substrates used by evolved 

isolates that are not utilized by the ancestors? 

(iii) Role of elevated mutation rate driving mutation accumulation- Will the 

30,000 generations that have passed since 20k have lead to sufficient mutation 

accumulation for the mutators to exhibit significantly greater decreases in growth 

than non-mutators?  

(iv) Predictability of catabolic declines- Can we predict which substrates would be 

metabolized less effectively based upon the similarity of their use to glucose? Is 

there a pattern to this specialization that might suggest a common biophysical 

basis behind them for the mutator lineages? 

  

Results 

Respiration assays indicated broad declines in function across substrates, 

including those where adaptation occurred 

As a first step to readdressing specialization in the LTEE populations, we sought 

to replicate the Biolog respiration results at 20k presented by Cooper and Lenski 

[4], as well as extend this analysis to the populations at 5ok. Despite changes in 

the Biolog assay itself since the previous study, we recovered a similar pattern for 

the panel of substrates (Supplementary Figure 3.1).  
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The validity of Biolog assays as a proxy for strain improvement came into 

question after finding decreases for the very substrates on which selection 

occurred. (Figure 3.1A). Despite abundant evidence of improvement from 

competitive fitness assays [4] and growth rates [8], respiration on glucose 

consistently decreased over the course of the experiment. Furthermore, although 

one lineage in the A-3 population evolved to utilize as a carbon source the citrate 

included in Davis Minimal (DM) medium [7], it produced a statistically 

indistinguishable respiration value from the other Cit- isolates at 50k 

(Supplementary Figure 3.2).  
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Figure'3.1:!Biolog'measurements'are'a'poor'proxy'for'growth'performance.'A)'

Biolog!AUC!as!measured!for!the!D=glucose!on!Biolog!plates.!The!evolved!strains!have!

a!lower!AUC!value!than!the!ancestor!on!glucose,!the!carbon!source!available!during!

evolution!(P<0.0001,!Welch’s!two!sample!T=test).!The!mean!AUC!for!the!20k!and!

50k!isolates!on!glucose!are!not!statistically!different.!B)!Scatter!plot!showing!the!

measurement!of!function!as!Biolog!AUC!vs.!growth!rate!on!all!substrates,!for!all!

strains!at!20k!and!50k!generations!as!well!as!the!ancestors.!The!regression!shown!is!

for!substrates!after!removal!of!categorical!disagreements!(growth!without!

respiration!or!respiration!without!growth,!167/702!in!total).!

!

!

!
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Growth rates reveal a balance of decreased and increased performance across 

substrates  

Given that the selective substrates with known fitness improvement had 

decreased cellular respiration, we turned to direct measurements of growth rates 

across a wide panel of substrates using a robotic growth analysis system [9,10]. 

By measuring growth rate we capture the demographic metric best-correlated 

with competitive fitness in the evolutionary environment [11]. As the LTEE was 

performed in shaken, fully-aerated flasks, these well-mixed 48-well plates were a 

closer match to the evolutionary environment than unshaken 96-well plates, as 

unshaken plates commonly exhibit sub-exponential growth due to oxygen 

limitation [10]. While Biolog uses a proprietary minimal media, for the growth 

rate measurements we used the same Davis Minimal (DM) media as the LTEE 

experiment. We omitted citrate, however, as this choice allowed us to include the 

Cit+ A-3 population in our analysis. We chose carbon sources based upon the 

substrates for which significant, parallel decreases were previously observed via 

respiration assays [4], as well as citrate and several sugars on which growth 

tradeoffs were previously measured after 2,000 generations [12]. 

Comparing growth rates to respiration data, it becomes evident that the latter is 

not an accurate assay for growth (Figure 3.1B). There were many cases where 

respiration occurred without growth, as 156 out of the 702 strain/substrate 

combinations measured did not permit growth but did have measurable 

respiration- a known feature of Biolog assays [6]. Even after removing these 
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categorical disagreements, and a smaller number of instances of growth without 

respiration (11 strain/substrate combinations), Biolog respiration values were a 

poor predictor of growth rate (R2=0.18, linear regression F-test(1,499)=108.8). 

Growth rate data across substrates revealed a surprising degree of correlated 

gains in performance (Figure 3.2). Indeed, at 20k, there were actually more 

correlated increases in rate than decreases (165 vs. 99, respectively, P<0.0001 for 

binomial two-sided test with null of random gains and losses). By 50k, the picture 

had reversed, now with more decreases than increases (167 vs. 119, P=0.005, 

binomial two-sided test).  
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Figure'3.2:!Relative'growth'rates'across'a'variety'of'growth'substrates'for'

evolved'strains'from'20k'(A)'or'50k'generations'(B).!Heatmaps!indicate!the!log!

ratio!of!growth!rates!relative!to!the!average!of!the!two!ancestors!on!that!carbon!

source.!White!indicates!a!growth!rate!equal!to!that!of!the!ancestor!average,!red!

faster,!and!blue!slower.!The!growth!rates!are!plotted!on!a!log!scale!with!the!limits!of!

the!color!range!set!for!twice!as!fast!and!half!as!fast!as!the!ancestor!average.!An!‘x’!in!

a!box!indicates!that!no!growth!was!observed!for!that!combination!of!strain!and!

substrate!over!48!hours.!Strains!that!were!mutators!by!that!timepoint!are!indicated.!!
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Gains of function on alternate carbon sources 

In addition to many quantitative improvements of growth rates, there were 

several examples where isolates acquired the ability to grow on substrates that 

the ancestral strain could not utilize over the 48 hour time-course of the growth 

experiments. Only one such example was previously known: the aforementioned 

gain of citrate utilization by the A-3 population [7]. We found that this strain also 

gained the ability to grow within 48 hours on three C4-dicarboxylate tricarboxylic 

acid cycle intermediates (succinate, aspartate, and malate). Three other 50k 

isolates from different replicate populations gained the ability to use this same set 

of three C4 dicarboxylate intermediates, as well as fumarate.  

Mutator strains suffered greater declines in growth on alternative substrates  

We compared mutators to non-mutators to ask whether mutation accumulation 

contributed to the observed decreases in growth (Figure 3.2). At 20k generations, 

despite increasing in growth rate more than decreasing (47 vs. 41 cases), the 

mutators were marginally worse, on average, than non-mutators (P=0.03, 

Pearson’s chi-squared test comparing proportion of growth rate reductions). By 

50k there was a stark pattern of mutators declining in catabolic ability compared 

to non-mutators (P<<0.0001, Pearson’s chi-squared test). This can be seen in the 

large block of blue (decreases in rate) for five of the mutators. Non-mutators at 

50k still increased in growth rate more often than they decreased (80 vs. 52 

cases, P=0.018 binomial two-sided test). Because some strains are known to be 
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affected by the absence of citrate even though they cannot use it as a carbon 

source [13], we also tested the growth rate of the 50k strains on alternative 

substrates supplemented with 1.7 mM sodium citrate, as in LTEE growth media. 

Although the reductions in growth rate relative to the ancestor were ameliorated 

in some cases by the addition of citrate, the mutator strains still suffered 

significantly more growth rate decreases than the non-mutators (P=0.003, 

Pearson’s chi-squared test). 

Parallelism of metabolic decreases  

Given the trend of both increased and decreased growth rate on alternative 

carbon sources, we assessed the degree of parallelism with which metabolic 

erosion occurred. We segmented the data by substrate and asked how many 

evolved strains decreased in growth rate or cellular respiration on each substrate. 

We took as a null expectation that decreases in metabolic function are equally as 

likely as increases, and plotted the observed pattern against this null distribution 

(Supplementary Figure 3.3).  

In no case do our observations of metabolic decreases closely match the null 

distribution. As previously, cellular respiration was reduced for nearly all strains 

on all substrates. The observed average number of strains with reduced 

respiration on a substrate was 11.3 at 20k and 12.8 at 50k, 5.3 out of 12 and 6.3 

out of 13 more strains than would be expected given the null distribution 

(P<<0.0001, binomial two-tailed exact test). For growth rate, at 20k on average 
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5.3 strains reduced in growth rate on each substrate, in fact 0.7 fewer strains than 

expected given the null distribution (P=0.01). However, this average somewhat 

masks the bimodal pattern seen in the distribution, with some substrates 

showing nearly no strains reducing growth rate and others nearly all. At 50k, an 

average of 8.3 strains lost function on each substrate, 1.8 more than expected 

(P<<0.0001). Clearly there is some parallelism in decreases in growth rate, but it 

is worth emphasizing that the substrates used in this study were those for which 

widespread, parallel losses in cellular respiration were previously observed.  

Metabolic similarity between substrates was a poor predictor of correlated 

evolved responses 

We asked whether the correlated changes in performance on alternative 

substrates could be predicted based on the similarity of the catabolic network for 

growth on that compound compared to that for glucose. There are two rationales 

that would support this hypothesis. First, there are more loss-of-function 

mutations available for a non-glucose substrate if it uses many unique enzymes, 

and we might expect to see metabolic specialization scale with mutational target 

size under mutation accumulation. These mutations may either simply be 

unguarded by purifying selection, or perhaps even selectively advantageous to 

lose. Second, the balance and direction of flux through various pathways will lead 

to a different optimal allocation of enzymes to balance the needs of catalysis 

versus expression costs. As such, antagonistic and synergistic pleiotropy suggest 

that highly overlapping metabolic flux patterns might be expected to suffer fewer 
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declines, or possibly even synergistic gains, relative to a very differently used 

substrate. A rough approximation of the similarity between different substrates is 

to simply group them as sugars or ‘non-sugars’ that require gluconeogenesis for 

anabolism. To frame this more quantitatively, however, we also used genome-

scale metabolic models to make predictions about specialization.  

In order to approximate internal metabolic states we used Flux Balance Analysis 

(FBA) to generate predicted flux patterns for each compound [14]. This approach 

generates a vector of internal flux values that describes the relative flow through 

every reaction in a cell were it to optimize biomass production per substrate 

molecule. Although selection in batch culture largely acts upon rate, biomass 

production per unit substrate has been shown to effectively capture the growth of 

the LTEE ancestor on glucose, and 50k evolved strains deviated only slightly 

from this pattern [15]. We therefore compared FBA-derived flux vectors using a 

number of metrics to determine their degree of dissimilarity to the flux vector for 

glucose (see Materials and Methods).  
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Figure'3.3:!Substrate'dissimilarity'does'not'predict'metabolic'erosion.!A)'A!

simple!categorization!of!substrates!as!sugars!and!non=sugars!finds!that!the!

correlation!between!relatedness!to!glucose!and!evolved!metabolic!changes!is!the!

opposite!from!what!is!hypothesized.'B)!The!FBA=predicted!mutational!target!size!

does!not!correlate!with!decreases!in!growth!rate.!C)!Hamming!distance!between!

FBA=generated!flux!vectors!for!carbon!sources!partially!predicts!ancestral!growth!

rate.!Black!dots!indicate!the!growth!rate!of!the!2!ancestral!strains.!!268!reactions!

were!predicted!as!necessary!for!optimal!metabolism!on!glucose.!!D)!Hamming!

distance!between!a!substrate!and!glucose!does!not!correlate!with!increases!or!

decreases!in!growth!rate.!The!y!axis!is!the!log!of!the!ratio!of!growth!rate!relative!to!!
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Figure'3.3,'continued:'the!ancestor,!with!all!ratios!greater!or!less!than!e2!binned!at!

the!axis!limit.!For'C=D,!purple!dots!are!mutator!strains,!orange!dots!are!non=

mutators.!Larger!dots!at!the!axis!extrema!indicate!more!overlapping!points,!and!the!

shading!between!purple!and!orange!indicates!the!different!proportions!of!mutators!

and!non=mutators!at!that!limit.'For!B=D,!substrates!with!the!same!x!axis!values!were!

plotted!with!a!slight!offset,!and!the!true!value!is!listed!in!the!axis!label.!!!

We first tested whether evolved decreases in growth rate scaled with mutational 

target size. There is no expected behavior under this hypothesis for increases in 

growth rate, so we limited our analysis to combinations of strains and substrates 

for which growth rate had decreased. By identifying the reactions necessary for 

optimal growth on alternative substrates that are not necessary for growth on 

glucose, and determining the number of coding nucleotides necessary for those 

reactions, we were able to approximate the number of available mutations that 

would decrease growth rate on a substrate. Contrary to our hypothesis, we found 

no significant relationship between mutational target size and reduction in 

growth rate (P=0.15, linear regression F-test(1, 146)=2.1) (Figure 3.3B).  

Our hypothesis also suggests that substrates used more similarly to glucose 

would permit more rapid growth. Starting with the simple categorization of 

substrates as sugars and non-sugars, we found no correlation between these 

groupings and changes in growth rate (Figure 3.3A). Indeed, there were many 

reductions in growth rate for sugars other than glucose. To frame this hypothesis 

in a more quantitative way, we compared the Hamming distance between the 
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vector of predicted fluxes for an alternative compound and that of glucose. 

Contrary to our hypothesis, we found no significant relationship between 

metabolic similarity to glucose and correlated responses (P=0.26, linear 

regression F-test(1, 323)=1.27), and any relationship measured was in fact in the 

opposite direction as predicted (Figure 3.3D). As a confirmation that Hamming 

distance between flux vectors for alternative substrates is biologically relevant, 

we found that it was a significant predictor of some of the variance in the relative 

growth rate of the ancestor (P=0.0001, R2=0.26, linear regression F-test(1, 

48)=17.2) (Figure 3.3C). Alternative metrics to Hamming distance performed 

similarly poorly in predicting patterns of tradeoffs (Supplementary Table 3.4). 

These data suggest that the similarity of overall flux patterns is a surprisingly 

poor predictor about which substrates would experience correlated increases or 

decreases in performance.  

Growth for mutator strain was more sensitive to temperature than for non-

mutators 

Linking the mutator-driven metabolic specialization to their vastly elevated 

mutation rate itself, we hypothesized that their abundance of amino acid 

substitutions may generate trends indicative of the types of effects they had upon 

their gene products. The mutator lineages acquired mutations with a rate up to 

0.06 per generation [16]. For the A-1 lineage, by 40,000 generations there were 

627 SNPs, 599 of which were in coding regions, and 513 of those were non-

synonymous [17]. This is a tremendous load of amino acid substitutions, which 
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are viewed as likely to be deleterious due to destabilizing proteins [18-20]. We 

therefore hypothesized that, if protein destabilization was a dominant factor 

affecting growth at 37 °C, we could predictably ameliorate these defects by 

lowering the growth temperature. Non-mutators will have a small number of 

such mutations, but the ~100-fold greater rate of such mutations in the mutator 

genomes should make growth more temperature sensitive than for non-mutators.  

 

Figure'3.4:'Temperature'dependence'of'growth'rate'on'alternative'substrates.!

For!all!strain/substrate!measurements,!we!determined!the!relative!change!in!

growth!rate!by!changing!temperature!from!37!°C!to!30!°C.!For!A=B,!Purple!dots!are!

mutator!strains;!orange!dots!non=mutators.!Points!that!fall!outside!of!the!plot!range!

are!plotted!at!the!edge!of!the!graph.!A)!Effect!of!temperature!change!on!20k!isolates!

B)!Effect!on!50k!isolates.!C)'For!50k!isolates,!the!number!of!mutators!and!non=

mutators!that!were!rescued!from!no!growth!at!37!°C!to!growth!at!30!°C.!

!
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Growth rate data supports the hypothesis that mutators have general 

temperature-sensitivity. For 50k isolates, growth rate relative to the ancestor at 

30 °C was higher than at 37 °C in 98 cases, compared to only 37 cases where it 

was reduced relative to the ancestor (P<<0.0001, binomial two-tailed exact test) 

(Figure 3.4B). That is, despite the fact that these strains have adapted for 50,000 

generations at 37 °C, the ratio of their growth rate to that of the ancestor is higher 

at the foreign 30 °C than their native temperature. This general improvement at 

the lower temperature was not present for non-mutators (56 improved relative to 

the ancestor by moving to 30 °C, 57 worse- P=0.99, binomial two-tailed exact 

test), and the difference between mutators and non-mutators was significant 

(P=0.0002, Pearson’s chi-squared test). Furthermore, in the cases where evolved 

50k isolates completely lost the ability to grow on substrates, when grown at 30 

°C these losses were ameliorated more than half the time for mutators (35 of 61), 

significantly more than for non-mutators (6 out of 23, P=0.01, Pearson’s chi-

squared test) (Figure 3.4C). 

An alternative hypothesis for the elevated temperature sensitivity of mutators is 

that the phenotype is directly caused by the mutation in mismatch repair rather 

than the accumulation of destabilizing mutations that it caused. For the 20k 

isolates, in most cases growth was better relative to the ancestor at the native 37 

°C than at 30 °C (119 vs. 75, P=0.002, binomial two-tailed exact test) (Figure 

3.4A). There was no significant difference at 20k between this pattern for 

mutators and non-mutators (P=0.20, Pearson’s chi-squared test), and no 
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significant difference in the number of rescues from complete loss of growth 

(P=0.31, Pearson’s chi-squared test), ruling out that mutator status itself 

generates temperature sensitivity. 

Discussion 

Replicate experimentally-evolved populations such as the Lenski LTEE are ideal 

for studying the processes leading to specialization. Here we directly measured 

growth rates in well-mixed conditions rather than cellular respiration in static 

media. This seemingly minor choice generated qualitatively different results, 

leading to the opposite conclusions from those previously made about the 

mechanisms and patterns of specialization during tens of thousands of 

generations of growth on a single substrate.  

The earlier report [4] of widespread, parallel tradeoffs after extended growth on a 

single compound fit comfortably with the general notion that unused capacities 

will tend to degrade after an extended period of disuse. However, the suitability 

of cellular respiration assays for growth performance was seriously challenged by 

our data. There were many cases of ‘false positives’, with respiration on 

substrates that do not support growth, and a weak predictive ability for growth 

even after removing these. The parallel decreases in function observed across 

compounds in the respiration assay seem to be due to cultures becoming worse at 

reducing the dye in the Biolog assay environment. This generic effect was strong 
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enough to mask both adaptation on glucose and the novel gain of citrate use in 

the A-3 50k isolate. 

Little parallelism in metabolic erosion 

Growth rates indicated little evidence in support of widespread antagonistic 

pleiotropy, with more increases than decreases in growth on alternative 

compounds through 20k, and very few parallel declines. There were individual 

counter examples observed, such as the previously characterized universal loss of 

ribose utilization early in adaptation [21], and the tendency for reduced or loss of 

growth on maltose [22-24]. As such, it is clear that examples of antagonistic 

pleiotropy do exist in the data. However, relatively few other substrates showed 

this pattern at 20k or 50k, despite the fact that these substrates were those where 

parallel reductions in respiration were observed. Because selection drives 

antagonistic pleiotropy, it is commonly expected that the early period of rapid 

adaptation would coincide with the most tradeoffs in alternative environments, 

and that the frequent parallelism in the targets of amongst early beneficial 

mutations would drive parallel losses [4]. Given these criteria, the growth data do 

not support antagonistic pleiotropy as the primary driver of specialization. 

There are three implicit assumptions about antagonistic pleiotropy, however, that 

if not met alter the expectations for specialization driven by selection. First, if 

different beneficial mutations occur across lineages, they will not necessarily lead 

to the same pleiotropic tradeoffs. As of 20k, out of the 14 genes screened in all of 
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the populations there were three genes with mutations in all populations and two 

more in a majority. The other screened genes had mutations in a minority or 

none of the other populations, suggesting that a variety of different beneficial 

mutations occurred across lineages [17]. Second, beneficial mutations in the same 

target may have differing pleiotropic effects in different lineages due to other 

mutations present. This “epistatic pleiotropy” [25] has been found to be common 

in multiple model systems [26-29]. Third, the early large-effect beneficial 

mutations may or may not be responsible for greater pleiotropic effects than 

later, smaller effect mutations. Yeast morphological pleiotropy scaled with 

fitness, for example, but the correlation explained only 17% of the variation [30]. 

The first and second scenarios above – distinct mutations or epistatic pleiotropy 

– would lead to a scenario whereby parallel metabolic declines are no longer 

necessarily expected from antagonistic pleiotropy. The third scenario – 

pleiotropy not scaling with selective effect – would mean the temporal dynamics 

of fitness gain in the selective conditions and the rate of performance losses in 

alternative environments need not be tied.  

These caveats underscore our limited ability make conclusions about the role of 

antagonistic pleiotropy in the observed metabolic declines. The only sure 

determinant of whether a correlated change is the result of pleiotropy or neutral 

mutation is to genetically manipulate the strains to isolate the effect of individual 

mutations. This suggests future experiments, for example testing early and 

parallel mutations previously screened for epistatic effects [31] for pleiotropy. 
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Ultimately, as we discuss below, the key determinant of the role of mutation 

accumulation is whether metabolic specialization was substantially affected by 

mutation rate. 

Increases in growth rate on carbon sources other than glucose 

Rather than a general pattern of metabolic specialization, these data revealed an 

unexpected extent of correlated improvements in growth on alternative 

compounds. Why would E. coli maintain or improve performance on substrates 

that had not been supplied for decades? There are three general classes of 

explanations, two of which mirror the processes considered for pleiotropic 

tradeoffs.  

The first explanation for the correlated improvements, and undoubtedly the least 

likely, would be neutral performance gains through mutations that had no 

selective consequence in glucose: the beneficial analog of mutation accumulation. 

If this were the case, mutators might have more increases in rate than non-

mutators, and more improvements would have occurred by 50k than 20k, which 

is the opposite of what was observed.  

The second explanation of the correlated improvements is that the same 

mutations that were beneficial during growth on glucose may have led to gains in 

alternative environments, i.e. “synergistic pleiotropy”. There are known examples 

of this occurring for early mutations in E. coli evolving in these conditions 

[12,32], and it is a common pattern seen across organisms (for example [33]). 
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These synergistic mutations may be generally beneficial in the laboratory 

environment of the LTEE and thus unrelated to carbon source metabolism. 

Indeed, there are examples of both adaptation to generic aspects of a selective 

environment, such as the trace metal formulation [34], and removal or down-

regulation of costly genes or genome regions [21,35,36]. Synergistic pleiotropy 

could also result from mutations that directly improved glucose metabolism, such 

as mutations in the phosphotransferase-mediated uptake system that also 

increased growth on the other sugars imported by this system [12]. 

A third hypothesis for correlated gains of function on alternative compounds is 

that there were additional compounds besides glucose (and citrate) available 

from cell excretions or lysis. The serial transfer regime of the LTEE creates a 

scenario whereby populations use all of their glucose resources within the first 

few hours, and remain in stationary phase the remainder of the day. The 

ancestral E. coli excrete a small amount of acetate in this environment, and this 

increased on average two-fold by 50k generations [15]. It is thus unsurprising 

that the strongest, most universal gain in alternative compounds by 20k was on 

acetate (Figure 3.2A). In terms of cell lysis, this has allowed one population (A-2) 

to maintain a long-term polymorphism for over 40,000 generations. A “large” 

colony lineage that grows fast on glucose but lyses substantially in stationary 

phase cross-feeds a “small” colony lineage that is not as fast on glucose as the 

larges but has specialized as a “cannibal” [37-39]. This results in a stable, 

negative frequency-dependent fitness effect between these strategies. Although 
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an earlier study of the other populations at 20k failed to reject that fitness 

interactions were transitive through time [40], these competitions were 

performed at a 50:50 ratio and thus may have missed interactions that occur 

when one partner is rare.  

Novel gains-of-function 

The most remarkable correlated increases were the several examples of “novel” 

gains of function by evolved isolates on substrates where the ancestor failed to 

grow. The citrate example has been reported previously [7], but we did not expect 

to find other such substrates. These novel gains of function are distinct from what 

was seen for citrate, as over a longer duration (>100 hours) the ancestral E. coli 

seem to grow to measurable density on these substrates. We are currently 

exploring whether these long lags represent slow physiological acclimation or the 

emergence of evolved genomic changes. In the case of the Cit+ A-3 lineage, 

succinate is likely excreted during citrate import [41], thus selection for its use is 

perhaps unsurprising. The fact that several other strains experienced similar 

gains across the same range of C4 dicarboxylic acids, and that this included the 

cross-feeding “small” phenotype clone from the A-2 population appears to 

suggest that these compounds may be excreted, or present during stationary 

phase from lysed cells. 
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Predictability of correlated responses on alternative carbon sources 

With the availability of whole-genome scale metabolic models for E. coli, we 

asked whether we could predict the trend of correlated responses by comparing 

their pattern of use to that of glucose. We proposed a generic, seemingly obvious 

hypothesis that the more different the metabolism of an alternative substrate was 

from the metabolism of glucose, the more likely it would be that populations 

would have decreased (or lost) their ability to use it. As described, this logic holds 

regardless of whether or not selection drove metabolic specialization. In order to 

quantify the similarity of substrates, we applied FBA to compare the predicted 

optimal metabolic flux states for each compound. The data, however, did not 

support our hypothesis: there was almost no relationship between similarity to 

glucose and correlated response. Recent in silico attempts to predict growth 

capability on substrates based on metabolic similarities have had some success 

[42], suggesting that evolution may be acting here on functions not included in 

the model. For example, mutations may have occurred in functions related to 

differential regulation that distinguish these sugars, rather than central metabolic 

enzymes for which their use is nearly identical.  These mutations are known to 

have occurred in the LTEE, for example in spoT and nadR [35,43]. These 

predictions are also based on the assumption that glucose is the only available 

carbon source. If growth on other carbon sources is under selection due to their 

excretion or presence after cell lysis, it may explain some of the lack of predictive 

power here.  
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Temperature sensitivity of mutators consistent with protein destabilizing 

mutations 

Although the identity of the substrates that experienced tradeoffs (or 

improvements) were not those we expected, we reasoned that the biophysical 

effects of the deluge of mutations in mutators might lead to a predictable pattern 

of temperature sensitivity in these strains. The genomic sequences and data 

available to date [16,17] suggest mutators will have on the order of 500-2000 

non-synonymous mutations, perhaps more. Random amino acid substitutions 

have been shown to be mildly deleterious in general due to destabilizing proteins 

[20]. To ask whether tradeoffs observed in the mutators were at least partly due 

to destabilizing mutations in proteins needed for alternative substrates, we tested 

whether mutators would be more sensitive to changes in incubation temperature 

than non-mutators. Consistent with this hypothesis, we found that the 50k 

mutators performed better relative to the ancestor at 30 °C than at the 37 °C 

temperature where they have evolved. One alternative hypothesis that was ruled 

out is that the mutator allele itself leads to temperature sensitivity, as the 20k 

mutators performed better at 37 °C than at 30 °C, and the changes with 

temperature were not distinguishable from non-mutators. Although other 

alternative hypotheses may explain some of the temperature sensitivity, these 

data are consistent with the hypothesis that neutral degradation of protein-

coding sequences in these strains proceeded via partial destabilization on the way 

to eventual loss of function.  
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Role of elevated mutation rate driving metabolic specialization 

The comparison of mutators and non-mutators at 50k strongly suggests that 

neutral mutation accumulation was the primary driver of metabolic 

specialization. The difference in metabolic erosion allows us to distinguish the 

overall trend from forms of antagonistic pleiotropy that could have lacked 

parallelism (different mutations or epistatic pleiotropy) or that may have arisen 

late relative to fitness gains (if pleiotropy did not scale with selective effects). 

Despite a significant difference from non-mutators in the proportion of growth 

rate reductions, after 20,000 generations and a decade of adaptation the 

mutators still increased growth rate in more cases than they decreased, and only 

by 50k did mutators as a group have more decreases than increases. By the later 

timepoint five of the seven mutators had decreased growth (or complete loss) for 

essentially every single alternative compound (except citrate and C4 dicarboxylic 

acids for A-3, which were under selection for this strain). Interestingly, the other 

two (A-1, A-2S) do not show this pattern. These counterexamples may be due to 

the fact that A-1 acquired its mutator status late [17], and A-2S is the cross-

feeding generalist described above that adapted to grow upon lysed cell material 

[38].  

The late appearance of metabolic erosion argues for the unparalleled utility of 

truly long-term experiments. A neutral process such as mutation accumulation 

needs time to become apparent, although hitchhiking with beneficial mutations 

can speed their fixation (i.e., “draft” [44,45]). With a reduced effective population 
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size, the window of selective effects that behave neutrally grows. As such, the 

effects of elevated mutation rates and mutation accumulation becomes apparent 

much more quickly with evolution regimes with small bottlenecks, such as single 

colonies [46,47]. The late appearance of specialization also contrasts sharply with 

abundant evidence that lineages can diversify and specialize in mere tens or 

hundreds of generations. In addition to population size, this difference in 

timescale appears to correlate with the type of selective environment, and thus 

the evolutionary process that was responsible. Whereas the Lenski LTEE is 

notable as an environment with a single nutrient resource at high concentration, 

the cases of rapid diversification have involved spatial heterogeneity [48], rate-

limiting resources in a chemostat [49], or the presence of multiple substrates 

simultaneously [50]. In those scenarios, selection is actively pulling on different 

performance features of an organism and antagonistic pleiotropy appears to 

dominate. The relatively slow degradation of catabolic capacity in the LTEE 

suggests that E. coli faces comparatively little tension between improving upon 

glucose and maintaining performance on other substrates, even those which are 

predicted to be utilized in a very distinct manner. Specialization in this case 

appears not to have been a requisite tradeoff of adaptation, but rather a result of 

the degradation of unneeded proteins. 

The fate of mutator strains in the long-term 

Given the severity of metabolic erosion for mutators even in large laboratory 

populations, it is remarkable just how common mutator lineages are in nature. 
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Mutators have been isolated at frequencies over 1%, and seem to be particularly 

common in organisms such as pathogens [51]. The frequency of mutators in 

nature, despite the associated costs, may be partially explained by increased 

evolvability, shown in laboratory medium [52] and in mice [53].  

Our results add substantially to the idea that an elevated mutation rate is an ill-

fated long-term strategy even for large populations, as declines in performance in 

alternative environments will eliminate previously-occupied parts of the niche 

space. Recent findings have suggested that mutators may tend to attenuate their 

increased mutation rate over time [16,54,55], perhaps to avoid the harmful effects 

of Muller’s Ratchet. Thus both tradeoffs in alternative environments and 

mutation load in selective environments may contribute to the paradox that over 

the short-term lineages often benefit from elevated mutation rates, but the long-

term trend across phylogenies has been for stability in mutation rates of free-

living microbes [56]. 

 

Materials and Methods 

Strains and LTEE conditions 

Escherichia coli B isolates were obtained from the Lenski LTEE [5] after 20,000 

and 50,000 generations. Briefly, in the evolution experiment 12 populations of E. 

coli B were founded with either the arabinose-negative strain REL606 

(populations A-1 to A-6) or the otherwise isogenic arabinose-positive derivative, 
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REL607 (A+1 to A+6). These have been evolved since 1988 in 50 mL flasks 

containing 10 mL of Davis minimal media (DM) with 139 µM glucose (25 mg/L) 

as a carbon source. The cultures were grown at 37°C while shaking at 120 RPM, 

and were transferred daily via 1:100 dilutions (~6.64 net doublings per day). 

The isolates analyzed in this experiment consisted of the ancestral lines REL606 

and REL607, as well as the ‘A’ clone frozen at 50k and 20k generations for the 12 

populations. The A-2A clones at 20k and 50k were from the ‘large’ lineage that 

has coexisted with a cross-feeding ‘small’ lineage for tens of thousands of 

generations [57], and thus here we refer to them as A-2L. At 50k we also 

examined A-2C (REL11335), a ‘small’ clone that we refer to here as A-2S. All 

evolved strains are listed in Supplementary Table 3.1. 

Growth Rate Experiments 

For growth rate measurements, we acclimated out of the freezer by inoculating 10 

µL frozen cultures into 630 µL modified DM250 media in 48-well micotiter plates 

(Costar) and growing overnight on a plate shaking tower (Caliper). All growth 

rates were measured at the LTEE selective temperature (37 °C) unless otherwise 

described. The modified DM media is the same as previously used throughout the 

evolution of these strains [5], except it contained 250 mg/L glucose and no 

sodium citrate. Following acclimation, saturated cultures were transferred into 

new plates with a 1:64 dilution in DM media supplemented with 5 mM of a single 

carbon source. Under these conditions, growth in plates correlates well with 
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growth in flasks, both with and without citrate (P<0.0001, R2=0.74, linear 

regression F-test(1,28)=79.3). The!substrates!analyzed!were!those!where!

consistent!reduction!in!cellular!respiration!were!previously!observed,!as!well!as!

several!sugars!for!which!fitness!changes!had!been!previously!measured!after!2,000!

generations [12] and citrate.!Between 3 and 11 biological replicates were run for 

each strain/carbon source combination. 

Optical densities were obtained every 30 minutes to 1 hour on a Wallac Victor 2 

plate reader (Perkin-Elmer), until 48 hours had passed or cultures reached 

saturation, using a previously described automated measurement system [9,10]. 

Growth rates were determined by fitting an exponential growth model using 

custom analysis software, Curve Fitter (N. F. Delaney, CJM, unpublished; 

http://www.evolvedmicrobe. com/Software.html). Representative growth curves 

and fitted growth rates are shown in Supplementary Figure 3.4. The growth rate 

for all strains relative to the ancestor was calculated for each plate (averaging 

over the 2 ancestors, REL606 and REL607), and averaged across plates. Mean 

growth rates relative to the average of the ancestors were used throughout. When 

quantifying the number of increases and decreases in rate for evolved strains, we 

used all of the data for the substrates!for!which!the!ancestor!exhibited!growth=!a!

necessary!criteria!for!the!evolved!strains!to!demonstrate!reductions.!!

!
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Cellular Respiration Assays 

Biolog assays for respiration capacity were run as in Cooper and Lenski [4]. 

Briefly, cultures were grown from freezer stocks for 2 cycles of 1:100 dilution and 

24 hours of growth in 10 mL LB in flasks shaking at 37 °C. LB was used to avoid 

catabolite repression due to growth in minimal media, which could result in 

fewer positive results on non-glucose carbon sources. These cultures were 

inoculated 1:100 into fresh LB and grown for 6 hours before being spun down at 

12,000 g for 10 minutes and rinsed in saline to remove residual medium. Rinsed 

cells were resuspended in IF-0 buffer with dye added (Biolog) to a constant 

density of 85% transmittance, and all wells of Biolog PM1 plates were inoculated 

with 100 µL of this suspension. The plates were incubated, unshaken, at 37 °C. 

OD600 was measured at 0, 4, 12, 24, and 48 hours, and all well readings were 

adjusted by subtracting the reading of the well at 0 hours. A trapezoidal area 

approximation [4] combined the five measurements for each well into one value, 

which reflects the area under the curve (AUC) of optical density versus time. One 

replicate plate experiment was performed for each evolved strain at 20k and 50k 

generations, and 4 replicates were run for each ancestor (REL606 and REL607). 

Tests for tradeoffs for the evolved strains as a group on a substrate had were 1-

sample T-tests against the ancestral distribution with significance cutoff of 

P=0.002 to adjust for multiple comparisons. Tests for individual strains were the 

same but with a cutoff of P=0.0005. 
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Flux Balance Analysis 

Flux analysis was carried out with a genome-scale model of E. coli metabolism 

(iAF_1260 [58]). The model incorporates 2382 reactions and 1668 metabolites. 

The default minimal media environment and reaction bounds were used. Fluxes 

were predicted for each individual carbon source provided, normalized by 

number of carbon atoms to 10 units of glucose. Maximal biomass per substrate 

was used as the objective criterion as previously[15]. To determine whether a 

reaction was necessary for optimal growth on a substrate, each reaction flux 

predicted was individually constrained to zero. Only the necessary reactions, 

those for which constraining the flux resulted in a reduction in final biomass, 

were considered in the analysis of differences between flux vectors 

(Supplementary Table 3.2). Reaction differences between substrates, considered 

for the Hamming distance, are listed in Supplementary Table 3.3. Supplementary 

Table 3.4 summarizes alternative distance metrics that were used to assess the 

difference between flux vectors. 
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The most powerful genome-scale framework to model metabolism, flux balance 

analysis (FBA), is an evolutionary optimality model. It hypothesizes selection 

upon a proposed optimality criterion in order to predict the set of internal fluxes 
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that would maximize fitness. Here we present a direct test of the optimality 

assumption underlying FBA by comparing the central metabolic fluxes predicted 

by multiple criteria to changes measurable by a 13C-labeling method for 

experimentally-evolved strains. We considered datasets for three Escherichia coli 

evolution experiments that varied in their length, consistency of environment, 

and initial optimality. For ten populations that were evolved for 50,000 

generations in glucose minimal medium, we observed modest changes in relative 

fluxes that led to small, but significant decreases in optimality and increased the 

distance to the predicted optimal flux distribution. In contrast, seven populations 

evolved on the poor substrate lactate for 900 generations collectively became 

more optimal and had flux distributions that moved toward predictions. For 

three pairs of central metabolic knockouts evolved on glucose for 600-800 

generations, there was a balance between cases where optimality and flux 

patterns moved toward or away from FBA predictions. Despite this variation in 

predictability of changes in central metabolism, two generalities emerged. First, 

improved growth largely derived from evolved increases in the rate of substrate 

use. Second, FBA predictions bore out well for the two experiments initiated with 

ancestors with relatively sub-optimal yield, whereas those begun already quite 

optimal tended to move somewhat away from predictions. These findings suggest 

that the tradeoff between rate and yield is surprisingly modest. The observed 

positive correlation between rate and yield when adaptation initiated further 

from the optimum resulted in the ability of FBA to use stoichiometric constraints 
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to predict the evolution of metabolism despite selection for rate. 

 

Introduction 

Systems biology is beginning to provide insight into how interactions within 

complex networks give rise to the holistic behavior of biological systems, and how 

natural selection would shape these systems over the course of adaptation. Some 

mathematical models are made with the goal of translating known parameters of 

components of a small system into predictions of their function. This approach 

has been used to predict behavior ranging from the oscillation of natural or 

engineered genetic regulatory networks [1] to flow through small metabolic 

networks [2,3]. For larger, genome-scale networks there is insufficient 

information to generate direct predictions in the same manner. Instead, one can 

ask how the system should behave were it to have already been selected to 

function optimally given tradeoffs between different selective criteria. One use of 

mechanistically-explicit optimality models is to consider the possible optimality 

of current biological phenomena, such as the optimality of the genetic code [4] or 

of the enzymatic properties of RuBisCO [5]. On the other hand, optimality 

models can also be used directly to predict phenotypic changes in a system that 

would occur over the course of adaptation, such as the evolution of virulence [6] 

or enzyme expression [7]. 

 

The most broadly applied metabolic modeling framework, Flux Balance Analysis 
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(FBA), is a constraint-based evolutionary optimality model. It quantitatively 

predicts flux through a metabolic network that will maximize a given criterion 

thought to represent prior natural selection [8]. At the heart of FBA is a 

stoichiometric matrix, which is a mathematically transformed list of mass-

balanced biochemical reactions that fully describes the known topology of the 

metabolic network of a cell (or other system). It is further assumed that the cell is 

in a metabolic steady-state, such that the sum of fluxes in and out of each internal 

metabolite are balanced. As additional constraints are considered (e.g., maximal 

flux values, irreversible reactions, biomass composition), this matrix can then be 

used to help define and constrain the space of feasible flux distributions in the 

cell. Within this feasible space, linear programing is subsequently used to solve 

for an optimality criterion -such as maximal biomass per substrate (see below)- 

to identify a feasible flux distribution that permits that optimum.  

 

Evolutionary optimality models are powerful tools as they make it possible to 

build intuition about the forces that shape biological diversity. However, as has 

been pointed out most famously by Gould and Lewontin, they can also be 

misleading and can foster the wrong intuitions [9]. Optimality models make three 

assumptions: 1) selection (and not other processes) is the primary evolutionary 

force shaping a trait of interest, 2) we can identify the criterion upon which 

selection is acting, and 3) there are not underlying constraints which prevent a 

trait from being optimized. Optimality models are constructive for understanding 
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the evolution of traits only to the extent that these assumptions can be evaluated. 

 

FBA provides an excellent framework to generate testable hypotheses as to which 

selective criteria are appropriate for a given set of conditions [10,11]. In 

environments such as batch culture, selection acts directly upon growth rate -as 

well as lag and survival in stationary phase- but not upon yield [12]. The most 

common optimality criterion for FBA is commonly referred to as maximizing 

growth rate [11]. Because this is performed by constraining one (or occasionally 

multiple) substrate uptake rate (S/time), this criterion is fully equivalent to 

predicting the maximum yield (i.e., BM/S) under the given, user-supplied 

substrate uptake rate. Since FBA cannot predict absolute rates of substrate 

uptake used as the key constraint, the question as to whether adaptation would 

optimize BM/S during batch culture critically depends upon the correlation 

between growth rate and yield. There are solid theoretical grounds to expect 

absolute limits to the maximization of both rate and yield of reactions [13], but it 

is often unclear how close biological systems are to these constraints.  

 

In addition to maximization of biomass, various other cellular objectives have 

been suggested as alternative selective criteria. These include optimal energetic 

(rather than biosynthetic) efficiency whereby generation of ATP per substrate 

(ATP/S), or the minimization of the sum of fluxes (BM/Σv or ATP/Σv). The latter 

are based upon the rationale that enzymes are costly, and thus a general 
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relationship between enzyme levels and reaction rates (although actually quite 

weak for any given enzyme, [14]) would lead to selection to minimize the total 

burden of enzymes needed. Finally it has been suggested that selection acts 

simultaneously upon multiple, competing criteria, leading cells to inhabit an 

optimal tradeoff surface known as a Pareto optimum [15,16]. This approach 

constructs a surface on which no single criteria can be further increased without 

reducing another. It is then assumed that evolution pushes biological systems to 

exist somewhere on this surface. Data from a variety of experiments suggested 

that cells operate near to the Pareto optimum defined by BM/S, ATP/S, and 

minimization of Σv [15]. 
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Figure 4.1: Evolution of metabolic fluxes and measures of optimality 

and predictability. We consider three ways to analyze changes in metabolism 

that relate an ancestor (Anc, blue) to an evolved isolate (Ei, green) in regard to an 

FBA-predicted optimum (Opt, red). A) Evolution of metabolic fluxes can be 

evaluated from the perspective of changes in proximity to the theoretical 

maximum for a given optimality criterion (Δ% Optimality). B) A vector of flux 

ratios defines a position in multi-dimensional flux space. One can then consider 

the relative Euclidian distance of a given evolved population in this space from its 

optimum (DEO) compared to that of an ancestor from its optimum (DAO; plotted 

as log(DEO/DAO)). C) At the most detailed level, one can compare the FBA-

predicted value for a given flux ratio versus that observed via 13C labeling. 

 

Tests of the predictive capacity of FBA have differed in two ways depending upon: 

1) whether there was known or assumed adaptation to the substrate in question, 

and 2) whether tests were a direct or indirect comparison of predicted internal 

fluxes to measured fluxes (Table 4.1). The majority of these tests have been 
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conducted with Escherichia coli, and have assumed past selection on BM/S. The 

direct tests of FBA compared predicted to observed flux distributions (Figure 4.1) 

by taking advantage of empirical data generated by 13C-labeling techniques [17]. 

Briefly, this method to assay relative metabolic fluxes takes advantage of the fact 

that the carbon atoms of the growth substrate are shuffled in different ways by 

alternative metabolic pathways, and that these rearrangements leave a signature 

in biomass. Using gas chromatography-mass spectrometry (GC-MS) to determine 

the 13C-labeling of protein-derived amino acids, it becomes possible to infer the 

flux splits in the metabolic pathways leading to their synthesis [17–23]. Notable 

amongst these tests was a quantitative assessment of the relative merits of a 

series of optimality criteria (and constraints) in their ability to predict the 

intracellular fluxes of E. coli measured in six environments [11]. Data for wild-

type cultures indicated that ATP/Σv2, BM/S or ATP/S were more predictive 

depending upon the growth condition; however, in all cases there was still 

significant variation between predicted and measured fluxes.  
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Past 
adaptation 

Test of 
internal 
fluxes Major approaches 

Example 
papers 

Assumed  Indirect Growth rate and excretion. Varma & Palsson, 
1994 

Growth phenotypes or gene 
essentiality of knockouts. 

Raghunathan et al, 
2009 

Direct Comparison of wild-type or 
knockout flux pattern to mutants in 
one or more environments, usually 
using just BM/S or ATP/S as an 
optimality criterion. 

Emmerling et al, 
2002 

 

Explicit comparison of E. coli fluxes 
across environments to predictions 
from multiple optimality criteria. 

Schuetz et al, 2007 

Known Indirect Uptake, excretion, and/or growth 
rates for evolved strains. 

Ibarra et al, 2002; 
Teusink et al, 2009 

mRNA and protein levels correlated 
with predicted pathways in FBA. 

Fong et al, 2005; 
Lewis et al, 2010 

Direct Flux changed during adaptation of 
E. coli evolved with key metabolic 
knockouts or on the poor substrate 
lactate, but no comparison made to 
FBA. 

Fong et al, 2006; 
Hua et al, 2007 

Flux changes during adaptation of E. 
coli to a fluctuating environment 
compared to predictions of a Pareto 
surface. 

Schuetz et al, 2012 

Flux measurements following 
50,000 generations of E. coli 
adaptation and comparison of this 
and other datasets to FBA. 

This study 

Table 4.1: Major approaches to test of FBA predictions depending 

upon whether there was known selection under experimental 

conditions and whether there was direct measurement of internal 

fluxes. 
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A key advance in the use and testing of FBA came from the realization that the 

best test of an optimality model is to examine whether there is movement toward 

predicted optimal phenotypes following adaptation under known experimental 

conditions (Table 4.1). In a classic paper, populations of E. coli were adapted to 

various carbon substrates for 100-700 generations [24]. The authors ran FBA for 

all pairwise constraints of substrate and oxygen uptake to predict the maximal 

BM/S within those constraints, and what metabolites might be excreted. 

Remarkably, adaptation on five out of six substrates conformed to the predictions, 

remaining on or evolving toward a ‘line of optimality’ representing the optimal 

oxygen to substrate ratio. For only one of these substrates did the population 

move away from the predicted optimality. A follow-up study further showed that 

the genes expressed in evolved lines correspond to the fluxes predicted to be 

active by FBA [25]. Since flux changes are only sometimes well-correlated with 

gene expression [26], however, it remains unclear whether FBA can predict the 

change in internal fluxes. Although indirect, these studies have suggested that 

FBA might reasonably capture the evolutionary forces acting on cellular 

physiology and hence would be capable of predicting the outcome of evolution 

[27]. 

 

To our knowledge there have been only two studies in which the internal fluxes 

have been measured for both ancestral and evolved strains grown in a constant 

environment with a single growth substrate. Both involved rapid, short-term 
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adaptation (<1,000 generations) of E. coli under conditions where the cultures 

were kept in continual exponential growth in batch culture by using frequent, 

large dilutions. Hua et al [28] measured fluxes following adaptation to the 

poorly-utilized substrate lactate, while Fong et al [20] measured fluxes following 

adaptation of a series of E. coli strains with knockouts (KOs) deleting individual 

enzymes of major branches of central carbon metabolism (e.g., glycolysis). 

Interestingly, both studies found rather divergent changes in flux distribution 

across replicates, and found that most improvement in growth rate was the result 

of increases in substrate uptake. These studies were not compared to FBA 

predictions, however, thus it remains unclear whether the assumed optimality 

criteria improved, or whether observed intracellular fluxes moved toward those 

predicted with a genome-scale FBA model. 

 

In terms of using experimental evolution to test optimality, the cultures that have 

had the greatest time to adapt are those from the E. coli long-term experimental 

evolution (LTEE) populations that have been evolving in the Lenski laboratory 

for over 50,000 generations [29,30]. These twelve replicate populations have 

evolved in minimal medium with glucose since 1988, experiencing 100-fold daily 

dilutions that result in a short lag phase, nearly seven consecutive generations in 

exponential phase, and then stationary phase. The LTEE experiment has enabled 

an unprecedented examination of genotypic and phenotypic change over an 

extended period of adaptation [29,31]. Despite starting with a wild-type strain 
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capable of rapid growth on glucose, all populations have increased dramatically 

in both growth rate and competitive fitness through adaptation in batch culture 

[32,33]. It should be noted however, that batch culture inherently incorporates 

some non-steady state conditions and that improvements in lag or survival may 

have had pleiotropic consequences for growth. Despite this, here we ask how well 

FBA predictions align with the evolved changes in these populations. If FBA is 

unable to predict adaptation to single-nutrient, seasonal batch culture conditions 

we will not be able to apply it to most laboratory environments, not to mention 

the variable habitats experienced in nature. 

 

The goal of the current work was to test whether the central metabolic fluxes of 

replicate populations of E. coli with known selective history in the laboratory 

evolved in a manner that is predictable by FBA (Figure 4.1). We compared the 

fluxes inferred from 13C labeling to the ranges predicted to permit optimal 

performance and summarize these changes in three ways: the % optimality 

possible given the inferred fluxes, the minimal distance in flux space between the 

inferred fluxes and the optimal space of distributions, and a flux-by-flux 

comparison to see how each flux changed relative to predictions. Testing the 

ability of optimality criteria to predict adaptation not only provides insight into 

the mechanisms of evolution, but also represents a critical test of the central 

optimality assumption of FBA. The LTEE lines began with an ancestor operating 

at near-optimal BM/S, but the independent populations evolved to use central 
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metabolism less optimally. This was reflected in both a small, but statistically 

significant, decrease in the % optimal BM/S, and a corresponding increase in the 

distance from the observed to optimal flux state. In contrast, the seven lactate-

evolved populations evolved to increase BM/S and moved closer to an optimal 

flux distribution. The three pairs of KOs had mixed results in terms of optimality 

and flux pattern. Overall these results indicate that evolved increases in growth 

rate largely resulted from increased substrate uptake. Furthermore, ancestral 

strains operating far from optimal yield evolved as suggested by FBA, whereas 

those close to the optimum experienced a modest decrease in optimality and 

evolved to be further from FBA predicted fluxes than their ancestor.  

 

Results 

 

Growth rate, cell dry weight and carbon uptake all increased after 50,000 

generations of adaptation on glucose minimal medium 

 

Prior to measuring internal metabolic fluxes, we first examined key growth 

parameters for one isolate from the 50,000 generation time-point for each of 10 

independent LTEE populations (Supplementary Table 4.1). Growth rate 

increased by 45% on average (Supplementary Table 4.1), which is concordant 

with the 16% increase observed in these lines after 2,000 generations [32], and 

the 20% increase measured after 20,000 generations [33]. All evolved lines also 
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increased their glucose uptake rates (individually significant for 5 of 10 lines: A+3, 

A-2, A-4, A-5, A-6; T-test, p < 0.05, two-sample, equal variance throughout 

unless noted otherwise, Supplementary Table 4.1), with an average increase of 

18%. The cell dry weight per gram of glucose also increased by an average of 20% 

while max OD600 increased by 68%. This did not come from decreasing their 

excretion of organic acids, however, as acetate production actually increased by 

an average of 50%. No other excreted ions were observed above our limit of 

detection of ~50 µM (Supplementary Table 4.1).  

 

LTEE isolates have modest, but significant changes to their relative central 

metabolic flux distribution 

In order to determine whether the improved performance of the LTEE isolates 

was reflected in changes in the relative use of central metabolic pathways, we 

used 13C-labeling of protein-derived amino acids [17] to infer several key flux 

ratios in central carbon metabolism (Figure 4.2A). Often the goal is to extrapolate 

from the measured flux ratios to calculate the flux for each reaction in a network 

[15,23]. For this study, however, we limit our discussion and analyses to the flux 

ratios themselves, as these represent the actual number of inferences from the 

13C-labeling data and thus each cellular branch-point is given equal weight 

(Supplementary text 3.1). It should be noted that 13C data for the LTEE isolates 

were analyzed with a program, FiatFlux [17], which is based on a simplified 

model of central carbon metabolism. This program was used for the previous 
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study comparing alternate optimality criteria mentioned above [11], as well as for 

obtaining the flux data about the lactate [28] and KO [20] lines we analyze below. 

Inferences with this commonly used program are less variable than inferences 

based on larger models [34]. 

 

Figure 4.2: Evolved changes in central carbon metabolism for the 

LTEE populations after 50,000 generations of adaptation on glucose. 

A) The flux pathways measured for the LTEE lines are denoted with numbers and 

red arrows. The genes knocked out in the knockout data set and the entry point of 
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Figure 4.2, continued: lactate into the network are both indicated. B) A heat 

map of the difference between evolved and ancestral flux ratios from the LTEE 

populations. The right side indicates flux ratios predicted for the ancestral line 

according to each optimality criterion. The number of the flux ratio corresponds 

to the numbered pathways in A. Single asterisks denote significant changes as 

calculated by ANOVA, double asterisks are also significant by Tukey-HD. 

 

We uncovered statistically significant, but modest variation in the flux ratios of 

evolved isolates relative to their ancestor (Figure 4.2B, Supplementary Table 4.2). 

In terms of the overall pattern, a MANOVA test found that flux ratios changed 

significantly as a function of population (Pillai’s Trace = 3.80, p<0.001, 

Supplementary Figure 4.1). Additionally, ANOVA tests on the flux ratios for 

individual lines found at least one significantly different isolate (p < 0.05) for all 

ratios except two, and all lines had significant change in at least one flux ratio. A 

joint linear regression of the populations found 22 fluxes that differed from the 

ancestor at a p ≤ 0.05. The False Discovery Rate (FDR) metric suggests that 18 

more significant changes were found than expected by chance, whereas the more 

conservative Tukey HSD test finds that 10 flux changes remain significant. 

 

A few patterns emerged in terms of the actual fluxes found to have changed in 

evolved isolates. First, the most parallel change was that a small, but significant 

portion of glucose was routed through the Entner-Doudoroff pathway (Figure 4.2, 
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flux 2). In all but one case this was accompanied by a similar decrease in the 

proportion of carbon flowing through the pentose-phosphate pathway (flux 3). 

On the other hand, replicate lines evolved in opposite directions for flux through 

glycolysis (flux 1), and for the fluxes producing oxaloacetate from 

phosphoenolpyruvate (fluxes 4). Additionally, in all cases there was no significant 

change in the lower bound of production of pyruvate from malate via malic 

enzyme (flux 6) across evolved isolates. 

 

Long-term evolution on glucose did not increase any optimality criterion  

 

As a first step in testing the validity of different optimality criteria, we asked 

whether the flux ratios observed in evolved isolates led to increased or decreased 

performance with regard to each criterion (Figure 4.1A). The ‘% optimality’ can 

be calculated by comparing the maximum value of a criterion when the model 

was constrained with the observed flux ratios and substrate uptake rate to the 

maximum value of the criterion in the absence of the flux ratio constraints. Note 

that because this metric simply compares values of given optimality criteria 

rather than a particular set of flux ratios it is not affected by the existence of 

alternate optima for some fluxes. 

 

There was a slight (0.8%) but significant drop in the average percent optimal 

biomass production (BM/S; T-test, p=0.008), with 9 of the 10 evolved lines 
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decreasing relative to the ancestor (Figure 4.3A). Turning to alternative 

optimality criteria, we first found that ATP/S did not change significantly (Figure 

4.3D), though unlike all other measures throughout, the output was not normally 

distributed (Shapiro-Wilk test of residuals, p = 0.002; for rest see Figures S2 and 

S3). Correspondingly, significance for changes in this criterion was tested with 

the non-parametric Mann-Whitney-Wilcoxon Rank Sum Test (p = 0.79). BM/Σv 

and ATP/Σv behaved qualitatively similarly to BM/S and ATP/S, respectively, but 

as neither change was significant these results are displayed only in 

supplementary material (Supplementary Figure 4.4). Finally, we calculated the 

nearest possible flux distribution for each evolved isolate to the Pareto optimum, 

and found that 9 of 10 isolates were further from an optimal tradeoff between 

criteria than the ancestor (Supplementary Figure 4.5). 
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Figure 4.3: Measures of optimality and predictability after adaptation 

of LTEE populations to glucose for 50,000 generations. A,D) The % 

optimality of the ancestor (black) and evolved isolates (grey, same order as Fig. 

2); B,E) distance to optimal flux distribution (plotted as log(DEO/DAO)); and C, F) 

comparison of predicted to observed flux ratios for FBA-predictions based upon 

BM/S (A-C) or ATP/S (D-F). Error bars represent standard errors of three 

biological replicates. 
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In order to test the sensitivity of these findings to assumptions made in using 

FBA, we compared the effect of changing the values used for O2 limitation, 

maintenance energy, and the possible change in biomass composition that would 

result from the documented increase in average cell size [12]. None of these 

modulations changed the qualitative results and generally the default values 

outperformed the others (Supplementary Figures 3.6 and 3.7). Therefore, the 

conclusion that adaptation did not lead to an increase in any optimality criterion 

for the LTEE populations seems rather robust. 

 

Long-term glucose evolution resulted in movement of the flux distribution away 

from predicted states 

 

We next examined whether the flux distributions we inferred for the LTEE 

isolates moved toward (or away) from the flux distribution predicted to result 

from optimizing each criterion. We calculated the distance to the optimal fluxes 

for each evolved isolate relative to the distance between the ancestor and 

optimality (Figure 4.1B). Because the per-substrate criteria (e.g., BM/S, ATP/S) 

had many equally-optimal flux distributions, we identified the optimal solution 

that minimized the Euclidean distance from observed flux ratios. Choosing the 

FBA solution that is the closest to our empirical flux observations should, if 

anything, bias in favor of FBA.  
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Beginning with the overall pattern of fluxes, we quantified the log ratio of evolved 

to ancestral flux distance to their nearest optimum (Figure 4.1B). Both BM/S and 

ATP/S predicted optima in the opposite direction of the evolutionary flux 

movement, and hence evolved lines ended up significantly farther from optima 

than the ancestor (Figures 3.3B,E; S2; BM/S, T-test p=0.0008; ATP/S, T-test, p 

= 0.0004). In both cases the movement away from the optimum was primarily 

driven by changes in the flux of oxaloaceate from phosphoenolpyruvate.  

 

Turning to individual flux ratios, no criterion fared particularly well (Figure 4.2B, 

3C,F). None correctly predicted the observed increased flux through the Entner-

Doudoroff pathway, nor the trend of reduced oxaloacetate from 

phosphoenolpyruvate in evolved lines. 

 

Metabolic changes in E. coli evolved on the poor substrate lactate were well-

predicted by FBA using BM/S as an optimality criterion 

 

A second data set we considered was the seven populations of E. coli that evolved 

on the poorly-utilized substrate lactate for ~900 generations [28]. These 

populations improved in growth rate and cell dry weight substantially (112% and 

50%, respectively) in addition to increasing lactate uptake by 40% [28].  
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Figure 4.4: Measures of optimality and predictability after adaptation 

to lactate for ~900 generations. A,D) The % optimality of the ancestor 

(black) and evolved isolates (grey); B,E) distance to optimal flux distribution 

(plotted as log(DEO/DAO)); and C, F) comparison of predicted to observed flux 

ratios for FBA-predictions based upon BM/S (A-C) or ATP/S (D-F).  



! 101!

We found that adaptation to growth on lactate led to a significant increase of 8% 

in the predicted percent optimal BM/S (Figure 4.4A; T-test, p = 0.02), whereas 

the % optimal ATP/S decreased significantly (Figure 4.4D; T-test, p = 0.01) by 7%. 

The % optimality for BM/Σv and ATP/Σv again qualitatively followed the 

respective per substrate criteria (Supplementary Figure 4.4). Similarly, fluxes 

moved closer to the state predicted by BM/S by an average of 20% (Figure 4.4B; 

T-test, p = 0.005), largely as the result of changes in the predicted and observed 

flux to acetate (Figure 4.4C,F). In contrast, they moved away from the state 

predicted by ATP/S (Figure 4.4E; T-test, p = 0.0004). Additionally, 6 of the 7 

lactate populations evolved to be further from the Pareto optimal surface than 

their ancestor (Supplementary Figure 4.5). 

 

E. coli central metabolic knockouts did not evolve in the direction of FBA 

predictions 

 

As a third test of whether strains evolve in a manner consistent with FBA 

predictions, we considered the results from evolution on glucose for KO 

populations with lesions in central metabolism (see Figure 4.2A). These data 

come from two populations each initiated with strains lacking phosphoglucose 

isomerase (Δpgi), triose-phosphate isomerase (Δtpi) or phosphoenolpyruvate 

carboxylase (Δppc) and evolved for ~800, ~600, and ~750 generations 

respectively [20]. Considering the improvement of these populations jointly, they 
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increased in both growth rate and glucose uptake (172% and 157%), had large 

changes in central metabolic fluxes, but were largely unchanged in dry cell weight 

(3%). For analyzing changes in their metabolic fluxes, however, we do not present 

statistical tests of significance given that we only have two observations for each 

of these three ancestors. 

 

Our analysis of the flux data indicated that, for BM/S, Δpgi, and Δtpi strains got 

worse while Δppc strains improved their % optimality (Figure 4.5A). This pattern 

largely held for ATP/S as well, though Δtpi strains showed essentially no change 

in % optimality (Figure 4.5C). The KO data set is the only one in which 

minimizing Σv led to qualitatively different behavior from the per substrate 

analyses. Minimizing flux led to increases in the % optimality for Δpgi and Δtpi 

when using BM/Σv as a criterion (Supplementary Figure 4.4). 
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Figure 4.5: Measures of optimality and predictability after adaptation 

of gene knockouts on glucose for ~600-800 generations. A,B) The % 

optimality of the ancestor (black) and evolved isolates (grey); C,D) distance to 

optimal flux distribution for FBA-predictions based upon BM/S (A,C) or ATP/S 

(B,D).  

 

Evolution pushed strains further away from optima in all cases except Δpgi as 

predicted by BM/S (Figure 4.5B,D). Reduced distance to the optima for Δpgi was 

driven by reduction in the flux from oxaloacetate to phosphoenolpyruvate in 

evolved lines. Finally, the two Δpgi evolved isolates evolved to be more Pareto 

optimal, the Δtpi isolates were essentially equivalent to their ancestor, and the 
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Δppc isolates became less Pareto optimal (Supplementary Figure 4.5). 

 

Discussion 

Genome-scale metabolism is sufficiently complex that the current state of the art 

in predictive models uses stoichiometry and other constraints to define the space 

of possible flux patterns and then suggests a given state that the cell would adopt 

if selection had maximized a proposed optimality criterion. The application of a 

mechanistic evolutionary optimality model to propose a solution to an 

underdetermined physiological problem is elegant and has been adopted broadly. 

However, there is a paucity of data testing either the central assumption that 

intracellular fluxes are optimized by a simple criterion, or which criterion best 

represents the target of selection. Here we present an analysis of metabolic 

evolution in the Lenski LTEE populations and make the first direct comparison of 

observed flux evolution to genome-scale FBA predictions. 

 

Our analysis of the evolution of metabolic fluxes during 50,000 generations of 

adaptation of E. coli on glucose revealed changes in both the absolute and relative 

fluxes. Concordant with faster growth rates, we observed that all lines had 

increases in measured glucose uptake. Beyond this, all populations altered the 

way in which they utilize glucose, with significant changes in flux ratios observed 

across the network of central carbon metabolism. The most parallel changes in 

flux distribution were observed in the glycolytic pathways with a universal small, 
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but significant increase in flux through the Entner-Doudoroff pathway, which 

was nearly always accompanied by a decrease through the pentose phosphate 

pathway. This is somewhat perplexing, as the Entner-Doudoroff pathway 

provides less ATP than glycolysis and no important biosynthetic intermediates. 

The Entner-Doudoroff pathway is shorter than glycolysis, and hence potentially 

less enzymatically costly. Indeed, what maintains the pathway in E. coli remains 

an open question, though it has been observed to be upregulated in E. coli during 

long-term starvation [35].  

 

The major basis of improvement during selection upon growth rate for the LTEE 

populations –as was observed for the lactate and KO populations– came from 

increasing substrate uptake. We found that the LTEE populations continued to 

increase their growth rate over the 30,000 generations since it was last reported 

[33]. Alternative measures of yield, such as cell dry weight and OD600, also 

increased despite the slight decrease in efficiency of biomass production by 

central metabolism. Cell dry weight depends upon both BM/S in terms of carbon, 

but can also change due to the relative biomass composition of elements such as 

nitrogen or phosphorus. OD600 is even more indirect, depending upon all of these 

factors as well as changes in optical properties such as cell size, which is known to 

have increased in the LTEE [32]. We only measured flux ratios in central carbon 

metabolism, and thus would have missed significant adaptation that happened in 

peripheral metabolic pathways. Alternatively, either the bulk composition of 
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biomass itself or the maintenance energy might change. We addressed these 

latter two factors in additional analyses (Supplementary Figure 4.7), but neither 

of these factors significantly alters results.  

 

Data on the evolution of central metabolism for the LTEE populations, combined 

with prior observations of flux evolution on lactate or by a series of three KO 

strains provided the opportunity to test several facets of whether the direction of 

evolutionary change was consistent with FBA predictions.  

 

Across experimental systems we ascertained which proposed optimality criteria 

are most often consistent with the observed evolution in central metabolism. On 

average across five different ancestors, BM/S outperformed the other criteria in 

terms of either increasing or going unchanged (Supplementary Figure 4.8). The 

most dramatic example was seen for the lactate-evolved populations, for which 

BM/S increased while ATP/S decreased. The per flux criteria (BM/Σv and 

ATP/Σv) behaved qualitatively the same as the per substrate criteria in all but 

two of the cases (Δpgi and Δtpi). BM/Σv outperformed BM/S in these two cases, 

but, for example, did not significantly improve in the lactate populations. The 

data also suggest that cultures quite often evolved to be further from their Pareto 

optimum representing the space of optimal tradeoffs [15], with 19 of 23 

populations in total moving further from the Pareto surface than their respective 

ancestral genotypes. These results suggest that optimal biomass yield –which is 
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the most commonly utilized criterion for FBA– was the best overall 

stoichiometric proxy for cultures where selection was directly upon growth rate. 

It will be quite interesting to analyze populations grown in a manner where yield 

(BM/S) is directly selected. 

 

Overall, approximately half of the flux data were consistent with FBA predictions, 

and half refuted the common assumption that evolution acts to optimize 

efficiency; what accounts for this discrepancy? The major factor that appears to 

account for this difference is the initial degree of optimality for the ancestor of 

the evolved lines (Figure 4.6). For the lactate and Δppc populations, which began 

at approximately 80% and 90% optimality for BM/S, all 9 total replicates 

increased in BM/S. On the other hand, 13 of 14 populations starting at or above 

95% efficiency –LTEE and the other two KOs– decreased in BM/S. A negative 

correlation holds whether one performs a parametric statistical test (Pearson 

correlation, p < 0.0001) or a non-parametric Spearman correlation coefficient (p 

< 0.0001), though it should be noted that the strength of the correlation is largely 

driven by the lactate data set. 
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Figure 4.6: Evolutionary change in % optimality versus initial % 

optimality of the ancestor across data sets for BM/S. Error bars 

represent standard errors between evolved populations. 

 

The finding that selection on optimal efficiency depends on distance to the 

optimum is both of practical and fundamental interest. The analysis represents 

the first direct demonstration that FBA can be used to predict changes in 

intracellular metabolism that result from adaptation on a single carbon source. 

This positive result comes with the caveat that strains must begin far from the 

optimum. Systems initially operating at high yield –like the LTEE and the Δpgi 

strains that both began above 98% optimal– may end up evolving to be further 

from optimal than they began. In other words, this suggests one can either 

predict the initial physiological state or the direction of evolution, but not both. 
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What is perhaps the most remarkable about these findings is that even for 

cultures with a negative correlation between rate and yield, the tradeoff was quite 

modest. Small decreases in BM/S were more than made up for by large increases 

in uptake, leading to a net increase in growth rate despite mild antagonism. 

Given that there is no direct selection upon yield during batch culture, this 

perhaps suggests the existence of constraints upon the further improvement of 

substrate uptake. As long as uptake is held constant then changes in yield would 

directly translate into changes in growth rate. As such, this would maintain 

purifying selection upon yield, even over 50,000 generations. On the other hand, 

the low efficiency ancestors were able to evolve both improved substrate uptake 

and yield simultaneously.   

 

Although FBA is typically applied as a practical tool to guide experiments –and it 

has had some remarkable successes, such as correctly predicting a rather 

unexpected new metabolic pathway in some cancers [36]– it also serves as a 

quantitative, testable, falsifiable model that connects physiology to evolution. The 

interplay of optimality models and laboratory adaptation will be critical as the 

field continues to move toward a fuller understanding of the selection and 

constraints that act upon biochemical networks.  
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Materials and Methods 

Strains and growth conditions during selection 

 

Escherichia coli B isolates were obtained from the Lenski LTEE experiment [29] 

after 50,000 generations. Briefly, 12 populations of E. coli were founded with 

either the arabinose-negative strain REL606 (populations A-1 to A-6) or the 

arabinose-positive derivative, REL607 (A+1 to A+6). These were evolved in 10 

mL of Davis-Mingioli minimal medium with 139 µM glucose (25 mg/L) as a 

growth substrate in 50 mL flasks since 1988. These lines have been cultured at 

37 °C while shaking at 120 rpm and have been transferred daily via 1:100 

dilutions (~6.64 net doublings per day). 

 

The isolates analyzed in the current experiment consisted of the ancestral line, 

REL606 [29], as well as the ‘A’ clone from 10 of the 12 lines frozen at 50,000 

generations that were used in an earlier paper (A-1 = REL11330; A-2 = 

REL11333; A-4 = REL11336; A-5 = REL11339; A-6 = REL11389; A+1 = 11392; 

A+2 = REL11342; A+3 = REL11345; A+4 = REL11348, A+5 = REL11367)[30]. The 

A-2 clone used is from the ‘large’ lineage that has coexisted with a cross-feeding 

‘small’ lineage for tens of thousands of generations [37]. The isolate from the 

citrate-consuming population A-3 (REL11364) was not used because it adapted to 

citrate consumption in addition to glucose [38]. The A+6 isolate (REL11370) was 

excluded from analysis because it had inconsistent growth, and gave irregular 
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flux data. This population was previously excluded from a study of growth rate vs. 

yield at 20,000 generations for similar reasons [13].  

  

Measurement of key metabolic flux ratios 

 

Flux measurements were obtained based on the methods of Zamboni et al [17]. 

Evolved isolates were grown in 150 mL of Davis-Mingioli minimal media with 139 

µM glucose without sodium citrate (excluded to ensure that it was not used as a 

secondary carbon source by any line). In order to obtain information from 

different parts of central metabolism, 13C-labeling either utilized a 20:80 ratio of 

[U-13C]labeled:unlabeled glucose or 100% [1-13C]glucose (Cambridge Isotope 

Laboratories, Andover, MA). The ancestral REL606 was grown in 200 mL to 

obtain sufficient cell material. At mid-log phase (60-80% max OD) all cells were 

pelleted from the media, hydrolyzed overnight in 6 M HCl, and dried. The dry cell 

material was then derivatized for an hour at 85 °C with 40 µL each of 

dimethylformamide and N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide 

with 1% tert-butyldimethyl-chlorosilane. The derivatized cell material was 

injected into a Shimadzu QP2010 GCMS (Columbia, MD). The injection source 

was 230 °C. The oven was held at 160 °C for 1 min, ramped to 310 °C at 20 °C 

min-1, and finally held at 310 °C for 0.5 min. Flow rate was 1 mL min-1 and split 

was 10. The column was a 30 m Rxi-1ms (Restek, Bellefonte, PA). Three technical 

and three biological replicates were run for each isolate. 
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Data files from the GC-MS were analyzed in FiatFlux [17], as had been used for 

the lactate [28] and KO [20] populations we also analyzed. The data conversion 

files were rewritten to load the raw spectra produced by our MS. Following the 

established protocol, uninformative amino acid fragments were removed. Means 

for each biological replicate were calculated from the average of three technical 

replicates. Shapiro-Wilk tests were used to validate the assumption of normally-

distributed errors for estimated flux ratios for each strain (Figures S2, S3). 

Variance in flux ratios was then analyzed with a MANOVA test using the Pillai’s 

Trace metric with flux ratios entered as separate dependent variables 

(Supplementary Figure 4.1). Univariate ANOVA tests were also run to investigate 

which of the measured flux ratios changed significantly for individual strains.  

 

The flux of oxaloacetate (OAA) from phosphoenolpyruvate (PEP) was further 

estimated by a Monte-Carlo method to determine the contribution of the 

glyoxylate shunt. The method follows Waegeman et al, 2011 [23] and uses 

MATLAB code they kindly provided. In short, average mass distribution vectors 

and standard deviations were calculated from the measured samples. The 

‘normrand’ function was then used to randomly draw from these mean 

distributions 1000 times. For each draw, a grid search was used to find the flux 

ratios that best fit the mass distribution vectors. Substantial variation was found 

for the fraction of labeled CO2 and flux through the glyoxylate shunt, but in all 
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cases there was very strong support for the flux ratio of oxaloacetate from 

phosphoenolpyruvate that had previously been calculated by FiatFlux. 

 

Physiological measurements of growth rate, cell dry weight, glucose uptake and 

acetate excretion 

 

Uptake and production of cell material were determined in a separate set of 

experiments. In these experiments glucose concentrations were increased ten-

fold to 1.39 mM so that enough of the compounds would be present to measure 

precisely. A volume of 250 µL of overnight culture was inoculated into 50 mL of 

media grown in a 250 mL flask at 225 rpm. Growth rate was determined by 

fitting a logarithmic model to OD600 measurements. A 10 mL sample was 

removed at early (OD600 of 0.090-0.120) and late (OD600 of 0.275-0.400) log 

phase. Cells were immediately removed from the media by passage through a 0.2 

µM filter. Glucose concentrations were determined in the spent media using a 

glucose oxidase assay kit (Sigma, Saint Louis, MO). Acetate concentrations were 

determined by ion chromatography with a Dionex ICS-200 RFIC. The flow rate 

was 1.5 ml/min and the column temperature was 30 °C. Cell dry weight (CDW), 

was measured as the mass of the pellet from 100 mL of fully-grown culture after 

overnight lyophilization. Three replicates were assayed for each measurement. 
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Calculation of variation in flux ratios across evolved isolates 

 

The degree of parallelism between replicates in the evolution of flux ratios was 

determined by calculating the coefficient of variation in flux ratios. For each flux 

ratio the standard deviation between evolved replicates was divided by the mean 

of that flux ratio. This value was then averaged across all flux ratios. Values close 

to zero indicate a high degree of similarity between evolved lines. 

 

Prediction of FBA optima 

 

Flux analysis was carried out with a genome-scale model of E. coli metabolism 

(iAF_1260 [39]). The model incorporates 2382 reactions and 1668 metabolites. 

Substrate uptake and excretion were constrained to that observed, otherwise the 

default minimal media environment was used. The lower bound on maintenance 

energy was left at the default value of 8.9 mmol ATP/g/hr. Oxygen uptake rates 

were set to those observed for the lactate strains; however these data were not 

available for the REL or KO strains. In these cases, oxygen uptake for the 

ancestor was scaled across the previously observed range of 11.5-14.75 

mmol/gCDW/hr [11]. Previous work demonstrated that oxygen uptake varies as a 

function of evolution, but that the ratio of substrate to oxygen usage remained 

largely constant [24]. Oxygen constraints for evolved lines were therefore set 

based on evolved glucose uptake rates and the ancestral ratio of oxygen/glucose. 
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Changing the value of ancestral oxygen constraint, or the slope of constraint line 

had little qualitative effect (Supplementary Figure 4.6), so just the results based 

on an ancestral uptake of 14.75 mmol/g/hr and a slope maintaining the original 

oxygen/glucose rates are reported in the text. Gene knockouts were simulated by 

constraining flux through the missing gene to zero. 

 

For all data sets we systematically tested the predictive ability of four different 

optimality criteria: max biomass per unit substrate (BM/S), max ATP per unit 

substrate (ATP/S), max biomass per unit flux (BM/Σv) and max ATP per unit flux 

(ATP/Σv). These criteria relate to the best performers in Schuetz et al 2007 [11] 

and were defined as in that study. The per-substrate criteria maximized the 

criterion and then subsequently chose a flux distribution that minimized the 

difference from the observed isolate ratios.  This process always provides a flux 

distribution with maximal production of ATP (or biomass). The per-flux criteria 

optimize the ratio of ATP (or biomass) to the sum of the flux. Optimizing this 

ratio leads to a single optimal flux solution that often produces less than the 

maximal ATP (or biomass). For ATP criteria, flux to excess ATP use (via 

maintenance energy) was maximized while constraining the lower limit of 

biomass production to the ancestral growth rate. 

 

Minimizing the distance between observed and predicted optimal flux 

distributions was accomplished by minimizing a distance term. Flux ratios can be 
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constrained by adding a row to the S matrix such that:  

V2 – R*V1 = 0 

Where Vn is the flux through reaction n and R is the ratio V2/V1. To minimize 

distance between observed and predicted ratios the equation becomes: 

V2 – R*V1 + D = 0 

V2 – R*V1 – D = 0 

Where D represents distance from the observed ratio and is added as two 

columns to the S matrix (and concomitant rows in the flux vector). Biomass or 

ATP can be constrained to its maximum value and then the flux distribution that 

is closest to observed values can be calculated by running linear optimization 

minimizing D as the objective function. 

 

Comparison of experimental flux ratios to FBA-predicted optima 

 

We first tested whether flux ratios evolve to increase each selective criterion. The 

optimal value of each criterion was compared against the maximum value of the 

criterion when the model was constrained to have the experimentally observed 

flux ratios. Percent optimality, calculated as the constrained criterion divided by 

optimal criterion, was determined for the ancestor and evolved lines.  

 

For the LTEE lines the constrained flux ratios were serine through glycolysis, 

pyruvate through Entner-Doudoroff, oxaloacetate from phosphoenolpyruvate, 
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phosphoenolpyruvate from oxaloacetate, and the pyruvate from malate. The 

ratios were calculated following Fischer and Sauer 2003 [40]; the exact equations 

used are provided in the supplementary material (Supplementary Table 4.3). 

Each ratio was constrained by adding a row to the S matrix that defined the 

relationship between relevant fluxes (as described in the first equation of the 

previous section). The ratio inferred for pyruvate from malate was treated either 

as an absolute constraint or a lower bound but because all optimality criteria 

push this value towards 0 the results were equivalent. 

 

To propagate uncertainty in glucose uptake, acetate excretion and flux ratios for 

the LTEE isolates, separate calculations of properties such as BM/S were made 

for each of 3 biological replicates, which themselves represented the average of 3 

technical replicates. The mean and standard error for optimality metrics was 

calculated for each strain from the biological replicates. 

 

Flux constraints for lactate and knockout data sets were implemented as upper 

and lower bounds, because reported flux ratios were relative to substrate uptake 

rather than other internal fluxes. Lactate adaptation lines were constrained to 

have flux ratios ± 5% of the values reported in Hua et al 2007 [28]. Gene 

knockout lines were constrained with the flux ratios and errors reported in Fong 

et al, 2006 [20].  
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To determine whether strains evolved towards predicted optimal intracellular 

physiologies we used a standardized metric to ask if evolved lines were closer to 

an optimal solution than the ancestor. This distance metric was calculated as: 

log(DEO/DAO) 

where DEO was the distance of the evolved flux ratios from the closest optimal 

solution, and DAO was the distance of the ancestor from its closest optimal 

solution. Distances were calculated as Euclidean distance between the flux ratios 

observed in each data set and those predicted. It should be noted that because 

optimal flux ratios change with substrate uptake the ancestral and evolved 

optima were different points. The metric is 0 if the evolved isolate distance has 

not changed relative to the ancestor, increasingly positive as the evolved strain 

moves nearer an optimum, and increasingly negative as it moves further away. 

 

Pareto optimality 

 

A Pareto optimal surface was calculated for each line by constraining the 

substrate uptake rate and then doing a nested grid search [15]. A grid search 

across the range of feasible biomass values was executed. At each value of 

biomass a grid search of ATP yields was carried out and the sum of fluxes was 

subsequently minimized at every interval. Conservatively, for each isolate we 

then determined the closest possible position to its optimal surface given the 

observed constraints. Distance between the isolate and the Pareto optimal surface 
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was calculated from the difference in standardized criteria.  

 

Statistical tests 

 

The normality assumption for physiological measurements for the LTEE 

populations and optimality metrics for all data sets were checked with the 

Shapiro-Wilk test on the residuals of the linear model fitting the metric against 

strains. In all but one case the null hypothesis that the distribution was normal 

could not be rejected at p < 0.05. The % optimality for the LTEE lines with ATP/S 

as the optimality criterion was not normally distributed. Q-Q plots are presented 

in the supplementary material (Figures S2 and S3). 

 

For the LTEE lines ancestral versus evolved values were compared with two-

sided, two sample T-tests assuming equal variance. For the non-normal ATP/S 

comparison a Mann-Whitney Wilcoxon Rank Sum Test was used instead. For the 

lactate populations only a single value was available for the ancestor so two-sided, 

one-sample T-tests were performed testing against the ancestral value as the 

mean. 
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Supplementary Material 

Supplementary Table 3.1: List of Lenski LTEE isolates used. 

    20,000 generation strains           50,000 generation strains 
 A-1  REL8593  A-1  REL11330 

 A-2L  REL8594  A-2L (Large- A clone)  REL11333 
    A-2S (Small- C clone)  REL11335 

 A-3  REL8595  A-3  REL11364 
 A-4  REL8596  A-4  REL11336 
 A-5  REL8597  A-5  REL11339 
 A-6  REL8598  A-6  REL11389 

 A+1  REL9282  A+1  REL11392 
 A+2  REL8601  A+2  REL11342 
 A+3  REL8602  A+3  REL 11345 
 A+4  REL8603  A+4  REL11348 
 A+5  REL8604  A+5  REL11367 
A+6  REL8605  A+6  REL11370 
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Supplementary Table 3.2: Reactions predicted by FBA as necessary for optimal 

growth on substrates. These are the reactions used to compare substrate differences 

with FBA. The substrates for which the reactions are necessary are listed, as well as the 

percent of optimal growth that is possible without the reactions and related genes. 

Substrate Reaction name 

% 
optimality 

without 
reaction Necessary genes 

fumarate 
Fumarate transport via diffusion extracellular 
to periplasm 0.0 

 phoE ompF ompN 
ompC  

fumarate malic enzyme NADP 98.9  maeB  

fumarate phosphoenolpyruvate carboxykinase 98.0  pckA  

melibiose galactokinase 0.0  galK wcaK  

melibiose a galactosidase melibiose 0.0  melA  

melibiose melibiose transport in via symport periplasm 0.0  melB  

melibiose 
melibiose transport via diffusion extracellular 
to periplasm 0.0 

 phoE ompF ompN 
ompC  

melibiose phosphoglucomutase 94.8  pgm yqaB  

melibiose pyruvate kinase 96.8  pykF pykA  

melibiose 
UDPglucose hexose 1 phosphate 
uridylyltransferase 0.0  galT  

acetate Isocitrate lyase 0.0  aceA  

acetate phosphoenolpyruvate carboxykinase 96.9  pckA  

D-alanine 
D Alanine transport via diffusion extracellular 
to periplasm 0.0 

 phoE ompF ompN 
ompC  

D-alanine Isocitrate lyase 97.4  aceA  

D-alanine phosphoenolpyruvate synthase 96.4  ppsA  

L-proline 
iron Fe2 transport out via proton antiport 
periplasm 0.0  yiiP  

L-proline Fe III reduction 79.3  fre  

L-proline 1 pyrroline 5 carboxylate dehydrogenase 0.0  putA  

L-proline phosphoenolpyruvate carboxykinase 95.7  pckA  

L-proline Proline dehydrogenase 0.0  putA  

L-proline 
L proline transport via diffusion extracellular 
to periplasm 0.0 

 phoE ompF ompN 
ompC  

L-aspartate 
L aspartate transport in via proton symport 
periplasm 97.6  gltP  

L-aspartate 
L aspartate transport via diffusion 
extracellular to periplasm 0.0 

 phoE ompF ompN 
ompC  

L-aspartate phosphoenolpyruvate carboxykinase 98.0  pckA  

mucic acid galactarate dehydratase 0.0  garD  
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mucic acid 
D galactarate transport via proton symport 
reversible periplasm 0.0  gudP garP  

mucic acid 
D galactarte transport via diffusion 
extracellular to periplasm 0.0 

 phoE ompF ompN 
ompC  

mucic acid 5 dehydro 4 deoxyglucarate aldolase 0.0  garL  

mucic acid pyruvate kinase 96.8  pykF pykA  

L-malate 
Malate transport via proton symport 2 H  
periplasm 97.5  dctA  

L-malate 
Malate transport via diffusion extracellular to 
periplasm 0.0 

 phoE ompF ompN 
ompC  

L-malate malic enzyme NADP 98.9  maeB  

L-malate phosphoenolpyruvate carboxykinase 98.0  pckA  

D-ribose pyruvate kinase 93.8  pykF pykA  

D-ribose ribokinase 0.0  rbsK  

D-ribose D ribose transport via ABC system periplasm 0.0 

 rbsD rbsA rbsC rbsB 
alsC alsA alsB ytfQ ytfT 

yjfF ytfR  

D-ribose 
ribose transport via diffusion extracellular to 
periplasm 0.0 

 phoE ompF ompN 
ompC  

glucose 
3 hydroxyacyl acyl carrier protein dehydratase 
n C100 0.0  fabZ fabA  

glucose 
3 hydroxyacyl acyl carrier protein dehydratase 
n C121 0.0  fabZ fabA  

glucose 
3 hydroxyacyl acyl carrier protein dehydratase 
n C141 0.0  fabZ fabA  

glucose 
3 hydroxyacyl acyl carrier protein dehydratase 
n C161 0.0  fabZ fabA  

glucose 
3 hydroxyacyl acyl carrier protein dehydratase 
n C40 0.0  fabZ fabA  

glucose 
3 hydroxyacyl acyl carrier protein dehydratase 
n C60 0.0  fabZ fabA  

glucose 
3 hydroxyacyl acyl carrier protein dehydratase 
n C80 0.0  fabZ fabA  

glucose 
3 oxoacyl acyl carrier protein reductase n 
C100 0.0  fabG  

glucose 3 oxoacyl acyl carrier protein reductase n C121 0.0  fabG  

glucose 
3 oxoacyl acyl carrier protein reductase n 
C140 0.0  fabG  

glucose 3 oxoacyl acyl carrier protein reductase n C141 0.0  fabG  

glucose 3 oxoacyl acyl carrier protein reductase n C161 0.0  fabG  

glucose 3 oxoacyl acyl carrier protein reductase n C40 0.0  fabG  

glucose 3 oxoacyl acyl carrier protein reductase n C60 0.0  fabG  

glucose 3 oxoacyl acyl carrier protein reductase n C80 0.0  fabG  

glucose 3 oxoacyl acyl carrier protein synthase n C100 0.0  fabF fabB  

glucose 3 oxoacyl acyl carrier protein synthase n C121 0.0  fabB  
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glucose 3 oxoacyl acyl carrier protein synthase n C140 0.0  fabF fabB  

glucose 3 oxoacyl acyl carrier protein synthase n C141 0.0  fabB  

glucose 3 oxoacyl acyl carrier protein synthase n C161 0.0  fabB  

glucose 3 oxoacyl acyl carrier protein synthase n C60 0.0  fabF fabB  

glucose 3 oxoacyl acyl carrier protein synthase n C80 0.0  fabF fabB  

glucose arabinose 5 phosphate isomerase 0.0  gutQ yrbH  

glucose acetyl CoA carboxylase 0.0  accA accD accB accC  

glucose acetylglutamate kinase 0.0  argB  

glucose N acetylglutamate synthase 0.0  argA  

glucose 2 aceto 2 hydroxybutanoate synthase 0.0  ilvI ilvH ilvN ilvB  

glucose acetolactate synthase 0.0  ilvI ilvH ilvN ilvB  

glucose acetylornithine deacetylase 0.0  argE  

glucose aconitase half reaction A Citrate hydro lyase 0.0  acnB acnA  

glucose 
aconitase half reaction B Isocitrate hydro 
lyase 0.0  acnB acnA  

glucose 4 aminobenzoate synthase 0.0  pabC  

glucose 4 amino 4 deoxychorismate synthase 0.0  pabB pabA  

glucose adenylyl sulfate kinase 0.0  cysC  

glucose adenylsuccinate lyase 0.0  purB  

glucose adenylosuccinate lyase 0.0  purB  

glucose adenylosuccinate synthase 0.0  purA  

glucose 
1 hexadecanoyl sn glycerol 3 phosphate O 
acyltransferase n C160 0.0  plsC  

glucose 
1 hexadec 7 enoyl sn glycerol 3 phosphate O 
acyltransferase n C161 0.0  plsC  

glucose S adenosylhomocysteine nucleosidase 0.0  pfs  

glucose 
phosphoribosylaminoimidazolecarboxamide 
formyltransferase 0.0  purH  

glucose phosphoribosylaminoimidazole carboxylase 0.0  purK  

glucose D alanine D alanine ligase reversible 0.0  ddlB ddlA  

glucose alanine racemase 0.0  dadX alr  

glucose 
4 amino 2 methyl 5 phosphomethylpyrimidine 
synthetase 0.0  thiC  

glucose anthranilate phosphoribosyltransferase 0.0  trpD  

glucose anthranilate synthase 0.0  trpD trpE  

glucose 
5 amino 6 5 phosphoribosylamino uracil 
reductase 0.0  ribD  

glucose argininosuccinate lyase 0.0  argH  

glucose argininosuccinate synthase 0.0  argG  

glucose aspartate 1 decarboxylase 0.0  panD  

glucose aspartate carbamoyltransferase 0.0  pyrI pyrB  
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glucose aspartate kinase 0.0  thrA metL lysC  

glucose ATP phosphoribosyltransferase 0.0  hisG  

glucose 
ATP synthase four protons for one ATP  
periplasm 35.9 

 atpC atpD atpG atpA 
atpH atpF atpE atpB 

atpI  

glucose 
calcium Ca2 transport via diffusion 
extracellular to periplasm 0.0 

 phoE ompF ompN 
ompC  

glucose Carbamate kinase 98.9  yahI arcC yqeA  

glucose 
4 cytidine 5 diphospho 2 C methyl D erythritol 
kinase 0.0  ispE  

glucose chorismate mutase 0.0  pheA tyrA  

glucose chorismate synthase 0.0  aroC  

glucose Chorismate pyruvate lyase 0.0  ubiC  

glucose 
chloride transport out via proton antiport 21  
periplasm 0.0  yadQ ynfJ  

glucose 
chloride Cl 1 transport via diffusion 
extracellular to periplasm 0.0 

 phoE ompF ompN 
ompC  

glucose 
cobalt Co2 transport via diffusion 
extracellular to periplasm 0.0 

 phoE ompF ompN 
ompC  

glucose cobalt transport in via permease no H 0.0  ygiE corA  

glucose citrate synthase 0.0  gltA  

glucose CTP synthase glutamine 0.0  pyrG  

glucose 
copper Cu2 transport via diffusion 
extracellular to periplasm 0.0 

 phoE ompF ompN 
ompC  

glucose copper transport in via permease no H 0.0  ygiE  

glucose cysteine synthase 0.0  cysK cysM  

glucose cystathionine b lyase 0.0  malY metC  

glucose 
cytochrome oxidase bo3 ubiquinol 8 4 protons  
periplasm 80.9  cyoD cyoC cyoB cyoA  

glucose diaminopimelate decarboxylase 0.0  lysA  

glucose diaminopimelate epimerase 0.0  dapF  

glucose CDP diacylglycerol synthetase n C160 0.0  cdsA  

glucose CDP diacylglycerol synthetase n C161 0.0  cdsA  

glucose 
3 4 Dihydroxy 2 butanone 4 phosphate 
synthase 0.0  ribB  

glucose 
3 deoxy D arabino heptulosonate 7 phosphate 
synthetase 0.0  aroG aroH aroF  

glucose 
dihydroxy acid dehydratase 2 3 dihydroxy 3 
methylbutanoate 0.0  ilvD  

glucose 
Dihydroxy acid dehydratase 2 3 dihydroxy 3 
methylpentanoate 0.0  ilvD  

glucose dihydrodipicolinate reductase NADPH 0.0  dapB  

glucose dihydrodipicolinate synthase 0.0  dapA  
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glucose dihydrofolate reductase 0.0  folA ydgB  

glucose dihydrofolate synthase 0.0  folC  

glucose dihydroneopterin aldolase 0.0  ygiG  

glucose 
diaminohydroxyphosphoribosylaminopryrimi
dine deaminase 25drapp 0.0  ribD  

glucose dihydropteroate synthase 0.0  folP  

glucose 
4 5 dihydroxy 2 3 pentanedione cyclization 
spontaneous 0.0  thrL  

glucose 3 dehydroquinate synthase 0.0  aroB  

glucose 3 dehydroquinate dehydratase irreversible 0.0  aroD  

glucose dimethylallyltranstransferase 0.0  ispA  

glucose 
Dihydroneopterin triphosphate 
pyrophosphatase 0.0  mutT ntpA  

glucose dephospho CoA kinase 0.0  yacE  

glucose 2 dehydropantoate 2 reductase 0.0  apbA ilvC  

glucose dTMP kinase 0.0  tmk  

glucose 1 deoxy D xylulose reductoisomerase 0.0  ispC  

glucose 1 deoxy D xylulose 5 phosphate synthase 0.0  dxs  

glucose Erythrose 4 phosphate dehydrogenase 0.0  epd  

glucose enolase 80.4  eno  

glucose fructose bisphosphate aldolase 98.4  ydjI fbaB fbaA  

glucose Ferrochelatase 0.0  hemH  

glucose FMN adenylyltransferase 0.0  ribF  

glucose fumarase 92.3  fumC fumA fumB  

glucose glucosamine 1 phosphate N acetyltransferase 0.0  glmU  

glucose glutamate 1 semialdehyde aminotransferase 0.0  hemL  

glucose glycerol 3 phosphate acyltransferase C160 0.0  plsB  

glucose glycerol 3 phosphate acyltransferase C161 0.0  plsB  

glucose 
L glutamate 5 semialdehyde dehydratase 
spontaneous 0.0  thrL  

glucose glucose 6 phosphate dehydrogenase 98.0  zwf  

glucose glyceraldehyde 3 phosphate dehydrogenase 68.8  gapA  

glucose Glycolaldehyde dehydrogenase 0.0  aldA  

glucose glutamine fructose 6 phosphate transaminase 0.0  glmS  

glucose glycine hydroxymethyltransferase reversible 96.9  glyA  

glucose guanylate kinase GMPATP 0.0  gmk  

glucose 
D glucose transport via PEPPyr PTS 
periplasm 97.4 

 ptsG malX manX 
manY manZ ptsH ptsI 

crr  

glucose 
D glucoseMaltotriose transport via diffusion 
extracellular to periplasm irreversible 0.0  lamB  
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glucose glutamine synthetase 0.0  ycjK glnA  

glucose 
glutamine phosphoribosyldiphosphate 
amidotransferase 0.0  purF  

glucose glutamyl tRNA reductase 0.0  hemA  

glucose Glutamyl tRNA synthetase 0.0  gltX  

glucose GMP synthase 0.0  guaA  

glucose phosphogluconate dehydrogenase 98.0  gnd  

glucose geranyltranstransferase 0.0  ispA  

glucose GTP cyclohydrolase I 0.0  folE  

glucose GTP cyclohydrolase II 25drapp 0.0  ribA  

glucose Hydroxybenzoate octaprenyltransferase 0.0  ubiA  

glucose HCO3 equilibration reaction 0.0  yadF cynT  

glucose histidinol dehydrogenase 0.0  hisD  

glucose histidinol phosphatase 0.0  hisB  

glucose hydroxymethylbilane synthase 0.0  hemC  

glucose 
6 hydroxymethyl dihydropterin 
pyrophosphokinase 0.0  folK  

glucose homoserine kinase 0.0  thrB  

glucose homoserine O succinyltransferase 0.0  metA  

glucose histidinol phosphate transaminase 0.0  hisC  

glucose isocitrate dehydrogenase NADP 0.0  icdA  

glucose Imidazole glycerol 3 phosphate synthase 0.0  hisH hisF  

glucose imidazoleglycerol phosphate dehydratase 0.0  hisB  

glucose indole 3 glycerol phosphate synthase 0.0  trpC  

glucose 3 isopropylmalate dehydrogenase 0.0  leuB  

glucose 2 isopropylmalate synthase 0.0  leuA  

glucose 
KDO 2 lipid IV A transport via ABC system 
periplasm 0.0  msbA  

glucose ketol acid reductoisomerase 2 Acetolactate 0.0  ilvC  

glucose 
3 deoxy manno octulosonate 
cytidylyltransferase 0.0  kdsB  

glucose 3 deoxy manno octulosonate 8 phosphatase 0.0  yrbI  

glucose 
3 deoxy D manno octulosonic acid 8 
phosphate synthase 0.0  kdsA  

glucose 
potassium transport via diffusion extracellular 
to periplasm 0.0 

 phoE ompF ompN 
ompC  

glucose leucine transaminase irreversible 0.0  ilvE tyrB  

glucose Lipid A disaccaride synthase 0.0  lpxB  

glucose Malonyl CoA ACP transacylase 0.0  fabD acpP  

glucose 
murein crosslinking transpeptidase 1A A2pm 
D ala  periplasm 0.0  ftsI mrcB mrdA mrcA  

glucose malate dehydrogenase 96.8  mdh  
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glucose 
2C methyl D erythritol 2 4 cyclodiphosphate 
dehydratase 0.0  ispG  

glucose 
2 C methyl D erythritol 2 4 cyclodiphosphate 
synthase 0.0  ispF  

glucose 
2 C methyl D erythritol 4 phosphate 
cytidylyltransferase 0.0  ispD  

glucose methionine adenosyltransferase 0.0  metK  

glucose methionine synthase 0.0  metE metH  

glucose 
magnesium Mg2 transport via diffusion 
extracellular to periplasm 0.0 

 phoE ompF ompN 
ompC  

glucose 
Manganese Mn2 transport via diffusion 
extracellular to periplasm 0.0 

 phoE ompF ompN 
ompC  

glucose 3 deoxy D manno octulosonic acid transferase 0.0  kdtA  

glucose 3 deoxy D manno octulosonic acid transferase 0.0  kdtA  

glucose 
molybdate transport via ABC system 
periplasm 0.0 

 modA modB modC 
cysA cysW cysU cysP 

sbp  

glucose 
molybdate transport via diffusion 
extracellular to periplasm 0.0 

 phoE ompF ompN 
ompC  

glucose 
3 methyl 2 oxobutanoate 
hydroxymethyltransferase 0.0  panB  

glucose murein polymerizing transglycosylase 0.0  mrcB pbpC mrcA  

glucose methenyltetrahydrofolate cyclohydrolase 97.4  folD  

glucose 
methylenetetrahydrofolate dehydrogenase 
NADP 97.4  folD  

glucose 
5 10 methylenetetrahydrofolate reductase 
NADH 0.0  metF  

glucose NAD kinase 0.0  yfjB  

glucose NAD synthase nh3 0.0  nadE  

glucose nucleoside diphosphate kinase ATPUDP 0.0  adk ndk  

glucose nucleoside diphosphate kinase ATPdTDP 0.0  adk ndk  

glucose 
ammonia transport via diffusion extracellular 
to periplasm 0.0 

 phoE ompF ompN 
ompC  

glucose ammonia reversible transport periplasm 0.0  amtB thrL  

glucose nicotinate nucleotide adenylyltransferase 0.0  nadD  

glucose 
nicotinate nucleotide diphosphorylase 
carboxylating 0.0  nadC  

glucose 
oxygen transport via diffusion extracellular to 
periplasm 21.2 

 phoE ompF ompN 
ompC  

glucose o2 transport via diffusion periplasm 21.2  thrL  

glucose ornithine carbamoyltransferase 0.0  argF argI  

glucose Octaprenyl pyrophosphate synthase 0.0  ispB  

glucose 
O Phospho 4 hydroxy L threonine2 
oxoglutarate aminotransferase 0.0  serC  
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glucose 
2 Oxo 4 methyl 3 carboxypentanoate 
decarboxylation 0.0  leuB  

glucose orotidine 5 phosphate decarboxylase 0.0  pyrF  

glucose Octaprenyl hydroxybenzoate decarboxylase 0.0  ubiX ubiD  

glucose pyrroline 5 carboxylate reductase 0.0  proC  

glucose pantothenate synthase 0.0  panC  

glucose 
phospho N acetylmuramoyl pentapeptide 
transferase meso 2 6 diaminopimelate 0.0  mraY  

glucose pyruvate dehydrogenase 96.2  aceE aceF lpdA  

glucose Pyridoxine 5 phosphate synthase 0.0  pdxA pdxJ  

glucose 
phosphatidylethanolamine transport via ABC 
system n C160 periplasm 0.0  msbA  

glucose 
phosphatidylethanolamine transport via ABC 
system n C161 periplasm 0.0  msbA  

glucose Erythronate 4 phosphate 4per dehydrogenase 0.0  pdxB  

glucose phosphofructokinase 98.4  pfkB pfkA  

glucose phosphoglycerate dehydrogenase 95.3  serA  

glucose glucose 6 phosphate isomerase 98.6  pgi  

glucose 6 phosphogluconolactonase 98.0  ybhE  

glucose 
phosphate transport via diffusion extracellular 
to periplasm 0.0 

 phoE ompF ompN 
ompC  

glucose phosphomethylpyrimidine kinase 0.0  thiD  

glucose pantothenate kinase 0.0  coaA  

glucose porphobilinogen synthase 0.0  hemB  

glucose phosphopantothenoylcysteine decarboxylase 0.0  dfp  

glucose phosphopantothenate cysteine ligase 0.0  dfp  

glucose prephenate dehydrogenase 0.0  tyrA  

glucose prephenate dehydratase 0.0  pheA  

glucose phosphoribosylglycinamide synthase 0.0  purD  

glucose phosphoribosylaminoimidazole synthase 0.0  purM  

glucose 
phosphoribosylanthranilate isomerase 
irreversible 0.0  trpC  

glucose phosphoribosyl AMP cyclohydrolase 0.0  hisI  

glucose 
phosphoribosylaminoimidazolesuccinocarbox
amide synthase 0.0  purC  

glucose phosphoribosyl ATP pyrophosphatase 0.0  hisI  

glucose phosphoribosylformylglycinamidine synthase 0.0  purL  

glucose 

1 5 phosphoribosyl 5 5 phosphoribosylamino 
methylideneamino imidazole 4 carboxamide 
isomerase 0.0  hisA  

glucose 3 phosphoshikimate 1 carboxyvinyltransferase 0.0  aroA  

glucose Phosphatidylserine decarboxylase n C160 0.0  psd  
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glucose Phosphatidylserine decarboxylase n C161 0.0  psd  

glucose phosphoserine transaminase 95.3  serC  

glucose phosphoserine phosphatase L serine 95.3  serB  

glucose Phosphatidylserine syntase n C160 0.0  pssA  

glucose Phosphatidylserine syntase n C161 0.0  pssA  

glucose pantetheine phosphate adenylyltransferase 0.0  coaD  

glucose quinolinate synthase 0.0  nadA  

glucose riboflavin kinase 0.0  ribF  

glucose riboflavin synthase 0.0  ribC  

glucose riboflavin synthase 0.0  ribE  

glucose S ribosylhomocysteine cleavage enzyme 0.0  ygaG  

glucose ribulose 5 phosphate 3 epimerase 98.4  rpe sgcE  

glucose Sulfate adenyltransferase 0.0  cysN cysD  

glucose succinyl diaminopimelate desuccinylase 0.0  dapE  

glucose serine O acetyltransferase 0.0  cysE  

glucose sirohydrochlorin dehydrogenase NAD 0.0  cysG  

glucose sirohydrochlorin ferrochetalase 0.0  cysG  

glucose shikimate dehydrogenase 0.0  ydiB aroE  

glucose shikimate kinase 0.0  aroL aroK  

glucose O succinylhomoserine lyase L cysteine 0.0  metB  

glucose 
sulfate transport via diffusion extracellular to 
periplasm 0.0 

 phoE ompF ompN 
ompC  

glucose succinate dehydrogenase irreversible 95.5  sdhC sdhD sdhA sdhB  

glucose sulfite reductase NADPH2 0.0  cysI cysJ  

glucose sulfate transport via ABC system periplasm 0.0 

 modA modB modC 
cysA cysW cysU cysP 

sbp  

glucose trans 2 decenoyl ACP isomerase 0.0  fabA  

glucose transaldolase 98.2  talB talA  

glucose Tetraacyldisaccharide 4 kinase 0.0  lpxK  

glucose tetrahydrodipicolinate succinylase 0.0  dapD  

glucose L threonine deaminase 0.0  sdaA sdaB tdcB ilvA  

glucose threonine synthase 0.0  thrC  

glucose thiazole phosphate synthesis 0.0 
 thiI iscS thiH thiG thiF 

thiS  

glucose transketolase 98.6  tktB tktA  

glucose transketolase 98.6  tktB tktA  

glucose thymidylate synthase 0.0  thyA  

glucose thiamine phosphate kinase 0.0  thiL  
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glucose thiamine phosphate diphosphorylase 0.0  thiE  

glucose triose phosphate isomerase 91.5  tpiA  

glucose 
UDP 3 O 3 hydroxymyristoyl glucosamine 
acyltransferase 0.0  lpxD  

glucose 
UDP N acetylmuramoyl L alanyl D glutamyl 
meso 2 6 diaminopimelate synthetase 0.0  murE  

glucose UDP N acetylglucosamine acyltransferase 0.0  lpxA acpP  

glucose 
UDP N acetylglucosamine 1 
carboxyvinyltransferase 0.0  murA  

glucose UDP N acetylglucosamine diphosphorylase 0.0  glmU  

glucose 

UDP N acetylglucosamine N acetylmuramyl 
pentapeptide pyrophosphoryl undecaprenol N 
acetylglucosamine transferase 0.0  murG  

glucose 
UDP N acetylmuramoyl L alanyl D glutamate 
synthetase 0.0  murD  

glucose UDP N acetylmuramoyl L alanine synthetase 0.0  murC  

glucose 
UDP N acetylenolpyruvoylglucosamine 
reductase 0.0  murB  

glucose undecaprenyl diphosphatase 0.0  ybjG pgpB bacA  

glucose Undecaprenyl diphosphate synthase 0.0  uppS  

glucose 

UDP N acetylmuramoyl L alanyl D glutamyl 
meso 2 6 diaminopimeloyl D alanyl D alanine 
synthetase 0.0  murF  

glucose UDP 3 O acetylglucosamine deacetylase 0.0  lpxC  

glucose UMP kinase 0.0  pyrH cmk  

glucose uroporphyrinogen methyltransferase 0.0  cysG hemX  

glucose uroporphyrinogen III synthase 0.0  hemD  

glucose 
uroporphyrinogen decarboxylase 
uroporphyrinogen III 0.0  hemE  

glucose UDP sugar hydrolase 0.0  ybbF  

glucose 
zinc Zn2 transport via diffusion extracellular 
to periplasm 0.0 

 phoE ompF ompN 
ompC  

uridine Uracil exchange 60.7   

uridine pyruvate kinase 98.2  pykF pykA  

uridine pyrimidine nucleoside phosphorylase uracil 95.1  udp  

uridine 
uridine transport via diffusion extracellular to 
periplasm 0.0  tsx  

D-sorbitol sorbitol 6 phosphate dehydrogenase 0.0  srlD  

D-sorbitol 
D sorbitol transport via PEPPyr PTS 
periplasm 0.0  ptsH ptsI srlA srlE srlB  

D-sorbitol 
D sorbitol transport via diffusion extracellular 
to periplasm 0.0 

 phoE ompF ompN 
ompC  

fructose 
Fructose transport via PEPPyr PTS f6p 
generating  periplasm 97.6 

 manX manY manZ 
ptsH ptsI  
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fructose 
D fructose transport via diffusion extracellular 
to periplasm 0.0 

 phoE ompF ompN 
ompC  

L-serine Isocitrate lyase 98.7  aceA  

L-serine phosphoenolpyruvate synthase 98.6  ppsA  

L-serine 
L serine transport via diffusion extracellular 
to periplasm 0.0 

 phoE ompF ompN 
ompC  

trehalose 
trehalose transport via diffusion extracellular 
to periplasm 0.0 

 phoE ompF ompN 
ompC  

D-serine D serine dehydrogenase 96.4  ydfG  

D-serine 
D serine transport in via proton symport 
periplasm 0.0  cycA  

D-serine 
D serine transport via diffusion extracellular 
to periplasm 0.0 

 phoE ompF ompN 
ompC  

D-serine Isocitrate lyase 98.7  aceA  

D-serine phosphoenolpyruvate synthase 98.6  ppsA  

galactose galactokinase 0.0  galK wcaK  

galactose 
D galactose transport in via proton symport 
periplasm 92.0  galP  

galactose 
D galactose transport via diffusion 
extracellular to periplasm 0.0 

 phoE ompF ompN 
ompC  

galactose phosphoglucomutase 89.4  pgm yqaB  

galactose pyruvate kinase 96.7  pykF pykA  

galactose 
UDPglucose hexose 1 phosphate 
uridylyltransferase 0.0  galT  

lactose galactokinase 51.2  galK wcaK  

lactose 
Lactose transport via diffusion extracellular to 
periplasm 0.0 

 phoE ompF ompN 
ompC  

lactose phosphoglucomutase 94.8  pgm yqaB  

lactose 
UDPglucose hexose 1 phosphate 
uridylyltransferase 51.2  galT  

gluconate 
D gluconate transport via proton symport 
reversible periplasm 0.0  gntT idnT gntP gntU  

gluconate 
D gluconate transport via diffusion 
extracellular to periplasm 0.0 

 phoE ompF ompN 
ompC  

gluconate gluconokinase 0.0  gntK idnK  

gluconate pyruvate kinase 95.3  pykF pykA  

mannose mannose 6 phosphate isomerase 0.0  manA  

mannose 
D mannose transport via PEPPyr PTS 
periplasm 0.0 

 manX manY manZ 
ptsH ptsI  

mannose 
D mannose transport via diffusion 
extracellular to periplasm 0.0 

 phoE ompF ompN 
ompC  

maltose maltose transport via ABC system periplasm 0.0  malG malF malE malK  
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maltose 
maltoseMaltotriose transport via diffusion 
extracellular to periplasm irreversible 0.0  lamB  

maltose phosphoglucomutase 94.8  pgm yqaB  

maltose pyruvate kinase 96.9  pykF pykA  

lactate Isocitrate lyase 98.8  aceA  

lactate 
L lactate reversible transport via proton 
symport periplasm 0.0  yghK lldP  

lactate 
L lactate transport via diffusion extracellular 
to periplasm 0.0 

 phoE ompF ompN 
ompC  

lactate phosphoenolpyruvate synthase 96.3  ppsA  

lactate NAD P transhydrogenase periplasm 98.3  pntB pntA  

succinate malic enzyme NADP 95.2  maeB  

succinate phosphoenolpyruvate carboxykinase 95.5  pckA  

succinate 
succinate transport via diffusion extracellular 
to periplasm 0.0 

 phoE ompF ompN 
ompC  

citrate 
Citrate transport via succinate antiport 
periplasm 0.0  citT  

citrate 
citrate transport via diffusion extracellular to 
periplasm 0.0 

 phoE ompF ompN 
ompC  

citrate phosphoenolpyruvate carboxykinase 98.0  pckA  

L-alanine 
L alanine transport via diffusion extracellular 
to periplasm 0.0 

 phoE ompF ompN 
ompC  

L-alanine Isocitrate lyase 97.4  aceA  

L-alanine phosphoenolpyruvate synthase 96.4  ppsA  
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Supplementary Table 3.3: Reactions that are not predicted to be shared between the 

metabolism of glucose and alternative substrates, determining the Hamming distance 

between substrates for FBA comparisons.  

Substrate Reaction Name (reaction not in common with glucose utilization) 
succinate glucose 6 phosphate dehydrogenase 

succinate D glucose transport via PEPPyr PTS periplasm 

succinate D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

succinate phosphogluconate dehydrogenase 

succinate malic enzyme NADP 

succinate phosphofructokinase 

succinate glucose 6 phosphate isomerase 

succinate 6 phosphogluconolactonase 

succinate phosphoenolpyruvate carboxykinase 

succinate succinate transport via diffusion extracellular to periplasm 

D-serine D serine dehydrogenase 

D-serine D serine transport in via proton symport periplasm 

D-serine D serine transport via diffusion extracellular to periplasm 

D-serine glucose 6 phosphate dehydrogenase 

D-serine D glucose transport via PEPPyr PTS periplasm 

D-serine D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

D-serine phosphogluconate dehydrogenase 

D-serine Isocitrate lyase 

D-serine phosphofructokinase 

D-serine phosphoglycerate dehydrogenase 

D-serine glucose 6 phosphate isomerase 

D-serine 6 phosphogluconolactonase 

D-serine phosphoenolpyruvate synthase 

D-serine phosphoserine transaminase 

D-serine phosphoserine phosphatase L serine 

L-serine glucose 6 phosphate dehydrogenase 

L-serine D glucose transport via PEPPyr PTS periplasm 

L-serine D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

L-serine phosphogluconate dehydrogenase 

L-serine Isocitrate lyase 

L-serine phosphofructokinase 

L-serine phosphoglycerate dehydrogenase 

L-serine glucose 6 phosphate isomerase 

L-serine 6 phosphogluconolactonase 

L-serine phosphoenolpyruvate synthase 
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L-serine phosphoserine transaminase 

L-serine phosphoserine phosphatase L serine 

L-serine L serine transport via diffusion extracellular to periplasm 

acetate glucose 6 phosphate dehydrogenase 

acetate D glucose transport via PEPPyr PTS periplasm 

acetate D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

acetate phosphogluconate dehydrogenase 

acetate Isocitrate lyase 

acetate pyruvate dehydrogenase 

acetate phosphofructokinase 

acetate glucose 6 phosphate isomerase 

acetate 6 phosphogluconolactonase 

acetate phosphoenolpyruvate carboxykinase 

uridine aspartate carbamoyltransferase 

uridine Acetate exchange 

uridine Uracil exchange 

uridine fructose bisphosphate aldolase 

uridine D glucose transport via PEPPyr PTS periplasm 

uridine D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

uridine orotidine 5 phosphate decarboxylase 

uridine phosphofructokinase 

uridine pyruvate kinase 

uridine pyrimidine nucleoside phosphorylase uracil 

uridine uridine transport via diffusion extracellular to periplasm 

L-malate Acetate exchange 

L-malate glucose 6 phosphate dehydrogenase 

L-malate D glucose transport via PEPPyr PTS periplasm 

L-malate D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

L-malate phosphogluconate dehydrogenase 

L-malate Malate transport via proton symport 2 H  periplasm 

L-malate Malate transport via diffusion extracellular to periplasm 

L-malate malic enzyme NADP 

L-malate phosphofructokinase 

L-malate glucose 6 phosphate isomerase 

L-malate 6 phosphogluconolactonase 

L-malate phosphoenolpyruvate carboxykinase 

L-proline Acetate exchange 

L-proline iron Fe2 transport out via proton antiport periplasm 

L-proline Fe III reduction 
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L-proline L glutamate 5 semialdehyde dehydratase spontaneous 

L-proline glucose 6 phosphate dehydrogenase 

L-proline D glucose transport via PEPPyr PTS periplasm 

L-proline D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

L-proline phosphogluconate dehydrogenase 

L-proline 1 pyrroline 5 carboxylate dehydrogenase 

L-proline pyrroline 5 carboxylate reductase 

L-proline phosphofructokinase 

L-proline glucose 6 phosphate isomerase 

L-proline 6 phosphogluconolactonase 

L-proline phosphoenolpyruvate carboxykinase 

L-proline Proline dehydrogenase 

L-proline L proline transport via diffusion extracellular to periplasm 

fumarate Acetate exchange 

fumarate Fumarate transport via diffusion extracellular to periplasm 

fumarate glucose 6 phosphate dehydrogenase 

fumarate D glucose transport via PEPPyr PTS periplasm 

fumarate D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

fumarate phosphogluconate dehydrogenase 

fumarate malic enzyme NADP 

fumarate phosphofructokinase 

fumarate glucose 6 phosphate isomerase 

fumarate 6 phosphogluconolactonase 

fumarate phosphoenolpyruvate carboxykinase 

D-ribose fructose bisphosphate aldolase 

D-ribose D glucose transport via PEPPyr PTS periplasm 

D-ribose D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

D-ribose phosphofructokinase 

D-ribose pyruvate kinase 

D-ribose ribokinase 

D-ribose D ribose transport via ABC system periplasm 

D-ribose ribose transport via diffusion extracellular to periplasm 

mucic acid Acetate exchange 

mucic acid glucose 6 phosphate dehydrogenase 

mucic acid galactarate dehydratase 

mucic acid D galactarte transport via proton symport reversible periplasm 

mucic acid D galactarte transport via diffusion extracellular to periplasm 

mucic acid 5 dehydro 4 deoxyglucarate aldolase 

mucic acid D glucose transport via PEPPyr PTS periplasm 
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mucic acid D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

mucic acid phosphogluconate dehydrogenase 

mucic acid phosphofructokinase 

mucic acid glucose 6 phosphate isomerase 

mucic acid 6 phosphogluconolactonase 

mucic acid pyruvate kinase 

D-alanine D Alanine transport via diffusion extracellular to periplasm 

D-alanine glucose 6 phosphate dehydrogenase 

D-alanine D glucose transport via PEPPyr PTS periplasm 

D-alanine D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

D-alanine phosphogluconate dehydrogenase 

D-alanine Isocitrate lyase 

D-alanine phosphofructokinase 

D-alanine glucose 6 phosphate isomerase 

D-alanine 6 phosphogluconolactonase 

D-alanine phosphoenolpyruvate synthase 

L-alanine L alanine transport via diffusion extracellular to periplasm 

L-alanine glucose 6 phosphate dehydrogenase 

L-alanine D glucose transport via PEPPyr PTS periplasm 

L-alanine D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

L-alanine phosphogluconate dehydrogenase 

L-alanine Isocitrate lyase 

L-alanine phosphofructokinase 

L-alanine glucose 6 phosphate isomerase 

L-alanine 6 phosphogluconolactonase 

L-alanine phosphoenolpyruvate synthase 

L-aspartate L aspartate transport in via proton symport periplasm 

L-aspartate L aspartate transport via diffusion extracellular to periplasm 

L-aspartate Acetate exchange 

L-aspartate glucose 6 phosphate dehydrogenase 

L-aspartate D glucose transport via PEPPyr PTS periplasm 

L-aspartate D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

L-aspartate phosphogluconate dehydrogenase 

L-aspartate phosphofructokinase 

L-aspartate glucose 6 phosphate isomerase 

L-aspartate 6 phosphogluconolactonase 

L-aspartate phosphoenolpyruvate carboxykinase 

D-sorbitol D glucose transport via PEPPyr PTS periplasm 

D-sorbitol D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 
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D-sorbitol sorbitol 6 phosphate dehydrogenase 

D-sorbitol D sorbitol transport via PEPPyr PTS periplasm 

D-sorbitol D sorbitol transport via diffusion extracellular to periplasm 

lactate glucose 6 phosphate dehydrogenase 

lactate D glucose transport via PEPPyr PTS periplasm 

lactate D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

lactate phosphogluconate dehydrogenase 

lactate Isocitrate lyase 

lactate L lactate reversible transport via proton symport periplasm 

lactate L lactate transport via diffusion extracellular to periplasm 

lactate phosphofructokinase 

lactate glucose 6 phosphate isomerase 

lactate 6 phosphogluconolactonase 

lactate phosphoenolpyruvate synthase 

lactate NAD P transhydrogenase periplasm 

citrate Citrate transport via succinate antiport periplasm 

citrate citrate transport via diffusion extracellular to periplasm 

citrate Acetate exchange 

citrate glucose 6 phosphate dehydrogenase 

citrate D glucose transport via PEPPyr PTS periplasm 

citrate D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

citrate phosphogluconate dehydrogenase 

citrate phosphofructokinase 

citrate glucose 6 phosphate isomerase 

citrate 6 phosphogluconolactonase 

citrate phosphoenolpyruvate carboxykinase 

galactose fructose bisphosphate aldolase 

galactose galactokinase 

galactose D galactose transport in via proton symport periplasm 

galactose D galactose transport via diffusion extracellular to periplasm 

galactose D glucose transport via PEPPyr PTS periplasm 

galactose D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

galactose phosphofructokinase 

galactose phosphoglucomutase 

galactose pyruvate kinase 

galactose UDPglucose hexose 1 phosphate uridylyltransferase 

gluconate Acetate exchange 

gluconate fructose bisphosphate aldolase 

gluconate glucose 6 phosphate dehydrogenase 
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gluconate D gluconate transport via proton symport reversible periplasm 

gluconate D gluconate transport via diffusion extracellular to periplasm 

gluconate D glucose transport via PEPPyr PTS periplasm 

gluconate D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

gluconate gluconokinase 

gluconate phosphofructokinase 

gluconate glucose 6 phosphate isomerase 

gluconate 6 phosphogluconolactonase 

gluconate pyruvate kinase 

lactose fructose bisphosphate aldolase 

lactose galactokinase 

lactose D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

lactose Lactose transport via diffusion extracellular to periplasm 

lactose phosphofructokinase 

lactose phosphoglucomutase 

lactose UDPglucose hexose 1 phosphate uridylyltransferase 

mannose D glucose transport via PEPPyr PTS periplasm 

mannose D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

mannose mannose 6 phosphate isomerase 

mannose D mannose transport via PEPPyr PTS periplasm 

mannose D mannose transport via diffusion extracellular to periplasm 

maltose fructose bisphosphate aldolase 

maltose D glucose transport via PEPPyr PTS periplasm 

maltose D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

maltose maltose transport via ABC system periplasm 

maltose maltoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

maltose phosphofructokinase 

maltose phosphoglucomutase 

maltose pyruvate kinase 

fructose Fructose transport via PEPPyr PTS f6p generating  periplasm 

fructose D fructose transport via diffusion extracellular to periplasm 

fructose D glucose transport via PEPPyr PTS periplasm 

fructose D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

fructose phosphofructokinase 

trehalose D glucose transport via PEPPyr PTS periplasm 

trehalose D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

trehalose trehalose transport via diffusion extracellular to periplasm 

melibiose fructose bisphosphate aldolase 

melibiose galactokinase 
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melibiose a galactosidase melibiose 

melibiose D glucose transport via PEPPyr PTS periplasm 

melibiose D glucoseMaltotriose transport via diffusion extracellular to periplasm irreversible 

melibiose melibiose transport in via symport periplasm 

melibiose melibiose transport via diffusion extracellular to periplasm 

melibiose phosphofructokinase 

melibiose phosphoglucomutase 

melibiose pyruvate kinase 

melibiose UDPglucose hexose 1 phosphate uridylyltransferase 
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Supplementary Table 3.4: Summary of alternative metrics used to assess the 

difference between substrate utilization using flux balance analysis predictions 

Flux Vector 
Comparison 

Metric 

Sign of 
relationship 

matches 
prediction? 

Significance
? R2 Description and Notes 

Euclidean 
distance No P=0.49 0 

Includes amount of flux per reaction, not 
just reaction use. Coefficient of 
relationship is positive (i.e., in the 
opposite direction predicted). 

1-Correlation Yes P=0.91 0 

Includes amount of flux per reaction, not 
just reaction use, and uses one minus the 
Pearson's R coefficient as the metric 
(glucose is a score of 0- perfectly 
correlated with itself) 

Hamming 
distance No P=0.26 0.004 

Counts the number of reactions used for 
optimal growth on glucose and not for an 
alternative substrate as well as those 
used for an alternative substrate and not 
for glucose. 

Mutational 
target size Yes P=0.15 0.01 

Counts the number of coding nucleotides 
for the genes involved in reactions 
predicted as necessary for optimal 
growth on a carbon source. 

Count of 
unused 

reactions Yes P=0.04 0.02 

Unlike Hamming distance, which counts 
reactions used for glucose and not for 
alternative substrates, this only counts 
reactions used for alternative substrates 
and not glucose 
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Supplementary Figure 3.1: Summary of parallel changes observed using Biolog 

assays. Blue shading indicates catabolic function that consistently decayed across the 

parallel populations (statistically significant loss of function for the evolved strains as a 

group compared to ancestor). Red shading represents statistically significant gains of 

function. The number in each cell is the number of populations that significantly lost 

catabolic function on that carbon source relative to the ancestor (P<0.0005). There were 

twelve evolved isolates tested for all timepoints except 50k, for which 13 strains were 

tested (including A-2S). Substrates in green and italicized allowed no growth of the 

ancestor within 48 hours in growth rate assays in DM media.  
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Supplementary Figure 3.2: Respiration assay for ancestral and evolved strains on 

citrate. Points show biological replicate measurements for different groups of strains. 

The signal for the Cit+ A-3 50k isolate is statistically indistinguishable from other 50k 

isolates. 
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Supplementary Figure 3.3: Histogram showing less parallelism of metabolic 

declines in growth rate than respiration. The x axis indicates the number of strains that 

exhibited a metabolic decline on a substrate. The grey bars are observed metabolic 

decreases, the black line is the mean observed number of decreases, and the red outline 

is the null distribution for a single observation given random increases and decreases. 

Growth rate changes for 20k (A) and 50k (B) isolates did not show the same degree of 

parallelism as cellular respiration declines at 20k (C) and 50k (D). The substrates 

considered were all those for which growth rate and respiration data were both available 

and for which the ancestor exhibited growth or respiration- necessary for the evolved 

strains to demonstrate reductions. These substrates were: acetate, D-alanine, D-

saccharic acid, D-serine, D-sorbitol, galactose, L-alanine, L-proline, L-serine, lactate, 

lactose, maltose, mannose, melibiose, mono-methyl succinate, mucic acid, ribose, and 

trehalose. 
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Supplementary Figure 3.4: Representative growth curves and fitted growth rates. A) 

Measured growth curves for 50k isolates of A-2L (red), A-1 (black). B) Fitted growth 

rates from the measured growth curves.  
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Supplementary Figure 4.1: Covariance of fluxes inferred for the LTEE. To 

determine whether there was a significant change in flux ratios between populations of 

the LTEE we ran a MANOVA as described in the text; however, to provide further 

insight into the basis of the significant differences that we observed we present a chart of 

the correlations between all fluxes. A) The value of the correlation and the significance 

are presented on the bottom half of the chart. B) The proportion of variation explained 

by each eigenvector. 
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Supplementary Figure 4.1, continued 
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Supplementary Figure 4.2: Normality tests for data associated with the 

LTEE.  Q-Q plots and Shapiro-Wilk values are displayed for growth parameters, and 

flux ratios. Additionally, data is displayed about the normality of % optimality and 

distance for different criteria. 
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Supplementary Figure 4.3: Normality tests for data associated with the 

lactate strains.  Q-Q plots and Shapiro-Wilk values are displayed for growth 

parameters, and flux ratios. Additionally, data is displayed about the normality of % 

optimality and distance for different criteria. 

 

 

 



,

! 154!

Supplementary Figure 4.4: Measures of optimality based upon BM/Σ v or 

ATP/Σ v for all data sets.  (A,B,E,F,I,J) The % optimality of the ancestor (black) and 

evolved isolates (grey); (C,D,G,H,K,L) distance to optimal flux distribution for FBA-

predictions (plotted as log(DEO/DAO)). These were performed based upon BM/Σv 

(A,C,E,G,I,K) or ATP/Σv (B,D,F,H,J,L). The data sets are LTEE (A-D), lactate (E-H), 

and KO (I-L). Error bars for LTEE represent standard errors of three biological 

replicates. 
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Supplementary Figure 4.4, continued 
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Supplementary Figure 4.4, continued 
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Supplementary Figure 4.5: Measures of optimality based on maximizing the 

tradeoff between BM, ATP and Σ v for all data sets. The Pareto distance of the 

ancestor (black) and evolved isolates (grey) for LTEE (A), lactate (B), and KO (C). Error 

bars represent standard errors of three biological replicates. 
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Supplementary Figure 4.6: Implementation of oxygen constraints. Following 

the example of Schuetz et al 2007 [11] we varied the ancestral oxygen uptake rate across 

the range reported in the literature (11.5-14.75 mmol/g hr). Ibarra et al 2002 [24] report 

that the ratio of oxygen to glucose uptake remains largely constant as cells evolve. We 

tested the impact of varying ancestral oxygen/glucose ratio as well as the slope of 

evolutionary change from 0.5 to 1.5. There was no significant difference in the change in 

% optimality for either BM/S (A) or ATP/S (B) across this wide range of parameter 

values. Results are not presented for an ancestral oxygen uptake rate of 11.5 for ATP/S 

because this constraint caused infeasible solutions for several evolved populations.  

Results obtained with the default values used throughout the manuscript, an ancestral 

uptake of 14.75 mmol/g hr and a slope of 1, are highlighted in red. 
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Supplementary Figure 4.6, continued 
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Supplementary Figure 4.7: The effect that potential evolution of constraints 

would have on average change in % optimality between ancestor and 

evolved lines. A) Lipid content was altered in evolved lines from 80-120% of the 

default values. B) Maintenance energy in evolved lines was altered from 50-150% of the 

default value of 8.39 mmol/g hr. Analyses for ATP/S are not shown, as setting a lower 

bound on maintenance energy has no effect if ATP production is being maximized. 

Results for simulations run with default (red) and altered (blue) constraints are shown 

for the LTEE set when optimized for either BM/S or ATP/S. Error bars represent 

standard errors between replicate lines. 
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Supplementary Figure 4.7, continued 
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Supplementary Figure 4.8: Average difference in % optimality between 

ancestor and evolved lines for each data set for each criterion. The criteria 

tested were BM/S (blue), ATP/S (red), BM/Σv (green) and ATP/Σv (purple). Error bars 

represent standard deviations of replicate lines. 
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Supplementary Table 4.1: Growth parameters for ancestral and evolved 

LTEE isolates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Glucose uptake Acetate excretion Growth rate CDW
g/g CDW h-1 g/g CDW h-1 h-1 g/g glucose

Anc REL606 12.83 ± 0.23 3.27 ± 0.75 0.80 ± 0.10 0.36 ± 0.02
A+1 REL11392 13.59 ± 0.87 6.69 ± 0.30 1.09 ± 0.04 0.44 ± 0.02
A+2 REL11342 15.74 ± 2.24 6.69 ± 0.96 1.18 ± 0.03 0.47 ± 0.03
A+3 REL11345 16.43 ± 0.90 4.32 ± 2.86 1.22 ± 0.02 0.46 ± 0.03
A+4 REL11348 15.78 ± 2.49 6.71 ± 0.94 1.18 ± 0.05 0.45 ± 0.03
A+5 REL11367 14.80 ± 2.04 5.64 ± 1.16 1.16 ± 0.07 0.38 ± 0.02
A-1 REL11330 14.49 ± 2.13 3.67 ± 0.65 1.10 ± 0.01 0.43 ± 0.01
A-2 REL11333 16.21 ± 0.22 2.85 ± 2.07 1.29 ± 0.07 0.39 ± 0.02
A-4 REL11336 15.35 ± 1.03 2.92 ± 0.73 0.99 ± 0.06 0.41 ± 0.01
A-5 REL11339 14.22 ± 0.46 6.35 ± 0.87 1.15 ± 0.07 0.43 ± 0.01
A-6 REL11389 14.25 ± 0.67 3.16 ± 1.15 1.19 ± 0.06 0.44 ± 0.01
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Supplementary Table 4.2: Experimentally determined flux ratios for 

ancestral and evolved LTEE isolates. PEP through PPP is an upper bound (ub); 

PYR from MAL is a lower bound (lb). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Serine through PYR through PEP through OAA from PEP PEP from OAA PYR from
glycolysis ED pathway PPP (ub) MAL (lb)

Anc 0.74 ± 0.01 0.01 ± 0.00 0.27 ± 0.05 0.69 ± 0.05 0.03 ± 0.01 0.01 ± 0.01
A+1 0.67 ± 0.01 0.06 ± 0.01 0.28 ± 0.03 0.69 ± 0.02 0.03 ± 0.01 0.02 ± 0.01
A+2 0.75 ± 0.01 0.05 ± 0.01 0.18 ± 0.03 0.61 ± 0.03 0.04 ± 0.01 0.00 ± 0.01
A+3 0.75 ± 0.01 0.13 ± 0.00 0.14 ± 0.06 0.71 ± 0.05 0.04 ± 0.02 0.03 ± 0.02
A+4 0.73 ± 0.01 0.03 ± 0.00 0.19 ± 0.05 0.59 ± 0.07 0.05 ± 0.01 0.01 ± 0.02
A+5 0.74 ± 0.01 0.03 ± 0.01 0.23 ± 0.02 0.57 ± 0.03 0.03 ± 0.02 0.02 ± 0.02
A-1 0.83 ± 0.01 0.02 ± 0.02 0.14 ± 0.04 0.59 ± 0.02 0.03 ± 0.00 0.02 ± 0.00
A-2 0.70 ± 0.02 0.03 ± 0.02 0.24 ± 0.05 0.80 ± 0.04 0.04 ± 0.01 0.00 ± 0.00
A-4 0.76 ± 0.01 0.05 ± 0.02 0.18 ± 0.03 0.63 ± 0.01 0.03 ± 0.01 0.01 ± 0.01
A-5 0.73 ± 0.01 0.03 ± 0.00 0.22 ± 0.04 0.60 ± 0.01 0.03 ± 0.02 0.02 ± 0.02
A-6 0.72 ± 0.00 0.03 ± 0.01 0.17 ± 0.05 0.58 ± 0.03 0.03 ± 0.01 0.01 ± 0.01
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Supplementary text 4.1: Equations used to calculate flux ratios for the 
LTEE.  

The notation v(x) represents the flux through reaction x of the iaf1260 genome-scale 
model of metabolism. 

serine through glycolysis 

=2*(v(1006)+v(1043)-v(2246)-
v(2203))/(v(688)+2*(v(1006)+v(1043))+v(2245)+v(2246)); 

pyruvate through Entner-Doudoroff 

=v(688)/(v(688)+v(575)+v(1233)+v(1626)+v(1627)); 

oxaloacetate from phosphoenolpyruvate 
=v(2020)/(v(2020)+v(1622)+v(1623)+v(1624)); 

phosphoenolpyruvate from oxaloacetate =v(2022)/(v(2022)+v(695)); 

pyruvate from malate 

PYR=(v(1626)+v(1627))/((v(1626)+v(1627)+v(575)+v(1233)+v(1626)+v(1627))); 

 


