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Epigenetic shielding: 5-hydroxymethylcytosine and 5-carboxylcytosine modulate UV 

induction of DNA photoproducts 

Abstract 

Maintaining the balance between dynamic DNA methylation and demethylation is crucial 

to mammalian development and pathogenesis.  In vitro methylation at the C-5 position of 

cytosine enhances cyclobutane pyrimidine dimer (CPD) formation and promotes transition 

mutations. While the loss of 5-hydroxymethylcytosine (5hmC) and inactivation of the ten-eleven 

translocation (TET) family have been implicated in cancers, and repeated exposure to UV 

radiation is a known risk factor for developing skin cancers, the link between DNA 

demethylation and UV damage has not yet been illustrated. We report that hydroxylation and 

carboxylation of 5-methylcytosine mitigate methylation-induced CPD enhancement upon UV 

irradiation. However, 5hmC also increases UV induction of (6-4) photoproducts. In a melanoma 

cell model, this duality by 5hmC in modulating the UV response is accentuated through TET2 

overexpression. These findings implicate the DNA demethylation intermediates 5-

hydroxymethylcytosine (5hmC) and 5-carboxylcytosine (5caC) as selective epigenetic shields 

against UV induction of DNA photoproducts.  
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CHAPTER ONE: INTRODUCTION 

 

UV Light and Skin Cancers 

UV is a powerful extrinsic regulator of skin pigmentation; repetitive UV exposure can 

also induce skin thickening, wrinkle formation, and inflammation. Furthermore, repeated 

exposure to UV radiation from sunlight leads to an increased risk of developing skin cancers. UV 

radiation can be divided into three types: UVA (long-range UV, 320-400nm), UVB (sunburn 

radiation, 280-320nm), and UVC (short-wave UV, 200-280nm) (Cotton and Spandau, 1997; Paz 

et al., 2008). UVC radiation is completely absorbed in the stratosphere by oxygen to produce 

ozone (Brash et al., 1991), and while most of UVB light should also be absorbed before reaching 

the earth’s surface, gradual ozone depletion has let more UVB radiation pass through the 

atmosphere. This trend is especially concerning, since UVB is “responsible for most of the 

carcinogenic effects of sun exposure” (Cotton and Spandau, 1997), and failure to eliminate UV-

damaged cells through controlled apoptosis may result in disease states such as skin cancer or 

lead to faster aging of the skin.  

Repeated exposure to UV radiation from sunlight increases the risk of developing three 

types of skin cancer: Malignant melanoma, basal cell carcinoma (BCC) and squamous cell 

carcinoma (SCC). While melanoma arises from the pigment-producing melanocytes in skin, non-

melanoma skin cancers arise from keratinocytes. Squamous keratinocytes near the top of the 

epidermis can become cancerous, leading to squamous cell carcinoma; basal cells in the bottom 

layer of keratinocytes can also become cancerous, leading to basal cell carcinoma. Basal cell 

cancer is the most common, accounting for 80% of all skin cancers (American Cancer Society, 
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2008 Reference); BCC occurs most frequently (about one million new cases per year) as a hard, 

raised, red wound on the head, neck and other sun-exposed areas, and usually does not 

metastasize, but can recur. Squamous cell cancer is less common (about 200,000 new cases per 

year), but more aggressive and can invade nearby tissues; SCC is the most sunlight-dependent 

type of skin cancer, since the majority of invasive squamous cell carcinomas are marked by 

cytosine to thymine UVB signature mutations (Brash et al., 1991). Malignant melanoma occurs 

even more rarely (about 50,000 new cases per year), but is the most serious type of skin cancer, 

usually metastasizing unless detected early (American Cancer Society, 2008 Reference; Cleaver 

and Crowley, 2002).  

 

UV Lesions and DNA Mutations  

When UV radiation damages a cell, it mutates the cellular DNA with distinctive 

mutational patterns. The major UV lesions produced are pyrimidine dimers between adjacent 

pyrimidines (Gale et al., 1987), resulting in a four membered ring from covalent linkages of the 

carbon-carbon double bonds on pyrimidines (Illustration 1). These cyclobutane pyrimidine 

dimers (CPDs) are quite mutagenic, especially in mammalian cells, initiating primary base 

substitutions in DNA (Otoshi et al., 2000). UV-light most dominantly induces cytosine to 

thymine transitions at the dipyrimidine sites, creating a UV-specific mutation signature that is 

ubiquitously observed in multiple organisms (Brash et al., 1991). The presence of CC to TT 

mutations uniquely identifies UV as the mutagen, since these double base changes are 

exclusively due to direct UV light absorption (Brash et al., 1991).  
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Illustration 1: TT CPD dimer formation (as published in Liu and Fisher, 2010 review) 

The induction yield for CPDs depends on sequence specificity, as well as the wavelength 

of UV. 5’ guanine inhibited CPD induction, while 3’ guanine enhanced CPD induction, and CPD 

induction was also greater in the presence of 5’ flanking pyrimidines (Cannistraro and Taylor, 

2009; Mitchell et al., 1991). Furthermore, the frequency of CPD formation oscillates along the 

core DNA, with maximum CPD formation within one base of sites where the DNA backbone is 

farthest from the surface of core histones, and minimum CPD formation at sites where the DNA 

backbone is closest to the surface of core histones (Gale et al., 1987). UVB radiation produces 

most of the CPD photoproducts in mammalian skin compared to UVA, which comprises most of 

sunlight radiation at the Earth’s surface; UVC is even more potent and lethal, “but it is screened 

out at least 105-fold by the ozone layer” (Brash et al., 1991), and thus a minimal source of health 

hazards (Tran et al., 2008). From in vitro studies of UV irradiations in plasmids, the following 

induction rates were observed: 2.4 CPDs per 108 daltons of DNA per J/m2 UVC; 0.3 CPDs per 
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108 daltons of DNA per J/m2 UVB (Mitchell et al., 1991). While TT CPDs are the most 

abundant, TC or CT CPDs are more abundant than CC CPDs, with ratios ranging from 60:24:16 

(UVC) to 68:29:3 (UVC), 40:40:20 (UVB) and 52:40:7 (UVB) (Mitchell et al., 1991). It has 

been suggested that cytosine-containing dimerized pyrimidines are more mutagenic than TT 

dimers; since UVB induces more cytosine containing dimers, the mutational spectrum of UVB 

contains more deletions, insertions and C to T transition mutations at dipyrimidine sites than the 

mutational spectrum of UVC (Mitchell et al., 1991). 	
   

The high incidence of p53 mutations at dipyrimidine sites in skin tumors correlates well 

with the presence of UV-induced mutagenic photoproducts (Tran et al., 2008).  The p53 tumor 

suppressor gene controls the stress and genetic-damage response pathway (Alberts et al., 2002). 

Loss of normal p53 function not only allows abnormal cells to avoid programmed cell death, but 

also enables cells to accumulate additional mutations at a rapid rate by allowing abnormal cells 

to progress through the cell cycle and thus create many abnormal chromosomes (Alberts et  al., 

2002). The p53 protein can be activated by a variety of stress signals, including sources that 

damage the integrity of the DNA template, such as gamma or UV irradiation, alkylation of bases, 

depurination of DNA and reaction with oxidative free radicals. In a study of patients from New 

England and Sweden (Brash et al., 1991), 58% of invasive squamous cell carcinomas (SCC) 

were marked by cytosine to thymine transitions (C -> T and CC -> TT) in the p53 gene.  

 

DNA Photoproducts 

While cyclobutane pyrimidine dimers (CPDs) are responsible for the majority of UVB-

induced mutations in mammalian cells, UVB and UVC can also induce (6-4) photoproducts, 



5	
  
	
  

another type of DNA damage formed between adjacent pyrimidine nucleotides on the same 

strand of DNA (Illustration 2). Both the yield and the ratio between CPDs and (6-4) 

photoproducts (6-4 PPs) upon UV irradiation vary greatly, depending on the chemical nature of 

the two pyrimidine bases involved, as well as other parameters such as the wavelength of the 

incident photons, the stability of the duplex DNA, and the ionic strength (Douki, 2006). The 

structure of the thymine-cytosine (6-4) photoproduct, the most abundant type of 6-4 PPs, was 

deduced by proton NMR, IR and fast atom bombardment mass spectroscopy (Franklin et al., 

1985). While both CPDs and 6-4 PPs are premutagenic lesions for cytosine to thymine 

transitions, 6-4 PPs are also premutagenic lesions for thymine to cytosine transitions (LeClerc et 

al., 1991; Otoshi et al., 2000).  

 

Illustration 2: TC 6-4 PP (with J. Babcock, JHU) 

Under near UV irradiation around 320nm, 6-4 PPs photoisomerize to Dewar valence 

isomers. Two major synthesis steps are required for generating Dewar photoproduct-containing 
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oligonucleotides: Short oligomers with a unique thymine-thymine sequence are irradiated under 

UVC (254nm), upon which TT 6-4 PPs are purified by HPLC; next, these oligomers are 

irradiated at the longer wavelengths to produce Dewar isomers (Yamamoto et al., 2006). Dewar 

isomers are much more unstable than 6-4 PPs (Kan et al., 1992). Compared to the highly 

mutagenic 6-4 PPs, Dewar photoproducts also have low mutagenic potential and induce a 

broader range of mutations (LeClerc et al., 1991; Lee et al., 2000).  

 

Epigenetic Status and UV Induction 

As described above, C to T or CC to TT mutations (CPD signature mutations), have been 

found in the p53 gene in a large percentage of human basal and squamous cell carcinomas. 

Interestingly, recent technical advances have helped reveal that over a third of these p53 

mutations involve 5’PymeCG trinucleotide sequences with the modified 5-methylcytosine 

(5meC) base (Tornaletti and Pfeifer, 1995; You and Pfeifer, 2001; Lee and Pfeifer, 2003; 

Cannistraro and Taylor, 2009). This correlates with observations in cultured mammalian cells 

that 5-methylcytosine-containing dipyrimidines are preferential targets for sunlight-induced 

mutagenesis (Tommasi et al., 1997). One widely accepted hypothesis for the C to T transition 

process at dipyrimidine sequences involves the deamination of cytosine or 5-methylcytosine, 

followed by trans-lesion synthesis. Previous in vitro studies using chromatography, mass-

spectrometry, enzymatic analysis, and ligation-mediated PCR have shown that methylation at the 

C-5 position of cytosine enhances CPD formation (under both broadband and monochromatic 

UVB) and promotes deamination, leading to increased UVB-induced C to T transition mutations 

(Douki and Cadet, 1994; Tommasi et al., 1997; You et al., 1999; Douki et al., 2000; Mitchell, 
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2000; Cannistraro and Taylor, 2009; Rochette et al., 2009). From a structural consideration, 5-

methylcytosine enhances the dimerization reaction with the adjacent 3’ end cytosine residue. 

Cytosine methylated at the C-5 position has a significantly lower excited singlet energy state 

than thymine or normal cytosine, and thus 5-methylcytosine could serve as a singlet energy trap 

in DNA (Tommasi et al., 1997). 

 

The “Sixth Base” and Beyond 

 5-methylcytosine can be converted by the TET machinery (ten-eleven translocation 

family of 5meC hydroxylases) into the newly (re)discovered “sixth base”, 5-

hydroxmethylcytosine (5hmC). The (re)discovery of 5hmC was actually an accidental finding 

during measurements of 5-methylcytosine: Thin-layer chromatography, high-pressure liquid 

chromatography, and mass spectrometry revealed an unusual DNA nucleotide, now known as 

5hmC, that constitutes less than 1% of total nucleotides in neuronal cells and is not present in 

cancer cell lines (Kriaucionis and Heintz, 2009). The existence of 5hmC has been known in the 

bacteriophage world since the early 1950s (Wyatt and Cohen, 1952). The discovery of 5hmC in 

mammalian DNA in 2009 (Kriaucionis and Heintz, 2009; Tahiliani et al., 2009) not only 

reawakened interest in a rare nucleotide, but also highlighted the shortcomings of previous 

methylation assays. In fact, enzymatic approaches and traditional bisulfite sequencing were 

shown to be unable to distinguish between 5meC and 5hmC in DNA (Nestor et al., 2010), thus 

illustrating the need for urgent technical advances such as new antibodies and oxidative bisulfite 

sequencing (Booth et al., 2012).  
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The TET proteins comprise a family of 2-oxoglutarate (α-ketoglutarate)- and Fe(II)-

dependent enzymes (Tahiliani et al., 2009). All three TET proteins contain a catalytic C-terminal 

CD domain (Cysteine-rich region and Double-stranded β-helix domain) (Tan and Shi, 2012). 

Both TET1 and TET2 regulate 5hmC production in mouse embryonic stem cells, and are 

induced concomitantly with 5hmC during fibroblast reprogramming into induced pluripotent 

stem cells (Ito et al., 2010; Koh et al., 2011). Disruption of TET activity was first found in 

myeloid tumorigenesis (Pastor et al., 2011).  Loss of 5hmC has recently been shown as an 

epigenetic hallmark of melanoma, where 5hmC and TET2 protein expression also negatively 

correlate with melanoma progression (Lian et al., 2012; Gambichler et al., 2013). In addition, 

5hmC levels are decreased across a broad range of other cancers, such as oral squamous cell 

carcinoma (Jäwert et al., 2013), brain tumors, and squamous cell lung cancers (Jin et al., 2011). 

In an elegant experiment to show that reduced 5hmC levels are the cause and not simply the 

consequence of carcinogenesis, injecting TET-depleted stem cells into mice led to aggressive 

and proliferative tumorigenesis, while injecting wild-type stem cells into mice only led to 

differentiated benign teratomas (Koh et al., 2011; Münzel et al., 2011).  

Although originally considered unlikely to be part of any active oxidative demethylation 

pathway due to previous inability to detect active demethylation intermediates(Globisch et al., 

2010), 5hmC now represents a pathway for DNA demethylation (Gong and Zhu, 2011), as it is 

repaired as mismatched DNA and replaced with normal cytosine. 5hmC can be further oxidized 

into 5-carboxylcytosine (5caC), another DNA demethylation intermediate with emerging 

evidence for diverse regulatory functions (Shen et al., 2013; Song et al., 2013; Song and He, 

2013). Since the maintenance of dynamic DNA methylation and demethylation processes seems 

crucial to mammalian development and pathogenesis, we strove to understand the impact of 
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epigenetic modifications on mutagenesis by exploring the roles of 5hmC and 5caC in modulating 

UV-induced DNA damage.  

 

Skin (Cells) as an Attractive System 

The skin provides an attractive system for studying normal cellular processes as well as 

cancer pathogenesis, since skin cells are abundant and easily accessible. Normal human skin is 

covered by a stratified epidermis that functions as a self-perpetuating barrier against harmful 

microbes, dehydration and other insults (Fuchs, 2008). This protection is maintained by a tightly 

regulated balance of cellular proliferation, differentiation and apoptosis within the skin cells 

(Gniadecki et al., 1997; Chaturvedi et al., 1999; Fuchs, 2008).  

The epidermis forms the top protective covering of normal skin, and is itself composed of 

multiple layers from the stratum corneum or horny layer at the top to proliferating cells in the 

basal layer that are anchored to the basement membrane. Keratinocytes constitute the majority of 

the epidermis, with some melanocytes to protect the deeper skin layers from harmful UV rays. 

The bottom layer of epidermal keratinocytes contains a single layer of basal, proliferative 

keratinocytes that give rise to daughter cells and progressively move outward and commit to 

terminally differentiate as they expand (Alonso and Fuchs, 2003; Fuchs, 2008). As 

differentiating keratinocytes move upwards into the spinous layer and then granular layer, and 

finally into the horny stratum corneum and exit at the skin surface (Alonso and Fuchs, 2003)—a 

process that takes approximately one month in human epidermis—their network of 10-nm 

keratin intermediate filaments strengthens to form IF cables that distribute force over an entire 

tissue by anchoring to desmosome junctions (Alonso and Fuchs, 2003). Once they have reached 
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the surface after major morphological changes, the differentiated keratinocytes have now become 

“enucleated cellular skeletons” that are continually sloughed at the surface and replaced by inner 

cells moving outward in a dynamic flux (Fuchs, 2008).   

The decreased incidence of skin cancers seen in individuals with darker skin may be 

attributed both to protective UV filtering and a more efficient removal of UV-damaged cells 

(Miyamura et al., 2007; Yamaguchi et al., 2006; Liu and Fisher, 2010). As a first line of defense, 

melanin pigments prevent UV-induced DNA damage upon sun exposure. Melanin is synthesized 

by melanocytes in the epidermis, and then distributed by neighboring keratinocytes into the 

upper skin layers. In addition to skin, melanin can also be found in hair, retina, iris and parts of 

the central nervous system (Yamaguchi and Hearing, 2009). 

Given their attractiveness as a model system and their direct relevance to studying UV 

damage, human and mouse skins, as well as the various primary cells (keratinocytes, 

melanocytes, fibroblasts) derived from them, have been popularly used as a supplement to 

immortalized cancer cell lines. Throughout the multiple projects I pursued during my graduate 

years, primary human keratinocytes and melanocytes were extensively used in conjunction with 

other systems to better mimic biological processes. In fact, observations in primary skin cultures 

often formed the basis for generating new hypotheses.      

 

Purpose and Hypothesis 

Originally, we were looking into a question related to, but slightly different from the focus of this 

thesis—whether UV irradiation has any effect on the methylation and demethylation of cytosine. 

Initial pilot immunofluorescence experiments suggested that in primary human skin cells (dark 
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as well as white primary melanocytes, primary keratinocytes, and primary fibroblasts), 5hmC 

expression was significantly enhanced within 3 hours of UV irradiation; we were encouraged by 

a lack of similar observation in cancer cells, since TET enzymes are mutated or downregulated in 

multiple cancers. Although loss-of-function mutations in TET genes have not been found in 

human solid tumors yet, mutations in TET genes were frequently found in hematological 

malignancies, and downregulation of TET expression was observed in human breast, liver, lung, 

pancreatic and prostate cancers (Wu and Ling, 2014). This correlates with reduced 5hmC levels 

in various tumors, as 5hmC reduction can result from loss-of-function mutations in TET genes 

and from inhibition of TET activity through reduced α-ketoglutarate (oxoglutarate) levels or 

increased 2-hydroxyglutarate levels (via IDH1/2 mutations) (Yang et al., 2013). Among the 

currently known mutations in TET genes, the MLL-TET1 (t(10;11)(q22;q23) translocation was 

identified in acute myeloid leukemia and acute lymphoblastic leukemia, while a deletion of 2p23 

was seen in myelodysplastic syndrome, and a range of nonsense/missense/frameshift mutations 

and deletions was found in the cysteine-rich region or catalytic domain of TET2 (Kinney and 

Pradhan, 2013). My preliminary analysis of TET mutations in skin cutaneous melanoma (Broad, 

Cell 2012; The Cancer Genome Atlas; Yale, Nature Genetics 2012; cBioPortal for Cancer 

Genomics) revealed a large number of C to T or CC to TT missense transition mutations in 

TET1/2/3 (see Chapter 3 for further discussion).  However, the lack of reliable DNA 

demethylation antibodies at the time (back in 2010), in addition to technical concerns about false 

positives from UV crosslinking, led us to hand over this project to multiple collaborators (whose 

recent mass spectrometry results seem to validate our original observations).  

Therefore, in moving forward, we modified our objectives: For this thesis, we are 

building upon current understanding of the effect of cytosine methylation on photoproduct 
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formation and mutagenesis, and extending our studies into the rapidly evolving field of 

hydroxymethylation and carboxylation. We hypothesize that 5-hydroxymethylcytosine and 5-

carboxylcytosine are part of a protective, TET-mediated DNA demethylation pathway for 5-

methylcytosine, and thus they will mitigate UV-induced photoproduct formation, in contrast to 

enhanced CPD formation by the 5-methyl moiety.   
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CHAPTER TWO 

 TETrify against UV: 5hmC and 5caC protect from UV-induction of CPDs 

 

Intrastand CPD dimers and their well-known UVB-signature mutations have been linked 

to basal cell carcinoma and squamous cell carcinoma (Brash et al., 1991), and there is a strong 

association between melanoma risk and UVB exposure (Fears et al., 2002). The most prevalent 

UVB-induced DNA lesion, CPDs are both abundant and mutagenic, and their repair is slow and 

inefficient. CPDs are premutagenic lesions for cytosine to thymine transitions, the UVB 

signature mutations (LeClerc et al., 1991; Otoshi et al., 2000). In human basal and squamous cell 

carcinomas, these mutations have been found especially in trinucleotide sequences containing 5-

methylcytosine (Tornaletti and Pfeifer, 1995; You and Pfeifer, 2001; Lee and Pfeifer, 2003; 

Cannistraro and Taylor, 2009). The C to T transition process at dipyrimidine sequences involves 

deamination of cytosine, and methylation at the C-5 carbon of cytosine both enhances 

dimerization and promotes deamination, leading to enhanced CPD formation and increased UVB 

signature mutations (Douki and Cadet, 1994; Tommasi et al., 1997; You et al., 1999; Douki et 

al., 2000; Mitchell, 2000; Cannistraro and Taylor, 2009; Rochette et al., 2009). The TET 

machinery can oxidize 5meC into 5hmC and 5caC (Gong and Zhu, 2011; Shen et al., 2013; Song 

et al., 2013; Song and He, 2013). 5hmC levels are reduced in melanomas, oral squamous cell 

carncioma, brain tumors and other cancers (Lian et al., 2012; Gambichler et al., 2013; Jäwert et 

al., 2013), correlating with TET mutations or downregulation in multiple cancers (Wu and Ling, 

2014). Since 5hmC and 5caC are part of a TET-mediated DNA demethylation pathway, and 

methylation has been associated with enhanced formation of premutagenic UVB lesions, we 

studied the effects of hydroxylation and carboxylation on UVB induction of CPD dimers.  
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Methodology 

Our approach to studying the effect of epigenetics on UV-induced CPD formation was to 

first choose an in vitro system to validate previous findings on 5meC (Douki and Cadet, 1994; 

Tommasi et al., 1997; You et al., 1999; Douki et al., 2000; Mitchell, 2000; Cannistraro and 

Taylor, 2009; Rochette et al., 2009). While DNA dot blots previously worked well for 

quantifying levels of 5meC and 5hmC, they could not be used for measuring CPD formation, as 

UVC crosslinking (which was requisite to bind samples to the dot blot membrane) distorted 

subsequent measurements of UVB-induced CPDs.  

Therefore, we optimized an ELISA assay from Cosmo Bio, Inc., for our in vitro tests on 

modified oligonucleotides. Compared to standard sandwich ELISAs, our protocol incorporates 

an additional biotin-conjugated antibody in order to enhance signal intensity. We first tested out 

our protocol on genomic (herring sperm and calf thymus) DNA as well as 18bp-oligonucleotides, 

both under single-stranded (heated) and double-stranded (non-heat-denatured) conditions, before 

proceeding to assay optimization with the desired 11bp-modified oligonucleotides (single-

stranded). Under optimized conditions [1:1000 anti-cylobutane pyrimidine  dimers monoclonal 

antibody (Cosmo Bio USA), followed by 1:2000 biotin-xx F(ab’)2 fragment of goat anti-mouse 

IgG (Life Technologies) and 1:5000 peroxidase-streptavidin  in order to enhance signal intensity 

detected at 490 nm with 8 mg/20mL O-phenylenediamine dihydrochloride (Sigma Aldrich) 

(stopped by 2M H2SO4)], we could show that 5meC enhances UV-induced CPD dimer 

formation, in agreement with previous literature as described above. 
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Since a flanking guanine base has been shown to enhance CPD formation and accelerate 

cytosine deamination through the oxidation potential of its O6 group (Cannistraro and Taylor, 

2009),	
  we firstly chose a set of oligonucleotide sequences flanked by guanine, reasoning that 

differential responses to UVB-induced photodimer formation will be more distinguishable if we 

used a master sequence that promotes maximal induction. Our initial set of modified 

oligonucleotides comprises the following sequences: 5’-AAAAAAAACXG-3’ and 5’-

AAAAAAAATXG-3’, where X= C, 5meC, 5hmC, 5caC, T. For experiments with double-

stranded DNA, we designed oligonucleotides with a CpG dinucleotide in the middle (in order to 

avoid artificial outlier observations that might have resulted from a terminal cytosine): 5’-

ATATXGATATA-3’/5’-TATATXGATAT-3’, X=C, 5meC, 5hmC.   

In proceeding with experiments with genomic DNA extracted from TET overexpressing 

A2058 melanoma cells (either overexpressing full-length active TET2 (FL2) or mutant TET2 

(mut)) from the lab of our collaborator, Professor Yujiang Shi at BWH (Lian et al., 2012), we 

found that simply adapting our assays for cellular DNA does not always work. Cells were grown 

to confluencies ranging from 50-70%, irradiated with a UVB lamp at various doses, and 

harvested in lysis buffer at set time points. Genomic DNA was extracted by a phenol/chloroform 

protocol (during my rotation project, I had assessed the relationship between UV dose, cell 

confluency, and sensitivity to apoptosis in primary melanocytes and keratinocytes—while some 

of the cells we used to study the effects of epigenetic modifications on UV photoproducts are not 

primary, my earlier work revealed the optimal range of UV doses and DNA extraction protocols 

(coated spin columns versus gravity columns versus phenol/chloroform organic separations) to 

use in cells). We suspected that in vitro assays may respond to DNA of different lengths with 

bias, and so I first sonicated genomic samples (Bioruptor sonicator; Diagenode) for a range of 
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sonication durations, ran them on 2.5% agarose gels to check for even smear patterns, and 

selectively tested out in ELISA assays. The ELISA assays I had previously optimized for 

oligonucleotides worked best with briefly sonicated (5 min or 10 min) DNA that was heat-

denatured; however, this assay only worked with certain antibodies against photoproducts from a 

Japanese company (Cosmo Bio), but did not work with 5meC or 5hmC antibodies (even though 

those results were beautiful and extremely sensitive for our 11 bp oligos). Thus, I proceeded to 

test out other antibodies, as well as a 5hmC ELISA kit (Zymo Research Corporation) that was 

previously published (in testing unsonicated, genomic DNA across range of tissues); as it turns 

out, that kit did not work either, even their own controls barely fit on a standard curve, raising 

doubts about the accuracy of commercially available 5hmC kits. 

In order to compare and contrast the levels of 5hmC, 5meC and 5caC between cells with 

different TET expressions, I went back to dot blots. As explained above, the membrane 

crosslinking required for sensitive detection undermined quantification of photo-dimers, but does 

not hinder detection of epigenetic markers such as 5hmC. The dot blots had a preference for 

sonicated DNA (any sonication time seemed to work well), and heat denaturation did not seem to 

be necessary (unlike ELISA assays). Also, I found that for the 5meC (EMD Biosciences) and 

5hmC (ActiveMotif) antibodies selected, the dot blots worked better, and more consistently, on 

Hybond-N+ nylon (GE Healthcare Life Sciences)  membranes instead of nitrocellulose 

membranes (which a previous collaborator, A. Rao, had advised for their own 5hmC antibody).  

For broadspectrum UVB irradiations, we used two Stratagene UVB light bulbs at doses 

ranging from 100 mJ/cm2 to 4 J/cm2 (based on insights from previous unrelated side-projects on 

oligonucleotides, primary and cancer cell lines, skin explants, and mice). For UVA irradiations, 

we used two Stratagene blacklight bulbs at doses ranging from 1 J/cm2 to 40 J/cm2. UVB/UVA 
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emittance was measured with an ILT1400 photometer (International Light Technologies, Inc.) 

equipped with a UVB-1 SEL240 probe or UVA SEL033 probe, respectively. For UVC 

irradiations, we used two 15 W 254 nm germicidal bulbs (Stratagene) at timed doses (2-20 min). 

UVC doses were measured with a Thorlabs power meter (with a 250 nm filter) by recording and 

manually integrating a Watts versus time plot.  

 

Controls and Addressing Potential Pitfalls 

 In addition to testing commercial standards (Cell Biolabs, Inc.; Zymo Research 

Corporation) to validate our ELISA assays, we also designed our own positive and negative 

controls (custom modified oligonucleotides from Eurofins MWG Operon served as epigenetic 

standards; various cellular DNA verified by immunofluorescent staining, as well as calf thymus 

DNA under known conditions, served as standards for photoproducts). Since our 

oligonucleotides of interest were all 11 bp long, we used a representative sequence (oligo #6 = 

5’-AAAAAAAATCG-3’) to establish a standard curve (Figure 1). This revealed an optimal 

DNA concentration of 0.1188 µM (20 ng/50µl for oligo #6), which showed a fairly linear CPD 

dimer vs. UV dose response curve (Figure 2). We used these DNA concentrations throughout our 

ELISA assays on oligonucleotides and cellular DNA to ensure consistency (except in cases of 

high absorbance values, where we performed dilutions as necessary). Additional tests using 

mouse IgG (the Cosmo Bio antibodies against CPDs, 6-4 PPs and Dewar isomers were all 

monoclonal, mouse) were performed to test the quality of the antibodies. ELISA experiments 

using mouse IgG or with any missing subsequent antibodies did not show any UV induced 

increase in absorbance values, as expected.         
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Figure 1: Standard curve for CPD detection by ELISA (n= 3).  
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Figure 2: ssOligo6: CPD induction vs UVB dose (ELISA, n= 3). 

 We had several other concerns about using ELISA assays to measure the levels of 

photoproduct inductions. In case any reductions in CPD levels detected for 5hmC 

oligonucleotides were not due to the hydroxymethyl moiety but to instability upon irradiation, 

we decided to test the stability of the hydroxymethyl moiety. Our results do not suggest any 

hydroxymethyl instability upon broadspectrum UVB irradiation (Figure 3a). Similarly, the 5meC 

moiety did not display any instability upon UV irradiation (Figure 3b). Figure 3 (and other data, 

not included here) also shows that our oligonucleotides contain the correct modified bases as 

specified.      
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Figure 3a: 5hmC stability in oligonucleotides unaffected by UV irradiation/time/heat  
(ELISA, y-axis: 5hmC (absorbance), n= 3). 

 
 

 

Figure 3b: 5meC stability in oligonucleotides unaffected by UVB treatment  
(ELISA, y-axis: 5meC (absorbance), n= 3). 

 
 

 As another measure of quality control, we tested the levels of CPD dimers in our single-

stranded oligonucleotides both immediately after UV-treatment and after 24 hr (in a warm room, 

37ºC). For oligonucleotides that were significantly photodimerized with 1 J/cm2 broadspectrum 

UVB, we saw a 30-40% reduction in CPDs after 24 hr exposure to heat and light (Figure 4). This 

does not conflict with current knowledge that the dimerization of CPDs is reversible (Witkin, 

1975; Szekeres et al., 1976).   



21	
  
	
  

 
 

Figure 4: Reduction of UV-induced CPD dimers with time  
(ELISA, y-axis: CPD (absorbance), n= 3). 

 
 

Furthermore, we were concerned about the high background absorbance measured at both 

490nm and 450nm, despite diluting antibody concentrations. Since many instruments fail to 

follow the Beer-Lambert law (for linearity) at absorbance units above 2 (corresponding to light 

transmittance below 1%), it was important to bring down the background in order to obtain more 

meaningful signal: noise ratios. I found it necessary to individually optimize assay conditions for 

different sample groups (e.g., more dilute DNA concentrations for sequences containing a 

thymine) in order to be able to obtain meaningful (and comparable) observations. Switching 

from an HRP-based reading to a luminescence output did not improve our ELISA assays. 

However, we found that prolonging the blocking step cut down background signals in half, and 

reduced the variability in our samples as well (Figure 5).  
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Figure 5: Impact of block duration on signal detection (ELISA, y-axis: CPD (absorbance), n= 3).  
  

Results 

Our first aim was to test the hypothesis that a methyl moiety at the C-5 position enhances 

UV induction of CPD dimers. In ELISA tests with our first set of single-stranded 

oligonucleotides (detailed above), we observed trends consistent with those published in recent 

literature (Douki and Cadet, 1994; Tommasi et al., 1997; You et al., 1999; Douki et al., 2000; 

Mitchell, 2000; Cannistraro and Taylor, 2009; Rochette et al., 2009). More specifically, we 

observed up to 4-fold enhanced CPD induction (red versus orange bars, Figure 6) in the presence 

of a methylated cytosine (with 10-fold signal:noise ratios).  
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Figure 6: CPD induction by UVB in ACXG oligonucleotides  
(ELISA, y-axis: CPD (absorbance), n≥ 3, unpaired t tests). 

 
 

Our second aim was to establish whether a hydroxymethyl moiety would reduce or even 

protect from UV-induced CPD dimer formation. Since hydroxylation of 5meC by TETs initiates 

demethylation, we hypothesized that the hydroxymethyl moiety would have effects opposite to 

enhanced inductions seen with a 5-methyl moiety. As predicted, our results indicated that the 5-

hydroyxmethyl moiety on cytosine mitigates methylation-related CPD enhancement upon UV 

irradiation. Depending on sequence context, UV-induced formation of CPDs was up to 3-fold 

lower for 5hmC-containing oligonucleotides than their 5meC counterparts (Figure 7). 5hmC’s 



24	
  
	
  

protective effect on the UV response was also upheld in duplex oligonucleotides, although at a 

lower ratio but still with statistical significance (Figure 8).  

 

Figure 7a: Shielding from UV-induced formation of ATXG CPDs  
(ELISA, n= 9, multiple unpaired t tests). 

 

 

Figure 7b: Shielding from UV-induced formation of ACXG CPDs  
(ELISA, n≥ 5, multiple unpaired t tests). 
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Figure 8: UV induction of CPDs in duplex ATXGAT 
(ELISA, n≥ 5, unpaired t test). 

 

As we were validating our results in a cellular model, we decided to repeat and extend 

our studies to include 5-carboxylcytosine (initially omitted from oligo designs), another TET-

oxidized product of 5meC (downstream of 5hmC). As a DNA demethylation intermediate, we 

hypothesized that 5caC would also mitigate UV induction of CPDs. Similar to 5hmC, our results 

showed that CPD formation was up to 3-fold lower for 5caC-containing oligonucleotides than 

their 5meC counterparts (Figure 7). This protective effect was especially pronounced in the 

AC5caCG sequence context.  

Part of our interest in 5caC was sparked by the technical advances made by our 

collaborator, Prof. Y. Yang at UC Riverside, which enabled the quantification of TET-oxidized 

products of 5meC, including 5hmC and 5caC (Liu et al., 2013). Yet another reason was the 

recent publication of a paper on the formation of CPDs in 5hmC-containing dipyrimidines (Kim 
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et al., 2013). Their work on 5hmC CPD dimers validated some of our in vitro data, as their 

oligonucleotides shared sequence similarities with ours (we designed our study to detect 

maximum differences), and they used similar high UV doses similar as well. However, by 

postulating a protective role for 5hmC and 5caC in the UV induction of photoproducts, we 

sought to expand our work beyond an in vitro proof-of-existence story for 5hmC-containing 

CPD dimers. Technical limitations (difficulty of designing 5fC-containing oligonucleotides) led 

us to postpone extending our studies to 5-formylcytosine (5fC) as well, another novel DNA 

demethylation intermediate (between 5hmC and 5caC). 

As a third aim, we set out to validate our observations in a more biologically relevant 

system with a cell model from our epigenetics collaborator, Prof. Y. Shi at BWH. We used Prof. 

Shi’s previously established melanoma cell model that contains abundant 5meC but negligible 

5hmC levels (Lian et al., 2012). By DNA dotblot with antibodies against 5hmC and 5meC 

(Figure 9a), we saw that overexpression with a full-length active TET2 led to increased 5hmC 

levels. 5hmC measurements by ImageJ software from the NIH after background adjustments 

(automatic light background with rolling ball radius of 50.0 pixels) were as follows: At 1 µg 

DNA dilution, 29281.894 area for TET2+ versus 8485.430 area for TET2- cells (3.34:1), at 800 

ng DNA dilution, 30802.723 versus 6882.752 (4.48:1), at 400 ng DNA dilution, 34423.614 

versus 5856.095 (5.88:1), at 200 ng DNA dilution, 35924.555 versus 22472.782 (1.60:1); hence, 

at a non-saturated dilution of 400ng DNA, there was a maximum 5.88:1 or 1:0.17 5hmC ratio for 

TET2+:TET2- cells. 5meC measurements by ImageJ software from the NIH after background 

adjustments (automatic light background with rolling ball radius of 50.0 pixels) were as follows: 

at 1 µg DNA dilution, 7893.255 area for TET2+ versus 10949.255 area for TET2- cells (1:1.39); 

at 800 ng DNA dilution, 9057.497 versus 12467.376 (1:1.38); at 400 ng DNA dilution, 7670.255 
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versus 11471.255 (1:1.50); at 200 ng DNA dilution, 5899.134 versus 10936.134 (1:1.85); at 100 

ng DNA dilution, 7062.477 versus 10315.770 (1:1.46); at 50ng DNA dilution, 10047.134 versus 

10195.205 (1: 1.01). Given the strong saturation of 5meC dots at multiple DNA dilutions 

(indicating abundance of 5meC in cellular DNA) for both TET2+ and TET2- cells, as well as the 

arbitrary surface area estimations by ImageJ, the best estimate of 5meC ratios for these cells was 

an average of ratios from all serial dilutions, which was 1:1.43 or 0.70:1 for TET2+:TET2- cells.    

Previous studies have shown that both UV irradiation of intact cells and naked DNA 

produced similar distributions of CPD inductions, although the cellular environment decreased 

the apparent UV dose by 50% through shielding of the nuclear DNA (Lippke et al., 1981). 

Furthermore, recent mass spectrometry data has shown that natural 5hmC levels only reach a 

fraction of 5meC cellular levels (<15% in human brain, <10% in mouse brain, <20% in HEK 

cells, <5% in mouse skin (Liu et al., 2013)). Given the overshadowing abundance of 5meC 

relative to 5hmC in our cellular model, as well as the reduction in apparent UV dose through 

cellular shielding, the protective effect in TET2-overexpressing cells was statistically significant 

only at the highest UV dose. At 3J/cm2 of UVB (Figure 9b), induction of cyclobutane pyrimidine 

dimers was significantly lower (p<0.0003) in TET2 overexpressing cells (with higher levels of 

5hmC) than in TET2 mutant cells. These results are in agreement with the protective effect we 

observed in our oligonucleotide studies noted earlier. Taken together with novel evidence for 

loss of 5hmC as an epigenetic hallmark of melanoma (Lian et al., 2012; Gambichler et al., 

2013), our results suggest that 5hmC offers protection from UV-induced cyclobutane pyrimidine 

dimer formation, and thus TET oxidation of 5meC might be a cellular mechanism to protect 

against UV damage.  
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Figure 9a: 5hmC and 5meC levels in melanoma cells (DNA dotblot, serial dilutions). 

 

Figure 9b: CPD induction by UV in melanoma cells (ELISA, n≥ 5, unpaired t test). 
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From in vitro studies of UV irradiated plasmid DNA, we could assume 0.3 CPDs per 108 

daltons of DNA per 1 J/m2 of UVB irradiation, or 2.4 CPDs per 108 daltons of DNA per 1 J/m2 

of UVC irradiation (Mitchell et al., 1991). Using simple math assumptions (~650 dalton/bp), and 

the highest dose of UV that I used for both cells and oligo experiments (3J/cm2 for UVB, 3.2 

J/m2 for UVC)--this comes to 58,500 CPD/million bp under UVB or 499,200 CPD/million bp 

under UVC. From the previous discussion of induction ratios (see Chapter 1), the ratio of TT: CT 

+ TC: CC CPDs after UVB irradiation range from 40:40:20 to 52:40:7 (Mitchell et al., 1991). 

Therefore, of the 58,500 CPD/million bp, about 40% or 23,400 CPD/million bp would contain a 

cytosine. This would translate into 70.2 million cytosine-containing CPDs across a human 

genome with 3 billion base pairs.  

We saw that UV-induced formation of CPDs was up to 3-fold lower (70% reduction) for 

5hmC-containing oligonucleotides than their 5meC counterparts (Figure 7). With about 3% of all 

cytosines methylated in human DNA, and a maximum of 5% of all 5meC hydroxylated in skin 

(Liu et al., 2013), even a 70% shielding would only lead to a 3.5% overall protection for a rare 

5hmC subpopulation. This could translate into 2.5 million fewer CPDs per cell (3.5% of 70.2M) 

under the UVB doses that I used. The protective shielding by 5hmC against UVB-induced CPDs 

is probably most influential through context dependence: Just as we observed a sequence 

dependence for the extent of 5hmC’s shielding (Figures 7, 8), it is plausible that 5hmC may have 

a bigger impact in certain regulatory and tumor suppressor genes. For example, a large 

proportion of invasive SCCs contain UVB signature mutations in the p53 gene (Brash et al., 

1991), and over a third of these p53 mutations contain 5meC trinucleotides (Tornaletti and 

Pfeifer, 1995; You and Pfeifer, 2001; Lee and Pfeifer, 2003; Cannistraro and Taylor, 2009), even 
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though only a small fraction of all cytosines is methylated across the human genome. Since the 

loss of 5hmC has been associated with numerous cancers, including melanoma (Lian et al., 

2012; Gambichler et al., 2013), perhaps the protective effect from a rare 5hmC in a cell is 

enhanced through sequence context and its location in a pivotal gene like p53. Furthermore, it 

has been previously shown that the frequency of CPD formation oscillates along the DNA 

backbone, with maximum induction near sites farthest from the surface of core histones, and 

minimum induction near sites closest to the surface of core histones (Gale et al., 1987). If the 

genome were preferentially hydroxylated at sites farthest away from histone surfaces, the 

protective effect from a rare yet potent 5hmC could significantly reduce the formation of 

premutagenic CPD lesions.  

 

Contributions: Prof. Geno Y. Shi (Brigham/Women’s Hospital, Harvard) provided frozen vials 

of both TET2+ and TET2- cells, while I performed all sample preparations and biochemical 

assays (ELISAs, dot blots, UV treatments).  
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CHAPTER THREE 

To protect or not to protect: 5hmC’s dual roles in modulating photoproduct formation 

 

In addition to CPDs, another type of intrastrand DNA lesion is (6-4) photoproducts (6-4 

PPs). Depending on the chemical nature of the two pyrimidine bases involved and other 

parameters, both the yield and the ratio between CPDs and 6-4 PPs upon UV irradiation can vary 

greatly (Douki, 2006). Like CPDs, 6-4 PPs are premutagenic lesions for cytosine to thymine 

transitions; however, 6-4 PPs are also premutagenic lesions for thymine to cytosine transitions 

(LeClerc et al., 1991; Otoshi et al., 2000). We extended our in vitro studies into 6-4 PPs by using 

the same ELISA and dotblot assays as above; therefore, the methodology and controls were 

similar to those in Chapter 2.  

 

Results 

Further experiments investigating how DNA demethylation intermediates modulate UV 

formation of photoproducts have revealed an interesting duality for 5-hmC. Both single-stranded 

(Figure 10a) and double-stranded (Figure 10b) 5hmC-containing oligonucleotides, as well as 

genomic DNA extracted from UV-irradiated TET2-overexpressing cells, showed statistically 

significantly enhanced UV induction of (6-4) photoproducts (Figure 10c). In oligonucleotides, 

methylation at the C-5 position did not alter UV induction of 6-4 PPs, while carboxylation at the 

C-5 carbon hindered 6-4 PP formation, which is in line with our hypothesis and earlier results 

showing 5caC’s protective shielding from UV induction of CPDs.  
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Figure 10a: 5hmC enhances UVC-induced formation of 6-4 PPs  
(ELISA, n≥ 3, multiple unpaired t tests). 

 

 

Figure 10b: UV induction of 6-4 PPs in duplex ATXGAT (ELISA, n= 3, unpaired t test). 
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Figure 10c (Continued): 6-4 PP induction by UVC in melanoma cells  
(ELISA, n≥ 3, unpaired t test). 

 

Contrary to our expectations, the presence of 5hmC increased UV inductions of 6-4 PPs 

by 30% or more (Figure 10).  UVC (Figure 10a) was a more potent inducer of 6-4 PPs than 

(broadspectrum) UVB (Figure 11a), while UVA failed to induce any detectable levels of 6-4 

PPs. In cells, TET2 overexpression failed to enhance 6-4 PP formation under UVB (Figure 11c), 

but did with statistical significance under a high UVC dose (Figure 10c). Furthermore, 

hydroxylation-mediated 6-4 PP enhancement was pronounced for ATXG sequences (Figure 

11a), but absent for ACXG sequences (Figure 11b). This is consistent with current knowledge 
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that 6-4 PPs are formed at 5’-TC-3’, 5’-CC-3’, and 5’-TT-3’, but not at 5’-CT-3’ sites in DNA 

(Häder and Sinha, 2005).  

 

Figure 11a: 6-4 PP induction by UVB in ATXG oligonucleotides  
(ELISA, n≥ 3, unpaired t test). 

 

 

Figure 11b: 6-4 PP induction by UVB in ACXG oligonucleotides  
(ELISA, n≥ 3, unpaired t test: p>0.05). 
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Figure 11c (Continued): 6-4 PP induction by UVB in melanoma cells  
(ELISA, n≥ 3, unpaired t test: p>0.05). 

  

For additional validation of 5hmC’s apparent enhancement of 6-4 PPs, we irradiated 

TET1/2 double-knockout (DKO) embryonic stem cells (from Y. Shi’s lab, Brigham/ Women’s 

Hospital, Harvard). Wild type (WT) embryonic stem cells had high levels of 5hmC, while 

TET1/2 DKO embryonic stem cells had low levels of 5hmC, as expected (Figure 12a). By DNA 

dotblot with antibodies against 5hmC, 5hmC measurements by ImageJ software from the NIH 

after background adjustments (automatic light background with rolling ball radius of 50.0 pixels) 

were as follows: At 1 µg DNA dilution, 74123.597 area for WT versus 1170.991 area for DKO 

cells (63.3:1), at 800 ng DNA dilution, 69681.342 versus 1471.527 (47.4:1), at 400 ng DNA 

dilution, 60932.907 versus 210.192 (289.9:1), at 200 ng DNA dilution, 52798.333 versus 

3011.962 (17.5:1); at 100 ng DNA dilution, 49106.312 versus 5848.421 (8.4:1); hence, at a non-

saturated dilution of 200ng DNA, there was a maximum 17.5:1 or 1:0.06 5hmC ratio for TET1/2 

WT:DKO cells. After UVC irradiation, the 5hmC-containing WT embryonic stem cells 
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enhanced induction of 6-4 PPs (p-value < 0.0001), in contrast to 5hmC-depleted TET1/2 DKO 

embryonic stem cells (Figure 12b). These results agreed with earlier results from melanoma 

cells, where TET2 overexpression (and correspondingly high 5hmC levels) led to enhanced UVC 

induction of 6-4 PPs (Figure 10c). While low-5hmC TET2- melanoma cells showed moderate 

UVC induction of 6-4 PPs (Figure 10c), UVC irradiation of low-5hmC TET1/2 DKO embryonic 

stem cells did not lead to significant 6-4 PP formation. This difference could potentially be 

explained by the significantly lower 5hmC ratio in the embryonic stem cells (1:0.06 for TET1/2 

WT:DKO) than in the melanoma cells (1:0.17 5hmC ratio for TET2+:TET2-), if 5hmC functions 

to enhance UV induction of 6-4 PPs. Therefore, our loss-of-function experiments with TET1/2 

DKO embryonic stem cells complemented our gain-of-function experiments with TET2 

overexpressing melanoma cells. 

 

Figure 12a: 5hmC levels in embryonic stem cells (DNA dotblot, serial dilutions). 
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Figure 12b (Continued): 6-4 PP induction by UV in TET1/2 DKO embryonic stem cells  
(ELISA, n≥ 4, unpaired t test). 

 

To explain the discrepancy between our hypothesis and 5hmC’s apparent dual effects on 

UV induction of photoproducts, we turned to structural modeling. Structures were generated 

visualized using UCSF Chimera (Pettersen et al., 2004). We used the structure of a T-T 

photoproduct from the Protein Data Bank (PDB ID: 1CFL) (Lee et al., 1999).  Assuming similar 

structural distortions in DNA for T-T and T-C 6-4 photoproducts (Kim and Choi, 1995), we 

converted the structure to a T-C photoproduct in an ATCG context using the swapna and Build 

Structure commands. We followed the structural description given by Douki (Douki, 2006). 

Modifications on the 5-position of the cytosine were incorporated using the Build Structure 
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command, and structures were then minimized using the Minimize Structure command. 

Following this, the Find Clashes/Contacts command was used to find pseudobonds.  

Structural modeling and Chimera visualization identified an additional potential 

hydrogen bond for the T-5hmC (6-4) photoproduct (Figure 13), suggesting a lower energy 

transition state for 5hmC.  Just as 5meC promotes the dimerization reaction with an adjacent 3’- 

cytosine (see discussion above in Chapter 1, introduction), leading to enhanced UV induction of 

CPD formation, a more favored transition state for the T-5hmC (6-4) photoproduct could explain 

5hmC’s duality in modulating the UV response. In addition to a lower energy transition state, the 

hydroxyl group may stabilize a T-5hmC radical, or promote DNA bending that would be 

favorable to forming a (6-4) adduct, as NMR spectroscopy data and structural calculations (Kim 

and Choi, 1995) suggested a 44 degrees distortion in the overall DNA helix. Yet a more bulky 

carboxyl group may counter any favorable energy stabilization and prevent (6-4) photoproduct 

formation through steric hindrance. Future structural studies such as free energy calculations are 

needed to further elucidate the rationale behind 5caC-containing oligonucleotides’ shielding 

effects (other than the absence of a dimerization-promoting 5-methyl group). The correlation 

between the presence of the hydroxymethyl moiety and (6-4) photoproduct formation is 

consistent with our model (see Chapter 4) of 5hmC as a selective epigenetic shield against UV 

damage, diminishing cyclobutane pyrimidine dimer formation while enhancing UV induction of 

(6-4) photoproducts.  
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Figure 13: Structural models of T-C photoproducts (with M. Stefan, HMS) 
Upper panel: Front view, lower panel: side view.  

The pseudobond identified by Chimera for T-5hmC is shown in orange. 
 
 

We found no significant induction of Dewar isomers in any of our oligonucleotides or 

genomic DNA under UVA or UVB irradiation (Figure 14). Dewar isomers are much more 

unstable than 6-4 PPs (Kan et al., 1992). Current literature suggests Dewar isomers of 6-4PPs 

mainly to be a UVC event and a two-step process. First, in synthetic processes, short oligomers 

(usually containing a thymine-thymine sequence) are irradiated under UVC (254nm), whereupon 
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TT 6-4 PPs are purified by HPLC. Next, these purified intermediates are irradiated under 320nm 

(UVA) to produce Dewar valence isomers (Yamamoto et al., 2006).  

 

Figure 14: Comparison of Dewar valence isomers after UVB irradiation  
(ELISA, y-axis: Dewar (absorbance), n≥ 4). 

 

Contributions: Prof. Geno Y. Shi (Brigham/Women’s Hospital, Harvard) and his postdoctoral 

fellow, Christian Argueta, provided TET2+/ TET2- melanoma and TET1/2 DKO ES cell. I 

performed all sample preparations and biochemical assays (ELISAs, dot blots, UV treatments), 

as well as bioinformatical analyses. Structural modeling using Chimera (UCSF) was done 

together with Melanie Stefan (Harvard Medical School). Mass spectrometry was done by S. Liu 

and Prof. Y. Wang (UC Riverside). 
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CHAPTER FOUR: DISCUSSION 

 

Highlights 

• 5hmC and 5caC protect from UV-induced formation of cyclobutane pyrimidine dimers 

• 5hmC also enhances UV-induced formation of (6-4) photoproducts  

• 5hmC’s duality upon UV damage is coupled to TET2 (over)expression 

 

 We have shown that 5meC enhances UV induction of CPDs in accordance with 

published literature (Douki and Cadet, 1994; Tommasi et al., 1997; You et al., 1999; Douki et 

al., 2000; Mitchell, 2000; Cannistraro and Taylor, 2009; Rochette et al., 2009). Furthermore, in a 

new model (Figure 15), we have shown via both modified oligonucleotides and melanoma cells 

that hydroxylation and carboxylation of 5meC by TET2 shield from CPD dimer induction. In 

addition, we point out a completely novel, contradictory role for 5hmC—enhancement of UV-

induced (6-4) photoproduct formation, potentially through a more favorable T-5hmC 6-4 PP 

transition state.  

 

Figure 15: Model. 
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We started with in vitro experiments measuring UV induction of photoproducts in 

various modified oligonucleotides. Given that a flanking guanine base enhances CPD formation 

and accelerates cytosine deamination (Cannistraro and Taylor, 2009), we firstly focused on a set 

of oligonucleotide sequences flanked by guanine, reasoning that differential responses to UV-

induced photodimer formation will be more distinguishable if we used a master sequence that 

promotes maximal induction. We optimized a biotin-enhanced ELISA assay in which 5-

methylation of a single cytosine in the oligonucleotides enhanced UV-induced CPD formation 

for both ATXG and ACXG sequences, in accordance with previously published in vitro studies. 

Our ELISA results also indicated that both the 5-hydroxymethyl and 5-carboxl moieties diminish 

methylation-enhanced CPD formation upon UV irradiation. Since both 5hmC and 5caC are TET-

mediated DNA demethylation intermediates, it is not surprising that they would have the 

opposite effect of the methyl moiety by reducing methylation-related CPD enhancement.   

Our observation of diminished UV induction of CPDs in DNA demethylation 

intermediates was also upheld in duplex oligonucleotides, as well as melanoma cells. We used a 

TET2 overexpression cell model designed by our collaborator Prof. Y. Shi. In addition, new 

experiments (by Y. Shi’s lab) with TET1/2 double-knockout embryonic stem cells (low 5hmC 

levels) showed a 2-4 fold increase in CPDs by immunofluorescent staining when compared to 

wild-type embryonic stem cells. While these loss-of-function results are still preliminary, they 

complement our gain-of-function results with TET2 overexpressing cells. Since the loss of 5-

hydroxymethylcytosine and inactivation of the TET enzymes have been implicated in skin 

cancers, and repeated exposure to UV radiation is a known risk factor for developing skin 

cancers, our data suggest a link between DNA demethylation and UV damage.  
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Further experiments on UV induction of Dewar isomers and 6-4 PPs revealed a lack of 

significant Dewar isomer formation under UVA/UVB, but significantly enhanced UVB/UVC 

induction of T-5hmC 6-4PPs. We attributed this to the different mutagenic properties of (6-4) 

photoproducts (capable of both C to T and T to C transition mutations). Structural modeling and 

Chimera visualization revealed an extra hydrogen bond between an amine group of thymine and 

a hydroxyl group on the adjacent cytosine, indicating a lower transition state for T-5hmC 6-4 

PPs. Our data suggest that upon UV damage, 5hmC may drive DNA lesion formation toward (6-

4) photoproducts, leading to diminished CPD induction and enhanced 6-4 PP induction. 

Depending on the chemical nature of the two pyrimidine bases involved, the wavelength 

of the incident photons, the stability of the duplex DNA, the ionic strength, and other parameters, 

the yield and the ratio between CPDs and 6-4 PPs inductions can vary greatly (Douki, 2006). 

Furthermore, the frequency of photoproduct formation oscillates along the DNA backbone with 

an average periodicity that is similar to the average repeat for the DNA helix (Gale et al., 1987). 

Since photoproduct formation requires local bending of the DNA helix, the frequency of 

photoproduct formation is reduced at sites closest to the surface of core histones, as histone 

binding to DNA would physically restrain movement in the DNA backbone (Gale et al., 1987). 

Compared to CPDs, this oscillatory dependence should be more limiting for the induction of 6-4 

PPs, which require a more severe distortion of up to 44 degrees in the DNA (Kim and Choi, 

1995). If there is a similar distribution pattern for hydroxylation/ demethylation along the DNA 

helix, the modulatory effects of a rare 5hmC on UV-induced photoproduct formations would be 

quite significant. In fact, while the presence of premutagenic photoproducts is required for 

mutations, mutation hot spots in human cells are determined by DNA structural features instead 

of photoproduct frequencies (Brash et al., 1987).   
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In shuttle vector mutation studies, UVB irradiation produced more mutations 

(insertions/deletions/transition mutations) than UVC irradiation; this also correlated with 

increased formation of cytosine containing CPDs under UVB (Keyse et al., 1988). While both 

CPDs and 6-4 PPs are premutagenic lesions for cytosine to thymine transition mutations, CPDs 

are responsible for the majority of UVB signature mutations in mammalian cells (Brash et al., 

1987; LeClerc et al., 1991; Otoshi et al., 2000). In fact, in repair-deficient xeroderma 

pigmentosum group A cells, CPDs were responsible for generating 90% of transition mutations 

(Brash et al., 1987). Additionally, 6-4 PPs are excised at double the rate of excision for CPDs in 

human, hamster and mouse cells (Mitchell et al., 1985; Mitchell et al., 1992). This more efficient 

removal of 6-4 PPs is also a very fast process, as over 70% of 6-4 PPs are removed within 4-6 hr 

after irradiation, compared to 17 hr for CPDs  (Mitchell et al., 1985). 6-4 PPs’ lower mutagenic 

potential and faster removal make them less toxic to cells than CPD lesions. Therefore, our 

observations that 5hmC drives UV induction of photoproducts toward 6-4 PPs and away from 

the more mutagenic CPDs is in alignment with our model of UV damage protection through 

hydroxylation and DNA demethylation.         

As new interest develops in the (rediscovered) DNA demethylation intermediates, 

evidence emerges for their diverse regulatory functions, ranging from developmental 

reprogramming to recruiting chromatin-altering binding proteins (Shen et al., 2013; Song et al., 

2013; Song and He, 2013). Our findings assign a new function to 5hmC and 5caC—as selective 

epigenetic shields against UV damage, contributing to the dynamic network of DNA methylation 

and demethylation that regulates mammalian pathogenesis.  
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Future Pursuits 

 More thorough studies can be carried out through a comprehensive set of sequence 

variations (flanking base, placement of moiety, length of oligonucleotide). In addition, we can 

complement (and validate) our TET overexpression gain-of-function data with TET- and 

DNMT-knockout loss-of-function cell models.  

Another goal we can pursue is to link CPD formation to methylation sites via a modified 

co-IP-ELISA on genomic DNA. This is a technically challenging feat, but the principle is 

straightforward: Since we are postulating that hydroxylation protects cytosines from 

methylation-enhanced, UVB-induced damage, we expect to see more CPD dimers formed at 

5meC than 5hmC post-UVB. We are planning to essentially separate 5meC and 5hmC 

populations from irradiated, TET2+ genomic DNA (by co-IP, both sequences will be tested and 

reversed as control), and then assaying for CPD levels by our ELISA protocol. An alternative 

might have been ChIPSeq, except that the bioinformatics world does not seem to think current 

5hmC or 5meC antibodies reliable enough for ChIPSequencing (based on discussions with Prof. 

Jun Song at UCSF), but we will not be attempting to reinvent any technical wheels. We could 

build on previous knowledge acquired during my year-long training with our previous mass spec 

collaborator (R. Giese, on interstrand adducts project, see Appendix), where a sequence of dual 

digestions with NP1 and PDE was used to cleave genomic DNA down to single nucleotides (as 

verified on HPLC). From here on, we will proceed with co-IP assisted by agarose beads, and 

ultimately followed by CPD ELISA as optimized before. A similar experiment could be 

performed to link 6-4 PP formation to hydroxymethyl sites on genomic DNA.     
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Yet another question we can address is whether modulation of photoproduct formation by 

5hmC and 5caC lead to reduced/ increased mutations. CPD-mediated C to T transition 

(especially in the p53 tumor suppressor gene) is the UV signature mutation for non-melanoma 

skin cancers. We expect that an analysis of the p53 mutation spectra (from the International 

Agency for Research on Cancer TP53 Database) to reveal the majority of UV mutations within 

methylated cytosine sequences. We expect that the correlation between mutation frequency and 

sequence specificity to agree with the trends we observe from our oligonucleotide studies. 

 Furthermore, our collaborator Prof. Y. Shi has shown that loss of 5hmC is an epigenetic 

hallmark of melanoma, as well as an indicator for melanoma progression (Lian et al., 2012). 

Injection of TET-depleted stem cells into mice led to aggressive and proliferative tumorigenesis, 

while injection of wild-type stem cells into mice only led to differentiated benign teratomas (Koh 

et al., 2011; Münzel et al., 2011). A preliminary analysis of TET mutations in TCGA skin 

cutaneous melanoma (cBioPortal for Cancer Genomics) revealed that C to T or CC to TT 

transitions accounted for a majority of their TET1/2/3 mutations (Figure 16), including one 

highly mutagenic nonsense mutation in TET1 (Figure 16a).   
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Figure 16a: TET1 mutations in skin cutaneous melanoma  
(TCGA, cBioPortal for Cancer Genomics). 

 

Figure 16b: TET2 mutations in skin cutaneous melanoma  
(TCGA, cBioPortal for Cancer Genomics). 
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Figure 16c (Continued): TET3 mutations in skin cutaneous melanoma  
(TCGA, cBioPortal for Cancer Genomics). 

 

More recently, as we have become interested in re-addressing our original question--

whether UVB affects TET activity, we have begun looking at precisely quantifying 5hmC and 

downstream products (such as 5fC, 5caC), both as a function of TET2 overexpression and with 

time after irradiation. This is something that we have asked our mass spectrometry collaborators 

at UC Irvine (Prof. Y. Wang) to look at, as they recently published about their own neat 

standards for mass spectrometry quantification of 5hmC, 5fC, 5caC and other epigenetic markers 

(Liu et al., 2013).	
  One straightforward rationale for this study is that 5fC and 5caC are very 

newly discovered and barely examined epigenetic modifications, so any data we obtain would 

contribute to our understanding of the TET (specifically TET2) machinery. More importantly, 

we have another more ambitious interest in the UVB-DNA-TET2 interplay: The dynamic 5meC-

5hmC seesaw (Figure 17a). Our interest has stemmed from our own previously inconclusive 

histology observations that UVB irradiation may alter 5hmC levels in primary cells (which 
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express high levels of 5hmC, similarly to our TET2 overexpressing cells). We only observed this 

phenomenon in a time course setting, which would support the notion that this was dependent on 

a cellular machinery, such as the TET pathway. Therefore our mass spectrometry study is being 

carried with respect to time post UVB treatment as well. As expected, TET2 overexpression 

alone dramatically increased 5hmC levels in melanoma cells by almost 9-fold (Figure 17b), in 

line with earlier dotblot (Figure 9a, Chapter 2) and other results (Lian et al., 2012). Preliminary 

mass spectrometry results from S. Liu (Y. Wang’s lab) indicate a 40% increase in genomic 

5hmC levels (Figure 17b) in TET2 overexpressing melanoma cells within 24 hours of 

(broadspectrum) UVB treatment, accompanied by a 4% decrease in genomic 5meC levels 

(Figure 17c). If the relationship between 5hmC and 5meC were purely linear, we would expect 

only a 0.4% corresponding decrease in 5meC levels after 24 hours (initial, irradiated TET2+ cells 

with 0.0000559 5hmC/nucleoside and 0.023 5meC/dG = 0.00575 5meC/nucleoside corresponds 

to a 1 5hmC: 100 5meC ratio). We have sent more specimens to the mass spectrometry facility of 

our epigenetics collaborator Prof. Y. Shi, who picked up sample processing after our other 

collaborators decided to pursue other projects.  

 

Figure 17a: The (hypothetical) dynamic 5meC-5hmC seesaw. 
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Figure 17b (Continued): 5hmC measurements in melanoma cells by mass spectrometry  
(technical duplicates, S. Liu and Y. Wang, UC Riverside). 

 

 

Figure 17c (Continued): 5meC measurements in melanoma cells by mass spectrometry  
(technical duplicates, S. Liu and Y. Wang, UC Riverside). 
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APPENDIX 

 

Throughout my graduate research years, I worked on numerous projects that ultimately 

failed either due to technical limitations or ambiguous results. Two of them are worth 

mentioning here due to the interesting scientific questions that we posed.  

 

Past Project #1 (Major Concern: UV crosslinking distorted histology data.)  

(This project received NDSEG funding.) 

EXECUTIVE SUMMARY 

Because epithelial stem cells are thought to be the most likely targets of skin cancer 

initiation and tumor promotion (Morris, 2004), understanding the responses of the stratified 

epidermis to UV radiation, especially the effects of UVB on keratinocyte stem cells, has 

important implications for characterizing and utilizing skin stem cells, as well as for 

understanding and treating non-melanoma skin cancers.   

RATIONALE 

The normal cellular balance of life and death is regulated molecularly by the apoptosis 

machinery. Since UV radiation is a well-known trigger of the apoptotic cascade, there is 

considerable interest in understanding the apoptotic response of keratinocytes to UV-light. 

Current literature presents conflicting data on the UV-response of keratinocytes from different 

layers of the epidermis. I planned to characterize UV-induced apoptosis in keratinocytes, by first 
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identifying whether proliferative ability or differentiation status determines degree of 

sensitization or protection from UV-induced apoptosis. Subsequently, I investigated the 

mechanisms of this differential response to UV-light by examining the regulation of apoptosis 

machinery in keratinocytes. Furthermore, skin also exhibits robust regenerative capacity upon 

sun exposure, suggesting a subpopulation of cells with possibly stem-cell characteristics. Thus, I 

was also interested in isolating putative keratinocyte stem cells (KSC) from human skin in order 

to test if KSC’s are resistant to UV induced apoptosis as a protective mechanism in normal skin. 

Finally, I planned to inject UV-treated keratinocytes of various subpopulations into 

immunocompromised mice as an in vivo model to explore long-term effects of UV irradiation on 

keratinocytes and as an extension to studying tumorigenesis of keratinocytes.  

PRELIMINARY DATA 

It is unclear which subpopulation(s) of human keratinocytes become apoptotic in 

response to UV radiation, since current literature presents conflicting data (Gniadecki et al., 

1997; Chaturvedi et al., 1999; Tron et al., 1998; Tron et al., 1999). As a pilot study (see Figure 

A1), I used flow-cytometry-based propidium iodide/ annexin V staining of live cells to measure 

the apoptotic response 24hr after UV-irradiating (0, 20, or 40 mJ/cm2) human foreskin 

keratinocytes. I repeated these experiments on human foreskin keratinocytes that were previously 

induced to differentiate via 72-hr incubation in high-calcium medium (1.2mM Ca++). I also 

repeated the above experiments for the 48hr post-UV time point.  

Preliminary flow cytometry data (see Figure A1) suggested that the basal, proliferating 

keratinocytes, which consist of mostly transiently amplifying (TA) cells, to be sensitive to UV-

induced apoptosis, because higher fractions of Annexin V and PI-positive cells were observed by 
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flow cytometry when human foreskin keratinocytes were UV-treated for 24hr compared to non-

UV-treated controls (left panel, Figure A1). For calcium-treated differentiating keratinocytes, the 

percentage of apoptotic cells remained constant across all doses of UV treatment and was 

comparable to control cells (right panel, Figure A1), suggesting that differentiated keratinocytes 

are resistant to UV-induced apoptosis. Controls (no dye or fluorescein-conjugated marker) 

confirm minimal background signals (top row, Figure A1). But the extent of differentiation was 

not measured in these in vitro assays, and thus further experiments were needed to validate the 

preliminary data.  

 

Figure A1: Annexin V/ PI live exclusion assay (FACS). 
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Furthermore, preliminary histology data suggested that a fraction of basal keratinocytes 

(possibly keratinocyte stem cells, KSCs) were protected from UV-induced apoptosis as well. 

Fresh human neonatal foreskin was UVB-irradiated at 250 mJ/cm2, collected and processed after 

5 hours, paraffin-embedded and stained for apoptosis via a fluorescent TUNEL assay (Figure 

A2). DAPI-counterstained nuclei (bottom row, Figure A2) highlight the layers of keratinocytes 

in human epidermis. While most keratinocytes in the UV-treated epidermis (and even dermis) 

labeled both DAPI- and TUNEL-positive (bright FITC signals, top row, Figure A2) to indicate 

abundant DNA fragmentation, some basal-layer keratinocytes only labeled DAPI-positive, 

suggesting that a fraction of basal keratinocytes may be resistant to UVB-induced apoptosis. 

Because keratinocyte stem cells probably reside in the epidermal basal layer of non-follicular 

skin (So et al., 2004; Fuchs et al., 2008), it is possible that, given the general resilience of stem 

cells, the UV-resistant basal keratinocytes correspond to a keratinocyte subpopulation with stem-

like characteristics.       

Fig. 4: Preliminary Histology Data: TUNEL

UV 250mJ/cm2x 5h No UV
FITC

DAPI

 

Figure A2: TUNEL staining. 
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Past Project #2 (Major Concern: Disagreement with collaborators on structure determination.) 

(This project received F31 NRSA funding from the NIH.) 

EXECUTIVE SUMMARY 

Through studies on mouse skins and short oligonucleotides, we potentially discovered novel 

interstrand DNA adducts from UV radiation. UV radiation is known to cause DNA strand breaks 

and lesions. However, the UVB-signature CPD lesion is intrastrand, and in vitro interstrand 

experiments have used secondary crosslinking reagents such as mitomycin C. Our discovery of a 

novel cytosine interstrand (<CC>) adduct can be contributed to our unique Mass Tag Profiling 

methodology. Given the complexity (rigidity) of our hypothesized structure and the usually 

highly genotoxic nature of interstrand lesions, we investigated the impacts of our interstrand 

adducts on DNA damage and repair through in vitro repair-deficient cell models and in vivo skin 

samples, in addition to additional mass-spectrometry-based characterization studies.  

RATIONALE 

UV radiation from sunlight increases the risk of developing skin cancers, including 

malignant melanoma arising from the pigment-producing melanocytes in skin. However, the 

precise role of UV-induced DNA damage and repair in melanoma pathogenesis remains 

controversial. Many common melanoma mutations (such as BRAF somatic missense mutations) 

do not correspond to known UV signature mutations, and UV-signature CPD dimers and 6,4-

photoproducts are absent in most melanomas (Kao et al., 2011).  

Melanoma is the most dangerous type of skin cancer. With about 48,000 melanoma-

related deaths reported worldwide every year, it is the leading cause of death from skin disease. 

However, while repeated exposure to UV radiation from sunlight is known to increase the risks 
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of developing all skin cancers by mutating the cellular DNA, currently known UVB-signature 

mutations from intrastrand pyrimidine dimers (CPD dimers) only account for the less deadly, 

non-melanoma skin cancers (BCC, SCC). The goal of this project was to identify and 

characterize novel UV-induced DNA lesions that may serve as new signature mutations for 

melanoma, in the hope that we may suggest new diagnostic tools for life-saving early detection 

and that new insights on melanoma pathogenesis may lead to more effective therapeutic 

interventions.  

When UV radiation damages a cell, it mutates the cellular DNA with distinctive 

mutational patterns. Currently, the major known UVB lesions are pyrimidine dimers (Gale et al., 

Proc Natl Acad Sci U S A 1987), resulting in a four membered ring from covalent linkages of the 

carbon–carbon double bonds on adjacent pyrimidines. These cyclobutane-type pyrimidine 

dimers (CPDs) are quite mutagenic, especially in mammalian cells, initiating primary base 

substitutions in DNA. UVB induces cytosine to thymine transitions at the dipyrimidine sites, 

creating a UV-specific mutation signature that is ubiquitously observed in multiple organisms. 

UVB radiation produces most of the CPD photoproducts in mammalian skin compared to UVA, 

which comprises most sunlight radiation at the earth’s surface; UVC is even more potent, but it 

is thought to be significantly screened out via the ozone layer. 

However, CPD dimers are intrastrand lesions, much less toxic than their interstrand 

crosslinked counterparts. Among the early-known and widely-used chemotherapeutic agents, 

many such as cyclophosphamide and mitomycin C induce interstrand crosslinks (Deans and 

West, 2011). However, there is no evidence in current literature for direct UV-induced 

interstrand lesions. Since separation of the DNA double helix is essential for replication and 

transcription, interstrand lesions are deemed extremely toxic and usually irreversible. In 
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comparison, intrastrand crosslinks may be bypassed by some DNA polymerases, thus rendering 

them less toxic (Deans and West, 2011). Furthermore, repair of intrastrand crosslinks may be 

facilitated by the electronically favorable cyclic delocalization and resonance of the aromatic 

ring on DNA bases. While some information from the repair mechanisms of interstrand lesions is 

still missing, we know that interstrand lesion repair involves a complex coordination of 

nucleotide excision repair, homologous recombination and translesion synthesis, as well as the 

suppression of non-homologous end joining (Andreassen and Ren, 2009; Deans and West, 

2011).  

APPROACH 

Aim 1: Identify new UV-induced lesions, especially the more genotoxic interstrand DNA 

lesions in order to provide significant insights for a causative link between UV radiation 

and melanoma. 

Methodology 1: To pursue the first aim, we (a) used HPLC-MS/MS technology to identify UV-

induced DNA adducts in various mouse models of pigmentation. For characterizing unique 

adducts, we used a novel Mass Tag Profiling methodology that has been recently developed by 

the Giese lab, our collaborators at the Northeastern University School of Pharmacy. I received 

mass spectrometry training and performed all experiments under supervision at their extensive 

HPLC and mass spectrometry facility. In brief, the Mass Tag Profiling methodology is as 

follows: Once DNA was extracted via Qiagen gravity-flow columns (based on prior experiments 

with cells and mouse skins, anion-exchange resin in QIAGEN-tips seemed more effective for 

purification and extraction of DNA from tissue samples than silica-membrane-based spin-

columns), it was digested by to the nucleotide level, filtered, separated by HPLC, labeled with a 
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d0, d4, or d0/d4 benzoylhistamine tag, further filtered to remove excess tag, deposited with 

alpha-cyano matrix on a MALDI-plate, and finally analyzed through a MALDI-TOF machine. 

Due to the fact that our tagging labels only bound to free phosphates in a 1:1 stoichiometry, we 

(b) used variable tagging (heavy/light/mix) to determine inter- versus intrastrand-bonded nucleic 

acid adducts. Furthermore, we (c) tested UV-induction on a variety of oligonucleotides 

(combination of different dNTPs, methylation/other modifications of dNTPs) for structural 

insights into the DNA adducts. For a more comprehensive understanding of radiation-induced 

DNA lesions, we (d) measured the quantity of lesion induction under a range of wavelengths 

(UVA, UVB, gamma) and irradiation doses. 

Hypothesis 1: We believe that heretofore unknown lesions—specifically, heretofore unknown 

novel interstrand DNA adducts—may represent a new UVB-signature lesion that can be linked 

to melanoma.  

Preliminary Data 1: We utilized a new chemical approach to the analysis of genomic DNA after 

UV irradiation and discovered a relatively common occurrence of interstrand crosslinked DNA. 

Multiple follow-up studies have been carried out which have confirmed its existence, its 

intrastrand nature (both using the benzoylhistamine tag, and the oligos where the two crosslinked 

bases were only on opposite strands).  

Initial screening for novel UV-induced DNA adducts was performed by HPLC-MS/MS 

on purified DNA from UV-irradiated skin of red-haired (e/e, frameshift mutation in Mc1r gene) 

or albino (c/c, mutation in the tyrosinase gene) K14-XPC(-/-) mice; controls were also provided 

(initial samples supplied by a fellow labmate, Dr. K. Robinson). In the UV-treated samples only, 

MassSpec profiling showed two novel, unique peaks (at 794.143 and 808.165 post-tagging) from 



59	
  
	
  

the HPLC fraction collected right after the Cytosine (C) peak (Figure A3). This indicated that 

these two structures, hereafter referred to as the “794” and “808” peaks, consist of a Cytosine-

complex. Further fragmentation (MS/MS profiling) revealed that (1) the abundance of PO3 and 

PO4 in the MS/MS of the 808peak and 794 peak indicates that these are interstrand complexes 

(see “Potential Pitfalls and Strategies” below), also verified by oligonucleotide experiments with 

single cytosines; (2) MS and MS/MS profiling suggests that the complexes each consist of 2 

cytosines; (3) position of complexes on the UV-spectrographs (relative too position of Cytosine-

peak) further suggests 2-cytosine-adducts;  (4) fragmentation of the complexes at their loss-of-

tag m/z precursor ratios is in accordance with the above observations, suggesting that this is not 

an artifact of the MassTag Profiling methodology; (5) both complexes were abundantly present 

in e/e and c/c UVB-irradiated DNA (on the order of 30ppm, about 1/5 the level of CPD 

induction), but completely absent from unirradiated controls as well as from UVA-irradiations, 

suggesting a UVB-only adduct induction.  
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Figure A3: Induction of interstrand cytosine adducts by UVB irradiation (on red (e/e) 
mouse skin); d0 tag = UVB; d4 tag= control. 

 

Anticipated Results 1: With the help of newly developed Mass Tag Profiling methodology with 

our collaborators, initial HPLC-MS/MS profiles from UVB-irradiated mouse skins led us to 

suspect that we found unique UV-induced interstrand adducts in vivo, which have not been 

previously identified/ reported in literature. We expected re-testing of DNA from replicate skin 

samples and from skin cells in culture to concur with the above data. We expected further 

experiments on oligonucleotides to reveal clues about preferences of adduct induction (e.g., tight 

GCGCGC sequences might be too bulky for efficient induction, as might certain base 

modifications), which would enable us to propose mechanisms for UV-induced adduct 

formation. Furthermore, given the time- and resource-consuming nature of mass spectrometry 

preparations/experiments, we expected to develop molecular biology assays for distinguishing 

our novel cytosine interstrand adducts from other lesions (e.g. by fluorescently-tagged 
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denaturing gel shift assays that would distinguish between inter- versus intrastrand adducts. 

Given the usually highly genotoxic nature of interstrand lesions, our findings could have a 

significant impact on our understanding of UV-induced DNA damage and cellular repair.        

Potential Pitfalls and Strategies: 

Our 808 and 794 peaks have unique MS signatures, thus reducing the likelihood of false 

positives and helping to ensure the accuracy of our abundance calculations.  

MS/MS fragmentation reveals abundant free phosphates in the tagged adduct, which is 

only feasible if the adduct is interstrand. Our unique Mass Tag Profiling methodology, with a 

benzyolhistamine tag on any free phosphate, enabled us to uniquely distinguish between inter- 

and intrastrand crosslinked complexes. 

Our reciprocal labeling with d0, d4, d0/d4 tags enabled us to doubly confirm the identity of 

any peaks of interest on a mass spectrometry profile. Loss-of-tag profiling then let us rule out 

artificial peaks from the alpha-cyano matrix. 

We always incorporated a 575 internal standard uniformly into our MALDI depositions; 

furthermore, we used the widely-known UVB-induced CPD dimer as another standard for 

measuring and quantifying peak intensities into parts per million abundance values.  

To help ensure replicable HPLC fraction collections, we thoroughly flushed the 

instrument with 100% acetonitrile and run a blank sample at 0.05% acetonitrile to check for trace 

peaks on the UV spectrograph. All collections started and ended at a predetermined threshold 

intensity. We re-run samples if the spectrographs do not line up. Furthermore, we deposited at 

least 400 spots per fraction on the MALDI plate to avoid any missed signals.   
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To prevent any heat-induced artificiality in our oligo work, we performed oligo 

irradiations on an ice bucket and pause every 20min. Thermometer readings indicated no 

increase in temperatures during irradiations, and the volume of samples remained consistent 

(minimal evaporation: 1ul/100ul loss after 1 hour irradiation=3000mJ/cm2 UVB). Furthermore, 

mass spectrometry profiles of UV-irradiated oligos under ice and at room temperature showed 

the same 808 peak profiling.  

Aim 2: Characterize the novel interstrand lesions and their repair kinetics in order to 

identify new UV-signature mutations for illuminating molecular mechanisms behind 

melanoma pathogenesis.  

Methodology 2: To pursue the second aim, we (a) used organic synthesis to validate our 

hypothesized structures; with well-developed structure hypotheses, we could better develop 

diagnostic tools for studying novel adducts. To accomplish this task, we planned to use boronic 

acid conjugates of cytosine and cytosine halides for a Suzuki coupling reaction to give the 

regioisomers of our hypothesized structure (Figure A4).  

 
Figure A4: Hypothesized structure of interstrand adduct. 

 

Illustration	
  1
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(b) Together with flow-cytometry-based studies of repair kinetics and modified shuttle 

vector mutagenesis assays, we could identify the signature mutations of these novel UV-induced 

adducts, which (as suggested by preliminary analyses) could be aligned to genomic mutation 

patterns from melanoma databanks, thus helping us understand UV-induced melanoma 

pathogenesis. More specifically, flow-cytometry-based studies of repair kinetics would be 

performed by harvesting primary skin cells (keratinocytes) from culture, then sorted into live 

versus dead populations, and quantified for the amount of adducts pre- and post-irradiation at 

various timepoints via HPLC-MS/MS to establish the efficiency/rate of repair.  

(c) Furthermore, we aim to identify key players in the repair of interstrand lesions via 

studying DNA repair-deficient cell models.  

(d) We could adapt current shuttle vector mutagenesis assays as follows: After UVB-

irradiating GFP plasmids, we would remove other photoproducts via CPD- and 6,4-photolyases, 

transfect into skin cells, track and extract DNA post-repair, sequence/analyze original adduct 

sites to determine mutations. We would compare these results with bioinformatical analysis for 

mutation hotspots in melanomas through a genomics collaboration with the Broad Institute, with 

the hope of linking prominent mutations in melanomas (when matched to normal) to erroneous 

repair of our UVB-induced interstrand crossslinked adducts, thus revealing a new UVB-signature 

mutation(s) that is unique to melanomas.  

Hypothesis 2: Due to the genotoxity of interstrand lesions, we believed repair of our interstrand 

adducts to be error-prone (new UVB-signature mutation) and/or inefficient (induced cell death). 

We strove to demonstrate that cellular repair of novel interstrand DNA lesions leads to cellular 
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DNA mutations (different from known photoproducts) that show high incidence in melanomas 

but not other non-skin cancers (such as ovarian, colorectal).  

Preliminary Data 2: Initial repair kinetics experiments on mice (sacrificing and extracting UVB-

irradiated mice at various timepoints) have indicated that most of the UVB-induced interstrand 

cytosine adducts disappear within 24hr (Figure A5). In our very recently formed genomics 

collaboration with the Broad Institute, we examined mutation patterns for melanomas (matched 

to normal) and ovarian cancer (matched to normal as well). We focused on trinucleotide contexts 

where any subsequent mutations could not be explained by 6.4-photoproducts or CPD dimers 

(that is, pyrimidine-dimer-independent context would be of purine-Cytosine-purine type). We 

found 2 groups of “hot” mutations (i.e., high incidence in melanomas), as follows: 1. C->T 

transitions (even in purine-Cytosine-purine context, thus not attributed to CPD, 6,4-

photoproducts); 2. C->G transversions. Due to the frequency of natural C->T transitions at CpG 

islands, we chose to focus on the 2nd group of “hot” mutations in melanomas, the C->G 

transversions (which, one could argue, would constitute a more significant mutation solely due to 

the large structural substitution and electronic repulsions between the guanine bases). One of our 

goals was to link these C->G mutations in melanomas to erroneous repair of our UVB-induced 

interstrand crosslinked cytosine lesions.   
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Figure A5: Quantity of UVB-induced interstrand cytosine adducts (peaks indicated by orange 

horizontal lines) significantly declines by 24hr (compare heights of overlapping peaks). 
 

Anticipated Results 2: We expected the mass spectrometry profiles of synthesized adducts to 

match that from our in vivo mouse experiments (and oligo experiments), thus further supporting 

our hypothesized adduct structure (Figure A4). Together with flow-cytometry-based studies of 

repair kinetics and modified shuttle vector mutagenesis assays, we could identify the signature 

mutations of these novel UV-induced adducts, which (as suggested by preliminary analyses) 

could be aligned to genomic mutation patterns from melanoma databanks, thus helping us 

understand UV-induced melanoma pathogenesis.   
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Potential Pitfalls and Strategies:  

We were aware that our results are only as good as the technical limitations of our 

instruments. Thus, at all steps, especially repair experiments that were measuring declining 

quantities, we aimed to magnify our signals via GFP/fluorescent/double-labeling/other 

tagging/internal controls.   

We recently became aware that the starting materials for our proposed organic synthesis 

experiment (for structural characterization) may not be available due to thermodynamic 

instability of boronic-acid-conjugates of cytosine. However, we could circumvent this problem 

by performing the Suzuki coupling reaction on uracil instead. We would then perform 

deamination of our interstrand cytosine adducts isolated from in vivo samples (via bisulfite 

treatment) to give equivalent uracil-interstrand-adducts, run Mass Tag Profiling, and compare 

with mass spec profiling from synthesized uracil adducts to validate our hypothesized adduct 

structures.  
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