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Lysosomal destabilization in retinal pigment epithelial cells activates the NLRP3 

inflammasome and induces IL-1β secretion 

 

ABSTRACT 

Age-related macular degeneration (AMD) is a leading cause of visual impairment and 

blindness, affecting over 30 million people worldwide. It is characterized by the appearance of 

insoluble deposits known as drusen in the outer retina, between the retinal pigment epithelium 

(RPE) and Bruch’s membrane. Drusen are heterogeneously composed of many compounds, 

including cholesterol, amyloid-β, and complement proteins. AMD also involves the accumulation 

of pigments collectively termed lipofuscin in RPE lysosomes. The underlying causes of AMD are 

unknown, but studies have implicated inflammatory processes in its pathogenesis. 

The NLRP3 inflammasome is a multiprotein complex, consisting of NLRP3, ASC, and 

caspase-1, that plays an important role in inflammation. Inflammasome assembly activates 

caspase-1 via proteolysis of its precursor, procaspase-1. Caspase-1 mediates the maturation of 

inflammatory cytokines such as IL-1β, as well as a form of cell death called pyroptosis. A myriad 

of chemically diverse agonists are known to activate the NLRP3 inflammasome, including 

insoluble particles and crystals, which destabilize phagolysosomes following internalization. As 

lysosomes are disrupted by the phagocytosis of certain drusen components, such as amyloid-β, 

or the detergent-like effects of the lipofuscin constituent A2E, I sought to evaluate the 

hypothesis that the destabilization of RPE lysosomes activates the NLRP3 inflammasome. 

Immunohistochemistry of human outer retinal sections revealed that NLRP3 was 

expressed in the RPE of AMD-affected eyes, but was not detectable in age-matched control 

retinas. The NLRP3 inflammasome components NLRP3, ASC, and procaspase-1 were 

expressed in the human RPE cell line ARPE-19 and in primary human RPE cells. Expression of 
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the IL-1β precursor, pro-IL-1β, in RPE cells was induced by treatment with NF-κB agonists such 

as IL-1α. Disruption of RPE lysosomes using the lysosomotropic agent L-leucyl-L-leucine methyl 

ester induced inflammasome activation, as evidenced by caspase-1 activation, processing and 

release of IL-1β, and pyroptotic cell death. These results suggest a mechanism of AMD 

pathogenesis in which molecular changes associated with AMD lead to lysosomal damage, 

activating the NLRP3 inflammasome in RPE cells and mediating vision loss by inducing IL-1β 

production and cell death. Therefore, the NLRP3 inflammasome may be a key mediator of AMD 

pathology and a potential target for therapeutic intervention. 
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PREFACE 

In this chapter, Figure 1 has been adapted with permission from the article, “Age-related 

macular degeneration and the extracellular matrix,” by L.V. Johnson and D.H. Anderson in The 

New England Journal of Medicine, July 22, 2004, Vol. 351, No. 4, pages 320-322, the copyright 

of which is held by the Massachusetts Medical Society. Figure 2 has been adapted with 

permission from the article, “NLRP3 inflammasome activation in retinal pigment epithelial cells 

by lysosomal destabilization: implications for age-related macular degeneration,” by W.A. 

Tseng, T. Thein, K. Kinnunen, K. Lashkari, M.S. Gregory, P.A. D’Amore, and B.R. Ksander in 

Investigative Ophthalmology & Visual Science, January 2013, Vol. 54, No. 1, pages 110-120, 

the copyright of which is held by The Association for Research in Vision and Ophthalmology, 

Inc.
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INTRODUCTION 

 

Age-related macular degeneration (AMD) is the leading cause of vision loss in 

individuals of 50 years of age and over in industrialized nations and impairs the vision of more 

than 30 million people globally (Ambati et al., 2013; Cangemi, 2007; Coleman et al., 2008; Hu et 

al., 2013; Khandhadia et al., 2012; Parmeggiani et al., 2012). In the United States, roughly 15 

million people have AMD, with over 1.7 million individuals suffering from an advanced form of 

the disease (Friedman et al., 2004; Gryziewicz, 2005). As the average age of the American 

population increases, it is projected that three million people in the United States will have 

advanced AMD by the year 2020 (Friedman et al., 2004). 

AMD is characterized by pathological changes to the cells and structures of the outer 

retina, resulting in damage to the central region of the retina known as the macula. The macula 

contains the fovea and foveola, areas rich in cone photoreceptors, and is responsible for the 

high acuity central vision that is critical for activities such as reading, driving, and facial 

recognition (Ambati et al., 2013). Deterioration of central vision from AMD, therefore, has a 

severely adverse impact on quality of life. However, despite intensive research, the underlying 

etiology of AMD remains unknown (Liu et al., 2013). 

AMD can occur in two forms, often referred to as “dry” and “wet.” Dry AMD, also called 

atrophic or non-exudative AMD, accounts for over 85% of all AMD and is responsible for 10% of 

all vision loss associated with AMD. Dry AMD develops slowly over many years and can go 

undetected in its early stages (Bhutto and Lutty, 2012; Buschini et al., 2011). Its hallmark 

feature is the presence of yellow-to-white deposits known as “drusen” (German for “geode”) 

between the basal surface of the retinal pigment epithelium (RPE) and the multilayered 

extracellular matrix known as Bruch’s membrane (BrM) (Figure 1) (de Jong, 2006; Luibl et al., 

2006). Dry AMD is also associated with a thinning or atrophy of the RPE (Penfold et al., 2001). 

The RPE is responsible for supporting the survival and function of photoreceptors, which lie on  



 

4 

 

Figure 1. Diagram of the outer retina with drusen accumulation. AMD involves pathological 
changes in the outer retina, consisting of light-sensing photoreceptors and the RPE. RPE cells 
maintain the health and function of the receptors, which lie on the apical surface of the RPE. 
The outer retina is nourished by blood flow from the vascular bed known as the choroid and its 
associated capillary layer, the choriocapillaris. Between the basal surface of the RPE and the 
choroid lies BrM, a multilayered extracellular matrix. In aging eyes, deposits referred to as 
drusen frequently accumulate between the basal lamina of the RPE and the inner collagenous 
layer of BrM. Drusen are the hallmark feature of AMD and are correlated with AMD progression. 
In dry AMD, RPE cells degenerate, resulting in the death of the photoreceptors they maintain, 
causing vision loss. In wet AMD, new blood vessels grow from the choroid, break through BrM, 
and invade the sub-RPE or subretinal space. Leakage of fluid from these nascent vessels 
causes vision loss. Reproduced with permission from New England Journal of Medicine 351(4): 
320-322. Copyright © 2004 Massachusetts Medical Society. 
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the apical side of the RPE (Bhutto and Lutty, 2012). When dry AMD progresses to its advanced 

form, called geographic atrophy (GA), patch-like regions of RPE cells deteriorate in the macula, 

leading to the death of the photoreceptor cells that they maintain (Anderson et al., 2013). As 

these patches grow and become confluent, they result in central scotomas, areas of vision loss 

in the center of one’s field of view (Ambati and Fowler, 2012; Wang et al., 2009). Despite 

extensive efforts, there are currently no available treatment options for dry AMD (An et al., 

2006). It is likely that the identification of key molecules involved in the pathogenesis of GA will 

be required for the development of therapeutics effective against this form of AMD. 

Wet AMD, also called neovascular or exudative AMD, is an advanced form of AMD that 

involves choroidal neovascularization (CNV). CNV is characterized by the growth of blood 

vessels from the choroid, the vascular bed that supplies the outer retina with oxygen and 

nutrients, and its capillary layer, the choriocapillaris (CC). The nascent vessels penetrate BrM 

and invade the sub-RPE or subretinal space (Campochiaro, 2013), and because they are highly 

permeable, these vessels leak fluid that can distort vision or cause detachment of the retina (de 

Jong, 2006). Wet AMD can progress very rapidly, potentially causing blindness within a matter 

of months (Munk et al., 2012). Although wet AMD accounts for a minority of total AMD, it is 

responsible for approximately 90% of severe vision loss caused by AMD (Donoso et al., 2006). 

Treatments are available for patients with neovascular AMD, primarily in the form of anti-

angiogenic agents that target vascular endothelial growth factor (VEGF) and are injected 

intravitreally (Miller, 2010). These treatments are often able to slow or halt vision loss caused by 

neovascular AMD, and in some cases can lead to limited recovery of visual acuity (Fong and 

Lai, 2013). However, not all patients with neovascular AMD respond to anti-VEGF therapy. 

Nevertheless, even though anti-VEGF agents are far from a cure for neovascular AMD, they 

can provide substantial improvements in quality of life for many patients. 

Over the past several years, an increasing body of evidence has accumulated that 

implicates a role for inflammation in the pathogenesis of both wet and dry AMD. For example, 
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many molecules present in drusen participate in inflammation (Hageman et al., 2001). Arguably, 

the most compelling evidence for an inflammatory contribution to AMD is the fact that AMD 

susceptibility is strongly associated with single-nucleotide polymorphisms (SNPs) in 

complement factor H, a major regulator of complement-mediated immune responses and 

inflammation (Edwards et al., 2005; Hageman et al., 2005; Haines et al., 2005; Klein et al., 

2005). It is also becoming apparent that an inflammatory state called “para-inflammation,” which 

is milder in intensity than frank inflammation, participates in the development of AMD (Buschini 

et al., 2011; Medzhitov, 2008; Xu et al., 2009). 

Recent studies have implicated a molecular platform known as the NLRP3 

inflammasome in AMD pathogenesis. Inflammasomes are multiprotein complexes that mediate 

the processing of the inflammatory cytokines interleukin (IL)-1β and IL-18 into their mature, 

biologically active forms. The assembly and activation of inflammasomes is induced by stimuli 

that are often microbial products or associated with cellular damage, such as extracellular 

adenosine triphosphate (ATP), monosodium urate (MSU), and hyaluronan (Martinon et al., 

2006; Yamasaki et al., 2009). Accordingly, inflammasomes play a key role in innate immunity by 

mediating host defense against microbes as well as tissue and wound repair (Davis et al., 2011; 

Dupaul-Chicoine et al., 2010; Franchi et al., 2010; Thomas et al., 2009). However, excessive or 

uncontrolled NLRP3 inflammasome activity leads to a variety of inflammation-mediated 

diseases. Evidence indicates that the NLRP3 inflammasome is involved in Alzheimer’s disease, 

atherosclerosis, and type 2 diabetes (Duewell et al., 2010; Halle et al., 2008; Masters et al., 

2010; Rajamaki et al., 2010). Several recent studies using animal models have implicated the 

NLRP3 inflammasome in the development of AMD, but work in this area is early and there are 

even conflicting reports about whether the inflammasome is protective against AMD or 

contributes to its development (Doyle et al., 2012; Liu et al., 2013; Marneros, 2013; Tarallo et 

al., 2012). It is clear that a more complete understanding of inflammasomes, and the NLRP3 

inflammasome in particular, is essential for elucidating the etiology and pathogenesis of AMD. 
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Inflammasomes control caspase-1 activation 

 

Inflammasomes are multiprotein complexes that activate caspase-1, originally known as 

the IL-1β-converting enzyme (Martinon et al., 2002). Like all caspases, caspase-1 is a cysteine 

protease that cleaves peptide bonds following aspartate residues and is synthesized as an 

inactive enzyme precursor or zymogen (Lamkanfi and Dixit, 2012). The best-characterized 

substrates of caspase-1 are the cytosolic precursors of IL-1β and IL-18, referred to as pro-IL-1β 

and pro-IL-18, respectively (Brydges et al., 2013). Cleavage of pro-IL-1β or pro-IL-18 by 

caspase-1 generates the corresponding mature, biologically active cytokine, which is then 

released through an unconventional and incompletely understood secretory pathway (Lopez-

Castejon and Brough, 2011). Because of its role in inflammatory cytokine processing, caspase-

1 is categorized as an inflammatory caspase, as opposed to an apoptotic caspase. 

The inflammatory caspases are caspase-1, -4, -5, and -12 in humans and caspase-1,  

-11 and -12 in mice (Khare et al., 2010). Human caspase-4 and -5 are orthologous to murine 

caspase-11, and are believed to be the products of duplication in the caspase-11 gene (Bian et 

al., 2011). Although caspase-1 is not known to play a role in apoptosis, it mediates a distinct 

form of programmed cell death called pyroptosis that is independent of the activity of apoptotic 

caspases such as caspase-3 and -7 (Lamkanfi and Dixit, 2010). Whereas apoptosis preserves 

the integrity of the plasma membrane, pyroptosis involves the formation of pores in the plasma 

membrane that result in cellular swelling, lytic cell death, and release of cellular contents (Fink 

and Cookson, 2006). Thus, whereas apoptotic blebs can be cleared in an “immunologically 

silent” manner, pyroptosis is inherently proinflammatory (Lamkanfi and Dixit, 2010; Miao et al., 

2010a). Both apoptosis and pyroptosis induce DNA fragmentation, but via different mechanisms 

(Bergsbaken et al., 2009). By regulating caspase-1 activation, inflammasomes are key 
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regulators of IL-1β and IL-18 maturation, as well as pyroptosis. 

Inflammasome assembly is controlled by scaffolding proteins. Most known 

inflammasome scaffolding proteins are members of the nucleotide-binding domain, leucine-rich 

repeat-containing protein (NLR) family. The best-characterized inflammasome scaffolds are 

NLRP1, NLRP3, and NLRC4, as well as the non-NLR family protein absent in melanoma 2 

(AIM2), which belongs to the PYHIN family (Rathinam et al., 2012a). NLRs are a class of 

pattern recognition receptors (PRRs), which allow the innate immune system to detect 

pathogens, regardless of prior exposure, and to respond to cellular stress or injury (Kanneganti, 

2010). To do this, PRRs bind to common microbial motifs known as pathogen-associated 

molecular patterns (PAMPs) as well as to certain molecules released from injured or dying cells, 

such as ATP, called danger signals or damage-associated molecular patterns (DAMPs) 

(Schroder and Tschopp, 2010). PRRs may reside on the cell surface or in the cytoplasm; Toll-

like receptors (TLRs) are membrane-associated PRRs, whereas NLRs reside in the cytosol 

(Bauernfeind et al., 2011a). Each inflammasome scaffolding protein responds to certain sets of 

PAMPs and/or DAMPs. Inflammasomes are referred to by the name of their scaffolding protein, 

and the domain architectures of the different scaffolding proteins influence the compositions of 

the inflammasomes they assemble. 

All inflammasome scaffolding proteins contain at least one effector domain, typically at 

the N-terminus, that allows them to directly or indirectly recruit procaspase-1, the zymogen 

precursor of caspase-1. This effector domain is either a pyrin domain or a caspase recruitment 

domain (CARD) (Davis et al., 2011). These domains undergo homotypic association; pyrin 

domains bind other pyrin domains, and CARDs bind other CARDs. Procaspase-1 possesses a 

CARD, so scaffolding proteins that also have a CARD, such as NLRP1 and NLRC4, can directly 

bind procaspase-1 (Latz et al., 2013). Inflammasome scaffolds that lack a CARD, like NLRP3 

and AIM2, have a pyrin domain instead. This domain allows them to interact with an adaptor 

protein, apoptosis-associated speck-like protein containing a CARD (ASC), which has both a 
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pyrin domain and a CARD. Thus, scaffolds with a pyrin domain can recruit procaspase-1 

indirectly via ASC (Schroder and Tschopp, 2010). 

Recruitment of procaspase-1 to the inflammasome results in a high local concentration 

of the zymogen, which is believed to trigger proximity-induced autoproteolysis, generating active 

caspase-1 (Broz et al., 2010; Yang et al., 1998). The first step of the proteolytic conversion is 

the cleavage of procaspase-1 into a p35 fragment, which contains the CARD, and a p10 

subunit. Next, the p35 fragment is cleaved to yield the CARD and a p20 subunit (Broz et al., 

2010). Active caspase-1 is a tetramer comprised of two p20 subunits and two p10 subunits 

(Mao et al., 1998). Although NLRP1 and NLRC4 can each recruit procaspase-1 independently 

of ASC via their CARDs, the presence of ASC in these inflammasomes substantially improves 

caspase-1 activation and processing of IL-1β and IL-18. Addition of ASC to reconstituted 

NLRP1 inflammasome complexes increases caspase-1 activity by over two-fold (Faustin et al., 

2007), and ASC-deficient macrophages produce roughly 50% lower levels of IL-1β upon 

induction of the NLRC4 inflammasome, compared to wild-type (Miao et al., 2006). However, the 

mechanism through which ASC interacts with these inflammasomes remains unclear. Following 

the convention developed by Ting and colleagues, NLRs are named according to their N-

terminal effector domain (Ting et al., 2008). NLRs with an N-terminal pyrin domain are 

designated “NLRP,” whereas NLRs with an N-terminal CARD are referred to as “NLRC.” Human 

NLRP1 has both a N-terminal pyrin domain and a C-terminal CARD, but is named based on its 

N-terminal domain. 

Once caspase-1 has been activated, it can cleave the IL-1β and IL-18 precursors to 

produce mature IL-1β and IL-18. Because pro-IL-1β and pro-IL-18 lack signal peptides that 

would target them to the ER-Golgi secretory pathway, they reside in the cytosol. After 

processing, release of the mature cytokines occurs through an unconventional secretory 

pathway that remains poorly understood (Eder, 2009). Although cell membrane disruption and 

leakage of cytosolic contents due to pyroptosis has been considered as a possible mechanism, 
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the cytoprotective agent glycine inhibits inflammasome-mediated cell lysis and leakage but does 

not affect the release of IL-1β (Edgeworth et al., 2002; Qu et al., 2007; Verhoef et al., 2004), 

indicating that loss of membrane integrity is not a requirement for IL-1β release. Microvesicle 

shedding, secretory lysosome exocytosis, exosome exocytosis, and transmembrane ATP-

binding cassette transporters have all been proposed as mechanisms for IL-1β secretion (Eder, 

2009; Lopez-Castejon and Brough, 2011). Intriguingly, caspase-1 has been found to bind pro-

IL-1α and FGF-2, both of which lack consensus signal peptides, and facilitate their 

unconventional secretion (Keller et al., 2008). Although neither pro-IL-1α nor FGF-2 is a 

proteolytic substrate of caspase-1, the enzymatic activity of caspase-1 is required for their 

secretion, as either deletion of caspase-1 or treatment with caspase-1 inhibitors abrogates their 

release. These results indicate that caspase-1 mediates the unconventional secretion of certain 

proteins and suggest that IL-1β and IL-18 may rely on caspase-1 not only for their processing, 

but also their release. 

Although caspase-1 is the predominant enzyme that processes IL-1β and IL-18, other 

enzymes can also cleave pro-IL-1β and pro-IL-18 at positions sufficiently close to the site 

cleaved by caspase-1 and generate bioactive cytokine. Production of IL-1β by neutrophils in 

response to Pseudomonas aeruginosa infection is independent of caspase-1 and 

inflammasomes and instead relies on serine proteases (Karmakar et al., 2012). Additionally, IL-

1β production in a mouse model of necrotizing crescentic glomerulonephritis is substantially 

reduced in the absence of the neutrophil serine proteases proteinase 3 and neutrophil elastase 

(Schreiber et al., 2012). Furthermore, treatment of murine dendritic cells with the proapoptotic 

chemotherapeutic agents doxorubicin and staurosporine induces caspase-8-mediated IL-1β 

processing and release independently of caspase-1 (Antonopoulos et al., 2013). Thus, 

production of mature IL-1β does not necessarily mean that caspase-1 has been activated. 
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Activation and regulation of inflammasomes 

 

The regulation of inflammasome activity involves a “two-signal” mechanism. One signal 

induces the expression of pro-IL-1β, and the other signal triggers the assembly of the 

inflammasome via a scaffolding protein, resulting in the proteolytic activation of caspase-1 (Latz 

et al., 2013). As described above, each inflammasome scaffold is activated by particular PAMPs 

and/or DAMPs. NLRP1 is induced by muramyl dipeptide (MDP), a component of bacterial 

peptidoglycan (Faustin et al., 2007). In addition, certain variants of murine NLRP1b, one of the 

three NLRP1 paralogues in mice, recognize the Bacillus anthracis lethal toxin (Boyden and 

Dietrich, 2006; Franchi et al., 2012; Terra et al., 2010). NLRC4 is activated by flagellin and 

certain components of bacterial secretion systems (Zhao et al., 2011). Double-stranded DNA 

(dsDNA) triggers AIM2 (Burckstummer et al., 2009; Fernandes-Alnemri et al., 2009; Hornung et 

al., 2009; Roberts et al., 2009), whereas NLRP3 responds to a diverse array of PAMPs and 

DAMPs (Bauernfeind et al., 2011a; Duewell et al., 2010). However, in order for an activated 

inflammasome to produce mature IL-1β, another signal must first induce pro-IL-1β expression, a 

process referred to as “priming” (Hornung and Latz, 2010). Because NF-κB regulates pro-IL-1β 

expression via a NF-κB-responsive element in the IL1B promoter, priming can be accomplished 

by NF-κB agonists such as the TLR4 ligand lipopolysaccharide (LPS), tumor necrosis factor α 

(TNFα), and the cytokine IL-1α (Eisenbarth et al., 2008; Hiscott et al., 1993; Tseng et al., 2013). 

Unlike pro-IL-1β, pro-IL-18 is constitutively expressed in many cell types and therefore does not 

require priming (Stutz et al., 2009). 

Interestingly, most resting cells also require priming signals to induce transcription of the 

scaffold proteins NLRP3 and AIM2 (Bauernfeind et al., 2009; von Moltke et al., 2013). Thus, in 

these cells, the presence of an NLRP3 or AIM2 agonist without priming is not sufficient to 

induce their respective inflammasomes, whereas for the NLRP1 and NLRC4 inflammasomes, 

inflammasome activation is independent of priming. Like pro-IL-1β, NLRP3 priming is mediated 
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via NF-κB (Bauernfeind et al., 2009); however, AIM2 expression is induced by type I interferon 

signaling rather than NF-κB (Rathinam et al., 2010). The PAMPs and DAMPs that stimulate 

inflammasome assembly are typically different from those that prime cells; it is rare for one 

signal to serve both functions. It is hypothesized that this two-signal control mechanism helps to 

limit inadvertent secretion of IL-1β, which is a highly potent pyrogen, and restricts its release to 

actual instances of infection or injury (Hornung and Latz, 2010). 

The mechanisms through which inflammasome scaffolds are activated by their 

respective signals are still under investigation. Studies in which the NLRP1 inflammasome was 

biochemically reconstituted have revealed that its minimal components are NLRP1, a 

ribonucleoside triphosphate, and caspase-1, and that this reconstituted NLRP1 inflammasome 

can be activated by MDP (Faustin et al., 2007). Though there is currently no direct evidence of 

MDP-NLRP1 binding, it has been proposed that NLRP1 binds MDP directly and that this 

interaction triggers NLRP1 oligomerization and caspase-1 activation (Franchi et al., 2012). 

Additionally, NLRP1 has been shown to undergo autoproteolytic cleavage (D'Osualdo et al., 

2011). Studies also indicate that the intracellular PRR protein NOD2 forms a complex with 

NLRP1 in response to MDP (Hsu et al., 2008); however, it is not known whether these events 

play a role in NLRP1 induction. Similar to the mechanism proposed for NLRP1 activation, the 

inflammasome scaffold AIM2 directly binds its ligand, dsDNA (Hornung et al., 2009). AIM2 is a 

member of the PYHIN family, rather than the NLR family, and therefore contains a pyrin domain 

and a HIN200 DNA-binding domain (Fernandes-Alnemri et al., 2009). AIM2 is located in the 

cytosol, where it detects dsDNA from viruses or intracellular bacteria, and where its exposure to 

self-DNA is restricted under normal conditions (Rathinam et al., 2012a). When the HIN200 

domain engages dsDNA, AIM2 activates inflammasome assembly via its pyrin domain 

(Rathinam et al., 2010). 

 Whereas AIM2, and possibly NLRP1, are activated by directly binding their ligands, the 

NLRC4 scaffold interacts with cofactor proteins that serve as the direct receptors (Kofoed and 
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Vance, 2011; Zhao et al., 2011). In mouse macrophages, flagellin induces NLRC4, and this is 

mediated by bacterial type III secretion systems (T3SS) and type IV secretion systems (T4SS) 

that facilitate entry of flagellin into the cytosol where it can interact with NLRC4 cofactor proteins 

(Miao et al., 2006; Miao and Warren, 2010). T3SS inner rod proteins also trigger murine NLRC4 

independently of flagellin (Miao et al., 2010b). The receptors that bind these ligands belong to 

the NLR family, apoptosis inhibitory protein (NAIP) group of proteins. Binding of flagellin by 

NAIP5 or NAIP6 enables the NAIP to complex with NLRC4, inducing inflammasome assembly. 

Similarly, T3SS inner rod proteins are physically recognized by NAIP2, which activates NLRC4 

(Kofoed and Vance, 2011; Zhao et al., 2011). Humans have only one NAIP homologue, which 

binds T3SS needle proteins, such as CprI of Chromobacterium violaceum, and induces NLRC4 

(Zhao et al., 2011). 

As mentioned above, the NLRP3 inflammasome is induced by physically and chemically 

diverse entities. Bacteria such as Listeria monocytogenes and Stapholococcus aureus, viruses 

including influenza A, and fungi such as Candida albicans have been demonstrated to activate 

NLRP3 (Allen et al., 2009; Craven et al., 2009; Hise et al., 2009; Kim et al., 2010). NLRP3 also 

responds to microbial products including bacterial pore-forming toxins and the potassium 

ionophore nigericin (Franchi et al., 2012; Mariathasan et al., 2006). Additionally, NLRP3 detects 

many types of DAMPs, such as extracellular ATP, hyaluronan, and an assortment of insoluble 

substances and particulates, including asbestos fibers, silica crystals, MSU crystals, cholesterol 

crystals, and amyloid-β (Aβ) (Duewell et al., 2010; Halle et al., 2008; Hornung et al., 2008; 

Mariathasan et al., 2006; Yamasaki et al., 2009). The diversity of these activators suggests that 

they activate a common downstream pathway or set of pathways that lead to NLRP3 induction, 

rather than binding NLRP3 directly. 

Several models for NLRP3 activation have been proposed. A number of NLRP3 agonists 

trigger potassium efflux, leading to low intracellular potassium levels, which is proposed to 

activate NLRP3. For example, NLRP3 induction by extracellular ATP is mediated by potassium 
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efflux resulting from activation of the P2X7 receptor, an ATP-gated cation channel (Mariathasan 

et al., 2006). Microbial pore-forming toxins and nigericin also cause intracellular potassium 

depletion, and blocking potassium efflux with high extracellular potassium inhibits NLRP3 

inflammasome activity (Jin and Flavell, 2010). 

Another model hypothesizes that NLRP3 agonists induce the generation of reactive 

oxygen species (ROS), leading to NLRP3 activation. In accordance with this hypothesis, ROS 

scavengers inhibit NLRP3 inflammasome induction by asbestos fibers, MSU crystals, and ATP 

(Dostert et al., 2008). It has also been found that ROS generated by damaged mitochondria 

activate NLRP3. Consequently, blocking the autophagic degradation of mitochondria causes 

ROS-producing mitochondria to accumulate, triggering NLRP3 (Zhou et al., 2011). Thioredoxin-

interacting protein (TXNIP), which binds the oxidoreductase thioredoxin under basal conditions, 

has been proposed to dissociate from thioredoxin in response to elevated ROS and 

subsequently interact with and activate NLRP3 (Zhou et al., 2010). However, it has also been 

reported that ROS inhibitors do not block NLRP3 induction, but rather prevent its expression 

(Bauernfeind et al., 2011b). 

A third model proposes a mechanism for NLRP3 activation by crystalline or particulate 

matter (Figure 2) (Hornung et al., 2008). In this model, these substances must be phagocytosed 

in order to activate NLRP3, as compounds that interfere with phagocytosis by disrupting 

cytoskeletal dynamics, such as cytochalasin D, block NLRP3 induction. Following phagocytosis, 

particulate materials destabilize phagolysosomes, and it is proposed that the leakage of certain 

lysosomal enzymes into the cytosol induces NLRP3. Disruption of lysosomes without particulate 

matter via osmotic shock or the lysosomotropic agent L-leucyl-L-leucine methyl ester (Leu-Leu-

OMe) also triggers NLRP3. The lysosomal enzymes implicated in NLRP3 induction include the 

cysteine proteases cathepsin B and cathepsin L (Duewell et al., 2010; Halle et al., 2008; 

Hornung et al., 2008). Inhibition or deletion of either enzyme partially but significantly 

suppresses NLRP3 inflammasome activation by lysosomal destabilization. These findings  
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Figure 2. Schematic diagram representing model of NLRP3 inflammasome activation by 
lysosomal destabilization. (A) Domain architecture of the components of the NLRP3 
inflammasome. Inflammasome assembly is mediated by homotypic interactions between pyrin 
domains on NLRP3 and ASC, and between caspase recruitment domains (CARDs) on ASC and 
caspase-1. (B) Two-signal model in which priming signals (signal 1) induce expression of 
NLRP3 and pro-IL-1β via NF-κB. Lysosomal destabilization (signal 2) causes leakage of 
lysosomal enzymes into the cytosol. These enzymes, such as cathepsins B and L, mediate 
NLRP3 inflammasome assembly, resulting in caspase-1 activation. Caspase-1 processes pro-
IL-1β into mature IL-1β, which is then secreted, and also drives pyroptosis. LRR, leucine-rich 
repeat; NBD, nucleotide-binding domain. 
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suggest that cathepsins B and L are redundant with respect to NLRP3 activation, and it is 

possible that other lysosomal enzymes also perform this function. The mechanism by which 

lysosomal enzymes activate NLRP3 remains unclear, but a recent study has reported that 

cathepsins B and L mediate NLRP3 inflammasome assembly by degrading NLRP10, a NLR 

with inhibitory effects on the NLRP3 inflammasome (Murphy et al., 2013). When lysosomes are 

intact, NLRP10 binds ASC, preventing it from associating with NLRP3. Following lysosomal 

damage, cathepsins B and L are released into the cytosol and degrade NLRP10, allowing 

NLRP3 to interact with ASC and thus inducing inflammasome formation. 

It is unclear which model of NLRP3 induction is most accurate, and it is plausible that 

more than one pathway mediates NLRP3 activation. Furthermore, the processes in these 

models, potassium efflux, ROS generation, and lysosomal destabilization, are highly 

interrelated. For example, both lysosomal destabilization and agents that induce potassium 

efflux, such as extracellular ATP and nigericin, also trigger mobilization of calcium into the 

cytoplasm from the endoplasmic reticulum (Murakami et al., 2012). Calcium mobilization, in 

turn, can cause mitochondrial damage and ROS generation. Thus, the interplay among these 

pathways makes the dissection of their individual contributions challenging. 

In addition to the canonical NLRP3 inflammasome consisting of NLRP3, ASC, and 

caspase-1, evidence indicates that NLRP3 participates in a “non-canonical inflammasome” that 

is dependent on caspase-11 and is activated in response to “non-canonical” NLRP3 stimuli such 

as Gram-negative bacteria and cholera toxin B (Kayagaki et al., 2011; Rathinam et al., 2012b). 

Like the canonical NLRP3 inflammasome, the non-canonical inflammasome mediates IL-1β/IL-

18 processing and programmed cell death. The non-canonical inflammasome requires caspase-

1 for processing of IL-1β and IL-18, but caspase-1 activation is dependent on caspase-11, in 

addition to NLRP3 and ASC. Agents that induce the NLRP3 inflammasome independently of 

caspase-11 are considered canonical and include extracellular ATP, crystalline or particulate 

matter, pore-forming toxins, and nigericin. Interestingly, NLRP3, ASC, and caspase-1 are 
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dispensable for the induction of cell death (Kayagaki et al., 2011). Further research is required 

to obtain a more complete understanding of the mechanisms of non-canonical inflammasome 

regulation, activation, and function. 

 

The NLRP3 inflammasome in disease 

 

Among the inflammasomes, the NLRP3 inflammasome has the most well characterized 

role in pathology. Autosomal dominant gain-of-function mutations in the NLRP3 gene are 

responsible for a family of autoinflammatory disorders known as cryopyrin-associated periodic 

syndromes (CAPS), or cryopyrinopathies, referring to NLRP3 by its former name, cryopyrin 

(Kubota and Koike, 2010; Shinkai et al., 2008). CAPS consist of a spectrum of three disorders 

of differing severity. The most mild of these is familial cold autoinflammatory syndrome (FCAS), 

formerly known as familial cold-induced urticaria. Muckle-Wells syndrome (MWS) is of 

intermediate severity, whereas neonatal-onset multisystem inflammatory disease (NOMID), also 

known as chronic infantile neurologic cutaneous and articular syndrome, is the most serious. 

Characteristic symptoms of FCAS include flares of rash, fever, and joint pain induced by 

exposure to cold. In MWS, these symptoms are more chronic and can occur spontaneously in 

addition to being provoked by cold or stress. Additionally, up to 60% of MWS patients develop 

sensorineural hearing loss, and systemic amyloid A amyloidosis occurs in roughly 25% of MWS 

patients, progressively leading to renal dysfunction (Church et al., 2008; Posch et al., 2012). 

NOMID, the most severe of the trio, not only causes fever, rash, and joint pain, but also involves 

inflammation of the central nervous system that, if left untreated, can result in substantial 

physical disabilities, mental impairment, and neurological issues such as chronic meningitis 

(Goldbach-Mansky, 2011). 

NLRP3 mutations associated with CAPS result in an overactive NLRP3 inflammasome 

(Shinkai et al., 2008). Consistent with this fact, the symptoms of CAPS are mediated by the IL-1 
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pathway, and targeted inhibition of IL-1β or the IL-1 receptor (IL-1R) using agents such as the 

IL-1R antagonist anakinra, the monoclonal anti-IL-1β antibody canakinumab, or the IL-1 “trap” 

fusion protein rilonacept have shown substantial success in treating CAPS (Kubota and Koike, 

2010). Notably, some CAPS patients do not have mutations in Nlrp3; approximately 50% of 

NOMID patients do not exhibit Nlrp3 mutations (Aksentijevich et al., 2002). It is unclear whether 

mutations in other inflammasome-related genes are involved in these cases, or if mutations in a 

separate pathway can also produce CAPS symptoms. 

While mutations in NLRP3 can cause illness, wild-type NLRP3 also mediates a number 

of diseases, many of which involve inflammatory responses to crystalline or particulate matter. 

For example, gout results from high serum levels of uric acid, leading to the deposition of MSU 

crystals in joints and surrounding tissues (Martinon et al., 2006). These MSU crystals are 

internalized by myeloid cells and activate the NLRP3 inflammasome via lysosomal 

destabilization, resulting in the IL-1β secretion that mediates gout symptoms (Hornung et al., 

2008). The related condition pseudogout arises from the deposition of calcium pyrophosphate 

dihydrate crystals in joints, where they also induce NLRP3-mediated inflammation (Martinon et 

al., 2006). Similarly, NLRP3 activation by articular hydroxyapatite crystals contributes to the 

pathogenesis of osteoarthritis (Jin et al., 2011). The lung pathologies silicosis and asbestosis 

result from the inhalation of crystalline silica dust and asbestos fibers, respectively (Cassel et 

al., 2008). Lung alveolar macrophages phagocytose these insoluble substances, activating 

NLRP3. The resulting inflammation induces pulmonary fibrosis, impairing lung function. It is 

notable that alum crystals, which constitute the most widely used adjuvant in human vaccines, 

derive their adjuvant properties from their ability to induce the NLRP3 inflammasome 

(Eisenbarth et al., 2008; Li et al., 2007).  

NLRP3 also appears to be involved in age-related diseases associated with chronic 

inflammation such as Alzheimer’s disease. In vitro, NLRP3 is activated in microglia, the myeloid-

derived resident immune cells of neural tissues, by phagocytosis of Aβ, a major component of 
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amyloid plaques associated with Alzheimer’s disease (Halle et al., 2008). In vivo, levels of active 

caspase-1 are significantly higher in brains from Alzheimer’s disease patients than those of age-

matched control individuals without neurological disease (Heneka et al., 2013). Furthermore, 

using the APP/PS1 mouse model of Alzheimer’s-like pathology, deletion of either Nlrp3 or 

Casp1 protected mice from cognitive impairment and reduced the accumulation of Aβ deposits 

in mouse brains (Heneka et al., 2013). 

Evidence also implicates the NLRP3 inflammasome in the pathogenesis of 

atherosclerosis (Duewell et al., 2010). In the early lesions of atherosclerosis, cholesterol crystals 

have been found colocalized with macrophages. Ingestion of cholesterol crystals by 

macrophages in vitro induces the NLRP3 inflammasome via phagolysosomal destabilization 

and the activity of cathepsins B and L. Furthermore, the LDLR-deficient mouse model of 

hypercholesterolemia has been utilized to evaluate the contribution of the NLRP3 

inflammasome to atherosclerosis. LDLR-deficient mice were reconstituted with bone marrow 

from NLRP3-deficient, ASC-deficient, or wild-type mice and fed a high cholesterol diet. Despite 

similarly high plasma cholesterol levels, mice reconstituted with NLRP3- or ASC-deficient bone 

marrow are significantly protected from the development of atherosclerotic lesions compared to 

mice reconstituted with wild-type bone marrow. Contrary to this study, a report utilizing the 

ApoE-deficient mouse model of hypercholesterolemia found that double deletion of ApoE and 

Nlrp3, Asc, or Casp1 does not protect mice from atherogenesis (Menu et al., 2011). However, 

two other papers have reported that ApoE-/-Casp1-/- double knockout mice have reduced areas 

of atherosclerotic lesions compared to ApoE single knockouts (Gage et al., 2012; Usui et al., 

2012). Additional research is warranted to clarify the nature of the discrepancies and to resolve 

the role of NLRP3 in atherosclerosis. 

Growing evidence points to a role for NLRP3 in the pathogenesis of type 2 diabetes 

mellitus (T2DM). T2DM results from insulin resistance coupled with substantial loss of 

pancreatic islet β-cell function and mass (Ahren, 2005; Prentki and Nolan, 2006). Several 
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studies have demonstrated an improvement in glucose tolerance and insulin sensitivity in mice 

lacking NLRP3 or ASC (Stienstra et al., 2011; Vandanmagsar et al., 2011; Wen et al., 2011; 

Youm et al., 2011). Evidence suggests that the NLRP3 inflammasome contributes to obesity-

induced insulin resistance by mediating IL-1β secretion from adipose tissue macrophages in 

response to the saturated fatty acid palmitate and/or the fatty acid derivatives known as 

ceramides (Vandanmagsar et al., 2011; Wen et al., 2011). Furthermore, IL-1β released by 

pancreatic macrophages or islet cells, which have also been found to express NLRP3 

inflammasome components, contributes to β-cell death (Masters et al., 2010; Zhou et al., 2010). 

High glucose concentrations trigger islet cells to secrete modest levels of IL-1β in an NLRP3-

dependent manner (Zhou et al., 2010). This glucose-induced IL-1β production was ROS-

mediated, and in accordance with the proposed TXNIP-mediated mechanism of NLRP3 

induction by ROS, islet cells from TXNIP-deficient mice secrete substantially less IL-1β than 

wild-type cells in response to high glucose. Furthermore, T2DM is highly associated with the 

accumulation of amyloid deposits in pancreatic islets, which contributes to the loss of β-cells. 

The main constituent of these deposits is islet amyloid polypeptide, which activates the NLRP3 

inflammasome in macrophages and dendritic cells, resulting in IL-1β release (Masters et al., 

2010). A recent study has also found that omega-3 fatty acids block the induction of the NLRP3 

inflammasome in macrophages by a variety of agonists, and that feeding mice the omega-3 

fatty acid docosahexaenoic acid inhibits the development of high-fat diet-induced insulin 

resistance in a NLRP3-dependent manner (Yan et al., 2013). 

While the role of the inflammasomes has been most extensively studied in myeloid-

derived hematopoietic cells, NLRP3 inflammasome activity in non-myeloid cells has been also 

been demonstrated. The best-documented role of NLRP3 in non-myeloid cells thus far is in 

intestinal homeostasis. Inflammatory bowel diseases, including Crohn’s disease and ulcerative 

colitis, are characterized by chronic inflammation within the gastrointestinal tract (Zaki et al., 

2011). In studies using the dextran sodium sulfate (DSS) mouse model of colitis, drinking water 
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is supplemented with DSS, which is toxic to the colonic epithelium (Dupaul-Chicoine et al., 

2010). Under normal conditions, the colonic epithelium maintains a barrier that restricts gut 

microflora to the intestinal lumen. Following exposure to DSS, this protective epithelial barrier is 

disrupted, enabling intestinal microbes and luminal antigens to enter subepithelial tissues and 

trigger inflammation (Zaki et al., 2010). Interestingly, deletion of Nlrp3, Asc, or Casp1 results in 

increased susceptibility of mice to DSS-induced colitis, suggesting that the NLRP3 

inflammasome plays a protective role (Allen et al., 2010; Dupaul-Chicoine et al., 2010; Hirota et 

al., 2011; Zaki et al., 2010). Bone marrow transplantation experiments indicate that this effect is 

due to NLRP3 inflammasome activity in a non-myeloid tissue (Dupaul-Chicoine et al., 2010; 

Zaki et al., 2010). Levels of IL-18, but not IL-1β, significantly increase following DSS exposure in 

wild-type, but not Casp1-/- mice, and injection of Casp1-/- mice with recombinant IL-18 rescues 

them from DSS-induced colitis, demonstrating that IL-18 is responsible for mediating the 

protection conferred by the NLRP3 inflammasome. Furthermore, isolated colonic epithelial cells 

were shown to produce IL-18 via the inflammasome (Zaki et al., 2010). The NLRP3 

inflammasome and IL-18 were found to mediate their protective effects by inducing tissue repair 

via epithelial cell proliferation (Dupaul-Chicoine et al., 2010; Zaki et al., 2010). In addition, 

NLRP3 inflammasome activity in hematopoietic cells was found to play a protective role against 

colitis-associated tumorigenesis (Allen et al., 2010). However, other studies have reported that 

the NLRP3 inflammasome and IL-18 contribute to DSS-induced colitis (Bauer et al., 2010; 

Siegmund et al., 2001; Sivakumar et al., 2002). These contrasting results are likely due to 

differences in the genetic backgrounds of the mice used, their intestinal microflora, and the 

pleiotropic effects of IL-18 (Bauer et al., 2012; Dupaul-Chicoine et al., 2010). Nevertheless, the 

findings from studies of colitis demonstrate that activation of the NLRP3 inflammasome in non-

myeloid cells can contribute significantly to physiological and pathological processes. 

Several generalizations can be made regarding the pathologies that involve the NLRP3 

inflammasome. First, NLRP3 frequently mediates chronic inflammatory responses to insoluble 
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deposits. Several of these, such as Alzheimer’s disease, atherosclerosis, and T2DM, are age-

associated diseases in which insoluble material accumulates over time. Second, although 

inflammasome activity has primarily been observed in hematopoietic cells of the myeloid 

lineage, some pathological conditions involve NLRP3 activity in local non-myeloid cells, such as 

pancreatic islet cells in T2DM and intestinal epithelial cells in colitis; the range of cells capable 

of NLRP3 inflammasome activity has yet to be elucidated. Finally, although NLRP3 

inflammasome activity frequently contributes to pathology, in some instances it does play a 

protective role. 

 

Features of AMD pathology 

 

The insoluble deposits known as drusen are the hallmarks of AMD, and early AMD is 

clinically diagnosed based on the detection of drusen and/or pigmentation alterations in the 

macula by ophthalmoscopy (Seddon et al., 2006). Drusen deposition is localized to the basal 

side of the RPE, in the vicinity of BrM (Figure 1). BrM, located between the RPE and CC, is an 

elastic lamina consisting of five layers. In order of their location from the RPE to the CC, these 

layers are: the RPE basal lamina, the inner collagenous layer, the elastic layer, the outer 

collagenous layer, and the CC basal lamina. Drusen accumulate between the RPE basal lamina 

and the inner collagenous layer (Mullins et al., 2000). Drusen can also be classified as “hard” or 

“soft” based on their appearance. Hard drusen are small with sharp, well-defined edges, 

whereas soft drusen are larger and have indistinct borders. The number, size, and confluence of 

drusen are risk factors for AMD progression (Klein et al., 2007). Whereas the presence of one 

or two small hard drusen in the macula is common in older individuals and confers only minimal 

likelihood of progression to late AMD, approximately eight or more small hard drusen 

significantly increase the incidence of soft drusen. In turn, the number and area of soft drusen 

are associated with a higher risk of developing advanced AMD. 
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Drusen are heterogeneous in composition, but their most abundant components are 

lipids. Unesterified and esterified cholesterol, phosphatidylcholine, sphingomyelin, and fatty 

acids are common constituents of drusen, with esterified cholesterol and phosphatidylcholine 

comprising at least 40% of drusen volume (Wang et al., 2010). In addition to lipids, drusen 

include apolipoproteins, advanced glycation end-products (AGEs), complement components 

and factors, vitronectin, immunoglobulins, acute-phase reactants, prothrombin, crystallins and 

amyloid proteins such as Aβ (Buschini et al., 2011; Crabb et al., 2002; Hageman et al., 2001; 

Hageman et al., 1999; Rudolf et al., 2008). Notably, many of these molecules have known roles 

in immune processes and inflammation. The origin of drusen is unresolved, with plasma and the 

RPE proposed as the most likely sources (Hageman et al., 2001; Wang et al., 2009). Similarly 

unclear is the relationship between drusen and AMD and whether it is cause or effect. Thus, the 

role of drusen in the pathogenesis of AMD remains a matter of debate. However, the fact that 

drusen are insoluble deposits, similar to those found in atherosclerotic plaques or Alzheimer’s 

disease, led to the hypothesis that their internalization could activate the NLRP3 inflammasome 

via the lysosomal pathway. 

Besides drusen, the outer retina of the aging eye also accumulates other deposits, 

including basal laminar deposits (BLamD), basal linear deposits (BLinD), and reticular 

pseudodrusen. BLamD are found between the RPE plasma membrane and its basal lamina, 

and are comprised of basal lamina proteins and long-spacing collagen (Sarks et al., 2007). 

BLinD, on the other hand, are lipid-rich deposits of membranous material. Similar to drusen, 

BLinD are located between the RPE basal lamina and the inner collagenous layer of BrM and 

are associated specifically with AMD (Bhutto and Lutty, 2012; Curcio and Millican, 1999). While 

drusen, BLinD, and BLamD are located basal to the RPE, reticular pseudodrusen are situated in 

the subretinal space, between the retina and the apical surface of the RPE (Querques et al., 

2013). Also known as subretinal drusenoid deposits, reticular pseudodrusen are associated with 

late AMD, but not as strongly as soft drusen (Zweifel et al., 2010). As hypothesized for drusen, 
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the material present in BLamD, BLinD, and reticular pseudodrusen could potentially activate the 

inflammasome if phagocytosed. 

In addition to extracellular deposits, AMD is also associated with the accumulation of 

lipofuscin in RPE lysosomes. Lipofuscin consists of pigmented granular substances that are not 

degradable by lysosomal digestion (Terman and Brunk, 2004). Accordingly, lipofuscin is found 

in the lysosomes of many long-lived, postmitotic cell types including neurons and cardiac 

myocytes. During their lifetime, RPE cells continuously phagocytose outer segment discs that 

are shed by photoreceptors as part of the visual cycle (Holz et al., 1999; Sparrow et al., 2010). 

As such, lipofuscin components, including a variety of bisretinoid compounds, are derived from 

the outer segment discs. The bisretinoid fluorophore N-retinylidene-N-retinylethanolamine 

(A2E), which has historically been considered a major constituent of RPE lipofuscin (Sparrow et 

al., 1999; Wielgus and Roberts, 2012), although this has recently been challenged (Ablonczy et 

al., 2013), possesses detergent-like properties and has been reported to destabilize lysosomal 

membranes (Schutt et al., 2002; Sparrow et al., 2006).  

Therefore, the development of AMD is associated with exposure of RPE cells to 

extracellular deposits and intralysosomal lipofuscin, both of which have the potential to cause 

lysosomal disruption. Moreover, A2E can alkalinize RPE lysosomes, whose acidic pH enables 

optimal activity of lysosomal degradative enzymes (Bergmann et al., 2004; Holz et al., 1999). 

The increased pH leads to reduced function of lysosomal enzymes, causing the accumulation of 

undegraded material. Thus, A2E present in RPE lipofuscin may induce pH-mediated lysosomal 

dysfunction with subsequent lysosomal membrane destabilization. 

 

Inflammation and AMD 

 

Several lines of evidence suggest a role for inflammation in the pathogenesis of AMD. 

Although features such as the blood-ocular barrier and immunosuppression by molecules such 
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as transforming growth factor-β maintain a level of immune privilege in the eye, cells of the 

innate immune system are nonetheless present in the retina and able to mediate inflammation 

(Stein-Streilein, 2013). Microglia are the primary resident immune cell of the retina (Lee et al., 

2008), and macrophages and dendritic cells can infiltrate the retina from the choroid in 

situations where the blood-RPE barrier is disrupted (Eter et al., 2008). 

Arguably the most compelling evidence for the contribution of inflammation to AMD 

comes from studies that have strongly implicated the complement system. A major component 

of the innate immune system, the complement system combats microbial infection by several 

effector mechanisms including the induction of inflammatory responses. Complement consists 

of a number of proteins circulating in the blood or bound to cell membranes. Activation of 

complement occurs via proteolytic cascades and can be initiated via any of three pathways: the 

classical pathway, the alternative pathway, and the lectin pathway. A number of genetic studies 

have determined that a SNP in complement factor H (CFH) that changes amino acid residue 

402 from a tyrosine to a histidine (Y402H) is associated with a significantly increased risk for 

developing AMD. Possession of at least one such allele increases the risk for AMD by 2.7-fold 

and accounts for 40-50% of the population attributable risk for AMD (Edwards et al., 2005; 

Hageman et al., 2005; Haines et al., 2005; Klein et al., 2005). CFH, a key regulator of 

complement activity, inhibits the proteolytic induction of the alternative pathway in order to 

protect host cells from complement effector functions such as inflammation. The Y402H variant 

of CFH binds several of its ligands with reduced affinity, impairing its recruitment and 

decreasing its effectiveness at restricting complement activation. CFH is known to bind C-

reactive protein, which is found in drusen and is elevated in the BrM and CC of AMD patients 

compared to similarly aged control individuals, and this interaction is weakened by the Y402H 

polymorphism (Laine et al., 2007; Ormsby et al., 2008; Yu et al., 2007). The Y402H variant also 

has reduced affinity for glycosaminoglycans, CFH ligands present in BrM and on the RPE 

surface (Clark et al., 2010). Furthermore, levels of CFH are decreased in the BrM and CC of 
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AMD patients compared to aged control donors (Bhutto et al., 2011). These findings have led to 

the hypothesis that autoinflammation mediated by complement dysregulation may promote 

AMD (Anderson et al., 2010). 

In addition, a SNP encoding a phenylalanine (F) at amino acid 412 instead of leucine (L) 

in TLR3, a PRR involved in innate immune detection of double-stranded RNA (dsRNA), is 

significantly associated with protection from GA (Yang et al., 2008). Primary cultured RPE cells 

heterozygous for the TLR3 L and F variants exhibit a 50% reduction in TLR3-mediated 

cytotoxicity in response to the dsRNA analog polyinosinic:polycytidiylic acid, compared to cells 

homozygous for the L variant, supporting the concept that the protection from GA conferred by 

the TLR3 F variant is due to a reduction in TLR3 function. Interestingly, TLR3 induction by 

dsRNA molecules of at least 21 nucleotides in length protects mice from laser injury-induced 

CNV (Kleinman et al., 2008). This observation suggests that inflammation may play 

independent roles in the pathogenesis of GA and neovascular AMD. However, analyses of 

subfoveal neovascular membranes from patients with wet AMD have detected an abundance of 

inflammatory cells such as macrophages (Oh et al., 1999). It has been postulated that 

inflammatory cytokines secreted by macrophages, including IL-1β, may stimulate RPE cells to 

produce VEGF, thereby promoting CNV. Accordingly, depletion of macrophages using 

liposomal clodronate reduces the extent of laser-induced CNV in mice (Espinosa-Heidmann et 

al., 2003; Sakurai et al., 2003). 

The seemingly contradictory roles of inflammation in CNV have been proposed to be 

due to the differential contributions of classically activated and alternatively activated 

macrophages (Ambati et al., 2013). Stimulation of macrophages with molecules such as LPS or 

the Th1-type cytokine interferon-γ results in classical activation, also known as M1 activation 

(Classen et al., 2009). Conversely, the alternatively activated, or M2, macrophage phenotype is 

induced by the Th2-type cytokines IL-4 and IL-13 (Lawrence and Natoli, 2011; Tugal et al., 

2013). M1 macrophages are pro-inflammatory, whereas M2 macrophages are anti-
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inflammatory, promote angiogenesis, and facilitate wound healing and tissue repair (Cao et al., 

2011; Lawrence and Natoli, 2011). Therefore, contrasting effects of innate immune processes in 

CNV may be due to the highly divergent roles of M1 and M2 macrophages. 

Many constituents of drusen have documented roles in immune-related or inflammatory 

processes, and drusen deposits and atherosclerotic plaques share many constituents, indicating 

that AMD may be mediated by inflammatory processes similar to those at play in 

atherosclerosis (Mullins et al., 2000). For instance, the NLRP3 agonist Aβ is detected both in 

drusen and in Alzheimer’s disease plaques (Halle et al., 2008; Johnson et al., 2002; Liu et al., 

2013). AGEs, a category of chemically modified proteins and lipids also present in drusen, as 

well as in aged RPE and BrM, accumulate with age and promote inflammation (Glenn et al., 

2009; Xu et al., 2009; Yamada et al., 2006). AGEs are associated with a number of other age-

related diseases including T2DM, atherosclerosis, osteoarthritis, and Alzheimer’s disease, 

further supporting the involvement of inflammation in these pathologies (Reddy and Beyaz, 

2006). 

Despite the immune privileged nature of the retina, sera from AMD patients contain 

significantly higher titers of autoantibodies against retinal antigens than that of age-matched 

controls, leading some to postulate an autoimmune component in AMD (Buschini et al., 2011; 

Gurne et al., 1991; Mullins et al., 2000; Patel et al., 2005; Penfold et al., 1990). Notably, eyes 

from AMD patients have been found to contain significantly more proteins adducted to the 

oxidative stress product carboxyethylpyrrole (CEP) than eyes from age-matched control 

individuals, and autoantibodies against CEP are substantially elevated in the plasma of AMD 

patients compared to age-matched individuals without AMD (Crabb et al., 2002; Gu et al., 

2003). Immunization of mice with CEP adducted to mouse serum albumin (MSA) results in RPE 

degeneration reminiscent of GA that correlates with anti-CEP antibody titer (Hollyfield et al., 

2008). 

It is important to note that many age-associated pathologies of the developed world, 
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including atherosclerosis, T2DM, and neurodegenerative diseases, involve a low-grade 

inflammatory process that is intermediate between classic, frank inflammation and the basal 

state. This milder form of inflammation has been termed para-inflammation (Medzhitov, 2008). 

Whereas classic inflammation occurs in response to insults such as infection or tissue injury and 

is normally resolved, para-inflammation appears to be the body’s attempt to rectify more 

moderate perturbations from homeostasis such as tissue stress or malfunction. If dysfunctional 

conditions persist, para-inflammation is not resolved and becomes chronic and pathological. In 

the context of AMD, tissue stress and malfunction could be induced by oxidative stress, drusen 

deposition, AGE accumulation, and RPE lipofuscin buildup, as well as other insults. 

 

The NLRP3 inflammasome and AMD 

 

Myeloid-derived cells such as microglia and macrophages are potential mediators of 

NLRP3 inflammasome-induced inflammation in AMD. In addition, it has been found that certain 

non-immune cells that have barrier functions, such as keratinocytes, also express 

inflammasome components, enabling them to carry out some functions of myeloid cells 

(Dupaul-Chicoine et al., 2010; Feldmeyer et al., 2007; Watanabe et al., 2007; Yazdi et al., 2010; 

Yilmaz et al., 2010; Zaki et al., 2010). Similarly, we have shown that RPE cells, which represent 

the outer retinal barrier and contribute to retinal immune privilege, express the NLRP3 

inflammasome (Tseng et al., 2013). Recent reports have provided important information 

regarding the potential role of the NLRP3 inflammasome in AMD. One study found that drusen 

isolated from AMD eyes induces the NLRP3 inflammasome in macrophages and dendritic cells 

in vitro (Doyle et al., 2012). This study also demonstrates that the complement protein C1Q, a 

constituent of drusen, activates NLRP3 in myeloid-derived cells via phagolysosomal disruption. 

Two additional reports demonstrate that RPE cells do indeed exhibit NLRP3 inflammasome 

activity (Tarallo et al., 2012; Tseng et al., 2013). In one of these reports, the accumulation of 
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RNA transcripts expressed from the Alu retrotransposon in RPE cells was shown to trigger 

NLRP3 via mitochondrial ROS, leading to inflammasome-mediated IL-18 secretion (Tarallo et 

al., 2012). 

Interestingly, these studies have come to contrasting conclusions regarding the 

involvement of NLRP3 in AMD. In the CEP-MSA immunization mouse model of GA, NLRP3 and 

cleaved caspase-1 colocalize with the macrophage marker F4/80, implying that NLRP3 

inflammasome activity in GA occurs in macrophages (Doyle et al., 2012). In contrast, GA was 

hypothesized to be mediated by Alu-induced NLRP3 inflammasome activity in RPE cells without 

the requirement of immune cells (Tarallo et al., 2012). While one report implicates NLRP3 

inflammasome activity and IL-18 secretion as mediators of GA (Tarallo et al., 2012), the other 

suggests that NLRP3 and IL-18 protect against CNV induced by laser injury (Doyle et al., 2012). 

It is possible that NLRP3-mediated IL-18 plays differential roles in GA and neovascular AMD but 

clearly further investigation is necessary to elucidate this question. 

Whereas IL-18 has been implicated in the pathogenesis of AMD, a role for IL-1β in AMD 

has yet to be identified. Unlike IL-18, processing of IL-1β by the inflammasome requires a 

priming signal to induce expression of pro-IL-1β. As such, it is possible that the mouse models 

of AMD pathology used in the studies described above supplied signals that induced NLRP3 

inflammasome assembly, but not priming. Consistent with this hypothesis, Alu RNA transcript 

accumulation activates NLRP3 in RPE cells but does not upregulate pro-IL-1β (Tarallo et al., 

2012). Thus, I was interested to determine whether RPE cells could secrete IL-1β when 

appropriate priming signals are provided. The findings that drusen deposits activate NLRP3 in 

myeloid cells, that the drusen component C1Q induces NLRP3 via lysosomal destabilization, 

and that RPE cells express NLRP3 inflammasome components suggest that exposure of RPE 

cells to AMD-related substances such as drusen or lipofuscin may activate NLRP3. Therefore, 

the work in this thesis aimed to test the hypothesis that lysosomal destabilization activates the 

NLRP3 inflammasome in RPE cells, and that RPE cells secrete mature IL-1β if primed with an 
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NF-κB agonist to induce expression of pro-IL-1β prior to inflammasome activation. This was 

accomplished by: evaluating the expression of NLRP3 in the RPE in vitro and in vivo; 

determining if pro-IL-1β expression could be induced in RPE by priming; assessing the effect of 

priming on the levels of individual components of the NLRP3 inflammasome; evaluating the 

ability of lysosomal destabilization to activate the inflammasome in RPE cells; and 

characterizing the effects of inflammasome induction in RPE cells, with particular emphasis on 

IL-1β processing and the cell death mechanism pyroptosis. 
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EXPRESSION OF NLRP3 INFLAMMASOME COMPONENTS AND  

INFLAMMASOME PRIMING IN RPE CELLS 
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PREFACE 

 

The Results and Discussion sections of this chapter are adapted from portions of the article, 

“NLRP3 inflammasome activation in retinal pigment epithelial cells by lysosomal destabilization: 

implications for age-related macular degeneration,” by W.A. Tseng, T. Thein, K. Kinnunen, K. 

Lashkari, M.S. Gregory, P.A. D’Amore, and B.R. Ksander in Investigative Ophthalmology & 

Visual Science, January 2013, Vol. 54, No. 1, pages 110-120, the copyright of which is held by 

The Association for Research in Vision and Ophthalmology, Inc. Although the Results and 

Discussion of this chapter have been largely reproduced from parts of the original article, 

adaptations have been made to include data on hfRPE cells in Figures 5 and 6 and in the text of 

the Results section, to improve readability of the figures when displayed in the format of this 

dissertation, to maintain uniformity of abbreviations, and to better blend copied segments into 

the context of the chapter and the dissertation as a whole. 
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RATIONALE 

 

Whereas inflammasomes have been most heavily studied in hematopoietic cells of the 

myeloid lineage, such as monocytes and macrophages, non-myeloid cells such as keratinocytes 

and intestinal epithelial cells have been demonstrated to express components of the NLRP3 

inflammasome and to activate the NLRP3 inflammasome (Feldmeyer et al., 2007; Watanabe et 

al., 2007; Yilmaz et al., 2010; Zaki et al., 2010). Epithelial cells constitute the barriers that 

separate the body from the external environment or delimit a bodily compartment with restricted 

immune cell access. It has therefore been suggested that the inflammasome activity of these 

non-myeloid cells may complement the innate immune system by rapidly responding to 

pathogens or tissue damage (Yazdi et al., 2010). The RPE helps to maintain the blood-retinal 

barrier that contributes to retinal immune privilege, and thus it is reasonable that they express 

and can activate the NLRP3 inflammasome. 

Each of the components of the NLRP3 inflammasome, NLRP3, ASC, and procaspase-1, 

plays a critical role in the inflammasome (Latz et al., 2013). The scaffold protein NLRP3 detects 

PAMPs and DAMPs via mechanisms that remain unclear. When activated, NLRP3 binds the 

adaptor protein ASC via homotypic pyrin domain interactions. In turn, ASC recruits procaspase-

1 into the complex via their CARDs, leading to the autocatalytic activation of caspase-1, the 

primary effector enzyme of the inflammasome. Caspase-1 processes cytokine precursors into 

their mature forms through proteolytic cleavage. The IL-1β precursor, pro-IL-1β, is one of the 

best-characterized substrates of caspase-1. However, transcription of pro-IL-1β is not 

constitutive, but requires pro-inflammatory stimulation in a step known as “priming,” which is 

mediated by NF-κB. Additionally, in many cell types including human and mouse macrophages, 

NLRP3 is not expressed under basal conditions and also requires priming (Bauernfeind et al., 

2009). In the course of the pathogenesis of AMD, it is thought that numerous inflammation-

related molecules, including complement proteins and other molecules present in drusen, 
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accumulate in the vicinity of the RPE. I speculate that these AMD-associated molecules may 

prime the RPE, leading to the upregulation of pro-IL-1β and NLRP3. 

Thus, I propose that RPE cells express the components of the NLRP3 inflammasome, 

and that priming with NF-κB agonists will induce RPE cells to express pro-IL-1β. This chapter 

reports the evaluation of the expression of NLRP3 in human eyes, the expression of NLRP3 

inflammasome components in cultured RPE cells, and the ability of NF-κB-activating agents to 

prime RPE cells to express pro-IL-1β. As priming may be required for NLRP3 expression and 

could also affect ASC and procaspase-1, the effect of priming on the levels of NLRP3 

inflammasome components was also examined. 

 

RESULTS 

 

NLRP3 is localized to the RPE and drusen of the eyes of patients with AMD 

 

I first sought to determine whether NLRP3 is expressed by human RPE in vivo, and 

whether there are qualitative differences between its presence in patients with AMD, in the form 

of GA or neovascular AMD, and age-matched individuals without AMD. Outer retinal sections 

were collected from two donors with GA, two donors with neovascular AMD, and three age-

matched donors that were unaffected by AMD. The sections were stained with an antibody 

against NLRP3 or an isotype control (Figure 3). As a positive control of NLRP3 expression, 

human conjunctival tissue corresponding to each eye was also stained with the same 

antibodies. NLRP3 (red, arrowheads) was detected in the RPE of eyes affected by either GA or 

neovascular AMD; there was no staining in sections from the same donors with the control 

antibody. Several sections from GA-affected eyes contained drusen within the transitional zone, 

and there was substantial extracellular NLRP3 staining both in choroidal cells beneath BrM and 

on the basal side of RPE cells adjacent to areas of drusen (Figure 3, A and B). NLRP3 was also  
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Figure 3. Expression of NLRP3 in AMD-affected eyes. Retinas from donors with (A-C) GA, 
(D-F) neovascular AMD, or (G) unaffected eyes were stained for NLRP3. NLRP3 (red, 
arrowheads) was detected in the RPE of eyes affected with either form of AMD. (A, B) 
Representative sections of the transitional zone in eyes with GA shows areas of staining in the 
choroidal cells just beneath BrM (A, arrowheads) as well as in the basal side of the RPE 
adjacent to confluent drusen (B, arrowheads). Some drusen deposits in GA eyes also stained 
for NLRP3. (D, E) Representative sections just outside the area of choroidal neovascularization 
display staining in the vicinity of thickened BrM as well as in basal RPE (D, arrowheads). 
NLRP3 staining was also seen within the thickened BrM representing basal linear deposits (E, 
arrowheads). (C, F) There was no detectable signal in sections from the same donors stained 
with an isotype control. (G) A representative section from an age-matched donor unaffected by 
AMD did not exhibit any NLRP3 expression. 
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detected extracellularly in the vicinity of thickened BrM (Figure 3D) and associated with basal 

linear deposits (Figure 3E) in eyes with neovascular AMD outside the area of choroidal 

neovascularization as well as in basal RPE (Figure 3D). NLRP3 was only detected at sites of 

GA or neovascular lesions in AMD eyes and was not observed in the RPE of lesion-free areas 

of the retina. In contrast to AMD-affected eyes, there was not detectable NLRP3 staining in 

outer retinal sections from eyes of age-matched donors unaffected by AMD. 

 

NLRP3 is expressed in human RPE cells in vitro 

 

 Motivated by the observation of NLRP3 in RPE of AMD patients, I investigated the 

expression of NLRP3 by RPE cells in vitro using the human RPE cell line ARPE-19. ARPE-19 

cells were cultured on Transwell membranes for four weeks to allow them to polarize and form 

tight junctions, characteristics of differentiated RPE in vivo. Immunocytochemical localization 

revealed NLRP3 distributed in a punctate pattern throughout the cells (Figure 4A). Confocal 

microscopy indicated that NLRP3 was preferentially localized toward the basal aspect of the 

cells (Figure 4A). 

Next, I evaluated NLRP3 protein expression in ARPE-19 cells by immunoblotting (Figure 

4B). Two methods were used to definitively identify the NLRP3 band in western blotting: specific 

knockdown of NLRP3 with siRNA against NLRP3 and the inclusion of a positive control that 

consisted of cells that were transfected with NLRP3. ARPE-19 cells cultured in plastic wells 

were transfected with a pool of 4 siRNAs against NLRP3 (siNLRP3) or a non-targeting control 

siRNA pool. Table 1 lists the target sequences of the siRNAs in each pool. A band migrating 

slightly above 100 kDa, which is consistent with the predicted molecular weights of known 

NLRP3 isoforms, was detected in the control-transfected cells and was reduced by 77% using 

siNLRP3 (Figure 4B) (Kummer et al., 2007). The identity of this band as NLRP3 was further 

confirmed using a lysate of HEK293T cells overexpressing NLRP3 tagged with DDK (identical to  
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Figure 4. Expression of NLRP3 in human RPE cells in vitro. (A) ARPE-19 cells were 
cultured on Transwell membranes for four weeks to form a polarized monolayer. Monolayers 
were fixed, permeabilized, and stained for NLRP3 (red) and with DAPI to reveal nuclei (blue). Z-
stacks of polarized monolayers were generated using confocal microscopy. (B) ARPE-19 cells 
grown on plastic wells were transfected with an siRNA pool against human NLRP3 or a control 
siRNA pool. ARPE-19 lysates were subjected to immunoblotting for NLRP3, with α-tubulin as a 
loading control. Densitometry was performed using ImageJ (NIH). Tubulin-normalized NLRP3 
band densities are presented as their value relative to the control. (C) The lysates of ARPE-19 
cells were compared to those of HEK293T cells overexpressing DDK-tagged NLRP3 
(HEK293T-NLRP3) and a mock-transfected HEK293T lysate (HEK293T-Mock) to confirm the 
identify of the NLRP3 band. THP-1 cells served as a reference for NLRP3 levels in a cell type 
with known NLRP3 inflammasome activity. Lysates were immunoblotted for NLRP3, with α-
tubulin as a loading control, and reprobed for the DDK tag fused to the NLRP3 overexpressed in 
HEK293T cells. 
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Table 1. Target sequences of siRNAs used in this study. Pooled siRNA against NLRP3 and 
a non-targeting control siRNA pool were obtained from Dharmacon. Each pool contains 4 
siRNAs, whose target sequences are presented above. 
 
siRNA Pool Target Sequences 

NLRP3 #1 – 5’-GCAAGACCAAGACGUGUGA-3’ 

#2 – 5’-GAAGUGGGGUUCAGAUAAU-3’ 

#3 – 5’-UGCAAGAUCUCUCAGCAAA-3’ 

#4 – 5’-GGAUCAAACUACUCUGUGA-3’ 

Control #1 – 5’-UGGUUUACAUGUCGACUAA-3’ 

#2 – 5’-UGGUUUACAUGUUGUGUGA-3’ 

#3 – 5’-UGGUUUACAUGUUUUCUGA-3’ 

#4 – 5’-UGGUUUACAUGUUUUCCUA-3’ 
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FLAG). The ~100 kDa band observed in lysates of ARPE-19 co-migrated with a protein that was 

heavily enriched in the NLRP3-overexpressing lysate compared to mock-transfected HEK293T 

lysate (Figure 4C). A band at this molecular weight is also present in the human monocytic 

leukemia cell line THP-1, which has been demonstrated to express NLRP3 and is known to 

have NLRP3 inflammasome activity (Kanneganti, 2010; Niemi et al., 2011; Rajamaki et al., 

2010). Reprobing the same blot with an anti-DDK tag antibody revealed that the enriched band 

in the NLRP3-overexpressing HEK293T lysate is indeed NLRP3. Taken together, these results 

conclusively demonstrate the expression of NLRP3 by ARPE-19 cells. 

 

Priming of RPE cells with NF-κB agonists induces pro-IL-1β expression 

 

I next sought to determine if ARPE-19 cells could be primed to express pro-IL-1β, a 

classical inflammasome substrate. In myeloid cells, pro-IL-1β expression is induced by priming 

with a NF-κB activating stimulus such as LPS (Hiscott et al., 1993; Schroder and Tschopp, 

2010). To determine if NF-κB agonists prime ARPE-19 cells, the cells were treated with LPS, IL-

1α, or TNFα at concentrations of 4 ng/ml and 50 ng/ml for 24 or 48 hours. Immunoblotting of 

ARPE-19 lysates revealed that while pro-IL-1β was barely detectable in the absence of NF-κB 

agonists, treatment with IL-1α or TNFα induced pro-IL-1β expression, with IL-1α inducing the 

highest levels (Figure 5A). In contrast, LPS did not upregulate pro-IL-1β under the conditions 

tested, an observation that is consistent with the fact that the levels of TLR4 are markedly 

reduced in ARPE-19 compared to primary RPE (Gnana-Prakasam et al., 2008).  

Due to the extent of its priming activity, IL-1α was selected for use in subsequent 

experiments. Thus, I further evaluated the dose- and time-dependency of the induction of pro-

IL-1β by IL-1α. Confluent ARPE-19 cells were treated with an IL-1α dose curve for 48 hours 

(Figure 5B) or with 4 ng/ml IL-1α for a range of times up to 48 hours (Figure 5C). Pro-IL-1β was 

induced by IL-1α in a dose-dependent manner. Detectable levels of pro-IL-1β were expressed in  
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Figure 5. Priming of RPE cells by inducers of NF-κB. (A) ARPE-19 cells grown to confluence 
on plastic wells were treated with the NF-κB activating agents LPS, IL-1α, or TNFα at a 
concentration of 4 ng/ml or 50 ng/ml for 24 hr or 48 hr, or were left untreated as a negative 
control (Ctrl). (B and C) Confluent ARPE-19 cells were treated with increasing concentrations of 
IL-1α for 48 hr (B) or 4 ng/ml IL-1α for increasing lengths of time (C). (D) hfRPE cells were 
treated in duplicate with a range of concentrations of IL-1α, or 100 ng/ml LPS, for 24 hr. Cell 
lysates were immunoblotted for pro-IL-1β, after which blots were stripped and reprobed for 
GAPDH as a loading control. Densitometry was performed using ImageJ (NIH), and GAPDH-
normalized band intensities are displayed for each condition. 
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response to the lowest dose of IL-1α evaluated, approximately 1.5 ng/ml. Doubling the IL-1α 

dose to roughly 3.1 ng/ml resulted in a nearly threefold increase in pro-IL-1β levels. Each 

additional twofold increase in IL-1α dose, up to 25 ng/ml, the maximum dose tested, induced a 

1.3- to 1.5-fold upregulation in pro-IL-1β. Treatment of ARPE-19 cells with 4 ng/ml IL-1α 

upregulated pro-IL-1β expression in a time-dependent fashion. At three hours, pro-IL-1β was 

barely detectable, and this level roughly doubled by six hours. Between six and twelve hours, 

pro-IL-1β levels increased by approximately 4.5-fold. From twelve to 24 hours, pro-IL-1β was 

further upregulated by 1.8-fold, at which point levels of pro-IL-1β reached a maximum, changing 

minimally between 24 and 48 hours.  

After observing that molecules such as IL-1α can prime ARPE-19 cells to express pro-IL-

1β, the effect of IL-1α on primary human fetal RPE (hfRPE) cells was evaluated. hfRPE cells 

were treated with a dose curve of IL-1α up to 100 ng/ml (Figure 5D); other hfRPE cells were 

treated with 100 ng/ml LPS as a comparison. As expected, pro-IL-1β was not expressed by 

unprimed hfRPE cells but, similar to ARPE-19 cells, the addition of IL-1α led to a dose-

dependent increase in the expression of pro-IL-1β. LPS did not induce pro-IL-1β in hfRPE cells. 

 

Expression of NLRP3 inflammasome components in human RPE cells 

 

ARPE-19 cells were next evaluated for the expression of the critical NLRP3 

inflammasome components ASC and procaspase-1. In addition, I examined the effect of priming 

on the expression of NLRP3, ASC, and procaspase-1. In addition to inducing the expression of 

pro-IL-1β, priming has also been reported to increase the expression of other inflammasome 

components, including NLRP3, in some cell types such as mouse macrophages (Bauernfeind et 

al., 2009). ARPE-19 cells were treated with a dose-curve of IL-1α up to 25 ng/ml, and lysates 

were immunoblotted for NLRP3, ASC and caspase-1. 

NLRP3 was expressed by ARPE-19 cells in the absence of priming, and its expression  
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Figure 6. Effect of priming on expression of NLRP3 inflammasome components in human 
RPE cells. ARPE-19 cells were treated with (A, B, and C) increasing concentrations of IL-1α for 
48 hours or (D) with 4 ng/ml IL-1α for a time course up to 48 hours. Lysates were 
immunoblotted for (A) NLRP3, (B) ASC, or (C and D) procaspase-1. (E) hfRPE cells were 
treated in duplicate with a range of concentrations of IL-1α for 24 hours, and lysates were 
immunoblotted for NLRP3. All blots were stripped and reprobed for GAPDH or α-tubulin as a 
loading control. Densitometry was performed using ImageJ, and band intensities were 
normalized to GAPDH or α-tubulin. Densitometry results are expressed as a fold-change 
compared to unprimed cells. 
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was largely unresponsive to IL-1α (Figure 6A). Maximal NLRP3 induction of 1.6-fold was 

achieved at 25 ng/ml IL-1α, the highest IL-1α dose tested (Figure 6A). Similarly, ASC was 

expressed under basal conditions and was not increased by treatment with IL-1α (Figure 6B). 

On the other hand, procaspase-1 was expressed under unprimed conditions but its levels were 

further increased by IL-1α in a dose-dependent manner, reaching a maximal induction of five- to 

six-fold when stimulated by 12.5 ng/ml IL-1α or higher (Figure 6C). The time-dependency of 

procaspase-1 upregulation was evaluated by treating ARPE-19 cells with 4 ng/ml IL-1α for a 

range of times up to 48 hours. Procaspase-1 levels increased throughout the time course, 

reaching a five-fold induction at 48 hours (Figure 6D). The effect of priming on NLRP3 

expression was also assessed in primary hfRPE cells (Figure 6E). Like ARPE-19 cells, hfRPE 

cells expressed NLRP3 under basal conditions, and the levels of NLRP3 were not further 

increased by treatment with IL-1α. 

 

DISCUSSION 

 

These data establish an association between characteristics of human AMD and NLRP3 

expression by RPE. I detected NLRP3 protein in the RPE of donor human eyes affected by 

AMD, but not in eyes of age-matched controls. NLRP3 expression in vivo was associated with 

both GA and neovascular AMD, and was detected both intracellularly in the RPE as well as 

extracellularly in drusen and in the vicinity of BrM, likely released from dying RPE cells. These 

results also demonstrate the expression of NLRP3 inflammasome components by RPE cells in 

vitro and the induction of the IL-1β precursor, pro-IL-1β, by RPE cells. Studies in myeloid cells 

have shown that NF-κB-mediated priming signals induce the expression of both NLRP3 and 

pro-IL-1β (Bauernfeind et al., 2009), and we speculate that molecular changes in the outer 

retina that occur during the pathogenesis of AMD, such as the accumulation of proinflammatory 

molecules in drusen deposits (Ambati et al., 2013), may induce these changes in RPE. 
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It is unclear whether the association of NLRP3 expression with GA and neovascular 

AMD reflects shared events in their pathogeneses or are a common result of distinct processes, 

as their etiologies are currently unsolved. Dry AMD can lead to neovascular AMD (Imrie and 

Bailey, 2007), suggesting common events in their development. However, some cases of 

neovascular AMD occur in the absence of dry AMD, and it is hypothesized that neovascular 

AMD and GA have differing etiologies, with CC degeneration and drusen-mediated RPE atrophy 

proposed as their initial insults, respectively (Bhutto and Lutty, 2012). However, CC loss may 

occur secondary to RPE deterioration, and vice versa, so neovascular AMD and GA may share 

common pathological features, but dissimilar initial insults. It is likely that NLRP3 upregulation is 

induced by one or more of these shared characteristics. 

Unlike the pigment epithelium in vivo, RPE cells in vitro expressed NLRP3 without 

proinflammatory stimulation. This is likely due to culture conditions where cells are released 

from contact inhibition in the process of isolation and subsequent trypsinization and are 

continuously exposed to elevated levels of stimulators present in the serum. The unstimulated 

ARPE-19 and hfRPE cells, however, did not express pro-IL-1β, indicating that culture conditions 

do not entirely mimic conditions of priming. Priming ARPE-19 or hfRPE cells with IL-1α induced 

pro-IL-1β expression. The finding that LPS did not induce pro-IL-1β expression in ARPE-19 

cells is consistent with previous reports that whereas primary RPE cells express the LPS 

receptor TLR4, it is downregulated in ARPE-19 cells (Gnana-Prakasam et al., 2008; Kindzelskii 

et al., 2004; Kumar et al., 2004). However, the inability of LPS to prime sixth- to eighth-passage 

hfRPE cells suggests that expression of TLR4 or a downstream signaling molecule may decline 

with passage in culture. 

The identity of the molecule(s) that might prime the RPE in the context of AMD is not 

known. As the expression of pro-IL-1β is downstream of NF-κB, any molecule that activates NF-

κB is a potential priming agent (Hiscott et al., 1993; Schroder and Tschopp, 2010). Although IL-

1α was the most potent priming agent evaluated in this study, I also found that TNFα induced 
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RPE cells to express pro-IL-1β. TNFα, which has been localized in choroidal neovascular 

membranes obtained from AMD-affected eyes (Oh et al., 1999; Wang et al., 1999), regulates 

several activities in RPE cells, such as attachment, spreading, and migration (Jin et al., 2000; 

Yang et al., 2005), and has been implicated in the development of laser-induced CNV (Jasielska 

et al., 2010; Lichtlen et al., 2010). Additionally, higher levels of proteins adducted to CEP have 

been detected in eyes from donors with AMD than in age-matched controls (Hollyfield et al., 

2008). CEP-adducted human serum albumin (HSA) has been shown to prime murine and 

human macrophages and mononuclear cells (Doyle et al., 2012), so it is plausible that CEP 

adducts act similarly on RPE cells. Thus, although the specific stimuli that prime RPE cells in 

AMD remain uncertain, it is clear that NLRP3 is upregulated in the RPE of eyes afflicted with 

AMD. Thus, one or more of the molecular changes in the outer retina that are associated with 

AMD prime the NLRP3 inflammasome in human RPE cells. 

 

CAVEATS, LIMITATIONS, AND POTENTIAL RESOLUTIONS 

 

It is important to note a caveat associated with the immunohistochemistry of human 

ocular sections described in this chapter, which detected NLRP3 in the RPE of eyes affected by 

advanced AMD (Figure 3). The antibody used for NLRP3 immunohistochemistry is the same 

antibody that was used for NLRP3 immunoblotting (Figure 4), where it can be seen that it 

yielded a number of prominent non-specific bands. It is the case that the same antisera did not 

yield any labeling in the sections of retinas from donor eyes without AMD. However, to be 

entirely confident in the staining, it would be important to verify the specificity of the 

immunohistochemistry. An appropriate control to assess antibody specificity would be to stain 

with antisera that had been immunoabsorbed with the antibody’s immunizing peptide. Use of 

immunoabsorbed antisera would eliminate specific staining and any labeling observed would be 

deemed non-specific.
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CHAPTER 3 

 

 

 

ACTIVATION OF THE NLRP3 INFLAMMASOME IN RPE CELLS  

VIA LYSOSOMAL DESTABILIZATION 
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PREFACE 

 

The Results and Discussion sections of this chapter are adapted from portions of the article, 

“NLRP3 inflammasome activation in retinal pigment epithelial cells by lysosomal destabilization: 

implications for age-related macular degeneration,” by W.A. Tseng, T. Thein, K. Kinnunen, K. 

Lashkari, M.S. Gregory, P.A. D’Amore, and B.R. Ksander in Investigative Ophthalmology & 

Visual Science, January 2013, Vol. 54, No. 1, pages 110-120, the copyright of which is held by 

The Association for Research in Vision and Ophthalmology, Inc. Figures 8 and 10 have been 

added to include data on hfRPE cells and the text of the Results and Discussion sections have 

been adapted to reflect this new data. 
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RATIONALE 

 

NLRP3 inflammasome activity is regulated at two levels by signals associated with 

cellular danger, such as pathogen infection or tissue damage (Rathinam et al., 2012a). Certain 

signals induce the activation of the NLRP3 scaffold protein, resulting in inflammasome assembly 

and activation of caspase-1, whereas other signals are responsible for the transcriptional 

induction of pro-IL-1β, in a process known as priming. In many cell types, priming signals are 

also necessary for the expression of NLRP3 (Bauernfeind et al., 2009). I have demonstrated 

that RPE cells express all of the components of the inflammasome: NLRP3, ASC, and 

procaspase-1. I have also shown that priming RPE cells with NF-κB agonists such as IL-1α 

induces expression of pro-IL-1β. However, it remains to be seen whether the NLRP3 

inflammasome can be activated in RPE cells. The danger signals that activate the NLRP3 

inflammasome are numerous and chemically diverse, and include extracellular ATP, microbial 

pore-forming toxins, and a wide variety of crystals and insoluble particles or aggregates (Franchi 

et al., 2012). The crystals and insoluble substances that have been demonstrated to induce the 

NLRP3 inflammasome include Aβ, asbestos fibers, and crystals of MSU, calcium 

pyrophosphate dihydrate, silica, cholesterol, or alum. 

Crystalline or insoluble matter has been reported to induce the NLRP3 inflammasome 

via a mechanism involving lysosomal destabilization (Duewell et al., 2010; Halle et al., 2008; 

Hornung et al., 2008). Evidence suggests a model in which crystals and particles are 

internalized into endosomes or phagosomes, which fuse with lysosomes. Crystals and 

particulate matter damage the endolysosomal or phagolysosomal membrane, leading to the 

leakage of lysosomal enzymes such as cathepsins into the cytosol where they mediate 

signaling that activates NLRP3. The mechanism through which NLRP3 is activated remains 

unclear, but may involve degradation of an inhibitory NLR, NLRP10 (Murphy et al., 2013). In 

support of this model of mechanical destabilization of the lysosomes, blockade of phagocytosis 
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by disrupting cytoskeletal dynamics abrogates crystal-induced inflammasome activation 

(Duewell et al., 2010; Halle et al., 2008; Hornung et al., 2008). Similarly, preventing the activity 

of pH-sensitive lysosomal enzymes by inhibiting lysosomal acidification suppresses crystal-

mediated NLRP3 inflammasome induction. In addition, activation of the NLRP3 inflammasome 

by crystals is partially but significantly inhibited by genetic deletion or pharmacological blockade 

of cathepsin B or cathepsin L. Furthermore, phagocytosis-independent disruption of lysosomes 

using the lysosomotropic compound Leu-Leu-OMe also induces the NLRP3 inflammasome via 

lysosomal enzymes including cathepsin B. 

During AMD pathogenesis, RPE cells are exposed to insoluble material in the form of 

drusen deposits that accumulate between the basement membrane of the RPE and the inner 

collagenous layer of BrM. Drusen have a heterogeneous composition and are comprised of 

lipids such as cholesterol and proteins such as vitronectin, complement proteins, and amyloid 

proteins (Hageman et al., 1999; Isas et al., 2010; Wang et al., 2010). Phagocytosis of the 

drusen components Aβ and complement protein C1Q by myeloid-derived cells induces the 

NLRP3 inflammasome via lysosomal destabilization (Doyle et al., 2012; Halle et al., 2008). 

Furthermore, incubation of myeloid cells with drusen isolated from AMD-affected eyes activates 

the NLRP3 inflammasome (Doyle et al., 2012). In addition to drusen deposition, AMD 

pathogenesis also involves the accumulation of a pigmented, granular substance called 

lipofuscin in RPE lysosomes. RPE lipofuscin is believed to be the product of incomplete 

degradation of phagocytosed material. A2E, a constituent of RPE lipofuscin, has detergent-like 

properties and has been demonstrated to disrupt lysosomal membranes (Schutt et al., 2002; 

Sparrow et al., 2006). 

In light of the involvement of lysosomal disruption in NLRP3 inflammasome activation in 

myeloid-derived cells, the accumulation of potential sources of RPE lysosomal damage during 

AMD progression, and the presence of NLRP3 inflammasome components in RPE cells, I 

hypothesize that lysosomal destabilization induces the NLRP3 inflammasome in RPE cells. This 
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chapter presents evidence demonstrating that chemical disruption of RPE lysosomes triggers 

inflammasome activation, as evidenced by the activation of caspase-1 and the induction of 

inflammasome effector functions such as IL-1β processing and caspase-1-dependent 

programmed cell death, known as pyroptosis. 

 

RESULTS 

 

Lysosomal destabilization in RPE cells activates caspase-1 

 

Having found that ARPE-19 cells expressed the components of the NLRP3 

inflammasome (Chapter 2), I assessed whether the destabilization of their lysosomes would 

lead to inflammasome activation as measured by the activation of caspase-1, and I evaluated 

the involvement of lysosomal enzymes in this process. The lysosomotropic agent Leu-Leu-OMe, 

which is converted within the lysosome to membranolytic derivatives by dipeptidyl peptidase I 

(DPP-I), was used to disrupt lysosomes (Thiele and Lipsky, 1990). Staining with acridine 

orange, which fluorescently labels DNA and RNA as green and lysosomes as red, was used to 

assess the effects of Leu-Leu-OMe on lysosomal integrity (Figure 7A). Whereas control ARPE-

19 cells contained red punctate structures characteristic of intact lysosomes, treatment with 1 

mM Leu-Leu-OMe triggered a loss of lysosomal staining indicative of lysosomal destabilization. 

Caspase-1 activation was evaluated using the fluorescent labeled inhibitor of caspases 

(FLICA) probe FAM-YVAD-FMK that specifically labels active caspase-1. While activated 

caspase-1 was undetectable in untreated ARPE-19 cells, treatment with 1 mM Leu-Leu-OMe for 

2 hours induced significant caspase-1 activation (Figure 7, B and C). To control for the 

possibility that effects of Leu-Leu-OMe unrelated to lysosomal destabilization were responsible 

for inflammasome activation, a DPP-I inhibitor (Gly-Phe-CHN2) was used to block the disruption 

of lysosomes by Leu-Leu-OMe. Addition of Gly-Phe-CHN2 30 minutes prior to Leu-Leu-OMe  
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Figure 7. Lysosomal destabilization activates caspase-1 in ARPE-19 cells. (A) ARPE-19 
cells were stained with 5 µM acridine orange for 30 minutes and treated for 30-45 minutes with 
1 mM Leu-Leu-OMe or control buffer. Fluorescence microscopy was used to detect acridine 
orange sequestered in lysosomes (red) or bound to DNA or RNA (green). Scale bars, 50 µm. 
(B) ARPE-19 cells were primed with 4 ng/ml IL-1α for 48 hours. Cells were treated with 1 mM 
Leu-Leu-OMe for 2 hours to disrupt lysosomes, or left untreated (Control). Lysosomal 
destabilization induced by Leu-Leu-OMe was blocked by inhibiting DPP-I via addition of 10 µM 
Gly-Phe-CHN2 to cells 30 minutes before addition of Leu-Leu-OMe. The lysosomal proteases 
cathepsins B and L were inhibited using 50 µM Z-FF-FMK. Active caspase-1 was detected by 
the FLICA probe FAM-YVAD-FMK (green). Nuclei were labeled by staining with Hoechst 33342 
(blue). Scale bars, 100 µm. (C) Green active caspase-1 signal was quantified and normalized to 
number of nuclei. Numerical data are represented as mean ± standard error of the mean (SEM); 
n = 3. * indicates P<0.01 vs. Control; § indicates P<0.01 vs. Leu-Leu-OMe with no inhibitor. 
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abrogated its ability to activate the inflammasome (Figure 7, B and C), supporting the 

conclusion that lysosomal destabilization triggers the NLRP3 inflammasome in ARPE-19 cells. 

Previous reports demonstrate that lysosomal enzymes, particularly cathepsins B and L, 

released from destabilized lysosomes play a critical role in the induction of the NLRP3 

inflammasome in myeloid cells (Duewell et al., 2010; Hornung et al., 2008; Rajamaki et al., 

2010). Therefore, the cathepsin B and L inhibitor Z-FF-FMK was used to assess the 

involvement of these lysosomal enzymes in NLRP3 activation in ARPE-19 cells (Iwata et al., 

2003; Ravanko et al., 2004). Pre-treatment with Z-FF-FMK significantly inhibited activation of 

caspase-1 by Leu-Leu-OMe (Figure 7, B and C), indicating a role for cathepsins B and/or L in 

NLRP3 inflammasome induction in RPE cells. 

After the demonstration that lysosomal disruption activated caspase-1 in ARPE-19 cells 

via a cathepsin-mediated mechanism, I evaluated inflammasome activity in primary hfRPE cells 

using the caspase-1 FLICA probe (Figure 8). The effects of priming and lysosomal 

destabilization on caspase-1 activation were assessed in hfRPE cells cultured on plastic (Figure 

8A) or maintained on Transwell membranes to induce polarization and maturation (Figure 8B). 

In the absence of lysosomal damage, no active caspase-1 was detected. However, disruption of 

lysosomal integrity with Leu-Leu-OMe triggered caspase-1 activation. Without priming, only 

minimal levels of active caspase-1 were observed, but substantially higher levels were 

generated in cells that were primed for 24 hours with IL-1α prior to Leu-Leu-OMe treatment. 

These results were similar whether hfRPE cells were maintained on Transwell membranes or 

grown on plastic. Furthermore, inhibition of DPP-I in order to prevent Leu-Leu-OMe-mediated 

lysosomal membrane disruption abrogated caspase-1 activation (Figure 8C). Inhibition of 

cathepsins B and L or cathepsin B alone also blocked caspase-1 activation in hfRPE cells by 

lysosomal destabilization (Figure 8C). 

 

Lysosomal destabilization in RPE cells induces IL-1β release and cytotoxicity 
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Figure 8. Lysosomal disruption activates caspase-1 in primary RPE cells. (A) hfRPE cells 
were grown to confluence on plastic wells or (B) maintained on Transwell membranes and were 
primed with 10 ng/ml IL-1α or treated with control buffer for 24 hours. Cells were then treated 
with 1 mM Leu-Leu-OMe or control buffer for 2 hours. Active caspase-1 (green) was detected 
with the FLICA probe FAM-YVAD-FMK, and Hoechst 33342 was used to stain nuclei (blue). (C) 
hfRPE cells maintained on Transwell membranes were primed with 10 ng/ml IL-1α for 24 hours. 
Appropriate wells were then treated with the DPP-I inhibitor Gly-Phe-CHN2 (10 µM), the 
cathepsin B and L inhibitor Z-FF-FMK (50 µM) and the selective cathepsin B inhibitor CA-074-
Me (50 µM). After 30 minutes, lysosomal disruption was induced by treatment with 1 mM Leu-
Leu-OMe for 2 hours. Active caspase-1 (green) was detected with FAM-YVAD-FMK, and phase 
contrast microscopy was used to image cell morphology. Scale bars: (A) 100 µm, (B) 50 µm, (C) 
100 µm. 
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I next investigated whether lysosomal disruption can induce release of mature IL-1β from 

primed cells. Although IL-1β ELISAs are much less sensitive for pro-IL-1β than the mature form 

(Herzyk et al., 1992), pro-IL-1β released from dying cells may be misinterpreted as low levels of 

cleaved IL-1β. Immunoblotting demonstrated that Leu-Leu-OMe triggered the release of mature 

IL-1β from IL-1α-primed ARPE-19 cells that co-migrated with recombinant human mature IL-1β 

(Figure 9A). Thus, specific detection of the mature form of IL-1β can only be achieved by 

immunoblotting of conditioned media, as it clearly distinguishes between mature IL-1β (17 kDa) 

and its precursor (31-35 kDa) by virtue of their molecular weights.  

After demonstrating that mature IL-1β is secreted by ARPE-19 cells treated with Leu-

Leu-OMe, I used ELISA to quantify the amount of IL-1β secreted and to investigate the 

mechanisms involved. Leu-Leu-OMe induced the release of approximately 40 pg/ml IL-1β after 

3 hours and this release was completely blocked by DPP-I inhibition, indicating that Leu-Leu-

OMe acted through lysosomal destabilization (Figure 9B). The selective caspase-1 inhibitor Z-

YVAD-FMK also significantly reduced IL-1β secretion, indicating that the lysosomal damage-

induced IL-1β release from ARPE-19 cells is mediated by caspase-1 and the inflammasome. 

Additionally, inhibition of cathepsins B and L using Z-FF-FMK blocked IL-1β secretion, 

supporting a role for these lysosomal enzymes in inflammasome activation in ARPE-19 cells. 

Treatment with Leu-Leu-OMe also caused substantial cytotoxicity, as assessed by 

lactate dehydrogenase (LDH) release. ARPE-19 cells treated with Leu-Leu-OMe for 3 hours 

exhibited 40-50% cell death (Figure 9B). As with IL-1β secretion, cytotoxicity induced by Leu-

Leu-OMe was completely blocked by inhibition of DPP-I or cathepsins B and L. Furthermore, 

the cell death caused by lysosomal disruption was completely suppressed by the caspase-1 

inhibitor, indicating an inflammasome-mediated death mechanism. 

Inflammasome-mediated IL-1β release (Figure 10A) and cell death (Figure 10B) were 

also evaluated in primary hfRPE cells. IL-1α-primed hfRPE cells treated with Leu-Leu-OMe 

released more than 60 pg/ml of IL-1β, as measured by ELISA. Consistent with the lack of pro-
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Figure 9. ARPE-19 cells secrete IL-1β  and undergo pyroptotic cell death in response to 
lysosomal destabilization. (A) ARPE-19 cells primed with 15 ng/ml IL-1α for 48 hr were 
treated with 1 mM Leu-Leu-OMe (Leu) to disrupt lysosomes or received control buffer (Ctrl). 
After 3 hours, conditioned media (CM) were concentrated and immunoblotted to detect mature 
IL-1β (17 kDa) and distinguish it from its precursor (31-35 kDa). A serial dilution of 0-200 pg 
recombinant human IL-1β was used as reference. (B) IL-1β ELISA was performed on CM from 
ARPE-19 cells treated with 1 mM Leu-Leu-OMe. LDH release was quantified to evaluate 
cytotoxicity. The selective inhibitors Gly-Phe-CHN2 (5 µM), Z-YVAD-FMK (10 µM), and Z-FF-
FMK (50 µM) were used to block the activity of DPP-I, caspase-1, and cathepsins B and L, 
respectively. Data represent mean ± SEM of three experiments. * indicates P<0.01 vs. Control, 
§ indicates P<0.01 vs. Leu-Leu-OMe with no inhibitor. 
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Figure 10. Lysosomal destabilization induces IL-1β release and pyroptosis in human 
primary RPE cells. hfRPE cells were primed with 10 ng/ml IL-1α or treated with control buffer 
for 24 hours. The DPP-I inhibitor Gly-Phe-CHN2 (10 µM), the caspase-1 inhibitor Z-YVAD-FMK 
(10 µM), the cathepsin B and L inhibitor Z-FF-FMK (50 µM), and the selective cathepsin B 
inhibitor CA-074-Me (50 µM) were added to appropriate wells. After 30 minutes, 1 mM Leu-Leu-
OMe was added to destabilize lysosomes. Following a 3-hour incubation, conditioned media 
were collected. (A) ELISA was performed to quantify levels of IL-1β released into hfRPE 
conditioned media. (B) LDH levels in hfRPE conditioned media were quantified to evaluate 
cytotoxicity. Experiment was performed in triplicate, and data are represented as the mean ± 
standard deviation. 
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IL-1β expression in RPE cells under basal conditions, unprimed hfRPE cells did not release IL-

1β even when treated with Leu-Leu-OMe. Primed cells treated with Leu-Leu-OMe also exhibited 

30-40% cytotoxicity, as detected by LDH release. Cell death was significantly lower in unprimed 

hfRPE cells compared to primed cells. Lysosomal destabilization was required for both IL-1β 

release and cell death, as they were abrogated by inhibition of DPP-I. Blockade of cathepsins B 

and L significantly reduced IL-1β release and cytotoxicity, and inhibition of cathepsin B alone 

lowered IL-1β release and cell death to a similar degree, suggesting that cathepsin B is the 

predominant lysosomal enzyme involved in inflammasome activation in primary RPE cells. 

 

DISCUSSION 

 

Chemical disruption of lysosomes using Leu-Leu-OMe triggered inflammasome 

activation in RPE cells, as evidenced by the detection of active caspase-1, which mediated IL-

1β release and RPE cell death. Pre-treatment with Gly-Phe-CHN2 inhibited the intralysosomal 

conversion of Leu-Leu-OMe to membranolytic metabolites by DPP-I, preventing Leu-Leu-OMe-

mediated lysosomal destabilization and inflammasome activation. Blocking lysosomal 

destabilization abolished caspase-1 activation, IL-1β release, and RPE cytotoxicity. These 

results demonstrate that inflammasome activation and its downstream effects were induced by 

lysosomal destabilization, rather than unrelated effects of Leu-Leu-OMe. Additionally, the fact 

that inhibition of the lysosomal enzymes cathepsins B and L blocked lysosomal damage-

induced inflammasome activation, IL-1β release, and pyroptosis is consistent with previous 

reports implicating these enzymes as mediators of NLRP3 inflammasome assembly in myeloid-

derived cells (Duewell et al., 2010; Hornung et al., 2008). Whereas cathepsins B and L each 

played only a partial role in NLRP3 activation in myeloid cells, cathepsin B was responsible for a 

majority of the caspase-1 activation, IL-1β, and cell death induced by lysosomal destabilization 

in primary RPE cells, suggesting that cathepsin B is the predominant lysosomal enzyme 
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responsible for NLRP3 induction in the RPE. 

These results support a model in which RPE lysosomal damage results in the leakage of 

cathepsin B into the cytosol, where it activates NLRP3 through either direct interaction or an 

intermediary signaling pathway. A recent study reported a mechanism for the induction of 

NLRP3 inflammasome formation by phagolysosomal destabilization in glial cells, in which 

cathepsins B and L degrade NLRP10, a NLR that inhibits NLRP3 inflammasome assembly by 

binding ASC and preventing it from interacting with NLRP3 (Murphy et al., 2013). Therefore, 

release of cathepsins B and L from lysosomes into the cytosol facilitates NLRP10 degradation 

and mediates NLRP3 inflammasome activation. It is likely that this mechanism mediates NLRP3 

inflammasome formation in RPE cells as well. As expression of NLRP10 has not yet been 

reported in RPE cells, the possibility exists that another protein performs its function in the RPE. 

Intracellular pro-IL-1β has been reported to be produced by RPE cells (Planck et al., 

1993), but my finding is the first to demonstrate inflammasome-mediated processing of mature 

IL-1β from RPE cells. As expected, levels of IL-1β released from RPE cells are significantly 

lower than those released from myeloid cells in response to lysosomal disruption, which are on 

the order of 1 ng/ml (Hornung et al., 2008). The term “para-inflammation” has been coined to 

describe a response to tissue stress that is intermediate between inflammation and the basal 

state (Medzhitov, 2008). Such low-level inflammation is hypothesized to play a role in age-

related and inflammatory disorders such as AMD and atherosclerosis (Buschini et al., 2011; Xu 

et al., 2009). I speculate that the IL-1β released by RPE cells in response to lysosomal damage 

mediates para-inflammation, thus contributing to AMD. A number of AMD-associated insults 

could be responsible for RPE lysosomal destabilization and inflammasome activation during the 

pathogenesis of AMD. Isolated drusen deposits as well as the drusen components Aβ and 

complement factor C1Q have been shown to activate the NLRP3 inflammasome in myeloid cells 

(Doyle et al., 2012; Halle et al., 2008; Isas et al., 2010). Additionally, the formation of drusen is 
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hypothesized to occur due to exocytosis of undegraded waste material resulting from impaired 

lysosomal digestive capability (Ambati et al., 2013). Therefore, drusen deposition may be 

secondary to the accumulation of insoluble substances in lysosomes that could disrupt the 

lysosomal membrane. Furthermore, the lipofuscin component A2E, which accumulates in RPE 

lysosomes, has an amphiphilic molecular structure that grants it detergent-like chemical 

properties that disrupt lysosomal membranes (Schutt et al., 2002; Sparrow et al., 1999). 

I demonstrated that RPE cytotoxicity resulting from lysosomal destabilization is caspase-

1-dependent. This is characteristic of ‘pyroptosis,’ a mode of programmed cell death mediated 

by the inflammasome and caspase-1, rather than apoptotic caspases such as caspase-3 (Miao 

et al., 2010a). Although apoptosis and pyroptosis are both processes of regulated cell death, 

pyroptosis is a proinflammatory mode of cell death, whereas apoptosis is non-inflammatory. 

While the plasma membrane is speculated to remain intact during apoptosis, pyroptosis 

involves plasma membrane rupture and release of intracellular contents, allowing for its 

quantification by measurement of LDH release (Bergsbaken et al., 2009; Fernandes-Alnemri et 

al., 2009; Suzuki et al., 2007). Hence, I speculate that the inflammasome may contribute to 

AMD via both cytokine release and pyroptotic RPE death. 

The data reported here support a two-signal model of NLRP3 inflammasome induction 

by disruption of RPE lysosomes. Priming signals such as IL-1α, TNFα, or CEP adducts induce 

expression of pro-IL-1β and NLRP3. Disruption of RPE lysosomes, which may be caused by 

lipofuscin, drusen components, or other insoluble lysosomal contents, triggers NLRP3 

inflammasome assembly via lysosomal enzymes such as cathepsin B. The assembled 

inflammasome activates caspase-1, which cleaves pro-IL-1β to form mature IL-1β and also 

mediates pyroptotic RPE cell death. My results have shown that both priming and lysosomal 

damage must occur for RPE cells to release IL-1β. Furthermore, priming substantially elevates 

the levels of active caspase-1 generated following lysosomal destabilization, and priming also 

significantly increases pyroptosis. Although these processes are independent of pro-IL-1β 
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expression, they are likely enhanced by the upregulation of procaspase-1 induced by priming 

with IL-1α. 

Two recent studies present different hypotheses regarding the function of the NLRP3 

inflammasome pathway in AMD. One study using a mouse model of laser-induced CNV 

suggests that NLRP3 has a protective role in neovascular AMD by inducing IL-18 release from 

infiltrating macrophages, which in turn reduces VEGF secretion by RPE cells (Doyle et al., 

2012), whereas a second study using a mouse model of Alu RNA-induced GA suggests that 

NLRP3 plays a destructive role in dry AMD by inducing IL-18 secretion from RPE cells (Tarallo 

et al., 2012). Although it is plausible that IL-18 may protect against CNV via inhibition of VEGF 

production by RPE cells, the laser injury model of CNV is an acute wound-healing model that 

bears little mechanistic resemblance to neovascular AMD (Marneros, 2013). As previous 

studies suggest the NLRP3 inflammasome promotes epithelial tissue repair via IL-18 (Dupaul-

Chicoine et al., 2010; Zaki et al., 2010), it is likely that the protective effects of IL-18 in the laser-

induced CNV model are a reflection of its role in wound healing, rather than AMD. Nevertheless, 

it is possible that the NLRP3 inflammasome may have distinct roles in wet and dry advanced 

AMD, or even influence the development of one form over the other. 

The data presented in this chapter demonstrate that lysosomal destabilization can 

activate the NLRP3 inflammasome in RPE cells, inducing the secretion of the potent 

proinflammatory cytokine IL-1β from primed cells and pyroptosis. These processes may 

constitute novel mechanisms for AMD pathogenesis. The activators and effectors of the NLRP3 

inflammasome are consistent with the phenotype of AMD. Taken together with convincing 

genetic data that implicate a role for inflammation (Donoso et al., 2006; Gold et al., 2006; 

Hageman et al., 2005; Nozaki et al., 2006), our findings suggest a mechanism by which insults 

such as drusen deposition and lipofuscin accumulation can contribute to AMD pathology. 

 

CAVEATS, LIMITATIONS, AND POTENTIAL RESOLUTIONS 
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The experiments reported in this chapter to examine the biochemical mechanism of 

inflammasome activation in RPE cells have are limited by the fact that they rely on small 

molecule or peptide-based inhibitors of enzymes. Such inhibitors may have off-target activities 

that can confound the analyses of their effects. For example, peptide fluoromethyl ketones, such 

as the compounds Z-YVAD-FMK and Z-FF-FMK used in this study to inhibit caspase-1 and 

cathepsins B and L, respectively, can exhibit off-target inhibition via non-specific reaction of the 

fluoromethyl ketone moiety with active site cysteines of other enzymes. To account for this 

issue, experiments involving peptide fluoromethyl ketone inhibitors should include a negative 

control inhibitor. Z-FA-FMK is often used as a specificity control for experiments involving 

peptide fluoromethyl ketone inhibitors of caspases, as Z-FA-FMK does not specifically target 

caspases. However, Z-FA-FMK does target cathepsins B and L, which are believed to mediate 

NLRP3 inflammasome activation. Therefore, Z-FA-FMK is not a suitable control for this system. 

Instead, one could use an inhibitor of an apoptotic caspase, such as caspase-8, the initiator 

caspase of the extrinsic apoptotic pathway. Z-IETD-FMK is a peptide fluoromethyl ketone that 

targets caspase-8, and is not specific for caspase-1 or cathepsins. If off-target activity is 

responsible for the effects of Z-YVAD-FMK or Z-FF-FMK, then Z-IETD-FMK should produce 

similar results. 

An alternative approach to addressing the issue of inhibitor specificity is to deplete the 

protein levels of the enzymes of interest via RNA interference. The enzymes caspase-1, 

cathepsin B, and cathepsin L could be silenced via siRNA or shRNA in order to validate the 

results generated by the small molecule inhibitors. Furthermore, to ensure that the effects on 

inflammasome function are due to knockdown of the target gene, RPE cells can be transfected 

with an RNAi-resistant mutant version of the gene or its ortholog from a different species. 

Suppression of inflammasome activation or effector functions such as IL-1β processing or 

pyroptosis induction by the silencing of the enzyme, followed by rescue of inflammasome 
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activity by the RNAi-resistant mutant, would confirm the role of the enzyme suggested by the 

inhibitor studies. 
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GENERAL DISCUSSION 
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The NLRP3 inflammasome plays a key role in the innate immune system. In response to 

a variety of signals indicative of microbial infection or tissue damage, the NLRP3 inflammasome 

mediates the processing and release of inflammatory cytokines such as IL-1β and IL-18. It also 

promotes a form of pro-inflammatory programmed cell death known as pyroptosis. However, the 

dysregulation of NLRP3 inflammasome activity can have highly detrimental effects. Pathological 

NLRP3 activity can occur as a result of gain-of-function mutations, as in the case of the CAPS 

spectrum of disorders, or due to the accumulation of NLRP3 agonists including insoluble 

particles, crystals, or aggregates that activate NLRP3 via lysosomal destabilization. Deposition 

of substances such as MSU crystals, silica crystals, cholesterol crystals, and Aβ, induce NLRP3 

inflammasome activity that leads to inflammatory diseases including gout, silicosis, 

atherosclerosis, and Alzheimer’s disease, respectively (Cassel et al., 2008; Duewell et al., 2010; 

Halle et al., 2008; Martinon et al., 2006; Rajamaki et al., 2010). My research provides evidence 

that lysosomal disruption in RPE cells activates the NLRP3 inflammasome, suggesting that the 

NLRP3 inflammasome may also contribute to the pathogenesis of AMD. 

Although drusen deposition, the accumulation of lipofuscin in RPE lysosomes, and RPE 

lysosomal dysfunction have all been associated with AMD, the nature of their involvement in the 

development of AMD, if any, has remained unclear. Additionally, although mounting evidence 

indicates that inflammation plays a role in the pathogenesis of AMD, the mechanism underlying 

this inflammation has not been determined. The finding that RPE lysosomal destabilization 

activates the NLRP3 inflammasome, resulting in IL-1β release and pyroptotic cell death, points 

to a mechanism by which features associated with AMD, such as drusen or lipofuscin, may lead 

to inflammation and cytotoxicity. 

In addition to my work, there are several other recent reports describing NLRP3 

inflammasome activity in the RPE or in animal models of AMD that corroborate many of my 

findings (Doyle et al., 2012; Marneros, 2013; Tarallo et al., 2012). Collectively, this body of 

research sheds important light on the contribution of the NLRP3 inflammasome to AMD, while 
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raising key questions about the nature and mechanism of that contribution. As there is currently 

no Food and Drug Administration-approved treatment for GA, the advanced form of dry AMD, 

this research may open much-needed avenues for therapeutic intervention. Certain disorders 

mediated by the NLRP3 inflammasome, such as CAPS, are treated using agents that target the 

IL-1 pathway, suggesting that it is possible that such treatments may be effective against GA. 

 

 

Expression of NLRP3 inflammasome components and pro-IL-1β in the RPE 

 

I found that NLRP3 is expressed in the RPE of patients with GA and neovascular AMD, 

but is absent in the RPE of age-matched individuals without AMD. This finding is consistent with 

observations in myeloid-derived cells, which indicate that NLRP3 is often not constitutively 

expressed, but instead requires induction known as priming, which also triggers expression of 

pro-IL-1β (Bauernfeind et al., 2009). Priming can be achieved by a pro-inflammatory stimulus 

that activates NF-κB (Hiscott et al., 1993). For example, the NF-κB agonist LPS is frequently 

used to prime myeloid cells in culture. In contrast to RPE in vivo, I found that cultured RPE cells 

express NLRP3 constitutively, although production of pro-IL-1β required stimulation by a NF-κB-

inducing cytokine such as IL-1α or TNFα. The constitutive expression of NLRP3 by RPE in 

culture, but not in vivo, is likely due to conditions associated with in vitro cell culture such as the 

presence of serum or culture on a plastic substratum.  

Although priming of RPE cells in vitro is achieved by IL-1α and TNFα, and experiments 

involving myeloid cells often utilize LPS as a priming agent, the factor or factors that induce 

NLRP3 and pro-IL-1β expression in vivo remain unclear. However, the observation that NLRP3 

is expressed in the RPE of eyes affected by advanced AMD, but not control eyes without AMD, 

suggests that molecular or cellular changes associated with the development of AMD mediate 

the pathological priming of the RPE. Of the candidate priming agents that I tested, IL-1α was the 
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most effective. It is possible that IL-1α may be released as a result of age-related damage 

associated with AMD. IL-1α is a mediator of sterile inflammation, an inflammatory response 

against stimuli that are not pathogens (Lukens et al., 2012). Cell death, tissue damage, and 

particles or crystals such as MSU can activate a sterile inflammatory response. Like IL-1β, IL-1α 

is synthesized as an intracellular precursor lacking a signal peptide. However, whereas pro-IL-

1β is inactive, pro-IL-1α is biologically active, and its release from necrotic or pyroptotic cells 

induces local inflammation (Kim et al., 2013). Furthermore, various inflammatory cytokines, 

including IL-1α itself, IL-1β, or TNFα, have been shown to stimulate RPE cells to produce the IL-

1α precursor (Jaffe et al., 1992). Death of aged RPE cells may cause the release of IL-1α, 

leading to the priming of RPE cells in the vicinity. 

In addition to IL-1α, TNFα also primes RPE cells in vitro. Macrophage-derived TNFα has 

been reported to contribute to wet AMD, as macrophages present in surgically excised choroidal 

neovascular membranes express TNFα (Oh et al., 1999), and inhibition of TNFα signaling in an 

experimental laser-induced murine model of CNV reduced the size of CNV lesions and the 

extent of permeability (Shi et al., 2006). Furthermore, intravitreal injection of the drusen 

constituent Aβ induces prolonged transcriptional upregulation of TNFα in the neuroretina and 

transient upregulation in the RPE/choroid, suggesting that secretion of TNFα may occur in 

retinas of eyes with drusen (Liu et al., 2013). 

A recent paper demonstrated that CEP-protein adducts can prime myeloid-derived cells 

to express pro-IL-1β (Doyle et al., 2012). CEP-protein adducts are products of oxidation found in 

greater abundance in the outer retinal tissues and sera of AMD patients than normal human 

donors. Induction of inflammasome assembly in bone marrow-derived macrophages via 

treatment with ATP resulted in production of IL-1β when the cells were first primed with HSA 

adducted to CEP, but not HSA alone. It was also shown that CEP-induced priming is mediated 

by TLR2, as macrophages from TLR2-null mice did not produce IL-1β when primed with CEP-

adducted HSA and activated by ATP. In mice, RPE cells have been found to express low levels 
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of TLR2, which is upregulated by exposure to LPS (Fujimoto et al., 2010). Thus, it is possible 

that CEP-protein adducts may prime RPE cells. 

Unlike pro-IL-1β, I detected both ASC and procaspase-1 under basal conditions. 

However, similar to pro-IL-1β, the levels of procaspase-1 were upregulated by priming, whereas 

ASC expression was largely unresponsive to priming. It remains unclear whether the expression 

of procaspase-1 is regulated in vivo as it is in vitro, but it is possible that priming is required for 

procaspase-1 expression in vivo as part of a mechanism to control inflammasome activity in the 

RPE. Based on studies in myeloid cells, it has been hypothesized that two signals are required 

for NLRP3 inflammasome activation, i.e. a priming signal to induce NLRP3 and pro-IL-1β 

expression and an activation signal to trigger inflammasome assembly. This level of control 

presumably exists to ensure that production of IL-1β, a very potent pro-inflammatory cytokine, 

only occurs in response to appropriate stimuli. Since RPE cells are not “professional” immune 

cells, it is possible that they may maintain even stricter control over the expression of 

inflammasome components than myeloid cells, requiring priming not only for expression of pro-

IL-1β and NLRP3, but also upregulation of procaspase-1. This would not only prevent 

unintended activation of the NLRP3 inflammasome, but all of the inflammasomes. 

Interestingly, both RPE cells and myeloid-derived cells such as macrophages are 

capable of phagocytosis. Whereas myeloid cells ingest foreign substances or pathogens, RPE 

cells primarily phagocytose the outer segment discs shed by photoreceptors. This RPE function 

is necessary for the replenishment of the chromophore 11-cis retinal, which is converted to all-

trans retinal upon absorption of a photon (Sparrow et al., 2010). Photoreceptors do not express 

the enzymes necessary to convert all-trans retinal back to 11-cis retinal, whereas RPE cells do. 

Thus, all-trans retinal is transferred to an outer segment disc where it undergoes reduction to 

form all-trans retinol. Upon phagocytosis of the discs by the RPE, the enzymes LRAT, RPE65, 

and 11-cis retinol dehydrogenase convert all-trans retinol to 11-cis retinal, which is subsequently 

returned to the photoreceptor (Sparrow et al., 2010). Disc shedding and phagocytosis are 
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influenced by daily light-dark cycles, with shedding and phagocytosis peaking shortly after the 

onset of light and reaching their lowest levels during darkness (Grace et al., 1999). Since 

phagocytosis is a primary function of both RPE cells and myeloid-derived immune cells, it may 

be that the ability to express NLRP3 is a characteristic of phagocytes. 

 

Activation of the NLRP3 inflammasome in RPE cells by lysosomal destabilization 

 

As the expression of NLRP3 is not sufficient to activate the NLRP3 inflammasome, 

identification of the stimuli that activate the inflammasome in RPE cells is essential to evaluating 

the role that the NLRP3 inflammasome may play in AMD. Lysosomal destabilization has been 

shown to activate the NLRP3 inflammasome in myeloid cells, and I have demonstrated that 

destabilization of RPE lysosomes triggers inflammasome activation. To disrupt RPE lysosomes, 

I utilized the compound Leu-Leu-OMe, which accumulates in lysosomes and is converted to a 

membranolytic derivative by the intralysosomal enzyme DPP-I. Inhibition of DPP-I has allowed 

me to demonstrate that inflammasome activation induced by Leu-Leu-OMe is due to lysosomal 

disruption, rather than off-target effects of the molecule.  

Studies using myeloid cells have indicated that lysosomal destabilization activates 

NLRP3 via a mechanism involving lysosomal proteases, specifically cathepsins B and L 

(Duewell et al., 2010; Halle et al., 2008; Hornung et al., 2008; Rajamaki et al., 2010). Similarly, I 

have found that cathepsin B, and possibly cathepsin L, released by lysosomal membrane 

damage, are responsible for activating the NLRP3 inflammasome. A recent report demonstrated 

that NLRP3 inflammasome activation in glial cells by Aβ involves the degradation of NLRP10 by 

cathepsins B and L (Murphy et al., 2013). NLRP10 is a NLR family member that possesses a 

pyrin domain and a nucleotide-binding domain, but lacks leucine-rich repeats seen in other 

NLRs. NLRP10 negatively regulates inflammasome assembly by binding ASC and preventing 

its recruitment by NLRP3. During NLRP3 inflammasome assembly, NLRP3 recruits ASC 
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molecules and induces their oligomerization into a speck-like structure. NLRP10 antagonizes 

this process by binding ASC and preventing its association with NLRP3. Phagocytosis of Aβ by 

glial cells results in lysosomal destabilization and release of cathepsins B and L into the cytosol, 

where they degrade NLRP10, enabling binding of NLRP3 to ASC and assembly of the 

inflammasome. It is highly likely that lysosomal destabilization activates the NLRP3 

inflammasome through a similar mechanism in RPE cells, either involving degradation of 

NLRP10 or an analogous inhibitory protein. 

 

Drusen and lipofuscin as potential destabilizers of RPE lysosomes 

 

The progression of AMD is thought to involve several sources of RPE lysosomal 

damage, including drusen, BLinD, and lipofuscin. Phagocytosis of isolated drusen deposits or 

drusen components such as the complement component C1Q has been reported to activate the 

NLRP3 inflammasome in myeloid cells (Doyle et al., 2012). In light of the fact that it is the 

insoluble physical nature of insoluble or particulate matter that is responsible for their ability to 

disrupt lysosomes and activate NLRP3, rather than their biochemical activity, it is likely that 

internalization of drusen, BLinD, or their constituents by RPE cells would also induce the NLRP3 

inflammasome.  

A recent study using rats found that intravitreal injection of the drusen constituent Aβ 1-

40 led to the upregulation of genes including IL-1β, IL-18, and NLRP3 in the RPE/choroid (Liu et 

al., 2013). The specificity of this effect was demonstrated by the induction of IL-1β protein in the 

retinas and RPE of rats injected with Aβ 1-40, but not the non-aggregating reverse control 

peptide, Aβ 40-1. Levels of both IL-1β and IL-18 were significantly elevated in the vitreous of Aβ 

1-40-injected rats, compared to their Aβ 40-1-injected counterparts. Consistent with the fact that 

that the cytokines were generated by the RPE, microglial activation was minimal. Despite the 

elevation in cytokine levels, no changes in neuroretinal thickness were noted in animals injected 
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with Aβ 1-40 up to 49 days post-injection, and there was no evidence of neovascularization or 

BrM disruption. The upregulation of NLRP3 and IL-1β observed in the RPE/choroid suggests 

that RPE cells are primed by exposure to Aβ 1-40. Additionally, the detection of IL-1β in the 

neuroretina and RPE, as well as the elevation of IL-1β and IL-18 in the vitreous, suggests that 

Aβ 1-40, and likely other drusen components, can activate the inflammasome in the RPE in 

vivo. One caveat with this study, however, is that it was not demonstrated that the cytokines had 

been processed into their mature forms. Furthermore, although microglial activation was 

minimal, it remains possible that a low level of microglial inflammasome activity could generate 

the cytokine levels observed in the study, rather than or in addition to the RPE. 

It is important to note that the phagocytosis of outer segment discs takes place on the 

apical surface of the RPE, whereas drusen deposits are localized basolaterally. It seems 

unlikely that any phagocytosis occurs on the basolateral surface, as molecules that mediate 

photoreceptor outer segment phagocytosis, such as αvβ5 integrin and Mer tyrosine kinase, have 

an apical localization (Nandrot et al., 2012). It is speculated that drusen deposition is the result, 

at least in part, of exocytosis or transcytosis that occurs when the capacity for lysosomal 

degradation has been exceeded or impaired (Ambati et al., 2013; Krohne et al., 2010). 

Consistent with this notion, exosome marker proteins such as CD63 and LAMP2 have been 

shown to be present in drusen from AMD patients, but not in age-matched control individuals 

(Wang et al., 2009). In rats, reduction of lysosomal degradative ability using chloroquine results 

in the deposition of undegraded phagocytosed photoreceptor outer segments in the space 

between the RPE and BrM (Peters et al., 2006). In a like fashion, modification of proteins with 

the lipid peroxidation products 4-hydroxynonenal and malondialdehyde reduces their 

degradation in RPE lysosomes (Krohne et al., 2010). Modification of photoreceptor outer 

segment proteins with these products, followed by phagocytosis of the outer segments by 

ARPE-19 cells polarized on Transwell membranes, results in the release of undegraded outer 

segment proteins in the basolateral medium. It has been similarly observed in frog RPE that 
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residual products of lysosomal degradation are basolaterally exocytosed and accumulate 

between the RPE and BrM (Rungger-Brandle et al., 1987). Furthermore, presentation of latex 

particles to the apical surfaces of RPE cells leads to their ingestion and subsequent release on 

the basolateral side (Matsumura et al., 1985). These findings suggest that materials found in 

drusen may have originated from RPE lysosomes, with the corollary that drusen deposition 

results from impaired RPE lysosomal function. The presence in RPE lysosomes of molecules 

known to be constituents of drusen and/or the accumulation of undegraded material in 

dysfunctional RPE lysosomes may result in lysosomal membrane disruption and subsequent 

NLRP3 inflammasome activation. Additionally, although drusen accumulate on the basolateral 

surface, reticular pseudodrusen, which are also correlated with AMD progression, occur on the 

apical surface of the RPE and may be phagocytosed. 

Lipofuscin, a pigmented, granular substance of heterogeneous composition consisting of 

the indigestible byproducts of lysosomal degradation, is also a characteristic of AMD. Lipofuscin 

accumulates in a number of cell types, especially postmitotic cells with substantial metabolic 

activity, including cardiac myocytes and some types of neurons (Sparrow and Boulton, 2005). A 

number of the compounds of RPE lipofuscin are derived from molecules present in 

phagocytosed outer segments. One such compound, the bisretinoid fluorophore A2E, is a major 

component of RPE lipofuscin (Schutt et al., 2007). However, the notion that A2E is a component 

of lipofuscin has recently been challenged, based on the finding that it does not colocalize with 

lipofuscin fluorescence in the human RPE (Ablonczy et al., 2013; Smith et al., 2013). If true, 

RPE lipofuscin nonetheless contains a number of bisretinoid molecules with similar chemical 

attributes as A2E, and therefore may have comparable effects on cells (Sparrow et al., 2013). 

A2E has been demonstrated to exhibit detergent-like properties and can destabilize lysosomal 

membranes (Schutt et al., 2002; Sparrow et al., 1999). Accordingly, a recent study reported that 

endocytosis of A2E by ARPE-19 cells in vitro activates the inflammasome, as evidenced by the 

formation of ASC speck-like complexes and the release of IL-1β from IL-1α-primed ARPE-19 
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cells (Anderson et al., 2013). Furthermore, the release of IL-1β from primed RPE cells is 

dependent on caspase-1 activity and is significantly inhibited by blockade of cathepsin B, 

suggesting that A2E-induced inflammasome activation occurs through cathepsin-mediated 

induction of the NLRP3 inflammasome. Thus, lysosomal destabilization represents a 

mechanism through which features associated with AMD may promote AMD pathology. 

 

Effector functions of the NLRP3 inflammasome in AMD 

 

Inflammasomes are capable of a number of effector functions, including the processing 

and release of mature IL-1β and IL-18, as well as caspase-1-mediated programmed cell death, 

or pyroptosis. My work demonstrates that activation of the inflammasome in primed RPE cells 

results in IL-1β maturation and release, as well as pyroptotic cell death. Pyroptosis mediated by 

caspase-1 may lead directly to RPE cell death, contributing to GA, whereas IL-1β may 

contribute to AMD via inflammation. 

It should be noted that the levels of IL-1β released from RPE cells are modest compared 

to those released from myeloid-derived cells (Halle et al., 2008; Hornung et al., 2008). However, 

the inflammation associated with AMD is low-level and chronic in nature, and the relatively low 

levels of IL-1β generated by the RPE are consistent with this fact. The term para-inflammation 

has been used to describe a low-grade inflammatory response that is intermediate between the 

basal state and classic frank inflammation (Medzhitov, 2008). It is hypothesized that both classic 

inflammation and para-inflammation are mechanisms by which the body attempts to restore 

tissue homeostasis. Classic inflammation is a reaction to severe departures from tissue 

homeostasis, such as infection or overt tissue damage, whereas para-inflammation is a 

response to more moderate tissue dysfunction or stress that could result from exposure to 

noxious conditions, such as oxidative stress. Persistence of tissue stress or dysfunction may 

lead to a maladaptive state of chronic para-inflammation. Para-inflammation is believed to 
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contribute to pathological conditions such as atherosclerosis, obesity, type 2 diabetes mellitus, 

and neurodegenerative diseases (Xu et al., 2009). It is suspected that factors such as the age-

related accumulation of oxidative damage in the outer retina, the deposition of drusen, the 

decline in RPE lysosomal degradative function over time, and other age-related retinal changes 

generate outer retinal tissue stress, resulting in chronic para-inflammation that contributes to 

AMD. My findings suggest that NLRP3 inflammasome activity in the RPE may be involved in 

para-inflammation in the outer retina. Lysosomal damage in the RPE, which is a form of tissue 

stress or dysfunction, may trigger the production of low levels of IL-1β via the inflammasome, 

promoting para-inflammation, and ultimately, AMD. 

 

Comparison of NLRP3 inflammasome function in RPE versus myeloid cells 

 

A majority of the studies on inflammasomes have been conducted in myeloid cells so it 

is of interest to identify the commonalities and differences between inflammasome function in 

RPE cells and in myeloid cells. My work indicates that RPE cells, similar to myeloid cells, 

require priming to induce expression of both pro-IL-1β and NLRP3, indicating that the two cell 

types may share signaling mechanisms responsible for upregulating pro-IL-1β and NLRP3. In 

vitro, however, NLRP3 is constitutively expressed in RPE cells, likely due to the effects of 

culture conditions as we did not detect expression in non-diseased cells in vitro. 

Interestingly, my data demonstrated that priming also upregulates the expression of 

procaspase-1 in RPE cells in vitro, but procaspase-1 levels in myeloid cells have not been 

reported to respond to priming. It is important to note that a major function of myeloid cells is 

involvement in innate immunity whereas RPE cells serve a myriad of other essential roles. 

Therefore, it is possible that the requirement of priming for procaspase-1 upregulation may 

prevent unwarranted inflammasome activity in RPE cells. Also, RPE cells cannot be replaced if 

lost due to inflammation or pyroptotic cell death, whereas myeloid-derived cells are continually 
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replenished. Thus, the control of procaspase-1 levels via priming may restrict inflammasome 

activity in RPE cells only to situations where it is necessary, whereas this level of regulation is 

not essential in myeloid cells. That said, induction of procaspase-1 by priming in RPE cells has 

only been demonstrated in vitro, and this finding needs to be validated in vivo. 

Regarding the mechanism of NLRP3 inflammasome activation, my findings support a 

model in which lysosomal destabilization induces NLRP3 inflammasome assembly via 

cathepsins, a mechanism similar to what has been described in myeloid cells (Halle et al., 2008; 

Hornung et al., 2008). However, lysosomal destabilization is only one of several proposed 

mechanisms for NLRP3 inflammasome activation in myeloid cells; others include potassium 

efflux and ROS production, and my results do not preclude the possibility that the other 

mechanisms function in RPE cells as well. In support of this possibility, activation of the NLRP3 

inflammasome in RPE cells by Alu RNA elements has recently been shown to be mediated by 

the purinergic receptor P2X7 (Kerur et al., 2013). P2X7 functions as a ligand-gated cation 

channel that is opened by ATP. In myeloid cells, binding of extracellular ATP to P2X7 results in 

potassium efflux and subsequent induction of NLRP3 inflammasome assembly. The 

involvement of P2X7 in Alu RNA-mediated NLRP3 activation suggests that potassium efflux 

may trigger the NLRP3 inflammasome in RPE cells as well. 

It remains unclear, even in the well-studied context of myeloid cells, how signals as 

distinct as potassium efflux, ROS generation, and lysosomal destabilization induce assembly of 

the NLRP3 inflammasome. It seems likely that these diverse stimuli activate mechanisms that 

feed into a common pathway that is the proximal inducer of NLRP3. It is not clear that all of 

these pathways function in RPE cells. It has recently been reported that oxidative stress 

induced by hydrogen peroxide or tert-butyl hydroperoxide causes ARPE-19 cells to undergo 

necrotic cell death, without triggering apoptosis or pyroptosis (Hanus et al., 2013). In these 

studies caspase-1 was not activated by treatment with hydrogen peroxide or tert-butyl 

hydroperoxide, suggesting that the ROS pathway of NLRP3 activation does not function in RPE 
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cells as it does in myeloid cells. Further research is warranted to evaluate the similarities and 

differences between the inflammasome priming and activation pathways in RPE cells and those 

in myeloid cells. Figure 11 illustrates the findings presented in this dissertation with those 

described in the literature for RPE and myeloid cells. 

 

Involvement of the NLRP3 inflammasome in animal models of AMD 

 

Recently, several studies have evaluated the contribution of the NLRP3 inflammasome 

to AMD-like pathology in mice. Importantly, modeling AMD in mice is problematic as mice lack a 

macula and therefore do not develop true AMD. Furthermore, mice are short-lived with an 

average lifespan of two years, and therefore the development of age-related pathology requires 

experimental manipulation that is unlikely to accurately reflect the temporal mechanism of the 

disease. Nonetheless, mice are receptive to genetic manipulations such as gene knockout, 

making them useful, albeit imperfect, model organisms for the study of AMD. 

One study utilized mice with RPE-specific deletion of DICER1, which was demonstrated 

to lead to the intracellular accumulation of noncoding RNA transcripts expressed by the Alu 

retrotransposon (Tarallo et al., 2012). This accumulation of Alu transcripts in RPE results in 

degeneration mediated by the NLRP3 inflammasome and IL-18, but not by IL-1β. Deficiency in 

NLRP3, ASC, Casp1, or IL18 prevents Alu-induced RPE degeneration, whereas the absence of 

IL1R1, the receptor that mediates IL-1β signaling, does not. The authors hypothesize that 

activation of the NLRP3 inflammasome in RPE cells by Alu RNA generates mature IL-18, which 

induces the RPE degeneration observed in GA. A subsequent study from the same group found 

that Alu RNAs prime RPE cells via TLR-independent NF-κB induction and activate the NLRP3 

inflammasome via the P2X7 receptor, a ligand-gated cation channel that responds to 

extracellular ATP, another NLRP3 agonist (Kerur et al., 2013). Binding of ATP to P2X7 triggers 

potassium efflux, which in turn activates NLRP3 through an incompletely characterized  
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Figure 11. Schematic comparing NLRP3 inflammasome priming and activation in RPE 
and myeloid cells. (A) Priming signals induce upregulation of inflammasome-related proteins in 
myeloid cells and RPE cells. Previous research has determined that priming induces expression 
of pro-IL-1β and NLRP3 in myeloid cells. My findings indicate that priming RPE cells induces 
upregulation of procaspase-1, in addition to pro-IL-1β and NLRP3. (B) Activation of the NLRP3 
inflammasome in myeloid cells has been demonstrated to occur in response to lysosomal 
destabilization, potassium efflux, and ROS production. My work shows that the NLRP3 
inflammasome is activated by lysosomal destabilization in RPE cells. Other research has 
indicated that accumulation of Alu RNA transcripts in RPE cells also triggers NLRP3 
inflammasome assembly, and it has not yet been determined whether this mode of NLRP3 
activation functions in myeloid cells. 
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mechanism (Mariathasan et al., 2006; Schroder and Tschopp, 2010). It is likely that Alu 

transcripts activate NLRP3 through a similar mechanism, rather than through lysosomal 

destabilization, which occurs independently of P2X7. 

Whereas the latter study suggested that NLRP3 inflammasome activity in RPE cells 

might contribute to GA via IL-18, another group reported substantially different results. Using a 

model in which dry AMD-like pathology is induced by immunization of mice with CEP adducted 

to MSA, infiltrating macrophages in the retinas of mice were shown to stain for cleaved 

caspase-1, indicating inflammasome activation (Hollyfield et al., 2008). Furthermore, in a laser 

injury-induced mouse model of CNV, deletion of NLRP3 or IL18 exacerbated the 

neovascularization compared to wild-type mice, suggesting that these genes play a protective 

role against CNV (Doyle et al., 2012). On the other hand, deletion of IL1R1 resulted in a trend 

toward reduction of CNV lesion volume compared to wild-type that did not reach statistical 

significance. Thus, the authors of this study hypothesize that macrophages are the primary 

source of NLRP3 inflammasome activity in AMD, and that NLRP3-mediated IL-18 release is 

protective against CNV. This suggestion is in direct contrast to the findings from the Alu-induced 

model, in which IL-18 generated via NLRP3 inflammasome activity contributed to RPE 

degeneration. These apparently conflicting results may due to the possibility that the NLRP3 

inflammasome plays different roles in dry and wet AMD. However, it is important to note that the 

laser injury model of CNV is not fully representative of the neovascularization observed in wet 

AMD. Laser-induced CNV is more appropriately regarded as a model of acute wound healing 

that takes place in the presence of otherwise healthy RPE cells that likely are not primed to 

express NLRP3 (Marneros, 2013). Thus, given the previously reported role of the NLRP3 

inflammasome in promoting epithelial repair via IL-18 (Dupaul-Chicoine et al., 2010; Zaki et al., 

2010), it is reasonable to suspect that the function of the NLRP3 inflammasome in an acute 

wound-healing model does not reflect its role in AMD. That said, it could also be argued that Alu 

RNA transcript accumulation may not recapitulate the mechanism of dry AMD. 
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Another recent report utilizes a mouse model in which expression of vascular endothelial 

growth factor-A (VEGF-A) is heightened (VEGF-Ahyper) resulting in RPE abnormalities including 

loss of tight junctions (Marneros, 2013). Examination of the retinas of VEGF-Ahyper mice up to 24 

months of age reveals progressive, age-associated RPE degeneration and concomitant 

photoreceptor degeneration. Sub-RPE deposits reminiscent of human dry AMD pathology were 

also noted, and these mice develop CNV at sites of RPE atrophy. Thus, this mouse model 

appears to mimic pathological features of both dry and wet AMD. Notably, the RPE of VEGF-

Ahyper mice exhibit increased expression of NLRP3 and IL-1β, and the cleaved subunits of 

caspase-1 are detectable in the RPE/choroid, indicating inflammasome activation. Interestingly, 

deletion of NLRP3, IL1R1, or IL18 did not inhibit the RPE degeneration observed in VEGF-Ahyper 

mice and did not prevent the development of CNV. However, CNV lesion numbers are reduced 

in VEGF-Ahyper mice deficient in NLRP3 or IL-1R, indicating that NLRP3 and IL-1β may 

contribute to CNV. Conversely, the absence of IL-18 results in a borderline significant increase 

in CNV lesions, suggesting a protective role for IL-18 in wet AMD. Once again, these 

conclusions must be interpreted with caution; although the VEGF-Ahyper model recapitulates a 

number of pathological features of AMD, there is no evidence that the underlying mechanism of 

this model accurately reflects the mechanisms of dry and wet AMD. 

 

Future directions 

 

AMD is a complex disease whose etiology remains elusive. Numerous factors are 

associated with AMD, such as the presence of drusen, BLinD, reticular pseudodrusen, and 

lipofuscin, but it is unclear if they are causative. Several lines of evidence, such as the presence 

of proinflammatory molecules in drusen and the link between CFH polymorphisms and AMD 

progression, imply a role for inflammation in the pathogenesis of AMD, but are nonetheless 

correlative. My findings suggest a mechanism that connects AMD-related RPE dysfunction, 
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involving lysosomal damage and exposure to proinflammatory molecules, with outer retinal 

inflammation and ultimately RPE degeneration via the NLRP3 inflammasome. Additional 

research is necessary to further evaluate this mechanism on a biochemical level in vitro, identify 

AMD-related molecules or deposits capable of priming or activating the NLRP3 inflammasome, 

and assess the role of the NLRP3 inflammasome in animal models of AMD-like pathology. 

 

Biochemical characterization of the NLRP3 inflammasome pathway in RPE cells 

Activation of the NLRP3 inflammasome is still incompletely understood in myeloid-

derived cells, and even less is known about its induction in the RPE. The mechanisms that 

regulate the NLRP3 inflammasome in the RPE may differ from those in hematopoietic cells. 

Proteins involved in NLRP3 activation in myeloid cells may have analogous molecules in RPE 

cells, or the molecular pathways may be dramatically dissimilar. Therefore, it will be important to 

elucidate the biochemical mechanism of NLRP3 inflammasome activation in RPE cells. A 

convenient starting point would be to determine whether degradation of NLRP10 by cathepsins 

facilitates recruitment of ASC by NLRP3, as has been demonstrated in glial cells (Murphy et al., 

2013). Additionally, potassium ion efflux and ROS generation have been found to induce the 

NLRP3 inflammasome in hematopoietic cells through mechanisms that appear to be 

independent of lysosomes. It would be of interest to determine whether NLRP3 can be induced 

in RPE cells by these stimuli. 

 

Evaluation of NLRP3 inflammasome priming and activation by AMD-related insults 

My findings have demonstrated that NF-κB agonists prime RPE cells, and that disrupting 

RPE lysosomes induces the NLRP3 inflammasome. However, it is not clear which molecular 

insults or changes associated with AMD, such as accumulation of drusen and other deposits, 

buildup of lipofuscin, AGE generation, and impairment of lysosomal degradative function, are 

capable of priming RPE cells or sufficiently damaging the integrity of the lysosomal membrane 
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to activate NLRP3. A2E has recently been demonstrated to induce IL-1β secretion from RPE 

cells via NLRP3 (Anderson et al., 2013), but the role of A2E as a lipofuscin constituent has been 

called into question (Ablonczy et al., 2013). CEP-protein adducts have been shown to prime 

myeloid cells (Doyle et al., 2012), but their effect on RPE cells has not been tested. Similarly, 

isolated drusen and individual drusen components such as Aβ and complement component 

C1Q have been found to activate the NLRP3 inflammasome in myeloid cells, but have not been 

evaluated in RPE cells (Doyle et al., 2012; Halle et al., 2008). It would be worthwhile to evaluate 

isolated drusen, individual drusen constituents, lipofuscin bisretinoids, CEP-protein adducts, and 

AGEs for their ability to prime or activate the NLRP3 inflammasome in RPE cells. 

 

Assessment of the role of the NLRP3 inflammasome in murine models of AMD-like pathology 

To demonstrate that the NLRP3 inflammasome mediates AMD pathogenesis in 

response to RPE lysosomal destabilization, it will be necessary to develop a mouse model of 

AMD-like retinal pathology induced by RPE lysosomal damage. This may be accomplished via 

subretinal injection of Leu-Leu-OMe or other lysosomotropic compounds, such as chloroquine 

or tamoxifen. To this end, I have conducted studies that demonstrate that tamoxifen induces 

RPE cell death via release of cathepsins B and L, suggesting that subretinal injection of 

tamoxifen may be a viable approach for modeling AMD-like pathology in mice. My work on 

tamoxifen-induced RPE cytotoxicity has been submitted for publication and is currently under 

review. The submitted manuscript is included in the Appendix of this dissertation. Once a 

suitable mouse model has been established, it will be important to evaluate the effects of this 

treatment on mice deficient in Nlrp3, Asc, or Casp1 and compare their retinal pathology with that 

of wild-type mice. 

 

Therapeutic implications 
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Whereas VEGF inhibitors are approved for neovascular AMD, there is currently no 

approved treatment for GA. However, the long-term safety profiles of VEGF inhibitors are just 

beginning to be revealed, and chronic inhibition of VEGF may have unanticipated side effects 

due to its role as a neuroprotectant for photoreceptors and as a survival factor for Muller cells, 

fenestrated vascular endothelium, and RPE (Ford et al., 2011; Saint-Geniez et al., 2009; Saint-

Geniez et al., 2008). Thus, treatment options for AMD that target the NLRP3 inflammasome are 

likely to be of great benefit. Several biologic agents that target the IL-1 pathway are approved 

for use by the Food and Drug Administration. Anakinra, a recombinant IL-1 receptor antagonist, 

has been approved for treatment of rheumatoid arthritis, and the monoclonal anti-IL-1β antibody 

canakinumab and the “IL-1 trap” fusion protein rilonacept are approved for treatment of CAPS 

(Lachmann et al., 2011; Mitroulis et al., 2010). However, the potential role of the NLRP3 

inflammasome in the pathogenesis of AMD, as well as the downstream cytokines involved, must 

be elucidated in order to determine whether targeting the IL-1 pathway will be effective. 

 

Concluding remarks 

 

As the American population continues to age, it is projected that nearly three million 

individuals will be affected by AMD by the year 2020 (Friedman et al., 2004). A more complete 

understanding of the mechanisms underlying AMD pathogenesis is essential if this growing 

public health challenge is to be addressed. The discovery that the NLRP3 inflammasome 

functions in RPE cells and can mediate IL-1β release from RPE cells is a key finding that may 

generate new therapeutic targets for AMD. However, research on inflammasomes in AMD 

remains nascent, and many questions remain regarding the role that the NLRP3 inflammasome 

plays in AMD. This uncertainty stems, at least in part, from the lack of accurate animal models 

of AMD. Nevertheless, the finding that the RPE lysosomal destabilization activates the NLRP3 

inflammasome provides a mechanistic link between the classic features of AMD, drusen and 
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lipofuscin, and the inflammation and cytotoxicity that appear to contribute to RPE degeneration. 
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CHAPTER 5 

 

 

 

MATERIALS AND METHODS 
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Immunohistochemistry of human retina 

 

De-identified specimens from AMD and control human subjects were obtained from a 

tissue repository established in one of our laboratories at Schepens Eye Research Institute 

under IRB approval. Specimens were fixed in 10% buffered formalin, embedded in paraffin, and 

sectioned. For immunohistochemistry, sections were deparaffinized and antigen retrieval was 

performed with citrate buffer (10 mM citric acid, 0.05% Tween-20, pH 6.0, 95-100°C) for 10 

minutes. Following two washes in phosphate buffered saline (PBS; Sigma-Aldrich, St. Louis, 

MO), slides were incubated with a mouse monoclonal anti-human NLRP3 antibody (1:100; 

clone Nalpy3-b; Enzo Life Sciences, Farmingdale, NY) or a mouse IgG1 isotype control 

antibody (1:100; Caltag, Carlsbad, CA) overnight at 4°C. The secondary antibody, a biotinylated 

horse anti-mouse IgG (1:200, Vector Laboratories, Burlingame, CA), was visualized via the 

avidin-biotin-alkaline phosphatase complex (ABC-AP) method (Vectastain ABC-AP Kit; Vector 

Laboratories) using the Vector Red Substrate (Vector Laboratories). Slides were counterstained 

with hematoxylin, dehydrated, and mounted with Permount medium (Fisher Scientific, 

Pittsburgh, PA). 

 

RPE cell culture 

 

Human ARPE-19 cells (American Type Culture Collection, Manassas, VA) were 

propagated as described previously (Ford et al., 2011). Cells were cultured in DMEM/F12 

medium (Lonza, Walkersville, MD) supplemented with 10% fetal bovine serum (FBS; Atlanta 

Biologicals, Lawrenceville, GA), 2 mM L-glutamine (Lonza), and 100 U/ml penicillin-100 µg/ml 

streptomycin (Lonza) (complete ARPE-19 medium) and passaged at a ratio of 1:2 to 1:4 using 

trypsin-EDTA (Life Technologies, Carlsbad, CA, or Lonza). For experiments, ARPE-19 cells 

were maintained in either 1% FBS or serum-free ARPE-19 medium, and transfections were 
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performed in antibiotic-free ARPE-19 medium. 

Primary human fetal RPE (hfRPE) cells (Lonza) were propagated in Retinal Pigment 

Epithelial Cell Basal Medium (Lonza) supplemented with 5% FBS, 2 mM L-glutamine, and 100 

U/ml penicillin-100 µg/ml streptomycin (complete hfRPE medium). At confluence, hfRPE cells 

were passaged at a ratio of 1:2 to 1:4 using trypsin-EDTA (Life Technologies or Lonza). For 

experiments, hfRPE cells were seeded at passage 6-8 and were maintained in serum-free 

hfRPE medium. 

 

Immunocytochemistry 

 

ARPE-19 cells were cultured on Transwell membranes for four weeks in ARPE-19 

medium with 1% FBS, as described elsewhere (Ford et al., 2011), to induce RPE polarization 

and tight junction formation. Monolayers were fixed in 4% paraformaldehyde (Electron 

Microscopy Sciences, Hatfield, PA), and then incubated with a mouse monoclonal anti-human 

NLRP3 primary antibody (1:100; clone Nalpy3-b; Enzo Life Sciences) or a mouse IgG isotype 

control antibody (1:100; Life Technologies) overnight at 4°C. The secondary antibody, a 

biotinylated horse anti-mouse IgG (1:200, Vector Laboratories, Burlingame, CA), was visualized 

via the ABC-AP method (Vector Laboratories) using the Vector Red Substrate (Vector 

Laboratories). Nuclei were labeled with DAPI. Transwell membranes with attached monolayers 

were excised from their supports and mounted on glass slides for confocal microscopy (Leica 

Microsystems; Wetzlar, Germany). 

 

Priming of ARPE-19 cells with NF-κB-inducing agents 

 

 ARPE-19 cells were seeded into 12-well plates (BD Biosciences, San Jose, CA) at a 

density of 2.6 x 105 cells/well in complete ARPE-19 medium. At confluence, the culture medium 
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was changed to serum-free medium and cells were treated with ultra-pure LPS from Escherichia 

coli 0111:B4 strain (InvivoGen, San Diego, CA), recombinant human IL-1α (R&D Systems, 

Minneapolis, MN), or recombinant human TNFα (PeproTech, Rocky Hill, NJ). Each agent was 

tested at 4 ng/ml or 50 ng/ml for 24 hours or 48 hours. Whole cell lysates were immunoblotted 

for pro-IL-1β. 

 

NLRP3 knockdown 

 

ARPE-19 cells were grown as described above and seeded into 6-well plates (BD 

Biosciences) at a density of 1.5 x 105 cells/well in antibiotic-free ARPE-19 medium. The 

following day, at approximately 40% confluence, cells were transfected with ON-TARGETplus 

SMARTpool siRNA against human NLRP3 or a non-targeting control SMARTpool (Dharmacon, 

Lafayette, CO). The target sequences of the siRNAs in each pool are provided in Table 1. The 

control siRNA pool was transfected at a total siRNA concentration of 100 nM using 

DharmaFECT 4 (Dharmacon), and the NLRP3 siRNA pool was used at 50 nM and 100 nM. At 

24 hours post-transfection, cells were washed once with PBS, and complete ARPE-19 medium 

containing 4 ng/ml IL-1α was added to the wells to prime the cells. Cells were lysed at 72 hours 

post-transfection and immunoblotted for NLRP3. 

 

NLRP3 overexpression and immunoblotting 

 

To generate a positive control for NLRP3, lysates of HEK293T cells overexpressing the 

full-length transcript variant of NLRP3 fused to a DDK tag (identical to FLAG tag) and myc tag or 

transfected with a mock vector were purchased from OriGene (Rockville, MD). Immunoblotting 

for NLRP3 was performed on lysates of ARPE-19 and THP-1 cells, using the NLRP3- and 

mock-transfected HEK293T lysates as controls. Blotting for NLRP3 was followed by stripping 
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and re-probing first for α-tubulin and secondly for DDK. 

 

Effect of priming on expression of pro-IL-1β and inflammasome components by ARPE-19 

cells 

 

ARPE-19 cells were seeded into 6-well plates at a density of 4.0 x 105 cells/well in 

complete ARPE-19 medium. At confluence, the cells were switched to serum-free ARPE-19 

medium. The cells were primed with recombinant human IL-1α. For the dose curve, IL-1α was 

added to cells at concentrations of 1.56, 3.13, 6.25, 12.5, and 25 ng/ml IL-1α and incubated for 

48 hours. For the time course, 4 ng/ml IL-1α was added to wells, and cells were lysed after 3, 6, 

12, 24 or 48 hours. Cells were washed with ice-cold PBS, lysed, and immunoblotted for pro-IL-

1β, NLRP3, ASC, and caspase-1. 

 

Evaluation of hfRPE priming by IL-1α and LPS 

 

hfRPE cells were seeded into 12-well plates at a density of 1.5 x 105 cells/well in 

complete hfRPE medium. Upon reaching confluence, the cells were switched to serum-free 

hfRPE medium containing IL-1α at concentrations of 3, 10, 30, or 100 ng/ml. Negative control 

cells received serum-free medium alone, and some cells were treated with 100 ng/ml ultra-pure 

LPS instead of IL-1α. After 24 hours, cells were washed with ice-cold PBS, lysed, and 

immunoblotted for pro-IL-1β and NLRP3. 

 

Acridine orange staining of RPE lysosomes 

 

ARPE-19 cells were seeded on sterile coverslips placed in a 6-well plate at a density of 

3.0 x 105 cells/well in complete medium. The following day, cells were incubated with complete 
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medium containing 5 µM acridine orange for 30 minutes. Cells were washed twice with PBS, 

then treated with 1 mM Leu-Leu-OMe (Chem-Impex International, Wood Dale, IL, or Santa Cruz 

Biotechnology, Dallas, Texas) or control buffer for 30-45 minutes. Cells were then fixed with 4% 

paraformaldehyde for 30 minutes and washed three times with PBS. Coverslips were then 

mounted on glass slides using Vectashield Mounting Medium for Fluorescence (Vector 

Laboratories) and imaged on an Axioskop 2 mot plus fluorescent microscope (Carl Zeiss, 

Thornwood, NY). 

 

Fluorescent detection of active caspase-1 

 

ARPE-19 cells were seeded into 24-well plates (BD Biosciences) at a density of 5.0 x 

104 cells/well in complete ARPE-19 medium, grown to confluence, and then changed to serum-

free ARPE-19 medium with 4 ng/ml IL-1α. After 48 hours, the cells were pre-treated with the 

dipeptidyl peptidase I inhibitor Gly-Phe-CHN2 (MP Biomedicals, Solon, OH) at a concentration of 

10 µM, the cathepsin B and L inhibitor Z-FF-FMK (EMD Biosciences, San Diego, CA) at a 

concentration of 50 µM, or an equal volume of DMSO vehicle. After 30 minutes, the fluorescent 

labeled inhibitor of caspases (FLICA) probe specific for caspase-1 (FAM-YVAD-FMK; 

Immunochemistry Technologies, Bloomington, MN) was added to each well at the concentration 

recommended by the manufacturer, followed by the addition of 1 mM Leu-Leu-OMe. After a 

two-hour incubation at 37°C, 5% CO2, cell nuclei were stained with Hoechst 33342 

(Immunochemistry Technologies). After washing and fixing cells using wash buffer and fixative 

supplied by the manufacturer, cells were imaged via fluorescence microscopy. 

For hfRPE cells, 48-well plates (BD Biosciences) were seeded at a density of 3.5 x 104 

cells/well in complete hfRPE medium. At confluence, the cells were switched to serum-free 

hfRPE medium with or without 10 ng/ml IL-1α. After 24 hours, cells were treated with FAM-

YVAD-FMK at the recommended dilution, followed by the addition of 1 mM Leu-Leu-OMe to 
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appropriate wells. Cells were incubated for two hours at 37°C, 5% CO2, at which point cell 

nuclei were stained using Hoechst 33342. Cells were washed, fixed, and imaged by 

fluorescence microscopy. 

For analysis of caspase-1 activation in polarized RPE monolayers, hfRPE cells were 

seeded onto 12-mm polyester Transwell membranes with 0.4 µm pores (Corning Incorporated, 

Tewksbury, MA) coated with 10 µg/ml laminin (Sigma-Aldrich). Cells were maintained in serum-

free hfRPE medium, replenished twice weekly, for at least four weeks to allow them to form a 

polarized monolayer. The cells were then treated with serum-free medium with or without 10 

ng/ml IL-1α. Following a 24-hour incubation, FAM-YVAD-FMK was added to all Transwells at 

the recommended dilution, and 1 mM Leu-Leu-OMe was added to appropriate wells. After a 

two-hour incubation at 37°C, 5% CO2, cells were washed with buffer supplied by the 

manufacturer, then fixed with 4% paraformaldehyde for 30 minutes and washed three times with 

PBS. Transwell membranes were excised from their inserts and mounted on glass slides using 

ProLong Gold antifade reagent with DAPI (Life Technologies) and covered with a coverslip. 

Cells were then imaged via fluorescence microscopy. 

ARPE-19 and hfRPE cells on plastic wells were imaged using a Nikon Eclipse TE2000-S 

microscope (Melville, NY). hfRPE cells on mounted Transwells were imaged with an Axioskop 2 

mot plus fluorescent microscope. Quantification of green FLICA signal was performed using 

Adobe Photoshop. Blue nuclei in each image were counted manually, and the amount of green 

signal was normalized to the number of nuclei. 

 

Immunoblotting for mature IL-1β  in concentrated conditioned media 

 

ARPE-19 cells grown to confluence in T75 flasks were primed with 15 ng/ml IL-1α for 48 

hours, then treated with 1 mM Leu-Leu-OMe or control buffer for three hours. Conditioned 

media were harvested and concentrated using 15-ml Amicon centrifugal filter units (Millipore, 
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Billerica, MA) by spinning in an Avanti J-25I centrifuge (Beckman Coulter, Indianapolis, IN) 

using a JA25.50 rotor (Beckman Coulter) at 5,000 x g for one hour at room temperature. 

Following concentration, conditioned media were immunoblotted for IL-1β alongside a standard 

dilution of 0, 25, 50, 100, and 200 pg of recombinant human mature IL-1β (National Cancer 

Institute, Rockville, MD) as positive control. Goat anti-IL-1β (R&D Systems) was used as 

primary antibody at a 1:200 dilution, and HRP-linked rabbit anti-goat IgG (Santa Cruz) 

secondary antibody was used at a 1:5000 dilution. 

 

Evaluation of inflammasome activation by lysosomal disruption 

 

ARPE-19 cells were seeded onto 12-well plates at a density of 1.0 x 105 cells/well in 

complete ARPE-19 medium, grown to confluence and then changed to serum-free ARPE-19 

medium with 4 ng/ml IL-1α. After 48 hr, Gly-Phe-CHN2 (5 µM), Z-FF-FMK (50 µM), the caspase-

1 inhibitor Z-YVAD-FMK (10 µM; BioVision, Mountain View, CA), or DMSO vehicle were added. 

After 30 minutes, 1 mM Leu-Leu-OMe was added to appropriate cells. Conditioned media were 

collected after three hours to assess cytokine secretion and lytic cell death. 

For hfRPE cells, 12-well plates were seeded at a density of 1.5 x 105 cells/well in 

complete hfRPE medium. At confluence, the cells were changed to serum-free hfRPE medium 

with or without 10 ng/ml IL-1α. After 24 hours, cells were pre-treated with Gly-Phe-CHN2 (10 

µM), Z-FF-FMK (50 µM), the selective cathepsin B inhibitor CA-074-Me (50 µM; EMD 

Biosciences), or DMSO vehicle for 30 minutes. Then, 1 mM Leu-Leu-OMe was added to 

appropriate wells. After incubating at 37°C, 5% CO2 for 3 hours, conditioned media were 

collected. 

 

Quantification of cytokine secretion and cytotoxicity 
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ELISA was used to quantify IL-1β (BD Biosciences) and IL-18 (R&D Systems), and 

cytotoxicity was assessed by measuring the levels of lactate dehydrogenase (LDH) in 

conditioned media using the CytoTox 96 Non-Radioactive Cytotoxicity Assay (Promega, 

Madison, WI). Each experimental condition was assayed in triplicate in three independent 

experiments. Percent LDH release was calculated as 100% × (experimental LDH − 

spontaneous LDH) / (maximum LDH − spontaneous LDH). Maximum LDH was represented by 

the LDH levels in wells completely lysed by two freeze-thaw cycles. 

 

Immunoblot analysis of whole cell lysates 

 

Cells were treated with lysis buffer (Cell Signaling Technology, Danvers, MA) containing 

a dissolved Complete Mini EDTA-free Protease Inhibitor Cocktail Tablet (Roche, Indianapolis, 

IN) and 2 mM PMSF. Protein concentrations were measured via the BCA assay (Thermo 

Scientific, Waltham, MA). Equal quantities of protein were separated via SDS-PAGE under 

reducing conditions and transferred to PVDF membranes (Millipore). Membranes were blocked 

overnight at 4°C. NLRP3 blots were blocked in Tris-buffered saline with 0.1% Tween (TBS-T) 

containing 5% (w/v) milk and 0.5% (w/v) bovine serum albumin (BSA); all other blots were 

blocked in 5% milk in TBS-T. 

Membranes were then incubated in primary antibody diluted 1:1,000 in their respective 

blocking solution for two hours at room temperature. Primary antibodies used were mouse anti-

NLRP3 (Nalpy3-b, Enzo Life Sciences), rabbit anti-caspase-1 (Cell Signaling), goat anti-IL-1β 

(R&D Systems), and rabbit anti-ASC (Enzo Life Sciences). The caspase-1 and IL-1β antibodies 

also recognize their uncleaved precursors. After three 10-minute washes in TBS-T, membranes 

were incubated for 1 hour at room temperature in secondary antibody diluted 1:10,000 in 

blocking buffer. HRP-linked secondary antibodies included sheep anti-mouse IgG (GE 
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Healthcare), donkey anti-rabbit IgG (GE Healthcare), and donkey anti-goat IgG (Santa Cruz). 

Following four more washes in TBS-T, proteins were visualized by enhanced 

chemiluminescence using SuperSignal substrates (Thermo Scientific). Membranes were 

stripped by incubation in 62.5 mM Tris-HCl (pH 6.8), 2% (w/v) sodium dodecyl sulfate (SDS), 

and 0.1 M β-mercaptoethanol for 30 minutes at 55-60°C; re-blocked overnight at 4°C in 5% BSA 

in TBS-T; and re-probed with rabbit anti-GAPDH (Santa Cruz) to evaluate loading. NLRP3 blots 

were re-probed with mouse anti-α-tubulin (EMD Biosciences). To detect DDK-tagged NLRP3, 

blots were re-probed using mouse anti-DDK tag (OriGene). 

 

Statistical analysis 

 

Data are presented as the mean ± SEM of three independent experiments, unless 

otherwise indicated. To evaluate statistical significance, one-way analysis of variance was 

performed, followed by the Tukey-Kramer multiple comparisons test using the Prism 4 software 

package (GraphPad). A P-value of <0.05 was considered statistically significant. 
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ABSTRACT 

Purpose.  To evaluate the mechanism of tamoxifen-induced cell death in human cultured retinal 

pigment epithelial cells (RPE), and to investigate the relative contribution of cell death 

mechanisms including apoptosis, necroptosis, and pyroptosis. 

 

Methods.   Human RPE cells (ARPE-19 cells) were cultured until confluence and treated with 

tamoxifen; subsequent cell death was measured by detecting lactate dehydrogenase (LDH) 

release.  Lysosomal membrane permeabilization was assessed using acridine orange staining.  

The roles of lysosomal enzymes cathepsin B and L were examined by blocking their activity.  

Caspase activity was evaluated by caspase-1, -3, -8, and -9 specific inhibition.  Cells were 

primed with IL-1α and treated with tamoxifen and IL-1β production was quantified via ELISA.  

Caspase activity was verified with the fluorochrome-labeled inhibitor of caspases (FLICA) probe 

specific for each caspase.  Necroptosis was evaluated using necrostatin-1 (Nec-1) to inhibit 

RIP1 kinase. 

 

Results. Cell death occurred within two hours of tamoxifen treatment of confluent ARPE-19 

cells, and was accompanied by lysosomal membrane permeabilization.  Toxicity was shown to 

occur through both caspase-dependent and non-caspase-dependent cell death pathways.  

Blockage of cathepsin activity resulted in a significant decrease in cell death, indicating that 

lysosomal destabilization and cathepsin release are upstream of these cell death pathways. 

Treatment of ARPE-19 cells with caspase inhibitors and Nec-1 resulted in a near complete 

rescue from cell death.  

 

Conclusions.  Tamoxifen-induced cell death occurs through concurrent cell death mechanisms. 

Simultaneous inhibition of caspase-dependent and caspase-independent cell death pathways is 
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required to protect cells from tamoxifen.  Inhibition of upstream activators such as the 

cathepsins may be a feasible approach to block multiple cell death pathways. 
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INTRODUCTION  

Tamoxifen, a non-steroidal estrogen receptor antagonist, has been widely used in low dosages 

for the duration of five years as an adjuvant therapy for some forms of breast cancer. Although 

the current standard of care is five years of tamoxifen therapy, the global Adjuvant Tamoxifen: 

Longer Against Shorter (ATLAS) trial recently showed that 10 years of tamoxifen reduced the 

risk of breast cancer recurrence, reduced breast cancer mortality, and reduced overall mortality. 

1 Thus, it is likely that the standard of care will change, resulting in a longer period of tamoxifen 

therapy with a likely increase in tamoxifen-induced ocular toxicity. 

Tamoxifen can lead to corneal toxicity, progression of cataracts, retinopathy, and 

neuropathy.  The reported incidence of ocular toxic side effects among patients receiving 

tamoxifen ranges from 6.3% to 12%. The most visually significant aspect of tamoxifen toxicity is 

a maculopathy.2 Tamoxifen is structurally similar to other drugs with well-known retinal effects 

including chloroquine, chlorpromazine, thioridazine, and tilorone. Although the RPE is thought to 

be the primary target of tamoxifen toxicity, recent reports have demonstrated that tamoxifen 

toxicity also affects photoreceptors as well. 3 Ultrastructural lesions associated with these 

agents may appear as crystalloid inclusions in the neuroretina or as crystalloid bodies within the 

RPE, which are thought to disrupt lysosomal function. RPE cells serve a critical role in the 

maintenance of photoreceptors, phagocytizing the outer segment tips of photoreceptors, which 

are then digested within lysosomes.  RPE dysfunction is thought to play a role in a variety of 

retinal diseases including age-related macular degeneration (AMD), tamoxifen retinopathy, 

chloroquine retinopathy, central serous retinopathy, as well as a variety of inherited retinal 

disorders. 

 Inflammasomes are a class of multiprotein complexes that activate caspase-1 by 

facilitating the cleavage of procaspase-1 to active caspase-1, which induces the proteolytic 

maturation of the pro-inflammatory cytokines IL-1β and IL-18.  The NLRP3 inflammasome can 
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be activated by a diverse array of signals. 4 Many of these signals activate NLRP3 by 

destabilizing lysosomes.  Crystalline or insoluble materials such as cholesterol crystals and 

amyloid-β can activate NLRP3 in phagocytic myeloid-derived cells by disrupting 

phagolysosomes. 5-8 It has recently been demonstrated that the RPE express components of 

the NLRP3 inflammasome, which plays a role in animal models of AMD through lysosomal 

destabilization or accumulation of Alu RNA due to DICER1 deficiency in the RPE. 9, 10  We 

hypothesize that medications such as tamoxifen can disrupt lysosomal membranes, leading to 

the activation of the NLRP3 inflammasome, release of the pro-inflammatory cytokine IL-1β, and 

pyroptosis.11 

 Necroptosis is characterized by the activation of RIP-1 and RIP-3 kinase and is triggered 

by a variety of stimuli including TNF, DNA damage, and viral infection. 12-15 Cellular components 

or endogenous adjuvants such as high mobility group protein B1, uric acid, galectins, and 

thioredoxin released as a consequence of cellular demise promote an inflammatory response 

with activation of inflammasomes, cytokine production, inflammatory cell recruitment, and T-cell 

activation.16 Necroptosis has been defined as caspase-independent cell death with a necrotic 

phenotype that can be prevented by the specific RIP1 inhibitor necrostatin-1 (Nec-1). 17, 18  

Necroptosis has been demonstrated to occur in T lymphocytes, photoreceptors, astrocytes, and 

neurons and has been suggested to be involved in myocardial infarction.19-23 

 Here, we report on the involvement of multiple cell death mechanisms in tamoxifen-

induced toxicity of the RPE.  Specifically, we examined the roles of inflammasome-mediated cell 

death, the extrinsic and intrinsic pathway of apoptosis, and RIP kinase-mediated necroptosis. 
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MATERIALS AND METHODS 

ARPE-19 Cell Culture 

Human ARPE-19 cells (American Type Culture Collection, Manassas, VA) were cultured 

in DMEM/F12 medium (Lonza, Walkersville, MD) with 10% fetal bovine serum (FBS) (Atlanta 

Biologicals, Lawrenceville, GA), 2 mM L-glutamine (Lonza, Hopkington, MA), and 100 U/ml 

penicillin-100 µg/ml streptomycin (Lonza, Hopkington, MA) in a humidified incubator at 37°C, 

10% CO2 and passaged at a ratio of 1:2 to 1:4 using 0.25% Trypsin-EDTA (Invitrogen).   

 

Phalloidin staining of ARPE-19 cells  

ARPE-19 cells were seeded on coverslips placed in a sterile 12-well plate. Cells were 

serum-starved overnight then treated with 20 µM tamoxifen or control media without serum. The 

cells were fixed at 15, 30, 45, 60, 90, 120 and 180 minutes using 3% paraformaldehyde, 

permeabilized using 0.1% Triton X-100, and blocked for 60 minutes by washing with PBS 

between steps.  The cells were then incubated with Alexa Fluor 594 phalloidin (1:100) in 

blocking buffer for 20 minutes, washed, and the coverslips mounted using mounting media with 

DAPI (Prolong Gold Antifade Reagent with DAPI, Life Technologies). Images were taken using 

a Leica AF6000 microscope. 

 

Acridine orange staining of RPE lysosomes 

ARPE-19 cells were seeded in a 48-well plate with complete growth media at a density 

of 3.3 x 104 cells/ well. Cells were grown to confluence and serum-starved overnight before the 

experiment. The following day, cells were incubated with serum-free medium containing 5 µM 

Acridine Orange (Immunochemistry Technologies, Bloomington MN) for 30 minutes at 370 C. 

Cells were washed twice with PBS followed by treatment with 20 µM tamoxifen or control buffer 

for 120 minutes. Images of wells were taken over the course of 2 hours to evaluate the 

progression of lysosomal destabilization with time. 
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Priming of ARPE-19 Cells with IL-1α and quantification of IL-1β secretion and cytotoxicity 

 ARPE-19 cells were seeded onto 12-well plates at a density of 1.0 x 105 cells/well in 

complete growth media.  At confluence, cells were then changed to serum-free medium and 

pre-treated with 10 ng/ml IL-1α for 48 hours. Cells were then treated with 30 µM tamoxifen and 

control buffer in the presence or absence of 30 µM necrostatin and 10 µM Z-YVAD-FMK for 2 

hours. IL-1β was quantified via ELISA (BD Biosciences) as described below. Cytotoxicity was 

assessed by measuring lactate dehydrogenase (LDH) in conditioned media, using the CytoTox 

96 Non-Radioactive Cytotoxicity Assay (Promega, Madison, WI) as described below. Each 

experimental condition was assayed in triplicate in at least three independent experiments.  

 

Quantification of IL-1β 

ARPE-19 cells were seeded onto 12-well plates in complete media and grown to 

confluence. The cells were primed for 48 hours with 10 ng/mL IL-1α. After 48 hours, the cells 

were treated with tamoxifen (30 µM), DMSO vehicle or 1 mM L-leucyl-L-leucine methyl ester 

(Leu-Leu-OMe; Chem-Impex International, Wood Dale, IL). Conditioned media were collected 

after three hours and IL-1β was quantified via ELISA (BD Biosciences). Values were corrected 

for release of pro-IL-1β due to cytotoxicity using the method described by Miao and colleagues, 

in which levels of lactate dehydrogenase (LDH) in conditioned media were measured using the 

CytoTox 96 Non-Radioactive Cytotoxicity Assay (Promega, Madison, WI).24 

 

Assessment of cytotoxicity 

The condition media were collected from the treated wells and percent cell death was 

quantified measuring the lactate dehydrogenase in the condition media using the CytoTox 96 

Non-Radioactive Cytotoxicity Assay (Promega, Madison, WI). Condition media from the wells 

treated with control conditions were used as negative control. Percent LDH release was 
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calculated as 100% x (experimental LDH- spontaneous LDH)/ (maximal LDH- spontaneous 

LDH). The LDH levels in wells completely lysed by two freeze-thaw cycles represented 

maximum LDH.  

 

Fluorescent detection of active caspase-1, 3, 8, and 9 

ARPE-19 cells were seeded on to coverslips in complete growth medium and grown to 

confluence. The media were changed to serum-free and the cells incubated overnight. The cells 

were pretreated with FLICA for two hours (protected from light then incubated with tamoxifen 

(20 µM) or an equal volume of DMSO for controls at 37°C, 10% CO2 for 60, 90, and 120 

minutes). The fluorochrome-labeled inhibitor of caspases (FLICA) probes specific for caspase-1, 

3, 8, and 9 (FAM-YVAD-FMK, FAM-DEVD-FMK, FAM-LETD-FMK, and FAM-LEHD-FMK; 

Immunohistochemistry Technologies, Bloomington, MN) were added to each well at the 

concentration recommended by the manufacturer. Following incubation for 60, 90, and 120 

minutes, cells were washed and the cell nuclei were stained with Hoechst 33342 

(Immunohistochemistry Technologies). Cells were then washed and fixed using wash buffer and 

fixative supplied in the FLICA kit, and imaged using a Leica AF6000 microscope.   

 

Western blotting of RIP kinases in ARPE-19 cells 

ARPE-19 cells were lysed using 1X RIPA buffer (Cell Signaling, Boston, MA) containing 

Complete Mini EDTA-free Protease Inhibitor Tablet (Roche, Indianapolis, IN), 2 mM phenyl 

methanesulfonyl fluoride (PMSF), and 2 mM sodium orthovanadate (NaOV) and then sonicated 

on ice. Protein concentrations were measured using BCA assay (ThermoScientific, Waltham, 

MA).  Equal concentrations of protein were separated using 10% polyacrylamide gels and 

transferred to polyvinylidene difluoride (PVDF) membranes (Millipore). Membranes were 

blocked for one hour at room temperature in 3% bovine serum albumin (BSA). The membrane 

was then incubated with anti-RIP3 primary antibody (Abcam) (1:1000 in 1% BSA) overnight at 
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4°C. After three 10-minute washes in Tris-buffered saline with 0.1% Tween 20 (TBS-T), 

membranes were incubated for one hour at room temperature in secondary antibody (1:10,000 

in blocking buffer).  HRP-linked secondary antibodies included anti-mouse IgG (GE Healthcare, 

Pittsburgh, PA) and anti-rabbit IgG (GE Healthcare). Following three more washes in TBS-T, 

proteins were visualized by enhanced chemiluminescence using SuperSignal substrates 

(Thermo Scientific). Membranes were stripped by incubation in Stripping buffer (1 M Tris-HCl, 

pH 6.8; 10% (w/v) SDS; 0.7% beta-mercaptoethanol) for 25 minutes at 55°C to 60°C, re-blocked 

at room temperature in 3% BSA in TBS-T and re-probed with rabbit anti-RIP1.  

 

Statistical Analysis 

 Data are presented as mean ± SEM of at least three independent experiments.  

Statistical significance was evaluated using a one-way analysis of variance followed by post-hoc 

Tukey-Kramer multiple comparison tests, using the Prism 6.0 software package (Graphpad).  

Adjusted P-values < 0.05 were considered statistically significant. 
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RESULTS 

Tamoxifen induces cell death and lysosomal destabilization 

 Treatment of ARPE-19 cells with tamoxifen for two hours at various concentrations (10-

30 µM) induced cell death in a dose-dependent fashion, as detected by release of LDH (Figure 

1A). Two-hour exposure of cells to 10 and 15 µM tamoxifen had little effect on cell viability 

whereas exposure of the ARPE-19 cells for 20, 25 and 30 µM tamoxifen induced 40-70% LDH 

release. Treated cells exhibited features of cell death including swollen cell bodies, shrinkage, 

blebbing, and detachment from the culture substrate (Figure 1B).  Visualization of the 

cytoskeleton by phalloidin staining displayed a loss of actin stress fibers by 60 minutes (Figure 

1C). The active metabolite of tamoxifen, 4-OH-tamoxifen, similarly induced LDH release and cell 

death in ARPE-19 cells in a dose dependent manner (data not shown).  All subsequent studies 

in this report utilized 20 µM tamoxifen unless stated otherwise.    

 Lysosomal integrity was assessed by acridine orange staining, which labels nucleic 

acids green and lysosomes red.  Untreated ARPE-19 cells displayed punctate red-orange 

structures, characteristic of intact lysosomes (Figure 2).  Treatment with tamoxifen resulted in 

loss of lysosomal staining after 20 minutes, indicative of lysosomal destabilization.  Lysosomal 

destabilization occurred prior to LDH release (cell death), suggesting that lysosomal 

destabilization is upstream of tamoxifen-mediated cytotoxicity in these cells. 

 

Lysosomal cathepsins in tamoxifen cytotoxicity 

 Lysosomal membrane permeabilization results in the release of cathepsins, which have 

been implicated in the activation of the NLRP3 inflammasome as well as in the initiation of 

apoptosis and necroptosis.   Blockade of the lysosomal cathepsins B and L with the cathepsin 

B/L inhibitor Z-FF-FMK 25 led to a significant decrease in cell death as measured by LDH 

release (6 ± 2% compared to 73 ± 10% with tamoxifen treatment alone) (Figure 3A). There was 

no statistically significant difference between cathepsin B/L inhibition and concurrent inhibition of 
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caspases and RIP1 kinase. The decrease in cell death resulting from the inhibition of the 

cathepsins was greater than any other inhibitor alone, suggesting that cathepsin release from 

lysosomes occurs upstream and prior to the initiation of cell death pathways. 

 To elucidate the role of cathepsin B versus cathepsin L, specific cathepsin B and L 

inhibitors, using the cathepsin B inhibitor CA-074-Me and cathepsin L inhibitor Z-FY(t-Bu)-DMK 

were used (Figure 3C).  Whereas blocking either cathepsin (B or L) protected the cells from 

tamoxifen toxicity, treatment with the cathepsin L inhibitor led to a significantly greater inhibition 

of cell death than the cathepsin B inhibitor (25 ± 6% versus 40 ± 0.4% LDH release).  These 

data suggest a greater role for cathepsin L than cathepsin B in mediating tamoxifen cytotoxicity, 

suggesting that these cell death pathways depend upon the activity of cathepsin L.  As 

expected, concurrent inhibition with the individual cathepsin B and L inhibitors resulted in near 

complete inhibition of cell death (Figure 3C). 

 

Caspases and RIP1 kinase in tamoxifen cytotoxicity  

We have previously shown that ARPE-19 cells express components of the NLRP3 

inflammasome and activate caspase-1 upon lysosomal destabilization. 9 In addition, caspase-1 

is the effector caspase in a form of programmed cell death referred to as pyroptosis.26 The role 

of caspase-1 in tamoxifen toxicity of ARPE-19 cells was investigated using the caspase-1-

specific inhibitor Z-YVAD-FMK.  Two hours of treatment with 20 µM tamoxifen resulted in 73 ± 

10% LDH release; the application of the caspase-1 inhibitor led to a significant decrease in cell 

death (51 ± 5%) (Figure 3A). Pan-caspase inhibition with Z-VAD-FMK did not yield additional 

protection from cell toxicity over that seen with caspases-1 inhibition alone.   

 Nec-1, a potent and selective inhibitor of programmed cell necrosis, targets the activity 

of receptor-interacting protein 1 (RIP1) kinase 17. Concurrent treatment with pan-caspase, 

caspase-1, caspase-3 inhibitors and Nec-1 resulted in near complete inhibition of cell death 

after two hours of treatment with tamoxifen (Figure 3A, B).  Activation of caspase 1 and 3 by 
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tamoxifen was further verified by FLICA assay (Figure 4, rows 1 and 2).  These results implicate 

the activation of multiple caspase and non-caspase dependent cell death pathways with 

application of tamoxifen.     

 In order to investigate the possible involvement of the RIP kinase pathway in ARPE-19 

cells, the expression of RIP1 and RIP3 kinase, the primary mediators of necroptosis were 

examined in ARPE-19 cells. Western blot analysis revealed the expression of both RIP1 and 

RIP3 in ARPE-19 cells (supplemental Figure 1). 

 

Apoptosis occurs primarily through a caspase-9 dependent mechanism 

Apoptosis, a form of cell death that eliminates damaged cells in a controlled manner, is 

characterized by caspase activation, chromatin condensation, nuclear fragmentation, and the 

formation of apoptotic bodies that are phagocytized by surrounding cells in order to prevent 

inflammation.  Two main pathways that are involved in apoptosis, the extrinsic death receptor 

mediated pathway and the intrinsic or mitochondrial pathway, both converge on common 

executioner caspases (caspases-3, -6, and -7); we therefore investigated the relative role of the 

intrinsic and extrinsic pathways of apoptosis.  The extrinsic pathway depends upon activation of 

the initiator caspase-8, which was probed with the caspase-8 specific inhibitor Z-LETD-FMK.  

The intrinsic or mitochondrial pathway of apoptosis was examined using the caspase-9 specific 

inhibitor Z-LEHD-FMK.   

Inhibition of caspase-8 alone did not significantly decrease cell death in cells treated with 

tamoxifen, whereas caspase-9 inhibition alone led to a statistically significant decrease in cell 

death, indicating that apoptosis primarily occurs through the intrinsic pathway and is dependent 

upon mitochondrial dysfunction.  Co-treatment with Nec-1 and caspase-8 inhibition yielded a 

near complete inhibition of cell death, implying that caspase-8 is activated by tamoxifen and that 

its inhibition results in cell death due to the activation of the RIP kinase pathway.  Activation of 

both caspase 8 and 9 was verified with FLICA assay (Figure 4, row 3 and 4). 
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Caspase-1 activation leads to production of IL-1β 

 Lysosomal destabilization has been previously shown to induce the formation of the 

NLRP3 inflammasome and activation of caspase-1 with subsequent release of mature IL-1β and 

pyroptosis.  In order to evaluate the activation of the NLRP3 inflammasome and caspase-1 

activation, we examined mature IL-1β production in ARPE-19 cells treated with tamoxifen.  

ARPE-19 cells were primed with IL-1α for 24 hours and the level of mature IL-1β in the 

conditioned media was quantified by ELISA as previously described.9 

 Tamoxifen-treated ARPE-19 cells produced 17.55 pg/ml of IL-1β.  Inclusion of Nec-1 did 

not reduce IL-1ß levels (15.26 pg/ml) (Figure 5).  In contrast, treatment with the caspase-1 

inhibitor Z-YVAD-FMK led to a significant decrease in the production of IL-1β, which was not 

further decreased by the addition of Nec-1 (6.38 and 7.75 pg/ml respectively) (Figure 5).  These 

results are consistent with NLRP3 inflammasome activation by tamoxifen.  Unprimed ARPE-19 

cells exposed to tamoxifen did not produce mature IL-1β, but did exhibit cell death (data not 

shown), indicating that cell death associated with caspase-1 activity is independent of its ability 

to produce mature IL-1β. 
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DISCUSSION 

 Tamoxifen toxicity of the retina is believed to be mediated by damage to the RPE  

through disruption of lysosomes.3 We examined the mechanisms of tamoxifen toxicity in ARPE-

19 cells and demonstrated that tamoxifen-induced lysosomal destabilization is associated with 

the activation of a number of cell death pathways. We observed lysosomal destabilization in 

ARPE-19 cells within 20 minutes of tamoxifen treatment, a time prior to cell death.  We found 

that cathepsins released upon lysosomal destabilization play a role in initiating multiple cell 

death mechanisms: necroptosis, apoptosis, and pyroptosis. 

Lysosomal membrane permeabilization has been demonstrated to release hydrolases 

such as the cathepsins that have been demonstrated to participate in apoptosis.  Upon their 

release into the cytosol, cathepsins cleave the pro-apoptotic Bcl-2 family member Bid, resulting 

in its activation, and degrade anti-apoptotic protein Bcl-2 proteins, triggering the intrinsic 

pathway of apoptosis. 27 28 Similarly, inhibition of lysosomal cathepsins has been demonstrated 

to block NLRP3 signaling and caspase-1 activation. 5 29 30 In particular, cathepsin B inhibition 

has been implicated in caspase-independent cell death, and cathepsins B and L have been 

found to mediate inflammasome activity in myeloid-derived cells and ARPE-19 cells. Cathepsins 

have also been shown to play a role in necroptosis, specifically, in caspase-compromised 

conditions; necroptosis can be arrested with application of cathepsin B inhibitor CA-074-OMe.31 

Similarly, we have shown that combined cathepsin B and L inhibition leads to complete 

inhibition of cell death, and that the cathepsin release occurs upstream of multiple cell death 

mechanisms. 

Caspases mediate both the extrinsic and intrinsic pathways of apoptosis.  The extrinsic 

apoptosis pathway is activated when death receptor ligands such as TNF-α bind their receptor, 

which  then recruits FADD.  This interaction forms a death-inducing complex, which recruits the 

initiator procaspase-8, leading to its cleavage and activation.  Activated caspase-8 then 

activates caspase-3 and other effector caspases that mediate the cell death pathway. The 
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intrinsic pathway is induced at the level of the mitochondria by cellular stresses (such as DNA 

damage, oxidative stress, or endoplasmic reticulum stress). The initiator procaspase-9 forms a 

complex with the mitochondrial protein cytochrome and apoptotic protease-activating factor 

(APAF-1) to form the apoptosome. 32 Active caspase-9 cleaves and activates effector caspase-

3.  

We demonstrated a significant role for the executioner caspase-3 in tamoxifen 

cytotoxicity.  Further, we have shown a primary role for the caspase-9 dependent intrinsic 

pathway, an observation that is indicative of mitochondrial dysfunction.  This is in agreement 

with the finding that necroptosis induces mitochondrial dysfunction, ROS formation, and release 

of pro-apoptotic proteins of the Bcl-2 family. 33 Although the extrinsic pathway, which is 

caspase-8 dependent, does not seem to play a primary role in tamoxifen-mediated toxicity, 

others have reported that inhibition of caspase-8 activates RIP1 kinase.34 Consistent with this 

finding, co-treatment with Nec-1 and a caspase-8 inhibitor led to near complete inhibition of cell 

death, greater than Nec-1 alone. 

 Necroptosis depends on the activity of the serine/threonine kinase RIP1, an adaptor 

kinase that functions downstream of death domain receptors and forms a complex with RIP3 to 

activate necroptosis.  Exposure of RPE cells to tamoxifen led to the activation of RIP1 and the 

initiation of necroptosis.  As previously demonstrated in photoreceptors in a model of retinal 

detachment, co-treatment with caspase inhibitors and Nec-1 effectively suppresses tamoxifen 

mediated cell death of the RPE.12, 15, 20, 35, 36   

 Pathological activation of the NLRP3 inflammasome is characteristic of a variety of 

disease conditions in which lysosomal destabilization results from phagocytosis of crystals or 

insoluble aggregates.6, 7 For instance, silicosis and asbestosis are mediated by NLRP3 

inflammasome activation in myeloid cells induced by silica crystals and asbestos fibers. 

Similarly, monosodium urate crystals cause gout via NLRP3 activation, and cholesterol crystals 

trigger NLRP3 during the development of atherosclerosis. 4 The NLRP3 inflammasome has 
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been detected in RPE of eyes from patients with geographic atrophy and age-related macular 

degeneration 9, and has been postulated to play a role in their pathogenesis.  Similarly, 

tamoxifen retinopathy is associated with the presence of retinal crystalline deposits and displays 

features similar to geographic atrophy with loss of the RPE and subsequent associated retinal 

atrophy. 

The role of the NLRP3 inflammasome in tamoxifen toxicity of ARPE-19 cells is 

evidenced by the rapid activation of caspase-1 with subsequent production of mature IL-1β and 

pyroptosis following tamoxifen treatment.  Caspase-1 contributes to cell death through induction 

of pyroptosis; however, inhibition of caspase-1 significantly but only partially, reduced cell death, 

indicating that while caspase-1 did contribute to tamoxifen-mediated RPE cell death, cell death 

was not mediated predominantly by pyroptosis.  Thus, multiple cell death mechanisms 

contribute to tamoxifen toxicity of the RPE. 

For therapeutic intervention, however, simultaneous inhibition of multiple cell death 

pathways may not be practical. Instead, targeting a common factor upstream of all pathways 

involved would likely yield better outcomes with regard to safety and efficacy. As we have found 

that cathepsins B and L are key mediators of tamoxifen-induced RPE cytotoxicity, these 

proteases may be viable candidates for the development of pharmacological inhibitors. While 

inhibition of only one of these enzymes results in partial reduction of tamoxifen toxicity, blockade 

of both cathepsins completely protects RPE cells from tamoxifen-induced cell death in vitro, and 

this was achieved using a single peptide-derived inhibitor. This overlap in substrate specificity 

may allow for tamoxifen retinopathy to be treated or prevented by a single drug targeting both 

cathepsins B and L.  
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FIGURES 

 

Figure 1.  Tamoxifen cytotoxicity of ARPE-19 cells.  (A) Increasing doses of tamoxifen led to 
ARPE-19 cell death and LDH release.  (B) Bright field microscopy of control and tamoxifen- (20 
µM) treated ARPE-19 cells after 2 hours of exposure.  Cells appeared round and shrunken, and 
were detaching from the tissue culture plate (scale bar = 200 µm).  (C) Phalloidin staining of 
actin fibers (red) and DAPI staining of cell nuclei (blue) reveals progressive loss of stress fibers, 
through time in ARPE-19 cells treated with tamoxifen (scale bar = 25 µm). 
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Figure 2.  Tamoxifen-induced lysosomal destabilization in ARPE-19 cells.  ARPE-19 cells 
were stained acridine orange prior to exposure to 20 µM tamoxifen.  Fluorescence microscopy 
revealed lysosomes (red) and DNA or RNA (green).  Lysosomal destabilization was evident 
within 20 minutes of tamoxifen exposure (scale bar = 10 µm). 



	
  

142	
  

 

Figure 3. Pathways of tamoxifen-mediated ARPE-19 cell death.  (A) ARPE-19 cells were 
treated with 20 µM tamoxifen for 2 hours, then treated with Nec-1 (20 µM) plus Z-VAD-FMK, a 
pan-caspase inhibitor (10 µM); Z-YVAD-FMK, a caspase-1 inhibitor (10 µM);  Z-DEVD-FMK,  a 
caspase-3 inhibitor (10 µM); Z-FF-FMK, a cathepsin B/L inhibitor (20 µM) alone or in the 
indicated combinations. (B) Brightfield images of ARPE-19 cells treated as in (A). Upper row 
represents cells treated with individual inhibitors without Nec-1.  Cells were rounded, shrunken 
and were detaching from the substrate.  Treatment with Nec-1 alone inhibited cell death, but the 
cells still appear distressed (bottom row, first panel).  Simultaneous treatment with a pan-
caspase inhibitor and Nec-1 or a caspase-1 inhibitor and necrostatin-1 resulted in near 
complete inhibition of cell death (bottom row, second and third panel). (C) ARPE-19 cells were 
treated with 20 µM tamoxifen for 2 hours, then treated with cathepsin B/L (Z-FF-FMK, 20 µM), 
specific cathepsin B (CA-074-Me) and cathepsin L (Z-FY(t-Bu)-DMK) inhibitors (20 uM) alone or 
in combination.  (D) ARPE-19 cells were treated with 20 µM tamoxifen for 2 hours, then treated 
with Nec-1 (20 µM) plus Z-LETD-FMK, a caspase-8 inhibitor (10 µM); Z-LEHD-FMK, a caspase-
9 inhibitor alone or in combination.  Adjusted P-value ** < 0.05, *** < 0.005, **** < 0.0001 
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Figure 4. Caspase activation in tamoxifen-treated ARPE-19 cells. Fluorochrome-labeled 
inhibitors of caspases (FLICA) were used to examine the activity of caspases-1, -3, -8, and -9 in 
ARPE-19 cells treated with tamoxifen.  (Row 1) Caspase-1 activity was noted 60 minutes after 
exposure to tamoxifen and was increased at 90 and 120 minutes.  (Row 2) Elevated levels of 
caspase-3 activity were measured 90 minutes after application of tamoxifen. (Row 3,4) 
Caspase-8 and caspase-9 activity was observed 60 minutes after application of tamoxifen with 
increasing levels of fluorescence at 90 and 120 minutes.(scale bar = 25 µm). 
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Figure 5.  IL-1β production in primed ARPE-19 cells treated with tamoxifen.  Primed 
ARPE-19 cells produced mature IL-1β when treated with tamoxifen, which was not affected by 
the addition of Nec-1.  Treatment with a caspase-1 specific inhibitor significantly decreased 
production of IL-1β, which was not affected by the addition of Nec-1.  Adjusted P-value ** < 
0.05, *** < 0.005.  
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Supplemental Figure 1.  RIP1 and RIP3 expression in ARPE-19 cells.  RIP1 and RIP3 
expression in ARPE-19 cells treated with tamoxifen 0, 10, 15, 30, 45, and 60 minutes after 
application of tamoxifen.  Protein expression of RIP1 and RIP3 decreases after 45 minutes of 
exposure to tamoxifen. 


