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Dissertation Advisor: Professor Briana M. Burton By: Scott Sinclair Chilton

A mutational analysis of the Bacillus subtilis
competence helicase ComFA

Abstract

Genetic competence is a developmental process in bacteria that allows natural trans-

formation. Competent Gram positive bacteria such as Bacillus subtilis carry a cytosolic

helicase which is required for efficient transformation. In this work ComFA is confirmed as

a DEAD-box helicase. I also describe a new accessory motif in ComFA that contributes

to transformation independently of the helicase activity in ComFA. The newly discovered

metal-binding motif consists of four cysteines which are required for transformation and zinc

binding. While the zinc finger is required for full function, it is not required for DNA binding.

As DEAD-box family helicases are generally non-processive, it appears that at least part of

the rapid DNA uptake process is mediated by a non-processive helicase. Active uptake using

the ComFA helicase motor may be required to maintain the integrity of the incoming DNA

to allow subsequent recombination.
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1

Chapter 1: Introduction to genetic

competence

1.1 Molecular transport

Membranes are an integral part of cellular life. They function as semi-permeable barriers

between the contents of the cell, and the external environment. Creating this spatial separa-

tion makes possible a number of biological processes. As such, cells have evolved a plethora

of methods to control the flow of materials across cell membranes.

Transport mechanisms can be separated into two main classes, passive transport, and

active transport, based upon the requirement for energy to transport a substrate across

the membrane. Passive transport generally involves molecules moving down concentration

gradients. Substances that have the ability to diffuse across the membrane do so freely.

Molecules that cannot cross the membrane due to their charge or size undergo facilitated

transport using protein channels embedded in the membrane (Figure 1.1A).
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1.2 Macromolecular transport

Active transport encompasses mechanisms that require energy to allow transport. Of-

ten these processes involve the import or export of substrates against their concentration

gradients, or transport of very large substrates, such as macromolecules (Figure 1.1B &

C). Macromolecular transport encompass the trafficking of biopolymers and other large sec-

ondary metabolites such as proteins, genetic material, and other membrane impermeable

substrates.

1.2 Macromolecular transport

Both eukaryotes and bacteria have developed a number of ways of moving around large

cargo. Generally, these fall into two main strategies: vesicular transport (endocytosis and

exocytosis), in which the cargo is contained in membrane-bound compartments, and using

specialized complexes which use channels and pumps to move macromolecules.

Vesicular transport is primarily a eukaryotic phenomenon (1). We often see this with

the processing of proteins as they move from the endoplasmic reticulum (ER) to the Golgi

apparatus, and then to the cell membrane, other cellular compartments, or are exported

following fusion of the vesicle with the cell membrane (Figure 1.1C).

We see protein-based transport processes in both eukarya and bacteria. In eukarya the

best characterized systems are for nucleic acid transport into and out of the nucleus, and

polypeptide transport to the ER by the secretion machinery (2, 3). Bacteria have evolved a

number of systems for export of proteins and nucleic acids. Scientists have identified at least
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1.2 Macromolecular transport

Figure 1.1: Transport mechanisms - (A)Passive Transport. A channel mediates the diffu-
sion of a solute across the membrane, down a concentration gradient. (B)Active Transport (i)
Membrane-bound pumps move substrates across the membrane. (ii) Symport. Two substrates
are moved in the same direction across the membrane. Co-transport enables the energetics
to transport the substrates. (iii) Antiport. Export of one substrate mediates the import of
another. (C) Macromolecular Transport. (i) Vesicular transport. The incoming substrate is
enveloped in a membrane as it is imported. (ii) Protein transport mediated by a secretion
system. A channel, with an associated pump moves the macromolecule across the membrane.
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1.2 Macromolecular transport

seven types of secretion systems for protein export. Each of these systems are designed for

handling substrates for specific functions and destinations outside of the cytoplasm (reviewed

in (4)).

Nucliec acid transport, as with other macromolecule occurs both as import and export.

The mechanisms of nucleic acid export are primarily governed by selfish elements such as

conjugation elements and bacteriophage viral infections. Generally, the export mechanisms

are more designed for the propagation of the conjugal elements or the phage, rather than

for the benefit of the cell. However, there is at least one example of conjugation being

used as a virulence method (5). There is evidence that nucleic acids are exported by some

bacterial species by other mechanisms, however with the exception of export systems related

to cell division and lysis, we know very little about how bacterial cells release DNA into the

environment (6, 7, 8).

Bacteria have also developed methods for importing nucleic acids reviews in ((6, 9, 10)).

These methods of genetic exchange allow for horizontal gene transfer, and are thought to be

a source for genetic diversity in microorganisms. The evolutionary reasons for nucleic acid

import is still a topic of great debate, and understanding how the transport systems function

may shed some light on their value and utility (10, 11).
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1.3 Horizontal gene transfer

1.3 Horizontal gene transfer

Usually when we think about transmission of genetic material, passage of genes from parent

to its progeny comes to mind. The phenomena which result in the inheritance of traits are

referred to as vertical gene transfer (VGT). Coarse understanding of this process pre-dates

the discovery of genes, and genetic theories (12). Overtime, our understanding of VGT has

developed greatly and is the basis for the study of genetics.

There is another set of processes in which organisms can exchange genetic material in a

non-hereditary manner, known as horizontal gene transfer (HGT). During HGT individuals

in a community can exchange genetic material. The transfer may not be limited to members

of the same species, depending on the mechanism of transfer. Genes acquired via HGT can

be propagated vertically. There are three main natural mechanisms for HGT (Figure 1.2),

and a number of methods have been developed to artificially transfer genetic material into

some organisms (13, 14, 15, 16, 17) For the purposes of this discussion we will stick with the

natural processes.

Natural processes that facilitate HGT are composed of conjugation, transduction, and

transformation. Conjugation is sometimes referred to as bacterial sex, and involves direct

transfer of mobile genetic elements (reviewed in (18)). Transduction refers to a transfer

process which utilizes an intermediary. In bacteria, this is often a phage virion which cap-

tures part of the host genome (Figure 1.2Aiii & Biii) (19, 20). Transformation involves the

5



1.3 Horizontal gene transfer

acquisition of free DNA from the environment. Topologically, conjugation and transduction

are export processes meant to benefit selfish biological elements. Transformation, however,

is topologically an import process in which a cell scavenges DNA from the environment

(reviewed (21)).

Conjugation is an HGT process through which genetic material is transferred by a pro-

teinaceous channel during cell-cell contact (Figure 1.2Ai & Bi). Often the genes encoding the

export machinery are encoded on a plasmid, which in some cases integrates into the genome,

and is propagated vertically. Under certain conditions the conjugation machinery can be

induced which leads to replication of the plasmid, and transfer of the conjugative element to

conjugation-deficient recipient cells (reviewed in (18)). The conjugation machinery in some

cases can transfer other plasmids lacking the conjugation machinery also carried by the host

cell (22). When a conjugative plasmid is transferred to a recipient cell, the recipient then

becomes conjugation-capable. Due to the method of propagation, a conjugative element can

be thought of as a paired-down lysogenic bacteriophage, which is able to propagate without

lysing the host.

Transduction is a process through which genetic material is transferred from a donor cell

to a recipient cell via an intermediary. In bacteria we see this most often with bacteriophage.

Some phages make mistakes during the packing of new virions, and will package fragments

of the host genome into some of the viral capsids, rather than a newly synthesized phage

genome. The resulting virions will then transfer the region of the prior host’s genome when
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1.3 Horizontal gene transfer

Figure 1.2: Conjugation, transduction, and transformation - (A) HGT mechanisms
in Gram+ bacteria (B) HGT Mechanisms in Gram− bacteria.(A and B)(i) Conjugation. DNA
is transferred directly from the cytoplasm of one cell into another. (ii) Transformation. DNA
is transported from the outside environment into the cell. (iii) Transduction. DNA from a
bacteriophage is injected into a host cell. Gray region indicates peptidoglycan layers in each
type of bacteria.
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1.4 Competence and transformation

infecting a new host. If there are regions of homology between the region transferred and

the new host genome, the region can be integrated into the new host genome and result in

the loss or acquisition of genes (reviewd in (23)).

Transformation is the process by which cells take up DNA from their environment. Var-

ious species have mechanisms for mediating this process and utilizing the transported DNA

molecules acquired by transformation. Transformation is of particular interest since it is an

import process and is apparently driven by the cell, rather than by other elements.

1.4 Competence and transformation

Genetic competence (hereafter referred to as competence) is a process through which a cell

develops the ability to take up DNA from its environment and become transformed. Our

current understanding of natural competence is that it is a developmental state observed in

both Gram positive (Gm+) and Gram negative (Gm−) bacteria, and involves the assembly

of large protein complexes to allow passage of DNA across the cell wall and cell membranes

(reviewed (21)). A number of elaborations on this theme have evolved as not all species

use the same cues for development of competence. Due to the variations in regulation the

timing of competence development varies greatly between species (24, 25) (reviewed in (25).

Furthermore, the promiscuity or donor-range for the competence systems vary as well, with

some species only allowing for intraspecies exchange, and others being receptive to DNA

from any source (26, 27, 28, 29, 30, 31).

8



1.5 Competence in Bacillus subtilis

1.5 Competence in Bacillus subtilis

Competence has been well studied in B. subtilis, Haemophilus influenza, Helicobacter pylori,

Neisseria gonhorreae, and Streptococcus pneumoniae. In the work discussed here B. subtilis

was chosen as the studied system. We have a grasp of the proteins required for development

of competence, as well as the genes required for DNA uptake, and transformation in all of the

above species, however, competence and transformation have been most extensively studied

in B. subtilis (reviewed in (10, 21, 32, 33, 34, 35)). B. subtilis is also an ideal system for

studying transformation as it is non-pathogenic and has a wide DNA donor range (31).

1.5.1 Development of competence

Competence in B. subtilis develops as a post-exponential phase state. The master regulator

comK is required for the expression of all the late competence (com) genes (36). ComK

levels are controlled by a positive-feedback/proteolysis regulatory system. ComK is always

expressed, but it is rapidly degraded by the MecA-ClpCP complex (37). ComS expression

interferes with the MecA activity and allows for ComK levels to increase (37). This creates

a bistable system in which competence arises stochastically in members of the population

(38). The increase in ComK also allows expression of the late com genes (Figure 1.3) (36).

In B. subtilis about 10 % of the cells can become competent in a stationary phase population

(39, 40).
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1.5 Competence in Bacillus subtilis

Figure 1.3: Development of Competence in B. subtilis - Diagram of the regulatory
inputs that govern ComK and late competence gene expression. The late competence genes
are expressed in cells to facilitate the transformation process. The components involved in the
early regulation of comK have been marked in gray. Their involvement in the development of
competence are reviewed in (33, 41). Adapted from(41).
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1.5 Competence in Bacillus subtilis

1.5.2 Transformation in B. subtilis

A cell becomes competent when it has expressed the genes needed to undergo transfor-

mation. Transformation in B. subtilis occurs through a number of steps: DNA binding,

fragmentation, uptake and internalization, and integration and resolution.

1.5.2.1 DNA binding

Binding is general defined as a non-covalent, wash-resistant attachment state for the trans-

forming DNA (33). Work examining the kinetics of binding show that it occurs upon contact

of the DNA substrate with the competent cell (42, 43). The DNA-binding activity occurs

only in competent cells, and there appear to be a finite number of binding sites per cell,

currently estimated to be about 50 sites per cell (42, 44). The quantity of DNA bound to a

cells is proportional to the size of the polynucleotide bound, suggesting that DNA fragments

are specifically bound to each site, rather than being bound as bulk masses of DNA (33).

The attachment sites, and which cellular structures are responsible for initial binding are

unknown, but must either transverse the cell wall, or be otherwise present on the outside of

the cell to facilitate binding. Binding has also been shown to be DNA-specific, with little

to no binding from double-stranded RNA or a number of synthetic polymers (28). This

specificity will be important later when I discuss the purpose of competence.
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1.5 Competence in Bacillus subtilis

1.5.2.2 Fragmentation

Fragmentation is a process through which double-strand breaks are introduced in the trans-

forming DNA. The double-strand breaks are created by an extracellular endonuclease, NucA

(45). The estimated sizes of the fragments observed are consistent with fragmentation along

the cell length and width (33). That said, the sites of cleavage do not appear to be correlated

with specific sequences or locations along the bound DNA (33).

1.5.2.3 Uptake and internalization

For a long time uptake in Gm+ bacteria has been thought of as a single step, which was

monitored by the conversion of the exogenous DNA to a DNase-resistant state. However, it

appears that the DNase-resistant property may apply to two states of the incoming DNA

(46, 47, 48). The first, being a movement which sequesters the DNA away from the cell

surface, and a second which reflects the transport of the DNA across the cell membrane. This

distinction of states has been observed in the delay between DNase resistance of the substrate

and cyanide resistance of import during transformation (47), and the loss of protoplast

associated DNA in comGA mutants (48). Uptake and internalization are thought to be

driven by two factors, the proton motive force, which drives the collapse of the psuedopilus,

and the cytosolic competence helicase ComFA (Figure 1.4) (43, 49).
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1.5 Competence in Bacillus subtilis

1.5.2.4 Resolution

As the transforming strand is drawn into the cell it is bound by a number of single-strand

binding proteins (50). The proteins presumably protect the transforming DNA from the

nucleases present in the cytoplasm. The recombination (rec) machinery takes over at this

stage and attempts to resolve the linear product of the transformation process into a circular

element (31). This can happen in a couple ways. The linear fragment will be integrated

into the genome if there is sufficient homology with a region of the genome, or can be

recombined to create an extra-chromosomal element if there are sufficient regions of homology

intramolecularly, or if multiple copies of the fragment are taken up, which is what we often

see for plasmids (31, 51). As part of this recombination process the single-stranded fragment

is converted back to being double-stranded by polymerization of the complementary strand.

1.5.3 The competence machinery

The DNA uptake machine is primarily composed of a number of late com genes. The current

model for DNA uptake in B. subtilis com system begins when environmental DNA becomes

bound to the surface of a competent cell. The ComG pseudo-pilins are type IV pilin-like

proteins that form a tube that allows the incoming DNA to cross the cell wall and bind

to ComEA (52, 53, 54). ComEA is a single-pass integral membrane protein containing an

extracellular DNA-binding domain. ComEA has been demonstrated to have high DNA
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1.5 Competence in Bacillus subtilis

binding affinity and is required for binding and transport even in the absence of a cell wall

(54, 55, 56). Then, presumably, ComEA passes the incoming DNA across the cell membrane

through ComEC via an undetermined mechanism. ComEC is a polytopic integral membrane

protein that is thought to dimerize, forming an aqueous pore through the cell membrane,

which allows the incoming DNA to cross the cell membrane (57). An unidentified nuclease

degrades the non-transforming DNA strand and the degradation products are released into

the environment (47). It is thought that meanwhile ComFA, a membrane-associated DEAD-

box helicase pulls the transforming strand into the cell (49, 58, 59, 60). The rec machinery

then binds the single-stranded transforming DNA strand to allow integration into the genome

or formation of an extra-chromosomal DNA (31) (Figure 1.4).

The work discussed here examines a protein intimately involved in the import of the

transforming strand during competence in B. subtilis, ComFA. ComFA appears to be the

cytoplasmic motor of a very processive import machine, yet is predicted to be non-processive

based upon its amino acid sequence. I examine the conserved helicase amino acid motifs

predicted in the protein’s primary sequence for their contribution to transformation, and

also find an additional motif that appears to further contribute to activity.
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1.5 Competence in Bacillus subtilis

Figure 1.4: Model of Transformation in B. subtilis - DNA is brought into the cell by
an initial binding to the outside of the cell mediated by the ComG pseudopilus. The proton
motive force (PMF) is believed to drive the collapse of the pseudopilus bringing the incoming
DNA to the cell membrane. A membrane-bound endonuclease (NucA)nicks the incoming DNA
to create a free-end. The incoming DNA is bound by ComEA, and is pulled into the cell
through ComEC by ComFA. During this process one DNA strand is degraded. The single-
stranded transforming DNA is coated by single-stranded DNA binding proteins (ssb proteins)
and the rec machinery (DprA and RecA). The coated transforming DNA is transported to the
chromosome for homologous recombination. ComEA the primary, DNA receptor, ComEC the
aqueous pore, and ComFA are labeled in shades of blue and purple. The incoming DNA is
labeled in purple and black. The components which form the ComG pseudopilus, the single-
stranded binding proteins, and the rec machinery are labeled in gray. The chromosomal DNA
is labeled in white. CW: Cell wall, CM: Cell membrane. Adapted from (10, 21). NucA added
based upon (45).
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2

Mutational analyisis of the ComFA

canonical DEAD-box helicase motifs

2.1 Abstract

DNA uptake during transformation in B. subtilis is understood to be a rapid and proces-

sive process. While it appears that some of the processivity behavior can be explained by

the structural dynamics of the ComG pseudopilis and the proton motive force (43), defects

observed in the DNA uptake process in ComFA mutants indicate that ComFA also has an

important role [refs]. Bioinformatic analysis suggests that ComFA is a DEAD-box helicase

(58). In the work presented in this chapter, I performed a mutational analysis of the con-

served DEAD-box motifs in ComFA to confirm its designation as a DEAD-box helicase. I

found that the conserved motifs are required for ComFA function. However, mutations in

the conserved motifs create a 100–fold defect in tranformation efficiency which is less severe

than the nearly 10 000-fold defect caused by the comFAΔS1 in-frame deletion that was pre-
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2.2 Introduction

viously developed as a comFA null allele. ComFA is confirmed as a DEAD-box helicase, yet

the helicase activity does not account for all of its contribution to efficient transformation.

2.2 Introduction

Genetic competence in B. subtilis is a developmental process in which a population of cells

expresses genes that allow them to take up large stretches of DNA, up to 15 kb in size and

integrate some portion of that DNA into their genome via homologous recombination (61).

Superfamily II helicases and translocases are found in various DNA and RNA metabolic

processes. ComFA, a member of the DEAD-box helicase family from sequence homology, is

thought to be a major contributor to DNA uptake in B. subtilis (49, 58). As members of the

DEAD-box helicase are not generally very processive, operating on substrate of 10—100 bp

in length (reviewed in (62, 63)) it is interesting to understand how ComFA achieves this feat.

I am interested in understanding how ComFA functions as a transport helicase, and how

the mechanism of its function contributes to the DNA uptake process in B. subtilis. Genetic

competence is observed in several other bacterial species, including human pathogens and the

genes important in the process are conserved across the bacterial domain of life (6, 21, 64).
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2.2 Introduction

2.2.1 The helicase superfamilies

Nucleic acid helicases and translocases are central to life. They are required for DNA repli-

cation, RNA maintenance, sporulation, and horizontal gene transfer events in bacteria ((65),

reviewed in (35)). They are also involved in a large number of regulatory processes in eukarya

(62, 63, 66, 67, 68). These helicases are divided into six superfamilies (SF1—SF6) based on

sequence homology, motifs, and structural features that define each superfamily. SF1 & 2 are

related, and the member helicases primarily function as monomers and dimers. SF3—SF6

are made up of helicases that generally form rings and function as hexamers (reviewed in

(63)). The quaternary structural differences between SF1 & SF2, and SF3—SF6 helicases

translate into very different behaviors. For example, many of the SF1 & SF2 helicases are

involved in low-processivity processes, in which they do not need to move along nucleic acid

substrates in a concerted manner over long distances. That said, they are involved in very

important cellular processes such as translation initiation, and restarting stalled replication

forks (69, 70). The rings formed by the members of SF3—SF6 topologically link the helicases

to the DNA substrate. The linkage requires the ring to open or encounter strand breaks for

the helicase oligomer to dissociate from its substrate, and the rings are generally made of

larger oligomers than those observed in SF1 & SF2 which provides additional contacts for

maintaining the interaction between the helicase and its substrate (71). The increase in

processivity is important in processes which must occur rapidly such as DNA replication
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2.2 Introduction

during cell growth and division.

SF 1 & 2 are the largest superfamilies, and are defined by at least seven motifs in a

conserved core region (reviewed in (62). Differences in the amino acid compositions of these

motifs, and the substrates of the members distinguish the two families from each other

(reviewed in (66, 68)). The core region is responsible for ATP-binding and hydrolysis, as

well as nucleic acid binding and translocation (reviewed in (62, 66, 68)). Outside of the core

region, these helicases have N-terminal and C-terminal regions that provide a great deal of

functional diversity to members of SF 1 & 2.

2.2.2 DEAD-box helicases

The DEAD-box proteins are the largest family within SF2. The family is primarily defined

by having the D-E-A-D sequence in motif II, with some variation at the location held by

the alanine residue, as well as conservation of several other motifs with a variation distinct

from other SF2 families. In addition to its size, the DEAD-box family is also noted for

the diversity of cellular processes that employ members of the helicase family. A great deal

of this diversity is made possible by the N-terminal and C-terminal domains outside the

helicase core (reviewed in (67, 68, 72)).

The RNA helicase members of this family have been the most extensively characterized.

The work on the RNA helicases has provided a great deal of understanding of how the DEAD-

box proteins function. One notable finding is that some of the RNA DEAD-box proteins
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2.2 Introduction

function more like RNA chaperones which bind to duplexed RNA to melt the duplex, and

then release their substrate, than proper helicases or translocases which move along length

of the nucleic acid strands (73). However, given the relatively small number of DNA DEAD-

box helicases which have been studied, it is not clear to what extent some of these behaviors

are shared across nucleic acid substrates. I mention all of this again, because based upon a

bioinformatic analysis ComFA looks to be a DEAD-box family member (Figures 2.1 & 2.2).

Multiple sequence alignments with DEAD-box familiy members, and motif search analyses

show the presence of at least five of the seven motifs used to define the DEAD-box helicase

family in the primary sequence of ComFA (Figure 2.2) (58). If ComFA does appear to be a

member of this family it would confirm that an non-processive helicase is likely the cytosolic

driver of processive DNA uptake. Having a non-processive helicase as a major contributor to

a processive process makes a clear and interesting paradox, which would suggest that there

are methods for modulating or augmenting the processivity, or of creating an apparently

processive process from non-processive parts.

2.2.3 ComFA

As previously mentioned in Chapter 1, ComFA is a late com protein, part of a large protein

complex involved in DNA uptake and transformation in B. subtilis. ComFA was originally

identified as a late competence com gene in an operon designated comF during a transposon

mutagenesis screen (74). ComFA appears to be the only cytosolic motor that participates
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2.2 Introduction

in the DNA uptake machine.

Some initial analyses of the protein showed that it is part of an operon containing three

open reading frames, and two of the members (comFA and comFC ) had significant contri-

butions to transformation (58). ComFA, however, had the largest contribution (58). Bioin-

formatics indicate that it contained some of the motifs found in members of the DEAD-box

family of helicases (Figure 2.1). Londoño-Vallejo and Dubnau created a set of in-frame dele-

tion mutants and motif I (Walker A) mutants to test the requirement for ComFA. They

found that the in-frame deletions and the Walker A mutants greatly impaired transforma-

tion, causing 1 000–fold decreases in transformation efficiency, and also impeded DNA uptake

(49, 58). From the tested mutants and the bioinformatic data, they asserted that ComFA

was a likely DEAD-box helicase. Their findings were insufficient to solidify that designation,

as the GKT motif of the Walker A motif, being required for nucleotide binding is widespread

among ATPases, not just helicases, and they did not test any other conserved sequence

motifs in ComFA.
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Figure 2.1: Schematic of ComFA - Alignment of ComFA and the consensus motif sequences for DEAD-box
family helicases. The silver region is the putative zinc finger (see Chapter 3), the red region corresponds to a possible
ABC signature linker motif, and the green regions denote DEAD-box helicase motifs. Roman numerals listed above
the sequences denote the number motifs. The magnified region shows the region removed by the comFAΔS1 in-frame
deletion. The first and last residues of the magnified region are numbered. ∗Residues mutated in this work.
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Figure 2.2: ComFA resembles a DEAD-box protein - Multiple sequence alignment of ComFA with repre-
sentative DEAD-box proteins performed using M-Coffee (75, 76, 77, 78). Bracketed numbers indicate intervening
residues that were removed to condense the sequences. Underlines indicate conserved SF2 DEAD-box helicase motifs.
The sequences were obtained from GenBank and were originally described in: DDX1: (79), DeaD: (65), eIF4A: (80),
SrmB: (81), UvrB: (82), PRH1: (83), PriA: Foulger: (84), Vasa: (85).
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I sought to examine the other DEAD-box motifs present in ComFA to determine if it did

fit well as a DEAD-box family member. Having a solid understanding of how the protein

likely behaves is very important as we determine how the machinery functions, and develop

our understanding of how ComFA is involved in the transformation process.

2.3 Results

2.3.1 ComFA is a DEAD-box helicase

I examined the DEAD-box helicase motifs in ComFA using a transformation efficiency assay.

The transformation efficiency assay allowed me to examine the effects of mutations in ComFA

on the number of transformants that arise in a population of cells. I designed mutations in

the specific nucleotides corresponding to the amino acid residues of interest and introduced

those mutations into the B. subtilis genome. In the transformation efficiency experiments,

I grew cells to competence and then assayed for function of ComFA by looking for the

acquisition of an antibiotic resistance gene contained on B. subtilis genomic DNA provided

to the cells.

I chose to conduct the mutational analyses using mutations introduced at the comF locus

to resolve some of the problems observed when making complementation constructs expressed

from the yvbJ locus (See Appendix A). Bioinformatics analysis identifies ComFA as a mem-

ber of the DEAD–box helicase/translocase family (58, 60). However, previous functional
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studies have only confirmed that it is a P-loop ATPase (49). I set out to confirm whether

the other DEAD-box family motifs are important to ComFA function, by transformation

efficiency analysis (Figure 2.3). I found that relative to wildtype, predicted loss-of-function

mutations in motifs I, II, III, and VI led to 100–fold decreases in transformation efficiency.

One exception was the comFAS264A mutation, which did not result in a transformation effi-

ciency defect. It has been observed in other DEAD-box helicases generally that either the

serine or the threonine in motif III are required for function, but not necessarily both, and

some studies actually mutate both residues when analyzing these helicases (86). I also no-

ticed that the comFAΔS1 in-frame deletion causes a much stronger defect than any of the

motif mutations.

2.4 Conclusions

The goal of the work presented in this chapter was to perform a functional analysis of the

SF2 motifs present in ComFA. The transformation efficiency analysis demonstrates that each

of the four motifs tested are required for efficient transformation in B. subtilis. Based on the

requirement for the motifs, ComFA clearly is a DEAD-box family helicase.

ComFA contains several of the important motifs to allow its classification, however, the

precision of the classification is a bit limited due to the limited breadth of data on similar

helicases in bacteria. Most of the DEAD-box helicases that have been studied extensively are

RNA helicases found in eukaryotes (66, 87, 88, 89). The relatively recent re-examination of
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Figure 2.3: DEAD-box motifs are required for ComFA function - Transformation
efficiency for mutations of ComFA canonical DEAD-box helicase motifs. All efficiency rates
are normalized to wildtype (WT). The ΔS1 strain is included as a comFA− control (49, 58).
Limit of detection for the assay is 0.5 transformants per CFU per µg of genomic DNA. The
relative efficiency axis is a log10 scale. Error bars are standard error, WT n = 35, all mutants
n = 5. ∗p <0.001, ∗∗p <0.0001
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DEAD-box RNA helicases as RNA chaperones rather than helicases or translocases highlights

how the dearth of information can greatly effect how to interpret the classification of ComFA

in our models of DNA uptake and transformation (73).

There are two prevailing models for how ComFA may function as part of the machinery:

the Brownian ratchet, and the active transport model (35). In the Brownian ratchet model,

ComFA introduces directionality to random molecular motion by blocking DNA from exit-

ing back out of the ComEC channel once it has entered the cell. This model is plausible

given for example the activity of some DEAD-box RNA helicases, such as Dbp4A which

function more as RNA chaperones, and bind and release with ATP-hydrolysis cycles (73).

This model, however, restricts the import driving force to the ComG pseudopilis and the

proton motive force which are both upstream of the primary DNA binding protein in the

system, ComEA (See Figure 1.4). The sequence of components makes this unlikely given

the speed of uptake and transformation. The Brownian ratchet may, however, have a role

in transformation via contribution from single stranded DNA binding proteins, and could

account for the transformation we observe in the absence of a functional helicase protein,

and may also provide some insight into the activity differences observed between the heli-

case motif mutants and the comFAΔS1 in-frame deletion (Figure 2.3). Furthermore, ComFA

is present in competence-capable Gm+ bacterial species and absent in competence-capable

Gm− bacerial species. This leaves the question of why Gm+ bacteria use a helicase for a

process that Gm− bacteria seem to accomplish using single-stranded DNA (ssDNA) binding
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proteins.

We see a decreased level of transformation efficiency in the DEAD-box motif mutants,

and a residual level of transformation in the comFAΔS1 strain. From these observations, and

the presence of recombination proteins it appears that ComFA has an active role in DNA

transport. I would argue that the simplest Brownian ratchet model would cover the mutant

phenotypes where essentially the ComFA mutants and the rec proteins bind the incoming

DNA, and prevent it from flowing back out of the ComEC pore. The functional ComFA,

however, may function as a helicase that facilitates uptake by moving along the incoming

DNA strand. This facilitation may occur regardless of whether ComFA actively melts the

duplex, or steps into space between the strands created from thermal breathing of the DNA

double helix. The active molecule can both prevent the back flow of the substrate, and also

produce a tension to import the DNA.

Developing a full picture of how ComFA functions during uptake is essential to deter-

mining whether a Brownian ratchet is sufficient to describe uptake, or if something more

complex is happening. The details for illustrating the behavior will be found in an in vitro

biochemical analysis of ComFA. A quantitative analysis of the biochemical activities will

allow simulations to test models of the uptake system in a variety of conditions and compare

the model outputs to reports of uptake lengths and rate (33, 90, 91).

Recent examination of ComGA has revealed that the cytosolic DNA uptake machinery

may not need to keep up with the extracellular machinery to achieve efficient transformation
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(48). B. subtilis appears to have an ability to protect incoming DNA from extracellular nu-

cleases, prior to internalization of the transforming DNA (46, 47, 48). To determine how fast

we would expect ComFA to operate, we need more information regarding the capacity of the

membrane-proximal space for incoming DNA. The capacity would determine the DNA up-

take system’s tolerance to asynchrony in the DNA uptake steps. Additional experimentation

will be required to determine the contribution to internalization from ComFA, as mutations

in ComGA are sufficient to block the internalization process.

Earlier work performed by Londoño-Vallejo and Dubnau used comFAΔS1 as a comFA-

allele, and showed that the comFA motif I mutants were equivalent to the comFA null allele

(49, 58). It is clear from the comFAΔS1 phenotype in this analysis that the DEAD-box

helicase motifs do not account for all of ComFA activity during transformation. We would

expect null alleles to be equivalent if they remove all activity attributed to a protein. Here,

we see an additional transformation efficiency defect in the comFAΔS1 which suggests that

the helicase-dead mutants retain some activity which is then lost when the 113–amino acid

region is removed in the ΔS1 mutation. In the next chapter I will investigate one motif that

is present in the region removed by the ΔS1 deletion (Figure 2.1).
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2.5 Materials and methods

2.5.1 Strains and growth conditions

All B. subtilis strains were derived from the prototrophic strain PY79 (92). B. subtilis were

grown in Luria-Bertani (LB) broth or on LB plates fortified with 1.5 % Bacto agar at 24 ◦C

or 37 ◦C as appropriate. 10x modified competence (MC) medium was made as described in

(93). Competent cells were grown in 1x MC supplemented with 0.3 % (v/v) 1 M MgSO4.

When appropriate, antibiotics were included at the following concentrations: 5 µg/ml chlo-

ramphenicol (Cm5), 100 µg/ml spectinomycin (Spec100), and 1 µg/ml erythromycin plus 25

µg/ml lincomycin (mls).

2.5.2 Plasmid construction

Plasmids used in this work are listed in Table 2.2. Oligonucleotides used in this work are

listed in Table 2.3. All isothermal assembly (ITA) reactions were performed as described in

(94).

pSC010 [gfpmut2b] was generated by site-directed mutagenesis using oSC012 to add a BamHI

restriction endonuclease site to pKL147 (95).
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pSC012 [comFA-gfpmut2b] was generated in a two-way ligation with an EcoRI-XhoI PCR

product containing PcomF -comFA. The PCR product was generated by a linking PCR re-

action (96) using oSC014, oSC015, oSC016, and oSC017, a small PCR product containing

PcomF , amplified from B. subtilis genomic DNA using oSC014 and oSC015, and a PCR

product containing the comFA coding sequence amplified from pBB031 using oSC016 and

oSC017. The oSC016 oligonucleotide introduces a G to A transition in the start codon for

the comFA coding sequence, and creates an NdeI restriction site.

pSC026 [h6-comFAG151R/K152N] was generated by site-directed mutagenesis of pBB031 using

oSC069.

pSC036 [yvbJ::comFA (erm)] was generated in a two-way ligation with an EcoRI-BamHI

PCR product amplified from pSC012 using oSC014 and oSC061 and pBB268 cut with EcoRI

and BamHI.

pSC048 [PcomF -comFA] was generated in a two-way ligation with an EcoRI-BamHI frag-

ment containing PcomF -comFA from pSC036 into pBlueScriptSK(+) cut with EcoRI and

BamHI.

pSC051 [PcomF -comFAT266A] was generated in a two-way ligation with an NdeI-BamHI
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PCR product amplified from pSC005 using oSC044 and oSC061 into pSC048 cut with NdeI

and BamHI.

pSC056 [PcomF -comFAK152E] was generated in a two-way ligation with an NdeI-BamHI

PCR product amplified from pSC024 using oSC044 and oSC061 into pSC048 cut with NdeI

and BamHI.

pSC058 [PcomF -comFAG151R/K152N] was generated in a two-way ligation with an NdeI-

BamHI PCR product amplified from pSC026 using oSC044 and oSC061 into pSC048 cut

with NdeI and BamHI.

pSC067 [PcomF -comFAS264A] was generated in a two-way ligation with an NdeI-BamHI

PCR product amplified from pSC004 using oSC044 and oSC061 into pSC048 cut with NdeI

and BamHI.

pSC068 [PcomF -comFAK152A] was generated by site directed mutagenesis of pSC048 us-

ing oSC018.

pSC069 [PcomF -comFAE234Q]was generated by site directed mutagenesis of pSC048 using

oSC008.
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pSC073 [PcomF -comFAΔS1] was generated in a two-way ligation with an EcoRI-BamHI

fragment containing PcomF -comFA from pSC048 into pUC19 cut with EcoRI and BamHI.

The resulting vector was cut with SacI, separated from the fragment produced and re-ligated

to produce the comFAΔS1.

pSC076 [yvbJ::PcomF -comFAK152A] was generated in a two-way ligation with an EcoRI-

BamHI fragment containing PcomF -comFAK152A from pSC068 into pBB268 cut with EcoRI

and BamHI.

pSC081 [comFAΔS1] was generated in a two-way ligation with an EcoRI-BamHI fragment

containing PcomF -comFAΔS1 from pSC073 into pBB268 cut with EcoRI and BamHI.

pSC104 [comFA::cat ] was generated by multiple steps involving two-way ligations. The

region upstream of comFA was inserted via two-way ligation with an EagI-SalI PCR prod-

uct amplified from B. subtilis genomic DNA using oSC032 and oSC033 and pBB028 cut with

EagI and SalI. The region downstream of comFC was inserted by two-way ligation with a

SphI-XbaI PCR product amplified from B. subtilis PY79 genomic DNA using oSC193 and

oSC194 and the plasmid created in the previous two-way ligation cut with SphI and XbaI.
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pSC216 [PcomF -comFAT266A in pMiniMAD2] was generated in a two-way ligation with an

EcoRI-BamHI fragment containing PcomF -comFAT266A from pSC051 into pMiniMAD2 cut

with EcoRI and BamHI.

pSC217 [PcomF -comFAK152E in pMiniMAD2] was generated in a two-way ligation with an

EcoRI-BamHI fragment containing PcomF -comFAK152E from pSC056 into pMiniMAD2 cut

with EcoRI and BamHI.

pSC218 [PcomF -comFAE234Q in pMiniMAD2] was generated in a two-way ligation with an

EcoRI-BamHI fragment containing PcomF -comFAE234Q from pSC069 into pMiniMAD2 cut

with EcoRI and BamHI.

pSC228 [PcomF -comFAG151R/K152N in pMiniMAD2] was generated in a two-way ligation with

an EcoRI-BamHI fragment containing PcomF -comFAG151R/K152N from pSC058 into pMini-

MAD2 cut with EcoRI and BamHI.

pSC229 [PcomF -comFAS264A] was generated in a two-way ligation with an EcoRI-BamHI

fragment containing PcomF -comFAS264A from pSC067 into pMiniMAD2 cut with EcoRI and

BamHI.
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pSC230 [PcomF -comFAK152A] was generated in a two-way ligation with an EcoRI-BamHI

fragment containing PcomF -comFAK152A from pSC076 into pMiniMAD2 cut with EcoRI and

BamHI.

pSC237 [comFA218-463] was generated by isothermal assembly of a PCR product contain-

ing comFA218-463 and 472 bases immediately downstream amplified from B. subtilis genomic

DNA using oSC311 and oSC312, and pMiniMAD2 cut with SmaI.

pSC239 [comFA218-463,R419K]was generated by site-directed mutagenesis of pSC237 using

oSC024.

pSC240 [comFAΔS1,1-146 in pMiniMAD2] was generated by isothermal (ITA) assembly of a

PCR product containing comFA1-8 and 424 bases upstream amplified from B. subtilis ge-

nomic DNA using oSC313 and oSC335, a PCR product containing comFAΔS1,1-146 amplified

from pSC081 using oSC314 and oSC334, and pMiniMAD2 cut with SmaI.

2.5.3 Construction of B. subtilis strains

2.5.3.1 comF expression strains

Unmarked mutations were introduced into the genome as performed in (97) with the follow-

ing modifications. The transduction step was omitted. Transformed colonies carrying the
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pMiniMAD2 constructs were re-streaked on mls resistance selective plates, and grown at 37

◦C overnight. One colony from 5—8 of the re-streaked isolates were used to inoculate a 5 ml

LB culture, and grown rolling at 37 ◦C for 6–8 hours. Cells were diluted 1:1 000 in 25 ml LB

and grown at the permissive temperature for 24 hours, diluted again, and grown up at the

permissive temperature for an additional 24 hours. Mutations were verified by sequencing

of PCR products amplified from purified genomic DNA of mls-sensitive isolates or directly

from cells. PCR products were generated using oSC085 and oSC086.

2.5.3.2 Genomic DNA preparation and PCR amplification

Patches from the desired strains were used to inoculate 3—6 ml LB liquid cultures. Cultures

were grown up at 37 ◦C for 4 hours, or 24 ◦C overnight. To make the genomic DNA

preparations, 1 ml of culture was pelleted at 21 130 x g in a microcentrifuge for 1 min.

Growth media was removed and the cells were resuspended in 500 µl genomic DNA lysis

buffer (20 mM Tris-HCl pH 7.5, 50 mM EDTA, 100 mM NaCl). To breakdown the cell wall,

lysozyme was added to the suspension to a concentration of 2 mg/ml and the cells were

incubated at 37 ◦C for 20 minutes. To lyse the cells 30 µl of 20 % (w/v) N -Lauroylsarcosine

was added to suspension, and mixed by vortexing. DNA extracted using a phenol treatment

step, followed by a phenol chloroform treatment step. The aqueous phases were harvested

for each step. To the aqueous phase from the second step 3 M sodium acetate, pH 5.2 was

added to 10 % (v/v) and mixed. To precipitate the DNA 2x the solution volume of 200 proof

36



2.5 Materials and methods

ethanol was added to the solution, and mixed. The DNA was precipitated by centrifugation

at 21 130 x g. The pellet was washed once with 70 % ethanol and then dried. The dried

pellet was resuspended in 500 µl TE buffer.

2.5.3.3 Colony PCR

PCR products for sequencing were generated from B. subtilis cells in the following manner.

Cells from a patch on an LB/agar plate were resuspended in 20 µl of 0.05 mg/ml lysozyme

solution. Cells were heated in a thermocycler to 37 ◦C for 15 minutes, then to 99 ◦C for 10

minutes, and then cooled to 20 ◦C. PCR reactions were conducted using Phusion Polymerase

(ThermoFisher Scientific, Inc.) in 20 µl reactions. For each reaction 1 µl of the B. subtilis

preparations were used as the DNA template. The primers oSC085 and oSC086 were used

for amplification of the target region.

2.5.4 Transformation efficiency analysis

2.5.4.1 comF expression strains

A fresh colony was picked from an LB plate grown overnight at 37 ◦C was used to inoculate

5—6 ml LB in 18 mm glass tube. Culture was grown rolling at 24 ◦C for 12—16 hours.

Cells from cultures with a final OD600 of 0.2—1.2 were harvested by pelleting at 6 010 x g,

washed 3x with 1 ml 1x PBS, and resuspended in 500 µl of 1x MC. The OD600 was measured

following resusupension in 1x MC. The washed cells were used to inoculate a 1 ml 1x MC
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culture to a starting OD600 of 0.01. Cells were grown rolling at 37 ◦C for 5 hours. At 5 hours

post-inoculation 900 µl the culture was transferred to 13 mm glass tubes, 0.9 µg gSC018

genomic DNA was added, and the MgSO4 concentration was increased to 8 mM. Cells were

grown rolling at 37 ◦C for 2 additional hours. Serial dilutions of the culture were made in

1x PBS. For the CFU counts, 100 µl of the 10−6 dilution was plated in duplicate on non-

selective media. Dilutions to allow for 50—1 000 CFU per plate, when possible, were plated

on selective plates containing 100 µg/ml spectiniomycin. Plates were incubated at 37 ◦C

overnight, and colonies counted the following day. Transformation efficiency was calculated

as

ηs =
Cr

CTρD
(2.1)

where Cr = average resistant CFU (transformants), CT= average total CFU, and ρD = DNA

concentration in µg/ml. Each round was normalized to wildtype run at the same time. Limit

of detection for the assay is 0.5 transformants per CFU per µg of genomic DNA.

2.5.5 Statistical analysis

Transformation efficiency statistical analysis was conducted in R. Relative efficiencies from

experiments were used for the analysis. Relative efficiency data for wild type was generated

from relative efficiency of a given experiment relative to the average wild type efficiency to
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from the entire dataset. Data was transformed by

η∗i,w =
180sin−1

(√(ηi,w
6

))
π

(2.2)

where ηi,w is the relative efficiency of a strain compared to wild type, prior to analysis of

variance (ANOVA). For wildtype, the relative efficiency was determined for each experiment

compared to the average wild type efficiency over all experiments to be compared. Following

ANOVA, the Dunnett’s multiple comparison test was applied post-hoc to determine if the

mean relative transformation efficiencies of the mutant strains were significantly different

from wild type.

Table 2.1: Strains used in Chapter 2

Strain Genotype Reference
B. subtilis PY79 (92)
bSC007 comFA::Tn524 (erm) This work
bSC016 comFA::cat This work
bSC017 yvbJ::PcomF -comFAT266A (erm) This work
bSC018 yvbJ::PcomF -comFAR419K (erm) This work
bSC022 yvbJ::PcomF -comFAK152E (erm) This work
bSC023 yvbJ::PcomF -comFAG151R/K152N (erm) This work
bSC025 yvbJ::PcomF -comFAS264A (erm) This work
bSC026 yvbJ::PcomF -comFAK152A (erm) This work
bSC027 yvbJ::PcomF -comFAE234Q (erm) This work
bSC031 yvbJ::PcomF -comFAΔS1 (erm) This work
bSC032 yvbJ::PcomF -comFA (erm) This work
bSC042 yvbJ::cat This work
bSC049 comF::cat This work
bSC180 comFAT266A This work
bSC182 comFAK152E This work
bSC183 comFAE234Q This work

Continued on next page
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Table 2.1 – Continued from previous page
Strain Genotype Reference

bSC188 comFAG151R/K152N This work
bSC190 comFAS264A This work
bSC192 comFAK152A This work
bSC199 comFAR419K This work
bSC201 comFAΔS1 This work
E. coli DH5α F− endA1 glnV44 thi-1 recA1 relA1 gyrA96

deoR nupG Φ80dlacZ ∆M15 ∆(lacZYA-
argF )U169, hsdR17(r−K m+

K), λ–

Table 2.2: Plasmids used in Chapter 2

Name Genotype or characteristics Reference
pBB028 cat bla B.M. Burton
pBB031 PT7-h6-comFA kan, derived from pET28b(+) B.M. Burton
pBB268 yvbJ::erm bla Gift from D.

Rudner
pBB278 yhdGH::spec bla B.M. Burton
pBlueScriptSK(+) bla
pET28b(+) kan Novagen
pKL147 gfpmut2b (95)
pMiniMAD2 oriBsTs bla erm (97)
pSC010 gfpmut2b, derived from pKL147 This work
pSC012 PcomF -comFA-gfpmut2b, derived from pSC010 This work
pSC026 comFAG151R/K152N, derived from pBB031 This work
pSC036 yvbJ::PcomF -comFA (erm) This work
pSC048 pBlueScriptSK(+) with PcomF -comFA bla This work
pSC051 comFAT266A, derived from pSC048 This work
pSC056 comFAK152E, derived from pSC048 This work
pSC058 comFAG151R/K152N, derived from pBlue-

ScriptSK(+) and comFAG151R/K152N from
pSC026

This work

pSC067 comFAS264A, derived from pSC048 This work
pSC068 comFAK152A, derived from pSC048 This work
pSC069 comFAE234Q, derived from pSC048 This work

Continued on next page
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Table 2.2 – Continued from previous page
Strain Genotype Reference
pSC073 comFAΔS1, derived from SacI digest of

PcomF -comFA inserted into pUC19
This work

pSC076 pBB268 with insert from pSC068 This work
pSC081 pBB268 with insert from pSC073 This work
pSC104 comF::cat bla This work
pSC216 pMiniMAD2 with insert from pSC051 This work
pSC217 pMiniMAD2 with insert from pSC056 This work
pSC218 pMiniMAD2 with insert from pSC069 This work
pSC228 pMiniMAD2 with insert from pSC058 This work
pSC229 pMiniMAD2 with insert from pSC067 This work
pSC230 pMiniMAD2 with insert from pSC076 This work
pSC237 pMiniMAD2 with comFA218-463 and 472

bases downstream
This work

pSC239 comFAR419K, derived from pSC237 This work
pSC240 pMiniMAD2 with insert derived from

pSC081
This work

pUC19 bla

Table 2.3: Oligonucleotides used in Chapter 2

Name Sequence
oSC002 CTGGGCGGTTTGCGGCGCTGGCGCTACA

GAAATGCTGTTTCCTGGTATA
oSC008 GATGCAATCGATGTTATGATCATTGATCA

GGTTGACGCTTTTCCATATTCTGC
oSC009 CAGCACCCTCGTTTATTTAGCGGCAACAC

CTCCTAAAGAATT
oSC010 CACCCTCGTTTATTTAAGTGCAGCGCCTC

CTAAAGAATTAAAAAGAAAAGC
oSC011 CACCCTCGTTTATTTAAGTGCAGCGCCTC

CTAAAGAATTAAAAAGAAAAGC
oSC014 GGAATTCCAAATCTCCGTTTTTAGAGCGG

AGATTTTTTTATATTCTTA
oSC015 CCGCTCGAGCGGAATTCCATATGGCACGC

CTCCTTTCGAAACAGTATG
Continued on next page
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Table 2.3 – Continued from previous page
Name Sequencea,b

oSC016 GGAATTCCATATGAATGTGCCAGTTGAAA
AAAACAG

oSC017 CCGCTCGAGGTCTGTACATTCAACTTTTG
CTGCC

oSC018 GCGGTTTGCGGCGCTGGCGAAACAGAAA
TGCTGTTTCCTGGTATAGAATC

oSC024 CATATTCTTTATGCCGGCCGGTTTTTCCT
GCAATTTGAACAAGTGCGCT

oSC032 CATGATCGGCCGCTTAAAGCTGCTGAATT
AATCAAAAACGGAGC

oSC033 TTACGCGTCGACTAAAAAAATCTCCGCTC
TAAAAACGGAGATTTG

oSC044 GTTTACTTTAAGAAGGAGATATACCATGG
GCAGCAGCC

oSC061 CGGGATCCTAGTCTGTACATTCAACTTTT
GCTGCC

oSC069 CTGGGCGGTTTGCGGCGCTCGCAACACA
GAAATGCTGTTTCCTGGTATAGAATC

oSC085 TGTATCCATTTGACTCAGAGATCAGC
oSC086 TCTCTGATCCTTGTTCTCCACACC
oSC193 ACATGCATGCATGATTCTGTTTTTATGCC

GATATAATC
oSC194 GCTCTAGAGTTGCAGTCTTTAAACAATCT

TAACCC
oSC311 CAGGTCGACTCTAGAGGATCCCCCAGCTT

TTGCGATATAAAGATGCAATC
oSC312 GTGAATTCGAGCTCGGTACCCGATTTTCT

TTAATTTGCTTCTGCAAGAATAAC
oSC313 CAGGTCGACTCTAGAGGATCCCCCAAGCC

TTCATTGGTAGTCTTCTAAAGGTAAAG
oSC314 GTGAATTCGAGCTCGGTACCCGGTGCTGT

TTTTCTTTCTTGCTTTTTG
oSC334 GTTTCGAAAGGAGGCGTGCTATGTGAAT

GTGCCAGTTGAAAAAAACAG
oSC335 CTGTTTTTTTCAACTGGCACATTCACATA

GCACGCCTCCTTTCGAAAC

Continued on next page
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Table 2.3 – Continued from previous page
Name Sequencea,b

aBold-face indicates mutagenic residues.
bUnderlines indicate restriction sites.
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Chapter 3: Characterization of a zinc

finger in ComFA

3.1 Abstract

Overall our understanding of how ComFA functions has been limited to how it functions as

a DEAD-box helicase. However, it appears that ComFA may have some additional features

that affect its function. Here, I have identified a new metal-binding motif in ComFA that

is important to its function. The metal-binding motif is required for zinc binding, and is

independent from the helicase function of the protein. While the mechanism of the contri-

bution has yet to determined, its identification is an important addition our understanding

of ComFA function.
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3.2 Introduction

Metal coordination sites often confer important biochemical and structural features to pro-

teins. These features provide mechanisms for catalysis of chemical reactions, and stabilize

tertiary structure elements that mediate intermolecular interactions such as DNA binding

and sequence recognition, and protein ligand binding interfaces.

3.2.1 Metal-binding and biochemistry

Metal co-factors are found in many enzymes important to biology. They are often involved

in catalyzing reactions such as hydrolysis of amide bonds in metalloprotease substrates, or

phosphodiester bonds in nuclease substrates, or even facilitating the hydrolysis of nucleotide

triphosphates to utilize the energy stored in the phosphate bonds (98, 99, 100). Metal co-

factors are also involved in the structural integrity of some proteins as exemplified by the

zinc-finger in RecQ, and transcriptional regulation proteins (101, 102). Specificity of the

coordinated metal is also important. For example, the fidelity in DNA polymerase is altered

when magnesium is substituted for manganese (103).

3.2.2 Zinc and transition metals

Generally metal cofactors that are biologically active are either alkaline earth metals, such

as magnesium and calcium, or transition metals such as zinc and manganese. Due to the
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differences in size and valence structures of these metals, how they are coordinated is also

different between the two classes (104, 105).

For the purposes of this discussion, I am going to focus on the transition metals, specifi-

cally zinc. Zinc is most often found as Zn2+ in the biological context. As with many other

transition metals it is required for cellular function in small amounts, and too much is actu-

ally toxic to cells (reviewed in (106)). Zinc is coordinated in many ways in different proteins,

and how it is coordinated generally reflects its function in the associated protein. For ex-

ample, the zinc fingers most often observed in eukaryotes as part of transcription factors are

coordinated in C2H2 motifs, and confer sequence specificity to those proteins through the

folded structures created to properly coordinate the metal (107, 108, 109, 110). There are

also coordination sites that consist entirely of cysteines, such as the C4 zinc finger found

in RecQ (101). These C4 zinc fingers are thought to be primarily involved in conferring

structural stability to a particular fold rather than being involved directly in catalytic ac-

tivity. There are also many variations and elaborations on themes, including coordination

facilitating dimerization, sites which bind multiple metal ions, and variations in the numbers

and types of residues involved in coordinating metal ions (reviewed in (111)).

Several bioinformatic programs have been developed to identify potential zinc finger

motifs in proteins, and which amino acid residues likely coordinate the metal (112, 113,

114, 115, 116, 117). The algorithms used vary between programs, and overall their utility is

limited in some cases due to the amount of variation in the structures and sequences which
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allow the coordination of zinc and other transition metal cations.

From the work I will discuss here, it appears that ComFA has metalloenzymatic activity

beyond the expected coordination of magnesium ions to facilitate ATP hydrolysis in the

helicase core of the protein. The metal binding appears to be important to its activity,

however, it is unclear how the metal binding is required.

3.2.3 The putative zinc finger in ComFA

The initial characterization of ComFA involved a set of in-frame deletions within the coding

sequence of the protein. All of the deletions created loss-of-function alleles in the protein,

with differing levels of severity (58). All of the in-frame deletions in that work removed

regions of the N-terminus of ComFA. The comFAΔS1 mutant was chosen as a comFA− allele.

Previous work on ComFA showed the Walker A mutants to be equivalent to the comFAΔS1

(49), which suggested that all of the activity for ComFA during transformation is ATPase

dependent.

In the work described in the previous chapter, I showed that the helicase motif mutation

are not equivalent to comFAΔS1. As the comFAΔS1 allele produces a more severe phenotype

(see Figure 2.3), there may be additional factors which contribute to ComFA function. A

bioinformatic analysis of ComFA showed that there may be additional motifs amino-terminal

to the Walker A motif (will be discussed later), which could could account for the difference

(Figure 3.1). Even so, bioinformatics fell short in identifying the new motif and activity I
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will discuss in this chapter. Here I will describe the process of characterizing the putative

zinc finger in ComFA.

3.3 Results

3.3.1 Discovery of possible metal-binding activity

Discovering that ComFA had a metal-binding activity occurred largely by accident. The

new motif and its function as part of ComFA was uncovered while attempting to develop a

method to observe the localization of ComFA via fluorescence microscopy. The process of

how this was uncovered is discussed at length in Appendix B.

3.3.2 Bioinformatic analysis

When beginning work on ComFA, I subjected the amino acid sequence to several motif

searches. The search provided a great deal of information, including DEAD-box helicase

motifs examined in Chapter 2, and a putative domain boundary in the protein. However,

none of the general, or zinc-finger specific databases called the C4 zinc finger in ComFA

(113, 114, 115, 116, 117). The zinc finger was identified manually by examination of the

primary sequence of ComFA (Figure 3.1). Interestingly, at least one of the servers used for

the predictions identified putative zinc-binding sites in ComFB and ComFC (116, 117).

As the bioinformatic analyses did not identify locations for metal-binding motifs in the
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sequence, it was a bit less than straightforward to find the metal-binding motif in ComFA.

The first indication of the metal binding motif was the result of cross-reactivity with a

biarsenal dye (FlAsH) (see Appendix B). I was able to find a possible C4 zinc finger motif

by a manual search when looking for potential mutation sites to possibly block the cross-

reactivity with the biarsenal FlAsH dye.
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Figure 3.1: ComFA contains a conserved tetracysteine motif - (A) Schematic of the primary amino acid
sequence of B. subtilis ComFA. The magnified section is the region removed by the comFAΔS1 in-frame deletion.
Arrow indicates the C-terminus of the comFA1-252 construct. ∗Residue was mutated in work described. (B) Mul-
tiple sequence alignment of ComFA and homologs from other species. Multiple sequence alignment was performed
using PSI-Coffee (78, 118) and modified manually to improve the match. Sequences retrieved from GenBank. The
sequences selected for each species are as follows with Genbank accession numbers and references: Bacillus halodurans
[NP 244493, (119)], Lactococcus lactis [NP 267246, (120)], Streptococcus pyogenes [NP 269668, (121)], Streptococcus
pneumoniae [NP 346619, (122)], Listeria innocua [NP 471986, (123)], Staphylococcus areus [YP 005754683, (124)].
Double underline indicates the SF 2 motif I for anchoring reference.
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3.3.3 Zinc finger is important for ComFA function

Mutating individual cysteines produced transformation efficiency defects of approximately

10–fold from wildtype (Figure 3.2A). The more amino-proximal cysteines (C60/C63) appear

to create slightly more severe defects when mutated than the two amino-distal members

(C84/C87) of the motif. Mutating both of the amino distal members or mutating all four of

the cysteines create a 100–fold decrease in transformation efficiency, which is equivalent to

the defects observed for the DEAD-box helicase motif mutants.

Next we tested the C4 motif. Mutating the individual cysteines in the motif to serines

produced a marginal defect in transformation efficiency. The conversion of at least two

cysteines to serines was required to produce a transformation efficiency defect similar to

what we observe with the canonical DEAD-box mutants (Figure 3.2A). Observing this defect

suggested that the zinc finger may hold a role in transformation, and so the next step was

to confirm that the motif binds metal.

3.3.4 The zinc-binding activity has an independent contribution

to ComFA function from the DEAD-box helicase motifs

Finally, we tested the C4 zinc finger to determine whether its contribution to transforma-

tion efficiency was distinct from the contribution we observe from the canonical DEAD-

box helicase mutants. To test for a combined defect we made mutants containing the
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Figure 3.2: Cysteines are required for efficient transformation and zinc binding
- (A)Transformation efficiency for mutations of ComFA putative C4-zinc finger motif. All
efficiency rates are normalized to wildtype(WT). WT and ΔS1 values are the same as Figure
2.3. Limit of detection for the assay is 0.5 transformants per CFU per µg of genomic DNA. The
relative efficiency axis is a log10 scale. Error bars are standard error, WT n = 35, all mutants
n = 5. ∗p <0.05, ∗∗p <0.01, ∗∗∗p <0.001, ∗∗∗∗p <0.0001(B) Stoichiometry of zinc to protein
in WT ComFA and mutants. Ratio determined by PAR A500 nm and protein concentration.
Error bars are standard error, n = 3. † p = 0.00008.
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C60S/C63S/C84S/C87S (4CS) mutations and the each of the canonical DEAD-box mo-

tifs previously mutated. The transformation efficiency experiments showed that the C4-zinc

finger created an additive, greater than 10–fold defect in transformation efficiency than the

DEAD-box mutants that created a 100–fold defect (Figure 3.3).

When we combine the comFA4CS mutation with canonical DEAD-box helicase motif

mutants, we see an additional defect in the transformation efficiency of approximately an

additional 10–fold decrease, which is comparable to the defect observed in the comFAΔS1

mutant strain.

3.3.5 Purification of ComFA

Prior to this work, attempts to purify ComFA have been limited to being sufficient for

antibody production. The protein generated as an antigen was purified from inclusion bodies

(59). Inclusion bodies are large insoluble protein aggregates. Generally the polypeptides

are misfolded, and are often solubilized using detergents or chaotropic solutes (125, 126).

While the extraction process may not affect antibody generation, it can destroy enzymatic

activities. In order to examine the metal-binding activity of the ComFA protein I needed

to produce soluble protein which was folded such that any potential metal coordination is

produced and maintained.
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Figure 3.3: The C4-zinc finger requirement is independent of the DEAD-box motif
requirement - Transformation efficiency for mutations of ComFA putative C4-zinc finger
motif combined with canonical DEAD-box helicase motifs. All efficiency rates are normalized
to wildtype (WT). WT and ΔS1 values are the same as Figure 2.3. Limit of detection for the
assay is 0.5 transformants per CFU per µg of genomic DNA. The relative efficiency axis is a
log10 scale. Error bars are standard error, wildtype n = 35, all mutants n = 5. ∗p <0.001, ∗∗p
<0.0001
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3.3.5.1 Purification of H6-ComFA

Previous attempts have generally consisted of adding a hexahistidine (H6) tag to the amino-

terminus in ComFA, and purifying protein expressed in E. coli from inclusion bodies by

denaturing the protein and purifying the protein by nickel IMAC. While denaturation has

worked well for purifying a number of proteins, finding proper refolding conditions can be

difficult to find, and refolding often results in a low yield of refolded protein. When beginning

this work I started witha H6-ComFA construct built by B.M. Burton. When expressing the

protein in E. coli I found that while I had strong induction of the protein, all of the protein

was expressed in inclusion bodies (Figure 3.4).

3.3.5.2 Purification of MBP-ComFA

In an attempt to obtain soluble ComFA from in vitro expression, I made translational fusion

constructs for expression in E. coli which added the solubility tag MalE (MBP) to the N-

terminus of ComFA. These constructs contained proteolytic cleavage sites to allow separation

of the solubility tag from ComFA.

My initial MBP fusion was made by inserting the comFA coding sequence into the pMAL-

c5E vector available from New England Biolabs. The vector contains a recognition and

cleavage sequence for enterokinase. While this vector provided a solubility and expression

level improvement over the H6-ComFA construct, the recognition sequence provided poor

specificity for the enterokinase cleavage (Figure 3.5).
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Figure 3.4: H6-ComFA is insoluble - SDS-PAGE gel of a solubility test for H6-ComFA.
The molecular weight values associated with the molecular weight marker are listed to the left
of the gel. MW: Molecular weight marker. L: Cell lysate, S10: supernatant following 10 000 x g
centrifugation, P10: pellet following 10 000 x g centrifugation, S35: supernatant following 100
000 x g centrifugation. Solubility was tested in the presence or absence of 1 mM dithiothritol.
∗Indicates the migration of H6-ComFA.
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Figure 3.5: MBP-ComFA Enterokinase Cleavage - Cleavage of MBP-ComFA by en-
terokinase. 10 % Acrylamide SDS-PAGE gel. 1, Precision Plus Protein Standards; 2, -ent
1 hour; 3, -ent 3 hours; 4, 0.0075 % 1 hour; 5, 0.0075 % 3 hours; 6, 0.0225 % 1 hour; 7,
0.0225 % 3 hours; 8, 0.0675 % 1 hour; 9, 0.0675 % 3 hours. Percentages are w/w compared to
MBP-ComFA. ∗ indicates MBP-ComFA, ∗∗ indicates ComFA, ∗∗∗ indicates free MBP
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To resolve the protease cleavage problem I modified the pMAL-c5E vector such that the

enterokinase cleavage site was replaced with a 3C human rhinovirus protease recognition

sequence, which could be cleaved by PreScission Protease. The new construct (pSC042)

performed similarly to the pMAL-c5E fusion construct in solubility and expression. However,

it performed much better when cleaved using PreScission Protease expressed and purified

following a protocol from W. Weihofen of R. Gaudet’s laboratory (Figure 3.6). I used

soluble protein purified from E. coli using a sepharose dextrin resin, and then cleaved with

PreScission protease for the ComFA Zn-IMAC analysis (Figure 3.10).

Following the discovery that ComFA may contain a zinc-binding motif (see Appendix

B) I decided to test if the addition of zinc would improve the solubility of the protein

expressed in E. coli. Work with RecQ has shown that C4-zinc fingers can be important to

protein stability (101). To determine whether zinc provided during expression would help

with ComFA solubility I made C-terminal truncations near a domain boundary determined

by the SCRATCH database (114). ComFA1−252 was chosen for additional analysis. In the

ComFA1−252 the C-terminal half of the protein is removed, including motifs III, V, and

VI (Figure 3.1A)When expressed in E. coli, the MBP-ComFA1−252 fusion showed greatly

improved solubility when Zn2+ was included in the growth medium during induction (Figure

3.7). Having solved a great deal of the solubility problems with ComFA I decided to test

the functional state of the protein by using an electrophoretic mobility shift assay (EMSA).

While developing conditions for the assay I found that there was a lot DNA apparently bound
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Figure 3.6: Purification of PreScission Protease - (A) SDS-PAGE gel of purified
PreScission protease. PreScission Protease expressed in E. coli was purified by glutathione-S-
transferase (GST) affinity chromatography and then by size exclusion chromatography (SEC).
MW: Molecular weight marker, L: Cell lysate, S36: supernatant from 36 Krpm centrifugation,
FT: Flowthrough from GSTPrep column, E: Elution from GSTPrep column, SEC: Fractions
collected from Superdex 200 column, C: Concentrated SEC fractions ∗PreScission Protease. (B)
Absorbance traces from SEC. Solid black line represents OD280 from SEC to purify PreScis-
sion Protease. Dotted gray line represents a trace from molecular weight standards on same
Sephadex 200 column. 1: bovine thyroglobulin (670 kDa), 2: bovine γ-globulin (158 kDa),
3: chicken ovalbumin (44 kDa), 4: horse myoglobin (17 kDa), 5: Vitamin B12 (1.35 kDa).
Molecular weight standard trace amplitude was increased to improve visibility on graph.
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to the MBP-ComFA protein I had purified, which interfered with the ability to analyze the

EMSA results (Figure 3.8A).

Figure 3.7: Zinc improves the solubility of MBP-ComFA - Coommassie gels from
preparations of MBP-ComFA1−252. MW: Molecular weight marker. U: Pre-induction. I: Post-
induction. L: Lysate. S5: Supernatant from 5 000 x g centrifugation. P5: Pellet from 5 000 x
g centrifugation. S10: Supernatant from 10 000 x g centrifugation. P10: Pellet from 10 000 x
g centrifugation. ∗ Indicates MBP-ComFA1−252

I found that polyethylenimine (PEI) precipitation provided a promising method for re-

moving the DNA bound to the protein (Figure 3.8) as other methods including anion ex-

change chromatography, and adsorption to hydroxyapatite followed by high salt washes failed

to remove significant DNA, and allow recovery of the protein. A PEI precipitation using

0.12 % w/v PEI allows for precipitation of the fusion protein, which can be recovered in

500 mM NaCl. Residual PEI can be removed by sepharose dextrin affinity chromatography,

which immobilizes the MBP-ComFA fusion. The precipitation also separates the full-length
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Figure 3.8: DNA binding to purified ComFA - (A)EMSA of MBP-ComFA prior to
PEI precipitation. ∗∗ Migration location of MBP-ComFA/DNA complex. (B)EMSA of MBP-
ComFA following PEI precipitation. (A and B) M: 100 bp ladder, ND: No DNA added.
Remaining lanes have increasing amounts of MBP-FA. ∗Migration location of free ssDNA
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protein from C-terminal truncations, which do not precipitate. The resulting protein is ap-

parently DNA-free (Figure 3.8), but is less stable in solution, and appears to aggregate in

the absence of a DNA substrate. This aggregation appears to be partially alleviated with

the use of small DNA substrates. The protein purified using the PEI precipitation was used

to determine the stoichiometries of the wildtype and ComFA4CS fusions.

3.3.6 ComFA binds zinc

After confirming that the putative zinc finger is important for function by in vivo trans-

formation efficiency analysis I set out to determine whether ComFA does in-fact bind zinc.

To do so I made translational MBP-ComFA fusion constructs for heterologous expression

in E. coli. I also tested the MBP-ComFA construct in B. subtilis for functionality during

transformation. The transformation efficiency experiments showed that the fusion does not

interfere with ComFA activity (Figure 3.9).

Confirming the zinc-binding activity was performed by a couple methods. First, I had

some evidence that metal binding activity was possible from the cross-reactivity observed

in the FlAsH experiments (See Appendix B). While examining methods to further purify

the MBP-ComFA constructs expressed in E. coli I tried immobilizing the MBP-ComFA on

an immobilized metal affinity chromatography (IMAC) column charged with Zn2+ following

cleavage with PreScission Protease. PreScission Protease is a derivative of the 3C human

rhinovirus protease that has been translationally fused to GST (127). The protease cleaves a
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Figure 3.9: MBP-ComFA complements comF phenotype - Transformation efficiency
for malE-comFA fusion relative to wildtype comFA. Both constructs expressed from yvbJ ec-
topic locus under the control of a PcomF promoter. The comF locus has been replaced with a
cat cassette. Error bars are standard error, wildtype n = 2, malE-comFA n = 4.
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specific amino acid sequence (LEVLFQ5GP) (127) which I had inserted between the MBP

and the ComFA in the MBP-ComFA translational fusion. Passing the cleaved protein over

the zinc-IMAC column showed that the cleaved ComFA, and uncleaved MBP-ComFA were

retained on the column, and eluted with 250 mM imidazole, while the free and cleaved MBP

flowed through the column, and did not bind (Figure 3.11A).

3.3.7 Tetracysteine motif required for zinc-binding activity

I attempted a similar Zn-IMAC experiment using MBP-ComFA4CS to determine if the tetra-

cysteine motif is required for binding to the Zn-IMAC column. I found that even though the

PreScission Protease cleavage step failed for some reason, the fusion protein was still mostly

present in the flowthrough of the Zn-IMAC column (Figure 3.11B). As the experiment with

MBP-ComFA showed that MBP does not mediate interactions with the column the muta-

tion of the cysteines to serine disrupts the interaction of MBP-ComFA4CS with the column

(Figure 3.11).

Much later I managed to purify the protein away from the DNA bound to it. Having the

DNA-free protein allowed me to test requirement for the tetracysteine motif for binding of

zinc ions. I constructed an MBP-ComFAC60S/C67S/C84S/C87S fusion and purified the mutant

and wildtype fusion proteins from E. coli and tested for zinc content via colorimetric 4-(2-

pyridylazo)resoricinol (PAR) assay. I found that the wildtype fusion has a [Zn2+]:[protein]

ratio of 0.92±0.04. While the ComFAC60S/C67S/C84S/C87S (ComFA4CS) mutant MBP fusion
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Figure 3.10: Purification of MBP-ComFA for Zn-IMAC - SDS-PAGE gel of steps in
purification of ComFA. (A and B)∗MBP-ComFA, ∗∗MBP. (A) Lysis and sepharose dextrin affin-
ity chromatography (SDAC) of MBP-ComFA. 1: Molecular weight marker; 2: Pre-induction;
3: Post-induction; 4: Lysate; 5: Supernatant following 100 000 x g centrifugation; 6: Pel-
let following 100 000 x g centrifugation; 7-8: Flowthrough from SDAC; 9-11: Wash fractions
from SDAC; 12-15: Elution fractions from SDAC.(B)Cleavage with Precission Protease. Lane
1: Molecular weight marker; 2: Pooled sepharose dextrin eluate; 3: Eluate following 2-hour
Precission Protease cleavage, ∗∗∗ComFA.
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Figure 3.11: Tetracysteine motif is required for binding Zn-IMAC column -
(A)Absorbance traces from MBP-ComFA Zn-IMAC. Left axis marks the A280 and A260 in
arbitrary units. The right axis marks the percentage of elution buffer containing 10 mM D-
(+)-maltose flowing over the column. The gray boxes show the fractions of the traces that
correspond with lanes in inset. Inset: SDS-PAGE gel from MBP-ComFA Zn-IMAC. ∗MBP-
ComFA, ∗∗ComFA, ∗∗∗MBP. MW: Molecular weight marker, FT: Flowthrough, E: Elution
(B)SDS-PAGE from MBP-ComFA4CS Zn-IMAC. ∗MBP-ComFA4CS. MW: Molecular weight
marker, SE: SDAC elution, PP: Post-PreScission Protease cleavage, FT: Flowthrough, W:
Wash, E: Elution.
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had a [Zn2+]:[protein] ratio of 0.44±0.03 (Figure 3.2).

3.3.8 On-going work

The results from the PAR analysis are preliminary, and the assay is still being optimized.

Also, additional work is required to demonstrate that the loss of the tetracysteine motif does

not modulate the stability of the ComFA mutants in vivo. While the phenotype being the

result of decreased protein levels is unlikely, a Western blot analysis is required to confirm

that the expression levels of the wildtype and mutant alleles are comparable in B. subtilis.

3.4 Conclusions

In the work presented here, I have shown that in addition to the DEAD-box helicase motifs

ComFA requires zinc-binding for proper function. The requirement for zinc is apparently

independent from the DEAD-box helicase activity, as mutants lacking the zinc binding site

and carrying mutations in DEAD-box helicase motifs have apparently additive defects.

How this zinc binding site is involved in ComFA activity is still unclear. Zinc fingers have

been shown to be involved in a number of processes involving substrate and binding part-

ner recognition, catalysis, and providing structure to protein domains (reviewed in (128)).

There are other SF 2 helicases which contain zinc fingers, however, they are generally found

in separately folded domains. Given the size of ComFA, and the proximity of the C4-zinc
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Figure 3.12: MBP-ComFA and MBP-ComFA4CS purifications - Example SDS-PAGE
gels for MBP-ComFA and MBP-ComFA4CS(A and B) M: Molecular weight marker; L: Cell
lysate; S3: Supernatant from 3 000 x g centrifugation; PF: Flowthrough from PEI precipitation;
PW: Supernatant from buffer wash of PEI pellet; PE: Salt elution from PEI pellet; MF:
Flowthrough from PE during SDAC; ME: Maltose elution from SDAC. Molecular weight values
for bands in in molecular weight marker are indicated to the left of each gel. ∗ Migration location
of MBP-ComFA/MBP-ComFA4CS fusion. (A)MBP-ComFA purification. (B)MBP-ComFA4CS

purification
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Figure 3.13: MBP-ComFA and MBP-ComFA4CS DNA-binding - 0.8 % Agarose gel
with samples of purified MBP-ComFA and MBP-ComFA4CS. FT: flow through from MBPTrap
column. E: Elution from MBPTrap column. The arrow denotes the protein-DNA complex.
The same gel is depicted twice. On the left, image following staining with SYBR Green DNA
stain. On the right, image following Coommassie staining. WT refers to MBP-ComFA and
4CS refers to MBP-ComFA4CS
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finger to motif I, it is unclear whether the C4-zinc finger motif is part of a domain that folds

independently from the helicase core. C4 zinc fingers have not been shown to be involved

in catalytic processes (reviews in (128)), so that leaves intermolecular interactions and in-

tramolecular structure. A number of zinc-containing proteins have been shown to bind DNA,

with the zinc finger itself being important for the recognition of a specific sequence (107).

B. subtilis has shown no preference in the origin of the DNA used in uptake experiments

(31, 129). The lack of preference, however, is not a sufficient disqualification as helix-turn-

helix motifs like the one found in ComEA and required for DNA-binding are often implicated

in sequence-specific interactions as well (54, 55). Furthermore, the involvement of the zinc

finger in DNA-binding in ComFA may also be difficult to ascertain as DEAD-box helicases

coordinate interactions with DNA substrates through a number of residues along their se-

quence. That said however, it does not appear that the zinc finger plays a significant role in

DNA binding, as we do not observe a difference in DNA bound to purified MBP-ComFA or

MBP-ComFA4CS when the PEI precipitation is omitted (Figure 3.13).

Another possibility is that the zinc finger may be involved in protein-protein interactions.

This may be more promising given the resilience of DNA-binding in the MBP-ComFA4CS,

and the presence of a similar tetracysteine motif in ComFC (58). Examining the protein-

protein interactions in vivo or in vitro may provide some insight into this putative function.

Unfortunately, current microscopy techniques performed in B. subtilis do not appear to

provide sufficient resolution to determine direct interactions (50, 130, 131), and the low
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occurrence of competent cells, even in competence growth media, and the fact that several

potential interacting partners are membrane proteins, and in some cases expressed at very

low copy numbers can make it difficult to determine interactors by in vitro methods such as

co-immunoprecipitations.

The presence of this zinc binding motif in ComFA and a similar putative motif in ComFC

provide some insight into the influence of znuABC and zosA zinc transporters in the devel-

opment of competence. An attractive model given these findings is that zinc homeostasis

is important for the proper function of these proteins and thus, the zinc transporters are

required. To fully develop this model, the other com proteins would need to be analyzed for

putative zinc binding motifs, and requirement of zinc for function. Also, on a technical note,

the competence media used in these experiments calls for additional Mg2+ to allow for proper

development of competence, and increasing the [Mg2+] can actually improve transformation

efficiency. However, any zinc that is likely present in the media is provided by impurities in

other components of the media. Since the in vitro expression was performed in the presence

of 200 µM Zn2+ to improve solubility of MBP-ComFA it would be interesting to examine

how Zn2+ supplementation or depletion of the competence media influences transformation

rates.
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3.5 Materials and methods

3.5.1 Strains and growth conditions

All B. subtilis strains were derived from the prototrophic strain PY79 (92). B. subtilis were

grown in Luria-Bertani (LB) broth or on LB plates fortified with 1.5 % Bacto agar at 24

◦C or 37 ◦C as appropriate. 10x modified competence (MC) medium was made as described

in (93). Cells were grown to competence in 1x MC supplemented with 0.3 % 1 M MgSO4.

When appropriate, antibiotics were included at the following concentrations: 5 µg/ml chlo-

ramphenicol (Cm5), 100 µg/ml spectinomycin (Spec100), and 1 µg/ml erythromycin plus 25

µg/ml lincomycin (mls).

E. coli DH5αwas used to propogate plasmid constructs used in this work. E. coli BL21

(DE3) and E. coli UT5600 strains were used for protein expression. All E. coli strains

were grown in LB broth or LB plates fortified with 1.5 % Bacto agar at the indicated

temperatures. When appropriate, antibiotics were included in the following concentrations:

50 µg/ml kanamycin (Kan50), 100 µg/ml ampicilin (Amp100).

3.5.2 Plasmid construction

Plasmids used in this work are listed in Table 3.2. Oligonucleotides used in this work are

listed in Table 3.3
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pSC017 [malE-comFA] was generated by a two-way ligation between a NdeI-BamHI PCR

product containing the comFA coding sequence amplified from pBB031 using oSC044 and

oSC061 into pMAL-c5E cut with NdeI and BamHI.

pSC042 [malE-3crs ] was generated by a two-way ligation between a SacI-HindIII PCR

product containing the multiple cloning site of pMAL-c5E and replacing the enterokinase

cleave recognition sequence with a 3C human rhinovirus protease cleavage recognition site

(3crs) using oSC089, oSC090, oSC091, and oSC095, amplified from pMAL-c5E. The PCR

product is inserted into pMAL-c5E cut with SacI and HindIII.

pSC045 [malE-3crs-comFA] was generated by a two-way ligation between an NdeI-BamHI

fragment containing the comFA coding sequence from pSC017 into pSC042 cut with NdeI

and BamHI.

pSC048 [PcomF -comFA] See Chapter 2 Plasmid construction.

pSC097 [h6-comFA1-251] was generated by a two-way ligation between an NdeI-BamHI

PCR product containing comFA1-251 amplified from B. subtilis genomic DNA using oSC163

and oSC164 into pET28b(+) cut with NdeI and BamHI.
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pSC098 [h6-comFA1-252] was generated by a two-way ligation between an NdeI-BamHI

PCR product containing comFA1-252 amplified from B. subtilis genomic DNA using oSC163

and oSC165 into pET28b(+) cut with NdeI and BamHI.

pSC104 [comF::cat ] See Chapter 2 Plasmid construction.

pSC088 [h6-malE-3crs ] was generated by site-directed mutagenesis of pSC042 using oSC138

and oSC139 to insert at 6x His coding sequence upstream of the malE coding sequence.

pSC106 [h6-malE-comFA1-251] was generated by a two-way ligation between an NdeI-BamHI

fragment contain comFA1-251 from pSC097 into pSC088 cut with NdeI and BamHI

pSC109 [h6-malE-comFA1-252] was generated by a two-way ligation between an NdeI-BamHI

fragment contain comFA1-252 from pSC098 into pSC088 cut with NdeI and BamHI

pSC118 [PcomF -comFAC60S] was generated by site-directed mutagenesis of pSC048 using

oSC212.

pSC119 [PcomF -comFAC63S] was generated by site-directed mutagenesis of pSC048 using
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oSC213.

pSC120 [PcomF -comFAC84S] was generated by site-directed mutagenesis of pSC048 using

oSC214.

pSC121 [PcomF -comFAC87S] was generated by site-directed mutagenesis of pSC048 using

oSC215.

pSC129 [yvbJ::PcomF -comFAC60S] was generated by a two-way ligation of an EcoRI-BamHI

fragment containing PcomF -comFAC60S from pSC118 into pBB268 cut with EcoRI and BamHI.

pSC130 [yvbJ::PcomF -comFAC63S] was generated by a two-way ligation of an EcoRI-BamHI

fragment containing PcomF -comFAC63S from pSC119 into pBB268 cut with EcoRI and BamHI.

pSC131 [yvbJ::PcomF -comFAC87S] was generated by a two-way ligation of an EcoRI-BamHI

fragment containing PcomF -comFAC87S from pSC121 into pBB268 cut with EcoRI and BamHI.

pSC137 [yvbJ::PcomF -comFAC84S] was generated by a two-way ligation of an EcoRI-BamHI

fragment containing PcomF -comFAC84S from pSC120 into pBB268 cut with EcoRI and BamHI.
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pSC219 [PcomF -comFAC60S in pMiniMAD2] was generated by a two-way ligation of an

EcoRI-BamHI fragment containing PcomF -comFAC60S from pSC118 into pMiniMAD2 cut

with EcoRI and BamHI.

pSC220 [PcomF -comFAC63S in pMiniMAD2] was generated by a two-way ligation of an

EcoRI-BamHI fragment containing PcomF -comFAC63S from pSC119 into pMiniMAD2 cut

with EcoRI and BamHI.

pSC231 [PcomF -comFAC84S in pMiniMAD2] was generated by a two-way ligation of an

EcoRI-BamHI fragment containing PcomF -comFAC84S from pSC120 into pMiniMAD2 cut

with EcoRI and BamHI.

pSC232 [PcomF -comFAC87S in pMiniMAD2] was generated by a two-way ligation of an

EcoRI-BamHI fragment containing PcomF -comFAC87S from pSC121 into pMiniMAD2 cut

with EcoRI and BamHI.

pSC236 [comFA1-259 in pMiniMAD2] was generated by ITA of a PCR product containing

comFA1-259 and 424 bases immediately upstream amplified from B. subtilis genomic DNA

using oSC313 and oSC314, and pMiniMAD2 cut with SmaI.
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pSC237 [comFA218-463 in pMiniMAD2] See Chapter 2 Plasmid construction.

pSC239 [comFA218-463,R419K in pMiniMAD2] See Chapter 2 Plasmid construction.

pSC240 [comFAΔS1 in pMiniMAD2] See Chapter 2 Plasmid construction.

pSC242 [comFA1-259, C60S in pMiniMAD2] was generated by ITA of a PCR product con-

taining the upstream of comFA contained in pSC236 amplified from B. subtilis genomic

DNA using oSC313 and oSC335, a PCR product containing comFA1-259,C60S amplified from

pSC219, and pMiniMAD2 cut with SmaI.

pSC243 [comFA1-259,C84S/C87S in pMiniMAD2] was generated by site-directed mutagene-

sis of pSC236 using oSC339.

pSC244 [comFA1-259,C60S/C63S/C84S/C87S in pMiniMAD2] was generated by site-directed mu-

tagenesis of pSC236 using oSC338 and oSC339.

pSC262 [PcomF -malE-comFA] was generated by ITA of a PCR product containing malE-

3crs amplified from pSC042 and pSC048 cut with NdeI.
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pSC287 [malE-3crs-comFAC60S/C63S/C84S/C87S] was generated by site-directed mutagenesis

of pSC045 using oSC338 and oSC339.

pSC290 [comFA101-367,E234Q in pMiniMAD2] was generated by ITA of a PCR product con-

taining comFA101-367, E234Q amplified from pSC069 using oSC426 and oSC427, and pMini-

MAD2 cut with SmaI.

pSC291 [comFA101-367,T266A in pMiniMAD2] was generated by ITA of a PCR product con-

taining comFA101-367, T266A amplified from pSC216 using oSC426 and oSC427, and pMini-

MAD2 cut with SmaI.

pSC292 [comFA101-367,S264A in pMiniMAD2] was generated by ITA of a PCR product con-

taining comFA101-367,S264A amplified from pSC229 using oSC426 and oSC427, and pMini-

MAD2 cut with SmaI.

pSC293 [comFAC60S/C63S/C84S/C87S/K152E in pMiniMAD2] was generated by ITA of a PCR

product containing comFA1-145, C60S/C63S/C84S/C87S and 424 bases immediately upstream am-

plified from pSC244 using oSC313 and oSC423, a PCR product containing comFA138-259, K152E

amplified from pSC056 using oSC314 and oSC422, and pMiniMAD2 cut with SmaI.
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3.5.3 Construction of B. subtilis strains

3.5.3.1 Haploid yvbJ expression strains

Strains were made comF by transformation with genomic DNA from a comF::cat strain

(bSC049). The comF::cat strain was made by the same method as the production of

meridiploid strains, except pSC104 was used for integration, B. subtilis PY79 was used

as host strain, and strains selected for chloramphenicol resistance. Marker replacement veri-

fied by PCR amplification of locus using oSC085 and oSC086. Genomic DNA was extracted

bSC049 and used for creation of haploid strains. Each host strain was grown at 37 ◦C for

4 hours in 1x MC. One colony per 1 ml of 1x MC was used for initial inoculum. Dilutions

of the genomic DNA gSC019 were made at 1:20 and 1:400 into MiliQ H2O. At 4 hours 2

µl of each dilution were added to 200 µl of 1x MC culture and grown for an addition 2

hours at 37 ◦C. After the additional incubation the transformation cultures were plated on

LB/Cm5 agar plates and grown overnight at 37 ◦C. Following the overnight incubation 8

colonies were chosen and streaked out for single colonies on LB agar plates supplemented

with chloramphenicol and incubated overnight at 37 ◦C. Retention of the original integration

was verified by antibiotic selection.

3.5.3.2 comF expression strains

See Chapter 2 Materials and methods.
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3.5.4 Transformation efficiency analysis

3.5.4.1 yvbJ expression strains

Strains were streaked out on LB/Cm5 or LB/mls plates and cells to be tested grown overnight

at 37 ◦C. B. subtilis PY79 control was streaked out on LB as it lacked antibiotic resistance.

3.5.4.2 comF expression strains

See Chapter 2 Materials and methods.

3.5.4.3 Genomic DNA preparation and PCR amplification

See Chapter 2 Materials and methods.

3.5.4.4 Colony PCR

See Chapter 2 Materials and methods.

3.5.4.5 Sequencing to verify mutants

Mutations were verified by sequencing of PCR products generated from genomic DNA or

colony PCRs.

3.5.5 Statistical Analysis

See Chapter 2 Materials and methods.
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3.5.6 Purification of PreScission Protease

Plasmid containing protease and purification protocol received from W. Weihofen (Gaudet

Lab). The plasmid (pSC086) was transformed into E. coli UT5600. Cells were grown in

LB broth supplemented with ampicilin at 32 ◦C to OD600 = 0.3—0.4. The temperature was

dropped to 24 ◦C. Cells were induced with 0.3 mM Isopropyl β-D-1-thiogalactopyranoside

(IPTG) and expression performed overnight at 24 ◦C. Cells were harvested by centrifugation

at 5 000 rpm in Sorvall SLC-4000 rotor. Cells were resuspended in buffer P1 (50 mM Tris-

HCl pH 7.5, 1 M NaCl, 1 mM EDTA) and flash frozen in liquid nitrogen and stored at

-80 ◦C until purification. Cells were lysed in Cell Disruptor (Constant Systems) at 20 kpsi.

Lysates were clarified by centrifugation at 100 000 x g for 60 minutes at 4 ◦C. Lysates were

passed over GSTPrep 16/10 column (GE Lifesciences). Column washed with buffer P2 (50

mM Tris-HCl pH 7.5, 150 mM NaCl) and then eluted with buffer P3 (100 mM Tris-HCl

pH 8.5, 150 mM NaCl, 15 mM reduced glutathione). Eluate subjected to size exclusion

chromatography on an S200 column (GE Lifesciences) equilibrated with buffer P4 (50 mM

Tris-HCl pH 8.0, 150 mM NaCl, 10 mM EDTA, 5 mM DTT, 20 % glycerol). The protein

fractions corresponding with a peak at approximately 70 kDa were collected. The fractions

were concentrated to 6 mg/ml and glycerol added to a final concentration of 40 %, and a

final concentration of 3 mg/ml. Protein was flash frozen in liquid nitrogen and stored at -80

◦C. Concentrated protein was thawed and stored at -20 ◦C before use.
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3.5.7 Expression of MBP-ComFA

3.5.7.1 Enterokinase construct

Expression vector (pSC017) transformed into E. coli BL21 cells. Cells were grown in LB

broth supplemented with ampicilin, 10 % glycerol and 200 µM ZnSO4 to OD600 ∼0.2—0.4 at

37 ◦C then temperature dropped to 16 ◦C until OD600 is ∼0.4. Induction with 1 mM IPTG

at 16 ◦C for 16 hours. Cells harvested by pelleting at 5 000 x g for 10 minutes, supernatant

discarded. Cells resuspended in 20 ml buffer E1 (20 mM Tris-HCl, 200 mM NaCl, 5 %

glycerol, 5 mM β-mercaptoethanol, 1 mM Phenylmethanesulfonyl fluoride (PMSF), pH 8

at 4 ◦C). Cell suspensions dripped into liquid nitrogen and stored at -80 ◦C until used for

purification.

3.5.7.2 Expression for zinc-IMAC analysis

Expression vector (pSC042) transformed into E. coli BL21 cells. LB broth supplemented

with ampicilin, 10 % glycerol and 200 µM ZnSO4 to OD600 ∼0.2—0.4 at 37 ◦C then tem-

perature dropped to 16 ◦C until OD600 is ∼0.4. Induction with 1 mM IPTG at 16 ◦C for

16 hours. Cells harvested by pelleting at 5 000 x g for 10 minutes, supernatant discarded.

Cells resuspended in 20 ml buffer M1 (50 mM HEPES pH 8, 200 mM NaCl, 5 % glycerol,

5 mM β-mercaptoethanol, 1 mM PMSF). Cell suspensions dripped into liquid nitrogen and

stored at -80 ◦C until used for purification.
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3.5.7.3 Expression for PAR analysis

E. coli strain from zinc-IMAC work (eSC052) used. LB/Amp100 with 10 % glycerol and 200

µM ZnSO4. Cells grown to OD600 ∼0.2—0.4 at 37 ◦C then temperature dropped to 16 ◦C

until OD600 is ∼0.4. Induction with 1 mM IPTG at 16 ◦C for 16 hours. Cells harvested by

pelleting at 5 000 x g for 10 minutes, supernatant discarded. Cells resuspended in 20 ml

buffer Z1 (50 mM HEPES pH 8, 200 mM NaCl, 5 % glycerol, 5 mM β-mercaptoethanol,1

mM PMSF). Cell suspensions dripped into liquid nitrogen and stored at -80 ◦C until used

for purification.

3.5.8 Purification of ComFA

3.5.8.1 Enterokinase construct

Frozen cells were thawed on ice. Diluted 1:5 in cold buffer E2 (20 mM Tris-HCl, 200 mM

NaCl, 5 mM β-mercaptoethanol, 5 % glycerol). Cells were lysed in One Shot Cell Disruptor

(Constant Systems) at 20 kpsi, two passes. Lysate spun at 100 000 x g for 1 hour at 4 ◦C.

Clarified cell lysate was passed over sepharose-dextrin resin (GE Lifesciences), equilibrated

with buffer E2. Column was washed with buffer M1. Protein was eluted with buffer E3 (20

mM Tris-HCl, 200 mM Nacl, 5 mM β-mercaptoethanol, 5 % glycerol, 10 mM D-(+)-maltose)

Elutions were pooled, flash frozen in liquid nitrogen, and stored at -80 ◦C.

83



3.5 Materials and methods

3.5.8.2 For zinc-IMAC analysis

Frozen cells were thawed on ice. Diluted 1:5 in cold buffer M2 (50 mM HEPES pH 8, 200

mM NaCl, 5 mM β-mercaptoethanol, 5 % glycerol). Cells were lysed in One Shot Cell

Disruptor (Constant Systems) at 20 kpsi, two passes. Lysate spun at 100 000 x g for 1

hour at 4 ◦C. Clarified cell lysate was passed over sepharose-dextrin resin (GE Lifesciences),

equilibrated with Buffer M2. Column was washed with buffer M2. Protein was eluted with

buffer M3 (50 mM HEPES pH 8, 200 mM Nacl, 5 mM β-mercaptoethanol, 5 % glycerol, 10

mM D-(+)-maltose) Elutions were pooled, flash frozen in liquid nitrogen, and stored at -80

◦C.

3.5.8.3 For PAR analysis

For purification, cells thawed on ice. All buffers treated with Chelex-100 (Bio-Rad Labora-

tories). Diluted 5-fold into chilled and Chelex-100 (Bio-Rad Laboratories) treated buffer A.

Diluted 1:5 in cold buffer Z2 (50 mM HEPES pH 8, 200 mM NaCl, 5 mM β-mercaptoethanol,

10 % glycerol). Cells were lysed in One Shot Cell Disruptor (Constant Systems) at 12.7 kpsi,

two passes. Lysate was spun at 3 000 x g for 10 minutes at 4 ◦C to pellet unbroken cells

and debris. Protein and DNA precipitated polyethylenimine (PEI) precipitation method

modified from (132). PEI added to 0.12 % from a 6 % (v/v) stock and incubated on ice

for 15 minutes. Precipitate was pelleted at 3 000 x g. Pellet was washed with an equal

volume of buffer Z2. MBP-ComFA was eluted by resuspendind the pellet in buffer Z3 (50
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mM HEPES pH 8, 500 mM NaCl, 5 mM β-mercaptoethanol, 10 % glycerol) and centrifuging

at 10 000 x g for 10 minutes at 4 ◦C. PEI Eluate was passed over a sepharose dextrin column

and washed with buffer Z3. MBP-ComFA was eluted from sepharose dextrin using buffer

Z4 (50 mM HEPES pH 8, 500 mM NaCl, 5 mM β-mercaptoethanol, 10 % glycerol, 10 mM

D-(+)-maltose). Eluate from sepharose dextrin column was pooled and concentrated before

use in PAR analysis.

3.5.9 Enterokinase proteolysis

Enterkinase purchased from New England Biolabs as 2 µg/ml solution. Thawed MBP-

ComFA incubated with (w/w) ratios of Enterokinase. Tested as 5 µg aliquots of MBP-

ComFA. Incubated at 24 ◦C for 1—3 hours. Supernatant and pellet fractions were tested

following centrifugation at 20 817 x g for 10 minutes at 4 ◦C. Samples taken and resolved

by SDS-PAGE and stained using Bio-Safe Coomassie (Bio-Rad Laboratories, Inc).

3.5.10 PreScission Protease proteolysis

Protein content of eluate was estimated by A280 and MBP-ComFA extinction coefficient. 3

mg/ml purified PreScission Protease was added in 1:100 w/w and incubated at RT for 2

hours.
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3.5.11 Zinc-IMAC analysis

Following proteolysis sample loaded onto IMAC FF column (GE Life Sciences) charged with

ZnSO4. Chromatography performed as in (133) Column was equilibrated with buffer M2,

and washed with same buffer. Protein eluted with buffer M4 (50 mM HEPES pH 8, 200 mM

Nacl, 5 mM β-mercaptoethanol, 5 % glycerol, 10 mM D-(+)-maltose, 250 mM imidazole-HCl

pH 8).

3.5.12 EMSA analysis

Purified MBP-ComFA was incubated with 50 nM oSC143 for 1 hour on ice. Reaction ended

with 1:10 addition of 10x loading dye. Run in 5 % 37.5:1 Acrylamide/Bis- for 2 hours in 0.1x

TAE buffer at 4 ◦C. Stained with 1: 10 000 SYBR Green dye for 10 minutes and imaged

using trans-UV illumination.

3.5.13 PAR colormetric analysis

Zinc content analysis performed as previously described in (101). Protein concentration

determined by unfolding protein by dilution 1:5 in 6 M guanidine-HCl and measuring the

A280 and using the theoretical extinction coefficient for the fusion protein constructs. Protein

mixed 1:4 with 6 M chelex-treated guanidine-HCl to facilitate release of Zn2+ prior to PAR

addition. The extinction coefficient for (PAR)2•Zn2+ calculated from a standard curve using
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ZnSO4. Zn2+ concentration determined from (PAR)2•Zn2+ extinction coefficient.

Table 3.1: Strains used in Chapter 3

Strain Genotype Reference
B. subtilis PY79 (92)
bSC007 comFA::Tn524 (erm) This work
bSC049 comF::cat This work
bSC140 comF::cat ; yvbJ::PcomF -comFA (erm) This work
bSC166 comF::cat ; yvbJ::PcomF -comFAΔS1 (erm) This work
bSC168 comF::cat ; yvbJ::PcomF -comFAC60S (erm) This work
bSC170 comF::cat ; yvbJ::PcomF -comFAC63S (erm) This work
bSC172 comF::cat ; yvbJ::PcomF -comFAC84S (erm) This work
bSC174 comF::cat ; yvbJ::PcomF -comFAC87S (erm) This work
bSC185 comFAC63S This work
bSC196 comFAC84S This work
bSC197 comFAC87S This work
bSC205 comFAC60S This work
bSC207 comFAC84S/C87S This work
bSC209 comFAC60S/C63S/C84S/C87S This work
bSC229 comFAC60S/C63S/C84S/C87S/R419K This work
bSC292 comFAC60S/C63S/C84S/C87S/K152E This work
bSC294 comFAC60S/C63S/C84S/C87S/S264A This work
bSC296 comFAC60S/C63S/C84S/C87S/E234Q This work
bSC298 comFAC60S/C63S/C84S/C87S/T266A This work
E. coli BL21 (DE3) F− ompT gal dcm lon hsdSB(rB− mB−)

λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7
nin5])

E. coli DH5α F− endA1 glnV44 thi-1 recA1 relA1 gyrA96
deoR nupG Φ80dlacZ∆M15 ∆(lacZYA-
argF)U169, hsdR17(r−K m+

K), λ–
E. coli UT5600 F- ara-14 leuB6 secA6 lacY1 proC14 tsx-

67 ∆(ompT-fepC)266 entA403 trpE38 rfbD1
rpsL109 xyl-5 mtl-1 thi-1

eSC052 E. coli BL21 (DE3) pSC045 (bla) This work
eSC097 text it E. coli UT5600 pSC086 (bla) This work
eSC188 E. coli BL21 (DE3) pSC109 (bla This work

Continued on next page
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Table 3.1 – Continued from previous page
Strain Genotype Reference
eSC207 E. coli BL21 (DE3) pSC287 (bla) This work

Table 3.2: DNA & Plasmids used in Chapter 3

Name Features Reference
pBlueScriptSK(+) bla
pET28b(+) kan Novagen
pMiniMAD2 bla erm (97)
pBB031 PT7H6-comFA kan, derived from

pET28b(+)
B.M. Burton

pBB268 bla erm B.M. Burton
pBB278 yhdGH::spec bla B.M. Burton
pMAL-c5E malE bla New England Biolabs
pSC017 malE-comFA, derived from

pMALE-c5E
This work

pSC042 malE-3crs 3C cleavage site, de-
rived from pMAL-c5E

pSC045 Ptac-malE-comFA, derived from
pSC042

This work

pSC048 PcomF -comFA derived from
pBlueScriptSK(+)

This work

pSC086 GST-3CHRV Protease bla Gift from R. Gaudet
pSC088 h6-malE, derived from pSC042 This work
pSC097 h6-comFA1-251, derived from

pET28b(+)
This work

pSC098 h6-comFA1-252, derived from
pET28b(+)

This work

pSC104 comF::cat bla This work
pSC106 Ptac-h6-malE-comFA1-251,

pSC088 with insert from pSC097
pSC109 Ptac-h6-malE-comFA1-252,

pSC088 with insert from pSC098
This work

pSC118 comFAC60S, derived from pSC048 This work
pSC119 comFAC63S, derived from pSC048 This work
pSC120 comFAC84S, derived from pSC048 This work
pSC121 comFAC87S, derived from pSC048 This work

Continued on next page
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Table 3.2 – Continued from previous page
Name Features Reference
pSC129 yvbJ::PcomF -comFAC60S, derived

from pBB268 with insert from
pSC118

This work.

pSC130 yvbJ::PcomF -comFAC63S, derived
from pBB268 with insert from
pSC119

This work

pSC131 yvbJ::PcomF -comFAC87S, derived
from pBB268 with insert from
pSC121

This work

pSC137 yvbJ::PcomF -comFAC84S, derived
from pBB268 with insert from
pSC120

This work

pSC219 pMiniMAD2 with insert from
pSC118

This work

pSC220 pMiniMAD2 with insert from
pSC119

This work

pSC231 pMiniMAD2 with insert from
pSC120

This work

pSC232 pMiniMAD2 with insert from
pSC121

This work

pSC236 pMiniMAD2 with comFA1-259

and 424 bases upstream
This work

pSC237 pMiniMAD2 with comFA218-463

and 472 bases downstream
This work

pSC239 comFAR419K, derived from
pSC237

This work

pSC240 pMiniMAD2 with insert derived
from pSC081

This work

pSC242 comFAC60S, derived from pSC236 This work
pSC243 comFAC84S/C87S, derived from

pSC236
This work

pSC244 comFAC60S/C63S/C84S/C87S, de-
rived from pSC236

This work

pSC262 malE-comFA, malE from pSC042
inserted into pSC048

This work

pSC266 pBB268 with insert from pSC262 This work
Continued on next page
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Table 3.2 – Continued from previous page
Name Features Reference

pSC287 malE-comFAC60S/C63S/C84S/C87S,
derived from pSC045

This work

pSC290 comFA101-367,E234Q pMiniMAD2
with insert from pSC069

This work

pSC291 comFA101-367,T266A, pMiniMAD2
with insert from pSC216

This work

pSC292 comFA101-367,S264A, pMiniMAD2
with insert from pSC229

This work

pSC293 comFAC60S/C63S/C84S/C87S/K152E,
derived from pSC244

This work

pUC19 bla

Table 3.3: Oligonucleotides used in Chapter 3

Name Sequencea,b

oSC024 CATATTCTTTATGCCGGCCGGTTTTTCCT
GCAATTTGAACAAGTGCGCT

oSC085 TGTATCCATTTGACTCAGAGATCAGC
oSC086 TCTCTGATCCTTGTTCTCCACACC
oSC089 ACTAATTCGAGCTCGCTGGAAGTTCTGTT

CC
oSC090 CCCATGGACATATGGGGCCCCTGGAACAG

AACTTCCAGCGAGCT
oSC091 GGCCCCATATGTCCATGGGCGGCCG
oSC095 TGTCCTACTCAGGAGAGCGTTCA
oSC138 GTGATGATGGTGGTGATGGCTGCTGCCC

ATAATCTATGGTCCTTGTTGG
oSC139 CCATCACCACCATCATCACAGCAGCGGCA

TGAAAATCGAAGAAGGTAAAC
oSC163 GGAATTCCATATGAATGTGCCAGTTGAAA

AAAACAGTTCC
oSC164 CGGGATCCTATCATTATTGAACAGCGAAT

TGAAGGGTTTGATC
oSC212 CTATATCCATAAATAAACGGAGATATAGA

AGCAATAGGTGCGGACAAACTGATC
Continued on next page
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Table 3.3 – Continued from previous page
Name Sequence
oSC213 CCATAAATAAACGGAGATATAGATGTAAT

AGGAGCGGACAAACTGATCAGCGG
oSC214 CACTCATCTGGAAAGAATAAGCTGTATAG

CCGTTCCTGTGTCATGATGG
oSC215 GGAAAGAATAAGCTGTATTGCCGTTCC

AGCGTCATGATGGGCAGAGTGAGTG
oSC311 CAGGTCGACTCTAGAGGATCCCCCAGCTT

TTGCGATATAAAGATGCAATC
oSC312 GTGAATTCGAGCTCGGTACCCGATTTTCT

TTAATTTGCTTCTGCAAGAATAAC
oSC313 CAGGTCGACTCTAGAGGATCCCCCAAGCC

TTCATTGGTAGTCTTCTAAAGGTAAAG
oSC314 GTGAATTCGAGCTCGGTACCCGGTGCTGT

TTTTCTTTCTTGCTTTTTG
oSC335 CTGTTTTTTTCAACTGGCACATTCACATA

GCACGCCTCCTTTCGAAAC
oSC338 CCATAAATAAACGGAGATATAGAAGCAA

TAGGAGCGGACAAACTGATCAGC
oSC339 CATCTGGAAAGAATAAGCTGTATAGCCGT

TCCAGCGTCATGATGGGCAGAGTG
oSC400 ACTGTTTCGAAAGGAGGCGTGCCATATGA

AAATCGAAGAAGGTAAACTGG
oSC401 GAACTGTTTTTTTCAACTGGCACATTCAT

ATGGGGCCCCTGG
oSC426 CAGGTCGACTCTAGAGGATCCCCTCATGG

AAAGAGGAAAATGAATCAAAC
oSC427 GTGAATTCGAGCTCGGTACCCCTTTCTAT

GCTTGTCTTCCGCGTG
aBold-face indicates mutagenic residues.
bUnderlines indicate restriction sites.
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4

Discussion

4.1 Broader significance

Transformation and competence are interesting biological processes on their own, however

studying them can give us greater understanding of larger biological problems. The study of

transformation can provide insights into the importance of recombination, including ques-

tions in eukaryotes, how cells solve problems relative to non-vesicle macromolecular trans-

port, and provide potential technological advances to enable genetic studies of other organ-

isms.

4.2 The importance of competence

There are three main theories regarding the purpose of competence in bacteria: a method

for scavenging DNA as a nutrient source, a method for facilitating DNA repair following
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insults to the genome, and a method for allowing genetic resorting, and sampling the fitness

landscape.

4.2.1 DNA as food

Part of the argument for DNA being a potential nutrient source is based upon what we know

of the atomic make up of biological molecules and DNA. Generally, carbon, hydrogen, nitro-

gen, oxygen, phosphorous, sulfur, and metals are required to make the molecules which make

up the macromolecules that compose living organisms. DNA contains carbon, hydrogen, ni-

trogen, oxygen, and phosphorous, almost all of those necessary nutrients. While the triggers

for the development of competence vary, in B. subtilis it develops as part of a starvation

response. Bacillus species have also been show to make biofilms which contain DNA in the

extracellular matrix (134, 135). So the logic goes that it would be greatly advantageous to

have a system which allows you to utilize the DNA present in the environment around you,

when you are lacking other sources of nutrients.

When we think about competence more generally, the regulatory picture does not seem to

reflect that of a starvation response. Different bacterial species have evolved distinct signaling

pathways to govern the expression of competence genes (25, 136, 137, 138, 139, 140, 141). In

B. subtilis only a fraction of the cells, about 10% become competent. When we examine this

competent population of cells we find a significant number of physiological changes which

even modify the buoyancy of competent cells relative to non-competent cells. These factors

93



4.2 The importance of competence

suggest something more complex than simply using DNA as a nutrient source.

Another component of the process that argues against the uptake machinery being a

scavenging system is that it is specific to DNA transport (i.e. RNA and synthetic polymers

are not transported) (28, 129), and only one strand is imported into the cell while the

other is degraded, which seems like a horrible waste of resources (142, 143, 144, 145). That

said, the purpose of degrading one strand is still unclear. Without going into too much

detail, importing ssDNA is thought to provide some protection to the cell by preventing

transcription, protecting the substrate by making it a ssDNA-binding protein substrate, or

a preparation for recombination (146).

4.2.2 DNA uptake for repair

One of the challenges bacteria face is that they are haploid. When diploid organisms undergo

DNA damage, they have another copy of their genes, which can be used as a template for

homologous recombination. One potential use for transformation is thought to be a way of

solving the problem. Essentially, if cells are damaged due to an environmental insult some

cells would be expected to perish, releasing their genetic material into the environment.

Competent cells that sustained damage, but were not killed could use the DNA now in the

environment as material to provide a template for homologous recombination.

Furthermore, recombination proteins are upregulated during competence, and there is

some evidence that the increase may help cells cope with genetic insults. Which fits well
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with the quorum regulation of competence in some species (37, 147), and the self-recognition

sequences found in N. gonorrhoeae, for example (148). However, it does not appear that the

competence machinery is upregulated as part of a DNA damage response.

4.2.3 DNA uptake for genetic exchange

Horizontal gene transfer mechanisms are sometimes referred to as bacterial sex, as they allow

genetic exchange in ways otherwise restricted to sexually reproducing organisms. Many of

the concepts we are familiar with from eukaryotic genetics such as independent assortment

which are based upon recombination manifest in very different ways in bacteria.

Generally bacteria are haploid and hold their genes on a single chromosome, though

plasmids are also sometimes found as well. Furthermore they reproduce asexually with a

parent cell that divides into two daughter cells. As such there are not regions of homology

within the genome for homologous recombination, with a few exceptions.

If we take a moment to think about how evolution functions in eukaryotes, an asexu-

ally reproducing bacterial species lacking recombination is equivalent to an extremely inbred

population–they have very little genetic diversity. Genetic diversity is introduced into the

population is through replication errors and repair errors following DNA damage. Mutations

in the genome are detrimental to protein function more frequently than they are beneficial to

protein function. Selection in the environment would control the most deleterious mutations

as the individuals containing those would have a large disadvantage manifested as reduced
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growth rates or increased mortality rates. Even so, overtime we would expect that the num-

ber of deleterious mutations in a genome would increase, decreasing the relative fitness of a

population relative to its ancestors in this scenario. This phenomenon is known as Mueller’s

ratchet. If we assume limited competition, any individual mutation which is severely deleteri-

ous would of course be quickly removed from the population, however, marginally deleterious

mutations could accumulate in the population over time.

Where Muller’s ratchet becomes very important is when we think about beneficial mu-

tations. If we build upon the scenario above, in which we have a population which has

accumulated a number of mutations overtime such that there is genetic variation among in-

dividuals, as well as variance in the frequency of alleles at loci throughout the genome then

each individual has a level of fitness determined by the combined influences of the genes

it carries. At some rate lower than the rate of mutations from replication, we can observe

some individuals undergoing mutations which provide a competitive advantage. In order for

those beneficial mutations to manifest in changes in the composition of the population their

fitness improvement must outweigh the current mutation burden when they arise.

Even if we ignore the burden complication, the alleles face another challenge to fixing

in the population: each other. As any mutation which arises is unlikely to arise in the

same locus multiple times we can assume that any beneficial allele would be unique in the

population. Thus it follows that these alleles would compete with each other in a population.

And in the absence of recombination a cell would need a beneficial mutation to arise in a
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genome already carrying another in order to harness the benefits of both. A second beneficial

mutation is most likely to occur once another beneficial mutation is a significant fraction of

the population, or has taken over (Figure 4.1ii). With that in mind, they are thought to arise

sequentially. The process described above is know as clonal interference. The independent

competitive advantages provided by each beneficial mutation must battle it out to dominate

the population and thus “interfere” with each other, and slow the rate of evolution.

Genetic exchange allows the alleviation of clonal interference. If we take the above

population and allow for genetic exchange by individuals by competence then if beneficial

alleles “A” and “B” arise independently in a population that initially was ab we can see

the presence of AB individuals much sooner than without genetic exchange (Figure 4.1). In

the simplest scenario we can have an individual of aB which perishes as the result of either

gene a or an unrelated cause and release genetic material containing B. If a competent

individual of genotype Ab were to take up the genetic material containing B the resolution

of recombination can result in an individual with the genotype AB which would now benefit

from the growth advantages of both A and B (Figure 4.1i). Moradigaravand et al. performed

an interesting set of simulations that nicely illustrate the potential advantages of competence

and recombination (11). There are also examples from in vivo experiments which suggest

that competence provides a number of selective advantages with regard to the maintenance

and sharing of beneficial alleles (24).

Recombination and HGT alleviate clonal interference by allowing genes to assort be-
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4.2 The importance of competence

Figure 4.1: Clonal interference - (i and ii) “A” and “B” refer to beneficial alle-
les at their respective loci. “a” and “b” refer to the ancestral alleles at their respec-
tive loci. (i) Allele distribution overtime in a population, allowing for recombination. (ii)
Allele distribution overtime in a population where recombination is prohbited. Adapted
from:http://en.wikipedia.org/wiki/File:Evolsex-dia2a.svg.
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tween cells in a population. Therefore beneficial alleles can be combined and can propagate

through the population at a higher frequency. In microbial communities species such as B.

subtilis that are promiscuous with respect to the sources of DNA they take up also gain the

opportunity to obtain new genes, and gene networks that were previously absent from their

genomes.

4.3 ComFA and transformation

So you may be asking “What does all this have to do with ComFA?” If you remember

that ComFA is present in Gm+ which lack a periplasm and outer membrane and absent

in Gm−s which have a periplasm and outer membrane, then competence appears to be

largely a mechanism for sampling the fitness landscape. Having a cytosolic helicase, even

a non-processive one, greatly improves a cell’s ability to import high-quality recombination

substrate when it lack a protective compartment in the event of asynchronous import steps.

The general model for DNA uptake in B. subtilis has assumed a rapid, processive process

underlies the observed uptake rates. However, there is evidence that suggests that the

internalization process in B. subtilis, and possibly other Gm+ bacteria, occurs in two steps

(47, 48), similar to what is observed in Gm− bacteria (149). The DNase-resistant state

during uptake appears to precede the transport across the cell membrane (46, 48), which

also confers cyanide resistance (47). In H. pylori it appears that DNA transport across the

outer membrane is not coupled to transport across the inner membrane, and in the absence
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of inner membrane transport DNA can accumulate in the periplasm (149).

It is possible that the function of the pseudopilus, believed to be involved in pulling

DNA to the membrane B. subtilis (43, 48, 53, 55), may not be coupled to any activity from

the cytoplasmic components of the uptake machinery. Thus, it is worth noting that while

ComFA is found in a number of Gm+ bacterial species no orthologs have been identified in

Gm− bacteria. With that in mind, why would the Gm+ bacteria need a dedicated helicase,

while single-stranded DNA-binding proteins and the recombination machinery are sufficient

to facilitate cytosolic transport in Gm− bacteria?

The first thing to consider is the structural differences between the two cell types. Gm−

bacteria contain a second membrane absent in Gm+ bacteria which creates the periplasm

compartment. The periplasm may provide a protected space in which the incoming DNA can

accumulate in the event that cytoplasmic transport lags behind import into the periplasm.

Without this protected space B. subtilis and other Gm+ bacteria may need a faster transport

mechanism to ensure that the integrity of the incoming DNA is maintained. Furthermore

Gm+ bacteria contain a membrane-bound nicking endonuclease (NucA) which is required to

create the double-strand breaks to liberate the necessary free-end to allow transport. The

nicking activity of NucA appears to be regulated by the presence of substrate. It would be

reasonable to assume that the longer the incoming DNA is allowed to reside at the surface

of the cell, the more nicks would be introduced. The highly fragmented DNA would be a

poor substrate for subsequent recombination following import into the cytoplasm.
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4.4 ComFA is a DEAD-box helicase with a metal-binding

motif

In the previous two chapters I have detailed my examination of the DEAD-box helicase

motifs and a metal-binding motif present in ComFA. The DEAD-box motifs and the metal-

binding motif are required for ComFA function, and independently contribute to the function

of ComFA (see Figures 2.3, 3.2A, 3.3). With this information we can conclude that ComFA

is in fact a DEAD-box helicase, and that it contains an accessory metal-binding motif which

is capable of binding zinc, and transformation in Gm+ bacteria is most likely cytosolically

powered by a non-processive helicase. This does not necessarily say that ComFA does not

function in a processive manner, but does indicate that it likely is not intrinsically a high-

processivity helicase.

The results from the experiments described in Chapters 2 & 3 support the following

model. In the wildtype case, both the helicase and zinc finger functions are intact and

contribute to wildtype transformation efficiency (Figure 4.2A and see Figure 3.3). The

comFAΔS1 allele creates a non-functional ComFA. In this background DNA uptake is likely

mediated by the ssDNA binding proteins, and rec machinery normally downstream of ComFA

(Figure 4.2B and see Figure 3.3). The similarity in transformation efficiency for the zinc

finger/helicase combination mutants to comFAΔS1 suggests that these point mutants create
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a similar functional phenotype for ComFA (see Figure 3.3). The DEAD-box helicase mutants

only have the zinc finger intact (zinc finger only) and therefore cannot effectively translocate

along the incoming DNA. They should, however, maintain their ability to bind the DNA

and behave as a Brownian ratchet to facilitate DNA import by binding the DNA as it comes

into the cell and preventing the DNA from passing back through ComEC once it has entered

the cytoplasm (Figure 4.2C). The function of the zinc finger is not clear, however, given that

its function is independent of the helicase activity (see Figure 3.3) and it is not required

for DNA binding (see Figure 3.13). If its function was related to the helicase activity, we

would expect that the helicase mutants would account for the entire loss of activity, and

would be similar to comFAΔS1 in the transformation efficiency experiments, not unlike the

observations found in (49). Thus, it is reasonable to assume that it is not involved in substrate

recognition or enhancement of helicase activity. As such, when the zinc finger is mutated,

the ComFA4CS (helicase only) likely maintains its helicase activity, but is unable to perform

another function, such as properly localizing to the sites of DNA uptake, or oligomerizing,

interacting with other proteins necessary for efficient uptake (Figure 4.2D).

102



4.4 ComFA is a DEAD-box helicase with a metal-binding motif

Figure 4.2: Model of ComFA mutant function during transformation - Schematic
models of transformation in comFA mutant backgrounds. See Figure 3.3 for corresponding
transformation efficiency data. (A-D) ComEC (EC) is labeled in gray. ComFA (FA) is labeled
in blue. Arrows indicate relative strength of import, displayed as the DNA moving from left
to right. (A) Wildtype condition. (B) comFAΔS1 and combination mutants. It is unclear
what the combination defect is, but the helicase and zinc finger functions have been disrupted.
(C) DEAD-box helicase motif mutants. ComFA cannot move along the incoming DNA strand,
but can bind to the naked ssDNA as it enters the cell. The muted ComFA surrounded by
the dashed line represents a secondary binding event. The binding events would be expected
to continue as the DNA moves into the cytoplasm. (D)comFA4CS mutants. The zinc finger
mutants should maintain helicase activity, but the rate of DNA import would be reduced to a
loss of localization, or interaction with other proteins required for transport.
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4.5 Future directions and next steps

4.5.1 Further analysis of ComFA

The majority of the work I have presented here involves an in vivo analysis of mutations

in ComFA. This leaves a lot that we still need to understand about how ComFA functions

mechanistically in order to properly illustrate its role during DNA uptake. I will address a

few of these experiments.

4.5.1.1 In vivo experiments

While conducting my analysis of ComFA I encountered a number of issues examining DNA

uptake using methods developed for analysis in B. subtilis (48, 58). However, the Dubnau lab

has managed to develop a protoplasting method which demonstrated that DNase-resistance

is not a direct indicator of cytoplasmic transport (48). This technique may be adapted to

measure the second step in internalization. Monitoring the second step will allow a more

direct examination of the effects of ComFA mutation on DNA uptake during transformation.

Tracking internalization may also be possible using fluorescent microscopy, or flow cy-

tometry, in which the substrate, or a secondary reporter is labeled such that transport can

be measured rapidly and quantitatively. An important consideration for these types of tech-

niques will be controlling any potential interference with the transport process caused by

the chosen probe or label.
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There also remains a great deal of work to be done in examining the localization of

ComFA, and other components of the competence machinery. Much of the work extant in

the literature has not commanded broad confidence due to the chosen method of examination,

or issues with reproducibility, or demonstration of function (45, 50, 57, 59, 130, 131).

4.5.1.2 In vitro experiments

The proteins which constitute the competence machinery are very early in their biochemical

study. None of them have been rigorously purified, and most of the structural or other

biochemical information we have is based upon inferences based on homology or in vivo

phenotype analysis.

In the case of ComFA, the work I performed here lays the foundation of intimate analysis

of how the protein functions. The MBP-ComFA construct I have developed complements

the null phenotype in vivo (See Figure 3.9). Furthermore, I have developed a method to

remove contaminating DNA present during purification (See Figures 3.8, 3.12, & 3.13), and

it is possible to remove the MBP tag using proteolytic cleavage (See Figure 3.10B), but more

work is needed to improve the solubility of the cleaved protein.

The preliminary electrophoretic mobility shift assays (EMSAs) I performed suggest that

ComFA binds single-stranded DNA (ssDNA) (See Figure 3.8B), however, a thorough analysis

of substrate preference and analysis of helicase activity in vitro is needed to really determine

if ComFA participates in melting the double helix of the incoming DNA, separating the
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transforming and non-transforming strands.

4.6 Other members of the comF operon

ComFA is part of a tricistronic operon. Of the proteins in the operon, ComFA has the

largest contribution to efficient transformation; however ComFB and ComFC do show minor

contributions (58). ComFC is predicted to have a phosphoribosyl transferase function based

on MotifScan analysis (113, 115), and is conserved in Gm+ and Gm− bacteria (58). ComFB

and ComFC provide an opportunity to further study the requirement for metal co-factors

during transformation and in the case of ComFC, possibly furthering our understanding of

the fate of the DNA substrate during transformation.

4.6.0.3 Analysis of comFC

Of the other members of the comF operon ComFC would be the best protein to analyze

to better understand transformation. Unlike ComFA, ComFC is conserved in both Gm−

and Gm+ bacteria(58). It also contains a predicted four-cysteine metal binding motif, and a

predicted phosphoribosyl transferase domain as well(58). Much like ComFA we understand

that it has a marked influence on transformation efficiency, however we don’t fully understand

how it contributes to transformation. Though it is a much smaller protein, performing a

biochemical analysis of ComFC would require solving a number of the obstacles I have

encountered with ComFA. As such, it may now be easier to examine ComFC. Since ComFC
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also contains a tetracysteine motif, some of the challenges to producing soluble protein, such

as including zinc in the growth media during expression in vitro have been addressed.

4.7 Final Thoughts

4.7.1 Applications for natural transformation

Much of modern biological pursuits are dependent upon being able to perturb a system

and isolating its components. For many organisms this is challenging or impossible due to

barriers to HGT. By understanding which components are required for efficient transforma-

tion, it may be possible to mobilize genetic competence, enabling or improving the genetic

tractability of previously impregnable biological systems. Similar approaches may be useful

for developing methods for transfer of DNA to target specific cell-types in medical appli-

cations as well. ComFA is a very important piece of the machinery by increasing the rate

of sequestration of transforming DNA from any degrading factors. Protecting your vector

from degradation can be very important as maintaining DNA quality is critical when finding

conditions for genetic transfer.
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Appendix A: Analysis of expression of

comFA and mutants at ectopic locus

yvbJ

As an initial pass to determine the requirement for the DEAD-box helicase motifs in ComFA

I made a series of constructs which expressed the ComFA and the mutant constructs under

a PcomF promoter from the yvbJ locus, marked with a erythromycin resistance cassette.

In this appendix I will describe these initial experiments and the findings from the ectopic

experiment constructs.

A.1 Canonical DEAD-box mutations are not dominant

Analyzing the dominance of the DEAD-box mutation was performed while conducting pre-

liminary analysis of the mutations. Mutant variants of ComFA were expressed from the

yvbJ locus in B. subtilis from the endogenous comF promoter. The comF locus was left
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intact. The meridiploids had an inherent 2-fold defect in transformation efficiency relative

to the wild type. None of the strains showed a strong dominant-negative phenotype (Figure

A.1). The system has been previously reported to be sensitive to protein levels (59), and

while we do not observe a dominant-negative defect in any of the mutants in a meridiploid

background, we do observe a defect in transformation efficiency in the meridiploid strains

(Figure A.1).

Ectopic expression of comFA under a native PcomF promoter is unable to complement

at wildtype levels (Figure A.2A) . It is possible that the failure to complement is the result

of a genomic locus effect, the G to A transition mutation created during cloning, or some

secondary effect from the antibiotic resistance cassette. This was not further investigated,

as the endogenous system provided the most control in this experimental setup.

The meridiploid analysis findings do not agree with those previously reported by Londoño-

Vallejo and Dubnau (49). There may be a number of reasons for the differences. For example

the differences could arise from differences in the experimental set ups including differences

in the media used to grow the cells to competence, or the markers for transformation. Some

of the difference could also be attributed to differences in the construction of the strains,

such as choice of expression loci. It is also unclear from the previous work what the level of

variation was in the relative efficiencies observed.
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Figure A.1: DEAD-box mutations are not dominant - Transformation efficiency of
meridiploid B. subtilis strains. Strains are wildtype at the comF locus. Mutation designations
reflect mutations to ComFA integrated at yvbJ. Relative efficiencies are compared to wildtype
B. subtilis PY79, with efficiency set to 1. Error bars are standard error. For all strains n=3.
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A.2 Expression from yvbJ creates a competence defect

Typically, in B. subtilis genetic analyses are conducted by knocking out the gene of interest at

the endogenous locus, and then examining complementation from an ectopic locus. There are

a number of constructs which have been developed to express proteins from ectopic loci using

inducible or endogenous promoters. The constructs are often marked with selectable genes

which simplify making bacterial strains and verifying the maintenance of other insertions

into the genome.

I began my analysis of ComFA in a similar manner. I made a comFA expression construct

under the PcomF promoter that integrates into the genome at yvbJ to examine the contri-

bution of ComFA to transformation efficiency. When ComFA was expressed from yvbJ as

a meridiploid, I observed a mild transformation defect, of about 42 % of wildtype efficiency

(Figure A.2A).

The mild defect was not entirely unexpected, as the transformation system had previously

been reported to be sensitive to protein levels (58). When the endogenous comF locus is

removed, I saw a much stronger defect in transformation efficiency, of approximately 4 % of

wildtype. This additional defect may be the result of the loss of comFB and comFC which

have both been shown to contribute to efficient transformation (58). The meridiploid and

haploid mutational analysis experiments covered in this appendix are implemented with only

ComFA being expressed from the yvbJ locus.
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To determine if the defects observed were due to a protein level imbalance in the meridiploids,

and/or a loss of comFB and comFC in the complementation haploid, I made new constructs

which integrated the entire comFABC operon at yvbJ. Integrating the entire operon recov-

ered some of the efficiency lost in the comFA only constructs, however, it was not sufficient

to recapitulate the efficiency observed in the wildtype (Figure A.2B). The remaining defect

may result from locus-specific effects, or the result of the G to A transition introduced in

the start codon of the comFA coding sequence. The ATG start codon is generally assumed

to be stroger, or better recognized by the ribosome than other variants such as the GTG we

find in comFA in B. subtilis. This could increase relative levels of ComFA translation in the

ectopic constructs relative to wildtype B. subtilis.

Given the observation that the complementation from the yvbJ locus was incomplete I

decided to examine the effects of mutations made at the endogenous locus. The alternative

system would alleviate any possible effects resulting from ectopic expression, or the inclusion

of an antibiotic cassette. The results of the endogenous site analysis is covered in Chapter

2.
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Figure A.2: yvbJ::comFA and yvbJ::comFABC expression do not achieve wild type
transformation efficiency - (A and B) Relative efficiencies from complementation constructs
with ComFA expressed from the yvbJ locus. PF indicates PcomF promoter. n.d. = not
determined. Error bars are standard error. (A) yvbJ::comFA constructs. (B) yvbJ::comFABC
constructs. WT and comF meridiploid n = 2, yvbJ::comFABC n = 4.
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A.3 Canonical DEAD-box motifs are required for ComFA

function

Despite the above issues regarding complementation of the yvbJ ectopic expression constructs

I performed a preliminary mutational analysis using mutations integrated at the ectopic

location. To perform this analysis I replaced the comF locus in each of the meridiploid

strains tested with an antibiotic resistance cassette. The resulting B. subtilis strains were

haploid for comFA. The strains ectopically expressing comFA from the yvbJ locus showed a

10–fold defect from teh wildtype B. subtilis PY79 strain. All of the DEAD-box motif mutants

(except comFAS264A) showed at least an additional 10–fold defect in transformation efficiency

from the yvbJ::comFA ectopic expression strain. Interestingly, the comFAG151R/K152N and

comFAE234Q strains showed transformation efficiency rates comparable to the comFAΔS1 in-

frame deletion strain (Figure A.3)

A.4 Analysis of the ABC signature-like motif

Bioinformatic analysis of ComFA using MotifScan (113, 115) showed the presence of an

accessory motif in a addition to the DEAD-box helicase motifs. An ABC signature-like motif

was identified amino proximal to motif I (Figure A.4B). In ABC proteins the ABC Signature

motif is involved in ATP-binding, and assists in dimerization. The ABC signature-like motif
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Figure A.3: Canonical DEAD-box motifs are required for ComFA function when
expressed from ectopic locus - Relative transformation efficiencies for mutations made to
comFA expressed from the yvbJ locus. (+) indicates that the locus is wild type. Mutations
listed are made in the ComFA primary sequence. Error bars are standard error.
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in ComFA is out of sequence with respect to the Walker A and Walker B ATP-binding and

hydrolysis sites, but it is still possible that it participates in nucleotide binding. I also found

that there is a conserved glutamine residue upstream of motif I in ComFA, which could

indicate a DEAD-box Q motif (Figure A.4B and see Figure 2.2).
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Figure A.4: Schematic of ComFA motif compared with DEAD Family and ABC Family proteins - (A
and B) Zinc finger motif is indicated in silver, possible ABC signature motif is indicated in red, and DEAD family
motifs are indicated in green. ∗Indicates residues mutated in transformation efficiency analysis(A) Enlarged region is
removed in ΔS1 in-frame deletion. (B)Alignment of ComFA with DEAD family and ABC family conserved motifs.
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To test these possible motifs I made three ComFA mutant constructs: comFAS122N,

comFAG124D, and comFAQ125A. The first two mutants would test the contribution of the

ABC signature-like motif, and were based upon mutation that disrupt function in ABC

transporters (150, 151). The third mutation was made to test the Q-motif, and is based

upon the conservation observed in ComFA homologs, and DEAD-box helicases (see Figure

2.2).

The mutations in the ABC signature-like motif had no effect on transformation efficiency

when introduced at the comF locus. Interestingly, when expressed as part of mutant comFA

alleles from yvbJ in the absence of comFB and comFC, they both showed mild transforma-

tion efficiency defects (Figure A.5). The possible Q-motif conserved glutamine mutant was

only tested as a mutation at the comF locus. The mutation caused a mild transformation

efficiency defect on the order of about 2-fold (Figure A.5).

The results suggest that the ABC signature-like motif is more likely to be a variant of a

Q-motif-like sequence (see Figures 2.2 & 3.1). The S122 and G124 appear to be dispensable,

at least in the presence of ComFB and ComFC (Figure A.5). The requirement for Q125,

but not for S122 or G124 is consistent with the ABC signature-like motif being a Q-motif

variant. It is unclear what the cause of the defect observed in the yvbJ::comFA expression

strains. The possible Q-motif maybe be functional, however, additional data is needed, as

there is a nearby glutamine that could be substituting to maintain some activity. Also, the

DEAD/H-box helicases that have been examined by mutational analysis do not all share the
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Figure A.5: The ABC signature-like motif is not required for efficient transfor-
mation - Transformation efficiency for mutations of ComFA ABC signature-like and DEAD
helicase Q-like motifs. (A and B) All efficiency rates are normalized to wild type. Error bars
are standard error. (A) (+) indicates that the locus is wild type. Mutations listed are made
in the ComFA primary sequence. n.d. = not determined. Wildtype n=19, yvbJ::comFA n=16,
ΔS1 n=4 S122N and G124D mutants n = 2 (B) Limit of detection for the assay is 0.5 trans-
formants per CFU per µg of genomic DNA. The relative efficiency axis is a log10 scale. WT
n=19, ΔS1, S122N, and G124D mutants n=5, Q125A mutant n=4. ∗p=0.005, ∗∗p<0.0001.
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same phenotype when the Q-motif is mutated (152). The mild phenotype may indicate that

the adenine recognition is not sufficiently perturbed, as the neighboring glutamine, Q126

could compensate for the loss of Q125. The mild phenotype may also suggest that the motif

may serve a different function in ComFA, or ComFA is not strictly an ATPase, as helicases

lacking the Q-motif sometimes utilize other nucleotides for energy (89, 153). Structural data

with nucleotide bound would clarify this point. Determining which nucleotides can serve

as energy sources for ComFA would also help to determine if the Q-motif-like sequence is a

Q-motif variant or not.

A.5 Conclusion

The mutational analysis of ComFA from the yvbJ ectopic locus did provide some useful

preliminary data, however it did create a number of issues as well. Expression of neither

comFA alone, nor the comF operon from the yvbJ locus was sufficient to complement wild

type transformation efficiency. There are a number of potential causes for the inherent

defect including so called “site-specific” effects which could be alleviated by expressing the

proteins from a different location, such as the amyE locus used by Londoño-Vallejo and

Dubnau previously (49). The defect may also be caused by the use of the antibiotic cassette

which marks the insertion in yvbJ. There may be some interference from the constitutively

expressed resistance gene, and the induction of the comF protein products. Each of these

potential scenarios are pretty straightforward to test and examine. Determining the cause of
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the differences may be important to address when considering the minimal machinery, and

possibly mobilizing the transformation machinery to other organisms.

One result that was particularly interesting however, was the change in the defect ob-

served for the ABC signature-like motif mutants. The comFAS122N, and comFAG124D mutants

showed transformation efficiency defects when expressed from the yvbJ locus, relative to the

wild type comFA gene expressed in the same manner (Figure A.5A), yet these defects were

alleviated when the mutants were expressed from the comF locus (Figure A.5B). It is not

clear whether that is the result of the absence of comFB and comFC, which would suggest

an interaction between the proteins, missing from our models of the machinery, or whether

there is something more mysterious about the mutations in the context of the yvbJ locus.

Resolving the ectopic expression defects will be important to allow further meridiploid

analyses of members of the comF operon. The mutations I tested did not show a dominant

negative phenotype, which conflicts with previous reports for the effects of mutations in the

DEAD-box protein motif I present in ComFA (49). Reconciling the differences there may

likely require a different approach, or moving the construct to a new locus. There also may

be mutations in comFA which behave in a dominant-negative manner, and having a reliable

method of expressing ComFA alleles from a second locus in the B. subtilis genome will be

valuable in examining those mutant alleles.

The differences in the results I found in Chapter 2 and this appendix suggest that there

is a great deal of value to expressing mutant alleles from their endogenous loci. The use
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of ectopic loci arises from a number of historical challenges, which are less profound with

advancements in biotechnology. Overtime the difficulty and expense of procedures such as

PCR and sequencing have decreased, making markerless constructs more feasible. Also,

prior to the development of isothermal assembly (94) using ectopic loci simplified strain

construction as modular plasmids could be used to quickly make changes.

The double-crossover marker replacement integration is often used to increase strain

generation rates, as of the target ectopic loci is marked with a selective marker, and selective-

marker replacement can be used as a proxy for integration. The selective markers also allow

the rapid transfer of alleles between strains as transfer of the relevant region of genomic

DNA can be tracked by the transfer of a selective marker linked to your gene of interest.

In the markerless system I used in Chapters 2 & 3 (97) each mutation must be inserted

in series, unless they are sufficiently clustered in the DNA sequence. For example, all four

of the cysteine to serine mutations made in the comFA4CS were transfered all at once since

they were very close together, however, a separate transformation was required to make

the comFA4CS combinations with the mutations in the canonical DEAD-box motifs. Each

of those constructs must be screened by sequencing in the final step of constructions to

determine which isolated contain the desired mutation. The genomic DNA from markerless

strains also cannot be used to directly make new strains as there is no way to efficiently

determine which isolates acquired the allele of interest following transformation.

The greatest advantage of the marked, ectopic expression system is the amount of time
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required to construct each strain. In the markerless system, the time from preparing your

recipient strain to the time of having sequence-verified mutants is about 10 days (the time-

line can be shorter if making insertions or deletions). The marker-replacement method takes

about half of that time. There are some improvements to the plasmid construct that could

decrease the timeline for constructing markerless strain, such as using a bacteriocidal antibi-

otic resistance selective marker, rather than a bacteriostatic antibiotic resistance selective

marker. The change would decrease the time by removing at least on step in which you need

to isolate resistant cells from non-growing antibiotic sensitive cells. However, even with that

improvement the marker-replacement method simplifies strain verification since you have

the selective marker as a proxy.

I would argue though that the changes I found in transformation efficiency assays for the

comF expressed mutants (Figure A.5B & see Figure 2.3) and the yvbJ expressed mutants

(Figures A.3 & A.5A) should bring some pause to analyses performed using alleles expressed

from ectopic loci. Even accounting for the defect inherent in the yvbJ::comFA construct,

the behavior of the mutations relative to each other differs between those experiments.

For example, the canonical DEAD-box mutations are equivalent to the comFAΔS1 in-frame

deletion in the yvbJ ectopic expression system (Figure A.3), but were 100–fold more efficient

in the comF endogenous expression system (see Figure 2.3). Furthermore, the comFAS122N

and comFAG124D only showed a defect relative to wildtype in the yvbJ ectopic expression

system (Figure A.5). The interpretation of the results discussed in Chapters 2 & 3 would have
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been very different if all of the mutants and combinations were equivalent to comFAΔS1. The

similarity between the mutants I observed in the ectopic expression system could possibly

explain the observations made in (49).

A.6 Materials and methods

A.6.1 Strains and growth conditions

All B. subtilis strains were derived from the prototrophic strain PY79 (92). B. subtilis were

grown in Luria-Bertani (LB) broth or on LB plates fortified with 1.5 % Bacto agar at 24 ◦C

or 37 ◦C as appropriate. 10x modified competence (MC) medium was made as described in

(93). Competent cells were grown in 1x MC supplemented with 0.3 % (v/v) 1 M MgSO4.

When appropriate, antibiotics were included at the following concentrations: 5 µg/ml chlo-

ramphenicol (Cm5), 100 µg/ml spectinomycin (Spec100), and 1 µg/ml erythromycin plus 25

µg/ml lincomycin (mls).

A.6.2 Plasmid construction

Plasmids used in this work are listed in Table A.2. Oligonucleotides used in this work are

listed in Table A.3
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pSC002[h6-comFAK152A] was generated by site-directed mutagenesis of pBB031 using oSC002.

pSC004[h6-comFAS264A] was generated by site-directed mutagenesis of pBB031 using oSC009.

pSC005[h6-comFAT266A] was generated by site-directed mutagenesis of pBB031 using oSC010.

pSC015[h6-comFAR419K] was generated by site-directed mutagenesis of pBB031 using oSC024.

pSC018[malE-comFAK152A] was generated by a two-way ligation between an NdeI-BamHI

PCR product containing comFAK152A amplified from pSC002 using oSC044 and oSC061into

pMAL-c5E cut with NdeI and BamHI.

pSC026[h6-comFAG151R/K152N] See Chapter 2 Plasmid construction.

pSC036[yvbJ::PcomF -comFA (erm)] See Chapter 2 Plasmid construction.

pSC048[PcomF -comFA in pBlueScript SK(+)] See Chapter 2 Plasmid construction.

pSC051[PcomF -comFAT266A] See Chapter 2 Plasmid construction.
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pSC052[PcomF -comFAR419K] was generated by a two-way ligation between an NdeI-BamHI

PCR product containing comFAR419K amplified from pSC015 using oSC044 and oSC061 into

pSC048 cut with NdeI and BamHI.

pSC056[PcomF -comFAK152E] See Chapter 2 Plasmid construction.

pSC058[PcomF -comFAG151R/K152N] See Chapter 2 Plasmid construction.

pSC059[yvbJ::PcomF -comFAT266A (erm)] was generated in a two-way ligation with an EcoRI-

BamHI fragment containing PcomF -comFAT266A from pSC051 into pBB268 cut with EcoRI

and BamHI.

pSC060[yvbJ::PcomF -comFAR419K (erm)] was generated in a two-way ligation with an EcoRI-

BamHI fragment containing PcomF -comFAR419K from pSC052 into pBB268 cut with EcoRI

and BamHI.

pSC064[yvbJ::PcomF -comFAK152E (erm)] was generated in a two-way ligation with an EcoRI-

BamHI fragment containing PcomF -comFAK152E from pSC056 into pBB268 cut with EcoRI

and BamHI.
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pSC066[yvbJ::PcomF -comFAG151R/K152N (erm)] was generated in a two-way ligation with

an EcoRI-BamHI fragment containing PcomF -comFAG151R/K152N from pSC058 into pBB268

cut with EcoRI and BamHI.

pSC067[PcomF -comFAS264A] See Chapter 2 Plasmid construction.

pSC068[PcomF -comFAK152A] See Chapter 2 Plasmid construction.

pSC069[PcomF -comFAE234Q] See Chapter 2 Plasmid construction.

pSC073[PcomF -comFAΔS1] See Chapter 2 Plasmid Construction.

pSC075[yvbJ::PcomF -comFAS264A (erm)] was generated in a two-way ligation with an EcoRI-

BamHI fragment containing PcomF -comFAS264A from pSC067 into pBB268 cut with EcoRI

and BamHI.

pSC076[yvbJ::PcomF -comFAK152A (erm)] See Chapter 2 Plasmid construction.

pSC077[yvbJ::PcomF -comFAE234Q (erm)] was generated in a two-way ligation with an EcoRI-

BamHI fragment containing PcomF -comFAK152A from pSC069 into pBB268 cut with EcoRI
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and BamHI.

pSC081[yvbJ::PcomF -comFAΔS1 (erm)] See Chapter 2 Plasmid construction.

pSC104[comF::cat ] See Chapter 2 Plasmid Construction.

pSC116[yvbJ::comFBC (erm)] was generated by a two-way ligation with an EcoRI-BamHI

PCR product containing comFBC amplified from B. subtilis genomic DNA using oSC191

and oSC192, into pBB268 cut with EcoRI and BamHI.

pSC117[yvbJ::comFBC (erm)] was generated by site-directed mutagenesis of pSC116 with

oSC216 to remove a BglII site.

pSC172[yvbJ::PcomF -comFABC ] was generated by a two-way ligation with an EcoRI-BamHI

fragment containing PcomF -comFA into pSC117 cut with EcoRI and BglII .

pSC192[PcomF -comFAS122N] was generated by site-directed mutagenesis of pSC048 using

oSC006.

pSC193[PcomF -comFAG124D] was generated by site-directed mutagenesis of pSC048 using

128



A.6 Materials and methods

oSC007

pSC221[PcomF -comFAS122N in pMiniMAD2] was generated by two-way ligation with an

EcoRI-BamHI fragment containing PcomF -comFAS122N from pSC192 into pMiniMAD2 cut

with EcoRI and BamHI.

pSC222[PcomF -comFAG124D in pMiniMAD2] was generated by two-way ligation with an

EcoRI-BamHI fragment containing PcomF -comFAG124D from pSC193 into pMiniMAD2 cut

with EcoRI and BamHI.

pSC236[comFA1-259 in pMiniMAD2] See Chapter 3 Plasmid construction.

pSC240[comFAΔS1 in pMiniMAD2] See Chapter 2 Plasmid construction.

pSC299[comFA1-259,Q125A in pMiniMAD2] was generated by site directed mutagenesis of

pSC236 using oSC433.
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A.6.3 B. subtilis strain construction

A.6.3.1 Meridiploid strains

Mutant versions of comFA were inserted at the yvbJ locus, marked with an erythromycin

resistance marker. The resultant B. subtilis strain (bSC042) was used a host for the trans-

formations. The host strain was grown at 37 ◦C for 4 hours in 1x MC. One colony per 1 ml

of 1x MC was used for initial inoculum. While the cells were grown up, the relevant plasmids

to be used for integration into the yvbJ locus were linearized using ScaI-HF endonuclease

(New England Biolabs). At 4 hours 2 µl and 18 µl of linearized vector were added to 200

µl of 1x MC culture in 13 mm borosilicate glass tubes and grown for an addition 2 hours at

37 ◦C. After the additional incubation the transformation cultures were plated on LB/mls

agar plates and grown overnight at 37 ◦C. Following the overnight incubation 8 colonies were

chosen and struck out for single colonies on LB/mls plates and incubated overnight at 37

◦C. Proper integration was tested by marker replacement. One colony from each of the 8

isolates chosen was picked and patched on LB/mls and LB/Cm5 agar plates. Patches that

showed mls resistance and chloramphenicol sensitivity were chosen for use in experiments.

Glycerol stocks were made from chosen strains and stored at –80 ◦C.
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A.6.3.2 Haploid yvbJ expression strains

Strains were made comF by transformation with genomic DNA from a comF::cat strain

(bSC049). The comF::cat strain was made by the same method as the production of

meridiploid strains, except pSC104 was used for integration, B. subtilis PY79 was used

as host strain, and strains selected for chloramphenicol resistance. Replacement verified by

PCR amplification of locus using oSC085 and oSC086. Genomic DNA was extracted from

the resultant strain (bSC049) and used for creation of haploid strains. Each host strain

was grown at 37 ◦C for 4 hours in 1x MC. One colony per 1 ml of 1x MC was used for

initial inoculum. Dilutions of the genomic DNA bSC049 made at 1:20 and 1:400 into MiliQ

H2O. At 4 hours 2 µl of each dilution was added to 200 µl of 1x MC culture and grown for

an addition 2 hours at 37 ◦C. After the additional incubation the transformation cultures

were plated on LB/Cm5 agar plates and grown overnight at 37 ◦C. Following the overnight

incubation 8 colonies were chosen and struck out for single colonies on LB/Cm5 plates and

incubated overnight at 37 ◦C. Retention of the original integration was verified by antibiotic

selection.

A.6.4 Transformation efficiency

Transformation efficiency experiments were performed as in Chapter 2. The tested strains

were streaked out on LB, LB/Cm5, or LB/mls plates depending on the resistance carried
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rather than LB alone, and were grown overnight in the presence of antibiotics when appro-

priate.
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Table A.1: Strains used in Appendix A

Name Features Reference
B. subtilis PY79 (92)
bBB364 yvbJ::cat B.M. Burton
bSC017 yvbJ::PcomF -comFAT266A (erm) This work
bSC018 yvbJ::PcomF -comFAR419K (erm) This work
bSC022 yvbJ::PcomF -comFAK152E (erm) This work
bSC023 yvbJ::PcomF -comFAG151R/K152N (erm) This work
bSC025 yvbJ::PcomF -comFAS264A (erm) This work
bSC026 yvbJ::PcomF -comFAK152A (erm) This work
bSC027 yvbJ::PcomF -comFAE234Q (erm) This work
bSC031 yvbJ::PcomF -comFAΔS1 (erm) This work
bSC032 yvbJ::PcomF -comFA (erm) This work
bSC049 comF::cat This work
bSC105 yvbJ::PcomF -comFABC (erm) This work
bSC106 yvbJ::PcomF -comFABC (erm) This work
bSC107 comF::cat ; yvbJ::PcomF -comFABC (erm),

derived from bSC105
This work

bSC108 comF::cat ; yvbJ::PcomF -comFABC (erm),
derived from bSC105

This work

bSC109 comF::cat ; yvbJ::PcomF -comFABC (erm),
derived from bSC106

This work

bSC110 comF::cat ; yvbJ::PcomF -comFABC (erm),
derived from bSC106

This work

bSC140 comF::cat ; yvbJ::PcomF -comFA (erm) This work
bSC148 comF::cat ; yvbJ::PcomF -comFAT266A (erm) This work
bSC150 comF::cat ; yvbJ::PcomF -comFAR419K (erm) This work
bSC152 comF::cat ; yvbJ::PcomF -comFAK152E (erm) This work
bSC154 comF::cat ; yvbJ::PcomF -comFAG151R/K152N

(erm)
This work

bSC156 comF::cat ; yvbJ::PcomF -comFAS264A (erm) This work
bSC158 comF::cat ; yvbJ::PcomF -comFAK152A (erm) This work
bSC160 comF::cat ; yvbJ::PcomF -comFAE234Q (erm) This work
bSC166 comF::cat ; yvbJ::PcomF -comFAΔS1 (erm) This work
bSC168 comF::cat ; yvbJ::PcomF -comFAC60S (erm) This work
bSC170 comF::cat ; yvbJ::PcomF -comFAC63S (erm) This work
bSC172 comF::cat ; yvbJ::PcomF -comFAC84S (erm) This work

Continued on next page
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Table A.1 – Continued from previous page
Name Features Reference
bSC174 comF::cat ; yvbJ::PcomF -comFAC87S (erm) This work
bSC176 comF::cat ; yvbJ::PcomF -comFAS122N (erm) This work
bSC178 comF::cat ; yvbJ::PcomF -comFAG124D (erm) This work
bSC194 comFAG124D This work
bSC203 comFAS122N This work
bSC299 comFAQ125A This work

Table A.2: DNA & Plasmids used in Appendix A

Name Features Reference
Genomic DNA
gSC018 yhdGH::spec
gSC019 comF::cat This work

Plasmids
pBlueScript SK (+) bla
pBB268 yvbJ::erm bla B.M. Burton
pMAL-c5E malE bla New England Biolabs
pMiniMAD2 oriBsTs bla erm (97)
pBB031 comFA kan B.M. Burton
pSC002 comFAK152A, derived from

pBB031
This work

pSC004 comFAS264A, derived from
pBB031

This work

pSC005 comFAT266A, derived from
pBB031

This work

pSC015 comFAR419K, derived from
pBB031

This work

pSC018 malE-comFAK152A This work
pSC026 comFAG151R/K152N, derived from

pBB031
This work

pSC036 yvbJ::PcomF -comFA This work
pSC048 pBlueScript SK(+) with PcomF -

comFA from pSC036
This work

pSC051 comFAT266A, derived from
pSC048

This work

Continued on next page
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Table A.2 – Continued from previous page
Name Features Reference
pSC052 comFAR419K, derived from

pSC048 with insert from pSC015
This work

pSC056 comFAK152E, derived from
pSC048

This work

pSC058 comFAG151R/K152N, derived from
pSC048, with insert from pSC026

This work

pSC059 yvbJ::PcomF -comFAT266A, derived
from pBB268 with insert from
pSC051

This work

pSC060 yvbJ::PcomF -comFAR419K, derived
from pBB268 with insert from
pSC052

This work

pSC064 yvbJ::PcomF -comFAK152E, derived
from pBB268 with insert from
pSC056

This work

pSC066 yvbJ::PcomF -comFAG151R/K152N,
derived from pBB268 with insert
from pSC058

This work

pSC067 PcomF -comFAS264A, derived from
pSC048 with insert from pSC004

This work

pSC068 comFAK152A, derived from
pSC048 with insert from pSC018

This work

pSC069 comFAE234Q, derived from
pSC048

This work

pSC073 comFAΔS1, derived from SacI di-
gest of PcomF -comFA inserted
into pUC19

This work

pSC075 yvbJ::PcomF -comFAS264A, derived
from pBB268 with insert from
pSC067

This work

pSC076 yvbJ::PcomF -comFAK152A, derived
from pBB268 with insert from
pSC068

This work

pSC077 yvbJ::PcomF -comFAE234Q, derived
from pBB268 with insert from
pSC069

This work

Continued on next page
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Table A.2 – Continued from previous page
Name Features Reference
pSC081 yvbJ::PcomF -comFAΔS1, derived

from pBB268 with insert from
pSC073

This work

pSC104 comF::cat, derived from pSC047 This work
pSC116 yvbJ::comFBC, derived from

pSC268
This work

pSC117 yvbJ::comFBC, derived from
pSC116

pSC172 yvbJ::PcomF -comFABC, derived
from pSC117

pSC192 comFAS122N, derived from
pSC048

This work

pSC193 comFAG124D, derived from
pSC048

This work

pSC221 pMiniMAD2 with insert from
pSC192

This work

pSC222 pMiniMAD2 with insert from
pSC193

This work

pSC236 pMiniMAD2 with comFA1-259

and 424 bases upstream
This work

pSC240 comFAΔS1, pMiniMAD2 with in-
sert derived from pSC081 to oth-
erwise resemble pSC236

This work

pSC299 comFAQ125A, derived from
pSC236

This work

pUC19 bla

Table A.3: Oligonucleotides used in Appendix A

Name Sequence
oSC002 CTGGGCGGTTTGCGGCGCTGGCGCTACA

GAAATGCTGTTTCCTGGTATA
oSC008 GATGCAATCGATGTTATGATCATTGATCA

GGTTGACGCTTTTCCATATTCTGC
oSC009 CAGCACCCTCGTTTATTTAGCGGCAACAC

CTCCTAAAGAATT
Continued on next page
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Table A.3 – Continued from previous page
Name Sequence
oSC010 CACCCTCGTTTATTTAAGTGCAGCGCCTC

CTAAAGAATTAAAAAGAAAAGC
oSC024 CATATTCTTTATGCCGGCCGGTTTTTCCT

GCAATTTGAACAAGTGCGCT
oSC044 GTTTACTTTAAGAAGGAGATATACCATGG

GCAGCAGCC
oSC061 CGGGATCCTAGTCTGTACATTCAACTTTT

GCTGCC
oSC069 CTGGGCGGTTTGCGGCGCTCGCAACACA

GAAATGCTGTTTCCTGGTATAGAATC
oSC191 CCGGAATTCCGGAAGATCTATTTGAAAAC

GTGGTACAGTATACTC
oSC192 CGGGATCCTTAGCTTCTGATCAAGGTAAA

AGATG
oSC216 GCGTTGGCCGATTCATTAATGCAAATCTC

GATCCCGCGAAATTAATACG
aBold-face indicates mutagenic residues.
bUnderlines indicate restriction sites.
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Appendix B: Discovery of zinc finger

motif

B.1 Introduction

B.1.1 Localization of competence components

One of the on-going areas of debate for the competence field is the localization of components

of the DNA uptake machinery. A number of studies have examined the localization of

competence components (50, 130, 131), however, the resolution of these studies is insufficient

to fully understand the dynamics of the system. One of the original goals of this work

was to examine the dynamics of ComFA and the other DNA uptake components during

transformation. To perform this analysis I constructed a ComFA-GFP translational fusion.

The construct was integrated into the B. subtilis genome at the yvbJ locus, under the PcomF

promoter.
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B.1.2 ComFA fluorescent tagging

B.1.2.1 Carboxy–terminal GFP is cleaved from ComFA

When cells grown to competence were observed by fluorescence microscopy the expressed

protein showed a mostly diffuse cytosolic localization, with a number of brighter foci that

were also present (Figure B.1). Foci were not observed in all cells, as expected during

competence. To verify that the localization observed was a reflection of ComFA localization,

B. subtilis lysates were analyzed by Western blot, probing against GFP. In the analysis I

found that the ComFA-GFP localization pattern observed in Figure B.1 was the result of two

populations of proteins; the full-length translational fusion, and some free GFP (Figure B.2).

There were no observed intermediate degradation products. Since there was a significant

quantity of free GFP present in the cells examined by fluorescence microscopy, I decided

to look into some alternatives to the ComFA–GFP construct. I constructed an N–terminal

GFP-ComFA translations fusion, and a ComFA–tetracysteine (ComFA–TC) construct which

could be paired with a biarsenal fluorescent dye. The GFP-ComFA fusion showed a similar

localization pattern to the ComFA-GFP construct (Figure B.1). However, the construct did

not complement a comFA null allele, and so was not studied further (Figure B.3).
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Figure B.1: Visualizing ComFA localization by fluorescence microscopy - Micro-
graphs of B. subtilis cells expressing fluorescently-tagged ComFA. Each panel is labeled with
the construct expressed. The first channel is the FM4-64 membrane stain. The second channel
GFP fluorescence or FlAsH staining. The final panel is a merge of the previous two, with the
FM4-64 false-colored red, and the FlAsH/GFP channel false-colored green.
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Figure B.2: Carboxy-terminal GFP is cleaved from ComFA - Western blot probing
against GFP to determine if there are any degradation products in cells expressing ComFA-
GFP. Samples are taken from a time course to examine ComFA-GFP expression. Samples were
taken at 1–hour intervals beginning two hours post-dilution. Lane 1: Precision Plus Protein
Standards, Lane 2: Pre-dilution, Lane 3: 2 hours post-dilution, Lane 4: 3 hours post-dilution,
Lane 5: 4 hours post-dilution, Lane 6: 5 hours post-dilution. ∗ComFA–GFP, ∗∗GFP.
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Figure B.3: GFP-ComFA does not complement - Relative transformation efficiency of
gfp–comFA construct expressed from the yvbJ locus relative to wild type B. subtilis PY79.
Wildtype n= 1, both gfp–comFA strains n=2. Error bars are standard error.

B.2 comF gene product binds FlAsH

While testing the biarsenal-tetracysteine FlAsH system I needed to verify that the signal

observed was the result of the tagged proteins, and not some other gene product, or general

background staining in B. subtilis. The system had not been tested in Gm+ bacteria, even

though it had been tested in a Gm− bacterial system (154), so it was important to test for

any intrinsic staining. I compared the comFA-tc strain to a strain lacking the tag, and a

strain lacking the comF operon, when examined by fluorescence microscopy following FlAsH

staining.

Initially, examining the micrographs suggested that there was some background in the

untagged strain, however, there was some stronger signal associated with the tagged protein
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(Figure B.4 inset). Histograms of pixel intensity showed something very interesting about

the observed background staining. When comparing all three strains, I found that while

there was a small change in the maximum intensity of pixels in the absence of the tag, a

great deal of intensity was lost when the comF operon was ablated (Figure B.4).

The additional loss of staining signal suggested that the FlAsH cross-reactivity was the

result of a comF gene product. I assumed at the time that ComFA was a good candidate,

and one suggestion for pursing microscopy using the FlAsH system was to make a cysteine-

less ComFA mutant which could then be tagged with the tetracysteine tag. An important

component of the potential cysteine-less ComFA was that it needed to be functional. My

approach to developing the cysteine-less allele was to systematically remove the cysteines,

and test each intermediate to ensure that functionality was maintained. I began by examining

the amino acid sequence of ComFA. I noticed that a tetracysteine tag-like sequence existed

in the protein (Table B.1). Given the location in the sequence and the similarity to the TC

tag I decided to begin mutagenizing the sequence at the two pairs of cysteines. Mutating

the cysteines to serines created transformation defects, so the FlAsH tagging system was no

investigated further as a method for examining the localization of ComFA. The results of

my analysis of the TC tag-like region are covered in Chapter 3.
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Figure B.4: FlAsH cross-reacts with comF gene product - Histogram of pixel intensities
for the fields presented in the inset. The pixel intensity axis has been truncated to remove the
higher values unoccupied by any pixels. Inset: Micrographs of FlAsH stained B. subtilis cells.
The FM4-64 channel shows a membrane stain to indicate the cells. The FlAsH channel shows
the FlAsH staining for each strain. The legend next to the inset corresponds with the classes
compared in the histogram.
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Table B.1: Comparison of ComFA N-terminal region and TC tag sequence

Name Sequence
ComFA 50–SISINKRRYRCNRCGQTD

QRYFSFYHSSGKKLYCRSCV
MMGRVSEEVPLY–100

FlAsH 1–LEYKVVDAVNGKPIPNPLL
GLDSTRTGAGGCCPGCCGG
G–39

aAmino acid sequences. Numbers indicate
first and last residue in sequence excerpt.
Cysteines are bolded for emphasis.

B.3 Conclusion

Once it had been shown that the FlAsH biarsenal stain was able to cross react with what

appeared to be ComFA the next step was to see if the cross-reactivity could be eliminated

by possibly removing cysteines from ComFA. This led to the further examination of the

ComFA amino acid sequence. When conducting this further examination I noticed there

were two sets of paired cysteines early in the sequence, and decided to begin the process of

making a cysteine-less ComFA by removing those cysteines. As discussed in Chapter 3, it

turned out that those cysteines were required for proper function of the protein, and so no

further work was conducted using the FlAsH system. Based on sequence analyses conducted

in the literature (58) it is also possible that the FlAsH cross-reacted with ComFC, which as

a tetracysteine motif as well.
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B.4 Materials and methods

B.4.1 Strains and growth conditions

All B. subtilis strains were derived from the prototrophic strain PY79 (92). B. subtilis

were grown in Luria-Bertani (LB) broth or on LB plates fortified with 1.5 % Bacto agar

at 24 ◦C or 37 ◦C as appropriate. 10x modified competence (MC) medium was made as

described in (93). Competent cells were grown in 1x MC supplemented with 0.3 % (v/v) 1

M MgSO4. When appropriate, antibiotics were included at the following concentrations: 5

µg/ml chloramphenicol (Cm5), and 1 µg/ml erythromycin plus 25 µg/ml lincomycin (mls).

B.4.2 Plasmid construction

pSC010 [gfpmut2b] See Chapter 2 Plasmid construction.

pSC012 [comFA-gfpmut2b] See Chapter 2 Plasmid construction.

pSC021 [pSC010 mutated to remove NdeI sites in gfpmut2b and backbone] was generated by

site-directed mutagenesis of pSC010 using oSC062 and oSC063 to remove NdeI sites from

the gfpmut2b coding sequence by silent mutation, and from the plasmid backbone.
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pSC022 [yvbJ::PcomF -comFA-gfpmut2b (erm)] was generated in a two-way ligation with an

EcoRI-BamHI fragment containing PcomF -comFA-gfpmut2b from pSC012 into pBB268 cut

with EcoRI and BamHI.

pSC029 [PcomF -gfpmut2b] was generated in a two-way ligation with an EcoRI-XhoI frag-

ment containing PcomF from pSC010 into pSC021 cut with EcoRI and XhoI.

pSC031 [tetracysteine tag] was generated in a two-way ligation with an XhoI-BamHI PCR

product assembled using oSC077, oSC078, oSC079, and oSC080 into pSC021 cut with XhoI

and BamHI.

pSC033 [comFA-tc] was generated in a two-way ligation with an EcoRI-XhoI PCR product

containing PcomF -comFA from pSC012 into pSC031 cut with EcoRI and XhoI.

pSC036 [yvbJ::PcomF -comFA (erm)] See Chapter 2 Plasmid construction.

pSC037 [yvbJ::PcomF -comFA-tc (erm)] was generated in a two-way ligation with an EcoRI-

BamHI fragment containing PcomF -comFA-tc from pSC012 into pBB268 cut with EcoRI and

BamHI.

147



B.4 Materials and methods

pSC104 [comF::cat ] See Chapter 2 Plasmid construction.

B.4.3 ComFA-GFP expression time course

bSC005 cells were streaked out from -80 ◦C storage onto LB/agar selective plates and incu-

bated overnight at 37 ◦C. Overnight LB cultures were inoculated with a single colony and

grown rolling at 24 ◦C. Cells grown in 1x MC for 4 hours at 37 ◦C. Following the 4-hour

incubation the cells were diluted 1:1 000 in 1x MC media and grown for an additional 4 hours

with samples taken at 1-hour intervals beginning at 2 hours of growth. Samples were taken

for OD600=1.5. Cells in samples were harvested by centrifugation, and cells suspended in 50

µl lysis buffer (20 mM Tris pH 7.5, 1 mM EDTA, 10 mM MgCl2, 1 mg/ml lysozyme, 1 mM

PMSF, 10 µg/ml DNAseI, 100 µg/ml RNAseA)B. subtilis samples were incubated at 37 ◦C

for 10 minutes, and lysed by 1:1 dilution in 2x Sample buffer (250 mM Tris pH 6.8, 10 mM

EDTA, 4 % (w/v) SDS, 20 % (v/v) glycerol, 0.3 % (w/v) bromophenol blue) and heated at

95 ◦C for 10 minutes. Sample run out on SDS-PAGE. ComFA-GFP cleavage analysed by

western blot using anti-GFP polyclonal antibody.

B.4.4 Fluorescence microscopy

B.4.4.1 FlAsH

FlAsH obtained from Matthew Cabeen of the lab of Christine Jacobs-Wagner at Yale Uni-

versity. Cells grown in 1x MC for 4 hours at 37 ◦C. For microscopy 500 µl of each culture
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transferred from growth tube to 1.5 ml microcentrifuge tubes. Cells pelleted by spinning

down at 8 000 rpm (6 010 x g) for 1 minute. For use in staining 200 µl of spent media

transferred to separate tube. Remaining spent media was aspirated from cells. Cell pellets

were resuspended in 20 µl labeling reagent (5 µM FlAsH, 20.8 µM ethanedithiol (EDT), in

spent media). Cells incubated at 37 ◦C for 30 minutes. Cells were washed 3x in 1 ml 1x

PBS, 250 µM EDT to remove unbound FlAsH stain.Cells were then resuspended in 48 µl

1.04 mM EDT and spun again. Prior to imaging cells were resuspended in 1x PBS, 3 µg/ml

FM4-64. Images captured for phase, green channel and red channel. FM 4-64 purchased as

solid from Life Technologies, a 1 000x 1.5 mg/ml stock made, and used for dilution during

staining.

B.4.4.2 Image analysis

Images acquired using Zeiss Imager M1 and Zeiss AxioVision software. Histograms taken

from a representative field for each strain.

Table B.2: Strains used in Appendix B

Name Features Reference
bSC003 amyE::Phyperspank-comS (spec)
bSC004 amyE::Phyperspank-comS (spec); yvbJ::cat, de-

rived from bSC003
This work

bSC005 amyE::Phyperspank-comS (spec); yvbJ::PcomF -
comFA-gfp (erm)

This work

bSC006 amyE::Phyperspank-comS (spec); yvbJ::PcomF -
comFA-gfp (erm)

This work

Continued on next page
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Table B.2 – Continued from previous page
Name Features Reference
bSC007 comFA::Tn524 (erm)
bSC008 amyE::Phyperspank-comS (spec); yvbJ::PcomF -

comFA (erm)
This work

bSC010 amyE::Phyperspank-comS (spec); yvbJ::PcomF -
comFA-tc (erm)

This work

bSC050 yvbJ::PcomF -gfp-comFA (erm) This work
bSC051 yvbJ::PcomF -gfp-comFA (erm) This work
bSC055 comF::cat ; yvbJ::PcomF -gfp-comFA (erm) This work
bSC056 comF::cat ; yvbJ::PcomF -gfp-comFA (erm) This work

Table B.3: DNA & Plasmids used in Appendix B

Name Features Reference
pBB028 bla cat B.M. Burton
pBB268 bla yvbJ::erm B.M. Burton
pKL147 bla spec gfpmut2b (95)
pSC010 pKL147 with BamHI added This work
pSC012 pSC010 with comFA inserted This work
pSC014 intermediate in construction of

pSC028, contains region down-
stream of comFA, derived from
pSC009

This work

pSC021 pSC010 mutated to remove NdeI
sites in gfp and backbone

This work

pSC022 yvbJ::PcomF -comFA-gfp (erm),
derived from pBB268 and
pSC012

This work

pSC029 PcomF inserted into pSC021 This work
pSC031 tetracysteine tagging vector, de-

rived from pSC021
This work

pSC033 comFA-tc, derived from pSC031 This work
pSC036 yvbJ::PcomF -comFA (erm), de-

rived from pBB268
pSC037 yvbJ::PcomF -comFA-tc (erm), de-

rived from pBB268 and pSC033
This work

pSC104 comF::cat, derived from pSC047 This work
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Table B.4: Oligonucleotides used in Appendix B

Name Sequence
oSC012 GAACTATACAAATAAATGTCCAGAC

GGATCCCTGCAGGCATGCAAGCTT
oSC062 GCTTTGCGAGATACCCAGATCACATGAAA

CAGCATGACTTTTTCAAGAGTG
oSC063 CAGATTGTACTGAGAGTGCACCACATGCA

AGGGTTTATTGTTTTCTAAAATCTG
oSC075 CGACCGATATATGGACCAGCTTCACATGG

CCTGTACTTGCCAAGTATGC
oSC077 CCGCTCGAGTACAAAGTGGTTGATGCTGT

TAACGGGAAGCCTATCCCTAACCC
oSC078 CCGGTACGCGTAGAATCGAGACCGAGGA

GAGGGTTAGGGATAGGCTTCCCG
oSC079 GGTCTCGATTCTACGCGTACCGGTGCTGG

TGGCTGTTGTCCTGGCTGTTGC
oSC080 CGGGATCCCTAGCCGCCACCGCAACAGCC

AGGACAACAGCC
oSC193 ACATGCATGCATGATTCTGTTTTTATGCC

GATATAATC
oSC194 GCTCTAGAGTTGCAGTCTTTAAACAATCT

TAACCC
aBold-face indicates mutagenic residues.
bUnderlines indicate restriction sites.
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