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Abstract

Medical research currently involves the collection of large and complex data. One such

type of data is functional data where the unit of measurement is a curve measured over a

grid. Functional data comes in a variety of forms depending on the nature of the research.

Novel methodologies are required to accommodate this growing volume of functional

data alongside new testing procedures to provide valid inferences. In this dissertation, I

propose three novel methods to accommodate a variety of questions involving functional

data of multiple forms. I consider three novel methods: (1) a function-on-function regres-

sion for Gaussian data; (2) a historical functional linear models for repeated measures;

and (3) a generalized functional outcome regression for ordinal data. For each method,

I discuss the existing shortcomings of the literature and demonstrate how my method

fills those gaps. The abilities of each method are demonstrated via simulation and data

application.
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1.1 Introduction

Medical and public health research increasingly involves the collection of complex and

high dimensional data. In particular, functional data—where the unit of observation is a

curve or set of curves that are finely sampled over a grid—is frequently obtained (Ram-

say and Silverman, 2005). Moreover, researchers often sample multiple curves per subject

which yields repeated functional measures. A common question is how to analyze the re-

lationship between two functional variables. While the field of functional data analysis

(FDA) has progressed considerably in recent years, gaps remain in the literature with re-

gards to function-on-function regression where both the predictor and outcome are func-

tional.

Regression in FDA can be classified into three broad sub-classes: scalar-on-function,

function-on-scalar, and function-on-function. Classical functional regression, on which

a large literature exists, involves scalar-on-function regression where the outcome is

scalar and the predictor is functional, with functional regression coefficients. See for in-

stance Ramsay and Dalzell (1991), Cardot, Ferraty, and Sarda (1999), Reiss and Ogden

(2007), Malloy et al. (2010), Goldsmith et al. (2011), McLean et al. (2012), Gertheiss, Maity,

and Staicu (2013), and references therein. Function-on-scalar regression, also heavily in-

vestigated in the literature, involves regressing a functional predictor on to a set of scalar

covariates, each of which has a functional regression coefficient. See for instance Brum-

back and Rice (1998), Morris and Carroll (2006), Reiss, Huang, and Mennes (2010), Staicu

et al. (2011), Chen and Müller (2012), Goldsmith, Greven, and Crainiceanu (2013), and

references therein.

In contrast, the literature addressing function-on-function regression, with functional

outcome, functional predictor, and a coefficient surface, is rather sparse. Much of it is

dedicated to the historical functional linear model (HFLM), as described by Malfait and

Ramsay (2003) and further examined by Harezlak et al. (2007) and Kim, Şentürk, and Li

(2011). The primary assumption in an HFLM is that the association between curves is

2



uni-directional, which leads to a upper triangular regression surface. That is, for func-

tions of time, an association between the predictor at any given time-point can only occur

with the outcome at subsequent times. Function-on-function regression allowing for bi-

directional associations—that is, with unconstrained regression coefficient surfaces—is

explored by Yao, Müller, and Wang (2005) and Müller and Yao (2008).

There are some recent technical reports on the topic from one research group, Ivanescu

et al. (2012), Scheipl and Greven (2012), Scheipl, Staicu, and Greven (2014), that discuss a

penalized spline approach, identifiability issues, and function-on-function regression in

Functional Additive Mixed Models, respectively. One major limitation to both Scheipl

and Greven (2012) and Scheipl, Staicu, and Greven (2014) is the assumption of iid errors

which might be unrealistic for functional data. Ivanescu et al. (2012) do allow for corre-

lated errors, but only present results assuming iid errors. Additionally, neither Scheipl

and Greven (2012) nor Ivanescu et al. (2012) account for correlation induced by multiple

measurements on the same subjects and while Scheipl, Staicu, and Greven (2014) do incor-

porate a random functional effects, they cannot incorporate correlation between different

random effects. Ivanescu et al. (2012) and Scheipl, Staicu, and Greven (2014) address

inferential procedures, relying on 95% point-wise confidence intervals (PWCI) to deter-

mine significance. Neither approach, however, makes any adjustment for the multitude

comparisons.

To motivate our development of the function-on-function setting, we examine data from a

smoking cessation trial, conducted in the Department of Behavior Sciences at the Univer-

sity of Texas M. D. Anderson Cancer Center (Cinciripini et al., 2013). For a subset of par-

ticipants, researchers obtained Event Related Potentials (ERPs) at baseline during the pre-

sentation of a series of images depicting neutral, positive, negative, and cigarette-related

contents. ERPs were collected using a 129 channel Geodesic Sensor Net. Finely sampled

curves were produced over the course of 900 ms (100 ms prior to picture presentation

and 800 ms after). Electrical potentials every 4ms were collected from 129 electrodes dis-

tributed on the surface of the scalp resulting in 225 measurements for each electrode.

3



While many analyses are of interest for these data, in this paper we focus on characteriz-

ing the time-varying relationship between ERP outputs from pairs of electrodes.

In this paper, we propose a general function-on-function regression modeling frame-

work that can accommodate this type of multilevel functional data. The model is flex-

ible enough to incorporate a variety of basis expansions including such common ap-

proaches as principal components, spline-based and wavelet-based functional represen-

tations. Our approach not only allows for correlation between functions through random

effect functions, but also allows heteroscedasticity and within-function correlation in the

residual error functions. While the approach can be applied generally for any number of

functional predictors and arbitrary interactions with other discrete and continuous pre-

dictors, we present specific model formulations for both a single functional predictor of

interest as well an interaction of a discrete factor with a functional predictor which re-

sults in separate function-on-function regressions for each discrete factor. For inference,

we propose three approaches. First we extend the Bayesian False Discovery Rate (BFDR)

procedure proposed by Morris et al. (2008) to the function-on-function setting. Second,

we generate joint credible bands as in Ruppert, Wand, and Carroll (2003). Next we gener-

ate two novel Bayesian summaries: (1) Simultaneous Band Scores (SimBaS), a functional

measure we introduce that summarizes for each position in the regression surface the

smallest α for which the 100(1 − α)% joint credible bands exclude zero at that position,

and (2) Global Bayesian P-Values (GBPV), which can be interpreted as a type of Bayesian

p-value corresponding to a global functional null hypothesis of no relationship between

the functions. These summaries are of general interest and can be used in other functional

regression settings.

Section 1.2 develops a simple version of our proposed function-on-function mixed model,

presents a more general model, and describes our basis function modeling strategy. Sec-

tion 1.3 details the BFDR, SimBaS, and GBPV inference procedures. In Section 1.4 we

present the results of a simulation assessing model fit and the BFDR, SimBaS, and GBPV

procedures. Section 1.5 presents the results obtained by applying the proposed methods
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to the ERP data, and Section 1.6 contains further discussion.

1.2 Function-on-Function Regression Model for Multi-
Level Functional Data

Here we introduce the function-on-function model we will use to regress one function

y(t), t ∈ T on another x(v), v ∈ V . First we consider a simple case with a single functional

predictor and repeated measures of {y(t), x(v)} pairs for each subject, and then in Section

1.2.3 we describe more complex models that can be handled by our approach.

Individual subjects are denoted as i = 1, . . . , n. Let c = 1, . . . , Ci index repeated pairs of

curves observed on subject i. Then for subject i, curve set c, we observe xic(v) and yic(t),

{yic(t), xic(v) : t ∈ T , v ∈ V},

yic(t) = α(t) +

∫
v∈V

xic(v)β(v, t)dv + Ui(t) + Eic(t). (1.1)

We assume observation-specific and subject-specific Gaussian process errors Eic(t) ∼

GP (0,ΣE) and Ui(t) ∼ GP (0,ΣU). The integration over the entire support of v allows

the exposure-response relationship to move in either direction, i.e. we do not assume

the timing of an effect of x on y occurs in one direction or the other. That relationship is

characterized by the surface β(v, t).

In this paper, our focus is on functional data sampled on a common fine grid. Here,

we consider a discretized version of Model (1.1). Let yic(·) be finely sampled on a grid

t = [t1 · · · tT ] of length T . Similarly, xic(·) is observed on a grid v = [v1 · · · vV ] of length V .

We can then define the row vectors yic = [yic(t1) · · · yic(tT )] and xic = [xic(v1) · · · xic(vV )]

and express Model 1.1 in the discrete form
yic = xicβ + ui + eic (1.2)

where yic, ui, and eic are 1× T , xic is 1× V , and β is the V × T matrix of coefficients. Note

then that eic ∼ N (0,ΣE) and ui ∼ N (0,ΣU). In practice, we center and scale both yic(t)

and xic(v) and thus
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Now let N be the total number of observed response curves. Stacking the row vectors by

subject, Y and X represent the N × T and N × V matrices of observed curves. Further, Z

is the N × n random effects design matrix. Our discretized model for all subjects is then

Y = Xβ + ZU + E (1.3)

where β is as defined in Model (1.2), U is the n×T matrix of subject specific random effect

functions on the grid, and E is the N × T matrix of model errors, interpretable as residual

curve-to-curve deviations.

Because of the functional nature of the data, we do not directly fit Model (1.3). Instead,

we represent the curves using some basis function expansion and apply basis transfor-

mations to y(t) and x(v) prior to model fitting. This basis function transform approach

has numerous advantages, including dimension reduction, more efficient computation,

and borrowing of strength across observations of the curves. Previous work in the func-

tional regression context has used a variety of basis functions including kernels, splines,

wavelets, and functional Principal Components (fPC). We will begin by presenting a gen-

eralized basis expansion for our model to demonstrate how multiple candidate transfor-

mations can be used in our model. Then we will present the rest of the modeling details

using specific basis functions chosen for our simulation and data analysis, with the un-

derstanding that it can be adapted for use with other basis functions.

1.2.1 General Basis Transform Modeling Approach

Here we describe our general basis function transform approach for fitting the function-

on-function regression models, which involves projecting both the functional responses

and predictors into a chosen basis space, fitting the model in the basis space, and then

transforming the results back to the original function space for interpretation and infer-

ence.

Let yic(t) =
∑T ∗

j=1 y
∗
icjξj(t) and xic(v) =

∑V ∗

j=1 x
∗
icjφj(v) be some chosen truncated basis
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expansion for the functional responses and predictors, respectively. Potential choices in-

clude wavelets, B-splines, kernels, Fourier bases, principal components, or independent

components. Let ξ be a matrix of size T ∗×T containing the basis functions on the discrete

grid t with element (i, j) given by ξi(tj), and likewise let φ be a V ∗ × V matrix containing

the basis functions for x(v) evaluated on the grid v. Considering the discretely sampled

functions in matrix form, we can write the basis expansion as Y = Y∗ξ and X = X∗φ, with

Y∗ and X∗ beingN×T ∗ andN×V ∗ matrices, respectively, containing the basis coefficients

for the observed functions. Here we assume that φ and ξ are of full row rank, possibly but

not necessarily orthogonal, so rank(φ) = V ∗, rank(ξ) = T ∗ and φφ′ and ξξ′ are invertible

matrices of size V ∗ × V ∗ and T ∗ × T ∗, respectively.

Replacing each functional quantity in Model (1.3) with its basis expansion, we have

Y∗ξ = X∗φφ′β∗ξ + ZU∗ξ + E∗ξ, (1.4)

where β∗ is V ∗× T ∗, U∗ is n× T ∗, and E∗ is N × T ∗, representing quantities of Model (1.3)

in the transformed basis space. When φ is orthogonal so that φφ′ = IV ∗ , if we multiply

each side of (1.4) by ξ− = ξ′(ξξ′)−1, then we arrive at the basis space model

Y∗ = X∗β∗ + ZU∗ + E∗. (1.5)

When φ is not orthogonal, we instead replace β∗ in Model (1.5) with β† = φφ′β∗. Thus,

we can fit this basis space model after first transforming the functional responses and pre-

dictors to their respective basis spaces, Y∗ = Yξ− and X∗ = Xφ−, with φ− = φ′(φφ′)−1, and

then after fitting the model, transform back to the original function space to obtain esti-

mates and inference for β = φ′β∗ξ when φ is orthogonal, β = φ−β†ξ otherwise. Note that

for some choices of basis functions, fast transform algorithms can be used in lieu of ma-

trix multiplication to compute the basis functions or transform back to the original space,

e.g., discrete wavelet transform (DWT) for wavelets, discrete Fourier transform (DFT) for

Fourier bases, and fast algorithms for computing independent components (Hyvarinen

et al., 2001).
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We take a Bayesian approach to fit Model (1.5), using an Markov Chain Monte Carlo

(MCMC) procedure to sample from the posterior distributions using appropriate prior

distributions for each model parameter. The specifics of the sampler may vary slightly

depending on choice of basis function, and will be described in Web Appendix A. This

formulation allows a variety of possible basis functions to be used for the outcome and

predictor, including variations of wavelets, principal components, Fourier series, and

splines, each of which corresponds to different choices of ξ and φ. For example, for

wavelets ξ and φ are inverse discrete wavelet transform (IDWT) matrices, for principal

components they are the eigenvectors, possibly rescaled by the eigenvalues, for Fourier

series they are the Inverse Discrete Fourier Transform (IDFT) matrices, and for splines

they can be constructed based on B-splines or orthogonalized B-spline design matrices.

Note that the same basis transform does not need to be used for both y(t) and x(v). In this

paper, we use wavelet bases to represent the functional form of y(t), and for x(v), we use

a composite strategy involving wavelets followed by principal components that we refer

to as wPC, which is similar to strategies used by Johnstone and Lu (2009) and Røislien

and Winje (2012).

1.2.2 Model Formulation

Here, we present our modeling details using wavelets for y(t) and wPC for x(v). First, we

transform the functions to the wavelet space by applying the O(T ) DWT to each row of Y

and X, which can be represented as

yic
DWT−→ yWic = {yWic,jk} and xic

DWT−→ xWic = {xWic,s`}.

Wavelets are multi-resolution bases that are double-indexed by scale and location. The

scales are j = 1, . . . , Jy and s = 1, . . . , Sx and locations k = 1, . . . , Ky
j and ` = 1, . . . , Lxs for

Y and X, respectively. The dimension of yWic is 1 × TW where TW =
∑Jy

j=1 k
y
j . Similarly,

xWic has dimensions 1 × V W where V W =
∑Sx

s=1 `
x
s . If T and V are powers of two, this

decomposition will result in TW = T and V W = V wavelet coefficients, and otherwise
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padding is done according to some chosen boundary condition (e.g. periodic, reflection,

and padding with zeros), in which case TW and V W are not exactly equal to but are of the

same order as T and V . We discuss choice of padding further in our simulation study in

Section 1.4.

Wavelets tend to provide sparse representations for many functions, so one can achieve

data compression by eliminating wavelet coefficients that are negligible in magnitude for

all curves. Wavelet thresholding has been widely used for compression and denoising

of individual functions, and Morris et al. (2011) introduced a joint compression approach

for the multiple function setting that finds a minimal subset of wavelet coefficients that

jointly preserves 100α% of the total energy for all functions in a set. Let TW ∗ and V W ∗

represent the total number of coefficients left after such joint compression.

We can write these wavelet basis expansions in matrix form as Y = YWWy and X = XWWx,

whereWy andWx are TW ∗×T and V W ∗×V matrices, respectively, containing the retained

wavelet basis functions evaluated on the T and V grids. Given orthogonal wavelets, we

can also represent the DWT in matrix form as YW = YW ′
y and XW = XW ′

x, or if non-

orthogonal they can be represented YW = YW−
y and XW = XW−

x . Thus, in the notation of

Section 1.2.1, if we use wavelet transforms with joint compression for both y(t) and x(v),

then we effectively define ξ = Wy and φ = Wx, with ξ− = W ′
y and φ− = W ′

x, Y∗ = YW and

X∗ = XW , and T ∗ = TW
∗ and V ∗ = V W ∗ .

In our model, calculations are linear in T ∗ but quadratic in V ∗, so dimension reduction in

X∗ has especially important computational benefits. While the joint compression provides

some dimension reduction, use of Principal Components Analysis (PCA) can provide

additional dimension reduction. In particular, consider performing the singular value

decomposition of XW = XW ′
x = QΣP ′. Noting that XW is N × V W ∗ , we see that Q, the

matrix of left singular vectors, is N × V W ∗ and both Σ, the diagonal matrix of singular

values, and P , the matrix of right singular vectors, are V W ∗ × V W ∗ . Supposing we keep

V svd � V W ∗ principal components, we can compute the wavelet-space PC scores X∗ =
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XWPsvd, where Psvd is a V W ∗ × V svd matrix computed from the leading V svd rows of P .

Using the notation of Section 1.2.1, this composite basis function strategy is equivalent

to computing X∗ = Xφ− with composite transform φ− = W ′
xPsvd and inverse transform

φ = P ′svdWx of dimension V ∗ = V svd. Note that one could simply define φ to be the

eigenvectors of a direct SVD on X, but this composite wPC approach has advantages

in that the joint compression in the wavelet space (1) reduces the dimensionality of X

to speed up calculation of the SVD, (2) performs some denoising of the functions in X

before calculation of the SVD, and (3) borrows strength locally within the function, thus

accounting for the functional nature of the data.

Thus, after transforming the data, recall our basis space model (1.5) is given by Y∗ =

X∗β∗ + ZU∗ + E∗. Consistent with previous work (Morris and Carroll (2006), Morris et al.

(2008), Zhu, Brown, and Morris (2011), among others), we assume independence in the

wavelet space. That is, for the subject specific version of Model (1.5), y∗ic = x∗icβ∗ +u∗i +e∗ic,

we assume e∗ic ∼ N (0,Σ∗e) where Σ∗e is a diagonal matrix with elements varying by j, k,

Σ∗e =
{
σ2
e(j,k)

}
, and equivalently u∗i ∼ N (0,Σ∗u) where Σ∗U =diag

{
σ2
U(j,k)

}
. The induced

within-function covariances in the data space are given by Σe = ξ′Σ∗eξ and Σu = ξ′Σ∗uξ,

which with wavelets accommodates a broad class of covariances allowing heteroscedas-

ticity and differing degrees of autocorrelation, and thus different degrees of borrowing of

strength, in different regions of the function (Morris and Carroll, 2006; Morris, et al. 2008;

Morris, et al. 2011). When other basis functions are used, one must consider whether the

class of induced covariance structures from basis space independence is sufficiently flex-

ible to capture the key functional features, with other parsimonious alternatives possible,

for example serial correlation across neighboring basis coefficients.

The basis space independence assumption allows us to split Model (1.5) into a series of T ∗

separate models for each basis coefficient in the y-space, double-indexed by (j, k), giving

y∗(j,k) = X∗β∗(j,k) + Zu∗(j,k) + e∗(j,k), where y∗(j,k) and e∗(j,k) are N × 1, β∗(j,k) is V ∗ × 1, and u∗(j,k)

is n × 1. X∗ and Z are as previously defined. This separability allows computational

scalability to extremely large T , as calculations are linear in T ∗, sparse basis functions
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frequently yield T ∗ � T , and when cluster computing resources are available, allows

parallel computing across (j, k). For prior specification, we assume vague proper priors

on the variance components and a spike-and-slab prior similar to that found in Morris

and Carroll (2006), Malloy et al. (2010), and others (see Web Appendix A for details).

Posterior samples are then generated for β∗ and projected back into the data-space using

β = φ−β∗ξ, where recall for our example φ− = φ′ = P ′svdWx and ξ = Wy. These posterior

samples are used to perform Bayesian inference on β, as detailed in Section 1.3.

1.2.3 More Complex Function-on-Function Mixed Models

The simple function-on-function regression Model (1.1) is a special case of a general

function-on-function mixed model that incorporates arbitrary scalar covariates {Xa, a =

1, . . . , ps}, functional covariates {Xa(va), a = 1, . . . , pf}, scalar-by-function interactions,

and multiple levels of random effect covariates {Zh
l , h = 1, . . . , H; l = 1, . . . , Lh}. In prin-

ciple, our approach can also accommodate function-by-function interactions, but we omit

that here. The general model can be written

yi(t) =

ps∑
a=1

XiaBa(t) +

pf∑
a=1

∫
va∈Va

Xia(va)βa(va, t)dva

+

psI∑
as=1

pfI∑
af=1

∫
vaf∈Vaf

XiasXiaf (vaf )βasaf (vaf , t)dvaf +
H∑
h=1

Lh∑
l=1

Zh
ilU

h
l (t) + Ei(t), (1.6)

where Ba(t) are functional coefficients for scalar predictors, βa(va, t) are function-on-

function coefficient surfaces for functional predictors, βasaf (vaf , t) coefficient surfaces for

the interaction of scalar covariate as and functional predictor af , and the random effects

Uh
l (t) ∼ GP(0,Σh

U). The multiple levels of random effects allow the model to handle

various types of multi-level models needed to accommodate many complex designs com-

monly encountered in practice. Our code is capable of fitting this general model, although

increasing number of functional predictors adds to the computational intensiveness of the

sampler.

For the ERP data considered in Section 1.5, we include a discrete factor image type both as
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a main effect as well as effect modifier for the functional predictor, which allows different

functional intercepts and function-on-function regression surfaces for each image type,

allowing us to investigate whether the brain responds differently to cigarette-related im-

ages and neutral, non-emotional images. See Model (1.10) in Section 1.5 for specification.

Inference can then be performed on any number of desired statistics resulting from the

model.

1.3 Posterior Functional Inference

Previous work in the function-on-function setting has focused solely on estimation or in-

ference based on the construction of point-wise confidence intervals over the surface con-

sidering intervals that don’t contain zero as significant (Scheipl, Staicu, and Greven, 2014).

However, such an approach does not account for the inherent multiple testing problem

from testing multiple locations within the coefficient surface. When applied to Bayesian

credible intervals, we refer to this as the point-wise credible interval (PWCI) procedure.

This unadjusted approach may lead to coefficients spuriously designated as significant.

Thus we propose two posterior functional inference procedures aimed at flagging signif-

icant regions of a surface while controlling overall α, either using false discovery rate or

experiment wise error rate, plus a Bayesian global test for testing whether the regression

surface is identically zero..

First, we extend the Bayesian False Discovery Rate (BFDR) implemented by Morris et al.

(2008) and Malloy et al. (2010) to the function-on-function setting. The BFDR is reliant

upon the selection of δ-fold intensity change. Ideally this value is biologically motivated,

however such a value may not necessarily exist or may be difficult to determine. There-

fore, we also consider joint credible bands similar to those considered by Ruppert, Wand,

and Carroll (2003) and introduce Simultaneous Band Scores (SimBaS), which are the min-

imum α required such that zero is excluded from the interval.
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Suppose we have M MCMC samples. Let β(m)(v, t) be one realization of the posterior of

the estimated surface for sample m, m = 1, . . . ,M . Then for a specific v, v = 1, . . . , V ,

and t, t = 1, . . . , T , we can consider the probability

PBFDR(v, t) = Pr {|β(v, t)| > δ|y} ≈ 1

M

M∑
m=1

1
{∣∣β(m)(v, t)

∣∣ > δ
}
,

where δ is the pre-determined intensity change in the effect. To correct for the discrete

nature of the MCMC we replace any PBFDR(v, t) = 1 with the quantity 1 − (2M)−1. The

local FDR estimate for location (v, t) is then given by 1− PBFDR(v, t).

For a pre-specified global FDR-bound α, we flag the set of points (locations) satisfying ψ =

{(v, t) : PBFDR(v, t) ≥ να}. To obtain να, we sort {PBFDR(v, t), v = 1, . . . , V, t = 1, . . . , T} in

descending order across all sets of locations. This gives us the set
{
P(r), r = 1, . . . , R

}
,

where R = V × T or the ordered set of probabilities calculated above. We then define

λ = max

[
r∗ :

1

r∗

r∗∑
r=1

{
1− P(r)

}
≤ α

]
.

The cutoff for flagging significant coefficients is then να = P(λ).

Alternatively and in the spirit of Ruppert, Wand, and Carroll (2003), consider constructing

joint credible bands. A 100(1− α)% credible band of β(v, t) must satisfy

Pr {L(v, t) ≤ β(v, t) ≤ U(v, t) ∀ v ∈ V , t ∈ T } ≥ 1− α (1.7)

where L(v, t) and U(v, t) are the lower and upper bounds respectively. It follows from

Ruppert, Wand, and Carroll (2003) that an interval satisfying (1.7) is

Iα(v, t) = β̂(v, t)± q(1−α)

[
Ŝt.Dev

{
β̂(v, t)

}]
,

where β̂(v, t) and Ŝt.Dev
{
β̂(v, t)

}
are the mean and standard deviation for a given (v, t)

taken over all M MCMC samples. The variable q(1−α) is the (1−α) quantile taken over M

of the quantity

Z(m) =
max

v ∈ V , t ∈ T

∣∣∣∣∣∣β
(m)(v, t)− β̂(v, t)

Ŝt.Dev
{
β̂(v, t)

}
∣∣∣∣∣∣ .
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These joint bands benefit from controlling for multiple testing in a strong experiment-wise

fashion while also not requiring a pre-specified δ-fold intensity change as in the BFDR.

Now consider constructing Iα(v, t) for multiple levels of α and determining for each

(v, t) the minimum α at which each interval excludes zero, denoted PSimBaS(v, t) =

min {α : 0 /∈ Iα(v, t)}, which can be directly computed by

PSimBaS(v, t) =
1

M

M∑
m=1

1


∣∣∣∣∣∣ β̂(v, t)

Ŝt.Dev
{
β̂(v, t)

}
∣∣∣∣∣∣ ≥ Z(m)

 . (1.8)

We call these probabilities Simultaneous Band Scores or SimBaS. Similar to the BFDR

and PWCI, we can select a specific α and flag (v, t) for which PSimBaS(v, t) < α

as significant, which is equivalent to checking if the joint credible intervals cover

zero at a specific α-level. We can also compute global Bayesian p-values (GBPV),

PGBPV =minv,t{PSimBaS(v, t)}, a measure for testing the global null hypothesis that

β(v, t) = 0 ∀ v ∈ V , t ∈ T , when desired.

The BFDR, SimBaS, and GBPV can be computed for individual surfaces β(v, t) or any

transformation or contrast defined across surfaces. For example, in the two surface set-

ting, interest focuses on applying the procedure to both βg(v, t), g = 0, 1, as well as the

difference surface,D(v, t) = β1(v, t)−β0(v, t). This allows us to detect differences between

the two surfaces and flag where those differences occur.

1.4 Simulation

We generate data in two phases. First, we draw xic, ui, and eic. Second, we generate yic
using yic = xicβ + ui + eic, where β is one of four true surfaces of association. To generate

predictor curves, random effects, and model errors, we use Gaussian Processes with auto-

regressive 1 [AR(1)] covariance structures. Estimates for parameters of the covariance of

xic come from estimating autoregressive parameters from the output of one electrode from

our ERP data. We assign pairs of curves to each subject to induce repeated measures and
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consider three different sample sizes: n = 25, 50, and 100. Repeated measures brings

the total number of observations up to N = 50, 100, and 200 respectively. We select

parameters for the covariances of ui and eic as σ2
E = 0.1 and ρE = 0.5 and σ2

U = 0.05 and

ρU = 0.75 respectively. Prior to constructing yic, we center and scale xic across i, c by time

point so that the variance at each time point is 1.

We select true surfaces to mimic biologically plausible time varying associations. The

top row of Figure 1.1 contains the heat maps of each surface. Each surface represents

a different type of association, equations for which can be found in the Appendix. The

ridge surface represents a relationship where the strongest association between x(v) and

y(t) occurs along the line v = t. In other words, changes in y(t) are associated with

concurrent changes in x(v). The lagged surface suggests a relationship where changes

in x(v) at a given time are associated with later changes in y(t), but the strongest effect

is delayed. The relationship between x(v) and y(t) in the immediate surface is similar

to that in the lagged, however the strongest effect occurs immediately before dying off.

Finally, the peak scenario demonstrates a setting where changes in y(t) at a given time are

associated with later changes in x(v) and the association is characterized by a single peak.

For each surface, we generate 200 simulated data sets and draw posterior samples using

a burn-in of 1000 followed by a chain of 1000 samples. We use Daubechies wavelets with

four vanishing moments and three levels of decomposition. In preliminary simulations,

zero-padding reduced edge effects better than symmetric-half point padding. Thus we

implement zero-padding for all models. Motivated by the ERP data structure, we set the

total number of time points in both time domains to be 225. For the wPC decomposition,

we keep components accounting for 99.0% of the variability in XW . Averaged posterior

estimates for each surface are found in the bottom row of Figure 1.1. Results from all

three sample sizes were similar, thus we only present simulations for n = 25, N = 50

here. Results for n = 100, N = 200 can be found in the Appendix. For each dataset we

also calculate root Mean Square Error (rMSE).
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Figure 1.1: Heat maps of the true surfaces for simulation study are in the top row. The bottom row
contains estimated surfaces for each simulated scenario based on a sample size of n = 25 with two
measure per subject, Ci = 2 ∀ i, for a total of N = 50 observations. Each surface is the average of
the posterior estimate for the true surface based on 200 simulated datasets.

We also examine the performance of the BFDR, SimBaS, and GBPV procedures in simu-

lation using a global α of 0.05. For the BFDR, we use a δ-intensity change of 0.05 which

is roughly half the max signal from each surface. For comparison, we also generate un-

adjusted PWCIs. To evaluate the three procedures, we calculate false discovery rate, sen-

sitivity, experiment-wise error rate (EWER), and type I error. Define false discovery rate,

FDRε, as the number of flagged locations (v, t) with true value ≤ ε divided by the total

number of flagged locations. Next define the sensitivity, SENΥ, as the number of flagged

locations (v, t) with true magnitude > Υ divided by the total number of locations with

true magnitude > Υ. EWERε is calculated as the proportion of simulated datasets with

at least one falsely discovered location, i.e. a flagged location with true value ≤ ε. Type

I error is calculated using a null simulation with true surface β(v, t) = 0 ∀ v ∈ V , t ∈ T

and determining the proportion of simulated datasets with at least one location flagged

as significant.

Figure 1.1 allows for direct comparison of each estimated surface to the truth. For all

surfaces, we see the model performed quite well, effectively reconstructing all the true

surfaces. Estimation improves as sample size increases. Not surprisingly, rMSE decreases
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as sample size increases though even the smallest sample size produced small rMSEs.

Heat maps containing the averaged set of flagged coefficients, ψ, for the BFDR and the

average SimBa scores across datasets can be found in the Appendix. Both procedures

correctly identified regions of elevated association in all four surfaces.

Table 1.1 displays both the average false discovery rate, FDRε, and the average sensitivity,

SENΥ, for each scenario using ε = 0.01, 0.05 and Υ = 0.05, 0.075. For each procedure,

we use α = 0.05 to select the set of flagged coefficients. We can see that the BFDR and

SimBaS procedures performs similarly well by both measures, though BFDR does better

for a higher ε and Υ. While the PWCI has very good sensitivity, it comes at the cost of an

inflated false discovery rate. EWERε is calculated using ε = 0.01. Additionally, SimBaS

controls experiment-wise type I error quite well at 0.05. While BFDR has a slightly low

type I error of 0.04, PWCI has a very high value of 0.645. To assess PGBPV we determine

the percent of datasets under each scenario with PGBPV < 0.05. In each scenario, all

datasets have PGBPV < 0.05.

These simulation results suggest our method performs well both in estimation and in

inference. Even at the smallest sample size we considered, for this signal to noise ratio

the model effectively reproduces the true surface. Both the BFDR and SimBaS capture

the strongest regions of association without spuriously flagging too many non-significant

coefficients. They also control well for type I error. Further, BFDR and SimBaS outper-

form the PWCI while maintaining reasonable sensitivity. Increasing sample size improves

these facets of the model. Additional results, not included here nor in the Appendix, are

available upon request.
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Table 1.1: FDR, sensitivity, experiment-wise error rate (EWER), and type I error values by inference
procedure. The BFDR use a δ intensity change of 0.05. To determine assessment values for SimBaS,
a cutoff of α = 0.05 was used. Likewise, the PWCI used 95% point-wise credible intervals to
determine significant locations.

Measure Surface BFDR SimBaS PWCI
FDR0.01 Lagged 0.06% 0.08% 5.80%

Peak 0.48% 0.75% 22.9%
Ridge 0.12% 0.19% 20.5%

Immediate 2.25% 2.80% 20.9%
FDR0.05 Lagged 5.74% 13.9% 44.7%

Peak 4.01% 20.4% 73.5%
Ridge 9.75% 15.6% 53.3%

Immediate 5.74% 7.58% 38.1%
SEN0.05 Lagged 98.1% 96.2% 99.9%

Peak 64.9% 73.4% 99.9%
Ridge 96.8% 93.4% 99.9%

Immediate 97.9% 93.8% 99.9%
SEN0.075 Lagged 99.9% 99.3% 100%

Peak 94.4% 88.2% 99.9%
Ridge 99.8% 97.6% 99.9%

Immediate 99.9% 96.2% 99.9%
EWER0.01 Lagged 7.00% 16.5% 100%

Peak 4.50% 10.5% 100%
Ridge 9.50% 49.0% 100%

Immediate 100% 100% 100%
Type I Error Null 4.00% 5.00% 64.5%
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1.5 Application

1.5.1 Description of ERP Data Set

To demonstrate the features of the proposed model, we analyze data from the Department

of Behavioral Sciences at the University of Texas M. D. Anderson Cancer Center. As

part of a smoking cessation trial, researchers obtained Event Related Potentials (ERPs)

at baseline for subjects viewing a series of images of different types, including neutral,

emotional (positive and negative), and cigarette-related.

EEG was continuously recorded during image presentation and collected using a 129-

channel Geodesic Sensor Net and amplified with AC-coupled high-input impedance (200

MΩ) amplifier (Geodesic EEG System 250; Electrical Geodesics, Inc., Eugene, OR) refer-

enced to the Cz electrode. The time series were preprocessed as described in Versace et

al. (2010a), with 0.1Hz high pass and 100Hz low pass filters, blink-corrected using spatial

filtering, transformed to average reference, segmented into 900ms segments from 100ms

before each image shown to 800ms after, obvious artifacts removed, and ERPs averaged

across images for each image type per subject/electrode. After this processing, for each

subject, we are left with functions of length 225 for each image type for all 129 electrodes.

Example curves recorded from 180 participants at electrode Cz (#129, in the middle of

the crown of the head) during presentation of cigarette-related and neutral images can be

seen in Figure 1.2 with the average over curves included in red. Curves under the other

image-types are similar in appearance. The irregularity and localized spikiness of the raw

curves motivates our use of wavelets in our modeling approach (Figure 1.2).

While many analyses are of interest for these data, in this paper we aim to characterize the

time-varying relationship between ERP output from pairs of electrodes, focusing on two

pairs in particular. The first pair is 55 and 129. Electrode 129, as previously mentioned,

is positioned at the top of the head and electrode 55 is located directly behind it. We

expect these two adjacent electrodes to be positively associated along the diagonal, t = v,
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Figure 1.2: On the left, raw profile curves are plotted in gray with the mean in red from electrode
129 under the cigarette image condition. On the right, are raw curves and the mean from electrode
129 under the neutral image condition.

axis. The second pair is 75 and 11. Electrode 75 is an occipital electrode located at the

back of the head while electrode 11 is at the front. Output from these two electrodes is

expected to exhibit a negative correlation and thus we anticipate a negative association

along the diagonal axis. For each pair of electrodes, we jointly model the association

between the electrodes under both the neutral and cigarette image conditions resulting in

a multilevel data structure. Thus for each model, subjects have four curves resulting from

measurements from two electrodes while viewing two different image types.

1.5.2 Analysis

We fit two models to the data. In general, the model is given by

yicg(t) = 1(g = 0)

[
α0(t) +

∫
v∈V

xic0(v)β0(v, t)dv

]
(1.9)

+ 1(g = 1)

[
α1(t) +

∫
v∈V

xic1(v)β1(v, t)dv

]
+ Ui(t) + Eic(t), (1.10)

where g denotes group membership, 0 for neutral, 1 for cigarette. For the first model we

used Electrode 129 as the outcome function and Electrode 55 as the predictor function

and for the second we used Electrode 11 as the outcome and Electrode 75 as the predictor.

20



In both models, inference was drawn on both image-specific surfaces, β0 and β1, as well

as the difference surface D(v, t) = β1(v, t) − β0(v, t). As in the simulation study, we used

Daubechies wavelets with four vanishing moments and three levels of decomposition

along with zero-padding. Prior to decomposition, we standardized both outcome and

predictor functions by time. After DWT, the dimensions of the transformed functional

outcomes from Electrodes 129 and 11 were both 360 × 245. After wPC, the dimensions

of the transformed functional predictors were 360 × 72 for Electrode 55 and 360 × 62 for

Electrode 75. We obtained 1000 posterior samples from the MCMC after a burn in of 1000.

Spot checks of the trace plots of key parameters suggested MCMC convergence.

We considered inference for both models using all three procedures. For the BFDR proce-

dure, we selected a global α of 0.05 when implementing BFDR on the difference surfaces.

We choose a somewhat strict intensity change of δ = 0.05 to focus on large differences

between the surfaces. We also implemented BFDR on the image-specific surfaces in both

models. There the α-level was reduced to 0.025 for each surface, however the intensity

change, δ, remained at 0.05 so to only flag relatively large associations. Using the same

intensity change for both models allows us to compare the two. For the PWCI, we also

used α = 0.05.

Figure 1.3 contains posterior means of all three surfaces for both models. Examination of

the posterior estimates of the difference surfaces found in the first column of Figure 1.3

suggest little to no systematic difference between image type in both models. When we

look at the image-specific surfaces in the model using electrodes 129 and 55 (top row, sec-

ond and third column, Figure 1.3), we see an elevated ridge of association along the t = v

diagonal, which is the relationship we anticipated between these two adjacent electrodes.

Note that this relationship is strongest in the first 300 ms in the ERP or 200 ms post picture

presentation (image presentation occurred at t = v = 0), which corresponds to the initial

response to viewing the image. Transitioning to the image-specific surfaces of the model

using electrodes 11 and 75 (bottom row, second and third column, Figure 1.3), we see a

valley of negative association along the t = v diagonal that also begins to die out around
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Figure 1.3: The top row contains surface estimates for the association between electrodes 129 and
55. Posterior surfaces comparing electrodes 11 to 75 are in the second row. The estimated posterior
surface of the difference between cigarette and neutral is found in the first column. Group specific
surface estimates are in the second and third columns, Neutral and Cigarette respectively. ERP
output from electrode 129 is the response and the output from electrode 55 is the predictor for the
first model and electrode 75 is the predictor of electrode 11 in the second model.
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Figure 1.4: Heat maps containing the posterior probabilities from the BFDR procedure usinga δ
intensity change of 0.05. Coefficients in white have a high probability of being greater than δ and
thus likely to be included in ψ, the set of coefficients flagged as significant. Black coefficients have
a low probability of being greater than δ and are thus less likely to be flagged as significant. The
top row contains results from the model using electrodes 129 and 55 while the second row contains
results from the model using electrodes 75 and 11.

200 ms to 300 ms past presentation. Once again, this is consistent with the expected rela-

tionship between these two electrodes.

Figure 1.4 contains results from the BFDR procedure on the difference surface for both

models. Each heat map plots the posterior probabilities PBFDR. We see that for both mod-

els, most locations have a low probability of being greater than δ. In fact, plotting ψ, we

see no significantly flagged regions (see the Appendix), suggesting there is little evidence

that the correlation across the two electrodes differs across image types. The second and

third columns of Figure 1.4 show the application of the BFDR to the image-specific sur-

faces in each model, and again the heat maps plot the posterior probabilities PBFDR. We

see that the probabilities along the ridge are quite large suggesting that ridge of positive

association is significant up until almost 300 ms past image presentation. However the

negative association along the ridge we saw in the second model has lower probabilities
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Figure 1.5: Heat maps containing the SimBa scores for each surface of both models. The top row
contains results from the model using electrodes 129 and 55 while the second row contains results
from the model using electrodes 75 and 11. Scores are plotted on the log-scale with the color axis
on the exponential scale. White regions represent coefficients with low SimBa scores, black regions
represent coefficients with high SimBa scores.

along the ridge at the δ = 0.05 cut-off. Heat maps of the regions flagged as significant by

the procedure are also found in the Appendix.

For the SimBaS procedure, we plot heat maps of the logged SimBa Scores in Figure 1.5.

We see that for both difference surfaces, the SimBa scores are all relatively large (at least

0.5 or more), and the global Bayesian p-value for both is PD
GBPV = 0.5, suggesting there

is not enough evidence to conclude differences in the coefficient surfaces between image

types. The second and third columns of Figure 1.5 show the SimBaS procedure applied

to the image-specific surfaces. These heat maps are also plotted on the log-scale so to

distinguish variations in small SimBa scores. For both models, we see evidence of a non-

zero coefficient surface for each image type (P 0
GBPV = P 1

GBPV = 0.001 for the model using

Electrodes 129 and 55, P 0
GBPV = 0.001 and P 1

GBPV = 0.005 for the model using Electrodes

11 and 75). Additionally, the SimBaS procedure detects the ridge of positive association

in first model but only finds some of the negative associations in second.
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Heat maps of flagged significant locations using PWCI can be found in the Appendix. Not

surprisingly, the PWCI is more sensitive to minor variations in the surface where there ap-

pears to be no systematic association. While both BFDR and SimBaS found no significant

locations in the difference surfaces, the PWCI flags a number of regions and also finds a

number of significant locations in the image-specific surfaces that are off the t = v axis

while suggesting the association lingers longer. Given the results in the simulation stud-

ies, we interpret these results cautiously, as they may likely be spurious, and feel more

confident in the multiplicity-adjusted inference from the BFDR and SimBaS procedures.

1.6 Discussion

Functional data analysis is an expanding field requiring more work to fill in gaps in the

literature and build upon the general knowledge of the field. Previous work on function-

on-function regression is limited. Here we present a general approach to function-on-

function regression modeling which benefits from several attributes. First, our approach

can use any basis function for y(t) and x(v) allowing us to handle functions of vari-

ous types, including those with spiky and smooth features, and allowing us to parsi-

moniously model correlated residuals rather than assuming iid errors. Second, we get

fully Bayesian inferences on all model quantities including point-wise credible intervals,

posterior probabilities interpretable as Bayesian FDRs, joint credible intervals, and Sim-

BaS that provide global and experiment-wise inferential quantities. Further generation

of posterior predictive distributions is straightforward, so, for example, functional dis-

criminant analysis can be performed (Zhu, Brown, and Morris, 2012). Third, our infer-

ence procedures correctly identify regions of elevated association without falsely flag-

ging too many non-significant coefficients. Fourth, our method resides within the func-

tional mixed model (FMM) framework as put-forth by Morris and Carroll (2006) that

handles correlation between functions and random effects through random effect func-

tion distribution, and thus accounting for the various sources of variability in multi-level
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models. Finally, the FMM framework also allows any combination of continuous and

discrete scalar predictors, functional predictors, and their interactions, allowing function-

on-function regression to be done in a much broader modeling context.

We demonstrated by simulation that our model performs well for realistic sample sizes

and forms of functional association with fits improving as sample size increases. Simu-

lations also show the BFDR and SimBaS procedures have better false discovery and type

I error rates than the PWCI with comparable sensitivity. Our approaches for global in-

ference and multiple-testing adjustment for Bayesian inference using BFDR, SimBaS, and

GBPV are of general interest and can be used in other functional regression settings.

Our application displays the ability of the model to estimate the forms of the relationship

of ERP output between different electrodes on the scalp. With the neighboring electrodes,

a positive association was expected and seen along the diagonal axis t = v while a nega-

tive association was expected and seen between electrodes on opposite sides of the scalp.

Further, both our inference procedures were able to detect these associations as signifi-

cant, even the one based on experiment wise error rate.

In summary, the function-on-function mixed model with basis-space modeling com-

prises a flexible approach to the function-on-function regression setting. The method

performed well in both simulation and application. Further studies are needed to explore

the model’s performance in more complex settings, including non-functional components

beyond a factor variable, incorporating multiple functional predictors, and various types

of random effect correlation structures. Additionally, further examination of data reduc-

tion techniques could improve the modeling prowess of the method.
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2.1 Introduction

Recently, a number of articles treating the function-on-function regression setting have

appeared in the literature (Scheipl and Greven, 2012; Ivanescu et al., 2012; Scheipl, Staicu,

and Greven, 2014; Meyer et al., 2014). While these methods vary in approach, the core

theme is to address the modeling situation where both the predictor and response are

functions observed over a finely sampled grid. The regression surface in each model is,

however, unconstrained. In other words, “outcome” effects occurring at time t can be

associated both with “predictors” occurring prior to time t as well as after time t. Thus

the unconstrained approach assumes no natural exposure-response relationship. When

such a relationship is necessitated by the nature of the data, either the Historical Linear

Functional Model (HFLM) as developed by Malfait and Ramsay (2003) and further ex-

plored by Harezlak et al. (2007) or the Recent History Functional Linear Model (RHFLM)

proposed by Kim, Şentürk, and Li (2011) is more appropriate as both pre-supposes an

exposure-response relationship. One such data setting comes from the environmental

health literature where both macro and micro environment pollution levels are natural

predictors of medically relevant biological processes.

Airborne Particulate Matter (PM) and Black Carbon (BC) are consistently shown in the

literature to adversely affect cardiovascular health: Huang et al. (2012); Huttunen et al.

(2012); Breysse et al. (2013); Neophytou et al. (2013) and references therein. Findings from

these recent studies indicate that autonomic function is an important biological pathway

and accumulating epidemiological evidence suggests that particles derived from micro-

environment pollutants both occupational and non-occupational may be of particular

concern. Two example studies in particular motivate our research. The Saint Louis Bus

Study and the Boilermaker Study.

The Saint Louis Bus Study, described in Dubowsky et al. (2006), examined the relation-

ship between both short-term and long-term pollution on autonomic function in the el-

derly. Subjects were repeatedly taken on field trips aboard a diesel powered bus with
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continuous Holter electrocardiogram monitors to collect Heart Rate Variability (HRV)

data, which is a measure of autonomic function. In this study design, investigators col-

lected five minute averages of HRV on each subject from approximately 8:00AM on the

morning of the trip to 7:00AM the following morning as well as five minute averages

of traffic-related particles throughout the 48-hours surrounding each trip. Subjects were

able to participate in up to four different field trips taken throughout the course of the

study. Forty-four total subjects took part in the study. Anywhere from one to four curves

were sampled on each subject resulting in 148 total profiles.

The Boilermaker Study, described first in Magari et al. (2001) and then in Cavallari et al.

(2008), examined the effects of occupational exposure to airborne PM on boilermakers of

varying occupation levels, apprentice and journeyman. Study subjects were fitted con-

tinuous Holter monitors to obtain HRV five minute averages as well as personal TSI Inc

DustTrak device to measure personal exposure to PM2.5 which is particulate matter less

than 2.5µm in diameter. To measure HRV the authors used SDNN which is the Stan-

dard Deviation of N-to-N intervals over a five minute period. Study subjects were young

and regularly exposed to residual oil fly ash (ROFA) that results as a byproduct of boiler

construction. HRV and PM exposure curves from both the apprentice and journeyman

boilermakers data are found in Figure 2.1.

Data from these two studies exhibit several features that, when combined, pose an in-

teresting statistical problem. First, the pollution curves are natural predictors of HRV in

that, for v < t we expect a pollution measurement at time v might be associated with an

HRV measurement at time t. However we do not expect the reverse association. Thus the

function-on-function regression setting with an unconstrained surface is inappropriate,

motivating the use of the HFLM. However direct application of the methods proposed

in Malfait and Ramsay (2003), Harezlak et al. (2007), and Kim, Şentürk, and Li (2011)

would result in over-smoothing as none of these methods are equipped to handle spiky

and irregular functions. Additionally, the data is hierarchical in nature with 44 subjects

taking a total of 148 trips which no previous approach can accommodate. To address
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Figure 2.1: Boilermaker Study HRV and PM exposure profiles. Individual subject profiles are in
gray, the mean of across time is in red. Time is measured as minutes from the start of measurement.

these statistical concerns as well as biological concerns arising from the study itself, such

as whether freshly emitted particles are more toxic than older particles, we aim to develop

methods that fully address time-varying effects of time-varying exposures on hierarchi-

cal functional outcomes. An important aspect of these methods is the development of

inference procedures to summarize the health-exposure relationship after adjusting for

potential confounders.

We thus propose a Bayesian Historical Functional Mixed Model which incorporates a

novel use of the discrete wavelet-packet transformation (DWPT). We first motivate the

use of DWPT over the discrete wavelet transformation (DWT) and demonstrate how the

DWPT is uniquely configured to enforce the historical constraint. The modeling proce-

dure will allow for both the historical functional component as well as potential scalar co-

variates of interest. Building off of the Functional Mixed Model framework of Morris and

Carroll (2006), our method allows for the handling of correlations between functions and

random effects. For inference, we propose the use of two posterior inferential procedures:

the Bayesian False Discovery Rate (BFDR) as examined by Morris et al. (2008) and Mal-

loy et al. (2010) and joint credible bands (Ruppert, Wand, and Carroll, 2003) alongside

Simultaneous Band Scores as explored by Meyer et al. (2014).

34



What follows is the formulation of the Historical Functional Mixed Model in Section 2.2

which includes a discussion of the novel use of wavelet-packets for implementing the con-

straint. Section 2.3 presents the inference procedures. Sections 2.4 examines our method

and inference procedures in simulation. Section 2.5 details the application of our ap-

proach to the Journeyman data from the Boilermaker Study. Finally Section 2.6 contains

further discussion.

2.2 Historical Functional Mixed Models

We start by modifying the function-on-function mixed model proposed by Meyer et al.

(2014) to incorporate the historical constraint. Thus for subject i = 1, . . . , n, curve c =

1, . . . , Ci, the historical functional linear mixed model is

yic(t) = α(t) +

∫
{v≤t}

xic(v)β(v, t)dv + Ui(t) + Eic(t), (2.1)

where yic(t) and xic(v) are predictor and response functions for subject i’s cth curve with

corresponding regression surface β(v, t), α(t) is the intercept function, and Ui(t) andEic(t)

are subject-specific and observation-specific Gaussian Process errors, Ui(t) ∼ GP (0,ΣU)

and Eic(t) ∼ GP (0,ΣE). This formulation also constitutes an extension of Malfait and

Ramsay (2003) and Harezlak et al. (2007) to hierarchical functional data. Importantly, the

restriction on the integral in Model (2.1) enforces the constraint that exposure recorded at

a given time is uncorrelated with health outcomes collected earlier in time, given the full

exposure time profile. That is, only exposures occurring before time t can affect health at

time t.

Because data arrive sampled on a grid of discrete values, we use the discrete version of

the model yic = xicβ+ui+eic. In modeling, we recommend centering and scaling both the

outcome and predictor functions. Thus, without loss of generality, we drop the intercept

function from model formulation. Stacking the response vectors and predictor vectors
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into matrices gives the model

Y = Xβ + ZU + E (2.2)

where for N =
∑

iCi total curves, Y is N ×T and X is N ×V since the response functions,

yic(t), are sampled at T equally spaced time points t = [t1, · · · , tT ]′, and the predictor func-

tions, xic(v), are sampled at V equally spaced time points v = [v1, · · · , vV ]′. Note the time

domain of xic(v) does not necessarily correspond to that of yic(t). The constrained region

of integration in Model (2.1) restricts the form of the functional regression coefficients so

that β(vk, tk′) = 0 if vk > tk′ . The discrete version of this requires that if T = V and

t1 = v1, t2 = v2, . . . , tT = vV then β is an upper triangular matrix of the form

β =


β(v1, t1) β(v1, t2) · · · β(v1, tm)

0 β(v2, t2) · · · β(v2, tm)
...

... . . . ...
0 0 · · · β(vm, tm)

 (2.3)

with zeros below the main diagonal. For the remainder of the model, Z is the N × n

random intercept design matrix for the n study subjects. And E is an N × T matrix and

assumed to come from a Gaussian Process. As we discuss further below, a primary goal of

this research is to conduct estimation and inference while enforcing the upper triangular

constraint in β.

2.2.1 Model Formulation with Wavelets

Meyer et al. (2014) propose a generalized basis expansion for the function-on-function

form of Model (2.2) where β is unconstrained. Indeed we could consider a variety of

basis expansions for modeling provided that the historical constraint is maintained. Mal-

fait and Ramsay (2003) consider triangular basis functions to enforce the lower triangle

constraint. Likewise, Harezlak et al. (2007) examines penalization both corresponding to

LASSO and spline methodology on similar triangular basis functions. Kim, Şentürk, and

Li (2011) use B-spline basis functions and suggest the possible use of Fourier, truncated

power, and Eigen basis functions. These approaches produce relatively smooth estimates
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of the historical surface and thus may not be well suited to spiky and irregular functions.

A natural choice of basis for such data is a wavelet basis.

First, apply a DWT separately to each row of Y and to each row of X. Performing this

transformation is equivalent to the post-multiplication of the approximately orthonormal

projection matrices resulting from the DWT. Let Wy and Wx denote those matrices. Fur-

ther let those transformation be indexed by scales j = 1, . . . , Jy and s = 1, . . . , Sx and

locations k = 1, . . . , Ky
j and ` = 1, . . . , Lxs in the y and x wavelet-spaces respectively. Then

for the DWT decompositions Y = YWWY , X = XWWX , β = W ′
Xβ

WWY , U = UWWY and

E = EWWY wavelet-space model is given by

YWWY = XWWXW
′
Xβ

WWY + ZUWWY + EWWY . (2.4)

Noting that WY and WX are orthogonal and post-multiplying by W ′
Y , Model (2.4) reduces

to YW = XWβW +ZUW +EW . Posterior estimate could then be sampled using an appropri-

ate MCMC procedure. Noting that elements of β can be indexed by their corresponding

locations and scales, priors in the wavelet-space might take the form of mixture prior such

as

βW(s`,jk) ∼ γ(s`,jk)N (0, τj) + (1− γs`,jk)d0, γ(s`,jk) ∼ B(πj)

where d0 is a point-mass distribution at zero and τj and πj are regularization parameters

(for further details see Meyer et al. (2014)). However this specification is for the uncon-

strained model. To enforce the historical constraint on β while using wavelets, we have

two options to consider: the first is involves iterating between the wavelet-space and the

data space, the second involves establishing a relationship between the time domain and

the scales and locations in the wavelet domain.

To enforce the constraint, one approach could be to fit the fully functional model and at

each step of iteration, project the estimates of β back into the data space setting β(v, t) = 0

for v > t. After enforcing the constraint, the estimates would then need to be projected

back into wavelet-space to properly update the sampler. This approach suffers from sev-

eral flaws. The first is computational intensity. Performing an additional inverse discrete

37



wavelet transformation (IDWT) and DWT at each step of the chain could dramatically

impact computation time. The second, a more deleterious to model fitting, is that this

approach requires the estimation of the whole surface which could result in a bleed-over

effect whereby estimates are unduly influenced by the estimation of coefficients not satis-

fying the historical constraint. And finally, if the ultimate goal is estimation of the upper

triangle only, the procedure wastes power on the estimation of coefficients below the tri-

angle.

Another approach is to establish a relationship between the time domains in the data

space and the scale and location coefficients in the wavelet-space. In this way, the con-

straint could be enforced in the wavelet-space and only the desired coefficients and pa-

rameters would be sampled. Thus we could select a prior on the wavelet coefficients

βW(s`,jk) that reflects the time-domain restriction in Model (2.3). Percival and Walden (2000)

noted that the wavelet coefficients can be approximately associated with a specific time

based on its location and scale, so that a coefficient with respect to scale j and location k is

associated with tjk = (2k+ 1)2j−1− 1
2
. Likewise in the s` dimension, vs` = (2`+ 1)2s−1− 1

2
.

Thus, based on this approximate connection, one could consider the priors

βW(s`,jk) ∼ 1(vs` ≤ tjk)γ(s`,jk)N (0, τj) + (1− γs`,jk)d0, γ(s`,jk) ∼ B(πj)

where 1(vs` ≤ tjk) is 1 if its argument is true and 0 otherwise. However, this coefficient-

time connection is only approximate. Because each wavelet coefficient is associated with

a specific scale and location, each wavelet coefficient is actually associated with a specific

set of times in dimension v and t which causes incorrect zeroing of the β(v, t) surface. To

solve this constraint problem, we propose a novel use of wavelet-packets.

2.2.2 Historical Constraint via Wavelet-Packets

Given space constraints, and to avoid excessive notation, we illustrate wavelet-packets

in a heuristic fashion but note that full rigor can be found in Percival and Walden (2000)

and Misiti et al. (2007). Consider a generic 1-dimensional function, x(t). The DWT de-
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(a) Discrete Wavelet Transformation (b) Discrete Wavelet-packet Transformation

Figure 2.2: (a) Decomposition of a function x(t) into three levels using DWT, x(t) = A3 + D3 +
D2 + D1. (b) Graphical representation of the decomposition of a function into three levels using
DWPT, x(t) = AAA3 +AAD3 +ADA3 +ADD3 +DAA3 +DAD3 +DDA3 +DDD3.

composes x(t) into an approximation and successive levels of detail Figure 2.2a. For in-

stance, a 3-level decomposition of the row vector x(t) using the DWT would start with a

decomposition into an approximation A1 and a detail component D1. The second level

of decomposition takes the approximation piece and further decomposes that into ap-

proximation and detail components, so that x(t) = A2 + D2 + D1. For the third level of

decomposition the approximation A2 is split, giving x(t) = A3 +D3 +D2 +D1.

Wavelet packets are found in a similar manner as the DWT except at each stage both the

approximation and the detail components are further decomposed, Figure 2.2b. The first

stage of the DWPT looks the same as above for the DWT, as the function can be repre-

sented as x(t) = A1 + D1. For the second stage both the detail and approximation are

decomposed, yielding: x(t) = AA2 + AD2 + DA2 + DD2. The third level of decomposi-

tion gives the final representation in Figure 2.2b. The wavelet coefficients therefore relate

to a single level, yielding x(t) = AAA3 + AAD3 + ADA3 + ADD3 + DAA3 + DAD3 +

DDA3 +DDD3. There are 2L groupings of wavelet coefficients at the level L decomposi-

tion. Ordinarily, wavelet packets have been used to find an optimal decomposition of a

function based on different detail/approximation combinations from the wavelet packet
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tree (Misiti et al., 2007). For our purposes we are not interested in any optimal represen-

tation using the packets but in the final decomposition at a given level, L. Rather, when

using the 2-dimensional DWPT for the regression surface β, preservation of the constraint

in Model (2.3) now follows directly because each s and j combination represents nodes at

the same level of decomposition so that ` and k are associated with their corresponding

time intervals v and t, respectively. Therefore β(v, t) = 0 for v > t can be better approxi-

mated using the DWPT by setting βW(s`,jk) = 0 if ` > k.

To illustrate proof of concept, consider the images in Figure 2.3 as an example of a hypo-

thetical β(v, t) function. It is a 256×256 pixel image defined for v and t = 1, · · · , 256 where

v runs along the horizontal axis and t the vertical axis. The top left figure of Figure 2.3

displays the original image which is true to the historical constraint, β(v, t) = 0 for v > t

where blue corresponds to β(v, t) = 0. The top right image in Figure 2.3 shows the results

from the naı̈ve approximate DWT restriction using a 3-level 2-dimensional DWT with the

Haar wavelet family. After restricting the coefficients with the constraint 1(vs` ≤ tjk),

the coefficients were transformed via 2-dimensional IDWT back into the time (v and t)

domain. Here we see considerable distortion along the edge of the constraint. Further

distortion can be seen in the upper triangle particularly as the coefficients decrease. A

closer examination of diagonal shows an example of “ghosting” where coefficients that

should be set to zero are not. Thus the constraint in the wavelet pace does not properly

enforce the constraint.

Conversely, the bottom left figure in Figure 2.3 shows the constraint and reconstruction

using wavelet packets, again using a 3-level decomposition with the Haar wavelet family.

In the wavelet-packet space, we apply the given restriction, βWs`,jk = 0 if ` > k. The result is

an image that is essentially identical to the original image. Use of other wavelet families,

such as Daubechies for two or more vanishing moments, results in greater distortion

along the edge. This likely due in part to the padding inherent to other wavelet families.

We suggest the use of the Haar wavelets as they maintain the edge better. Similar, a

dyadic signal is required as padding can lead to distortions along the constraint. The
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Figure 2.3: Proof of concept of the historical constraint. Top left: original image. Top right: de-
composed and reconstructed original image with constraint in wavelet space. Bottom left: de-
composed and reconstructed original image with constraint in wavelet-packet space using Haar
wavelets. Bottom right: wavelet-packet space proof of concept using Daubechies wavelets with 4
vanishing moments.
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point here is that the DWPT faithfully retains the features of the regression surface while

enforcing the upper triangular constraint. But if we use Daubechies wavelets, as depicted

in the bottom right corner of Figure 2.3, we see ghosting to either side of the constraint.

Thus only the Haar wavelets maintain the constraint.

2.2.3 Model Formulation with Wavelet-packets and Thresholding

Now perform the DWPT to each row of Y and X. The resulting decompositions have the

form Y = YWPWP,Y and X = XWPWP,X whereWP,Y andWP,X are orthogonal matrices con-

taining the wavelet packet basis functions. Then for the two dimensional decomposition

on β = W ′
P,Xβ

WPWP,Y Model (2.2) in the wavelet-packet space is

YWPWP,Y = XWPWP,XW
′
P,Xβ

WPWP,Y + ZUWPWP,Y + EWPWP,Y

for U = UWPWP,Y and E = EWPWP,Y . Post-multiplying by WP,Y and recognizing

the orthogonality of the wavelet-packet basis matrices, this model reduces to YWP =

XWPβWP + ZUWP + EWP . While the decompositions have changed, the final form is very

similar. Further this model is of the same as that formulated in Meyer et al. (2014). Indeed,

we could proceed with their modeling procure from here using wavelet-packets instead

of wavelets and wavelet-Principal Components (wPC). However, their approach does not

enforce the desired historical constraint which we implement via prior specification.

The priors on the wavelet-packet model parameters are similar to the wavelet-space pri-

ors mentioned in Section 2.2.1 but with a slight modification. Instead of restricting based

on vs` and tjk, we restrict in wavelet-packet space if ` > k. Thus our prior on the elements

of βWP =
[
βWP

(s`,jk)

]
is

βWP

(s`,jk) ∼ 1(` ≤ k)γ(s`,jk)N (0, τjk) + (1− γs`,jk)d0, γ(s`,jk) ∼ B(πjk),

the commonly used Gaussian-point mass mixture distribution. Thus we only sample

coefficients from the space of interest.
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Remaining priors are consistent with Meyer et al. (2014) where regularization parameters

were assumed to come from an inverse-gamma distribution and a beta distribution for τjk

and πjk respectively. Hyper-parameters for both are fixed in both and based on the data.

The Monte Carlo Markov Chain (MCMC) algorithm described in supplemental material

to Meyer et al. (2014) need only be slightly modified to generate posterior samples of

parameters. In particular, when the surface coefficients are sampled, we modify their

procedure to maintain the historical constraint. In other words, we only sample wavelet-

packet place coefficients satisfying the constraint ` ≤ k.

One computational issue discussed by Meyer et al. (2014) is the need for a data reduction

in theX space. The algorithm becomes computationally intensive for large V . In their for-

mulation, the authors used wPCs keeping columns containing 99.9% of the variability in

X. The wPC decomposition involves first performing a DWT on X and then performing a

singular value decomposition on XW . A major benefit of this approach, not only in speed-

ing up computation time, is the resulting denoising achieved. Indeed, removing columns

for the wPC transformed X corresponds to thresholding the coefficients corresponding to

those columns. The problem with implementing that basis in the historical framework

is that the PCA breaks the relationship between packet location ` and time which is cru-

cial for the implementation of the constraint. To remedy the computational concerns and

simultaneously achieve large scale denoising, we propose a hard thresholding procedure.

Hard thresholding is a standard procedure in wavelet regression when DW transformed

signal is scalar, i.e. non-functional. A variety of thresholds exist and detailed discussions

of each can be found in Percival and Walden (2000) and Nason (2008). Hard thresholding

involves picking a cut-off value and setting coefficients smaller than the cut-off to zero.

In other words, given the DWT coefficients d∗, a hard thresholding approach only keeps

coefficients satisfying d∗ > λH . Donoho and Johnstone (1994) introduced the universal

threshold for wavelet shrinkage which has the form λu = σ
√

2 log (nd) where nd is the

number of observations and σ is some estimate of the standard deviation of the noise. If

d∗ is variance 1 Gaussian noise than the threshold becomes just λu =
√

2 log (nd).
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A straight forward implementation of the universal threshold is not possible in our con-

text as we have what amounts to a sample coefficients from DWPTs performed on the

rows of X. Thus we propose a modification to the procedure where we threshold on the

variance, which in the wavelet setting amounts to thresholding on the energy contributed.

We first take the variance of the DWP transformed X, XWP . We then only keep columns

whose variance is above the universal threshold. In practice, this amounts to removing

close to seven-eighths of columns of XWP which achieves both the desired data reduction

and denoting.

2.3 Posterior Functional Inference

Previous examinations of the HFLM did not discuss inferential procedures preferring in-

stead to develop measures of model fit (Malfait and Ramsay, 2003; Harezlak et al., 2007).

In the function-on-function literature, Meyer et al. (2014) propose the use of a Bayesian

False Discovery Rate (BFDR) procedure also used by Morris et al. (2008) and Malloy et al.

(2010) and joint credible bands as discussed in Ruppert, Wand, and Carroll (2003) along-

side the calculation of Simultaneous Band Scores (SimBaS). For our historical functional

mixed model we suggest the use of both.

The BFDR procedure begins by utilizing the MCMC samples to determine the posterior

probability of a given coefficient being greater than a δ-fold intensity change. Once these

values are determined they are ranked and a cut-off selected to control the overall FDR

at a pre-specified global α-bound. Suppose we have M MCMC samples and β(m)(v, t) is

one draw from the posterior estimated surface. Then for {v ∈ V and t ∈ T s.t. v ≤ t}, we

find the probability

PBFDR(v, t) = Pr {|β(v, t)| > δ|y} ≈ 1

M

M∑
m=1

1
{∣∣β(m)(v, t)

∣∣ > δ
}
.

In other words, we calculate PBFDR over coefficients satisfying the constraint. Then we

flag the set of locations on the historical surface satisfying ψ = {(v, t) : PBFDR(v, t) ≥ φα}
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where φα is determined by first ranking the values of PBFDR in descending order across all

locations to obtain the set
{
P(r), r = 1, . . . , R

}
where R is the total number of coefficients

satisfying the historical constraint. Then define λ = max
[
r∗ : 1

r∗

∑r∗

r=1

{
1− P(r)

}
≤ α

]
.

The cut-off for flagging coefficients as significant is then φα = P(λ). However, the BFDR

relies upon a δ-intensity change. The choice δ may not be obvious in certain data situa-

tions. Thus we propose the use of the SimBaS procedure.

SimBaS begins by first constructing joint credible bands in the spirit of Ruppert, Wand,

and Carroll (2003). A 100(1− α)% credible band of β(v, t) must satisfy

Pr {L(v, t) ≤ β(v, t) ≤ U(v, t) ∀ v ∈ V , t ∈ T s.t. v ≤ t} ≥ 1− α (2.5)

where L(v, t) and U(v, t) are the corresponding upper and lower band bounds. An inter-

val satisfying Model (2.5) is given by Iα(v, t) = β̂(v, t) ± q(1−α)

[
Ŝt.Dev

{
β̂(v, t)

}]
where

β̂(v, t) and Ŝt.Dev
{
β̂(v, t)

}
are the posterior mean and standard deviation respectively

and q(1−α) is the (1− α) quantile taken over M of the quantity

max
v ≤ t

∣∣∣∣∣∣β
(m)(v, t)− β̂(v, t)

Ŝt.Dev
{
β̂(v, t)

}
∣∣∣∣∣∣ .

We construct Iα(v, t) for multiple α-levels and find the minimum α at which each interval

excludes zero. These values, min {α : 0 /∈ Iα(v, t)}, we call the SimBa Scores and denote

with PSimBaS . We can consider SimBa scores to essentially be Bayesian p-values testing

the null that β(v, t) = 0 for a specific location (v, t). Via their construction, the scores

account for multiplicity of testing and benefit, in contrast to the BFDR, by not requiring

specification of a δ-fold intensity change. To determine a set of flagged significant coeffi-

cients similar to ψ, we could select a specific α and flag all coefficients whose SimBaS fall

below that bound. Meyer et al. (2014) demonstrates the properties of these procedures

in the function-on-function regression setting and found both to be preferable to an un-

adjusted, point-wise interval approach. Additionally, they propose the Global Bayesian

P-value (GBPV) as a test of β(v, t) = 0 ∀ t ∈ T , v ∈ V . The GBPV is calculated as the

minimum SimBa Score across all (v, t) such that v ≤ t.
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2.4 Simulation

Here we present the details of a simulation study evaluating estimation both with and

with out repeated measures. In particular, we generate data first based on the Saint Louis

Bus Study to evaluate the methodology in the presence of unbalanced repeated measures.

We next generate data without repeated measures but for a large sample size to demon-

strate the large sample properties of the method. Data for the repeated measures scenarios

was generated using

yic = xicβ + ui + eic

where xic is generated for each subject from a multivariate normal distribution with a first

oder auto-regressive, AR(1), covariance matrix. This data generation is consistent with

the assessment of function-on-function regression seen in Meyer et al. (2014). For the re-

peated measures data generation, error terms were generated from mean zero multivari-

ate normal distributions. An AR(1) covariance matrix was used for each with σ2
u = 0.05,

ρu = 0.75, σ2
e = 0.1, and ρe = 0.5. The error terms for the large sample generation re-

mained the same as those used in the repeated measures setting.

For both assessments, repeated measures and large sample, two hundred data sets were

generated under each of three biologically relevant scenarios:

584

10000

1− (256− t)
256

1√
(2π)(0.01)

exp

[
− 1

(2)(0.01)

(
t

256
− v

256
− 0.5

)2
]

(cumulative),

292

10000

1√
(2π)(0.01)

exp

[
− 1

(2)(0.01)

(
t

256
− v

256
− 0.5

)2
]

(lagged),

1029

10000

1− 1

1 + exp
(

0.25− t
256

+ v
256

0.05

)
 (immediate).

Each true surface, displayed in the right column of Figure 2.4, had the constraint enforced

to ensure that for v > t, the true values were set exactly to zero. The immediate effect

depicts a scenario in which an exposure has an immediate impact on the outcome that
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Figure 2.4: Left column: heat maps of average estimated β(v, t) plotted as functions of t and v
based on a sample size of n = 45 with N = 150 total curves. Right column: heat maps of the true
β(v, t) functions plotted as functions of t and v.
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does not vary as the exposure is prolonged. The lagged effect represents a scenario where

the effect of exposure is not dependent on amount of time exposed but the effect is lagged.

The cumulative effect is a scenario in which the effect of exposure is not only lagged but

the longer a subject is exposed, the greater the effect on outcome becomes.

The repeated measures simulation used a sample size of n = 45 with each subject con-

tributing one to four curves for a total of N = 150 observations. In each simulated data

set, 8.9% of subjects contributed only one trip, 13.3% contributed two trips, another 13.3%

contributed three trips, and the majority, 64.5%, contributed four trips. These values

were based off the Saint Louis Bus Study. The large sample simulation used a sample

of n = N = 1000 with no repeated measures.

To evaluate inference, we propose the use of three metrics used in Meyer et al. (2014), false

discovery rate (FDR), sensitivity (SEN), and experiment-wise error rate (EWER). First we

define a flagged location (v, t) as one either belonging to ψ or having a SimBa Score less

than 0.05. Now define FDRε as the number of flagged locations (v, t) with true value ≤ ε

divided by the total number of flagged locations. Next let SENΥ be the number of flagged

locations (v, t) with true magnitude > Υ divided by the total number of locations with

true magnitude > Υ. Finally, EWER is calculated as the proportion of simulated datasets

with at least one falsely discovered location. For the BFDR, we select a δ-intensity change

of 0.05 as it is half the maximum signal of the true scenarios.

Figure 2.4 contains the true surfaces in the right column and the average of estimated

surfaces across 200 hundred data sets based on the repeated measures simulation in the

left column. Both the estimate of the cumulative effect and lagged effect maintain the

integrity of the constraint while capturing the true effects. With the immediate effect we

see the constraint isn’t fully maintained, but the edge effects are minimal. On the whole,

the average estimated surfaces effectively capture the magnitude and shape of the true

surfaces. The estimated surfaces perform similarly as sample size increases which can be

found in the Appendix.
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Table 2.1: FDR, sensitivity and, experiment-wise error rate values by inference procedure. BFDR
was calculated with a δ of 0.05 and a global α of 0.05.

Measure Surface BFDR SimBaS
FDR0.01 Cumulative 0.00% 0.02%

Lagged 0.43% 0.00%
Immediate 0.00% 0.00%

FDR0.05 Cumulative 7.69% 16.1%
Lagged 8.40% 0.12%

Immediate 6.31% 0.21%
SEN0.05 Cumulative 93.5% 92.0%

Lagged 91.8% 8.88%
Immediate 94.8% 38.6%

SEN0.075 Cumulative 100% 99.7%
Lagged 99.3% 12.6%

Immediate 97.3% 46.1%
EWER0.01 Cumulative 0.00% 0.04%

Lagged 2.00% 0.00%
Immediate 6.00% 1.50%

In Table 2.1 we examine inference in simulation where we see that both BFDR and SimBaS

control FDR well for ε = 0.01 for all scenarios. When ε is increased to 0.05, FDR increases

for both SimBaS and BFDR though for the Lagged and Immediate scenarios, FDR is still

small. For sensitivity, BFDR performs well for all scenarios and both levels of Υ. However

the sensitivity of SimBaS only performs well for the cumulative scenario. The GBPV

performs well under all scenarios rejecting the null of β(v, t) = 0 ∀ t ∈ T , v ∈ V for all

datasets.

2.5 Example: Boilermaker Study

Magari et al. (2001) examined the effects of PM2.5 on HRV as measured by SDNN from

residual oil fly ash on apprentice boilermakers while Cavallari et al. (2008) describe a sim-

ilar effect but in journeyman boilermakers. Additionally, Cavallari et al. (2008) compare

both work effects and non-work day effects. To illustrate the usefulness of our method-
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Figure 2.5: Left: the full estimated surface from the Boilermaker Study using PM2.5 as the exposure
and SDNN as the outcome. Right: estimated surface removing associations with minimal to no
preceding exposure. Time scale is in minutes since the start of measurement. Both exposure and
outcome were log-transformed prior to modeling.

ology, we propose jointly examining the data from these two studies. The resulting data

consists of 31 subjects with five-minute average SDNN and PM2.5 levels taken for 280

minutes, roughly four hours, resulting in 56 time points. As PM2.5 is a natural exposure,

our model is an appropriate choice for attempting to characterize the time-varying asso-

ciation of SDNN and PM2.5. However, we must consider that associations early in the

exposure time lack sufficient data. Thus in analysis, we ignore estimation of associations

for the first four measurements in exposure. Consistent with the analysis performed in

Harezlak et al. (2007), we use the log of each variable in modeling. Figure 2.5 contains

results of the application of our method to the joint data for both including and excluding

associations for the first four exposure measurements.

From the reduced estimated surface, we see that early in the exposure time, v, and early

in the outcome time t, there is a positive association that quickly dissipates becoming a

negative association to no association as time increases in both directions. The strongest

negative effects occur between 50 and 100 minutes of exposure but are lagged affecting

SDNN only after 100 minutes of measurement. Looking at Figure 2.5, we see that around

100 minutes there is a lull in exposure. This thus suggests that there is a possible delay
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Figure 2.6: Posterior probabilities of the coefficients of the estimated surface for two levels of
δ. The left contains the heat map of a low δ intensity change of 0.005 while the right heat map
contains a high δ intensity change of 0.02, high and low relative the surface.

in the effect of of PM2.5 on HRV. After around 100 minutes of exposure, the association

is around zero but is still diminished from the higher levels of SDNN seen at the very

beginning of the study. Interestingly, at the tail end of the study, we see another dip in the

surface suggesting a negative relationship which appears to correspond to several spikes

in PM, or falls just shortly there after.

In Figure 2.6, we see heat heat maps of the posterior probability that |β(v, t)| is greater

than a δ intensity change. For this analysis, we consider two levels of δ, one low and one

high relative the effect sizes found in the surface. We select δ = 0.005 for the low change

and a δ = 0.02 for the high. We can see that in both cases, probabilities do not exceed

0.5 suggesting that, at least at these levels of δ, there are no significant coefficients. In

fact, no coefficients are flagged by the procedure at global α-level of 0.05 and increasing

α to 0.1 similarly results in no flagged coefficients. Further, SimBaS was unable to detect

an coefficients significantly different from zero, thus the exclusion of a heat map of those

results. The GBPV also fails to reject at α = 0.05 as the minimum SimBa Score is 0.5.

One possible reason for the lack of significant effects is that the data are a combination of

journeyman and apprentices which may have different patterns of exposure thus poten-
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tially muddling inference. Unfortunately, separate analyses of these two data sets were

limited due to small sample size and thus not examined here. Still, the estimated surface

behaves in a manner that is consistent with what both Magari et al. (2001) and Cavallari

et al. (2008) saw in their analyses which did not joint model SDNN and PM2.5 across time.

2.6 Discussion

Natural exposures commonly arise in the study of environmental health effects. Care is

needed in modeling such data to ensure that different types of effects can be detected and

appropriately modeled. Previous work on the HFLM has focused on overly smoothed

models for exposure which, as demonstrated by Figure 2.1, can be quite spiky and un-

predictable. Further, the potential for multiple curves sampled on the same individual

has been ignored despite this being commonplace in environmental literate. Thus to ac-

commodate the needs of increasingly complex data structures, a methodology capable of

handling irregular data and repeated measures is warranted.

Here we’ve developed a wavelet-based historical functional linear model for repeated

measures using a Bayesian modeling approach. To accomplish this, we proposed a novel

use of wavelet-packets demonstrating their superiority in maintaining the historical con-

straint over regular wavelets. Previous work on HFLMs have ignored inference proce-

dures. Here we adapt those explored by Meyer et al. (2014) to the historical setting. In

simulation, we demonstrate the abilities of our model to correctly estimate several sce-

narios of interest to environmental health researchers. Further we show the benefits of

the BFDR procedure for use as a tool for inference in the HFLM. Under certain circum-

stances, we show that SimBaS also performs well. In the boilermaker example, we show

how our model can be applied to data consisting of an environmental exposure and mea-

sure of HRV. While we were unable to detect any significant differences, we were able to

characterize the shape of the association in a manner consistent with previous studies.
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Several aspects of the Historical Functional Mixed Model will require additional explo-

ration. An alternative procedure to SimBaS, for instance, may be of interest to provide a

better test of the null β(v, t) = 0 at a specific location. Additionally, the current method-

ology works best for Haar wavelets as they maintain the constraint better than other

wavelets. However this results in a rather blocky, un-smoothed estimated surface. One

potential solution comes from Wand and Omerod (2011) who examine penalized wavelet

transformations. Such an approach may allows us to continue to use the Haar wavelets

to main the constraint while smoothing away from it. Another direction is to exploit the

function-on-function regression by Meyer et al. (2014) and implement a projection proce-

dure in the spirit of Dunson and Neelon (2003) to project the unconstrained coefficients

into the constrained space formed by the triangular basis functions used by Malfait and

Ramsay (2003) and Harezlak et al. (2007).
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3.1 Introduction

Morris and Carroll (2006) introduce Wavelet-based Functional Mixed Models (WFMM)

for function-on-scalar regression via Bayesian estimation. The WFMM is a flexible frame-

work for modeling functional outcomes in a number of settings and indeed several au-

thors have extended the methodology. Morris et al. (2008) introduce an inference pro-

cedure for the framework based on the Bayesian False Discovery Rate (BFDR) for mass

spectrometry proteomic data. Malloy et al. (2010) develop the scalar-on-function regres-

sion analogue for repeated measures using wavelets for a functional covariate. Zhu,

Brown, and Morris (2011, 2012) discuss robust adaptive regression and robust classifi-

cation respectively. Meyer et al. (2014a,b) introduce the function-on-function extension of

the WFMM and the historical functional linear model analogue respectively. All of this

additional work makes the assumption that the functional outcome comes from a Gaus-

sian Process which does not hold when the observed functional outcome is categorical.

Outside the WFMM framework, the existing functional literature on generalized out-

comes deals with a scalar outcome regressed on a functional covariate. This model, the

generalized functional linear model (GFLM), was developed for the linear, logistic, cen-

sored, and Poisson cases by James (2002) and Müller and Stadtmüller (2005). Further

work by numerous authors since includes but is not limited to a penalized likelihood ap-

proach to modeling, the inclusion of single-index interactions, and an extension to the

functional generalized additive model (Cardot and Sarda, 2005; Li, Wang, and Carroll,

2010; McLean et al., 2014). One area where the literature is lacking is the generalized

function-on-scalar regression setting where the functional outcome is categorical in na-

ture.

Such a setting is common when expression quantitative trait loci (eQTL) analysis is of

interest. eQTL analysis examines the association between expression levels of a gene as

measured by microarray probe sets and a fine mapping of single nucleotide polymor-

phisms (SNPs) to measure genotype in the same region as the gene. While expression
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levels are normalized and thus gaussian, non-imputed SNPs take on the integer values

0, 1 and 2. Combining this with the fine sampling or mapping and genetic order as deter-

mined by location on the chromosome allows us to consider SNP data a function of time.

Thus a subject’s curve is their ordered genotype with genetic order serving as a proxy

for time, the more traditional measure in functional data. Multiple expression probe sets

are often taken over the same gene. Researchers are interested in using eQTL analysis

to determine which SNPs in the region are significantly associated with expression levels

while adjusting for phenotypes and genetic ancestry.

Currently, the standard analysis for performing eQTL analysis is a pair-wise regression

approach comparing an expression probe set to a single SNP at a time and determining a

p-value. This procedure is repeated for each SNP sampled in the region. Ad-hoc adjust-

ments are used including eQTL false discovery rate (FDR) and even Bonferroni Correc-

tion. Such an analysis can be seen, for example, in both Qiu et al. (2011) and Castaldi et

al. (2014) where general linear models are used to assess association and adjust for phe-

notypes and population stratification. Some existing statistical literature proposes a joint

modeling procedure treating genotype as a non-functional set of covariates and using

a modified BIC approach to eliminate non-significant SNPs (Zak-Szatkowska and Bog-

dan, 2011; Frommlet et al., 2012). However the modified BIC approach does not allow

for multiple probe sets. Flutre et al. (2013) propose a Bayesian model averaging (BMA)

framework for a joint eQTL analysis across multiple probe sets from different tissues.

But the BMA method only examines one candidate SNP at a time. Thus issue of running

many models for all SNPs of interest remains and the need exists for a method that jointly

models all SNPs and probe sets of interest.

In this paper, we introduce the Ordinal Probit Wavelet-based Functional Model (OP-

WAVFM) for regressing a generalized functional outcome and scalar covariates using

a Bayesian approach. The Bayesian setting allows for adaptive regularization of coeffi-

cients and thus smoothing across the functional form of the outcome. The OPWAVFM

constitutes an extension of the WFMM framework to the non-Gaussian setting and, by
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building off it, allows for the inclusion of a large number of covariates of interest as

well as a large number of outcome measurements. We propose a Markov Chain Monte

Carlo (MCMC) algorithm for generating posterior estimates of model parameters. The

algorithm combines the standard Bayesian Probit procedure with the WFMM framework

which is achieved in part due to the latent variable representation of the Probit model.

As in Morris et al. (2008), we aim to exploit the flexibility of the WFMM framework in

modeling the effects of multiple factors simultaneously on nonparametric fixed effects

functions. Because the SNP data that motivates this research is ordinal in nature, we

implement an ordinal regression which can be extended beyond three levels. Previous

work in the WFMM context implements both the BFDR, Morris et al. (2008) and Malloy

et al. (2010), and Simultaneous Band Scores (SimBaS), Meyer et al. (2014a,b). Thus we

formulate the OPWAVFM version of these posterior inference procedures while noting

that any statistic of interest can be calculated from our posterior estimates. Finally, we

propose an extension of the OPWAVFM to the function-on-function regression setting

which can also be considered an extension of Meyer et al. (2014a) to generalized outcomes.

The remainder of the paper is organized as follows: Section 3.2 presents the model for-

mulation, MCMC algorithm, and inference procedures we’ve developed for implement-

ing the OPWAVFM. Section 3.3 details the extension of the OPWAVFM and Meyer et al.

(2014a) to the generalized function-on-function regression setting. In Section 3.4, we de-

scribe a simulation study demonstrating the abilities of our method. In Section 3.5, we

apply the OPWAVFM to an example genomic data set and in Section 3.6 we give a dis-

cussion of the methodology.

3.2 Ordinal Probit Functional Model

Here we detail the modeling framework for the Ordinal Probit Wavelet-based Functional

Model (OPWAVFM). For subjects i = 1, . . . , N , assume we observe the categorical func-
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tional variable Yi(t) on the grid t = 1, . . . , T where t indexes measurement occurrence and

Yi(t) takes on the values g = {0, 1, 2}. Further assume we observe a scalar covariate or

potential a set of scalar covariates which we denote as X . The values of X may be contin-

uous or categorical. For the sake of derivation, we focus on the case where X is a single

continuous scalar covariate as is the case in the motivating data.

Now suppose Yi(t) is actually the observable values of some latent process Y ∗i (t). Then

the behavior of Yi(t) is dictated by the relationship

Yi(t) =


0 if Y ∗i (t) < c1

1 if c1 ≤ Y ∗i (t) < c2

2 if Y ∗i (t) ≥ c2

(3.1)

for cut points c1 and c2, satisfying c1 < c2. This formulation can be extended to more

levels, however we restrict it to the three level case. Using the mapping in Model (3.1),

the probability that Yi(t) equals the gth level can be expressed as

P (Yi(t) = g) = P (Y ∗i (t) ∈ (cg, cg+1)), g = 0, 1, 2 (3.2)

where c0 and c3 will vary depending on the support of Y ∗i (t). Let the form of Y ∗i (t) be the

function-on-scalar regression model in the spirit of Morris and Carroll (2006)

Y ∗i (t) = Xiβ(t) + Ei(t) (3.3)

where the model errors Ei(t) could come from a variety of distributions.

If we assume Gaussian Process errors, then Y ∗i (t) is also Gaussian. Further, the probability

function, P (·), can now be defined as the cumulative distribution function (CDF) from a

Gaussian. Normalizing Y ∗i (t), we can re-express Model (3.2) in terms of the the CDF of

the standard Gaussian, denoted Φ(·). The probabilities at a fixed t for subject i are then

given by

P (Yi(t) = g) = Φ (cg+1 −Xiβ(t))− Φ (cg −Xiβ(t)) (3.4)

where g = 0, 1, 2. This Gaussian assumptions results in the Probit formulation of the

model.
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Models (3.3) and (3.4) are formulated for continuous functions. However we only observe

discretized realizations of each function. Thus the discretized form of Model (3.3) is

Y∗ = Xβ + E, E ∼ GP(0,ΣE) (3.5)

where Y∗ and E are N × T , X is N × 1, and β is 1 × T . The covariate matrix, X , can be

of size N × P depending on the desired number of covariates. If P > 1, then β becomes

P × T with one function per covariate. Now let yit represent subject i’s tth outcome, βt

correspond to the tth element of β, and xi denote subject i’s covariate pattern. Model (3.4)

can then be written as P (yit = g) = Φ (cg+1 − xiβt)− Φ (cg − xiβt) for g = 0, 1, 2.

Non-functional Bayesian Probit procedures utilize a similar latent variable formulation

to to produce model estimates sampling from the latent outcome. In this approach, the

latent outcome is assumed independent which poses an issue as we extend this idea to the

functional setting: the columns of Y∗ are not necessarily independent. However, using the

function-on-scalar formulation implemented by Morris and Carroll (2006), we can assume

independence after wavelet transforming Y∗ and model in the transformed space.

Note the observed measurements do not necessarily have to have a time element, just

a natural ordering. Further, measurement occurrences do not need be equally spaced

though we assume we observe a measurement for each subject at each t. The method-

ology can also be extended to more levels, but for now we restrict our derivation to the

three-level case which corresponds to the motivating genetic data. Also, for identifiabil-

ity, we do not specify Model (3.5) with an intercept. That is, X only contains covariates of

interest as the intercept function is assumed to equal zero.

3.2.1 Wavelet-based Modeling of the Latent Outcome

Morris and Carroll (2006) develop a function-on-scalar regression model for hierarchical

data. Thus their formulation allows for the observation and modeling of multiple curves

measured on each subject. When only one curve is observed per subject, their model
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essentially reduces to the latent variable model found in Model (3.3). Given this rela-

tionship, we can use their modeling framework, alongside a variation of Bayesian Probit

regression, to get estimates of β(t).

Model Formulation

Let y∗i (t) =
∑T ∗

j=1 y
∗W
ij ξj(t)∆tj be the Karhunen-Loève expansion of the functional latent

response where ∆tj = tj − tj−1. For convenience, we assume measurements are equally

spaced and thus ∆tj = 1. The basis expansion for the latent outcome, ξj(t), requires

only that independence be induced or at least reasonably assumed post decomposition.

Previous authors have implemented a variety of expansions. Consistent with Morris and

Carroll (2006) and Meyer et al. (2014a), we use wavelets to model the latent response.

Working from the discretized model, Model (3.5), and applying a Discrete Wavelet Trans-

formation (DWT) the latent outcome gives the decomposition to Y∗ = Y∗WWY where

Y∗W are the resulting wavelet-space coefficients and WY is a matrix of wavelet basis func-

tions. This decomposition is the matrix form of the Karhunen-Loève expansions previ-

ously described. Decomposing β gives β = βWWY and the DWT applied to E results in

E = EWWY . Given these decompositions, Model (3.5) can be expressed as

Y∗WWY = XβWWY + EWWY . (3.6)

Note that the matrix representations of the wavelet basis are orthogonal, thus WYW
′
Y =

IT ∗ . Post-multiplying Model (3.6) by W ′
Y gives

Y∗W = XβW + EW (3.7)

where EW ∼ GP(0,ΣEW ). We then use an MCMC procedure to obtain posterior estimates

of βW , projecting them back into the data space before performing inference.
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Prior Specification and Identifiability

As with Morris and Carroll (2006) and Meyer et al. (2014a), we assume independence in

the wavelet space. Thus Model (3.7) can be split up into a series of T ∗ separate models for

each coefficient in the Y -wavelet space, double-indexed by (j, k)

y∗W(j,k) = XβW(j,k) + EW(j,k). (3.8)

Consistent with previous literature on wavelet-based regression (Morris and Carroll,

2006; Malloy et al., 2010; Meyer et al., 2014a,b), we place spike and slab priors on the

coefficients βW(j,k) =
{
βW(p,jk)

}
where p indexes the number of columns of X . Thus the prior

on the coefficients from Model (3.8) is

βW(j,k) ∼ γ(p,jk)N (0, τpj) + (1− γp,jk)d0, γ(p,jk) ∼ B(πpj) (3.9)

where B denotes the binomial distribution and d0 is a point-mass distribution at zero.

This adaptive regularization performs smoothing in the Y -wavelet space.

Regularization parameters can either be sampled or fixed. Both Morris and Carroll (2006)

and Malloy et al. (2010) rely on an empirical Bayes approach to estimate and then fix τpj

and πpj . However Zhu, Brown, and Morris (2011) and Meyer et al. (2014a,b) all propose

prior distributions using an inverse-gamma for τpj and a beta for πpj . Thus we place priors

on both of the form

τpj ∼ IG(aτ , bτ ) and πpj ∼ Beta(aπ, bπ)

where hyper parameters aτ , btau, aπ, and bπ are fixed and based on the empirical Bayes

estimates found in Morris and Carroll (2006).

An assumption of the standard Bayesian Probit regression is that the mapping from Yi(t)

to Y ∗i (t) captures the location and scale of Yi(t). Thus certain parameters from the model

are not estimated and are, in fact, not identifiable. As noted in the introduction to Sec-

tion 3.2, we have not formulated a model with an intercept because the intercept in this
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setting is not identifiable. Thus a priori we assume the intercept is fixed and equal to zero

and so, without loss of generality, it is excluded from the model formulation. Similarly,

the model error variance components of the latent variable in Model (3.5) are not identifi-

able and we thus assume ΣE to be fixed. Our prior specification for the latent variable Y∗

is then

Y∗|X,β ∼ N (Xβ,ΣE) (3.10)

where ΣE is not only fixed but set to the N × N identity matrix, ΣE = IN . Note the prior

specification for the latent variable is not in the wavelet space. Thus our MCMC algorithm

will require performing the DWT and its inverse at every step.

The last identifiability concern regards the cut points dictating the mapping of Yi(t) to

Y ∗i (t), i.e. c1 and c2. Two interrelated issues arise with attempting to sample these param-

eters. The first is ensuring the constraint, c1 < c2, is enforced. The second, which is related

to the first, is that we can’t estimate both simultaneously. Several approaches exist to both

ensure estimability and enforce the constraint. The first approach involves first sampling

c1 from a mean zero normal distribution with fixed variance and then sampling c2 as c1 +δ

where δ comes from an exponential distribution with fixed rate. This approach is inde-

pendent of the latent variable and thus also of the data which is problematic. Further,

though the constraint is satisfied, identifiability is still a concern since the approach tries

to estimate both values. A second approach fixes c1, usually at zero, and then samples

c2 from a uniform distribution, U(ac2 , bc2), where ac2 and bc2 are determined using both c1

and information from the data.

3.2.2 MCMC Algorithm

Given the prior specifications in Section 3.2.1, we now describe the MCMC algorithm

for obtaining estimates of β(t). The procedure is a modification of the standard Bayesian

Probit regression modified to accommodate an ordinal and functional outcome and scalar

predictor or predictors. The standard algorithm can vary slightly in order depending on
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approach to estimating the cut points. We begin our procedure by first sampling latent

variable, then updating the cut points, and finally sampling the parameters from the la-

tent variable model. Two additional steps are needed to project the latent variable into

the wavelet space and to bring the coefficients into the data space.

Define y as the vectorized form of Y, the matrix of ordinal outcomes and likewise define y∗

as the vectorized form of Y∗, the matrix form of the latent variable. Further let µ∗ = E(y∗),

the expected value of the vectorized latent variable. Our MCMC algorithm is then

Step 1: Update the latent variable y∗|y,µ∗, c1, c2 using truncated normals of the form

y∗|y = 0,µ∗, c1 ∼ N (µ∗, I)1(y∗ ∈ (−∞, c1))

y∗|y = 1,µ∗, c1, c2 ∼ N (µ∗, I)1(y∗ ∈ (c1, c2))

y∗|y = 2,µ∗, c2 ∼ N (µ∗, I)1(y∗ ∈ (c2,∞))

where I denotes the identity matrix and 1(·) is the indicator function. Note too that µ∗ is

taken to be XβW
(m) where βW

(m) is the mth posterior draw of βW .

Step 2: Update the cut point c2|Y∗,Y, c1 using the uniform distribution

c2|y∗,y, c1 ∼ U(a, b)

for a = max [max(y∗|y = 1), c1] and b = min(y∗|y = 2).

Step 3: Perform DWT on latent variable: Y∗ DWT−→ Y∗WY

Step 4: Update βW using

βW(p,jk)|yW(j,k), β
W
(−p),jk,Σ

W ∼ γp,jkN (µp,jk, εp,jk) + (1− γp,jk)d0

Where the mixture probability αp,jk is given by

αp,jk = Pr
(
γp,jk = 1|y∗(j,k), β

W
(−p),jk,Σ

∗
)

= Op,jk/ (Op,jk + 1)

for Op,jk = πpj/(1 − πpj)BFp,jk and BFp,jk = (1 + τp,jk/Vp,jk)
−1/2 exp

{
1
2
ζ2
p,jk(1 + Vp,jk/τp,jk)

}
and µp,jk = β̂W(p,jk),MLE(1 + Vp,jk/τp,jk)

−1 and εp,jk = Vp,jk(1 + Vp,jk/τp,jk)
−1. Both β̂W(p,jk),MLE
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and Vp,jk are initial values taken from a maximum likelihood estimation of the latent vari-

able model.

Step 5: Update τpj and πpj using

τpj|aτ , bτ , γp,jk, βW(p,jk) ∼ IG
(
aτ +

1

2
γp,jk, bτ +

1

2
γp,jk

{
βW(p,jk)

}2
)

πpj|aπ, bπ, γp,jk ∼ Beta (aπ + γp,jk, bπ + γp,jk)

for aτ , bτ , aπ, and bπ fixed.

Step 6: Project βW into the data space using appropriate inverse DWT matrix: β = βPWY .

Because the algorithm involves the projection of βP back into the data space, post process-

ing only involves the calculation of summary measures based on the posterior samples

and statistics to perform inference.

3.2.3 Posterior Functional Inference

We wish to perform inference on the surface of associations β(t). Previous authors have

detailed two procedures for inference: the BFDR and SimBaS (Müller, Parmigiani, and

Rice (2006); Morris et al. (2008); Malloy et al. (2010); Meyer et al. (2014a,b) and references

therein). Both procedures have many advantages over existing approaches in the context

of genotype and gene expression association studies. While existing methods do control

for the false discovery rate, it’s an ad-hoc adjustment while both BFDR and SimBaS adjust

for multiplicity in their formulation. Further, our inference procedures are based off of a

joint model as opposed to pair-wise comparisons. For completeness, we now discuss

these procedures in the Bayesian OPWAVFM setting.

Our modeling procedure occurs on the inverse-Probit scale and as such we can perform

inference on that scale. But our inference can be informed by the Probit scale which,

as a probability, is restricted to being between 0 and 1. For m = 1, . . . ,M MCMC sam-

ples, β(m)(t) is the mth draw from the posterior. Then for a specific v, v = 1, . . . , V , and

t, t = 1, . . . , T , we calculate Pr {|β(t)| > δ|y} ≈ 1
M

∑M
m=1 1

{∣∣β(m)(t)
∣∣ > δ

}
. Now δ can be
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selected on either the inverse-probability scale or on the probability. If we choose on the

probability-scale, we first select a desired change in probability, πδ. Then the δ intensity

change in the effect is given by δ = Φ−1(πδ). To ensure δ is positive, we restrict πδ such

that πδ ∈ (0.5, 1). The mapping is consistent with choosing a δ ∈ (0,∞), but the choice is

now more directed. Thus the BFDR can be reformulated as

PBFDR(t) = Pr
{
|β(t)| > Φ−1(πδ)|y

}
≈ 1

M

M∑
m=1

1
{∣∣β(m)(t)

∣∣ > Φ−1(πδ)
}
.

Then for a pre-specified global FDR-bound α, we flag a set of locations satisfying ψ =

{(t) : PBFDR(t) ≥ να}where να = P(λ). And, given the ordered set
{
P(r) : r = 1, . . . , R

}
for

R = V T , the cutoff value λ = max
[
r∗ : 1

r∗

∑r∗

r=1

{
1− P(r)

}
≤ α

]
. Previously, our choice

of δ was somewhat arbitrary. However in this setting, we have a little more guidance in

selecting the intensity change.

As discussed in Meyer et al. (2014a,b), the SimBaS procedure does not require the se-

lection of an intensity change. The formulation of SimBaS for OPWAVFM is best done

on the inverse-probability scale, i.e. on the β(t) estimates themselves. The resulting

scores can then be linked to the function transformed to the probability scale if de-

sired. Working from the joint credible bands described by Ruppert, Wand, and Car-

roll (2003), we construct a 100(1 − α)% credible band about β(t). For the mean and

standard deviation of β(t) taken over the M MCMC samples, we construct the interval

Iα(t) = β̂(t) ± q(1−α)

[
Ŝt.Dev

{
β̂(t)

}]
. The value q(1−α) is then the (1 − α) quantile taken

over the M MCMC samples of the quantity

Z(m) =
max

v ∈ V , t ∈ T

∣∣∣∣∣∣β
(m)(t)− β̂(v, t)

Ŝt.Dev
{
β̂(t)

}
∣∣∣∣∣∣ .

Next we vary the values of α, noting the minimum α at which Iα(t) excludes 0. These

values, more formally defined by PSimBaS(t) = min {α : 0 /∈ Iα(v, t)}, constitute the scores

for SimBaS.
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More directly, we can calculate SimBa Scores using

PSimBaS(t) =
1

M

M∑
m=1

1


∣∣∣∣∣∣ β̂(t)

Ŝt.Dev
{
β̂(t)

}
∣∣∣∣∣∣ ≥ Z(m)

 .

Each score essentially provides a test of the null H0 : β(t) = 0 for a specific location t. On

the probability scale, the scores corresponds to testing the null H0 : Φ−1(β(t)) = 0.5. We

can also calculate a global Bayesian p-value (GBPV) using SimBaS. Similar to Meyer et al.

(2014a,b), the form of the GBPV is PGBPV = mint{PMAPs(t)} which we can use to test the

global null hypothesis H0 : β(t) = 0 ∀ t = 1, . . . , T .

3.3 Extension to Generalized Function-on-Function Re-
gression

Model (3.5) allows X be of size N × P which, in function-on-scalar regression, allows for

any number of scalar covariates. In fact, we can let P get relatively large with respect

to T , the total number of measurements observed for Yi(t). In other words, we can let

X become X(v) for the grid v = 1, . . . , V which is to say the formulation allows for a

functional covariate. The values T and V need not be equal. Further, t and v only index

measurement occurrence and thus do not necessarily have to represent the same grid. In

other words, Yi(t) may be sampled more finely than Xi(v) or vice versa. We now present

the Ordinal Probit Wavelet-Based Function-on-Function Regression (OPWAVFFR) as an

extension of the OPWAVFM.

Formulating the OPWAVFFR only requires minor alterations the model describe above.

The latency assumption presented in Model (3.1) holds as does the probability described

in Model (3.2). To incorporate subject i’s functional covariate Xi(v), we re-express

Model (3.3) as

Y ∗i (t) =

∫
V
Xi(v)η(v, t)dv + Ei(t) (3.11)
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where V is the support of Xi(v). We are now interested in the estimation of the surface

η(v, t). Assuming the errors are Gaussian once again gives us the Probit model with prob-

abilities for subject i at a fixed t given by

P (Yi(t) = g) = Φ

(
cg+1 −

∫
V
Xi(v)η(v, t)dv

)
− Φ

(
cg −

∫
V
Xi(v)η(v, t)dv

)
for g = 0, 1, 2. The discretized form of Model (3.11) is Y∗ = Xη + E where Y∗ and E are

N × T , X is N × V , and η is V × T .

The MCMC algorithm described in Section 3.2.2 can accommodate an X design matrix

of reasonable size, however computational burden increases as P increases. Thus in the

function-on-function model we must either limit the size of V or perform data reduction.

Meyer et al. (2014a) explores a function-on-function regression for hierarchical data with

a Gaussian Process outcome. They suggest the use of Wavelet-Principal Components

(wPC) for decomposition of a functional covariate when data reduction is needed. The

formulation of the latent variable in the OPWAVFFR then follows the procedure described

in Meyer et al. (2014a) for the case where only a single set of curves, {Yi(t), Xi(t)} is ob-

served on subject as opposed to multiple. Modeling of the OPWAVFFR can easily take

place in the OPWAVFM context given a design matrix X containing not a set of scalar

covariates, but measurements from a functional covariate projected into a desired space.

Denote the functional covariate as X and decompose it using a DWT, X = XWWX . Next

decompose XW using a singular value decomposition, XW = XPPsvd where Psvd is the

matrix of right singular vectors. The function-on-function representation of the wavelet-

space model in Model (3.6)

Y∗WWY = XWWXPsvdP
′
svdW

′
Xη

PWY + EWWY (3.12)

given the decomposition η = P ′sW
′
xη

PWY . Note that since WX and PS are orthogonal,

WXPsvdP
′
svdW

′
X = IP where P is number of columns of X. Thus after post-multiplying

by W ′
Y , Model (3.12) reduces to Y∗W = XWηP + EW or essentially Model (3.7) with XW

replacing X and ηP replacing β.
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Alterations to Sections 3.2.2 and 3.2.3 are minor in order to implement the OPWAVFFR.

For instance, the MCMC procedure remains the same with the exception of Step 3 which

now involves not only the inverse DWT for the Y wavelet space but also the inverse of

the transformation used for Xi(v). Additionally, instead of performing inference on β(t),

Section 3.2.3 can be modified to accommodate η(v, t). For a detailed description of the

formulation of the BFDR and SimBaS for a surface of coefficients, see Meyer et al. (2014a).

3.4 Simulation

We simulated data by generating probabilities for subject i at measurement t using

P0 = Φ (c1 −Xiβ(t)) , P1 =Φ (c2 −Xiβ(t))− Φ (c1 −Xiβ(t)) ,

and P2 = 1−Φ (c2 −Xiβ(t))

where Xi is drawn from a standard normal distribution to mimic the normalized expres-

sion probe sets. We select c0 = 0 and c2 = 0.5. Values of Yi(t) were generated by first

sampling a standard uniform random variable for each subject i and measurement t, call

that value u ∼ U(0, 1), and then assigning 0, 1, or 2 using

Yi(t) = 0 ⇐⇒ u ∈ (0, P0), Yi(t) = 1 ⇐⇒ u ∈ (P0, P0 + P1)

and Yi(t) = 2 ⇐⇒ u ∈ (P0 + P1, 1).

The total number of measurements generated was T = 256. For the DWT on the latent

outcome, a choice of padding is needed. Consistent with Malloy et al. (2010) and Meyer

et al. (2014a,b), we use zero padding which in preliminary simulations demonstrated

the least amount of edge effects. Other choices of padding, such as symmetric, can be

implemented however they tend to amplify edge effects.

Two hundred datasets were generated for four scenarios of β(t) for a single standard

normal covariate. Two of these scenarios have different shaped peaks centered in a region
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of interest:

β(t) =
10√

2π(10)
exp

[
−1

2

(t− 128)2

10

]
, single normal

β(t) =
2

5
max

[
1− |t− 128|

32
, 0

]
, single triangle.

The remaining scenarios have a central peak of the same magnitude as the single normal

and the single triangle centered at t = 128 along with an additional attenuated peak

centered at t = 44:

β(t) =
10√

2π(10)
exp

[
−1

2

(t− 128)2

10

]
+

10

3
√

2π(10)
exp

[
−1

2

(t− 44)2

10

]
, double normal

β(t) =
2

5
max

[
1− |t− 128|

32
, 0

]
+

1

7
max

[
1− |t− 44|

32
, 0

]
, double triangle.

Each of these true scenarios is included as the dark gray solid curve in Figure 3.1. After

a burn-in of 5000 iterations, we sampled 1000 iterations for posterior estimation and in-

ference. For each model, we use Daubechies wavelets with four vanishing moments and

zero padding.

Because we wish to include multiple probe sets as covariates in our application, we also

examine the abilities of the OPWAVFM to detect signals from multiple covariates. One

potential issue with the inclusion of multiple probe sets in application is that it may in-

duce collinearity. Thus our final simulation setting involves a combination of two sce-

narios: the single normal, denoted as β1(t), and the double normal, denoted as β2(t). To

examine the effects of collinearity, we compare three levels of correlation between the

two covariates: no correlation (r = 0), moderate correlation (r = 0.5), and high corre-

lation (r = 0.9). The two covariates, x1 and x2, for this setting come from a mean zero

bivariate normal distribution with var(x1) = var(x2) = 1 and correlation varying as de-

scribed, corr(x1, x2) = r = 0, 0.5, and 0.9. To evaluate this scenario and the previous four

single covariate settings, we examine the average point-wise bias calculated as the aver-

age of the difference between the estimate and the truth at each time point and root-Mean

Square Error (rMSE) calculated for each simulated data set.
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To evaluate inference, we implement two measures used by Meyer et al. (2014a,b) to as-

sess both BFDR and SimBaS. First define a flagged coefficient as a coefficient belonging

to the set ψ when using BFDR with global α = 0.05 and score less than 0.05 when us-

ing SimBaS. Define the measure false discovery rate, denoted FDRε, as the number of

flagged coefficients with true value ≤ ε divided by the total number of flagged loca-

tions. The second measure is sensitivity, denoted SENΥ, which we define as the number

of flagged coefficients with true magnitude > Υ divided by the number of true coef-

ficients with magnitude > Υ. For our evaluation, we consider a range of both ε and

Υ with ε = 0.001, 0.002, 0.003, . . . , 0.051 and Υ = 0.05, 0.055, 0.01, . . . , 0.3. We compare

these values for SimBaS as well as BFDR for πδ = 0.501, 0.502, 0.503, . . . , 0.6 which, on the

inverse-probability scale, corresponds to δ = 0.0025, 0.0050, 0.0075, . . . , 0.2533.

Figure 3.1 shows the average of the posterior estimates of each β(t) along with the 95th

percentile of estimates (in light gray). The true β(t) is plotted for each scenario as well

for comparison. In each scenario, we see the 95th percentile bands consistently include

the truth. Additionally, the average of the posterior estimates effectively reproduces the

true function. The OPWAVFM consistently detects the peaks in each scenario. While it

struggles with the shape of the base of the peaks, particularly with the attenuated sec-

ondary peaks in the double scenarios, it’s still able to detect them. The regions with the

most issues are when the true functions transition to and from zero.

Such struggles are better demonstrated in the plot of the average bias found in Figure 3.2.

At the transition points, we see the bias is negative suggesting underestimation for each

scenario. At the largest peaks in all four scenarios, bias tends to be slightly overestimated.

In the double peak scenarios, the double triangle is more biased on the smaller peak than

the double normal. But those trouble spots aside, bias is small, mostly falling between 0.01

and −0.01 across t. All approaches are reasonably unbiased in regions where the truth

equals or is close to 0. Figure 3.2 also contains box plots of rMSE for each scenario. The

rMSE values confirm our assessment of minimal bias for each scenario. Not surprisingly,

the more complicated the scenario, the larger rMSE tends to be. Though on the whole,
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Figure 3.1: Posterior estimates of β(t) as a function of t averaged over 200 simulated data sets
for a single covariate. Light gray bands depict the 95th percentile across the simulated data sets,
true functions are in solid dark gray. The top row contains estimates for the single peak scenarios,
bottom row contains double peak.
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Figure 3.2: The figure on the left contains the average point-wise bias of the estimated β(t) as a
function of t taken across 200 simulated data sets. The figure on the right compares box plots
across scenarios of rMSE calculated for each simulated data set.

rMSE values are similar across all four single covariates scenarios.

Figure 3.3 presents the results of the last scenario with two scalar covariates and increas-

ing correlation. The left column contains the true values of β1(t) and β2(t) plotted along

with the average estimated curve from each model. The gray bands in the left column

are the 95th percentile of samples from the no correlation (r = 0) setting. From the left

column, we see that when there is no correlation between predictors, the average esti-

mates of β1(t) and β2(t) are similar to those from the single covariate case and effectively

capture the truth. When correlation is moderate, r = 0.5, the model estimates β1(t) well

but tends to over estimate the largest peak of β2(t). Not surprisingly, when correlation

is high, r = 0.9, the model performs the worst though the estimates are still reasonably

accurate.

This assessment is reinforced by the right column of Figure 3.3 which contains the aver-

age point-wise bias for each model. Here we see how similar the fits are when correlation

is zero or moderate. In fact the moderate correlation has less bias around the peak than

the no correlation setting. The high correlation setting has issues away from the peak

when estimating β1(t) but has reasonable bias around the peak. In the more complicated
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Figure 3.3: Posterior estimates of β(t) as a function of t averaged over 200 simulated data sets
for a single covariate. Light gray bands depict the 95th percentile across the simulated data sets,
true functions are in solid dark gray. The top row contains estimates for the single peak scenarios,
bottom row contains double peak.
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double normal effect, again the no correlation and moderate correlation models perform

similarly. This time the high correlation model underestimates the smaller peak while

overestimating the larger peak. On the whole, this demonstrates that OPWAVFM is capa-

ble of handling multiple covariates with varying levels of correlation.

Figure 3.4 presents heat maps of both FDRε and SENΥ for the BFDR under varying levels

of ε and Υ along the vertical axes, FDRε in the left column, SENΥ in the right. Since the

single peak scenarios behaved similarly and both double peak scenarios also behaved

similarly, we present only the results from the single normal and the double normal here.

A similar figure to Figure 3.4 can be found in the Appendix. We see from Figure 3.4, that

for values of πδ near 0.5, FDRε tends to be high regardless of ε, though as πδ increases,

FDR goes to zero. FDRε values behave similarly across all four scenarios. For a given πδ,

SENΥ increases as Υ increases. At larger πδ values BFDR does, not surprisingly, struggle

with smaller Υ, the degree to which varies, however, by scenario. SENΥ for the single

peak scenarios are still reasonably high even for large πδ and small Υ. The double peak

scenarios have low SENΥ even when both πδ and Υ are in the middle of their ranges. This

is in contrast to the single peaks which achieve reasonably high SENΥ rather quickly for

all πδ. Overall, the BFDR performs well in simulation in controlling FDR while detecting

true signals.

As the SimBaS procedure does not require an intensity threshold, similar graphics to those

in Figure 3.4 are not possible. Further, regardless of ε, under each scenario FDRε was

zero. We do, however, display the values of SENΥ as functions of Υ for each scenario in

Figure 3.5. Not surprisingly, as Υ increases, the SENΥ of SimBaS increases under each

scenario. On the whole, the sensitivity of SimBaS is reasonable and comparable to that of

the BFDR for larger πδ. Interestingly, for small Υ, the single peak scenarios have larger

SENΥ but for larger Υ, the double peak scenarios exhibit larger SENΥ.

Comparing the two inference procedures is difficult as the BFDR requires the selection

of a πδ. However, for large enough πδ, false discovery rate is similar between BFDR and
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Figure 3.5: Plotted SENΥ as functions of Υ for the SimBaS procedure. Each single covariate sce-
nario is depicted as described in the legend.

SimBaS across ε. Further, both procedures sensitivity increases as Υ increases. Sensitivity

for SimBaS behaves similarly to the BFDR sensitivity for large πδ. The tradeoffs between

the two are apparent in that an appropriate choice of πδ achieves a low false discovery

rate while maintaing high sensitivity. However if an inappropriate πδ is chosen, either

FDR will be high or sensitivity will be low. SimBaS does not require a choice of threshold,

maintains very low FDR and achieves high sensitivity for large Υ.

3.5 Application

Example data comes from a study of chronic obstructive pulmonary disease (COPD)

which collected genotypes and expression profiles for 202 subjects. Of interest is geno-

typed SNPs from chromosome 15 near the IREB2 gene which has been previously identi-

fied as a disease susceptibility locus (Pillai et al., 2009; Wilk et al., 2009; Cho et al., 2010).

Investigators also collected four different expression probe sets for IREB2 with probes

starting at 78730518 bp and ending at 78793798 bp. We consider five models one for each

probe set separately and one jointly modeling for the three probe sets that exhibited sig-

nificant SNPs in single probe analysis. All models are adjusted for age, sex, array lot
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number, and genetic ancestry. The four expression probe sets of interest are 1555476 at,

214666 x at, 225892 at, and 242261 at.

Commonly, a fine mapping of SNPs around a candidate gene is sampled. One standard

approach is to take all SNPs falling within a specified distance of the start and end of the

gene, such as 250 kilobases (kb). Given the genotypes around IREB2 and taking 250kb to

either side results in 190 total SNPs. Examining 2 megabases (Mb) to either side of the

gene results in 1135 SNPs. As with the simulation, all application models were run using

Daubechies wavelets with 4 vanishing moments and zero padding. Each model was run

for 6000 total samples with the first 5000 discarded. Models taking 250kb to either side

took just over an hour to finish while taking 2Mb to either side took just under three

hours running on a high performance computing cluster. For brevity, only results from

the 250kb models are presented here. Results from the 2Mb models can be found in the

Appendix.

Since we’re interested in identifying significantly associated SNPs, we further focus our

analysis on first detecting SNPs that are significantly different from zero based on SimBaS.

Next we examine those SNPs at varying intensity cutoffs using probabilities from the

BFDR. Finally, we compare the association of these SNPs with different expression probe

sets in both the single probe set models and the joint probe set model. Manhattan plots of

SimBa Scores from the single probe set models can be found in Figure 3.6 while Figure 3.7

contains Scores from the joint probe set model. In each figure, the dotted-dashed gray

line represents a global α of 0.05.

Ostensibly, the SimBa Score is a multiplicity adjusted probability testing the null hypoth-

esis of no association between a specific SNP and the expression probe set. Thus as a first

step, we can see in the single probe set models which SNPs are significantly associated

with each probe set. From Figure 3.6, we see that all probe sets except 225892 at have

significant SNPs in the single probe set model. Thus for our joint model, we focus in on

the remaining three probe sets. To identify candidate SNPs, we use the joint model for the
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Figure 3.6: Single probe models SimBa Scores plotted as functions of position on the chromosome.
The location of IREB2 is noted as a horizontal bar below the probabilities. For convenience, a
dotted-dashed gray line depicts a global α-level of 0.05 plotted on the − log10 scale.
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Figure 3.7: Joint model SimBa Scores plotted as functions of position on the chromosome. The
location of IREB2 is noted as a horizontal bar below the probabilities. For convenience, a dotted-
dashed gray line depicts a global α-level of 0.05 plotted on the − log10 scale.
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Table 3.1: Significant SNPs from joint model by expression probe set. Significance based on joint
model SimBa Score exceeding the global alpha of 0.05. Joint model scores are also compared to
single probe scores for the same SNP as well as BFDR probabilities from the joint model for three
different πδ values. 1 denotes SNPs significantly associated with both 1555476 at and 242261 at.

SimBaS P (|β(t)| > πδ)
Probe Set SNP Position Joint Single 0.54 0.56 0.58

1555476 at

rs7163013 78698759 3.00% 36.0% 99.6% 86.6% 55.9%
rs80341911 78806023 0.01% 33.0% 99.9% 99.9% 99.4%
rs20365271 78851615 0.01% 25.0% 99.9% 99.9% 99.9%
rs951266 78878541 0.01% 39.0% 99.9% 99.9% 99.9%

rs169699681 78882925 0.01% 50.0% 99.9% 99.9% 98.6%
rs6495308 78907656 0.01% 2.00% 99.0% 84.3% 17.9%

rs11639372 78966655 0.30% 50.0% 80.0% 11.9% 0.10%

214666 x at

rs1040262 78587910 0.80% 0.01% 14.4% 0.00% 0.00%
rs2656057 78723082 4.00% 50.0% 98.1% 79.2% 39.0%
rs2869550 78981001 3.00% 0.01% 52.1% 3.50% 0.00%
rs3825806 78985342 0.30% 10.0% 70.6% 2.50% 0.00%

242261 at

rs4283201 78681365 0.01% 4.00% 91.3% 17.0% 0.10%
rs80341911 78806023 5.00% 50.0% 99.9% 99.1% 94.6%
rs20365271 78851615 0.30% 0.60% 99.9% 99.9% 99.0%
rs6495306 78865893 4.00% 0.20% 99.9% 98.1% 88.8%
rs951266 78878541 0.30% 5.00% 99.9% 99.9% 99.9%

rs169699681 78882925 0.70% 5.00% 99.9% 99.9% 95.7%

expression probe sets 1555476 at, 214666 x at, and 242261 at considering only SNPs with

SimBa Scores at or above the global α-level of 0.05. This results in seven SNPs associated

with probe set 1555476 at, four with 214666 x at, and six with 242261 at.

Table 3.1 contains the SimBa Scores and BFDR probabilities of SNPs detected in the joint

the model. For the joint model, both SimBaS and BFDR were performed to each expres-

sion probe set separately. Likewise, SimBa Scores for the single probe model were calcu-

lated using only the coefficients of the expression probe set. Interestingly, for 1555476 at,

only one of the SNPs identified was significant in the single probe set model while for

214666 x at two of the four were significant in both models. This is in contrast to 242261 at

where all but one SNP was found significant in both models.
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Another interesting aspect comes from the BFDR. We can use the BFDR to both flag sig-

nificant coefficients and to determine posterior probabilities that a give coefficient falls

above a pre-determined threshold. For Table 3.1, we use three different thresholds on the

probability scale: πδ = 0.54, 0.56, and 0.58. Examining all three allows us to see the mag-

nitude at which these coefficients are significant. From the table we see that significance

via the SimBa Score does not necessarily translate to a large effect size. The SimBa Score

only tests is if the association is different from zero it does not give us an idea of the mag-

nitude of effect. Of potential interest is determining SNPs that not only are significantly

associated but also demonstrate meaningful effect sizes.

For instance, four of the SNPs that are significantly associated with probe set 1555476 at

have BFDR probabilities above 90% for all values of πδ. This suggests that not only are

these SNPs significantly associated, but they also have a large magnitude of effect with

over 0.90 probability of being larger than 0.58 on probability scale. Conversely, most of the

SNPs that are significantly associated with probe set 214666 x at do not have large effect

sizes. One could consider using first using SimBaS to determine significantly associated

SNPs and then selecting a sufficiently large cutoff πδ to narrow in on SNPs that are not

only significant but also have large magnitudes of effect.

One final observation is that each probe set is associated with different sets of SNPs. In

fact there is no overlap between SNPs associated with 214666 x at and the other two

probe sets. However the remaining probe sets do have considerable overlap with three

SNPs commonly associated with 1555476 at and 242261 at. All three of those SNPs,

rs8034191, rs2036527, and rs16969968, maintain large BFDR probabilities as πδ increases.

SNPs rs2036527 and rs16969968 both have rather small SimBa Scores from the joint model

while rs8034191’s score falls right on the cutoff value.
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3.6 Discussion

Functional data of all kinds, whether it be continuous or categorical, Gaussian or not,

continues to be collected in vast quantities across many scientific disciplines. To keep

up with the demand for methodologies and inferences for such data we must continue

to expand the field of functional data analysis. While methods for Gaussian functional

outcomes and scalar categorical outcomes with functional predictors are abundant in the

literature, functional categorical outcomes have received little attention. While additional

work is still needed, in extending the WFMM framework, we have developed a method

capable of handling a functional categorical outcome along with a large set of predictors.

Here we’ve presented a novel model for performing function-on-scalar regression where

the outcome comes from finely sampled categorical process. To implement this method-

ology, we’ve developed an MCMC procedure which builds on the framework of the

WFMM while utilizing the latent variable representation of the probit model. As our

eventual functional outcome of interest had three levels, we proposed an ordinal model

assuming proportional probabilities which can easily be refined down to the binary case

or extended to allow for more than three categories. Previous authors have shown the

benefits of both the BFDR and SimBaS procedures (Meyer et al., 2014a,b), thus we refor-

mulated both procedures for the OPWAVFM framework. Additionally, we propose an

extension of the OPWAVFM to the function-on-function regression setting which also can

be considered an extension of Meyer et al. (2014a) to generalized outcomes.

To evaluate the abilities of the OPWAVFM, we presented seven simulation scenarios

which display the ability of our method to detect various true signals at sample sizes

that are on the low end of genomic studies. Additionally, we examined the behavior of

the model for multiple predictors of varying levels of correlation. In all scenarios, the

OPWAVFM demonstrates low bias and rMSE. Even when correlation is induced between

multiple covariates, bias is minimal. In fact, a moderate amount of correlation appears to

improve the model fit. Also in simulation, we show that both the BFDR and SimBaS have
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good properties displaying low false discovery rates and high sensitivity. And in appli-

cation, we show how the OPWAVFM can be used to perform an eQTL analysis both with

a single expression probe set of interest and with multiple. Further we note the ability

of the SimBaS procedure to, in our modeling context, detect several significant SNPs as

well as the ability of the BFDR to distinguish strength of association amongst those SNPs.

While not presented here, the OPWAVFM is able to scale up to a larger number of SNPs

at only a minimal computational cost.

One potential issue for further exploration is the frequency of measurement of the out-

come in application. In particular, the wavelet decomposition we used assumes equally

spaced measurements, an assumption which may be tenuous with SNP data. Further,

the OPWAVFM is a proportional probability regression where the probability of being in

one outcome category versus the next does not depend on the current category. Future

work on the OPWAVFM will include exploration of the work done by Sardy et al. (1999)

and Wand and Omerod (2011) on wavelet-based techniques for unequally spaced data.

Additionally, Dunson and Neelon (2003) and Lin and Dunson (2013) proposed Bayesian

procedures for order-constrained parameters which we hope to adapt for the OPWAVFM

framework to allow for non-proportionality.
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A. Appendices



A.1 Bayesian Function-on-Function Regression for Multi-
Level Functional Data

A.1.1 MCMC Sampler

Working from Model (5) of the manuscript, the independence of the basis space allows us

to split the model into T ∗ separate models for each basis coefficient in the y-space giving

the model

y∗(j,k) = X∗β∗(j,k) + Zu∗(j,k) + e∗(j,k), (3.1)

which is the same as Model (6) of the manuscript. We now place priors on the coefficients

by noting that β∗(j,k) =
{
β∗(p,jk)

}
where p indexes the V svd retained principal components,

p = 1, . . . , V svd. We place spike-and-slab priors on the elements of β∗(j,k) for a given j, k,

and p via

β∗(p,jk) ∼ γ(p,jk)N (0, τpj) + (1− γp,jk)d0, γ(p,jk) ∼ B(πpj)

where B denotes a Bernoulli distribution and d0 represents a point-mass distribution at

zero. Regularization parameters τpj and πpj can be estimated using an Empirical Bayes-

type approach as seen in Morris and Carroll (2006) and Malloy et al. (2010). Alternatively,

priors may be placed as done in Zhu, Brown, and Morris (2011). For our model, we place

an inverse gamma prior on the variances, τpj , of the Normal components of the mixture

and a beta distribution on the mixture probabilities, πpj , of the Bernoulli with respective

hyper-parameters aτ , bτ , aπ, and bπ.

Following from Morris and Carroll (2006), we integrate out the random effects and work

with marginalized likelihood. Morris and Carroll (2006) notes that this improves mixing

over a naı̈ve Gibbs sampler. The sampler alternates between sampling β∗(j,k) and the co-

variance parameters which we denote as Σ∗. The random effects u∗(j,k) are sampled when

desired. The procedure iterates through the following steps:

Step 1: For each y-space coefficient indexed by (jk), we sample the fixed effect p from

91



the distribution f(β∗(p,jk)|y∗(j,k), β
∗
(−p),jk,Σ

∗) where β∗(−p),jk is the set of all fixed-effect coeffi-

cients at j, k except the pth. Morris and Carroll (2006) demonstrate that f(·) is a mixture

of a point-mass at zero and a normal with mean µp,jk and variance εp,jk. The mixture

probability αp,jk is given by

αp,jk = Pr
(
γp,jk = 1|y∗(j,k), β

∗
(−p),jk,Σ

∗
)

= Op,jk/ (Op,jk + 1)

where

Op,jk = πpj/(1− πpj)BFp,jk and BFp,jk = (1 + τp,jk/Vp,jk)
−1/2 exp

{
1

2
ζ2
p,jk(1 + Vp,jk/τp,jk)

}
and the forms of the mean and variance of the normal are

µp,jk = β̂∗(p,jk),MLE(1 + Vp,jk/τp,jk)
−1 and εp,jk = Vp,jk(1 + Vp,jk/τp,jk)

−1.

Step 2: For each y-space coefficient indexed by (jk), we next sample the elements σ2
U(j,k)

and σ2
E(j,k) of Σ∗U and Σ∗E respectively. For this we use a random-walk Metropolis-Hastings

step with objective function

f(σ2
U(j,k), σE(j,k)|y∗(j,k), β

∗
(j,k)) ∝

|Σjk|−1/2 exp

{
−1

2
(y∗(j,k) − X∗β∗(j,k))

′Σ−1
jk (y∗(j,k) − X∗β∗(j,k))

}
f(σ2

U(j,k), σE(j,k)).

where Σjk is the marginal variance of y∗(j,k). For the proposal distribution, we use an

independent Gaussian truncated at zero and centered at the previous values.

Step 3: Random effects U∗(j,k) for each (j, k) are sampled from their full conditional which

is a Gaussian distribution with mean {Ψ−1
jk + 1/σ2

U(j,k)}−1Ψ−1
jk ûNS,jk and variance {Ψ−1 +

1/σ2
U(j,k)}−1, where Ψjk = {Z′(1/σ2

E(j,k))Z}−1 and

ûNS,jk =
{
Z′(1/σ2

E(j,k))Z
}−1 Z′

(
1/σ2

E(j,k)

) (
y∗(j,k) − X∗β∗(j,k)

)
Step 4: Finally, we update τpj and πpj separately from f(τpj|γ(p,jk), β

∗
(j,k), aτ , bτ ) and

f(πpj|γ(p,jk), aπ, bπ). The form of these conditionals are an inverse-gamma and beta re-

spectively.
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Notes: (1) Our approach can easily accommodate other shrinkage priors that might make

sense for other basis functions, including Gaussians for spline bases, or other types of

sparsity priors including Bayesian Lasso, Normal-Gamma, or Horseshoe Priors, which

may have better sparsity and shrinkage properties under some settings; (2) These priors

have connections to penalized likelihood methods, and their application in the basis space

can induce smoothing or regularization across the coefficient surface β(v, t) in the data

space; (3) The double-indexing inherent to multi-resolution bases like wavelets can be

used for other bases, defining J clusters of basis coefficients j = 1, . . . , J containing Kj

coefficients each, in order to allow clusters of coefficients to share common regularization

parameters.

A.1.2 Additional Simulation Details

Equations for the four simulation scenarios discussed in the manuscript are found below:

7

500

1√
(2π)0.003

exp

[
− 1

(2)(0.003)

(
t

225
− v

225

)2
]

(ridge), (3.2)

437

10000

1√
(2π)(0.03)

exp

[
− 1

(2)(0.03)

(
t

225
− v

225
− 0.5

)2
]

(lagged), (3.3)

1029

10000

1 +
1

1 + exp
(

0.25− t
225

+ v
225

0.05

)
 (immediate), (3.4)

1225

10
(2π)−1|Σ|−

1
2 exp

[
−1

2

([
v
t

]
−
[

150
60

])′
Σ−1

([
v
t

]
−
[

150
60

])]
(peak) (3.5)

where

Σ =

[
15 0.5(15)(15)

0.5(15)(15) 15

]
.

Graphical representations of each of these can be found both in the manuscript as well as

in Figure A.1.
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Figure A.1: Heat maps of proposed “true” surfaces for simulation study are in the top row, equa-
tions found in Models (3.2) - (3.5). The surfaces are estimated based on a sample size of n = 100
with repeated measures giving a total of N = 200 observations.
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Figure A.2: Boxplots comparing the root-Mean Square Error amongst varying sample sizes by
simulation scenario. Not surprisingly, as sample size increases, rMSE decreases. Note that the
graphics are listed by total number of observations with N = 50 on the left and N = 200 on the
right.
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Figure A.3: Each figure contains a heat map displaying the FDR acceptance region averaged over
200 simulated data sets. The dark red regions indicate coefficients flagged in every or almost every
data set. Dark blue coefficients were not flagged in any or almost any data sets. At the edge of
each flagged region, coefficients that were flagged only occasionally can be seen. These figures
were based on the smallest sample size N = 50, n = 25.
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Figure A.4: Each figure contains a heat map displaying the SimBa Scores. All plots are on the
log-scale, however for interpretability, the color scale has been exponentiated. For consistency
of interpretation, the color scale was reversed so that the darker the red the more significant the
coefficient and the darker the blue, the less significant. The scale is set to exhibit the variation in
the SimBa Scores over the region of elevated significance. As such, the max of the scale does not
accurately reflect the SimBa Scores where the true surface lacks association. Each plot represents
the average SimBaS for each coefficient over the 200 simulated data sets. These figures were based
on the smallest sample size N = 50, n = 25.

A.1.3 Additional Application Results
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Figure A.5: Heat maps of the set of flagged locations (v, t), ψ, from the BFDR. Significant locations
appear in white, non-significant locations are in black. For the difference surface, α = 0.05 while
the image-specific surfaces use α = 0.025. The δ-intensity change is 0.05 for all surfaces. The top
row contains results from the model using sensors 129 and 55. The bottom row contains results
from the model using sensors 75 and 11.
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Figure A.6: Heat maps of the set of flagged locations (v, t) using PWCI. Locations in white were
flagged as significant by the procedure while locations in black are not-significant. The top row
contains results from the model using sensors 129 and 55. The bottom row contains results from
the model using sensors 75 and 11.
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A.2 Bayesian Historical Functional Mixed Models for Re-
peated Measures

A.2.1 MCMC Sampler

The MCMC sampler for our historical wavelet-packet model is derived from the sampler

found in both Morris and Carroll (2006) and Meyer et al. (2014). The major difference

from Meyer et al. (2014) here is that we only sample coefficients satisfying the constraint

` ≤ k. The prior we place on the coefficients satisfies this constraint and is

βWP

(s`,jk) ∼ 1(` ≤ k)γ(s`,jk)N (0, τjk) + (1− γs`,jk)d0, γ(s`,jk) ∼ B(πjk).

From here, the sample follows in a similar manner to both Morris and Carroll (2006) and

Meyer et al. (2014).

Step 1: Working by each y-space coefficient, sample the fixed effect at (jk) and s` such

that ` ≤ k from the distribution f(β∗(s`,jk)|y∗(j,k), β
∗
(−s`),jk,Σ

∗) where β∗(−s`),jk. f(·) is then a

mixture of a point-mass at zero and a normal with mean µs`,jk and variance εs`,jk with

mixture probability αs`,jk given by

αs`,jk = Pr
(
γs`,jk = 1|y∗(j,k), β

∗
(−s`),jk,Σ

∗
)

= Os`,jk/ (Os`,jk + 1)

where

Os`,jk = πs`j/(1− πpj)BFs`,jk

and

BFs`,jk = (1 + τs`,jk/Vs`,jk)
−1/2 exp

{
1

2
ζ2
s`,jk(1 + Vs`,jk/τs`,jk)

}
.

The mean and variance are then

µs`,jk = β̂∗(s`,jk),MLE(1 + Vs`,jk/τs`,jk)
−1 and εs`,jk = Vs`,jk(1 + Vs`,jk/τs`,jk)

−1.
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Step 2: Next sample the elements σ2
U(j,k) and σ2

E(j,k) of Σ∗U and Σ∗E respectively using a

random-walk Metropolis-Hastings step with objective function

f(σ2
U(j,k), σE(j,k)|y∗(j,k), β

∗
(j,k)) ∝

|Σjk|−1/2 exp

{
−1

2
(y∗(j,k) − X∗β∗(j,k))

′Σ−1
jk (y∗(j,k) − X∗β∗(j,k))

}
f(σ2

U(j,k), σE(j,k)).

where Σjk is the marginal variance of y∗(j,k). The proposal distribution is an independent

Gaussian truncated at zero and centered at the previous values.

Step 3: Sample random effects u∗(j,k) from their full conditional which is a Gaussian distri-

bution with mean {Ψ−1
jk + 1/σ2

U(j,k)}−1Ψ−1
jk ûNS,jk and variance {Ψ−1 + 1/σ2

U(j,k)}−1, where

Ψjk = {Z′(1/σ2
E(j,k))Z}−1 and

ûNS,jk =
{
Z′(1/σ2

E(j,k))Z
}−1 Z′

(
1/σ2

E(j,k)

) (
y∗(j,k) − X∗β∗(j,k)

)
.

Step 4: Finally, update τpj and πpj separately using f(τpj|γ(p,jk), β
∗
(j,k), aτ , bτ ) which is an

inverse-gamma and f(πpj|γ(p,jk), aπ, bπ) which is beta.

A.2.2 Additional Simulation Details
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Figure A.7: Boxplots of rMSE by total sample size. For N = 150, there were only n = 45 subjects.
For N = 1000, there were n = 1000 subjects.
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Figure A.8: Left column: heat maps of average estimated β(v, t) plotted as functions of t and v
based on a sample size of N = n = 1000. Right column: heat maps of the true β(v, t) functions
plotted as functions of t and v.
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A.3 Ordinal Probit Wavelet-based Functional Models for
eQTL Analysis

A.3.1 Additional Simulation Details
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Figure A.9: Left column: heat maps of FDRε as functions of ε for the BFDR with varying levels of
πδ. Right column: heat maps of SENΥ as functions of Υ for the BFDR with varying levels of πδ
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A.3.2 Additional Results for SNPs within 250kb of IREB2
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Figure A.10: Joint 95% credible bands for each single probe set model. Bands are calculated in the
manner describe both in the paper and in Ruppert, Wand, and Carroll (2003).
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Figure A.11: Joint 95% credible bands for each probe set from the joint model. Bands are calculated
on each probe set separately in the manner describe both in the paper and in Ruppert, Wand, and
Carroll (2003).
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A.3.3 Additional Results for SNPs within 2Mb of IREB2
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Figure A.12: Single probe models SimBa Scores plotted as functions of position on the chromo-
some. The location of IREB2 is noted as a horizontal bar below the probabilities. For convenience,
a dotted-dashed gray line depicts a global α-level of 0.05 plotted on the − log10 scale. Scores are
from the models taking 2Mb to either side of IREB2.
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Figure A.13: Joint model SimBa Scores for the probe sets 1555476 at, 214666 x at, and 242261 at
plotted as functions of position on the chromosome. The location of IREB2 is noted as a horizontal
bar below the probabilities. For convenience, a dotted-dashed gray line depicts a global α-level of
0.05 plotted on the − log10 scale. Scores are from the models taking 2Mb to either side of IREB2.
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Figure A.14: Joint 95% credible bands for each probe set from the joint model for 1555476 at,
214666 x at, and 242261 at. Bands are calculated on each probe set separately in the manner de-
scribe both in the paper and in Ruppert, Wand, and Carroll (2003).
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