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Essays in Financial Economics 

Abstract 
 

This dissertation presents three essays.  The first essay finds that the 

household risky ratio, the ratio of high risk assets over low risk assets directly 

owned by households, is a strong negative predictor of the equity premium on the 

US stock market.  The predictability is robust to definition of the asset classes, 

first versus second half of sample, and the finite-sample bias of Stambaugh (1999).  

The predictability is stronger than, and not subsumed by popular predictors like 

price-earnings ratios, yield spread, equity share of issues, or consumption-wealth 

ratios.  The main predictive power is decomposed into three similar parts: 1) the 

household tilt of risky assets, which is novel and generally orthogonal to known 

predictors; 2) a valuation ratio component; and 3) an issuance component of high 

risk versus low risk assets.  

The second essay uses a regression discontinuity design on Dodd-Frank’s 

say-on-pay vote to identify the impact of the vote on CEO compensation.  

Crossing the vote discontinuity from 51% to 49% drops the level of CEO pay by 

59.8% gross for the next year.  The effects are robust, statistically significant, and 

economically significant.  Despite the sharp drop in pay, crossing the vote 
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discontinuity has no statistically distinguishable impact on firm market value, 

earnings, dividends, and capital structure.   

The final essay, which is coauthored with David C. Yang, begins by 

noting the issuance of options by market makers induces hedging feedback 

demand: when the underlying price goes up, market makers are forced to buy, a 

well-known phenomenon caused by options gamma.  This essay empirically 

measures hedging feedback demand through the gamma of options above the 

baseline.  This residual gamma causes destabilization in the form of additional 

momentum.  The effect occurs quickly (within four days) and does not revert 

away rapidly (within ten days).  The effect is robust to time trends and liquidity 

effects.  The essay further uses three novel instruments for residual gamma.  

Residual gamma increases 1) near options expiration, 2) when the underlying 

price happens to be similar to past price levels, and 3) when the price of the 

underlying equity happens to be near a round number.  
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Chapter 1 

1 Household Risky Ratio and Expected Stock Returns 

 

1.1 Introduction 

 

Over the last few decades, a key asset pricing finding is that the equity 

premium varies over time.  Predictors of the time varying equity premium include 

price-earnings ratios (Fama French 1988) (Campbell Shiller 1988), yield spreads 

(Fama Schwert 1977, Keim Stambaugh 1986, Campbell 1987), consumption-

wealth ratios (cay) (Lettau Ludvigson 2001), or equity share of issuances (Baker 

Wurgler 2000). 

The equity premium can be seen as a type of inverse price on the equity 

market (Gordon 1962).  In understanding time variation of prices, it seems natural 
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to look at time-variation of quantities.  As the difference between expected returns 

on high risk versus low risk assets, the equity premium motivates the inspection 

of the quantities associated with high risk versus low risk assets.   

Baker and Wurgler (2000) do exactly this, looking at quantities of equity 

versus debt issued by the corporate sector as a predictor of future equity market 

returns and find positive results.  In particular, the paper finds that when equity 

prices are high, and future expected returns are low, corporations rationally 

respond by issuing a higher ratio of equities versus bonds.  The results of Baker 

and Wurgler (2000) suggest that the corporate sector absorbs and optimizes to the 

demand shocks. 

A natural question to ask is, from where do the demand shocks arise?  One 

sector to examine are households, which might be a source of demand shocks due 

to either behavioral theories like extrapolative beliefs (Greenwood Shleifer 2013) 

or to consumption-CAPM theories like Campbell Cochrane (1999).  Therefore, I 

then look at the household sector’s direct holdings of high risk versus low risk 

assets.   

I draw my data from the Federal Reserve Flow of Funds, which 

enumerates all the instruments held by the household sector.  I find that the four 

major holdings which compose the vast majority of household direct holdings are 

equities, risky mutual funds, credits, and deposits.  The first two sum up to high 

risk assets and the bottom sum up to low risk assets. 
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Figure 1.1: Household High Risk and Low Risk Assets, 1951-2012. 

High risky (blue) and low risk (red) household holdings are from the Federal Reserve Flow of 
Funds data.  High risk assets are defined as equity held directly or risky mutual funds.  Low risk 
assets include credit instruments and deposits held directly.  All dollars figures are nominal. 
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Figure 1.2: The household risky ratio 1951-2012. 

The household risky ratio, defined as the value of high risk household assets divided by low risk 
household assets from the Federal Reserve Flow of Funds data.  High risk assets are defined as 
equity held directly or risky mutual funds.  Low risk assets include credit instruments and deposits 
held directly. 
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Table 1.1: Multivariate OLS Regressions for Predicting Excess Returns. 

OLS regressions of one quarter ahead excess returns on the value-weighted CRSP on one period 
lagged multiple predictors: 
𝑅𝑡,𝑡+1 = 𝛼 + 𝛽1𝑅𝑖𝑠𝑘𝑦𝑡−1 + 𝛽2𝑅𝑖𝑠𝑘𝑦𝑡−2 + 𝛽3𝑆𝑡−1 + 𝛽4𝐶𝐴𝑃𝐸𝑡−1 + 𝛽5𝑇𝑒𝑟𝑚𝑡−1 + 𝛽6𝐶𝐴𝑌𝑡−1 + 𝜖𝑡 
Where 𝑅𝑡,𝑡+1 denotes the excess return of the value-weighted CRSP for one quarter forward; 
𝑅𝑖𝑠𝑘𝑦𝑡−1 denotes the household risky ratio calculated by dividing household high risk assets over 
low risk assets, as collected from the Federal Reserve Flow of Funds; 𝑅𝑖𝑠𝑘𝑦𝑡−5 is the household 
risky ratio lagged one extra year; 𝑆𝑡−1 denotes the equity share in new issues as defined in Baker 
Wurgler (2000); 𝐶𝐴𝑃𝐸𝑡−1 denotes the ten year cyclically adjusted price to earnings ratio, defined 
as per Campbell Shiller (1988); 𝑇𝑒𝑟𝑚𝑡−1 denotes the yield premium of ten year over one month 
federal government obligations; 𝐶𝐴𝑌𝑡−1 is the consumption wealth ratio proxy defined by Lettau 
Ludvigson (2001); t-statistics are shown in brackets using Newey-West heteroskedastic and 
autocorrelation robust standard errors with 5 periods of lags.  Regression (8) normalizes all 
predictors to have unit variance (termed here by the word normed), while all other regressions use 
non-normalized predictors.  N=226. 
 
 Predictors  

Not Normalized 
 

Normed 
 (1) (2) (3) (4) (5) (6) (7)  (8) 
Intercept           
𝑅𝑖𝑠𝑘𝑦𝑡−1  -2.49 

[-4.16] 
-2.86 

[-2.69] 
-2.52 

[-4.33] 
-3.76 

[-4.20] 
-2.63 

[-3.95] 
-2.21 

[-3.52] 
-2.39 

[-1.97] 
 -1.94 

 [-1.97] 
𝑅𝑖𝑠𝑘𝑦𝑡−5   .32 

[0.27] 
       

𝑆𝑡−1    -10.49 
[-2.13] 

   -7.52 
[-1.16] 

 -.71  
[-1.16] 

𝐶𝐴𝑃𝐸𝑡−1     .18 
[1.75] 

  .02 
[0.11] 

 .12  
[0.11] 

𝑇𝑒𝑟𝑚𝑡−1      -.28 
[-0.73] 

 -.31 
[-0.72] 

 -.38  
[-0.72] 

𝐶𝐴𝑌𝑡−1       49.42 
[1.51] 

55.94 
[1.24] 

 .95 
[1.24] 

𝑅2 0.054 0.054 0.062 0.060 0.052 0.060 0.060  0.060 
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Table 1.2: Robustness to First and Second Half. 

OLS regressions of one quarter ahead value-weighted CRSP excess returns on one period lagged 
household risky ratio.: 

𝑅𝑡,𝑡+1 = 𝛼 + 𝛽1𝑅𝑖𝑠𝑘𝑦𝑡−1 + 𝜖𝑡 

Where 𝑅𝑡,𝑡+1 denotes the excess return on the value-weighted CRSP for one quarter forward; 
𝑅𝑖𝑠𝑘𝑦𝑡−1 denotes the household risky ratio calculated by dividing household high risk assets over 
low risk assets, as collected from the Federal Reserve Flow of Funds.  The regression period is for 
the first half of the sample, the second half of the sample, and then the entire sample.  t-statistics 
are shown in brackets using Newey-West heteroskedastic and autocorrelation robust standard 
errors with 5 years of lags. N=241 
 

 First Half  Second Half  Entire Sample 

𝑅𝑖𝑠𝑘𝑦  -2.94  
[-3.34] 

 -2.15  
[-2.64] 

 -2.49 
[-4.16] 

𝑅2  .066  .038  .054 

 

  



7 

 

 

 

 

Table 1.3: Construction of the Data. 

OLS regressions of one quarter ahead value weighted CRSP excess returns on one period lagged 
of the household risky ratio, defined in various ways: 

𝑅𝑡,𝑡+1 = 𝛼 + 𝛽1𝑋𝑡−1 + 𝜖𝑡 

Where 𝑅𝑡,𝑡+1 denotes the excess return on CRSP for one quarter forward; 𝑋𝑡−1 denotes various 
household risky ratios calculated by dividing various household high risk assets over various low 
risk assets, as collected from the Federal Reserve Flow of Funds.  The numerator may contain 
equities or mutual funds, and the denominator may contain credit markets or deposits.  An X in the 
table below denotes the inclusion of each variable in the definition of 𝑋𝑡 for that regression.  t-
statistics are shown in brackets using Newey-West heteroskedastic and autocorrelation robust 
standard errors with 5 periods of lags. N=241 
 

 (1) (2) (3) (4) (5) 

𝑋𝑡−1  -2.49  
[-4.16] 

-1.21  
[-3.40] 

-1.05  
[-2.97] 

-3.22  
[-3.48] 

-2.34  
[-1.58] 

Numerator has Equities X X  X X 

Numerator has Mutual Fund X  X X X 

Denominator has Credit Market X X X  X 

Denominator has Deposit X X X X  

Adj 𝑅2 .054 .041 .034 .035 .008 

 

  



8 

 

 

 

 

Table 1.4: Univariate regression under different inference assumptions. 

The univariate regression: 

𝑅𝑡,𝑡+1 = 𝛼 + 𝛽𝑅𝑖𝑠𝑘𝑦𝑡 + 𝜖𝑡 

Where 𝑅𝑡,𝑡+1 denotes the excess return of value-weighted CRSP for one quarter forward; 𝑅𝑖𝑠𝑘𝑦𝑡 
denotes the household risky ratio calculated by dividing household high risk assets over low risk 
assets, as collected from the Federal Reserve Flow of Funds.  The OLS method uses standard 
inferences.  The Newey-West method uses heteroskedastic and autocorrelation corrected standard 
errors with 5 years of lag.  The Kendall (1954) correction is a point estimate adjustment.  The 
Kothari-Shanken inferences use the bootstrap methodology to correct for small sample bias as 
outlined in Stambaugh (1999).  Campbell-Yogo (2006) is a hypothesis test whose implementation 
is outlined in Campbell Yogo (2005).  The Lewellen (2004) provides not an unbiased estimate but 
an upper bound for 𝛽 and the p-value, and a lower-bound for the t-statistic. 

 

 Newey
-West 

 OLS  Kendall 
(1954) 

 Kothari-
Shanken 

 Campbell
-Yogo 

 Lewellen 
Bound 

𝛽 𝑜𝑛 𝑅𝑖𝑠𝑘𝑦𝑡  -2.27  -2.27  -1.79  -1.89    -.92 

95% CI 𝛽 -3.43  -3.55  -3.07  -2.89  -4.32  -1.55 

95% CI �̅� -1.11  -.993  -0.51  -1.12  -.03  -.29 

t-statistic -3.85  -3.50  -2.75      -2.88 

p value .0001  .0006  .0065  .0040  .0500  .0062 
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I then define the household risky ratio as the ratio between the two: the 

household sector’s direct holdings of high risk assets over the household sector’s 

direct holdings of low risk assets.  I find the household risky ratio is a negative 

predictor future equity premium between 1951 and 2012, which is the full sample 

of available data from the Flow of Funds.  The negative relationship is obvious in 

simple binnings of the predictor variable (Figure 1.1), and persists for years 

beyond the binning date (Figure 1.2).   

In a univariate setting, the predictability is strong: the 𝑅2 is 5% quarterly 

and higher than any single of the following popular predictors: the Campbell 

Shiller (1988) cyclically adjusted price-earnings ratio (CAPE), the yield spread, 

the equity share of issues, and the cay (Table 1.1).  The predictive power of the 

household risky ratio is also not subsumed by the above popular predictors: the 

coefficient remains essentially the same in a multivariate regression alongside the 

above predictors (Table 1.2).   

The predictive power of the household risky ratio is robust to a range of 

variations.  It is robust to construction from Flow of Funds data.  Dropping any 

single component of the four mentioned above does not eliminate the predictive 

power (Table 1.3).  Adding boundary components, components that arguably 

could be categorized as either inside or outside household discretionary assets, 

also does not affect the results.  It is robust to subsamples: the coefficient in the 

first half of the sample is almost identical to that of the second half of the sample 
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(Table 1.4).  The effect cannot be explained by Modigilani-Miller effects (Section 

5). 

Finally it is robust to the small sample correction of Stambaugh (1999).  

The household risky ratio does experience Stambaugh bias since it has a high 

autocorrelation (quarterly 𝜌= .96) and cross correlation with returns (𝜌 = .86).  

However, correction for Stambaugh bias via the methods of Kendall (1954) and 

Kothari Shanken (1997) show that bias to be limited to about 20% of the effect 

size.  This is confirmed by the Lewellen (2004) bounds test and the Campbell 

Yogo (2006) correction method (Table 1.5).  The magnitude of this 20% drop does 

not change whether the predictor is economically or statistically significant, and is 

less than other popularly accepted predictors like dividend-price ratios. 

I also run overlapping regressions, taking care to address econometric 

issues of such regressions, and show that the household risky ratio has substantial 

long-horizon predictability.  The 𝑅2 is as high as 22% at the one year level and 40% 

at the three year level.  However, for all other regressions I still set the baseline 

prediction-horizon to be equal to the sampling-period of one quarter.  This 

follows in the theory of Harri and Brorsen (2009) and avoids the complicated 

corrections and lack of transparency of overlapping regressions. 

  



11 

 
 
 
 
 
 
 
 
 
 
 

Table 1.5: Dickey-Fuller GLS Test of Unit Root in the Household risky ratio. 

The table displays the Dickey-Fuller GLS (DF-GLS) test for a unit root in the household risky 
ratio (Panel A) and changes in household risky ratio (Panel B).  The household risky ratio is the 
ratio of household high risk assets over household low risk assets as reported by the Federal 
Reserve Flow of Funds data.  For both the household risky ration and changes in the household 
risky ratio, the table displays for testing 1 lag and 14 lags (the default maximum tested by the Stata 
software used) of the DF-GLS test statistic, along with the 1%, 5%, and 10% hypothesis test cutoff 
values of the test-statistic.  N=228. 
 
Number of 
Lags 

DF-GLS 
Statistic 

Rejected? 1% Critical 
Value 

5% Critical 
Value 

10% Critical 
Value 

 Panel A: Household risky ratio   
14 -1.578 No -3.48 -2.813 -2.534 
1 -2.287 No -3.48 -2.919 -2.630 
 Panel B: Changes in Household risky ratio   
14 -3.243 ** Yes -3.48 -2.811 -2.532 
1 -4.841*** Yes -3.48 -2.922 -2.633 
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Table 1.6: Comparison of the Household risky ratio, Total risky ratio, and Household Bias 
as Return Predictors. 

OLS regressions of one-quarter forward value-weighted CRSP excess returns on multiple 
predictors lagged one quarter: 
𝑅𝑡,𝑡+1 = 𝛼 + 𝛽1 ln(𝑅𝑖𝑠𝑘𝑦𝑡−1) + 𝛽2 ln(𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑇𝑖𝑙𝑡𝑡−1) + 𝛽3𝑉𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 𝑃𝑎𝑟𝑡𝑡−1

+ 𝛽4𝐼𝑠𝑠𝑢𝑎𝑛𝑐𝑒 𝑃𝑎𝑟𝑡𝑡−1  + 𝛽5𝑆𝑡−1 + 𝛽6𝐶𝐴𝑃𝐸𝑡−1 + 𝛽7𝑇𝑒𝑟𝑚𝑡−1 + 𝛽8𝐶𝐴𝑌𝑡−1
+ 𝜖𝑡 

Where 𝑅𝑡,𝑡+1 denotes the excess return on CRSP for one quarter forward; ln (𝑅𝑖𝑠𝑘𝑦𝑡−1) denotes 
the log household risky ratio calculated by dividing household high risk assets over low risk assets, 
as collected from the Federal Reserve Flow of Funds; ln (𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑡𝑖𝑙𝑡𝑡−1) denotes the log of 
the household tilt, the quotient between the household risky ratio and total risky ratio as calculated 
by dividing economy-wide high risk assets over economy-wide low risk assets, as collected from 
the Federal Reserve Flow of Funds; 𝑉𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 𝑃𝑎𝑟𝑡𝑡−1 is the linear projection of the total 
risky variable above onto CAPE and 𝐶𝐴𝑃𝐸2; 𝐼𝑠𝑠𝑢𝑎𝑛𝑐𝑒 𝑃𝑎𝑟𝑡𝑡−1 is the residual from the above 
projection; 𝑆𝑡−1 denotes the equity share in new issues as defined in Baker Wurgler (2000); 
𝐶𝐴𝑃𝐸𝑡 denotes the ten year cyclically adjusted price to earnings ratio, defined as per Campbell-
Shiller (1988); 𝑇𝑒𝑟𝑚𝑡−1 denotes the yield premium of ten year over one month federal 
government obligations; 𝐶𝐴𝑌𝑡 is the consumption wealth ratio proxy defined by Lettau Ludvigson 
(2001).  t-statistics are shown in brackets using Newey-West heteroskedastic and autocorrelation 
robust standard errors with 5 periods lags.  N=228. 

 
Panel A: No Covariates 

   No Covariates   
 (1) (2) (3) (4) (5) 
ln (𝑅𝑖𝑠𝑘𝑦𝑡−1)  -6.47 

[-4.12] 
    

ln(𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑇𝑖𝑙𝑡𝑡−1)   -9.26 
[-2.31] 

  -14.44 
[-3.39] 

𝑅𝑖𝑠𝑘𝑦 𝑉𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑡−1     -3.46 
[-1.79] 

 -6.17 
[-3.14] 

𝑅𝑖𝑠𝑘𝑦 𝐼𝑠𝑠𝑢𝑎𝑛𝑐𝑒𝑡−1     -7.68 
[-2.39] 

-6.50 
[-2.25] 

𝑆𝑡−1       
𝐶𝐴𝑃𝐸𝑡−1       
𝑇𝑒𝑟𝑚𝑡−1       
𝐶𝐴𝑌𝑡−1       
𝑅2  .0571 .0172 .0113 .0164 .0664 
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Table 1.6 (Continued) 
 
 
 
 
 
 
 
 
 
 
 
 

Panel B: With Covariates 
  Covariates   
 (6) (7) (8) (9) (10) 
ln (𝑅𝑖𝑠𝑘𝑦𝑡−1)  -6.44 

[-2.11] 
    

ln(𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑇𝑖𝑙𝑡𝑡−1)   -9.49 
[-2.13] 

   

𝑅𝑖𝑠𝑘𝑦 𝑉𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑡−1     -5.94 
[-2.75] 

  

𝑅𝑖𝑠𝑘𝑦 𝐼𝑠𝑠𝑢𝑎𝑛𝑐𝑒𝑡−1     -.13 
[-.03] 

-4.89 
[-1.32] 

𝑆𝑡−1  -7.73 
[-1.20] 

-10.45 
[-1.73] 

-13.50 
[-2.15] 

-11.39 
[-1.62] 

-9.70 
[-1.59] 

𝐶𝐴𝑃𝐸𝑡−1  .02 
[.15] 

-.24 
[-2.63] 

 
 

-.20 
[-2.24] 

 

𝑇𝑒𝑟𝑚𝑡−1  -.36 
[-.84] 

-.00 
[.01] 

-.32 
[-.71] 

-.25 
[-.52] 

 

𝐶𝐴𝑌𝑡−1  53.98 
[1.26] 

70.01 
[1.67] 

96.10 
[2.39] 

94.15 
[2.20] 

 

𝑅2  .0638 .0635 .0568 .0458 .0236 
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This paper then investigates the source of the predictive power of the 

household risky ratio.  The household risky ratio can be seen as the sum of three 

parts.  First define an auxiliary variable called the total risky ratio, the ratio of 

economy-wide high risk assets over economy-wide low risk assets.  Part one is 

then the household tilt, the ratio of the household risky ratio over the total risky 

ratio; it measures how much households tilt towards high risk assets above and 

beyond the rest of the economy.  The household tilt variable is seen to be 

generally orthogonal to known popular predictors (Table 1.6) and hence is novel. 

Parts two and three explain the total risky ratio.  The second part is the valuation 

ratio part of the total risky ratio, and captures the extent to which the total risky 

ratio can be seen as a price of risky assets, and thus a tracker of historical price 

changes.  For example, if the value of high risk assets doubles overnight, the total 

risky ratio also doubles.  The valuation ratio component captures this doubling.  

The valuation ratio part is then defined as the projection of the total risky ratio 

onto the known valuation ratio CAPE. 

The final part must mechanically be what remains from the above.  In 

particular, it is the residual from the above projection of the total risky ratio onto 

the known valuation ratio CAPE.  Since asset classes can only grow though 

capital gains and issuances, and capital gains are captured by CAPE above, the 

residual can be thought of theoretically as the component of the household risky 

ratio that arises from issuances.  In fact, empirically the final part indeed strongly 
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interacts with Baker-Wurgler issuances (Table 1.6).  For these reasons, I term it 

the issuance part.   

These empirical results can be related to the theory of demand systems for 

assets (Brainard and Tobin 1968).  Households can be seen as exogenously 

demanding more risky assets.  This causes the quantity of household high risk 

assets to increase, while at the same time increasing the price of high risk assets 

and decreasing forward returns.  This justifies the observed negative correlation 

between the household risky ratio and forward returns.  The demand system 

model can also be seen in recent work by Baker Wurgler (2000), Baker 

Greenwood Wurgler (2003), and Greenwood Vayanos (2010). 

These empirical results have welfare implications.  Since the household 

sector buys equities when future returns are lower than average, the return 

experienced by households will be less than a constant-ratio standard.  I calculate 

that households receive a Sharpe ratio of .267 from holding risky assets instead 

of .311 under a constant-ratio standard.  Both returns are far below the .533 

Sharpe ratio attainable by perfectly conditioning on predictive variables. 

This seems to be an opportune time to note this dissertation has been 

adapted by concatenating together the master versions of three papers.  Minimal 

formatting and numbering changes have been made to comply with dissertation 

format requirements.  However, textual changes may not have been made.  

Therefore, discrepancies may arise.  For example, what was called a paper or 

article is officially called in this version an essay or chapter.  Similarly, in the 
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paragraph below, Section 2 refers to the subpart labeled by 1.2.  Subsection C of 

Section 2 may likewise be 1.2.3.   This version sacrifices some clarity for format 

compliance, and therefore will not be as clear as the master version optimized 

solely for clarity, which can be requested from the author.  Nevertheless, in terms 

of content this version is nearly identical to the corresponding master copy and 

fully usable for research. 

Section 2 presents the data, definitions, and various constructions of the 

household risky ratio variable.  Section 3 presents the predictive power of the 

variable for the equity premium.  Section 4 decomposes the predictive power of 

the household risky ratio into components.  Section 5 discusses some theory and 

implications of the results.  Section 6 discusses extensions.  Section 7 concludes.   

1.2 Data 

The main data series used to construct the household risky ratio and 

related variables is the Federal Reserve Flow of Funds Financial Accounts of the 

United States, or simply the Flow of Funds.  This data series reports quarterly data 

starting the fourth quarter of 1951, and continues to present day with data released 

around 60 days after the end of the quarter.  All data is collected from the Flow of 

Funds using the data download program from the quarterly series (Q series) 

measuring non-seasonally-adjusted levels (FL series).   

The Flow of Funds is organized mainly along two dimensions.  The first 

dimension is the sector, defined as a partitioning of players in the economy.  
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Sectors include households and nonprofit organizations, nonfinancial businesses, 

state and local governments, and soforth (see Figure 1.3).  The second dimension 

is instrument type, which can be seen as a class of assets or liabilities: home 

mortgages (liability), total loans (liability), treasury securities (asset), and security 

credit (asset) are just a few examples.  For both the sector and instrument 

dimension, there are varying levels of aggregation. 

To construct the household risky ratio, the numerator and denominator 

was first separately constructed from data within the household and nonprofit 

organizations sector.  The numerator consists of the sum of equities directly held 

by households (FL153064105.Q) and the risky mutual funds directly held by 

households (FL153064205.Q).  This corresponds roughly to the total amount of 

high risk assets that households hold directly with discretion, defined as assets 

that households can readily and liquidly trade to reflect their preferences and 

beliefs.  The approximation is even better in variation-space instead of levels-

space.  The denominator consists of household directly held credit market 

instruments (FL154000025.Q), and deposits which includes low risk money 

market mutual funds (FL154004005.Q).  This corresponds roughly to the amount 

of low risk assets that households hold directly with discretion. 

The household risky ratio then can be seen as approximately the ratio of 

high risk to low risk assets directly and discretionarily held by households.   Two 

items are to be discussed: what exactly does approximate mean, and what’s the 

significance of assets that are directly and discretionarily held?    
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Figure 1.3: Flow of Funds Excerpt: Size of Sectors. 

The above figure is taken directly from the first three rows of table Z.1 of the March 7, 2013 
publication of the Federal Reserve Flow of Funds.  The rows show the financial assets and 
liabilities of all sectors defined by the Flow of Funds. Within each sector “A” specifies assets and 
“L” specifies liabilities.    
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The approximation is actually quite good.  Within the class of household 

discretionary and direct low risk assets for example, credits and deposits are by 

far the largest instruments.  The next largest instruments like security credit or 

miscellaneous assets compose only less than 5% of credits and deposits, and 

similarly for risky assets.  This is improved even more once one considers that 

approximation in levels is not as important as approximation in variation.  For 

high risk assets even though some local government retirement plans are not 

measured, the variation of the unmeasured portion likely moves with the 

measured portion – which is to say with the same variation as the equities market.  

This robustness and point that the variation is what matters is demonstrated in the 

later discussion of Table 1.4 which shows that predictability barely drops even as 

large parts of the above four components are dropped.  Overall then, the 

approximation of the numerator and denominator to household discretionary and 

direct holdings is quite good. 

The second issue to discuss is why the paper limits to discretionary and 

direct holdings of the household.  In some respects, this is a fundamental issue.  

After all, the entire economy is indirectly controlled by the household sector, so 

even the definition of the household sector by the Flow of Funds assumes some 

boundary.  This paper is simply assuming a narrower boundary.   

The major theoretical reason motivating the limit to discretionary and 

direct holdings is that only assets that are readily and liquidly traded by 

households can be seen to strongly and immediately reflect their preferences and 
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beliefs.  To the extent that the household risky ratio has predictive power through 

capturing preferences and beliefs, this property is essentially.  For example, take 

the largest asset classes not included: real estate, private businesses, and life 

insurance reserves.  The first is moderately illiquid with transaction costs of 6% 

plus time, preparation, and other opportunity costs.  It is also a bundled good that 

reflects preferences for internal space, external location, commute distance, and 

school district.  Thus, sales and purchases of housing might be seen as a much 

noisier measure of household risk preferences then, say, holding the S&P index.  

This is similarly true for private businesses which suffer from heavy adverse 

selection issues in sales.  Life insurance reserves likewise are often managed by a 

portfolio manager and so less effectively measure household preferences. 

The above two points provide theoretical motivation for the construction 

of the household risky ratio variable.  Even without the above two reasons, the 

household risky ratio can be taken at face value as an empirical construct with 

predictive power.  Concerns of data snooping could be allayed by the fact that the 

4.16 t-statistic in univariate regressions corresponds to a Bonferroni correction of 

testing one thousand independent variables, whereas the Fed Flow of funds has 

much fewer, especially independent variables.  Further assurance can be realized 

in the robustness of the ratio to construction (Table 1.4). 

The other primitive variable constructed from the Flow of Funds is the 

total risky ratio, which is the exact analogue series of the household risky ratio but 

for all sectors combined instead of just the household sector.   
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Compared to other broad economic series, the Federal Reserve Flow of 

Funds is minimally affected by look-ahead bias.  Generally the series is release 

quickly after a quarter’s end: around 60 days on average, and almost never 

exceeding a quarter.  Thus, the one quarter lag used in the baseline is more than 

sufficient to account for this.  The Flow of Funds is revised from time to time.  

However, revisions are generally limited to one to two years back, and this paper 

did not find any revisions of the four broad series used to define the household 

risky ratio.   

Figure 1.2 presents the amount of household high risk versus low risk 

assets on a log scale from 1951-2012.  The high risk series, as expected, is more 

variable over time.  The high and low risk series seem to be trending up linearly, 

perhaps each following a first order autoregressive process with unit root and drift.  

The two series looks co-integrated, which is justifiable by theory: in the long run 

they might be expected to be growing at the same rate as the entire economy. 

Figure 1.2 shows the household risky ratio, the first series above divided by 

the second series.  Peaks and trends in this series are apparent.  The ratio slowly 

but steadily climbs from 1951 to about 1969, which might signify a trend where 

equities began to be seen as less a speculative asset from the aftermath of the 

great depression, into an asset that everyone could own.  As will be discussed 

later, the rise in price may have caused an increase in quantity if households have 

extrapolative beliefs, and the two effects reinforced each other.  
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Households then experienced two large price drops in 1970 and 1974, 

causing them to be more cautious about stocks for many decades ahead, up until 

the mid-90s.  It is exactly during this time that equities saw their highest returns.  

In the late 90s, as the Internet bubble got underway, households against started 

shifting into high risk assets, again to see significant wealth loss as the bubble 

burst. 

Other data sources have been compiled from sources as standard as 

possible.  The ten-year cyclically adjusted price-earnings ratio (CAPE) is 

calculated as per Campbell Shiller (1988), and the data is collected from Robert 

Shiller’s website.  CAY is defined and supplied by Lettau Ludvigson (2001).  

Equity shares of issuances is from Baker Wurgler (2000).  Total stock market 

returns is the value-weighted series from CRSP.  The long rate is the GS10 rate 

collected from Robert Shiller’s website.  The short rate is the 1-month treasury 

bill rate provided by Ibbotson and Associates, Inc. and provided on Kenneth 

French’s website.  The equity premium is calculated as the difference between the 

stock market returns minus the short rate expressed in percentage points.  The 

yield spread is calculated as the difference between long rates and short rates.   

1.3 Predictive Power 

This section outlines the predictive power of the household risky ratio.  It begins 

with informal graphical analyses and then formalizes these analyses through 
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regressions.  Finally, this section checks robustness through multivariate 

regressions and additional tests. 

1.3.1 Baseline Predictive Power  

Figure 1.4 shows 1-year and 3-year value-weighted CRSP forward equity 

premia sorted by the lowest to highest quintile of the household risky ratio 

variable.  The drop in equity premia from the highest to lowest quintile is 

generally monotonic, demonstrating a somewhat continuous relationship between 

the two variables.  The magnitude of the effect is larger for 3-years, which is not 

surprising given the persistence of the household risky ratio predictor variable.   

Figure 1.5 shows forward annual risk premia with respect to the lowest, 

middle, and highest tercile of household risky ratio.  Note that there is no 

relationship between the terciles and returns before the tercile formation time.  

For the first 9 years, the lowest tercile has significantly greater returns than then 

highest tercile.   The years of predictability seems to accumulate most at the 

beginning but persist for many years.  One clear explanation for this is simply the 

fact that the predictor variable is quite persistent, so predictability a few years out 

can simply reflect this persistence.  In this way Figure 1.5 can also be seen as a 

cross correlogram between returns and the household risky ratio. 

At a glance, it seems clear that there is some negative relationship between 

the household risky ratio and forward returns.  The relationship seems to persist 

for quite a number of years afterwards.  
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Figure 1.4: Mean 1 and 3 year forward returns by household risky ratio, 1951-2012. 

Mean 1-year forward (red) and 3-year forward (blue) value-weighted CRSP excess return by 
quintile of household risky ratio.  The risky-ratio variable (228 observations) were ranked and then 
binned into quintiles.  Quintile 1 below contains the lowest fifth of the value of household risky 
ratios, and quintile 5 contains the highest fifth.  Then the excess return for the next 1 and 3 years 
on the value-weighted CRSP is calculated and plotted. 
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Figure 1.5: Mean past and future annual equity returns from t-2 to t+12 by household risky 
ratio. 

Each quarter is binned by terciles of household risky ratio – low (red), medium (grey), and high 
(green).  Annual excess valued-weighted CRSP returns from 2-years past (t-2) to 12 years in the 
future (t+12) for each bin are plotted in the bar chart below.   
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1.3.2 Univariate Regressions 

I next show the power of the household risky ratio predictor in a univariate 

regression setting.  I predict one-quarter forward returns using a variety of 

predictors.  All predictors are lagged one quarter, leaving a one quarter minimum 

gap between the measurement time of the predictors and the start of the return 

period predicted.  As standard in the literature, this gap ensures that the prediction 

is completely in the future period, and that the conditioning data is available for 

practitioners.  This is especially important because some predictors like the 

household risky ratio and the Shiller CAPE contain equity prices; common noise 

in equity price measurement would enter on both sides of the regression and 

swamp the magnitude of return predictability. 

The general regression framework for return predictions following the 

discussion above is then 

𝑅𝑡,𝑡+1 = 𝛼 + 𝛽𝑋𝑡−1 + 𝜖𝑡 

Table 1.7 shows the results of this regression against a set of regressors.  First, 

notice that the household risky ratio without additional lags is highly significant 

with a t-statistic of 4.16.  As a univariate regression, the significance of this 

statistic under these relatively transparent settings is very high.  Even more 

transparently, consider that the adjusted 𝑅2 at .054 and the correlation is 0.232.  

These figures are all substantially higher than almost all popular predictors in the 

literature.    
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Table 1.7: Univariate OLS regressions for predicting five-year-ahead market returns. 

One-quarter ahead valued-weighted CRSP excess returns are regressed on a variety of predictors: 

𝑅𝑡,𝑡+1 = 𝛼 + 𝛽𝑋𝑡−1 + 𝜖𝑡 

Where 𝑅𝑡,𝑡+1 denotes the excess returns on the value-weighted CRSP for one quarter ahead and 
𝑋𝑡−1 variously denotes the household risky ratio, defined as household high risk assets divided by 
household low risk assets; the household risky ratio lagged an extra quarter; the household risky 
ratio lagged an extra year; equity shares of issues (Baker Wurgler 2000); Campbell Shiller (1988) 
10-year cyclically adjusted price to earnings ratio (CAPE); the 10-year 1-month government 
obligation yield spread; and the consumption-wealth proxy CAY (Lettau Ludvigson 2001).  t-
statistics are heteroskedastic and autocorrelation robust (Newey-West) with 5 periods of lag.   

      

Predictor 𝛽 𝑡(𝛽) 𝛼 𝑡(𝑎) 𝑅2 

Household risky ratio -2.49  [-4.16] 8.05  [5.42] .054 

Household risky ratio (lagged extra quarter) -2.40  [-4.35] 7.84  [5.79] .050 

Household risky ratio (lagged extra year) -1.94  [-2.94] 6.72  [4.20] .032 

Baker-Wurgler Equity Share -7.32 [-1.34] 3.02  [2.83] .003 

Campbell-Shiller CAPE -.13  [-1.68] 4.36  [2.81] .011 

Term Spread .32  [0.87] 1.08  [0.99] .000 

Lettau-Ludvigson CAY  79.73 [2.51] 1.82  [3.49] .022 
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To examine the degree of predictability at different points in time, Table 

1.7 includes results for the household risky ratio at one quarter and one year of 

additional lag.  The coefficient noticeably decays from -2.49 to -2.40 to -1.94, but 

magnitude of the predictor even at an additional year out is only 22% less than 

originally.  The t-statistics and 𝑅2 also remain highly significant but noticeably 

decay.  As will be seen later, this is largely caused by persistence in the household 

risky ratio, and not the independent ability of different lags of the household risky 

ratio at predicting future returns.  

The next few rows of Table 1.7 examine the univariate regressions of other 

popular predictors of future equity premium.  The paper chose four of the most 

popular variables in the literature as benchmarks, following Campbell Thompson 

(2008): the equity share of issues from Baker Wurgler (2000), the Shiller 10-year 

cyclically adjusted PE (CAPE) from Campbell Shiller (1988), the 10 year minus 1 

month yield spread, and the cay proxy for consumption/wealth by Lettau 

Ludvigson (2001).   

The coefficients for all these four other predictors are significantly less 

than that for the household risky ratio.  The Lettau-Ludvigson cay is most 

significant with a t-statistic of 2.51 and an 𝑅2 of .022.  In second is CAPE with a 

t-statistic of 1.68 which is marginally significant.  The lower significance of 

CAPE in these regressions compared to the literature can mainly be attributed to 

the shorter data series.  For example, one of the most convincing works for the 
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predictive power of CAPE is Campbell Shiller (1988) which uses data back to 

1871 versus this paper’s 1951, and a specialty of Robert Shiller’s research is 

general marshaling past data to gain higher significance. 

The equity-share of issuance then has a t-statistic of around 1.34.  There 

are quite a few differences between this analysis and Baker Wurgler (2000) that 

may give rise to lower significance.  Baker Wurgler (2000) note their effect has 

most significance and their test logically has most power in equal-weighted CRSP, 

while this paper uses the value-weighted CRSP equity premium.  Baker Wurgler 

(2000) also uses different prediction periods from this paper, with predicted 

periods of one-year.  The significance does increase if the duration of the issuance 

is increased from one quarter to four quarters.  Finally, the time period matters 

again: the regressions in this paper are from beginning of the Flow of Fund data 

(1951) forward whereas Baker Wurgler (2000) used data from 1929.  The yield 

spread in this analysis barely has univariate predictability at all. 

Overall the result of this analysis is that the household risky ratio is a powerful 

predictor of future equity premium.  This is not only the case in Table 1.7 which 

compares four popular variables under this setting, but also by direct examination 

of t-statistics and 𝑅2 of the household risky ratio predictor, and comparing against 

analogous values across a wide variety of popular predictors in the setting of their 

seminal papers.  

1.3.3 Default Inferences for Regressions 
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This subsection discusses and justifies the inference assumptions used by 

default for the regressions above and the rest of the paper.  In particular, it 

discusses the focus on the one-quarter prediction horizon, as well as the choice to 

use Newey-West standard errors with five periods of lag. 

By default in this entire paper, the prediction period is chosen to be one 

quarter due to that being the unit of observation in the Federal Reserve Flow of 

Funds.  The later section on long-term predictions discusses more in depth the 

results of different periods of predictions, and econometric implications of having 

a prediction period that is longer than the data period.  As a general preview, the 

results are more or less the same with quarter returns, one year returns, or three 

year returns, but the one quarter returns are most natural and least dependent on 

model corrections. 

Also by default in this entire paper, regressions are done with Newey-

West with five periods of lags for robustness.  The Newey-West procedure 

encompasses the Eicker Huber White (EHW) heteroskedastic robust error 

correction (White 1980).  The household risky ratio regression is not especially 

hetereoskedastic, but inferences are often affected 10% or more using the EHW 

method.  Often the EHW standard errors are less than OLS due to return variance 

being concentrated near the center of the predictor.   

Newey-West also additionally takes into account time series correlation of 

error terms assuming a triangle (Bartlett) kernel for time series correlation 

structure.  The household risky ratio predictor has somewhat autocorrelated errors, 
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and inferences are often affected 40% or more using Newey-West procedures 

instead of EHW.  Often the Newey-West standard errors are less than EHW due 

to negative residual correlation.  The negative residual correlation can be verified 

by adding lagged returns in the household risky ratio regression.  However, the 

paper does not put lags into the baseline specification because the negative 

correlation is weak.  In a sample regression with ten lags, only one coefficient 

exceeds 1.5 and none are significant at the 5% Bonferroni-corrected level. 

The lag period was chosen using the procedure suggested by Newey 

(1993), and set at 3
4
𝑇
1
3 ≈ 5, with T=240.  In reality lags between one and ten 

periods generate almost the same result everywhere.  While the paper does not 

show simple EHW standard errors or OLS standard errors, neither of these two 

less-robust alternate procedures generate a univariate t-statistic of less than 3.5 for 

the household risky ratio.  More generally, econometric surveys (Harri Brorsen 

2009) have shown that Newey-West corrects many substantially critical errors, 

and almost never give estimates substantially worse than other estimators in the 

space of heteroskedastic and autocorrelation robust estimators or less, including 

EHW and OLS.  For both general and situation specific reasons this paper then 

universally uses Newey-West with five periods of lag as default. 

1.3.4 Multivariate Regressions. 

The univariate regressions are useful in examining the prediction power of 

each variable, as well as cross comparisons.  However, to more fully understand 
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the structure of the household risky ratio, the source of interactions with other 

variables, the source of the prediction power, it is imperative to examine 

multivariate regressions in Table 1.1.  As above, the paper uses a one-quarter 

prediction period with a one period lag for the prediction, and Newey-West 

standard errors with 5 lags by default.  

Table 1.1 begins its multivariate regression by regressing returns on 

household risky ratio and one year of additional lag.  This regression gives insight 

into the time series structure of the predictability of household risky ratio.  Do 

lags of household risky ratio have independent predictive power for future returns, 

as is the case for cay?  This might arise if there is period-specific noise in 

measurement of the household risky ratio.  Do the two lags knock each other out, 

as might be expected if the predictability of the household risky ratio is due to low 

frequency components?  Looking at Figure 1.2 it might be tempting to suspect that 

predictability is driven completely by a few periods in which the household risky 

ratio was particularly high or low.  Also, this regression lets us see whether it’s 

the level of household risky ratio or its change that matters more, and whether 

longer lags might have more predictive power for some reason. 

Looking at Table 1.1 regression (2), and comparing against the univariate 

regression (1), a few things stand out.  First, the coefficient on the household risky 

ratio is near identical, going from -2.49 to -2.86.  However, the t-statistic drops 

significantly from 4.16 to 2.69.  Second, the coefficient on the one-year-lagged 

household risky ratio is near zero, with a t-statistic of 0.27.  That the t-statistics 
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are lower in regression (2) does suggest that household risky ratio and lagged 

household risky ratio knock each other out somewhat.  Some portion of the 

predictability then can be due to a low frequency component of the household 

risky ratio.  However, the significance of the leading household risky ratio term 

and its being equal to the univariate coefficient suggests that high frequency 

changes on the order of less than a year matter, and have the same effect on future 

returns as low-frequency changes.  The high frequency variation in the household 

risky ratio is not simply noise.   

The 𝑅2 of regression (1) compared to (2) is the same, in line with the fact 

that the marginal t-statistic of the one-year-lagged household risky ratio is near 

zero.  Adding an extra term does not increase predictability, so there is no 

independent prediction power by lags.  (This is verified but not shown with other 

periods of lags).  In a Markov-chain sense, the most recent household risky ratio 

could be seen as a state variable or a sufficient statistic for the household risky 

ratio process.  This also means it is assuredly the level of household risky ratio 

that matters, versus changes, in contrast to other predictors like the equity shares 

of issuance (Baker Wurgler 2000). 

The next regressions run in Table 1.1, regressions (3) through (6), examine 

bivariate regressions of the household risky ratio against various other predictors 

commonly used to forecast equity premia.  The paper looks to see if any 

predictors knock the other out – a sign that one predictor is subsumed by the other 
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better, less noisier, predictor.  To the extent both predictors still maintain size and 

significance, it is a sign that the two predictors have somewhat independent 

predictability. 

Regression (3) looks at the household risky ratio versus the equity share of 

issuances.  These two variables have some relationship because companies 

issuing equity versus debt should be expected to mechanically increase or 

decrease the household risky ratio over time.  Also, in the next section it will be 

seen that one component of the household risky ratio can be thought of as 

issuances.  Some confounds might be expected, but instead the comparison of 

regression (3) against the univarate regressions show that significance and 

magnitude of both regressors increases slightly.   

The household risky ratio coefficient increases from -2.49 to -2.52, 

significance increasing from -4.16 to -4.33.  The equity share of issues increases 

much more from -7.32 (t-statistic of -1.34) to -10.49 (t-statistic of -2.13).  The 

adjusted 𝑅2 also increases from .054 and .003 in the univariate regression to .062 

together.  This suggests not only that the two predictors have independent 

predictive power, but also that the prediction is strengthened when the two are put 

together.  This might occur if companies issue stock for two reasons: one is a 

mechanical response to the demand side of the economy, captured by the 

household risky ratio; another could be CFOs knowing to market time beyond 

demand signals.  
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Regression (4) looks at the bivariate regression of the household risky 

ratio against the Campbell-Shiller CAPE.  One immediately notes that the 

coefficient on the household risky ratio actually becomes significantly higher in 

magnitude, jumping from -2.49 to -3.76.  The coefficient on CAPE is also 

significant but now in the opposite direction: moving from -.13 to .18.  This 

shows that not only is the household risky ratio not subsumed by the popular 

valuation ratio predictor CAPE, but that it actually may be a better valuation ratio 

than CAPE.  Another interpretation might be that the household risky ratio 

captures more predictive components than CAPE, causing CAPE to act as a 

negative control.  The decomposition of the household risky ratio in the next 

section lends some credence to this idea.   

Campbell-Shiller (1988a) gives an accounting relationship between PE 

ratios, earnings growth, and expected returns.  Given this opposite response in 

CAPE along with the household risky ratio, it may be interesting to see whether 

CAPE along with the household risky ratio can finally predict earnings changes. 

Regression (5) runs the household risky ratio against the term spread.  

Neither variables are affected significantly.  The term spread is not particularly 

significant, having both univariate and bivariate t-statistics of less than one.  This 

seems consistent with a story in which the term spread is not a particularly 

powerful variable.  Regression (6) runs the household risky ratio with cay.  Both 

variables are reduced somewhat in magnitude and significance.  The bivariate 𝑅2 
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is also somewhat less that the summed 𝑅2, showing that two variables are picking 

up on some common predictability.  This is not surprising given Lettau Ludvigson 

(2001) theory of cay being a consumption wealth valuation ratio.   

Regression (7) uses all variables and covariates, except the lagged 

household risky ratio which was seen before to be near collinear with the 

household risky ratio itself.  Because many of the popular predictors tend to be 

different variations on each other, the significance and size of predictability is 

generally less than in the bivariate and univariate regressions.  This is true of the 

household risky ratio as well.  But what is striking is that the household risky ratio 

variable is still quite significant (p<.05).  Also, across all the regressions from (1) 

through (7), the magnitude of the coefficient on the household risky ratio is more 

or less the same at around -2.5.   

This remarkable consistency across the bivariate and multivariate 

regressions show that the household risky ratio is not subsumed by other popular 

predictors, or even the space spanned by other popular predictors.  Finally 

regression (8) standardizes each predictor to have unit variance.  The coefficients 

then are identically proportional to the square of the correlation and square root of 

𝑅2, and give a sense of the strength of each predictor on the same scale. 

The two main takeaways from Table 1.1 is both the empirical robustness of 

the household risky ratio as a predictor, and the point that there is something 

novel about the household risky ratio.  Further evidence will be given below that 
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there is particular significance to the household portion of the household risky 

ratio. 

1.3.5 Robustness 

One concern in regressions over large timespans is parameter stability.  

How much of the predictability at persists from the start of the sample to the end 

of the sample?  Alternately, is predictability completely isolated to one portion of 

the sample, or even worse, a few years?  If the household risky ratio process or 

the returns process has underlying long persistence, then normal inferences could 

be incorrect.  All of the above issues can be heuristically addressed by doing a 

split regression on the first and second half of the data (Table 1.2).  Such a 

procedure is model free, and while not the most powerful, provides a clear glance 

at whether the predictive power is stable.  The paper finds that the lineup between 

the first and second half of the sample is remarkable: the coefficients are quite 

close: -2.94 versus -2.15.  This gives evidence that the result isn’t driven just by a 

few years, and the inferences are not spuriously caused by persistence. 

There may be concern over what exactly is classified as components of the 

numerator and denominator of the household risky ratio.  In particular, there 

might be concerns that one component is the main driver of the result, and so the 

household risky ratio is not robust to definition.  As categorized by the Flow of 

Funds, there are four major categories in the paper’s definition of the household 

risky ratio.  The high risk component is composed of equities and mutual funds.  
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The low risk portion consists of credit market securities and deposits.  Table 1.3 

uses a jackknife-like methodology to test robustness of the household risky ratio.  

The paper runs regressions removing one component at a time, and sees whether 

predictability drops.  It seems that predictability remains in almost all case.  The t-

statistics generally remain significant, and the coefficient varies from -1.21 to -

3.22.  The robustness of regressions to removing components shows that the 

household risky ratio is robust to definition. 

1.3.6 Small Sample Bias of Stambaugh (1999) 

Stambaugh (1999) and Nelson and Kim (1993) note that in regressions in 

which predictors 𝑋𝑡 are autocorrelated, there is a possibility for a small sample 

bias.  In particular, using notation of Kothari Shanken (1997), suppose returns 

𝑟𝑡+1 is being predicted with a univariate autocorrelated variable 𝑥𝑡.1 

𝑟𝑡+1 = 𝛼 + 𝛽𝑥𝑡 + 𝑢𝑡+1 (1) 

𝑥𝑡+1 = 𝛾 + 𝜙𝑥𝑡 + 𝑣𝑡+1 (2) 

Correlations between in the error term 𝑢𝑡+1 and 𝑣𝑡+1 will cause a small 

sample bias.  In the language of Lewellen (2004), the source of this bias is the 

well-known downward bias of OLS in estimating (2) equation for positive 𝜙, in 

particular 𝐸�𝜙�𝑂𝐿𝑆 − 𝜙� < 0.  This transmits over to 𝛽 in through the correlation.  

In particular: 

                                                      
1 The theory of Stambaugh bias is naturally presented without a one period gap between the 
predictors and predicted.  This does not pose a problem for us as we simply define 𝑥𝑡 ∶=
 𝑅𝑖𝑠𝑘𝑦𝑡−1 
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�̂� = 𝛽 + (𝑥′𝑥)−1𝑥′𝑢  

𝜙� = 𝜙 + (𝑥′𝑥)−1𝑥′𝑣 

Which translates into, as Stambaugh (1999) notes, defining 𝛾 ≔ 𝐶𝑜𝑣(𝑢,𝑣)
𝑉𝑎𝑟(𝑣)

  

𝐸��̂� − 𝛽� = 𝛾𝐸�𝜙� − 𝜙� ≠ 0 

Since the household risky ratio does include a significant price component, 

it is very close to the original canonical example used by Stambaugh (1999) to 

demonstrate the bias.  In particular, the predictor is quite autocorrelated with 

𝜙�𝑂𝐿𝑆 =  .956.  The error terms are of (1) and (2) are also notably correlated at 

𝑐𝑜𝑟𝑟�(𝑢, 𝑣) = .869.   All correlations are taken at the one-quarter level.   

This paper corrects for the error below using a few methodologies: 

Kendall (1954), Kothari and Shanken (1997), and a more recent approach by 

Campbell and Yogo (2006).  The correction shows that the household risky ratio 

is indeed subject to small sample bias about 20% of the magnitude of the 

coefficient.  This bias is not enough to affect qualitatively the results in the paper, 

especially many of the baseline t-statistics are above 3 or 4.  The paper follows 

the literature and does not by default correct for Stambaugh bias in order to 

maintain regressions that are multivariate, heteroskedastic and autocorrelation 

consistent, and standardized to well-known methodologies.  However, it is 

important to keep this relative magnitude of 20% in mind when reading other 

tables, which affects not only the household risky ratio, but other popular price 

predictors that have a valuation ratio component like CAPE. 
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The first correction is a point-estimate correction suggested by Kendall 

(1954), who notes that analytically the bias in 𝜙,   𝐸�𝜙� − 𝜙�  ≈  1+𝑇𝜙
�

𝑇−3
 which holds 

generally for T>50 as in this case, giving a value of -0.01598.  Then,   𝐸��̂� −

𝛽� = 𝛾𝐸�𝜙� − 𝜙� ≈ 𝑐𝑜𝑣� (𝑢,𝑣)
𝑣𝑎𝑟� (𝑣)

�− 1+3𝜙�

𝑇
�  again for T>50 can be estimated, in this 

case 30.00 x -.01598 = -.479.  Thus the Kendall correction reduces the OLS 

estimate of 𝛽 from -2.27 to -1.79, a move of about 21.1%.  The Kendall method 

does not change the standard errors, leading to a t-statistic of 2.75 and p-value 

of .0065.  The reduction in significance comes solely from the move in the point 

estimate. 

Kothari-Shanken (1997) extends the Kendall (1954) method through 

bootstrap re-estimation of the standard errors.  In particular, Kothari-Shanken 

simulates the data series by taking the Kendall-adjusted values for 𝜙,𝛽  and 

drawing error terms 𝑢, 𝑣.  For each bootstrapped series, a beta is estimated.  The 

distribution of bootstrapped betas then simulates the sampling distribution of 𝛽 

and lets us do inferences.  The process results in a p-value of 0.004. 

The Kothari-Shaken methodology does not generate wider confidence 

intervals from the OLS ones.  In fact, the confidence interval is actually lower 

than OLS due to the same reason mentioned previously of EHW standard errors 

being less than OLS: the middle of the predicted variable has more residual 

variance than the edges.  Like the Kendall methodology the loss in t-statistic 

comes mostly from the point estimate moving closer to zero versus the standard 
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error increasing.  The Stambaugh bias again is about 20% of the OLS coefficient 

magnitude. 

Campbell and Yogo (2006) propose a different Stambaugh bias correction 

methodology, motivated by the fundamentals of statistical hypothesis testing.  The 

idea behind Campbell Yogo, in relation to its use in this paper, is as follows.  First, 

Campbell and Yogo arrive at an intuitively powerful and rigorous Q-test that 

accounts for Stambaugh bias.  The Q-test depends on knowing 𝜙 above, which in 

reality must be estimated rendering the original test infeasible.  Campbell Yogo 

cleverly patch this problem by using the Bonferroni procedure to merge the 

infeasible Q-test with an estimate of 𝜙 through the DF-GLS estimator. 

The rationale for the Q-test is as follows.  Suppose the autocorrelation 𝜙 

of the predictor 𝑥𝑡 was known beforehand.  The Neyman-Pearson lemma 

proposes a likelihood ratio test (LRT) as the most powerful test for hypothesis of 

𝛽 = 𝛽0 vs 𝛽 = 𝛽1.  The LRT can be conditioned on an ancillary statistic and be 

considered inside the space of invariant tests, tests that do not change in response 

to invariant changes to 𝑥𝑡 or 𝑟𝑡+1.  Then this LRT is also uniformly most powerful 

(UMP) for 𝛽 inside the above space of tests.  Call this UMP test statistic the Q-

statistic, which can be estimated easily in an OLS regression setting.   The test 

based on cutoffs of the Q-statistic is the Q-test. 

Kendall provides an intuitive first order estimate of the Stambaugh bias 

and Kothari Shanken (1997) provide intuitive first order inference corrections.  
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Neither however have foundations in rigorous statistical testing, which is what is 

provided by Campbell Yogo (2006).  Further, the construction procedure of the 

Campbell Yogo (2006) is designed towards ensuring high power while being 

rigorous.  As such, this paper considers the Campbell-Yogo correction to be the 

gold standard for comparison. 

The test is implemented via Campbell Yogo (2005).  The DF-GLS statistic 

on the household risky ratio with one period if lag is calculated at -2.287 (Table 

1.4), corresponding to a 97.5% confidence interval for c of [-21.87, 1.47] from 

Table 1 of Campbell Yogo (2005).  This leads to a 97.5% CI over phi of [.910, 

1.006].  This leads to point estimates of �̂�(𝜙) of -3.65 and -.76 respectively.  For 

each of the two above point estimate, this paper takes another 97.5% confidence 

interval around the estimates to arrive at a 95% Bonferroni estimate for 𝛽: [-4.32, 

-.03].  An approximate 90% CI would then be [-4.06, -.30].   

As noted in Campbell, due to the Bonferroni methodology, the actual 

confidence interval coverage is guaranteed to be 95% or above.  Thus, the 

estimation above is conservative.  Even with the most conservative methodology, 

it is seen that the household risky ratio is still significant.  As a baseline, 

Campbell Yogo (2006) calculate 90% confidence intervals for D/P, E/P, T-bill 

rate, and Yield spread, and find many of their variables have 90% confidence 

intervals that cross 0, and almost all are very close to 0 with respect to the length 

of the confidence interval.  It seems likely that if 95% confidence intervals were 
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calculated, all of the other above univariate predictors would cross zero.  Keep in 

mind that much of the Campbell Yogo (2006) data set extends back to 1926 or 

even 1880.  With this as a baseline, the [-4.32,-.03] confidence interval is 

remarkably strong for the household risky ratio.   

Finally, to verify significance, this paper does one last check in the style of 

Lewellen (2004).  It seems reasonable to assume that the household risky ratio is 

not an explosive process.  Looking at Figure 1.2, the household risky ratio looks 

likely even stationary as household high risk assets and low risk assets ought to be 

cointegrated with the size of the economy.  Although it is possible it has a unit 

root, it makes little sense for the household risky ratio to be explosive.  Assuming 

𝜙 ≤ 1, the first step to re-run is the Campbell Yogo (2006) bounds.  No longer is 

the 97.5% confidence interval for 𝜙 [.910, 1.006], but rather it is instead [.910,1].  

This leads to a 95% confidence interval for 𝛽 of [-4.06,-0.217]. 

Following Lewellen (2004) more directly, consider again 𝐸��̂� − 𝛽� =

𝛾𝐸�𝜙� − 𝜙�.  Rearranging this leads to the estimator that eliminates the bias: 

�̂�𝑎𝑑𝑗 = �̂�𝑂𝐿𝑆 − 𝛾(𝜙� − 𝜙).  Assuming the largest correction possible (being overly 

conservative) under the above assumptions sets 𝜙 = 1, yielding �̂�𝑎𝑑𝑗 = −.92.  

This is significantly less than the OLS estimate or any other estimates really 

because it is a lower bound in magnitude.  The advantage of the Lewellen method 

is that the standard errors are much reduced, from .65 in OLS to .32 here.  This 



44 

yields a much smaller relative confidence interval than Campbell Yogo (2006) 

and gives a larger t-statistic of 2.88. 

The Lewellen (2004) method does not provide any unbiased point 

estimates of 𝛽, but as an advantage, it does have more rigorous foundations than 

Kendall (1954) or Kothari Shanken (1997), and since the process studied here has 

an autoregressive root close to unity, it is more powerful than Campbell Yogo 

(2006). 

1.3.7 Persistence and Long-Horizon Predictions  

Table 1.5 analyzes the persistence properties of the household risky ratio 

predictor.  The analysis of this is similar to that of the persistence of D/P.  From a 

theoretical perspective, the household risky ratio should not have a unit root: as 

the economy expands it seems that the fraction of high risk assets versus low risk 

assets ought to vary around some constant.  There certainly is no theoretical 

reason to believe it has a greater-than-unit root: no model seems to justify an 

explosive process.  From an empirical perspective, if it is believed that expected 

excess returns do not have a unit root, then it makes no sense to predict it with a 

series with a unit root.  Table 1.5 Panel A shows the DF-GLS test on the 

household risky ratio: while a unit root cannot be ruled out, this may be due to the 

power of the test with only 240 quarters as input.  Table 1.5 Panel B shows the 

DF-GLS test on changes of household risky ratio: a unit root is clearly rejected.  

Thus, the household risky ratio is shown to be integrated maximally of order one. 
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In this paper, the predictive regressions are generally run on one-quarter 

forward returns, which also is the frequency of the data as provided by the Federal 

Reserve flow of funds.  The literature often considers longer-horizon returns 

(Baker Wurgler 2000, Campbell Shiller 1988) to increase the 𝑅2 of the regression 

as well as to demonstrate the predictive properties over the long term.  This 

section runs longer-dated returns using the household risky ratio and discusses the 

longer-dated results in the context of econometric theory. 

A main advantage of long-horizon returns is that the coefficients estimated 

are directly interpretable as the long-term impact of the predictor variable.  If the 

exact estimate of interest is the size of the one-year or three-year return as a result 

of a fixed change in the household risky ratio, then the most natural regression to 

run would be a long-horizon regression.   

Another purported reason for using overlapping regressions is the higher 

𝑅2 of the regressions.  However, especially for persistent predictors, the 

𝑅2 increase is mechanical.  Valkanov (2003), Hjalmarsson (2006), and Boudoukh 

et al (2008) show that increasing the prediction period does not increase the 

power of tests.  In fact, in monte-carlo simulations, the estimated coefficients of 

one period disaggregated returns and N-period aggregated returns are often 

correlated by .99 or more.   

Other reasons often cited for using overlapping regressors include errors in 

the predictor variable (Cochrane Piazzesi 2005), missing observations, and higher 
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prediction accuracy.  However, Harri and Brorsen (2009) show that for a vast 

majority of statistical reasons given for using overlapping regressions, better 

statistical predictors are possible.  They also show that the usual inference 

correction methods for overlapping regressions are quite problematic, which is 

borne out in this paper in Table 1.8.   

Turning to this paper’s specific results, in Table 1.8, regressions (1) and (2) 

report disaggregated returns, returns with one-quarter prediction periods, 

replicating the univariate and multivariate results from before.  Regressions (3), 

(4), and (5) run OLS no overlap (OLSNO) regressions with prediction horizons of 

one year or three years.  OLSNO represents the process in which intermediate 

observations are dropped and OLS inferences are used.  OLSNO is not perfectly 

efficient due to the dropped observations, but it preserves the validity of the 

inferences. 
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Table 1.8: Long Horizon Regressions. 

OLS regressions of k-period ahead value-weighted CRSP excess returns on multiple predictors 
lagged one quarter: 

𝑅𝑡,𝑡+𝑘 = 𝛼 + 𝛽1𝑅𝑖𝑠𝑘𝑦𝑡−1 + 𝛽2𝑆𝑡−1 + 𝛽3𝐶𝐴𝑃𝐸𝑡−1 + 𝛽4𝑇𝑒𝑟𝑚𝑡−1 + 𝛽5𝐶𝐴𝑌𝑡−1 + 𝜖𝑡 

Where 𝑅𝑡,𝑡+𝑘 denotes the excess return of the CRSP value-weighted holding return for k quarters 
forward as reported by CRSP; 𝑅𝑖𝑠𝑘𝑦𝑡−1 denotes the household risky ratio calculated by dividing 
household high risk assets over low risk assets, as collected from the Federal Reserve Flow of 
Funds; 𝑆𝑡−1 denotes the equity share in new issues as defined in Baker Wurgler (2000); 𝐶𝐴𝑃𝐸𝑡−1 
denotes the ten year cyclically adjusted price to earnings ratio, defined as per Campbell Shiller 
(1988); 𝑇𝑒𝑟𝑚𝑡−1 denotes the yield premium of ten year over one month federal government 
obligations; 𝐶𝐴𝑌𝑡−1 is the consumption wealth ratio proxy defined by Lettau Ludvigson (2001).   

Regressions are divided into three categories.  For Disaggregated Returns, the prediction period k 
is always one quarter and so by construction there is both no overlap and no data dropped.  t-
statistics are shown in brackets using Newey-West heteroskedastic and autocorrelation robust 
standard errors with 5 periods of lags.  For OLS No Overlap, the prediction period k is always 
ranges between one year (k=4) and three years (k=12).  There is no overlap but data is dropped.  t-
statistics are shown in brackets using Eicker-Huber-White standard errors.  For Overlap Corrected 
via Newey-West, there is no data dropped but overlap.  t-statistics are calculated by Newey-West 
standard errors with 4+k periods of lags, a generalization of the number of lags used in the 
Disaggregated Returns method. 

 
 Disaggregated 

Returns 
 OLS No Overlap – 

Intermediate Data Dropped 
 Overlap Corrected via  

Newey-West 
 (1) (2)  (3) (4) (5)  (6) (7) (8) 
Period  1-Qtr 1-Qtr  1-Year 3-Year 1-Year  1-Year 3-Year 1-Year 
𝑅𝑖𝑠𝑘𝑦𝑡  -2.49 

[-4.16] 
-2.39 

[-1.97] 
 -10.22  

[-4.31] 
-23.93   
[-3.36] 

-8.58 
[-1.48] 

 -9.21   
[-4.84] 

-18.42   
[-5.91] 

-9.25   
[-2.40] 

𝑆𝑡   -7.52 
[-1.16] 

   -29.75  
[-1.03]   

   -26.76    
[-1.69] 

𝐶𝐴𝑃𝐸𝑡   .02 
[0.11] 

   -.22  
[-.39]   

   .07 
[0.17]   

𝑇𝑒𝑟𝑚𝑡   -.31 
[-0.72] 

   -1.74  
[-1.05]    

   -.44    
[1.06] 

𝐶𝐴𝑌𝑡   55.94 
[1.24] 

   265.62 
[1.33]  

   153.04 
[1.08] 

𝑅2  0.054 0.060  0.223 0.401 0.031  0.192 0.365 0.236 
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Regressions (3) runs a prediction with a one-year horizon.  The coefficient 

and 𝑅2 is exactly four times that of the quarterly regression.  However, note that 

the power of the regression in terms of t-statistic does not increase, in line with 

the theory of Harri and Brorsen (2009).  Similarly, regression (4), which predicts 

a three-year horizon has about double the coefficient and 𝑅2 as regression (3), has 

slightly lower t-statistics.  That the coefficient and 𝑅2 does not triple, and that the 

power goes down, is all indicative of the fact that the horizon of the prediction 

power does start breaking down sometime between one and three years.  Three 

years is also sufficient to see substantial decay in the persistence in the household 

risky ratio predictor. 

Regression (5) runs a one-year-horizon multivariate regression.  As 

expected from theory, the coefficients and 𝑅2 of the one-year regression is about 

four times the one-quarter numbers.  The loss in efficiency from the dropped 

observations is also clearer here as the power tends to be somewhat lower. 

Regressions (6), (7), and (8) replicate regressions (3), (4), and (5) 

respectively, except instead of dropping intermediate observations and using OLS, 

it uses Newey-West regressions with 4+k periods of lag, where k is the horizon of 

the prediction expressed in quarters.  The coefficients are roughly the same as the 

OLSNO regressions since Newey-West uses OLS for point estimates; the small 

deviations are due to the fact that intermediate observations are no longer dropped.  

The t-statistics however all seem higher than OLSNO.  This is due to two reasons: 
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the efficiency is higher since no observations are dropped, and less desirably, the 

Newey-West standard errors are biased downwards (Harri and Brorsen 2009).  

This is evident in the fact that the t-statistic actually increases between one-year 

and three-year regressions, whereas theory dictates that it should decrease. 

To conclude, Table 1.8 demonstrates the extension of the household risky 

ratio predictor to longer-horizons.  The 𝑅2 does increase from .054 for one quarter 

to .223 for one year and .401 for three years, which as an aside is quite high for 

known predictors.  While the 𝑅2 and coefficient increases, the power of the tests 

and t-statistics are not better.  Sometimes power is worse due to dropped 

observations in the OLSNO regressions.  The Newey-West regressions illustrate 

the complexity of correcting the inferences of overlapping regressions correctly.  

To maximize power then and minimize inference assumptions, this paper chooses 

to use disaggregated quarterly regressions, in line with the recent theory of Harri 

and Brorsen (2009) 

1.4 Empirical Decomposition of the Household Risky Ratio 

This section analyzes the empirical sources of predictability that the 

household risky ratio has for forward returns.  This section decomposes the 

household risky ratio into components related to household tilt, valuation ratios, 

and issuances.  Then, I run univariate and multivariate regressions against each of 

these components to see what the source of predictability is. 

1.4.1 Define the components theoretically 
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 In the section below, I will decompose the household risky ratio into the 

following three components, with terms to be defined below: 

log(𝑅𝑖𝑠𝑘𝑦 𝑅𝑎𝑡𝑖𝑜𝑡)

= log(𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑇𝑖𝑙𝑡𝑡) + 𝑉𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 𝑃𝑎𝑟𝑡𝑡

+ 𝐼𝑠𝑠𝑢𝑎𝑛𝑐𝑒 𝑃𝑎𝑟𝑡𝑡 

𝑉𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 𝑃𝑎𝑟𝑡𝑡 ⊥ 𝐼𝑠𝑠𝑢𝑎𝑛𝑐𝑒 𝑃𝑎𝑟𝑡𝑡 

Consider again the household risky ratio, the ratio of household holdings 

of high-risk assets to low-risk assets.  The first component of this ratio is the 

portion that is specific to the household, which is termed the household tilt.  This 

can be defined as the portion of the household risky ratio that is not common to 

the economy.  To define the household tilt, this paper then first defines an 

economy-wide risky ratio, termed the total risky ratio as follows:   

𝑇𝑜𝑡𝑎𝑙 𝑅𝑖𝑠𝑘𝑦 𝑅𝑎𝑡𝑖𝑜 =
𝑇𝑜𝑡𝑎𝑙 𝑅𝑖𝑠𝑘𝑦 𝐴𝑠𝑠𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
 

And calculate the difference between the total risky ratio and household 

risky ratio as: 

𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑇𝑖𝑙𝑡 =
𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑅𝑖𝑠𝑘𝑦 𝑅𝑎𝑡𝑖𝑜
𝑇𝑜𝑡𝑎𝑙 𝑅𝑖𝑠𝑘𝑦 𝑅𝑎𝑡𝑖𝑜

 

Note that this also gives: 

𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑇𝑖𝑙𝑡 =
% 𝑅𝑖𝑠𝑘𝑦 𝐴𝑠𝑠𝑒𝑡𝑠 𝐻𝑒𝑙𝑑 𝑏𝑦 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠

% 𝑁𝑜𝑛𝑅𝑖𝑠𝑘𝑦 𝐴𝑠𝑠𝑒𝑡𝑠 𝐻𝑒𝑙𝑑 𝑏𝑦 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠
 

And 
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log(𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑅𝑖𝑠𝑘𝑦 𝑅𝑎𝑡𝑖𝑜)

= log(𝑇𝑜𝑡𝑎𝑙 𝑅𝑖𝑠𝑘𝑦 𝑅𝑎𝑡𝑖𝑜) + log (𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑇𝑖𝑙𝑡) 

𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑡𝑖𝑙𝑡, is then a measure of the household’s holding of high risk 

over low-risk assets relative to the entire economy.  Thus, ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑡𝑖𝑙𝑡 is 

cleansed of all economy-wide effects, effects that will be discussed later on that 

should affect high risk and low risk assets in general, having nothing to do with 

households in particular. 

In this section, preference is also given to the log version of the 

decomposition due to the additivity of the components.  Other sections use the 

raw non-log risky ratio for simplicity and transparency of construction.  As shown 

in Table 1.9, the predictive properties of the log household risky ratio are almost 

identical to the household risky ratio.  This is a natural consequence of the fact 

that the variation of household risky ratio is small relative to the neighborhood in 

which the log function is locally linear, and so log household risky ratio is nearly 

an affine transform of the household risky ratio. 

The second component of the household risky ratio, encompassed entirely 

within the log total risky ratio, is the idea of a valuation ratio or past price changes.  

If the market value of all high risk assets homogenously doubles overnight then 

the total risky ratio would double as well.  Note that this effect is completely 

subsumed in total risky ratio part of household risky ratio: there is nothing special 

about households.  Many authors in the literature (Poterba Summers 1988, Fama 
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French 1988) have demonstrated that past prices changes, especially at the three 

to four year level, are good negative predictors of future returns.  Looking at 

Figure 1.5 the predictability of different horizons, which can be seen as a type of 

cross correlogram, it is seen that indeed much of predictability of the household 

risky ratio becomes strong within the last three to four years of lags.  To the 

extent then that the total risky ratio is capturing price changes, the total risky ratio 

has predictive power. 

More fundamental than price changes are valuation ratios.   Past returns 

are only weak predictors of future returns, and really the fundamental 

predictability comes from valuation ratios like D/P, CAPE, and B/M (Cochrane 

2008).  When run in a multivariate regression, the predictive power of past price 

changes is almost always subsumed by valuation ratios.  As exposited by 

Campbell Shiller (2005), the predictive power comes from the fact that if earnings 

growth is difficult to predict, which is empirically the case, then CAPE changes 

must be attributed to future changes in expected return. 
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Table 1.9: Regression of forward CRSP return on various transformations of the household 
risky ratio. 

OLS regressions of one quarter future equity market CRSP returns on multiple transformations of 
the household risky ratio: 

𝑅𝑡,𝑡+1 = 𝛼 + 𝛽1𝑋𝑡−1 + 𝜖𝑡 

Where 𝑅𝑡,𝑡+1 denotes the one quarter forward excess return as reported by CRSP.  𝑋𝑡−1 variously 
denotes 𝑅𝑖𝑠𝑘𝑦𝑡−1 the household risky ratio calculated by dividing household high risk assets over 
low risk assets, as collected from the Federal Reserve Flow of Funds; or 𝑋𝑡−1 denotes 1/ 𝑅𝑖𝑠𝑘𝑦𝑡−1 
the multiplicative inverse of 𝑅𝑖𝑠𝑘𝑦𝑡−1; or 𝑋𝑡−1 denotes ln𝑅𝑖𝑠𝑘𝑦𝑡−1 denotes the natural log of 
𝑅𝑖𝑠𝑘𝑦𝑡−1.  t-statistics are shown in brackets using Newey-West heteroskedastic and 
autocorrelation robust standard errors with 5 quarters lags. N=228 
 

 (1) (2) (3) 
Intercept 8.05 

[5.42] 
-4.87  

[-2.68] 
7.43 

[5.53] 
𝑅𝑖𝑠𝑘𝑦𝑡−1  -2.49 

[-4.16] 
  

1
𝑅𝑖𝑠𝑘𝑦𝑡−1

   15.13  
[4.12] 

 

ln(𝑅𝑖𝑠𝑘𝑦𝑡−1)   -6.47  
[-4.12] 

𝑅2 0.054 0.059 .057 
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A similar mechanism is at work thinking of the total risky ratio as a 

valuation ratio.  Consider assets in the economy to be paying off a safe stream 

securitized into the present through low risk assets, and a high risk stream 

securitized into the present through a high risk asset.  Then as the required risk 

premium on high-risk assets decreases, this will push up the valuation of the high 

risk assets with respect to low risk assets, increasing the total risky ratio.  Thus, 

the total risky ratio acts as a valuation ratio in predicting future returns in the 

same way that CAPE does. 

To capture this portion of the household risky ratio, termed the valuation 

ratio part, this paper projects the total risky ratio onto a standard valuation ratio: 

the CAPE of Campbell Shiller (1988): 

log (𝑇𝑜𝑡𝑎𝑙 𝑅𝑖𝑠𝑘𝑦𝑡) = 𝛽0 + 𝛽1𝐶𝐴𝑃𝐸𝑡 + 𝛽2𝐶𝐴𝑃𝐸𝑡2 + 𝜖𝑡 

𝑉𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 𝑃𝑎𝑟𝑡 ∶= log(𝑇𝑜𝑡𝑎𝑙 𝑅𝚤𝑠𝑘𝑦𝑡) �  

Note then risky valuation as defined here is just an affine transform of CAPE and 

its square.   

To arrive at the final component of the predictive power of household 

risky ratio, consider that the valuation ratio analysis above considers only the part 

of total risky ratio with a fixed quantity of assets.  In reality, issuances and 

redemptions play a role in both the composition of the total risky ratio and its 

predictive power.  In particular, Baker Wurgler (2000) studies corporation 

issuance of assets.  They show that when corporations issue a higher fraction of 
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equities in a given period, there are lower future real returns on the equity market.  

After this seminal work, many other papers confirm that issuance, especially by 

corporations, are biased towards assets that are overvalued and will return less in 

the future.   

Then in the projection above, a final component risky issuance can be 

defined: 

log(𝑇𝑜𝑡𝑎𝑙 𝑅𝑖𝑠𝑘𝑦𝑡) = 𝛽0 + 𝛽1𝐶𝐴𝑃𝐸𝑡 + 𝛽2𝐶𝐴𝑃𝐸𝑡2 + 𝜖𝑡 

𝐼𝑠𝑠𝑢𝑎𝑛𝑐𝑒 𝑃𝑎𝑟𝑡 ≔ 𝜖𝑡 

The issuance part reinforces the valuation ratio part even further.  During 

good times, high-risk assets are overvalued and thus already have a large total 

valuation.  Exactly during this time, corporations are issuing even more high-risk 

assets that are overvalued.  The high-risk asset valuation measure then receives 

two reinforcing shocks during this time: a positive price shock and a positive 

quantity shock. 

Putting all three components together, the accounting relationship below 

holds: 

log(𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑅𝑖𝑠𝑘𝑦 𝑅𝑎𝑡𝑖𝑜𝑡)

= log(𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑇𝑖𝑙𝑡𝑡) + 𝑉𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 𝑃𝑎𝑟𝑡𝑡

+ 𝐼𝑠𝑠𝑢𝑎𝑛𝑐𝑒 𝑃𝑎𝑟𝑡𝑡 

𝑉𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 𝑃𝑎𝑟𝑡𝑡 ⊥ 𝐼𝑠𝑠𝑢𝑎𝑛𝑐𝑒 𝑃𝑎𝑟𝑡𝑡 
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Thus, the log household risky ratio can be thought of as composed of three 

components: a household tilt variable, a valuation ratio part, and an issuance part.  

The last two are guaranteed to be orthogonal by mechanical construction.  All 

three variables turn out to be decently orthogonal empirically as well.   

1.4.2 Estimation of Components 

In this subsection, I estimate the predictive powers of the components as 

defined above, which allows me to decompose the predictive power of the log 

household risky ratio.  Table 1.6 displays the results of predicting future equity 

premium using the log household risky ratio and its decomposition above: the log 

household tilt, the valuation ratio part, and the issuance part.   

Regression (1) replicates the baseline univariate regression, this time with 

the log household risky ratio.  Regression (2) runs the same regression with log 

household tilt variable.  The predictive power of the log household tilt variable is 

quite significant (t=-2.32) and has decent predictive power (𝑅2 = .018).  The 

predictive power of log household tilt is actually quite high on an absolute scale 

(compare to Table 1.7), and is about a third of the of the entire log household risky 

ratio.    Also, note that the coefficient on the household risky ratio is -6.47 while 

the coefficient on log household tilt is -9.26.  Thus the log household tilt is a 

relatively stronger driver component of the log household risky ratio.  Unlike the 

entire log household risky ratio, the log household tilt component is much more 

orthogonal to the other predictors, both in theory and also can be seen by the lack 
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of interaction between regression (2) and (7).  Thus, the household tilt variable is 

that theoretically novel part of the household risky ratio predictor.  It is the 

component of household risky ratio’s power that cannot be explained empirically 

by previous variables.   

The next regression (3), looks as the predictive power of the valuation 

ratio part of the household risky ratio.  The t-statistic is moderately significant 

(t=1.79), and the 𝑅2 is decent at .0113, about a fifth of the predictive power of the 

log household risky ratio.  The coefficient is -3.46, which is about half that of the 

log household risky ratio.  This all suggests that the valuation ratio part is a 

relatively weaker driver of the predictive power of the household risky ratio.  Also 

by construction, the valuation ratio is a linear combination of CAPE and 𝐶𝐴𝑃𝐸2, 

so all the predictive properties of CAPE carry over.   Therefore, even though the 

t-statistics are not large, it is known from myriad of studies with longer term data 

(Campbell Shiller 1988) and rolling predictions (Campbell Thompson 2008) that 

the valuation ratio part must be a good predictor of the equity premium.   

Regression (4) looks at the predictive power of issuance part.  This 

variable is significant with a t-stat of 2.39, and an 𝑅2 of .0164, again about a third 

of the predictive power of the log household risky ratio.  The coefficient at -7.68 

is also slightly higher than that on the log household risky ratio, demonstrating 

this is an important component of the predictive power of the household risky 

ratio.  By construction, it is also orthogonal to the valuation ratio part.  In the 



58 

above dimensions, the issuance part is quite similar to the log household tilt 

variable.   

However, unlike log household tilt, the issuance part is not orthogonal to 

known predictors.  Regression (9) adds the equity share of issuances to a 

regression with the issuance part.  Both the magnitude and t-statistic of the 

issuance part are halved by equity share of issuances, showing the close 

interaction of the two terms.  Also, by adding all other covariates in regression 

(10), it is seen that the predictive power of the issuance part is nearly driven to 

zero.  Thus, the issuance part can be seen to be picking up the predictive power of 

already known predictor variables, chiefly equity shares of issuance. 

The valuation ratio part by definition is a function of CAPE.  However, 

compare univariate regression (3) with a multivariate regression with all 

covariates besides CAPE, regression (8).  It is seen that adding covariates does 

not reduce the predictive power of risky valuation.  If anything, it is increased 

somewhat.  This is to be expected from the fact that none of the other covariates 

are valuation ratios. 

Finally, consider regressions (6) and (7), which are multivariate 

regressions with a full set of covariates.  Regression (7) only contains the log 

household tilt portion of the household risky ratio, while regression (8) contains 

the entire log household risky ratio, but note that the adjusted 𝑅2 is nearly 

identical, as well as the t-statistics.  This provides evidence once again that the 
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marginal predictive power of the log household risky ratio on top of the four 

covariates is isolated mainly to the log household tilt.  

In summary, it is possible to decompose the log household risky ratio into 

three components: log household tilt, a valuation ratio part which is a function of 

CAPE, and the remaining issuance part.  In a univariate sense, all three 

components are important and significant.  With respect to known predictors, the 

predictive power of the log household risky ratio arises marginally from the log 

household tilt. 

1.5 Discussion 

A. Ruling Out the Modigliani Miller Explanation 

One possible explanation of the household risky ratio predicting future 

lower equity premium could be simple Modigliani Miller, as pointed out by Baker 

Wurgler (2000).  In particular, Modigliani Miller posits that weighted average 

cost of capital is the same regardless of how corporations fund themselves.  

Therefore, as the amount of high risk assets in the economy increase with respect 

to low risk assets, the high risk assets effectively become less risky and command 

a lower return.  Thus the household risky ratio could predict negative future 

equity returns just as an accounting artifact.   

However a rough calibration shows that Modigliani Miller cannot explain 

anywhere near the size of the effect observed.  Between the lowest and highest 

terciles, the household risky ratio doubles.  Modigliani Miller would predict a 
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halving in excess returns.  However, in reality excess returns drop about ten times.  

This order of magnitude difference is similar found in the equity share of 

corporate issuances in Baker Wurgler (2000).   

1.5.1 Welfare Effects 

The empirical result that the household risky ratio negatively predicts the 

equity premium does not take a stand on whether this predictability reflects a 

rational risk factor or a misoptimization.  Assume the latter case.  Then what is 

the Sharpe ratio lost to the household sector from sizing out of the equity market 

exactly when it is performing well?  What is the loss compared to a constant-

fraction-hold benchmark, or the optimal conditioning on predictors benchmark?  

If it is also assumed that households have log utility and no exogenous sources of 

time-varying utility then return loss can also be calculated.   

I calculate three investment possibilities.  The first is the actual returns and 

Sharpe ratio realized by the household sector assuming the fraction of high risk 

assets is the fraction households invest in the market index at any given moment, 

and the fraction of low risk assets in the fraction households invest in treasury 

bills in any given moment.  This gives a Sharpe ratio of .267 and annualized log 

excess returns of 3.26% assuming log utility.  The next possibility assumes that 

households always hold 70% equities and 30% treasury bills, the unconditional 

average amount of high risk assets versus low risk assets held by the households.  

This results in a Sharpe ratio of .311 or excess log returns of 3.76%.  This 
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represents an increase of 50 bps over the baseline, or 14% increase over the base 

amount.      

If households instead were to scale in optimally assuming log utility, then 

formula (14) of Campbell Thompson gives an increase of about 3x the current 

baseline rate. 

2.9 = �
𝑅2

1 − 𝑅2
��

1 + 𝑆2

𝑆2
� 

With 𝑆2 = (. 31)2  = 0.0967.  𝑅2 = .206.   

This represents a return of 11% assuming log utility and a Sharpe ratio 

of .533.  Compared to actual outcomes, in case of optimal conditioning on 

predictors, the returns are more than triple, and the Sharpe ratios are more than 

double.  While 11% may seem high, this is not out of line with the strength of the 

predictor.  Also, the actual amount that could be realized by a real agent 

estimating out of sample would be less than this optimal ideal (Welch Goyal 2008, 

Pastor Stambaugh 2009).  Thus, mistiming represents a substantial welfare loss 

for the household sector.   

1.6 Extensions 

1.6.1 A theory for demand systems 

This paper has examined the empirical phenomenon of the prediction 

power of the household risky ratio and decomposed the prediction power into 
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various empirical components.  Here, I explore some ideas behind why the 

household risky ratio might have such predictive power in theory.   

One approach to the theory is to see high risk assets and low risks assets as 

being cleared in markets or demand systems with different players, each with a 

net demand curve.  Market clearing happens at the price and quantity that sets 

total net demand to zero.  Such demand system view goes back to the seminal 

work of Brainard and Tobin (1968).   

In this view, the household sector has a demand curve for high risk assets.  

The demand curve receives shocks that are exogenous, the source of which I will 

examine below.  After a positive demand shock, households demand a higher 

quantity of the high risk asset for the same price.  Assuming the remaining sectors’ 

demand curves remain constant, this translates to higher prices on the high risk 

assets, or lower future expected returns.  In this way, higher quantities and 

valuations of high risk assets held by the household translate to a negative 

relationship to future returns. 

Recent literature like Baker Wurgler (2000) speaks to this demand system 

view of high risk versus low risk assets.  They show that corporations’ supply 

curve of high risk versus low risk (equity versus debt) rationally responds to 

prices.  When equity prices are high, and hence future expected returns are low, 

corporations supply more equities.  Baker Greenwood Wurgler (2003) show a 

similar phenomenon between maturities in the debt market: when the yield of a 

maturity is particularly low, and hence the price particularly high, corporations 
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tend to issue at that maturity.  Greenwood Vayanos (2008) is more along the lines 

of this paper, in showing that government issuances of bonds are supply shocks: 

when the government exogenously issues excess bonds at a certain maturity 

prices go down, and yields are higher in the future. 

It is important to note that in such a system a demand shock generally 

should cause both price and quantity responses, but the relative amount of each 

must be determined by the elasticity of the supply curve.  That the response is not 

purely in price as evidenced here and in Baker Wurgler (2000) shows that 

securities are not in perfectly inelastic supply.  A theoretical basis for this is 

apparent in that corporations can always start new real projects that are funded.  

That the response is not purely in quantities suggests that the supply is not 

perfectly elastic.  Corporations need time to put new projects online, and new 

projects have aggregate diminishing returns in the economy as in the model of 

Solow (1956). 

The fact that Baker Wurgler (2000) and this paper examine similar sets of 

markets explains why in the tables the issuance share of equities is so related to 

the issuance component of the household risky ratio.  They examine flows by 

corporations, a subset of the supply side, while this paper examines stocks by 

households, a subset of the demand side. 

On a first order then, some theoretical sense can be made out of the 

empirical phenomenon present in this paper by using a theory of demand systems 

and price pressure. 
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1.6.2 What Drives Demand Shocks? 

Following the above idea that variation in household risky ratio is caused 

by demand shocks, this motivates the question of what causes the demand shocks.  

One possibility is rational time variation in risk premiums and preferences.  

The underlying cause could be the same as that behind business cycles.  A 

proximal model might include Campbell Cochrane (1999) habits.  In particular, as 

stock returns receive a positive shock, excess consumption increases and effective 

risk aversion decreases.  This justifies both a quantity shift from low risk to high 

risk assets as well as price increase as future required returns decrease.  To test 

this model, a model of habit and surplus consumption could be calibrated, and 

habit can be correlated with the household risky ratio to see if a relationship exists.   

Another strand of thought might explain the demand shocks as arising 

from sentiment.  It is known that perfect optimization often does not describe 

individuals and even the firm (Laibson et al 1998; Zhang 2013).  This may be 

seen as untestable as if the causes are fundamentally from outside the economy, 

then no immediate predictors are available, besides perhaps survey evidence, to 

validate such model.  However, many behavioral models accept economic factors 

as the driver of psychology.  For example Greenwood Shleifer (2013) posit that 

people have extrapolative beliefs: they believe that stocks will go up more 

following a move upwards.  This case is testable as past prices can be used to see 

whether they relate to the household risky ratio.   
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1.6.3 Further Data 

 A central point of this paper is the empirical predictive power of the 

household risky ratio.  A clear and transparent way to extend the empirical power 

would be to extend the duration of the data series as much as possible, in the style 

of Robert Shiller.  Currently the results are based on more than 60 years of data, 

so if the data series were doubled, the series would extend back to around 1890.  

A first-order advantage of such a dataset extension is that it serves as a true out-

of-sample test of the hypothesis above, since this paper is uncontaminated by 

observation of data before 1951.  The true out-of-sample test can be used to 

validate the predictor in a way immune to any claims of data snooping, as well as 

test the stability of the coefficient estimated.  The predictive properties can be 

understood much better by using the entire expanded series with rolling out-of-

sample predictors. 

 Of course, data expansion has limitations.  As is generally the case, data 

further back in history are noisier due to less advanced data collection 

technologies and more data that has been lost through time.  Even common price 

series such as equity returns and price-earnings ratios become significantly lower 

quality before the 1920s.  Quantity data such as that used in this paper would be 

even rarer.  Further, for dates far enough back, one must question even the 

existence of equity markets accessible to households.  As a raw method of 

increasing power, historical data extension is less fruitful, especially with the 

already high t-statistics observed here.   
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 Another possible extension is to extend the predictability results here to 

other datasets.  If the value of household holding of risky assets predicts future 

returns on risky assets, then it might stand to reason that the household holding of 

other asset classes might negatively predict future returns on those areas as well.  

Preliminarily, this seems to hold with government bonds and corporate bonds.  In 

this way, the ideas and evidence presented in this paper can be developed into a 

general theory of household tilt. 

 Finally, this paper can be seen as an extension of the usual price predictors 

into quantity space.  One way to generalize this more is to look at how all the 

price and quantity variables flow into each other economy-wide.  High risk and 

low risk assets are just two components of what is the household sector’s savings 

stock.  The savings stock is affected by investment flows, which is known to be 

highly procyclical.  Tracing investment back to output gives the GDP as the 

source of this flow.  In this space itself, GDP depends on factor prices paid to 

labor and capital, the latter of which household total assets forms a component.  

On the capital markets side, there are corporations who are issuing the securities 

and financial assets being used in the household risky ratio.  These corporations 

translate funds raised to real investment and real projects with payoffs and risk 

profiles. 

 Financial economics often centers around theories of prices in the 

economy and how they relate to each other, especially theories involving the 

efficient market.  Household high risk and low risk assets then is a first step of a 
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journey towards looking at more quantity-type predictors and looking at the entire 

economic system to provide macroeconomic foundations for finance. 

1.7 Conclusion 

This paper shows that the ratio of high risk assets to low risk assets held 

by the household sector, termed the household risky ratio, is a negative predictor 

of future equity premium.  The predictive power is robust and strong: the 

univariate t-statistics are above 4, and the annualized 𝑅2 is above .20.   The 

predictive power remains even after variation in construction of the variable, 

first/second half of the time series, and adjustment for the bias of Stambaugh 

(1999).  The predictive power also is not subsumed by popular predictors like 

CAPE, equity shares of issuances, term spread, and the cay. 

The paper empirically decomposes the predictability into three roughly 

orthogonal components.  First is a household tilt component representing the 

preference of households for high risk assets above and beyond the entire 

economy.  The second is a valuation ratio part that is a function of the Campbell-

Shiller CAPE.  And the third is an issuance part that is the residual from the 

decomposition above.  All three components play important roles in the 

predictability of the household risky ratio: the 𝑅2 is divided generally evenly 

between them and the coefficient size is the same order of magnitude.  The 

second and third components reflect known predictors in the literature, while the 

first, the household tilt, seems orthogonal to known predictors. 
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This paper adds to the literature understanding time variation in equity 

premia by looking at Federal Reserve Flow of Funds data.  It follows the footsteps 

of Baker Wurgler (2000) in going beyond price predictors to quantity data.  

Additionally, this paper looks at economy-wide household sector quantity data in 

a first step at connecting the variation in equity premium to economic 

fundamentals.  
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Chapter 2 

2 Does Say-on-Pay Affect the Firm? Causal Evidence from a 

Regression Discontinuity Design 

 

2.1 Introduction 

The Dodd-Frank Say-on-Pay provisions require practically all significant 

public companies from 2011 onwards to hold regular say-on-pay votes, votes in 

which investors express general approval or disapproval of the compensation 

package proposed by the board for the executive team.  This paper provides 

evidence on the causal effects of Dodd-Frank Say-on-Pay vote by drawing on a 

novel source of investor censure of executive pay.  Specifically, I exploit variation 

in investor censure that results from the Say-on-Pay vote-fraction discontinuity.  

That is, the vote passes discretely above 50% and fails discretely below 50%.  
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Random selection of firms at the boundary into the passing or failing group 

provides identification.  

The field of corporate governance, particularly executive compensation, 

has burgeoned in the last two decades (Murphy 1997).  However, relatively few 

studies have focused on causal identification.  Studies often just rely on regression 

control variables, and the few that use instruments often use ones that are not 

clean, and leave doubt on the validity of the exclusion restriction.    This paper 

aims to provide causal evidence through a regression discontinuity design (RDD) 

with excellent internal validity properties.   

Specifically, this paper identifies the impact of say-on-pay vote fraction 

using a regression discontinuity design, in the style of Lee and Lemieux (2009).  

The say-on-pay votes pass statutorily at 50%, and this cutoff can be used for 

identification.  The usage of corporate votes as the discontinuity variable is in line 

with previous work by Cunat Gine Guadalupe (2012b).   

To understand this identification, suppose the executive compensation 

vote contains random voter noise, at least some of which is independent of all 

other variables in the system.  The random noise arises from a variety of sources: 

a voter forgetting to vote or missing an airplane to the meeting due to a weather 

delay.  Due to such random noise, companies at the 50% cutoff are essentially 

randomized into being approved at 50.1%, and being disapproved at 49.9%.  

Outcomes from the two groups can be compared, and the difference in outcome 

can be attributed to random assignment.  
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The RDD above provides a strong and internally valid method for 

identifying the causal impact of passing versus failing say-on-pay.  This estimate 

can directly answer the question of whether say-on-pay is causally effective at all 

at reining in CEO pay.  The point estimate from the RDD for total CEO pay 

change is directly interpretable as the average causal effect of passing the vote for 

a company who would have received around 50% vote share.  This provides a 

lower bound of the causal effect of say-on-pay, whose degree of censure 

monotonically increases as vote share decreases from 100%.  This paper finds that 

say-on-pay does indeed causally rein in CEO pay. 

As a second step, this paper identifies the causal impact of the vote cutoff 

on other company characteristics, such as financing policy, payout policy, and 

firm performance.  This can be seen as the causal result on CEO behavior of 

receiving censure from failing say-on-pay and having his or her pay reduced.  

This paper finds no significant impact on company characteristics as a result of 

the vote cutoff. 

 

2.1.1 Background on Say-on-Pay and Executive Compensation 

 The Dodd-Frank Act of 2010 is a wide set of reforms targeting the 

financial industry after the crises in 2008.  One part of Dodd-Frank is mandating 

an advisory say-on-pay for all public companies above a certain size.  This 

mandate was not solely motivated by the crises.  Its inclusion in Dodd-Frank was 
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an opportunistic way of remedying perceived longstanding agency issues amongst 

companies’ investors, boards, and executives.   

A common view in this line is that the executives capture the board.  

Executives wield their influence over the board to increase their own pay beyond 

the optimum (Yermack 1997; Bertrand and Mullainathan 2001; Bebchuck and 

Fried 2004; Kuhnen and Zwiebel 2006).  For example, Core, Holthausen, and 

Larcker (1999) show that measures board-of-director control and ownership 

structure has high 𝑅2 for CEO pay levels, and signs are consistent with a story of 

board capture.  Say-on-pay provisions allow investors to express dissatisfaction 

with excessive pay to signal investor preferences and to apply soft pressure to 

reduce pay (Bebchuk 2007). 

In the efficient markets first-best optimum, the board should already pay 

executives the net present value maximizing sum.  Even with agency costs and 

other structural issues, the company should endogenously structure their board 

and voting rules to maximize the second-best optimal value (Fama 1980).  Under 

these efficient theories, mandating say-on-pay should not impact the firm.  

Even some theories of inefficient pay also predict that say-on-pay would 

not have an impact.  Kaplan (2007) and Bainbridge (2008) argue that shareholder 

advisory votes are likely to be bypassed by a compromised board.  Cunat Gine 

Guadalupe (2012a) finds that when firms start holding say-on-pay votes, this by 

itself has no causal impact on CEO pay.   
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On the other hand, Bebchuck (2007) supports more corporate controls, 

arguing that making investors’ opinion more salient to the board induces the 

board to represent investors better.  (Bebchuk, Fried, and Walker 2002) suggest 

that say-on-pay would increase the outrage costs of overpaying the CEO, and thus 

reduce pay.  Further, reputational concerns and enhanced shareholder voice, 

formalized by say-on-pay votes, will cause boards to overcome barriers to 

negotiating with CEOs on behalf of shareholders. 

This paper also looks at the causal response of firm characteristics as CEO 

pay drops at the boundary.  If performance suffers, then the argument can be 

made that wages were efficient before, and this meddling by investors is non-

optimal.   Many papers (Murphy 1999, Baker Jensen Murphy 1990, Joskow et al 

1996, DeAngelo 1991) argue that due to political pressure, CEOs may be 

underpaid and under-incentivized.  In such under-compensation theories, a 

reduction on CEO compensation should result in a reduction of firm value.  

Alternately, a CEO might be overcompensated, perhaps due to the inability of 

boards to evaluate the true cost of pay (Hall and Murphy 2003; Jensen, Murphy 

and Wruck 2004).  In this case, firm value should not decrease and generally be 

close to zero2 – which is what this paper observes.  

  

                                                      
2 Under the weak assumption that incentives are non-decreasing in CEO compensation, then a 
reduction in pay should result in firm value increasing an amount weakly between 0 and the NPV 
of CEO compensation itself, both a small percentage of firm value.   
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Figure 2.1: Change in CEO Total Compensation Binned by Vote fraction. 

The change in Total CEO Pay from fiscal year 2010 to 2011 versus the 2011 Dodd-Frank Say-on-
Pay vote fraction.  Firms are grouped into 5 percentage-point bins.  Votes that just pass are 
assigned to the 0.525 bin and votes that just fail are assigned to the .475 bin.  95% confidence 
intervals based on ordinary standard errors for the bin mean are given by the error bars.  0.50 is the 
pass-fail transition for say-on-pay votes.  The red vertical line indicates the cutoff at 50%.  
  

-1.5

-1

-0.5

0

0.5

1

1.5

0.225 0.275 0.325 0.375 0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775 0.825 0.875 0.925 0.975

%
 C

ha
ng

e 
in

 T
ot

al
 C

EO
 P

ay
 

Fraction of Yes votes on say-on-pay(5 pp bins) 



75 

2.1.2 Preview of Results 

The paper finds that say-on-pay has significant impact on subsequent 

executive pay.  Barely failing the Dodd-Frank say-on-pay vote in 2011 has a -59.8% 

gross impact on next-year total CEO pay level, a jump that is clearly visible in 

Figure 2.1.  This amount is equal to 1.3 times the standard deviation of the annual 

CEO pay change.  Thus, boards do react to say-on-pay votes through the natural 

mechanism of changing CEO pay. 

In order to reach this identification, this paper compiles a novel data set of 

Dodd-Frank say-on-pay executive compensation vote results from raw SEC data.  

The data was manually compiled from over 5000 SEC filings with no systemic 

format.3  Riskmetrics also complies say-on-pay data, but there are large 

differences.  The Riskmetrics data are about shareholder proposals for a firm 

which starts having say-on-pay votes.  Riskmetrics currently has no data on the 

outcome of say-on-pay itself.  These votes are from before 2009 and are sparse: 

only hundreds of such votes have occurred over all firms in a decade.  These votes 

are also not mandatory: investors from a firm chose to propose starting say-on-

pay votes, causing selection bias in the votes.  Cunat Gine Guadalupe (2012a) run 

a regression discontinuity on the Riskmetrics vote and find shareholder proposals 

to start having say-on-pay votes have no impact on pay but do affect firm value 

through announcement returns.   

                                                      
3 Not only did the data format vary wildly, but even the reporting of vote results varied.  Some 
companies preferred tables, others lists, and still some narrative paragraphs or images of vote 
results.   
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This paper uses the regression methodology to further examine the impact 

of the vote cutoff on other firm characteristics.  First, the announcement-day 

return is slightly positive but not significantly different from zero.  A 95% 

confidence interval for the price impact of failing say-on-pay is [-1.4%, 1.6%].  

This is a surprisingly small impact on the value of the firm given the substantial 

impact on CEO pay.  It also provides evidence against the theory that at the 

margin CEOs are undercompensated due to political constraints.  If that were the 

case, the large lowering of pay caused by say-on-pay would be expected to 

destroy significant value and result in a significant negative market reaction. 

 This paper contributes in two ways: first by providing causal identification 

in the field of corporate governance and executive compensation by using an 

interesting RDD vote cutoff.  Second, this paper contributes by creating a novel 

dataset of Dodd-Frank say-on-pay vote results from the primary source manually.   

 Section II provides a literature review.  Section III reviews data collection 

and dataset construction.  Section IV looks at a descriptive OLS analysis of the 

data.  Section V describes the RDD methodology both generally and the specific 

case that is implemented in this paper.   Section VI provides argument that a 

treatment effect exists.  Section VII provides the main result of the impact of vote 

cutoff on CEO pay.  Section VIII discusses extensions.  Section IX concludes. 

2.2 Literature Review 
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Seminal work in CEO compensation include Roberts (1956), Baumol 

(1959), and Lewellen and Huntsman (1970).  However, many empirical papers in 

this literature do not apply rigorous identification strategies to isolate causal 

inferences.  Agency theory views of CEO pay arose around the 1980s.  

Holmstrom (1979) highlight the tradeoff between risk aversion of CEO versus the 

need to reward them with high-powered contracts.  Holmstrom and Milgrom 

(1987) arrive at a linear solution to the problem.  Jensen Meckling (1976) 

formalizes the agency issues and analyzes it in terms of financing needs, optimal 

incentives, and monitoring.  Murphy (1997) reviews the empirical literature of 

CEO pay and provides a thorough description of pay practices, compositions, and 

setting procedures.   Murphy also highlights the rapid increase in CEO pay in the 

1990s, which Gabaix and Landier (2008) explain using extreme value theory.    

While Fama (1980) espouses the theory that CEOs should have optimal 

pay set already, many papers also argue for a “skimming” view of CEO pay 

(Yermack 1997; Bertrand and Mullainathan 2001; Bebchuck and Fried 2004; 

Kuhnen and Zwiebel 2006).  That there are inefficiencies in the CEO labor market 

may not be a surprise given inefficiencies in thick, public, and relatively 

arbitragable financial markets.  Shleifer (2003) reviews divergence of paid price 

from fundamental value.  In price divergence, Lamont Thaler (2003) provide a 

general overview and Zhang (2013) provides a specific example on options.  

Calvet Campbell and Sodini (2006) and Zhang (2013) suggest that households do 

make mistakes in asset allocation.  Baker Wurgler (2006), Fuster Laibson Mendel 
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(2010), and Greenwood Shleifer (2013) demonstrate investor sentiment and 

psychology plays an important role beyond fundamental value.   

Many of the original empirical studies on say-on-pay come from United 

Kingdom data, which was the first country to require say-on-pay in the form of a 

Directors’ Remuneration Report resolutions.  Conyon and Sadler (2010) find that 

most shareholders are generally satisfied with executive pay in this dataset.  Ferri 

and Maber (2009) fail to find any across-the-board differences in pay policy 

comparing before and after the UK mandate.  They do find that the few firms that 

received negative say-on-pay votes subsequently adjust down the magnitude of 

the pay and shift pay towards higher powered incentives.  Alissa (2009) find that 

low say-on-pay vote predicts future reductions in excess compensation and 

increases CEO turnover. 

In the United States Say-on-Pay evidence is more recent, but analogous 

studies of public and shareholder opinion stretch back further in time.  Core et al. 

(2008) find that firms generally do not respond to negative press, while Ertimur et 

al (2011) find that firms do respond to shareholder pressure by reducing pay.  The 

difference between public versus shareholder opinion seems to be sharp.  Balsam 

and Yin (2012) use Dodd-Frank Say-on-Pay data and show that firms that receive 

more disapproval reduce pay and increase the performance sensitivity of that pay.  

Cai and Walkling (2009) show that the market reaction to the House of 

Representatives passing Dodd-Frank say-on-pay was positive for firms with high 

abnormal CEO pay, suggesting say-on-pay creates value for some firms.  The 
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general consensus of these non-causal studies seems to be that say-on-pay 

changes pay when a firm receives especially negative votes, but say-on-pay does 

not change pay across the board.  There does not seem to be any causal studies of 

the impact of say-on-pay votes on compensation.   

 Thisltlewaite and Campbell (1960) set out the framework the regression 

discontinuity design (RDD) strategy.  Lee and Lemieux (2010), Imbens and 

Lemieux (2008), and Hahn Todd Van Der Klaauw (2008) have advanced the 

theory of RDD into the current best practices used today, including the use of a 

non-parametric kernel regression as optimal.  Imbens and Kalyaranaman (2009) 

provide a method for optimal bandwidth selection for that kernel.   

Due to the sharp cutoff often seen in votes of all types, voting has been a 

common application of RDD, with some notable examples being electoral 

competition on policy (Lee Moretti, Butler 2004), the effect of gender on 

legislator behavior (Rehavi 2007), the effect of mayoral party identification on 

policy (Ferreria and Gyourko 2009).  The application of RDD to corporate voting 

is more novel.  Cunat Gine Guadalupe (2012b) use RDD to show that firm values 

casually increase by 2.8% when the firm implements proposals that increase 

shareholder control.   

This paper is most similar to Cunat Gine Guadalupe (2012a), which looks 

at the causal impact of firms that decide to start holding say-on-pay votes.  They 

attain causal identification since many firms only start holding say-on-pay as a 

result of a shareholder proposal.  They use the vote cutoff on these proposals in 
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Riskmetrics data.  They mainly conclude that only starting to hold say-on-pay is 

similar to implementing other positive shareholder control provisions: there is no 

executive compensation change and firm value increase around 2%.   

This paper differs from Cunat Gine Guadalupe (2012a) in a few important 

dimensions.  Most critically, Cunat Gine Guadalupe 2012a uses shareholder 

proposal votes on whether to start holding say-on-pay, while this paper collects 

novel data and uses the say-on-pay votes themselves.  Thus, Cunat Gine 

Guadalupe 2012a causally identifies the overarching impact of implementing say-

on-pay, while this paper identifies the specific impact of the say-on-pay vote itself.   

This fundamental difference gives rise to a host of other differences.  

Cunat Gine Guadalupe (2012a) uses shareholder proposals about implementing 

say-on-pay from 2006-2010, while this paper uses votes mandated by Dodd-Frank 

from 2011, reducing selection bias.  Cunat Gine Guadalupe (2012a) uses 

Riskmetrics data on shareholder proposals, while this paper compiles a novel data 

set manually across a wide variety of formats.  Since the vote is different, the 

results are also different.  Cunat Gine Guadalupe (2012a) finds no impact on CEO 

compensation, while this paper finds large differences.  Cunat Gine Guadalupe 

(2012a) finds a positive impact on firm value, while this finds no impact on firm 

value. 

2.3 Data Collection 



81 

Data was collected from a variety of sources.  Most of the data collection 

effort went into manually collecting vote data.  Observations in the data set are 

generally firm-year pairs, although the bulk of the study focuses on the 2011 vote 

year and so some variables are associated with firms instead of firm-years.   Table 

2.1 provides a summary of the data.  The universe consists of all members of the 

Russell 3000 subject to Dodd-Frank Say-on-Pay4.  The data is restricted to Dodd-

Frank say-on-pay firms because the main dependent variable studied is Dodd-

Frank say-on-pay vote, and the restriction to Russell 3000 is not significantly 

limiting: the vast majority of firms subject to Dodd-Frank say-on-pay lie inside 

the Russell 3000.  The restriction is done to minimize data absence due to 

covariates, as here limiting the inference to the Russell 3000 is preferable to 

possible selection bias at the margin.   

Table 2.2 provides a timeline overview of data sources.  Returns data for 

individual stocks was collected from CRSP.  Daily frequency data from CRSP is 

used directly for announcement day returns.  Monthly frequency data from CRSP 

is rolled up to the annual level for yearly return variables.  All returns in this 

paper are in log terms. 

CEO compensation data is collected from EXECUCOMP.  This paper 

examines only CEO compensation, and so filters for the CEO flag.  Data is 

collected both for the current year and the past year to track changes.  The leading 

                                                      
4 For the first year of Dodd-Frank Say-on-Pay this consists of all firms with more than $75 million 
in market capitalization. 
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compensation figure this paper uses is SEC total compensation, which refers to 

SEC Form DEF 14A compensation, giving us the advantage of being able to cross 

validate the numbers manually and being free from model assumptions used to 

calculate other EXECUCOMP pay variables.  Salary, options, and other 

compensation components are also selected to match the SEC Form DEF 14A.  

The compensation variable is always selected to be the grant-day value 

instead of realized value.  There is robust discussion encompassing Murphy (1999) 

to present day about whether grant or realized value is more appropriate in 

different situations.  For example, for studying inequality, realized pay is quite 

relevant.  This paper choose grant value both because it is easier to collect, being 

available contemporaneously, as well as because it is the more appropriate value 

for this study.  After all, this paper studies how the board changes their package in 

response to votes, and how the CEO responds to the granted package.  Using 

realized value would subject the study to unneeded noise due to stock market 

movements.   

To minimize look-ahead issues, the compensation data from 

EXECUCOMP is always from the contemporaneous year’s DEF 14A.  The paper 

does not use data that is later revised for consistency.  Data on company 

characteristics is collected from COMPUSTAT, which is ultimately from the SEC 

10-K filing forms.   
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Table 2.1: Summary Statistics for Vote Data, CEO Pay, and Firm Characteristics. 

The summary statistics below describe the 2010 and 2011 data for all 2188 firms of the Russell 
3000 which has 2011 vote data.  Pay data and firm characteristic data are collected for both 2010 
and 2011.  Variables including pay are reduced to the circa 1,300 firms for which EXECUCOMP 
pay data exists.  Panel A summarizes variables associated with each firm in the dataset, while 
Panel B summarizes variables associated with each firm-year.  Dodd-Frank Say-on-Pay vote 
fraction is collected manually from SEC 8-K forms.  A high vote fraction indicates more approval.  
All pay relates to the CEO and is computed from EXECUCOMP: Total Pay as reported on SEC 
form DEF 14A (TOTAL_SEC), base salary paid to CEO (SALARY), bonus paid to CEO – 
usually tied by rule to performance metrics (BONUS), value of options  awarded to the CEO 
(OPTION_AWARDS_FV).  Accounting variables are obtained from Compustat Annual: earnings 
before interest and tax (EBIT), dividends paid that year (DVC), an indicator for whether the firm 
pays dividends I(DVC>0), book value of equity (CEQ), book value of assets (AT).  Institutional 
Ownership is pulled from Yahoo Finance.  Returns data in logs and market cap are from CRSP: 
Stock Return in 2010 (termed R here), Market Cap (Shares Outstanding x Price on Jan 1, 2010, 
termed M here), and Announcement Day Return is computed from market close before the 
announcement to the next day’s market close.   
 
All monetary amounts are in current year dollars.  K stands for thousands and M for millions.  All 
changes between two years use the average of the two years as the base.  Note that the number of 
observations changes due to missing values for certain data sources and variables.  SD denotes 
standard deviation, and Corr w/ Vote denotes correlation with Vote %.  For correlations, OLS 
significance is calculated with significance at the 10%, 5%, and 1% levels indicated by *, †, and ‡, 
respectively.  
 

Panel A: Firm Variables 
Variable N Mean SD Corr w/ Vote 
Vote fraction (%) 2,188 89 12 1.00‡ 
Total CEO Pay Change 2010-2011 (%) 1,310 7 47 .10‡ 
Institutional Ownership 2010 (%) 2,091 69 24 -.10‡ 
Return in 2011 (%) 2,181 -8 35  .08    * 
Return in 2010 (%) 2,162 22 31 .18‡ 
Return in 2009 (%) 2,056 34 50 .03     . 
Return in 2008 (%) 1,994 -59 61 .10  †    
Announcement Day Stock Return % 2,189 0 6 .02     . 
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Table 2.1 (Continued) 
 
 
 
 
 
 
 
 
 
 
 
 

Panel B: Firm-Year Variables 
  2010     2011   
Variable N Mean SD Corr 

w/ 
Vote 

 N Mean SD Corr 
w/ 

Vote 
          
Total Pay ($K) 1,325 5,726 6,101 -.25‡  1,311 6,153 6,732 -.16‡ 
Salary ($K) 1,325 807 451 -.16‡  1,311 846 432 -.15‡ 
Bonus  ($K) 1,325 272 1,109 -.09‡  1,311 272 1,159 -.09‡ 
Options Value 
($K) 

1,325 1,191 2,676 -.17‡  1,311 1,188 2,361 -.12‡ 

          
EBIT ($M) 2,175 635 2,559 -.08‡  2,172 717 3,003 -.07† 
Market Cap ($M) 2,174 5,605 19,670 -.02        2,172 5,725 20,779 -.05 
Dividend ($M) 2,175 107 488 -.07†  2,172 118 538 -.07† 
Paying 
Dividends (%) 

2,175 48 50 -.01.  2,172 50 50 -.05 . 

Book Equity 
($M) 

2,175 2,579 9,804 -.09‡  2,172 2,730 10,309 -.09‡ 

Book Assets 
($M) 

2,175 11,481 81,102 -.05*.  2,172 12,155 82,394 -.05* 
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Table 2.2: Timeline of Data Collection and Votes: Exxon Mobile Corporation. 

The below shows the timeline of release of various SEC Forms.  The table lists the year name as 
used in the paper, the release date of the form, the subject period of the form, and the subject 
matter of the form for Exxon Mobile Corporation.   
 
This paper uses the convention that years always refer to year of the direct subject period and not 
the release date.  For example, note that the Dodd-Frank Say-on-Pay vote released on 5/31/2011 is 
referred to as the 2011 say-on-pay vote and not 2010, despite the vote being about 2010 pay.  This 
is because the vote itself occurred in 2011 and is the direct subject of the data release. 
 
Year Name SEC Form  Release Date Subject Period Subject Matter 
2010 10K 2/25/2011 FY 2010  Accounting Data 
2010 DEF 14A 4/13/2011 FY 2010 Proposed Executive 

Compensation 
2011 8-K 5/31/2011 5/26/2011 Reporting the Results of 

the say-on-pay held a 
few days ago on 
FY2010 Proposed 
Executive 
Compensation 
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Data on votes were manually collected from SEC 8K filings on the 

EDGAR databases online, and collecting this data is one contribution of this 

paper.  Companies have a wide variety of filing formats.  Some file the data 

within multiple tested Tables in a highly structured HTML file, while others write 

the vote results narratively in a flatter text-like file, and formats exist in the entire 

spectrum in between.  Despite the inability of such disparate data to be 

automatically processed, the vote results and interpretations are almost always 

straightforward. 

For each company participating in Dodd-Frank say-on-pay in that year, I 

record the number of FOR votes, AGAINST votes, ABSENTIONS, and 

BROKER NON VOTES.  I calculate the vote passage percentage as the number 

of FOR votes over the total of FOR, AGAINST, and ABSENTIONS.  With the 

majority of firms, the nominal vote fraction required for passage is 50% of FOR 

votes over FOR, AGAINST, and ABSTENTIONS.  For votes around the cutoff 

(40-60%), I manually check the company’s bylaws or voting statements to ensure 

this is the case.  For the minority where the denominator does not include 

ABSTENTIONS in the denominator, the ratio is updated to reflect that.  No 

company in the data set crosses the pass/fail boundary due to this adjustment, as 

the adjustment is on average very small at a few basis points.  I also note the date 

of record (the vote date) and the date of filing/report.  The date of filing is used as 

the announcement return date as it is the date on which vote results are made 

public and can be publically traded on. 
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Table 2.2 provides intuition about the sequence of events and data.  

Consider one observation: Exxon Mobile Corporation (XOM) for year 2011.  The 

lagged subject year then is fiscal year (FY) 20105 and the current year is XOM’s 

FY2011.  Both fiscal years coincide with the calendar year, with FY2010 closing 

12/31/2010.  The SEC requires XOM to first produce an annual report of FY2010 

financial activities, which XOM does on 02/25/2011: this provides all the lagged-

year company characteristic data we collect through COMPUSTAT.  Then the 

SEC requires XOM to hold an annual shareholder meeting, the details of which 

are announced in Form DEF 14A on 04/13/2011.  Form DEF 14A is perhaps the 

one most affected by say-on-ay, as it contains the compensation committee’s 

proposal for the lag year 2010.  This is the data that we collect through 

EXECUCOMP. 

Observing performance and compensation, shareholders then vote in 2011 

with respect to the FY2010 pay package.  The voting may happen via proxy (mail 

or online), or during the in-person meeting on 05/25/2011.  The results of the 

meeting are then announced a few days later on 05/31/2011 in Form 8-K.  It is 

this Form 8-K data that we manually collect to form 2011 vote data.   

The two SEC Forms, 10K, DEF 14A are released in calendar year 2011 

but speak to FY2010 data.  By convention, this paper associates data with the year 

it directly describes.  Thus both these forms contain 2010 data.  The final SEC 

                                                      
5 Fiscal years are numbered after the year in which they end.  For example, years ending on the 
following dates would all be called FY2010:  January 15, 2010, June 30, 2010, and December 31, 
2010. 
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Form, the 8-K, reports a vote that occurred in 2011 and so contains 2011 data.  

Table 2.2 provides an outline of the year naming conventions. 

To get changes, this paper needs to collect data for the next year.  For 

XOM, the 10K for 2011, released in 02/24/2012, provides information on changes 

in company characteristics and performance.  The DEF 14A for 2011, released on 

04/12/2012, provide data on compensation response to the 2010 say-on-pay vote.   

Note here that for year 2011, the penumbra of our data actually spans three 

years.  The lagged year for accounting and compensation is 2010, while the 

current year 2011 data is needed to obtain changes.  Note that 2011 data is 

released well into 2012, giving three relevant years.   Even though Dodd-Frank 

was enacted as a law in 2010,  only the 2011 year is complete, with 2012 data still 

arriving well into 2013, the writing of this paper.  For the 2011 data year, the say-

on-pay vote is held in 2011 and is actually for shareholder approval of the 

FY2010 pay package, which is generally already fixed.  Rarely is the 

compensation committee recalled to determine 2010 pay again.  Rather the model 

here is that the board receives feedback on the investor’s dissatisfaction of the 

past year’s compensation, and then adjusts the next year’s compensation 

accordingly.   

2.4 Data Overview and Ordinary Least Squares (OLS) Results 

This paper begins its analysis by examining the data descriptively in an 

ordinary-least-squares setting.  OLS gives up good identification for higher power, 
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which is a large advantage and worth considering.  First, determinants of CEO 

pay are examined, particularly in the context of its correlation with Dodd-Frank 

Say-on-Pay vote fraction.  The paper finds that while CEO pay is quite 

predictable, there is serious reverse causality issues in an OLS regression of CEO 

pay against vote fraction.  Then, determinants of CEO pay change are examined 

to minimize reverse causality issues.  Vote fraction is shown in this setting to 

have the same correlation as in regression discontinuity design (RDD) case.  

Finally, determinates of vote fraction are examine, and this paper finds that pay, 

firm characteristics, and firm performance contribute similar magnitudes to this.  

2.4.1 Magnitude of CEO Pay 

Table 2.3 presents log total CEO pay as the left hand side variable, and 

examines its covariates.  The paper examine 2011 pay only. Three standard 

groups of covariates are selected from standard CEO pay predictors in the 

literature.  The first group consists of size measures like market value, total assets, 

and total sales.  The second group consists of stock performance measures 

including last one and three year returns.  The final group consists of firm 

performance measures like book to market, equity ratio, and ROA.  Further, the 

paper examines lagged pay and vote fraction as special covariates.  These 

variables are chosen to be the standard predictors in the literature and their 

variations, as set out originally in Murphy (1997), and described in more detail in 

Balsam and Yin (2011).   
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Table 2.3: OLS Determinants of CEO Pay. 

OLS regressions of Log 2011 total CEO pay (TOTAL_SEC) on Log 2010 total CEO pay , vote 
fraction (DFSOP), Market Cap (M), Book Asset (AT), Sales (SALE), 1-year and 3-year past log 
returns, Book to Market (AT/M), Equity ratio (CEQ/AT), and ROA (EBIT/AT). 
 
log(𝑇𝑂𝑇𝐴𝐿_𝑆𝐸𝐶2011)𝑖  

= 𝑎 + log�𝑇𝑂𝑇𝐴𝐿_𝑆𝐸𝐶2010,𝑖�+ 𝑐 𝐷𝐹𝑆𝑂𝑃𝑖 + 𝑑𝑀𝑖 + 𝑒𝐴𝑇𝑖 + 𝑓𝑆𝐴𝐿𝐸𝑖 + 𝑔𝑅2011,𝑖

+ ℎ�𝑅2011,𝑖 + 𝑅2010,𝑖 + 𝑅2009,𝑖�+ 𝑖 �
𝐴𝑇𝑖
𝑀𝑖

� + 𝑗 �
𝐶𝐸𝑄𝑖
𝐴𝑇𝑖

� + ℎ �
𝐸𝐵𝐼𝑇𝑖
𝐴𝑇𝑖

� + 𝑢𝑖 

 
All variables are for the year 2011 year unless otherwise specified.  All variables in the formula 
above are defined as in Table 2.1.  Log 2010 total CEO pay is the natural log of the 2010 SEC 
reported total pay.  Vote fraction is the Dodd-Frank Say-on-Pay vote fraction expressed as a 
fraction.  Market cap is market value at the start of the year in millions of dollars.  Book Assets is 
total book assets in millions.  Sales is annual sales in millions. 1-year return is defined as 2011 
year returns for a stock, while 3-year returns is 2009 to 2011 returns inclusive for a stock.  Book to 
market is total book assets over total market value expressed as a fraction.  Equity ratio is book 
value of equity over book value of total assets as a fraction.  ROA is EBIT over total assets as a 
fraction.  T-statistics displayed in parenthesis below each estimate and are heteroskedasticity 
robust.  Bold coefficients are significant at the 10% level. 
 

Panel A: Regressions (1) to (6) 
 Standard Literature Covariates  Lagged Pay 

Variable (1) (2) (3) (4)  (5) (6) 
N 1117 1290 1281 1150  1309 1116 
𝑅2 .2487 .2532 .0065 .0475  .6739 .7043 
        
2010 Pay      .939 

(16.62) 
.957 

(9.50) 
Vote Fraction        
        
Market Cap .029 

(0.29) 
.129 

(1.98) 
    -.027 

(0.39) 
Book Asset .171 

(2.48) 
.072 

(2.23) 
    .038 

(0.70) 
        
Sales .203 

(6.27) 
.204 

(7.80) 
    -.013 

(0.48) 
1-Year Return -.135 

(1.57) 
 .225 

(2.41) 
   .255 

(3.13) 
3-Year Return .139 

(2.12) 
 .061 

(1.06) 
   -.023 

(0.59) 
        
Book to Market -.154 

(1.47) 
  .011 

(0.15) 
  .006 

(0.06) 
Equity ratio -.048 

(.29) 
  -.473 

(8.08) 
  -.051 

(1.05) 
ROA .043  

(1.26) 
  .148 

(3.99) 
  .009 

(0.40) 
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Table 2.3 (Continued) 
 
 
 
 
 
 
 
 
 

Panel B: Regressions (7) to (10) 
 Including Vote Fraction 

Variable (7) (8) (9) (10) 
N 1309 1116 1310 1117 
𝑅2 .6747 .7045 .0293 0.2751 
     
2010 Pay .947 

(16.37) 
.961 

(9.19) 
  

Vote Fraction .258 
(1.67) 

.125 
(0.56) 

-1.540 
(6.55) 

6.850 
(11.93) 

     
Market Cap  -.029 

(0.41) 
 .053 

(0.54) 
Book Asset  .039 

(.71) 
 .152 

(2.29) 
     
Sales  -.012 

(.47) 
 .183 

(5.89) 
1-Year Return  .256 

(3.13) 
 -.121 

(1.42) 
3-Year Return  -.027 

(0.66) 
 .177 

(2.78) 
     
Book to Market  .009 

(.09) 
 -.183 

(1.78) 
Equity ratio  -.048 

(1.02) 
 -.059 

(0.91) 
ROA  .009 

(0.40) 
 -1.654 

(7.42) 
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Looking at Table 2.3 regression (1), the 𝑅2 of CEO pay on all three groups 

of variables is .25.  Regression (2) shows that almost all the predictability can be 

accounted for by size measures – which have an 𝑅2 of .25 as well.  This is not 

surprising given the importance of firm size to CEO pay.  Most literature on CEO 

pay include firm size as a components, and all analysis find strong and robust 

relationship between the two variables, including the seminal work by Murphy 

(1997) .  To reword Gabaix and Landier (2009), one reason firm size affects CEO 

pay so much is because CEO ability can be seen as a multiplier on the firm’s 

market cap.  Therefore, larger companies gain from skillful CEOs an amount 

proportional to their size.   

In the size regression (2), it is seen that all measures of size positively 

predict pay.  This suggests that market value, total assets, and sales can all be seen 

as noisy measures of a fundamental size variable, which increases pay.   

Table 2.3 part (3) regresses CEO pay against stock performance.  There 

generally seems to be a positive relationship between performance and subsequent 

year pay, but comparing (1) and (3) shows these figures are heavily affected by 

covariates.  This suggests that regression (3) is interacting heavily with size 

variables, that much of the explanatory power of returns is coming through the 

mechanical impact of returns on size.  Regardless, the predictability is low with 

an 𝑅2 of .01 showing that returns are not great predictors of CEO pay. 
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Table 2.3 part (4) regresses CEO pay on firm characteristics.  The 𝑅2 is 

moderate at .05, with a significant negative loading on the equity-ratio and 

positive loading on ROA.  One interpretation of this result is that ROA is a 

measure of accounting performance, and CEOs who do well on this metric are 

rewarded more.  In fact, Murphy (1997) mentions ROA as an explicit bonus term 

in many CEO’s compensation schedules. This doesn’t explain the equity ratio 

though.  Also, these effects are much lower in the total regression (1), suggesting 

another explanation: omitted variable bias for firm size.  It seems likely that only 

large firms can obtain low equity-ratio, and large firms tend to be run better in a 

way that yields high ROA.  Thus, equity ratio and ROA are simply weak proxies 

for firm size in the absence of an explicit size variable.  This omitted variable 

story is strongly supported by comparing the 𝑅2 of (1), (2), and (4) and noting 

that firm characteristics have negligible residual 𝑅2 on top of firm size. 

Up to this point, this section has only reported some standard determinants 

of CEO pay.  To get towards the question of the impact of say-on-pay on CEO 

pay, consider regression (9), a univariate regression of CEO pay on the most 

recent say-on-pay vote.  Here the coefficient on vote fraction is negative.  Taken 

causally, this would seem to imply that receiving a low say-on-pay vote actually 

causes CEO pay to be higher – opposite to the intuition that say-on-pay is a 

disciplining mechanism.  However, this fails to take into account an important 

factor: reverse causality.  High CEO pay in 2011 is likely very related to high 
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CEO historical pay in 2010.  It is high historical pay that causes vote fraction to 

be so low in 2011, explaining the negative sign.  In other words, high 2011 pay is 

likely a correlated of 2010 overpay, which causes low 2011 vote fraction. 

Regression (10) adds the three groups of covariate back in along with vote 

fraction.  The sign on vote fraction is still negative.  This is not surprising as well 

– the same critique as regression (9) applies.  Namely, 2011 CEO pay is a positive 

residual predictor of historical overpay.  The historical overpay generate reverse 

causality on vote fraction. 

Regression (8) attempts to solve this problem by adding lagged CEO pay.  

Lagged pay clamps down on the reverse causality channel by controlling for pre-

existing overpay.  Sure enough, the sign on vote fraction flips signs to the 

intuitive forward causal one: high vote fraction results in higher pay next year 

controlling for last year’s pay.  Regression (7) shows again the importance of 

controlling for historical pay, especially in comparison to regression (9): just 

controlling for the reverse causality channel by adding historical pay to the 

univariate regression causes vote fraction to flip signs. 

The previous few regressions show that OLS regressions provide poor 

identification for the question of the causal effect of vote fraction on CEO pay.  

Reverse causality is shown to be a substantial issue here.  Even with reverse 

causality eliminated, there are problems of pre-existing differences between firms 

that receive high and low vote fractions.  As Table 2.1.2 amply shows say-on-pay 
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vote fraction is quite predictable on previous data, highlighting serious omitted 

variable bias issues. 

To wrap up the analysis on Table 2.3, note from regression (5) that last 

year’s pay alone has incredibly high predictability for this year’s CEO pay, with 

an 𝑅2 of .67.  This is substantially more than all the other factors combined in 

regression (1).  Further, once a regression includes previous pay, all other 

variables matter little.  The 𝑅2 of all other variables plus past pay in regression (7) 

is only .70.  Of course, past pay is not included in the standard literature on CEO 

pay because the standard literature is attempting to predict pay from other 

variables.  However, for the purposes of this paper, past pay is a legitimate 

covariate that demonstrably helps control for omitted variable issues.  Historical 

pay is so important that in the next OLS analysis, this paper explicitly differences 

out historical pay by looking at changes in pay.  
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Table 2.4: OLS Determinants of CEO Pay Change. 

OLS regression of change in CEO pay (PAY_CHANGE) on Dodd-Frank Say-on-Pay vote 
fraction (DFSOP),  2009 to 2011 log returns (R), and 2010 and 2011 values of: market cap (M), 
book asset (AT), sales (SALE), book-to-market (AT/M or B/M), equity ratio (CEQ/AT), and 
return on asset (EBIT/AT or ROA).  
 
𝑃𝐴𝑌_𝐶𝐻𝐴𝑁𝐺𝐸2010−2011,𝑖  

= 𝑎 + 𝑏 𝐷𝐹𝑆𝑂𝑃 +  𝑐 𝑀2011,𝑖 + 𝑑 𝐴𝑇2011,𝑖 + 𝑒 𝑆𝐴𝐿𝐸2011,𝑖 + 𝑓 �
𝐴𝑇2011,𝑖

𝑀2011,𝑖
�

+ 𝑔 �
𝐶𝐸𝑄2011,𝑖

𝐴𝑇2011,𝑖
�+ ℎ �

𝐸𝐵𝐼𝑇2011,𝑖

𝐴𝑇2011,𝑖
� + 𝑖 𝑀2010,𝑖 + 𝑗 𝐴𝑇2010,𝑖 + 𝑘 𝑆𝐴𝐿𝐸2010,𝑖

+ 𝑙 �
𝐴𝑇2010,𝑖

𝑀2010,𝑖
�+ 𝑚 �

𝐶𝐸𝑄2010,𝑖

𝐴𝑇2010,𝑖
�+ 𝑛 𝑅2011,𝑖 + 𝑜 𝑅2010,𝑖 + 𝑝 𝑅2009,𝑖

+ 𝑞 �
𝐸𝐵𝐼𝑇2010,𝑖

𝐴𝑇2010,𝑖
� + 𝑢𝑖 

 
Change in CEO pay (PAY_CHANGE) is defined as the difference between 2010 and 2011 total 
SEC reported pay, divided by the average total SEC reported pay over the two year as a fraction.  
All other variables are defined the same as in Table 2.1 and 2. T-statistics are heteroskedasticity 
robust.  Bold coefficients are significant at the 10% level. 
 

Variable  (1)  (2)  (3) 
N  1020  1020  1310 
𝑅2  .0502  .0520  .0104 
  b [t]  b [t]  b [t] 
Vote Fraction     .170 (1.05)  .3717  (3.25) 
          
2011 Market Cap  .152  (1.29)  .152 (1.29)    
2011 Book Assets  .340 (3.03)  .337 (2.99)    
2011 Sales  .022  (0.14)  .018 (0.12)    
2011 B/M  .037  (0.28)  -.137 (0.73)    
2011 Equity ratio  -.032  (0.58)  -.033 (0.61)    
2011 ROA  .004  (0.15)  .004  (0.20)    
          
2010 Market Cap  -.191  (1.47)  -.189  (1.46)    
2010 Book Assets  -.308  (2.45)  -.306  (2.43)    
2010 Sales  -.016  (0.10)  -.009  (0.06)    
2010 B/M  -.145  (0.78)  -.137  (0.73)    
2010 Equity ratio  .072  (1.06)  .075  (1.12)    
2010 ROA  -.041  (0.34)  -.043  (1.81)    
          
2011 Return  .061  (0.52)  .053  (0.44)    
2010 Return  -.015  (0.24)  -.027  (0.42)    
2009 Return  -.085  (2.37)  -.085  (2.38)    
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Table 2.5: OLS Determinants of Vote Fraction. 

OLS regression of Dodd-Frank Say-on-Pay vote fraction (DFSOP) in 2011 on last year 
(2010) values of total CEO pay (TOTAL_SEC), change in total CEO pay (PAY_CHANGE), 
market cap (M), book assets (AT), sales (SALE), book-to-market (AT/M), equity ratio (CEQ/AT), 
ROA, and institutional ownership (IO), as well as 2008 – 2010 inclusive annual log returns.   
 
𝐷𝐹𝑆𝑂𝑃2011,𝑖  = 𝑎 + 𝑏 𝑇𝑂𝑇𝐴𝐿_𝑆𝐸𝐶2010 + 𝑐 𝑃𝐴𝑌_𝐶𝐻𝐴𝑁𝐺𝐸2009−2010 +  𝑑 𝑀2010,𝑖 + 𝑒 𝐴𝑇2010,𝑖

+ 𝑓 𝑆𝐴𝐿𝐸2010,𝑖 + 𝑔 �
𝐴𝑇2010,𝑖

𝑀2010,𝑖
� + ℎ �

𝐶𝐸𝑄2010,𝑖

𝐴𝑇2010,𝑖
�+ 𝑖 �

𝐸𝐵𝐼𝑇2010,𝑖

𝐴𝑇2010,𝑖
� + 𝑗 𝑅2010,𝑖

+ 𝑘 𝑅2009,𝑖 + 𝑙 𝑅2008,𝑖 + 𝑢𝑖 
 
Dodd-Frank Say-on-Pay vote fraction is a vote taken in 2011 regarding 2010 pay.  All regressors 
are chosen to be the latest possible data that is known by the time of the vote.  Change in CEO pay 
(PAY_CHANGE) is defined as the difference between 2009 and 2010 total SEC reported pay, 
divided by the average total SEC reported pay over the two year as a fraction.  IO is institutional 
ownership percent as a fraction defined in Table 2.1. All other variables are defined the same as 
in Table 2.1 and 2. T-statistics are heteroskedasticity robust.  Bold coefficients are significant at 
the 10% level. 
 

Variable  (1)  (2)  (3)  (4) 
N  1077  1198  1920  1988 
𝑅2  .1841  .0641  .0592  .0637 
  b [t]  b [t]  b [t]  b [t] 
Total CEO Pay  -.028 (2.53)  -.028 (5.10)  .372  (3.25)  .372  (3.25) 
Change in Pay   -.021 (2.82)  -.010 (1.47)       
             
Market Cap  -.016 (1.33)     -.013 (1.32)    
Book Assets  .023 (1.92)     .007 (0.72)    
Sales  -.002 (0.44)     -.002 (0.65)    
B/M  -.065 (2.21)     -.063 (3.01)    
Equity ratio  .000 (0.01)     .005 (0.57)    
ROA  .141 (1.84)     .097 (4.02)    
IO  -.060 (3.01)     -.078 (6.49)    
             
2010 Return  .109 (5.97)        .085 (8.52) 
2009 Return  .052 (4.41)        .031 (4.82) 
2008 Return  .054 (5.86)        .042 (7.67) 
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2.4.2 Changes in CEO Pay 

 This paper proceeds by examining predictors of CEO pay changes.  As 

argued previously, CEO pay change is the more appropriate variable on which to 

measure the impact of say-on-pay: it suffers much less from reverse causality 

issues.   

 Regression (1) runs a baseline regression of the change in CEO pay on 

both the 2011 and 2010 values of the standard predictors of CEO pay levels.  

These predictors were examined in the previous subsection and Table 2.3.  This 

includes 2011 and 2010 values for size variables, firm characteristics, and stock 

performance.  Two items to note is that the 2011 variables have generally the 

same signs as in the regression (1) from Table 2.3, while the 2010 variables have 

the opposite sign.  This is expected as the left hand side variable here is CEO pay 

variables difference across two years: 2011 minus 2010.   

However, the 𝑅2 is significantly lower on this regression than regression 

(1) from Table 2.3.  This suggests that differencing CEO pay between two years 

eliminated most of the predictable components of CEO pay.  This could be 

expected from realizing that most of the predictor variables like Total Asset or 

Market Value do not significantly change over the period of a year.6  Further, this 

result is not a surprise given the low residual predictive power demonstrated 

between regressions (5) and (6) in Table 2.3. 

                                                      
6 While a firm might easily halve or double in value over a given year, this change in market cap is 
a small fraction of the distribution of market caps across our universe of the Russell 3000. 
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In regression (3) of Table 2.4, this paper examines the straight up 

univariate regression of vote fraction on CEO pay change.  The sign here is 

significant and in the positive direction, showing that high vote fraction is 

correlated with positive pay changes.  Taken directly, this seems to say that firms 

do react to low vote fraction by reducing pay.  Regression (2) adds on the controls 

to vote fraction, which results in the same sign on vote fraction, although a 

smaller magnitude.  The smaller magnitude is not completely a surprise because 

as Table 2.5 will show much of the variation on vote fraction is predictable using 

the same covariates as those added in Regression (2).   The difference between (2) 

and (3) suggests that much of the predictable variation on vote fraction is still 

affecting pay.  This would be in line with the role of say-on-pay in reminding the 

board of the true cost of pay, and increasing the salience of their dissatisfaction 

(Hall and Murphy 2003; Jensen, Murphy and Wruck 2004).   

2.4.3 Dodd-Frank Say on Pay Vote fraction 

 Finally, this paper uses OLS regressions to descriptively explore vote 

fraction and how it correlates to other variables.  Table 2.5 includes as regressors 

the standard regressors as described in Table 2.3 for CEO compensation.  In 

addition, it includes as regressors past pay, motivated by its use in standard say-

on-pay studies (Cai and Walkling 2009).  The pay variables include pay levels as 

well as pay changes.  Institutional ownership is also added as it generally is highly 

affected by voting. 
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 This results in three natural a priori categories for covariates.  The first 

category consist pay measures: both levels and changes.  The second category 

consists of firm characteristics, including size, book-to-market, equity ratio, return 

on assets, and institutional ownership.  The final category consists of past returns 

for three year (See Table 2.5). 

 Regression (1) predicts vote fraction using all variables, while (2), (3), and 

(4) regress on each individual group described above.  Note that there are minimal 

interactions between all four regressions.  Comparisons of any regression with the 

all-in regression (1) do not show large changes in any variable’s value.  This 

signifies that the groups of variables are jointly orthogonal with each other.  This 

makes sense – returns are generally orthogonal with everything else.  Further, pay 

seems to be not strongly related to firm characteristics.  This is verified in Table 

2.3 where the only real predictors of pay is firm size, and even that had an 𝑅2 

of .25. 

 Further, note that the 𝑅2 of the total regression (1) is .18, and the 

regressions of each of the groups of variables are .06.  That they add up is a 

consequence of the orthogonality discussed above.  That they’re about the same in 

magnitude demonstrates that these factors almost equally contribute to vote – 

each component is similarly important. 

 Total pay negatively predicts vote fraction – this makes sense as historical 

overpay upsets investors and decreases their say-on-pay approval.  Note that this 
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was the reverse causality result of Table 2.3 regression (9).  Similarly, increase in 

pay in the last year predicts a lower vote fraction the following year.  Investors 

may see the increase in pay as excessive or arbitrary.   

  Firm size variables don’t seem to have a strong relationship with say-on-

pay.  Book to market is negatively related, which would be expected if a high 

B/M indicates a low market value from management leading the firm astray.  

ROA is similarly positively related to vote fraction, perhaps as a measure of CEO 

ability.  The equity ratio itself does not affect vote fraction.  Institutional 

ownership is negatively related to vote fraction, not surprisingly.  It is a well-

known result that institutional owners tend to wield more influence and express 

more displeasure with firms. 

 Finally, past returns are surprisingly good, robust, and consistent 

predictors of vote fraction.  Each year’s performance is positively related to vote 

fraction, and the magnitudes are nearly equal amongst the years.  Each year is 

highly robust as well.  The textbook goal of investors trying to maximize net 

present value seems right (Brealey Myers 2006).  Investors do normatively and 

positively see firm market value as the key objective for executives to maximize, 

insofar as they consistently censure CEOs that fail on that metric.   

 Overall, the OLS regressions shown in Table 2.1, Table 2.2, and Table 

2.7give significant insight into the relationship of the variables of each other.  

Primarily, it is seen that CEO pay levels are predictable mainly by size, but suffer 

from reverse causality if run against say-on-pay vote fraction.  CEO change levels 
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are less predictable and have a positive sign with respect to vote fraction.  Vote 

fraction itself is somewhat predictable, with equal predictability arising from past 

pay behavior, firm performance characteristics, and past returns of the firm. 

2.5 Regression Discontinuity Design Methodology 

This paper follows the theory of Van der Klaauw (2002) for regression 

discontinuity (RDD), and implements estimation of the discontinuity using local 

linear regressions due to its optimal rate properties (Porter 2003).  The bandwidth 

of the local linear regression is selected using the algorithm designed for this 

purpose in Imbens and Kalyanaraman (2009).  This RDD strategy is the gold 

standard implementation in the Stata software used. 

 

2.5.1 Basic Theory of Regression Discontinuity Design 

Let 𝑆 ∈ [0,1] be scoring variable, in the case of this paper, the Dodd-

Frank Say-on-Pay vote fraction, a continuous variable.  Also let 𝑇 ∈ {0,1} be a 

binary treatment variable be completely determined by the scoring variable.  In 

particular, define 𝑇 = 𝐼(𝑆 ≥ .5).  Here, the interpretation would be statutory 

passing the say-on-pay vote.  Let 𝑌 be any treatment variable.  In this paper, the 

treatment variable would include pay change, announcement day returns, change 

in company characteristics, and so forth.  The leading case will be percent year-

on-year change in compensation. 
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The causal variable that this paper will try to estimate is the impact of 

treatment on outcome.  A starting point would be a straight-up OLS estimator: 

𝑌𝑖 = 𝛽 + 𝛼 ⋅ 𝑇𝑖 + 𝑢𝑖  (3) 

The variable of interest would then be𝛼.  However, 𝑇𝑖 is nonrandom and 

endogenous, and generally 𝐸[𝑢|𝑇] ≠ 0.  If the treatment effect depends on 

individuals, then the coefficient has no causal meaning (versus being 𝐸[𝛼𝑖] in the 

randomized case).   

 In this paper, the discontinuity is sharp, meaning that 𝑇 is identically 0 on 

[0,0.50) and 1 on [.50,1].  It is not fuzzy, with just a jump in treatment 

probability at .50 but not necessarily from 0 to 1.  This is a direct consequence of 

the definition of treatment here as statutory passing of say-on-pay vote.  The 

identification strategy will be based on the observation that a sample of firms 

within a small interval around the cutoff is similar to a randomized experiment at 

the cutoff.  One way to see this would be to interpret the randomization as the 

independent noise that might arise from voter noise such as a block voter missing 

a train to the company meeting.   

However, such independent randomization is not the only possible 

interpretation of RDD.  Firms right above and below the cutoff of .50 have 

essentially the same vote S, so on average the firms right above are very similar to 

the firms below when receiving treatment T.  Thus, as this interval decreases, 

there are vanishing confounds between the group to the left and group to the right 
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other than treatment.  The treatment effect then can be isolated by comparing the 

difference in average of the two local groups.   

 This logic leads to strong internal validity of the estimate.  The difference 

between the two groups can be highly attributed to the causal impact of 

treatment𝑇.  For treatments that vary between individuals, the estimate will 

converge to the average around the treatment 𝐸[𝛼𝑖|𝑇 = 𝑆].  The conditional 

operator indicates that since identification occurs with 𝑆 around 𝑇, inference 

outside this neighborhood will not necessarily be valid.   

 However, reducing the estimation neighborhood comes at the cost of 

increasing variance., as it decreases the sample size.  An alternative is to model 

the background impact of the vote fraction 𝑆 on outcomes 𝑌 directly.  The 

weakest possible assumption is that the direct impact of 𝑆 on outcomes 𝑌 is 

continuous (if it were not, the intuition above for comparing borderline groups 

would not be correct).  Thus the theory makes the following assumption: 

Assumption 1: The conditional mean function 𝐸[𝑢|𝑆] is continuous at the 

cutoff .50.   

This immediately gives that the causal effect of passing the vote is 

identified by: 

lim
𝑆↓.50

𝐸[𝑌|𝑆] − lim
𝑆↑.50

𝐸[𝑌|𝑆] 

As a regularity assumption, since the cutoff is defined as being on the left-hand-

side of .50, it is also required that the theory has  
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Assumption 2: The mean treatment effect 𝐸[𝛼𝑖|𝑆] is right continuous 

at .50.   

However, in practice the entire premise of the RDD estimation is 

problematic if the treatment effect depends heavily on 𝑆.  Thus, an implicit 

underlying practical assumption here needed for economical meaningfulness of 

the estimate is that the average treatment is valid for a wide neighborhood around 

the cutoff. 

 Stronger assumptions about the conditional mean function, termed the 

“control function” 𝐸[𝑢|𝑇, 𝑆] increases the power of the test by allowing more data.  

If the control function 𝑘(𝑆𝑖) could be known perfectly, then the estimating 

equation 

𝑌𝑖 = 𝛽 + 𝛼 ⋅ 𝑇𝑖 + 𝑘(𝑆𝑖) + 𝜔𝑖    (5) 

would identify the causal treatment effect 𝛼 efficiently.  However, the control 

function itself is not known and needs to be estimated.  Original methods of 

estimating the control function include a simple linear function, suggested by 

Goldberger (1972) and Cain (1975).  Concerns about differential linear effects on 

both sides of the cutoff motivate differential estimation on each side.  Concerns 

about higher order effects further motivate higher order polynomial estimation.   

 In cases where control functions are estimated, misspecification is a 

serious concern.  Components of the control function that is orthogonal to 

estimation may load heavily on the discontinuity.  For example a cyclic control 
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function estimated with polynomials would show a discontinuity where none 

existed.  The discontinuity estimate varies strongly with specification, opening 

serious data snooping concerns.  The state of the art technique, which this paper 

uses, is non-parametric estimation, which minimizes specification error.  In 

particular, this theory uses a local linear regression, with optimal bandwidth for 

this purpose as proposed by Imbens and Kalyaraman (2009).   

 Due to the local linear regression used to estimate the control function, we 

impose a stricter Assumption 1’: the control function 𝑘(𝑆𝑖) is continuously 

differentiable.  In the equation above, differential treatment effect 𝐸[𝛼𝑖|𝑆] is 

rolled into the control function, so this paper imposes a stronger Assumption 2’: 

the treatment effect function 𝐸[𝛼𝑖|𝑆] is continuously differentiable.  For power in 

practical estimation using locally linear regressions, it is important that the 

functions not only be continuously differentiable, but that the continuity be 

uniform.  Ideally if we define the modulus of continuous differentiability as: 

𝜔 ≔ sup
𝑥,𝑦

|𝑘′(𝑦) − 𝑘′(𝑥)|
|𝑦 − 𝑥|  

Then the modulus should be low with respect to the number of data points present.  

The magnitude of this modulus directly affects the power of discontinuity 

estimator. 

 More intuitively, the baseline effect 𝑘 not at the discontinuity . 50  should 

be decently linear and well behaved.  For this paper’s leading case of looking at 

the effect of say-on-pay on change in pay, refer to Figure 2.1.  The linearity of 
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bins heights before and after the discontinuity provides suggestive evidence that 

the control function is well-estimated by a locally linear function.  Proceeding 

with this estimation, this paper arrives at a graph in Figure 2.2 of a discontinuity.  

With these assumptions, this paper goes ahead and uses estimator (5) with 

nonparametric locally linear functions for 𝑘(𝑆𝑖) to estimate many other treatment 

effect at the discontinuity.   
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Panel A: 1.0x Optimal Bandwidth 

 
 
Panel B: 0.5x Optimal Bandwidth    Panel C: 2.0x Optimal Bandwidth 

 

Figure 2.2: Kernel Regression Discontinuity Plot of Total CEO Pay Change vs Vote Fraction. 

Plots of Total CEO Pay Change (%) between 2010 and 2011 versus 2011 vote fraction.  The grey 
scatter plot show the raw data, while the superimposed lines show a non-parametric kernel 
regression above (green) and below (red) the cutoff.  The kernel regression allows a discontinuity 
at 0, and the optimal bandwidth is defined as in Imbens and Kalyaranaman (2009).   
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2.6 Defining the Treatment 

The treatment in our paper, the binary variable corresponding to 𝑇𝑖 in our 

theory above, is whether a firm receives approval in its Dodd-Frank say-on-pay 

vote.  The vote is advisory, so unlike a shareholder vote for a director or a bylaw, 

there is no mandatory action that occurs between passing and failing.  Failing a 

vote mandates neither a reconvention of the compensation committee nor any 

docking of CEO pay.   

Therefore, the paper first sets out to establish that a discrete effect might 

indeed be expected to occur at the cutoff.  The evidence for this will come from 

language on the SEC form, the discrete effect on publicity from failing, and the 

voluntary emphasis of firms themselves on the passage or failure of say-on-pay.   

First, we show that there is indeed a statutorily discrete change that occurs 

at the 50% cutoff.  SEC Form DEF 14A serves as the official authoritative and 

detailed instructions for investor voting.  DEF 14A presents material information 

on which investors may rely for their votes, such as the compensation package 

being offered to the CEO for the past year.  DEF 14A also defines the exact 

statutory meaning of the vote.  As demonstrated in Figure 2.3 Panel A, most firms 

have language precisely stating that for passage of the advisory vote, “a majority 

is required”.  In the context of DEF 14A this is precise language meaning 50% 

exactly or above, the same language used for binding votes like voting in board 

members.  Some firms further state whether abstentions count in the denominator 
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when calculating this precise 50% Figure. In practice, almost no firm’s say-on-

pay passage is affected by abstentions.  A copy of the proxy vote form is shown in 

Figure 2.3 Panel B.   

Firms then report the results of the vote in SEC Form 8-K.  The wording 

of the results has very wide latitude, with some firms opting to use data tables, 

and others describing the results.  Many firms use a standardized table which 

shows either “Approved” or “Not Approved” as a standard column (Figure 2.3 

Panel C).  This format of report again emphasizes the discreteness of passing 

versus not.  Even firms that do not use the column format will mentioned their 

votes were approved somewhere, perhaps in paragraph form.  Even though few 

firms emphasize disapproval, the inability to say the vote was approved is a 

discrete change. 

On the media front especially, disapproval has special meaning.  The Wall 

Street Journal hosts a “shame list” of all firms that have failed say-on-pay.  Many 

law firms, such as Semler Brossy and Sullivan Cromwell, have lists of all failing 

companies on their website.  More than a dozen lawsuits have been filed against 

companies relying on the finding that the company failed its say-on-pay vote 

(Hickok and Rainville 2013).  While these lawsuits often do not succeed due to 

the advisory nature of the votes, that the suits mainly rely on say-on-pay failure as 

the basis is significant.  One example of a USA Today article that named and 

emphasized all failing firms within a certain scope is shown in Figure 2.4 Panel A.  
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Panel A: Vote Instructions from SEC Form DEF 14A 
 
Proposal 11 (advisory “say on pay”):    This proposal requires the approval of a majority of votes 
cast at a meeting at which a quorum is present. 
 
 
Panel B: Proxy Vote Form from SEC Form DEF 14A 

 
 
Panel C: Dodd-Frank Say-on-Pay Vote Results from SEC Form 8K 

 

Figure 2.3: Vote Instructions, Forms, and Results. 

This figure shows three facsimile excerpts of various Dodd-Frank say-on-pay voting documents 
from Exxon Mobile Corporation (XOM).  Panel A excerpts vote instructions written by a firm for 
its investors on SEC Form DEF 14A.  Panel B excerpts the proxy vote form itself.  This form is 
contained in SEC Form DEF 14A and is physically used by investors to vote on Say-on-Pay.  
Panel C excerpts the firm reporting Say-on-Pay vote results through SEC Form 8K 
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Panel A: USA Today Names Companies that Failed Say-on-Pay 

 
 
Panel B: USA Today Names Companies that Failed Say-on-Pay 
 
“We held our first advisory stockholder vote on executive compensation at our annual stockholder 
meeting in 2011. We received an affirmative advisory vote, with over 53% of the shares voted 
casting votes in favor of our say-on-pay proposal. While we received a positive vote, the 
Compensation Committee strives to receive as high a vote as possible from the stockholders with 
respect to advisory approval of executive compensation. The Compensation Committee 
considered whether changes needed to be made mid-year to 2011 compensation, and decided not 
to make changes in 2011 in light of the affirmative vote.” – Rigel Pharmaceuticals (DEF 14A 
2012/04/12) 
 
“Following the annual shareholders’ meeting in 2011, the Board agreed that simply rethinking and 
redesigning our compensation programs was not enough to address shareholders’ obvious 
concerns about lack of profitability and the Company’s executive compensation policies. Instead, 
the Board decided it was crucial to start at the Company’s very foundation.” After 48% approval 
rate, Stewart Information Services.  Following this announcement, the firm fired a CEO, created 
an independent board, and made the Chief of HR independent from the CEO. 

Figure 2.4: Citations of Approval or Rejection of Say-on-Pay. 

The facsimiles below show citations of when a company’s Dodd-Frank Say-on-Pay vote is 
approved versus rejected.  Panel A shows a USA Today story naming companies that failed the 
vote.  Panel B shows companies citing the vote approval or rejection as reason behind certain 
actions.  The companies in Panel B were selected to be right near the cutoff. 
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Finally, the companies themselves cite approval or failure as explicit 

reasons in changing their compensation policy.  Figure 2.4 Panel B shows a 

particularly striking example, where one firm that barely passed emphasized the 

passage of say-on-pay as approval for their current compensation plans, and 

continued with their package.  On the other hand, another firm saw its failure of 

say-on-pay as reason to massively shake up the executive team.  Many such 

examples exist, and a large portion of firms around the vote cutoff of 50% cite 

approval or failure for specific actions that they take. 

While it is possible that such citation may not be causal, and instead be 

rhetorical, the fact that it is emphasized so much does suggest that there is discrete 

impact at the cutoff, whatever the cause.  And further evidence goes to show that 

it is likely not all rhetorical.  Table 2.6 shows that besides discrete changes in 

citing approval or regret, there are large differences in structural pay changes or 

off cycle pay changes on the two sides of the cutoff.  For both pay change types, 

the majority of firms right above the payoff did not make changes, and the 

majority of firms to the left did, with large differences in the two groups.  

By examining SEC forms, the discrete effect on publicity from failing, and 

the voluntary emphasis of firms themselves on the passage or failure of say-on-

pay, we have shown that there is likely reason to believe that a discrete effect 

would occur at 50%.  The data on CEO pay and other outcomes supports this 

hypothesis strongly.  
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Table 2.6: Pay Policy around Dodd-Frank Say-on-Pay Vote Cutoff. 

Comparison of payout policy of the 10 companies immediately above and below the 2011 vote 
cutoff.  The Table examine whether the DEF 14A 1) mentions the word “approved” or “favored” 
for last year’s vote 2) mentions the word “regret” for last year’s pay policy 3) explicitly mentions 
a change in pay structure, and 4) explicitly mentions a pay change off-cycle.   
 

 Mentions Approved or 
Favored 

Express Regret Structural 
Pay Change 

Off Cycle-Pay 
Change 

Below Cutoff 0 of 10 9 of 10 9 of 10 6 of 10 
Above Cutoff 7 of 10 3 of 10 4 of 10 2 of 10 
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2.7 Main Results: Impact of Votes 

2.7.1 Graphical Evidence of Impact on Total Pay 

Figure 2.1 shows the percentage change in total pay from 2010 to 2011 as 

the Dodd-Frank Say-on-Pay vote fraction varies.  To be non-parametric about the 

dependency of pay change on vote fraction, the firms are assigned to 5% bins at 

round cutoffs.  Observe that generally the dependency of pay change on vote 

fraction is continuous.  However, at the 50% cutoff point, there is a discrete jump 

in pay.  In fact, the bins below and above the 50% mark are the only ones where 

the 95% confidence intervals do not overlap.   

Also note that the relationship between vote fraction and pay change does 

not seem monotonic.  While we do not run any formal tests, non-monotonicity is 

not a surprise.  An immediate explanation is that firms already have some idea of 

their say-on-pay vote fraction before it occurs.  They can predict using surveys of 

investors, news articles, as well as econometric regressions.  Balsam and Yin 

(2012) provide strong evidence of vote predictability.  Thus 2010 pay is set 

conditional the company’s prior expectations for the vote fraction.  A 48% vote 

then can be worse news than a 30% vote; in the 48% vote case the company may 

have thought they would have passed, whereas a 30% vote firm likely knew they 

would fail.  Analogously, a 52% vote could be better news than a 70% vote.  This 

then would explain the non-monotonicity in pay change, especially the non-

monotonicity observed around the 50% cutoff. 
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Simple bins like Figure 2.1 provide graphical evidence of the discontinuity 

and give a sense of the size of discontinuity.  However, it is not rigorous – the 

boundary of the bins do not account for optimal bandwidth.  Bins can be too large 

and suffer from bias if the effect of the score variable is no longer constant across 

the bin.  Bins can be too small and lose power.  Thus this paper proceeds run 

optimal-bandwidth non-parametric estimates. 

 

2.7.2 RDD Regression of Total CEO Pay and Robustness 

The graphical output of say-on-pay vote fraction on change in Total CEO 

Pay is shown in Figure 2.2.  Here this paper again sees a large discontinuity before 

and after 50%.  There is again also non-monotonicity.  The theorized reason of 

non-monotonicity above, that it comes from outcome surprise, is again validated 

here, as the non-monotonicity is confined to around 50%, and is more obvious for 

smaller kernel bandwidths.   

Table 2.7 shows that the estimate of the change in pay is quite significant: 

corresponding to a 59.8% rise in pay at the 50% cutoff.7  The t-stat is also strong 

at above 4.0, providing evidence against data snooping.  While this may seem like 

a large change, note that CEO pay changes as a baseline are quite variable.  A 

                                                      
7  Note that to calculate the 59.8% figure, this paper uses as the denominator the average of the 
two years.  By way of example, a drop from $100,000 to $50,000 would be calculated 
as$100,000−$50,000

$100,000+$50,000
2

= 67%.  All changes are thus bounded between +200% and -200%.  The paper 

calculates changes this way to avoid outlier effects on estimates, and changing the calculation base 
year to either the first year or the second year does not qualitatively change estimates. 
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majority fraction of all CEO pay comes from non-salary components, which 

allows for this variance.  In fact, as the Table 2.1 summary statistics shows, the 

standard deviation of CEO pay change is itself 47%.  Thus, the pay rise at the 

cutoff represents about 1.3 standard deviations of CEO pay change.  Further, the 

59.8% rise in pay matches the magnitude of the OLS estimate of CEO pay change 

as the vote fraction changes by a standard deviation (see Table 2.4), providing 

validation that the magnitude is correct. 

This paper further verifies the regression through a few more robustness 

checks.  First, this paper tests against the main misspecification possible with non-

parametric estimates, bandwidth selection.  Using both double and half the 

optimal bandwidth, Table 2.3 Panel B shows that the total pay change % is still 

large and significant (t>3).  In fact, all estimates lie within the original estimate’s 

95% confidence interval, providing a measure of internal validation.   

Figure 2.1 Panels B and C show the graphical plot of these alternate-

bandwidth regressions.  For the 0.5x optimal bandwidth estimate, the non-

monotonicity around 50% is clearer, and the non-parametric fit to this non-

linearity gives a higher estimate of the discontinuity.  For the 2.0x optimal 

bandwidth, other than a linear fit, the two sides of the discontinuity are treated as 

approximately constants.  As expected, a broader bandwidth goes more towards 

the naïve regression case as shown in equation (3). 

The next robustness check that this paper runs is dummy tests at the 45% 

and 55% cutoff.  Unlike the suggestive a priori evidence for the 50% cutoff, there 
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is no reason to believe that these two points should have any special significance.  

Indeed, we see that for both cases in Table 2.7 Panel B, the t-stats are well below 1.  

Thus, running cutoffs at these points provides a baseline giving suggestive 

evidence to the validity of the 50% result, much like a bootstrap.  Additionally 

these baselines provide evidence against a mere round-number effect as well. 

As a final robustness check, the paper tests to see whether there is a 

discontinuity at the 50% cutoff for pre-existing variables like market 

capitalization, levels of CEO pay, SIC code, and past year pay changes.  No 

discontinuity are found in any such pre-existing variables, although given the 

small sample size, this robustness check does not have a large amount of power. 
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Table 2.7: Main Results: Changes in Company Characteristics at the Vote Threshold. 

This Table presents univariate discontinuity regressions of changes of various independent 
variables (𝑌𝑖) on Dodd-Frank Say-on-Pay using discontinuity kernel regressions (function 𝑘) with 
optimal bandwidth.  The sample is the same as Table 2.1.  The coefficient 𝛼 on the discontinuity 
indicator is shown below.  The regression run is: 

𝑌𝑖 = 𝛽 + 𝛼 ⋅ 𝐼(𝑉𝑂𝑇𝐸 > 50%) + 𝑘(𝑉𝑂𝑇𝐸) + 𝜔𝑖     
Base variables from Table 2.1 & 2 are differenced between 2010 and 2011 to obtain 𝑌𝑖.  Percent 
(%) differences for a base variable 𝑋 is calculated as (𝑋𝑡+1 − 𝑋𝑡)/((𝑋𝑡+1 + 𝑋𝑡)/2).  Percentage 
point (pp) differences for a base percent variable 𝑋 is 𝑋𝑡+1 − 𝑋𝑡. Panel A regresses against CEO 
Pay Variables. Panel B checks the robustness of CEO pay results; 0.5x and 2.0x indicates a kernel 
regression with half and double the optimal bandwidth; and 45%,55% indicating redefining the 
cutoff from 50% to those points.  Panel C extends the data to 2012 for the plus or minus 20% 
region around the ctuff.  Panel D regresses against company accounting and other variables.  
Unless specified otherwise, the cutoff is defined at 50%, and the kernel bandwidth is 1x the 
optimal.  t-statistics in parenthesis are calculated via Nichols (2007), with p<10% bold. 
  N  Pass (𝛼) 
  Panel A: CEO Pay   
 Total CEO Pay Change 2010-2011 (%) 1,325  59.8% 

  (4.05) 
 Salary as fraction of Total Pay (pp) 1,325 -13.1% 

  (2.47) 
 Bonus as fraction of Total Pay (pp) 1,325   -7.9% 

  (1.81) 
 Options as fraction of Total Pay (pp) 1,325    6.4%  

  (0.67) 
  Panel B: Robustness of CEO Pay   
 0.5x Optimal Bandwidth 1,325 70.7% 

 (3.88) 
 2.0x Optimal Bandwidth 1,325 47.5% 

 (3.35) 
 45% dummy cutoff 1,325 11.7%  

 (0.44) 
 55% dummy cutoff 1,325   0.5%  

 (0.03) 
  Panel C: Extension of Data to 2012   
 Total Pay Change 2010 to 2012, -20%; +20% around cutoff 116 48.0% 

 (1.98) 
 Total Pay Change 2011 to 2012, -20%; +20% around cutoff 116 44.8% 

(1.65) 
  Panel D: Company Financials   
 Announcement Date Return (pp) 2,188 -0.0%  

  (0.11) 
 EBIT (%) 2,175 -35.9% 

  (1.82) 
 Dividend (%) 2,175    0.2%  

  (0.31) 
 Paying Dividends (pp) 2,175   -4.3%  

  (1.28) 
 Equity ratio (pp) 2,175  18.6%  

  (1.11) 
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2.7.3 Extension to Further Years 

Finally, one strong piece of validity comes from extending the data year to 

2012, much of which is being reported during the writing of this paper (and such 

data releases will occur up until the end of calendar year 2013).   I manually 

collect 2012 data, including the portion of accounting, compensation, and other 

data that is missing from databases to construct a 2012 data set.  I collect two 

datasets.  The first consist of firms who are within 20 percentage points the 2011 

vote cutoff for which full 2012 data is available.  The second dataset consists of 

firms who are within 20 percentage points of the 2012 vote cutoff for which full 

2012 data is available. 

On this dataset, I run two RDDs.  The first RDD looks at the same 2011 

50% cutoff as the rest of the paper, but with the predicted variable being total 

CEO pay change between 2010 and 2012 (versus 2010 to 2011).  As Table 2.7 

Panel B show, the 2010 to 2012 total CEO pay change as a result of passing say-

on-pay is 48% and statistically significant.   

This provides evidence for the robustness of the 2010-2011 result, and 

also goes on to show that the pay results do not revert away.  One concern with 

the pay drop at the 50% cutoff is whether the change in pay is temporarily put in 

place just to appease investors.  Even worse would be the case where the board 

implicitly delays pay to give the impression of next year pay drop, while the NPV 

of pay stays in same.  The extension of the result from one to two years shows no 
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such inclinations.  The pay drop seems to stay in place, with minimal statistical 

evidence of further pay drops or reversions. 

 The second RDD on the new data set looks at a different set of firms.  

Instead of the firms around the same 2011 vote cutoff as the rest of the paper, the 

regression examines firms around the 2012 vote cutoff, generally a different set of 

firms.  The predicted variable is the 2011 to 2012 change in total CEO pay.  This 

is the analogue of our baseline 2011 regression shifted up by one year.   

 As Table 2.7 Panel B shows, the regression coefficient is significant at the 

10% level with an estimated increase in total CEO pay at the cutoff of 44.8%.  

The low power may be attributed to the much smaller data-set, less than 1/10th the 

full sample size due to limitations in the number of companies who have released 

2012 data, especially in redistribution databases like EXECUCOMP.   

 In terms of size, 44.8% is in line with the baseline data.  The ability to 

reproduce the result in future years provides external validation of the baseline 

result – especially since the 2012 data was created after the first draft of this paper 

and thus being truly out of sample. 

 Further, that the effect works in 2012 data shows that the effect is not 

limited to the first year of implementation.  This may be thought to be the case 

since Dodd-Frank was only signed into law in the middle of 2010, and so the 

surprise of such a reinforcement system might be limited to the first year.   

 That the magnitude is lower than in the first year is in line with the 

informal theory that previous-year pays are already adjusted for company 
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expectations of say-on-pay vote fraction.  For 2011, with more data, companies 

might make more accurate predictions of next year’s vote fraction.  This would 

reduce future year’s pay changes, if pay changes are partially seen as a measure of 

censure surprise from say-on-pay.  Thus the lower magnitude from 2012 data may 

have a common explanation from the non-monotonicity around the 50% cutoff. 

 

2.7.4 Composition of Salary 

Ample evidence above shows that say-on-pay has causal impact on Total 

CEO Pay.  The total CEO pay clearly changes at the cutoff.  However, what about 

the composition of CEO pay?  It seems unlikely that composition would stay 

exactly the same.  If that were the case, then salary, bonus, and options would all 

see the exact same 59.8% increase.  There is much reason a priori to believe some 

pay terms (bonuses) are more flexible than others (salary).   

On one front, salary, bonus, and options have different incentive 

properties.  One might imagine the cut that the board implements as the vote 

fraction falls from 50.1% to 49.9%.  To maintain the same power of incentive for 

CEOs to work, the board might shift the composition of pay from low-powered 

components like salary to high-powered components like options and bonuses.  

This would be in line with later results this paper, which show that pay cut from 

failing say-on-pay does not cause a drop in firm value or accounting measures: 

CEO pay cuts reduce average pay while maintaining incentives.  This would be 
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the type of pay change advocated by Murphy (1999) and Bebchuk and Fried 

(2007). 

However, such a pay shift is not observed in the data.  The fall from 50.1% 

to 49.9% does not cause a drop in salary and an increase in high power incentives, 

as observable in Table 2.7 Panel A8.  Instead, the effect is exactly the opposite: 

salary is the most stable, getting cut the least.  Bonuses are second most stable 

getting cut more than salary but still less than proportionately.  Options and other 

compensation are the least stable, getting cut more than proportionately.   This 

does not align with the incentives theory: the highest-power components of pay 

are cut the most.  As an econometric note, I calculate components of total pay as a 

fraction instead of a level because the division controls for large common noise in 

total pay to improve the power of the tests. 

However, this pattern of pay cuts lines up well with another consideration.  

Salaries are often the least flexible portion of pay.  It is set out beforehand in 

many contracts, or otherwise expected to match some historical amount.  Also, it 

is precisely because salaries don’t depend on the vagaries of performance or 

circumstance that it is the most secure.  From an agency-tradeoff point of view, it 

is the portion of pay that is most valuable to the CEO for a fixed expected value 

(Gabaix and Landier 2008).  Thus, as pay is cut, in order to meet a minimum 

threshold to keep a CEO onboard, it makes sense to shift pay into more stable 

                                                      
8 The Table shows the transition in the opposite direction, from 49.9% to 50.1%.  To match the 
verbal analysis to the table then simply take the negative sign. 
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portions like salary (Hölmstrom and Kaplan 2001, 2003) .  In this sense, the shift 

from high power to low powered incentives indicates that maintaining the IR 

constraint takes precedence over maintaining the IC constraint.  Conversely, 

portions of pay like bonuses, and especially options, are incredibly volatile.  Not 

only do they respond to the CEOs effort, but they also vary based on items that 

are outside of the CEO’s control like the decline of the industry, and they are 

highly positively correlated with other parts of a CEO’s implicit wealth, like job 

prospects. 

Thus, the risk-based explanation highlight the fact that for the same 

expected dollar, a fixed salary is worth a lot more to the CEO than as part of an 

options package.  When pay is cut, to keep the CEO onboard, it is natural in this 

framework to cut the options portion.  Combine this with the institutional 

observation that boards often have a lot more year-to-year discretion over non-

salary portions, and this paper arrives at an explanation for why pay cuts come 

mostly from non-salary portions. 

2.7.5 Announcement Date Returns and Other Company Financials 

The previous section shows that say-on-pay vote fraction has high impact 

on pay.   What is the impact of the vote fraction on other characteristics of the 

firm, either through the pay channel or directly?   

The first variable to examine is the announcement day return from say-on-

pay passing.  After the meeting in which the say-on-pay vote is taken, a few days 
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later the result is announced via SEC Form 8-K.  The announcement day return is 

defined as the stock return from the last close-of-market stock price before the 

announcement to the first close-of-market stock price after the announcement.   

The announcement day return generally spans a single market day, and so has low 

unconditional variance and high power.  

Table 2.7 Panel D shows that there is no announcement day return to 

passing or failing say-on-pay.  The 95% confidence bounds are quite narrow at 

spanning [-1.4%, 1.6%].  This is significantly different from the 2.8% Figure that 

Cuñat Gine Guadalupe (2012b) finds for the passage of a generic vote.  This 

implies that even though CEOs are paid significantly less on failing say-on-pay, 

the market did not predict that the lowered pay would have a significant adverse 

impact on firm value.  This suggests that CEOs at the margin are indeed overpaid 

if their pay can be cut without harming firm value.  This provides evidence 

against a Murphy (1999) story of politically induced underpayment of CEO 

salaries.  At the same time, the zero announcement day result also suggests that 

investors are voting optimally.  A consistent positive or negative effect would 

prove that investors are either consistently over voting or under voting.  A zero 

result suggests investor efficiency in voting. 

Such an interpretation is borne out in examining the impact of the say-on-

pay vote cutoff on other company accounting variables.  Table 2.7 Panel D shows 

that the cutoff has no impact on other company accounting variables for the year 

forward as well.  The insignificant announcement day stock reaction is correctly 
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predicting that real accounting variable changes in the next year will be 

insignificant as well.  As total CEO pay is drastically reduced under the vote 

cutoff, this paper finds no evidence that at the same time of any reduction in 

dividends, probability of paying dividends, finance policy, or earnings. 

In these results, it is important to note that earnings does seem marginally 

significant.  Being below the cutoff reduces CEO pay while at the same time 

raising next year’s earnings.  Both failing say-on-pay and the subsequent pay cut 

are signals to the CEO that his or her job is at risk.  One interpretation is that the 

CEO as a result works harder to raise real earnings.  That would suggest that 

failing say-on-pay improves the value of the firm.  However, this contradicts the 

tight bound around zero of the announcement date stock return.  Likely an 

alternate story is happening: the CEO responds to this increased pressure through 

earnings management.  He or she delays depreciation, channel stuffs, and employs 

other standard accounting tricks.  The CEO has discretion on when to recognize 

bad news and may simply be delaying that.   

Another important note is that company accounting variables are 

particularly noisy because they are measured over the course of a year.  The low 

power is exacerbated by the RDD identification only occurring at the margin, 

reducing effective sample size even more.  The lack of accounting variable 

significance should not be taken as strong proof that say-on-pay has no effect, but 

rather lack of proof of any effect.  Announcement day returns suffer much less 

from this power issue due to its low noise to start out with. 
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Another possible analysis with this data is in the instrumental setting.  If it 

can be assumed that say-on-pay failure operates solely through reducing CEO pay, 

then this can be seen as an exclusion restriction.  Say-on-pay can then serve as an 

instrument in estimating the elasticity of firm characteristics with respect to CEO 

pay.  Under this interpretation, no firm characteristics have significant elasticity 

with respect to pay, except earnings which has negative elasticity.  There is 

substantial reason to believe that exclusion restriction might not hold.  Primarily, 

changes in CEO pay over a year cannot be seen as equivalent to having a lower 

overall level of pay – the first lowers pay but also sends a signal to the CEO that 

his or her job is at risk.  This confound muddles elasticity estimates. 

2.8 Extensions 

As this paper relies on recent data, there are many obvious extensions, 

including both the data and the content being tested. 

2.8.1 Data Extensions 

 The baseline data set here consists of two years of data: 2010 and 2011.  

Because the regressions require a lagged year for changes, there is only one year’s 

worth of regression data.  The paper makes an attempt at extension into 2012 for 

three years of data (and two years’ worth of regression data).  The results of this 

selective extension can be seen in Table 2.7 Panel C.  However, since say-on-pay 

votes will happen annually, even in the next few years, it is expected that the 

relative amount of data available for analysis will increase tremendously.  The 
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standard error on total CEO one-year pay change rests at about 14-20% right now, 

even with two years of data.  In another decade, the data set will have increased to 

more than 12 years, giving us much smaller standard errors of less than 5%.  

While this paper already shows great t-stats of above 4 for some tests, new data 

will rapidly increase the power of the test and identify the exact size of the total 

CEO pay effect.  This observation is not a trivial one that applies to all papers: it 

applies to this one especially because of the low number of years of data it relies 

on, and the guarantee of more annual data for the foreseeable future. 

 With more power, a few extra questions might be answered.  Is the pay 

effect different between small firms and large firm?  Historical studies of pay 

show large differences in composition and nature of pay between the firm types 

(Murphy 1999).  Further, many theories of increasing CEO pay depend crucially 

on firm size (Gabaix and Landier 2008).  This question can be answered by 

running an interaction of the treatment variable with log firm market cap.  Similar 

studies can be done on industry, value, and other covariates. 

 One arena that extra power would especially help on is identifying 

company characteristic changes.  As mentioned before EBIT, dividend, and 

financing policy are noisy measures.  The magnitudes estimated in Table 2.7 Panel 

C are not small economically: a -4.3 percentage point drop in firms paying 

dividends would be economically interesting, and more data would help identify 

that.  Similarly, EBIT which seems marginally significant can either be confirmed 

or denied for sure.  The identification of other firm characteristics seems like one 
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of the most interesting uses of the extra power from future years.  Under the 

instrumental interpretation of these firm characteristics, one can finally answer the 

question of the causal elasticity of firm behavior based on pay change.  How do 

CEOs run their firms differently when pay changes? 

 Another arena to be verified with more data is the permanence of the total 

CEO pay change on the vote cutoff.  With that high initial magnitude, an 

interesting question is how quickly it reverts away.  Is the pay just shifted to a 

later date, or is failing a say-on-pay vote a reminder to the board that the general 

level of their pay is much too high, and so when they cut pay, the cut is permanent?  

Evidence from two years of data shows no reversion in pay, suggesting the later 

explanation, but it would be useful to still confirm the fact. 

 Extensions of the impact on failing say-on-pay to multiple years are 

especially important because generally pay contracts are set well ahead of time.  

Consider the 2011 Dodd Frank say-on-pay vote: the board is technically asking 

for investor approval of the past year’s (2010) pay, but because the compensation 

committee has already done its work, rarely is the pay backwards-modified even 

on heavily negative vote.  As can be logically induced and also gleaned from 

reading the SEC DEF 14A, most boards take the 2011 feedback on 2010 pay into 

account when setting 2011 pay.  Even then some boards note that their hands are 

tied to changing pay due to past contracts.  Thus, it may take many years for the 

full impact of Dodd-Frank say-on-pay to be felt.  Hence, multiple-year predictions 

will be able to tease this distinction out. 
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 A similar case exists for looking at company accounting variables and 

stock returns.  If markets are not efficient, announcement-day returns are not 

sufficient for capturing the value change.  CEOs may act with a lag, so to see the 

real impact of a pay cut on company performance, it may take more years of data.   

 Regardless of the case, the primary extension of this paper would involve 

collecting more data as it arises, and then using that extra data to 1) obtain more 

precise estimates 2) obtain estimates of interaction terms and 3) obtain longer 

duration change estimates. 

2.8.2 Method Extensions 

 On the content front, one main result of this is that Dodd-Frank say-on-

pay votes have real impact on CEO pay.  Do other mandates have such impact?  

For example, Dodd-Frank also has a provision that requires firms to hold votes 1, 

2, or 3 years depending on the desire of the shareholders.  Does that provision 

impact pay or company valuation?  If one imagines that CEO pay is generally too 

high, then being randomized into the 1-year group might immediately reduce pay 

and increase stock value.  Future votes mandated by law can be used by in a RDD 

setting for these purposes as well. 

 Also, another area that this paper attempts to delve into is the impact of 

pay on firm performance.  To that end, other instruments can be discovered that 

affect pay.  One might believe for say-on-pay that perhaps there might be random 

noise in which block voters (institutions) votes in a given year.  Since most say-
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on-pay failures are related to institutional voters (see Summary Statistics Table 

2.1), and institutional voters often follow ISS recommendations, instruments 

might be found in the ISS recommendation procedure.  For example, if the ISS 

itself uses scoring, then a RDD can be run on the ISS internal score.   

 Finally, more power can be obtained if approval of Dodd Frank say-on-

pay requires a higher number of votes.  Since the median approval rate is much 

higher than 50%, having an approval cutoff of say even 70% would substantially 

increase the test power.  Of course, the vote fractions might endogenously shift if 

the cutoff changes.  Investors might vote more favorably knowing that the cutoff 

is higher.  As long as the compensation effect is not one-for-one, the data can 

obtain higher power. 

2.9 Conclusion 

Few studies in executive compensation and corporate governance have 

strong identification.  This is a particular issue with CEO pay, which is often set 

far in advance and whose impact manifests over a larger number of years.  This 

paper obtains identification on both topics by exploiting a novel variation: that 

from voter noise around the 50% cutoff on the Dodd-Frank Say-on-Pay vote. 

The paper began by looking at non-identified OLS studies of CEO pay, 

CEO pay change, and say-on-pay vote fraction.  These regressions show that 

reverse causality and omitted variables seriously confound the OLS analysis.  At 
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the same time, the regressions revealed descriptive insights into what other 

variables commove with these three. 

When a firm receives just slightly below 50% of votes versus above, that 

firm statutorily fails say-on-pay and experiences discretely increased censure and 

thus discretely decrease next year CEO pay.  This paper first verifies that such an 

effect does occur by examining media announcements, SEC DEF 14A narratives, 

vote forms, SEC 8-K vote results, and next-year SEC DEF 14A commentary on 

past years votes. 

This paper then exposits the theory of optimal-bandwidth kernel 

regression discontinuity design, and uses this design to estimate the magnitude of 

the decrease at 59.8%.  This estimate causal, economically substantial, and is 

robust to variation of the kernel estimation bandwidth.  The paper further 

validates this number using next-year data (2012), and by showing that this 

decrease is sustained for two years (2010-2012), the entire data span available as 

of this writing. 

Like many regression discontinuity studies, the causal identification has 

excellent internal validity.  However, there is no guarantee of external validity.  

The causal effect is completely estimated on firms that receive around a 50% vote 

fraction.  These firms may have unique properties that are specific to them – like 

have overpaid CEOs whose salary can be cut without hurting the firm.  In taking 

all causal inferences from this study, it is worthy to keep in mind the local average 

treatment effect nature of the estimate (Imbens and Angrist 1994). 
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This paper then looks at the percentage point of total CEO pay that 

consists of salary, bonus, and options.  This paper deduces that the cut comes less 

from salary more from bonuses, and most from options.  This is in line with a 

risk-based compensation theory where the most risky dollars are cut first due to 

their relatively lower value to the CEO.  The data also lines up with the fact that 

boards often have more discretion on non-salary portions of pay. 

Finally, this paper uses the RDD to estimate the impact of the cutoff on 

other firm characteristics.  The paper finds no statistically significant impact on 

announcement day returns, EBIT, dividends, or company financing policy.  Taken 

together, this suggests CEOs at the say-on-pay 50% margin could be overpaid, 

and their pay may be reduced without hurting performance.   
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Chapter 3 

3 Do Options Impact the Stock Market? 

 

3.1  Introduction 

In frictionless settings, standard options are redundant securities and can 

be synthesized from dynamically trading equities.  The seminal works of Black-

Scholes (1973) and Merton (1973) (BSM) show that any derivative that depends 

in a general fashion on continuous equity prices can be reconstituted through a 

dynamic hedging strategy on that equity.  Thus, not only are options spanned by 

the space of equities, but each option is spanned by its single underlying equity.  

Many follow-on works to BSM provide specific implementations of their strategy.  

In the frictionless BSM theoretical framework, whether options exist as 

independent products should not matter. 
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However, the real world deviates from the frictionless ideal.  Trading is 

not costless and losses arise from transaction costs.  Thus rebalancing is not 

continuous, and often occurs at the daily to weekly frequency, according to 

current practitioners.  There is heterogeneity in firm skill in reducing these 

frictions, leading to specialization.  Empirically, end-users are generally net 

demanders of both puts and calls (Garleanu Pedersen Poteshman 2009).  Market 

makers that take the other side do not desire the bet but synthesize it at a premium 

(Bates 2003).   This is consistent with a story where end-users are unskilled at 

dynamic hedging and market makers are skilled, leading market makers to 

specialize in using dynamic hedging to synthesize options that are then purchased 

by end end-users. 

To fix ideas, let us sketch the basic mechanism. Consider the risk 

exposures of market makers.  End-user demand of both puts and calls respectively 

generate positive and negative equity exposure (the option delta). Because end-

users purchase both puts and calls, most of the delta exposure cancels out in large 

samples. To the extent delta risk is not cancelled out, market makers can always 

hedge options delta risk by purchasing or shorting in the underlying stock market.   

However, both puts and calls are also long concavity exposure (the options 

gamma).  When end-users demand puts and calls, they are then consistently long 

gamma risk exposure, and market makers are short gamma risk exposure.  Unlike 

delta risk, the gamma risk of puts and calls do not cancel out, since both 

derivatives have positive gamma exposure.  Also unlike delta risk, gamma risk 
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cannot be simply hedged with a single trade in the underlying stock: the 

underlying stock has zero concavity and so hedging does not change gamma at all.  

Since options market makers are stuck being short gamma, dynamic hedging 

forces market makers to have upward sloping demand curves. That is, as a stock’s 

price rises, market makers must mechanically buy that stock; similarly, when a 

stock’s price falls, market makers must sell that stock.  Thus, the issuance of both 

puts and calls causes a feedback effect where quantity demanded moves in the 

same direction as the previous price move.  We term this theoretical phenomenon 

hedging feedback demand in this paper.   

A natural and readily available empirical measure of hedging feedback 

demand is the total amount of gamma outstanding on a given equity on a given 

day.  This can be calculated from databases like OptionMetrics by summing up 

the gamma over all options contracts.  While not all options are between end-

users and market makers, Garleanu Pedersen Poteshman (2009) give evidence 

that total gamma is a good proxy for the degree to which market makers are 

dynamically hedging to produce options for end-users.     

We measure the resulting impact on hedging feedback demand through 

momentum.  Since hedging occurs in practice on a daily to weekly frequency, our 

methodology examines a stock move on day zero, and then measures momentum 

one to ten days out.  The underlying concept is as follows.  On day zero, suppose 

the price of the underlying stock exogenously increases. Because market makers 

have short gamma exposure, they have upward sloping demand curves with 
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respect to the underlying stock. Hence, when the price of the underlying stock 

increases, hedging feedback demand forces market makers to buy more of the 

stock over the next few days (the exact time frame depends on often they hedge). 

The positive quantity demand then causes positive price effects through price 

impact.  This price effect gives rise to measurable momentum.  In other words, 

since hedging feedback demand is not directly observable, we measure its effect 

in price space through momentum. 

However, total gamma and momentum should not be linked one-to-one.  

For example, a fixed amount of total gamma might cause minimal momentum 

effects in a large-cap company, which is highly liquid and has a tremendous 

amount of baseline volume.  That same amount gamma might cause high 

momentum in a micro-cap that is thinly traded.  Some controls on total gamma 

are needed.  Hedging feedback demand is more accurately represented by total 

gamma controlled for baselines like size, liquidity, and other factors to be 

discussed in Section V.  We term the resulting controlled measure of gamma 

Residual Gamma, which is intended to map directly to momentum. 

We indeed find then that hedging feedback demand impacts the 

underlying equity; specifically we find that residual gamma does indeed causes 

positive momentum effects.  After a day-zero uptick, momentum is experienced 

within one to four days and does not revert away within ten days (see Table 3.4), 

the furthest horizon that we test due to statistical power.  This effect is robust to 

liquidity effects and time trends (see Table 3.5 and Table 3.6).   
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Causal identification of this effect is possible using instruments related to 

options expiration.  The general principle behind all instruments considered is that 

options are issued with certain idiosyncrasies.  For example, options expire at an 

arbitrary part of the month, or options tend to accumulate around past price paths 

of the underlying equity, or option strike prices tend to be round numbers.  These 

idiosyncrasies can be seen as exogenous drivers of Residual Gamma, leading to 

identification. 

The first instrument is that Residual Gamma decreases dramatically at the 

same point in a monthly cycle, generally options expiration around the 18th date 

of each month.  On one day, an entire month’s worth of options disappears and 

market participants do not immediately compensate.  This leads to a sharp drop in 

Residual Gamma near the 18th of each month, and then a buildup again as time 

passes until the next drop.  This causes a noticeable cycle in Residual Gamma 

(see Figure 3.1).  The advantage of this instrument is that it is powerful and 

consistent across all stocks, although a disadvantage of this instrument is that it 

might inadvertently capture any monthly cyclic variation in momentum. 

The second novel instrument this paper exploits is the fact that options are 

generally issued with strikes around current equity prices.  As equity prices 

change, option purchasers either do not unwind past positions or do so with 

substantial lag.  As a result, the option issuance structure is heavily affected by 

prices as far as months back (Figure 3.2).  A stock that drifts away substantially 

from past prices will have relatively low exogenous Residual Gamma, and a stock 
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that maintains prices will have relatively high Residual Gamma (Figure 3.3).  One 

may be concerned about the interaction between price moves and volatility.  A 

stock that has moved a lot recently likely also has experienced higher volatility.  

We address this using volatility controls.   

Finally, perhaps the most novel of instruments for Residual Gamma 

utilizes the fact that options are struck around round numbers (Figure 3.4 and 

Figure 3.5 ).  A few days before options expiration, the Residual Gamma caused 

by an option is very closely clustered around the strike price.  Therefore, if the 

underlying equity price happens to be round, Residual Gamma will be unusually 

high, and if the equity price is not round, Residual Gamma will be low.  This 

instrument has little potential confound and provides a novel way of identifying 

our result. 

In this paper, we utilize all three instruments to provide estimates of the 

causal effect of Residual Gamma on momentum.  We find that the three 

instruments agree generally with each other and with the OLS estimate.  This 

suggests options creation and issuances causes extra hedging feedback demand to 

destabilize the underlying stock through additional momentum.  The momentum 

effect occurs within one to four days and does not revert away.  The effect is 

visible in the baseline OLS regressions, as well as OLS regressions with controls.  

The magnitudes agree across three very different instruments with minimal 

confounds, and almost no common confounds.  This cross verification provides 
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strong evidence for the existence and causality of this relationship between 

Residual Gamma and momentum. 

This paper contributes 1) by expositing the feedback effect of options on 

equity prices, and 2) by presenting novel instruments for options that can be used 

in other settings as well. 

Section II briefly reviews motivating literature and related research.  

Section III describes hedging feedback theory, aggregation amongst different 

players in the market, and the resulting price impact.  Section IV describes the 

data collection procedure.  Section V discusses the main OLS results.  Section VI 

discusses the instrument regressions, a large contribution of our paper.  Section 

VII discusses extensions and interpretations of the data.  Section VIII concludes.  
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Figure 3.1: Instrument #1 (Time to Expiration): Cyclical Variation due to Options 
Expiration. 

Gamma summed over all stocks and equities for a given date over an illustrative period in 2005.  
The figure shows monthly cyclicality of Gamma caused by options expiration.  Gamma is 
aggregated by taking the sum of open interest for an option contract multiplied by the gamma 
specific to that contract calculated via OptionMetrics using its internal Cox Ross Rubinstein (1979) 
binomial tree model. 
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Figure 3.2: Instrument #2 (Past Price Path): Theoretical Illustration of Gamma For An 
Equity as a Function of Stock Price. 

The following graph illustrates how historical prices affect Gamma. In the case below, the stock is 
assumed to have maintained a price of around 100 for the past many weeks.  Thus options are 
generally issued around the historical stock price of 100, leading to a tent shape in Gamma as a 
function of stock price.  If prices move significantly, to say 80, Gamma will drop sharply.  Gamma 
is scaled to an arbitrary normalizing constant for illustrative purposes.  Humps at 90, 100, and 110 
simulate empirical observations of excess Gamma near round numbers (Instrument #3).   
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Figure 3.3: Instrument #2 (Past Price Path): Total Gamma as a Function of 20-Day Price 
Move on SPX. 

Total Gamma as a function of the last 20 days price move on the SPX (S&P 500 index).  A red 
optimal bandwidth (0.8) nonparameteric lowess regression line is fit through the data sample.  The 
regression line is tent shaped, being linear on both sides of zero with similar magnitude of slope.  
Price move is expressed in dollars, with the S&P 500 index valued in the thousand dollar range.   
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Figure 3.4: Instrument #3 (Distance to Round Numbers): Residual Gamma as a Function of 
Stock Price, for Options Close to Expiration. 

The following graph plots theoretical gamma generated by near-expiry options for a given equity 
as a function of underlying stock price.  The graph assumes recent prices near 100, and an 
exchange which mechanically only allows options to be struck near round prices.  Observe that 
Gamma has a regular pattern that peaks at regular points.  Price is expressed in dollars, and 
Gamma is normalized against an arbitrary constant for illustrative purposes.   
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Figure 3.5: Instrument #3 (Distance to Round Numbers): Open Interest as Function of 
Strike Price on SPX. 

Aggregate open interest in S&P 500 options for all days in our sample period between 1996 and 
2013 as a function of that option’s strike price.  Prices like 1000, 900, 1100 have the most open 
interest, followed by less round numbers like 950.  Non-round prices like 982 see very few options 
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3.2 Literature Review 

The seminal work in options pricing is due to Black and Scholes (1973) 

and Merton (1973) (BSM).  They show that any option on an underlying 

instrument is essentially made redundant by the underlying instrument as long as 

the underlying instrument can be traded continuously.  Their redundancy theory 

holds in the first order: options traders today use the equivalency theories and 

formulas to value options and to replicate options.   Many works offer a complete 

treatment of the subject – for an example see the relevant section in Campbell, Lo 

Mackinlay (1997).  Substantial work has gone into providing implementation 

details in various situations. 

As much as Black Scholes Merton (BSM) is a standard, if the equivalency 

is taken to the extreme, the implication would be that options needed not exist at 

all.  That options do exist and in fact are actively traded demonstrates that the 

second order effects of frictions, jumps, and non-equivalencies are important in 

options trading.   

Bates (2003) shows that there are numerous options pricing anomalies 

with respect to BSM.  In line with our paper, a large literature recognizes option 

pricing anomalies as the interaction between end-user demand for options and 

market makers.  In particular, index options appear to be more expensive than 

predicted by BSM due to especially high end-user demand; low moneyness 

options also are more expensive than predicted due to high demand by end-users 
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who use these options for leverage (Rubinstein 1994; Longstaff 1995; Bates 2000; 

Jackwerth 2000; Coval and Shumway 2001; Bondarenko 2003; Amin, Coval and 

Seyhun 2004; Driessen and Maenhout 2008).   

In the options literature, a paper that is close in topic to us is Garleanu, 

Pedersen, and Poteshman (2009).  They give evidence that demand pressure from 

end-users affects options prices.  In particular, they develop a model where 

options have risk factors that are unhedgeable in the underlying security, and 

these risk factors are consistently priced across the options space.  Thus, high end 

user demand for a certain option will increase its price above the BSM standard, 

to compensate market-makers for bearing more risk.   

The idea of demand pressure causing price effects is more general and 

includes stock index additions (Shleifer 1986, Wurgler and Zhuravskaya 2002, 

Greenwood 2005), mortgage-backed securities (Gabaix, Krishnamurthy, 

Vigneron 2007), option end-users (Stein 1989; Poteshman 2011), household risky 

asset holdings (Zhang 2013), and bonds (Greenwood and Vayanos 2009).  

Evidence of supply side catering is well supported in the literature (Baker 

Wurgler 2000, Baker, Greenwood Wurgler 2003, Greenwood Hanson Stein 2010).  

That sentiment plays a role in such demand has been studied both theoretically 

and empirically (Baker Wurgler 2006, Baker Stein 2004). 

In terms of mechanism and style, this paper is closest to the strand of 

literature exposited by Cheng and Madhaven (2009) although they do not use 

instrumental variables.  They show the analogue of our result in the leveraged 
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ETF industry.  In particular, Cheng and Madhaven (2009) demonstrate levered or 

inverse ETFs must purchase the underlying when prices go up mechanically due 

to their dynamic hedging obligations, and vice versa.  They argue that the 

dynamic hedging of ETFs causes destabilization by both increasing volatility of 

the underlying and increasing the amount of price impact and momentum 

experienced by trades in the market.  This paper also argues a view of mechanical 

hedging feedback demand but applied to options instead of ETFs.  In particular, 

we test momentum caused by the Residual Gamma of options.   

To quantify the level of destabilization though momentum, this paper 

utilizes previous technical work in the momentum and price impact literature.  

Ferraris (2008) gives industry models of permanent price impact as stocks are 

traded.   We account for baseline momentum as well: Jegadeesh and Titman 

(2001) show that there is short term reversion on the one month span.  Asness 

(2008) shows that there is long run momentum on the one month to seven month 

span. 

As far as we know, this paper is one of the first treatments of the feedback 

effects of BSM hedging of options back onto the price patterns of the underlying 

stock.  

3.3  Theory 

This paper examines the frictional effects of the implementation of BSM 

through dynamic trading.  To start, it is natural to build a theory of BSM dynamic 
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trading. We first analyze the trading needed to hedge out a single options contract, 

then we aggregate amongst players in the market, and finally we motivate an 

empirical test of hedging through price effects. 

3.3.1 Risk Properties of a Single Contract 

First, for a fixed equity, consider the value of an option with strike 𝐾 when 

the stock price is 𝑆, with C a binary indicator for whether the option is a call, 

𝑉𝐶,𝐾(𝑆).  Assume for now that K is close to S and that the option is a call option.  

An option generally depends on many other parameters such as volatility, time to 

expiration, and risk-free rate.  However, for simplicity of exposition, and because 

only a few parameters are key to the theory, we fix all other parameters as 

constant in the comparisons below. 

BSM and related theories give us the following two properties for this call 

option: 

Δ ≔  
∂𝑉
𝜕𝑆

> 0 

Γ ≔  
𝜕2𝑉
𝜕𝑆2

> 0 

Mechanically, this means that the value of the call option is increasing and 

concave in the stock price.  Intuitively, this means 1) a call is worth more as the 

price goes up and 2) the degree of relationship between a call’s price and the 

stock’s price increases as the price goes up.  These two properties hold under 

broad theoretical conditions and are almost never violated empirically. 
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Suppose a market maker sells such a contract while the underlying price is 

𝑆0. Then, the market maker’s exposure can be approximated by the following 

second-order Taylor series: 

−𝑉𝐶,𝐾(𝑆) ≈ −(𝑆 − 𝑆0)Δ(S0) −
(𝑆 − 𝑆0)2

2
Γ(𝑆0) 

Now let two periods occur.  In the first period, the market maker may 

hedge by buying/shorting 𝛼 contracts of the underlying.  After the hedging, the 

price jumps from 𝑆0 to 𝑆1.  The jump takes negligible time, thus not affecting 

option valuation through the time-to-expiration channel.9  In the second period, 

the market maker may again hedge 𝛼′, and then the price moves again. 

The market maker incurs exposure in the two periods respectively of: 

−𝑉𝐶,𝐾(𝑆) + 𝛼𝑆 ≈ (𝑆1 − 𝑆0)(−Δ(S0) + α) −
(𝑆1 − 𝑆0)2

2
Γ(𝑆0) 

−𝑉𝐶,𝐾(𝑆) + 𝛼′𝑆 ≈ (𝑆 − 𝑆1)(−Δ(S1) + α′) −
(𝑆 − 𝑆1)2

2
Γ(𝑆1) 

For all utility functions that are risk averse everywhere (including CRRA 

and CARA utility) the optimal hedging in both periods is: 𝛼∗ = Δ(S0), 𝛼′∗ =

Δ(S1).  The quantity the market maker must purchase between the two periods to 

minimize risk of holding the option is 𝛼′∗ − 𝛼∗ = �Δ(S1) −  Δ(S0)�~ Γ(𝑆0)(𝑆1 −

𝑆0).  Thus, the key quantity to recognize is that the quantity of hedging feedback 

demand is Γ(𝑆0)(𝑆1 − 𝑆0). 

                                                      
9 For a realistic calibration of timescales, the period between 𝑆0 and 𝑆1 might be a day, while 
expiration might be three months out. 
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3.3.2 Aggregation Properties 

Now let us consider the above for not just one single contract, but for 𝑞 

call contracts issued across strike prices 𝐾 of both puts and calls 𝐶.  A 

representative end-user demands 𝑂𝐼𝐶,𝐾 contracts of the option with strike price 𝐾, 

of call type 𝐶 which is in zero net supply.  A market maker fills the demand by 

selling 𝑂𝐼𝐶,𝐾 contracts.  Now the market maker is short exposure by 

−∑ 𝑂𝐼𝐶,𝐾 Δ𝐶,𝐾(𝑆)k .  Since market makers must hedge out their linear exposure, 

the market maker must buy  ∑ 𝑂𝐼𝐶,𝐾 Δ𝐶,𝐾(𝑆)k  shares of the underlying stock. 

Now we arrive at the main feedback trading aggregation.  As prices 

increase from 𝑆0 to 𝑆1, the market maker must purchase shares of underlying 

equity equal to: 

�𝑂𝐼𝐶,𝐾 Δ𝐶,𝐾(𝑆1)
k

− 𝑂𝐼𝐶,𝐾 Δ𝐶,𝐾(𝑆0)  

= (𝑆1 − 𝑆0) ⋅�𝑂𝐼𝐶,𝐾Γ𝐶,𝐾
k

 

= (𝑆1 − 𝑆0) ⋅ 𝐺0 

Where 𝐺0 ≔  ∑ 𝑂𝐼𝐶,𝐾Γ𝐶,𝐾k  can be interpreted as total gamma outstanding 

on an equity.  In other words, as more options are issued by market makers across 

all puts, strikes, and expirations, 𝐺0 the total gamma of the option system 

increases.  𝐺0 can be seen as a measure of magnitude of hedging feedback 
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demand, which is also the coefficient of the quantity of feedback trading as a 

result of a price move.   

3.3.3 Price Impact of Feedback Trading 

As we see above, a dollar price change of 𝑆1 − 𝑆0 causes approximately a 

mechanical quantity feedback demand of (𝑆1 − 𝑆0) ⋅ 𝐺0.  The impact of this 

feedback quantity in how much it destabilizes prices should naturally be measured 

in price space.  Thus we need to translate quantities into prices.  There are a 

number of possible measures such as increased volatility, increased bid ask 

spreads, decreased liquidity, and others as exposited in Madhaven and Cheng 

(2009).   

We choose here a very natural measure of feedback impact: price 

momentum.  We imagine the mechanism as follows: on day zero, price 

exogenously increases.  Feedback hedging causes positive quantity demand on 

day one, which also pushes up the price on day one.  Thus higher 𝐺0 causes more 

feedback hedging which causes more momentum. 

Our method to map quantities to price changes follows the market 

microstructure literature.  𝐺0 reflects the absolute quantity of feedback trading in 

the system.  To translate this price into price impact, it is necessary to use a price 

model.  This paper follows the price model posited by Ferrais (2008) and divides 

total gamma by trading volume to reach a normalized measure of gamma:  𝐺0
𝑉𝑜𝑙𝑢𝑚𝑒

.  

The division by volume is the result of the intuition that the same size trade will 
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cause much stronger movements in a thinly traded stock than a thickly traded 

stock.  We take logs and define Residual Gamma = Log Gamma – Log Volume.  

This definition of Residual Gamma says that total gamma must be controlled by 

the liquidity of the trading volume to arrive at a measure of impact in price space.   

Residual Gamma then can be directly mapped into price space: 

𝑆2 − 𝑆1 = 𝜆
�∑ 𝑂𝐼𝐶,𝐾 Δ𝐶,𝐾(𝑆1) − 𝑂𝐼𝐶,𝐾 Δ𝐶,𝐾(𝑆0)k � ⋅ 𝑆0

𝑉𝑜𝑙𝑢𝑚𝑒 𝑇𝑟𝑎𝑑𝑒𝑑
     (1) 

≈ 𝜆𝑅1 ⋅ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎    (2) 

𝜆 here is a normalizing constant and 𝑅1 is first period returns.  While many price 

models treat 𝜆 as constant we explore the possibility that 𝜆 itself depends on other 

factors like size through third order interactions in Table 3.3.  Residual Gamma 

can be calculated theoretically as well as empirically and the two match closely as 

seen in the Section V. 
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Table 3.1: Summary Statistics for Daily Level Equity Information. 

The summary statistics below describe all dates and equities for which OptionMetrics price data 
exists as of construction of the dataset: from the start in 1996 to January 31, 2013.  Each of the 
11,266,998 observations is an equity-date pair and reflects the status of that equity at the end of 
that trading day.  All options data is collected from OptionMetrics, which is originally in option-
date pairs and has been summed into equity-date pairs: Open Interest of all options 
(OPEN_INTEREST), Gamma times Open Interest (GAMMA * OPEN INTEREST).  All equity 
data is collected from CRSP: Return from holding the stock between two closes of trading days 
(RET), Close Price at end of trading day (PRC), Volume of shares traded that day (VOL), and 
Shares Outstanding at the end of that day (SHROUT).  The remainder of the variables are 
computed as follows: Date Serial Number starts at one for the first date data exists, and increments 
by one every trading day; Dollar Volume is Close Price times Volume; Market Cap is Close Price 
times shares outstanding; Log Dollar Volume is the natural log of Dollar Volume; Log Market 
Cap is the natural log of Market Cap; Total Open Interest is the total number of open interests for 
all options across all equities for that day; Log Total Open Interest is the natural log of Total Open 
Interest; Day of Month is a integer from 1 to 31 of the day of that month; Last 20 Day Return is 
the sum of the 1st to 20th lags of Return; Last 20 Day Volatility is the square root of the sum of 
squares of the 1st to 20th lags of Return.  
 
Variable N Mean SD Min Max 
Date Serial Number 11,266,998 2,349.739 1,247.693 1.000 4,278.000 
Open Interest (thousands) 11,266,998 51.827 336.695 .000 30,800.00

0 
Gamma * Open Interest 
(thousands) 

11,266,998 2.801 25.988 .000 6,301.253 

Return (%) 11,263,869 .044 3.712 -94.891 625.925 
Close Price 11,264,218 29.166 29.317 .000 3540.000 
Volume (millions) 11,264,215 1.586 8.1446 .000 1897.900 
Shares Outstanding (millions) 11,266,778 157.239 494.596 .000 29,206.40

0 
Dollar Volume ($millions) 11,264,214 50.988 384.227 .000 93,188.09

0 
Log Dollar Volume 11,260,436 15.872 1.972 4.388 25.257 
Market Cap ($billions) 11,264,218 5.340 18.613 .000 658.153 
Log Market Cap 11,260,440 13.978 1.659 4.812 20.305 
Total Open Interest (millions) 11,266,998 170.475 105.719 .000 372.427 
Log Total Open Interest 
(millions) 

11,259,870 18.647 .901 15.937 19.735 

Day of Month 11,266,998 15.744 8.749 1.000 31.000 
Last 20 Day Return (%) 11,013,012 .903 15.774 -306.419 701.251 
Last 20 Day Volatility (%) 11,013,012 13.213 9.854 .000 627.684 
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Table 3.2: Baseline Determinants of Log Gamma. 

OLS regression of Log Gamma, defined as the log of the sum of all gamma times open interest 
across all options for an equity-date pair, on Log Volume traded for that equity-date, Log Shares 
Outstanding for that equity on that day, the Price for the equity at the end of the trading day, the 
Log NASDAQ Volume for that equity traded on NASDAQ on that day, the Time Serial an integer 
that starts with one and is incremented by one for each trading day, Log Open Interest the sum 
across all options for that equity on that day, and Log Total Open Interest the total open interest 
across all equities and options on that day.    

 
 

𝐿𝑜𝑔 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡 = 𝛼 + 𝛽1𝐿𝑜𝑔 𝑉𝑜𝑙𝑢𝑚𝑒 + 𝛽2𝐿𝑜𝑔 𝑆h𝑎𝑟𝑒𝑠 𝑂𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 + 𝛽3𝑃𝑟𝑖𝑐𝑒
+ 𝛽4𝐿𝑜𝑔 𝑁𝐴𝑆𝐷𝐴𝑄 𝑉𝑜𝑙𝑢𝑚𝑒 + 𝛽5𝑇𝑖𝑚𝑒 𝑆𝑒𝑟𝑖𝑎𝑙 + 𝛽6𝐿𝑜𝑔 𝑂𝑝𝑒𝑛 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡
+ 𝛽7𝐿𝑜𝑔 𝑇𝑜𝑡𝑎𝑙 𝑂𝑝𝑒𝑛 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝜖𝑖,𝑡 

 
All logs are natural logs.  t-stats are Eicker-Huber-White heteroskedasticity robust.  The residual 
from regression (3) is defined as Residual Gamma for the remainder of the paper.   
 
 
Panel A: Regressions (1) and (2) 

Variable  (1)  (2) 
N  10,834,255  10,834,255 
𝑅2  .5053  .5282 
  b [t]  b [t] 
Log Volume  .951158 (3086.7)  .743272 (1701.4) 
Log Shares Outstanding     .363015 (679.9) 
Price       
Log NASDAQ Volume       
Time Serial       
Log Total Open Interest       

 
Panel B: Regressions (3) and (4) 

Variable  (3)  (4) 
N  10,834,211  10,834,211 
𝑅2  .5347  .5403 
  b [t]  b [t] 
Log Volume  .755658  (1734.0)  .714132  (1504.5) 
Log Shares Outstanding  .365671 (679.9)  .391373 (691.4) 
Price  -.203234 (-353.2)  -.185148 (-315.0) 
Log NASDAQ Volume     .006525 (49.3) 
Time Serial     -.000244 (-191.5) 
Log Total Open Interest     .468826 (273.7) 
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Table 3.3:The Impact of Residual Gamma on Momentum with Market Cap Interaction. 

OLS regressions of equity-date Returns on 10 lags of: Returns (R) expressed as a net fraction; 
Residual Gamma defined in Table 3.2, shares outstanding, or volume; Demeaned Log Market 
Cap; and all higher order interactions of the previous variables.   All variables besides Residual 
Gamma are defined as in summary statistic Table 3.1.  Residual Gamma is defined as in Table 
3.2.  N = 10,531,923.  R2 =0.0016.  T-stats are clustered by dates.  Coefficients are multiplied by 
100. 

𝑅𝑖,𝑡 = 𝛼 + Σ𝑘=1𝐾 𝑅𝑖,𝑡−𝑘�𝛽1,𝑘 + 𝜆1,𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘
+ 𝜆2,𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘 ⋅ 𝐷𝑒𝑚𝑒𝑎𝑛𝑒𝑑 𝐿𝑜𝑔 𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖,𝑡−𝑘
+ 𝛽2,𝑘𝐷𝑒𝑚𝑒𝑎𝑛𝑒𝑑 𝐿𝑜𝑔 𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖,𝑡−𝑘�
+ Σ𝑘=1𝐾 �𝛾1,𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘
+ 𝛾2,𝑘𝐷𝑒𝑚𝑒𝑎𝑛𝑒𝑑 𝐿𝑜𝑔 𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖,𝑡−𝑘 + 𝛾3,𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘
⋅ 𝐷𝑒𝑚𝑒𝑎𝑛𝑒𝑑 𝐿𝑜𝑔 𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖,𝑡−𝑘� + 𝜖𝑖,𝑡 

Panel A 
  Return (R)  R * Residual 

Gamma 
 R * Residual 

Gamma * 
Demeaned Log 

Market Cap 

 R * Demeaned 
Log Market Cap 

 

  100𝛽1,𝑘 𝑡(𝛽1,𝑘)  100𝜆1,𝑘 𝑡(𝜆1,𝑘)  100𝜆2,𝑘 𝑡(𝜆2,𝑘)  100𝛽2,𝑘 𝑡(𝛽2,𝑘)  
Date              
t - 1  0.606 (0.90)  0.787 (5.00)  0.042 (0.62)  -0.237 (-1.99)  
t - 2  -1.592 (-1.81)  0.342 (2.07)  0.112 (1.65)  -0.514 (-3.71)  
t - 3  0.196 (0.27)  -0.071 (-0.47)  -0.078 (-1.24)  -0.102 (-0.84)  
t - 4  -0.087 (-0.11)  0.109 (0.71)  0.043 (0.68)  -0.157 (-1.27)  
t - 5  -1.227 (-1.55)  0.161 (1.03)  0.037 (0.58)  -0.190 (-1.36)  
t - 6  -0.651 (-0.84)  -0.128 (-0.8)  0.011 (0.17)  -0.281 (-2.07)  
t - 7  -0.124 (-0.15)  -0.047 (-0.32)  -0.051 (-0.82)  -0.093 (-0.63)  
t - 8  -0.061 (-0.08)  -0.184 (-1.22)  -0.114 (-1.85)  -0.075 (-0.56)  
t - 9  0.097 (0.13)  0.087 (0.59)  0.002 (0.03)  0.047 (0.32)  
t - 
10 

 
0.703 (0.90) 

 
0.053 (0.37) 

 
0.038 (0.63) 

 
0.072 (0.48) 

 

 
Panel B 

   Residual 
Gamma 

 Demeaned Log 
Market Cap 

 Residual Gamma * 
Demeaned Log Market Cap 

   100𝛾1  𝑡(𝛾1,𝑘)  100𝛾2,𝑘 𝑡(𝛾2,𝑘)  100𝛾3,𝑘 𝑡(𝛾2,𝑘) 
Date           
t - 1   -0.070 (-3.57)  -0.574 (-1.86)  0.025 (5.34) 
t - 2   0.030 (1.61)  0.374 (0.99)  -0.005 (-0.98) 
t - 3   0.015 (0.78)  -0.155 (-0.49)  -0.003 (-0.56) 
t - 4   0.002 (0.12)  0.090 (0.29)  -0.002 (-0.34) 
t - 5   -0.015 (-0.84)  0.034 (0.11)  -0.006 (-1.35) 
t - 6   0.031 (1.57)  0.023 (0.08)  0.005 (0.99) 
t - 7   -0.016 (-0.89)  -0.053 (-0.18)  -0.009 (-1.86) 
t - 8   0.008 (0.42)  0.164 (0.47)  0.002 (0.40) 
t - 9   -0.028 (-1.6)  -0.093 (-0.26)  -0.003 (-0.6) 
t - 
10 

  
0.024 (1.43) 

 
0.185 (0.68) 

 
0.004 (0.89) 



157 

3.4  Data 

This paper uses panel data on two levels, the first of which is nested in the 

second.  On the first level, an observation is an option-date pair.  For example an 

observation might be the Exxon Mobile (XOM) call contract with strike of $42.50 

and exercise date of 1/22/2005 as observed on 11/17/2004.   First-level data is 

obtained from OptionMetrics IvyDB for all options in the database.  This includes 

all observations from the start of the database in 1996 to the writing of this paper 

in 2013.  The first-level data we process is 90 gigabytes in size and contains 

898,578,403 records.  We consider the comprehensiveness of our study, and the 

implicit computational non-trivialities and hurdles in processing such a dataset to 

be a second-order contribution of the paper. 

 Characteristic information of first-level data includes observation date, 

the underlying stock’s CUSIP, the strike price, the exercise date, and a designator 

for whether the option is a call or a put.   Substantive first-level data for each 

option-date includes open interest, delta, and gamma.  The delta, gamma, and 

other greeks are calculated by OptionMetrics using a Cox Ross Rubinstein (1979) 

binomial tree method.   

Again, processing and running regressions on such a large dataset on 

present-day commodity computational hardware requires substantial manual 

programming of many otherwise standard regression functions.  For example, 

directly estimating fixed effects and per-equity coefficients  on the 8108 equities 
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present in our dataset would normally require terabytes of memory, thousands of 

times more than readily available on machines today.  Therefore, manual 

functions are often needed to improve computational tractability, and even then 

many subroutines have runtimes of days on a modern desktop computer.  Despite 

these substantial difficulties, we believe having comprehensive data is critically 

important.  It minimizes external validity concerns that often occur in studies that 

examine only a small fraction of the most liquid equities.  It gives results that are 

true across the entire population of equities.  It also maximizes the power of our 

tests.  Therefore the comprehensiveness of our data processing can be seen as an 

auxiliary contribution of the paper. 

On the second-level of data, an observation is an equity-day pair.  Across 

the 17 years, our dataset of 898,578,403 option-level observations rolls up into 

11,266,998 equity-level observations.  These 11,266,998 equity-level 

observations are distributed across 8108 equities.  A sample observation analogue 

to our example before would be Exxon Mobile (XOM) observed on 11/17/2004.  

This paper will mainly work on the equity-date level because both the main 

predictor variable (Residual Gamma) and the main predicted variable (equity 

level momentum) exist on this level.  While first-level data might be useful for 

revalidating some instruments like distance to round numbers (our third 

instrument), we mainly work on the second-level even with these instruments 

because we believe the intuition, validation, and instrument first-stages are much 

clearer on this level.   
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We aggregate first-level data into second-level data through aggregating 

an empirical total gamma 𝐺0, from now on known simply as the Total Gamma 

associated with an equity-date:  

𝐺0 ≔  ΣC,K𝑂𝐼𝐶,𝐾Γ𝐶,𝐾 

The right hand side variables of open interest and gamma are available from 

OptionMetrics IvyDB.  This differs from the theoretical total gamma in Section 

III in that not every contract is necessarily between a market maker and end end-

user, but Garleanu Petersen Poteshman (2009) give evidence that the two are 

highly correlated. 

This paper obtains other equity level data directly from CRSP.  From this 

database, the primary key is a CUSIP and date pair, and data includes open price, 

close price, volume, and holding period return – a value which includes splits, 

dividends and other adjustment factors.  For summary statistics, please refer to 

Table 3.1.   

3.5 Main Empirical Results. 

We proceed in our empirical analysis in the following steps:  (1) we 

calculate Residual Gamma from theoretical and empirical models.   (2) we 

compare baseline momentum of the entire sample and subsamples conditional on 

Residual Gamma.  This gives us straightforward results on the impact of Residual 

Gamma on momentum.   (3) we formalize this by running an OLS interaction 

regression of the impact of Residual Gamma on momentum.  We discuss 
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dynamics and magnitude of the price impact.  (4) we discuss possible confounds, 

and show the impact is robust to specification and a battery of liquidity and trend 

controls.   

3.5.1 Defining Residual Gamma: theoretically and empirically 

As described in section III, absolute total gamma should not be used 

directly as a predictor of momentum: equities with larger size and liquidity will 

respond less in momentum space to the same amount of total gamma.  To get at a 

sense of market impact on the scale of price returns, it is important to normalize 

by a factor of price impact, namely volume.  Ferrais (2008) suggests using 𝐺𝑎𝑚𝑚𝑎
𝑉𝑜𝑙𝑢𝑚𝑒

 

as a measure, or in natural log form, 𝐿𝑜𝑔 𝐺𝑎𝑚𝑚𝑎 − 𝐿𝑜𝑔 𝑉𝑜𝑙𝑢𝑚𝑒.  The Residual 

Gamma defined this way would be the theoretical approach answer to the problem. 

A more empirical approach to the problem is to consider total gamma as 

factor that increases momentum but only in excess of a natural baseline.  For 

example a firm that is ten times larger might mechanically have ten times more 

total gamma.  To reduce such issues, comparisons ought to be made for gamma 

differences only on comparable firms – firms with similar size, volume, and other 

characteristics.  The residual from such a regression could be defined as the 

Residual Gamma that would predict increased momentum. 

It turns out that the theoretical and empirical approaches above give nearly 

identical answers, as Table 3.2 shows.  Running a regression of Log Gamma on 

Log Volume (Table 3.2 Regression 1) gives a coefficient of near unity with an 𝑅2 
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of .5053.  The Residual Gamma from this definition is 𝐿𝑜𝑔 𝐺𝑎𝑚𝑚𝑎 −  .951 ⋅

𝐿𝑜𝑔 𝑉𝑜𝑙𝑢𝑚𝑒, almost identical to the theoretical value.   

It is of course possible to add on further predictors.  Price and size as 

measured by shares outstanding is a popular parameter in price impact models 

(Table 3.2, Regressions 2 and 3).  Log Nasdaq Volume, Time Serial, and Log 

Total Open Interest can be added as well, as seen in Table 3.2 Regression 4.  It 

turns out however that these additional covariate models have essentially the same 

𝑅2 as the baseline regression: .52-.54 for regressions (2), (3), and (4) vs .50 for 

the baseline regression (1).  Thus the Residual Gamma calculated from all these 

regressions would be nearly identical as measured by correlation.  We arrive at 

the remarkable result that the theoretical formula for Residual Gamma is nearly 

the same as the empirical formulae for Residual Gamma.   

The standard price impact models generally include volume, shares 

outstanding, and price, thus matching up most with regression (3) of Table 3.2.  

While all models give nearly identical measure of Residual Gamma, we choose 

Table 3.2 regression (3) as the standard definition for the remainder of the paper.  

However, the results are not significantly changed by any of the definitions above. 

3.5.2 Subsample Regressions 

The fundamental empirical question of this paper is how Residual Gamma 

affects momentum.  First, consider the simplest way to measure momentum, serial 

correlation.  The estimation equation for this might looks like 𝑅𝑖,𝑡 = 𝛼 +
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𝛽𝑅𝑖,𝑡−1 + 𝜖𝑖,𝑡 with 𝛽 being the baseline amount of momentum.   We can 

generalize to k periods with 𝑅𝑖,𝑡 = 𝛼 + ∑ 𝛽𝑘𝑅𝑖,𝑡−𝑘𝑘=1,𝐾 + 𝜖𝑖,𝑡 and observe the 

cumulative momentum through the cumulative coefficients.   

As a baseline, equity returns are known to exhibit some serial correlation 

in returns. In fact, it is well known that on the order of a few days, there is 

generally reversion (Froot and Perold 1995).  This reversion can be caused by bid-

ask bounce (McInish and Wood 1992) amongst other factors.  Figure 3.6 confirms 

this stylized fact, which shows the average momentum of the entire sample (solid 

line) to be slightly negative.   

As a first look at the impact of Residual Gamma on momentum, we 

simply run the above analysis on two subsamples.  The first subsample consists of 

the top ten percentile of Residual Gamma.  The momentum on this sample is 

shown to be significantly positive in Figure 3.6 (green line).  The second 

subsample consists of the bottom ten percentile of Residual Gamma.  The 

momentum on this sample is shown to be more negative than average in Figure 3.6 

(red line).   Both subsamples have their means outside the 95% confidence 

interval of the sample average. 

Thus, the rough glance provided by Figure 3.6 suggests a generally positive 

relationship between Residual Gamma and momentum.  
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Figure 3.6: Cumulative Momentum in Equities and Percentiles of Gamma. 

This figure shows the cumulative momentum from 1 to 10 days after a unit move in equity return.  
95% confidence intervals are given by error bars.  Momentum is calculated via the OLS regression 
clustered by date: 

𝑅𝑖,𝑡 = 𝛼 + Σ𝑘=1𝐾 𝛽𝑘𝑅𝑖,𝑡−𝑘 + 𝜖𝑖,𝑡 
The graph depicts three samples: 

• All equity-date pairs in the sample (black line) 
• Top ten percentile of Residual Gamma (green line) 
• Bottom ten percentile of Residual Gamma (red line).   

Residual Gamma is defined in Table 3.2 as the component of total gamma not predictable by 
price, shares outstanding, or volume.  Cumulative Momentum is cumulative sum of the 𝛽𝑘 with 
inferences accounting for covariances. 
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3.5.3 OLS Interaction Regression 

Instead of just looking at momentum in subsamples, we can be more 

rigorous and quantify the effect in a regression setting.  There are multiple natural 

ways to accomplish this.  If identification comes completely from the cross 

section, then one strategy is a Fama-MacBeth estimation in which 𝛽𝑖  from 

𝑅𝑖,𝑡 = 𝛼 + 𝛽𝑖𝑅𝑖,𝑡−1 + 𝜖𝑖,𝑡 is estimated for each equity, and then a second cross 

regression 𝛽𝑖 = 𝑎 + 𝜆𝐺𝑖 + 𝑒𝑖 can be run.  This paper does not use the Fama-

Macbeth strategy due to a desire to identify off of both time series and cross 

sectional properties – after all there is no fundamental reason to believe that as 

companies progress and change through multiple years that they should be seen as 

one observation.  

This paper uses the strategy of having one regression that decomposes the 

momentum coefficient into a linear function of Residual Gamma and other 

controls.  This motivates the estimation equation using interactions: 

𝑅𝑖,𝑡 = 𝛼 + �𝛽 + 𝜆𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−1�𝑅𝑖,𝑡−1 + 𝛾𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−1

+ 𝜖𝑖,𝑡    (3) 

𝛽 is the momentum constant, while 𝜆 is the variable of interest as it 

represents the sensitivity of momentum to our predictor factor Residual Gamma.  

Note that this unexpanded equation is identical to the expanded form: 

 

𝑅𝑖,𝑡 = 𝛼 + 𝛽𝑟𝑖,𝑡−1 + 𝜆𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−1𝑅𝑖,𝑡−1 + 𝛾𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−1 +
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𝜖𝑖,𝑡.  The expanded form makes it clear that the coefficient of interest is on the 

interaction of Residual Gamma and past returns, and motivates the addition of a 

first-order term 𝛾𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−1 since 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−1 shows up 

as an interaction.  If Residual Gamma does cause extra momentum, we expect 

higher values of Residual Gamma to mean that when yesterday experiences a high 

positive return that tomorrow’s return will be higher as well.  The interaction with 

lagged return is necessary for covariates and other factors that affect momentum.  

Non-interaction terms should be added only to the extent they are believed to 

directly affect tomorrow’s returns. 

We would like to consider for the baseline lags of more than a single day.  

After all there’s no fundamental reason to believe that hedging must happen 

within a day.  In fact conversations with practitioners suggest that rebalancing 

with options often takes a few days.  This is in contrast with leveraged ETFs 

which Cheng and Madhaven (2009) explain must contractually rebalance at the 

end of the day.  To consider multiple days of momentum we add additional lags to 

our fundamental specification: 

𝑅𝑖,𝑡 = 𝛼 + Σ𝑘=1𝐾 𝑅𝑖,𝑡−𝑘�𝛽1,𝑘 + 𝜆1,𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘�

+ Σ𝑘=1𝐾 𝛾1𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘 + 𝜖𝑖,𝑡 (4) 

It is this equation that we will actually estimate.  Again, in the regression, the key 

estimated parameters of interest are the 𝜆𝑘 variables.  These variables represent 

additional momentum caused by Residual Gamma.   
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The results of this regression are presented in Table 3.4 Regression 1, 

which show the coefficients of interest 𝜆𝑘 as k varies from 1 to 10 inclusive.  

Baseline values of momentum 𝛽𝑘 are also shown.  𝜆𝑘 can be interpreted as the 

additional return in percent caused by a 1% move in prices as Residual Gamma 

increase by one unit.  This is slightly less than a standard deviation of Residual 

Gamma, which is 1.45.   

Note first that the return drift occurs mostly in the first few days.  After the 

fourth day or so, there is minimal additional momentum.  However, the 

momentum does not revert away significantly either.   That the reaction mostly 

accumulates within the first day is not surprising.  Conversations with practioners 

reveal that most of the hedging for a stock’s price moves occurs within a couple 

of days.  That the effect does not revert away in any timeframe for which our data 

has power for suggests that the feedback has long-term effects and is not a 

temporary microstructure quirk. 

The magnitude of the momentum is also significant.  The momentum 

prediction provided by Residual Gamma results in an annualized 𝑅2 of about 10%.  

According to Campbell Thompson (2008) formula (14) which assumes log utility, 

this results in 30.6% extra returns.  That is to say, a participant earning 7.6% a 

year previously in an optimal fashion can now earn 10% with this new 

information.  This gain is quite significant.   
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Table 3.4: Momentum in Stocks versus Residual Gamma. 

OLS regressions of equity-date Returns on 10 lags of: net Returns (𝑅𝑖,𝑡) expressed as a fraction; 
Residual Gamma defined in Table 3.2 as the component of Log Gamma not predictable by price, 
shares outstanding, or volume; Residual Gamma multiplied by Return.  All variables besides 
Residual Gamma are defined as in summary statistic Table 3.1. The regressions are run on the 
full sample (Col 1 and Col 2), the top 10 percentile Residual Gamma subsample of the population 
(Col 3), and the bottom 10 percentile Residual Gamma subsample of the population (Col 4).  t-
statistics are clustered by date. 
 

𝑅𝑖,𝑡 = 𝛼 + Σ𝑘=1𝐾 𝛽𝑘 ⋅ 𝑅𝑖,𝑡−𝑘 + Σ𝑘=1𝐾 𝜆𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘 ⋅ 𝑅𝑖,𝑡−𝑘
+ Σ𝑘=1𝐾 𝛾𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘 + 𝜖𝑖,𝑡 

 
Variable (1) (2) (3) (4) 

N 10,545,064 11,135,122 1,039,210 1,477,949 
𝑅2 .0011 .0007 .0049 .0018 
Sample Full Full Top 10%tile of 

Residual Gamma 
Bottom 10%ile of 
Residual Gamma 

100*Return 𝜆𝑘:     
(t-1) .15 ( 0.22) -.47 (-0.72) 5.70 (5.78) -2.77 (-3.87) 
(t-2) -.54 (-1.91) -1.75 (-2.33) 1.71 (1.40) -1.83 (-3.12) 
(t-3) -.09 (-0.12) -.37 (-0.55) 3.26 ( 2.78) -1.64 (-2.98) 
(t-4) -.27 (-0.36) -.44 (-0.63) 1.95 ( 1.46) -.91 (-1.73) 
(t-5) -1.36 (-1.78) -1.56 (-2.17) -.51 (-0.39) -1.44 (-2.57) 
(t-6) -.72 (-0.97) -.52 (-0.75) 2.03 ( 1.50) .02 ( 0.03) 
(t-7) -.32 (-0.43) -.35 (-0.50) 2.19 ( 1.56) -.42 (-0.81) 
(t-8) -.09 (-0.14) -.15 (-0.24) 1.92 ( 1.48) -.28 (-0.62) 
(t-9) -.11 (-0.15) -.28 (-0.43) .89 ( 0.70) -.36 (-0.74) 
(t-10) .66 ( 0.91) .64 ( 0.96) 2.56 ( 1.93) .90 ( 1.79) 
     
100*Return* 
Residual Gamma 
𝜆𝑘  

   

(t-1) .78 ( 6.02)    
(t-2) .26 ( 1.97)    
(t-3) .01 ( 0.06)    
(t-4) .08 ( 0.69)    
(t-5) .14 ( 1.07)    
(t-6) -.13 (-1.01)    
(t-7) -.01 (-0.05)    
(t-8) -.09 (-0.73)    
(t-9) .09 ( 0.77)    
(t-10) .03 ( 0.26)    
     
Residual Gamma 
lags 

Yes No No No 
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Table 3.5: The Impact of Residual Gamma on Momentum with Liquidity Controls. 

OLS regressions of equity-date Returns on 10 lags of: Returns (R) expressed as a net fraction; 
Residual Gamma defined in Table 3.2 as the component of total gamma not predictable by price, 
shares outstanding, or volume; Log Dollar Volume, and Log Market Cap, Returns multiplied by 
Residual Gamma, Returns multiplied by Log Dollar Volume, Returns multiplied by Log Market 
Cap.  All variables besides Residual Gamma are defined as in summary statistic Table 3.1.  
Residual Gamma is defined as in Table 3.2.  N = 10,545,064.  R2 =0.0014.  t-stats are clustered 
by dates.  Coefficients are multiplied by 100. 

𝑅𝑖,𝑡 = 𝛼 + Σ𝑘=1𝐾 𝑅𝑖,𝑡−𝑘�𝛽1,𝑘 + 𝜆1,𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘 + 𝛽2,𝑘𝐿𝑜𝑔 𝐷𝑜𝑙𝑙𝑎𝑟 𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡−𝑘
+ 𝛽3,𝑘𝐿𝑜𝑔 𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖,𝑡−𝑘�
+ Σ𝑘=1𝐾 �𝛾1,𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘 + 𝛾2,𝑘𝐿𝑜𝑔 𝐷𝑜𝑙𝑙𝑎𝑟 𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡−𝑘
+ 𝛾3,𝑘𝐿𝑜𝑔 𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖,𝑡−𝑘� + 𝜖𝑖,𝑡 

 
Panel A 

  Return (R)  R * Residual 
Gamma 

 R * Log Dollar 
Volume 

 R * Log Market 
Cap 

 

  100𝛽1,𝑘 𝑡(𝛽1,𝑘)  100𝜆1,𝑘 𝑡(𝜆1,𝑘)  100𝛽2,𝑘 𝑡(𝛽2,𝑘)  100𝛽3,𝑘 𝑡(𝛽3,𝑘)  
Date              
t - 1  2.182 (1.19)  .923 (7.05)  .474 (3.17)  .695 (-3.86) 
t - 2  6.115 (3.33)  .223 (1.66)  -.186 (-1.28)  .348 (-1.91) 
t - 3  1.407 (0.84)  -.060 (-0.48)  -.258 (-1.96)  .218 (1.29) 
t - 4  1.357 (0.83)  .155 (1.24)  .208 (1.70)  .354 (-2.10) 
t - 5  1.252 (0.70)  .164 (1.28)  .081 (0.64)  .278 (-1.58) 
t - 6  2.726 (1.56)  -.074 (-0.57)  .171 (1.42)  .447 (-2.64) 
t - 7  .416 (0.22)  .020 (0.16)  .094 (0.68)  .151 (-0.84) 
t - 8  -.081 (-0.05)  -.074 (-0.61)  .058 (0.49)  .064 (-0.4) 
t - 9  -1.109 (-0.58)  .123 (1.05)  .126 (1.08)  .066 (-0.39) 
t - 10  -.230 (-0.12)  .047 (0.41)  .070 (0.58)  .018 (-0.11) 
 

Panel B 
 Residual Gamma  Log Dollar 

Volume 
 Log Market Cap 

 100𝛾1,𝑘 𝑡(𝛾1,𝑘)  100𝛾2,𝑘 𝑡(𝛾2,𝑘)  100𝛾3,𝑘 𝑡(𝛾3,𝑘) 
Date         
t - 1  -.003 (-0.12)  .096 (4.26)  -.510 (-1.64) 
t - 2  .048 (1.91)  .021 (0.94)  .384 (1.02) 
t - 3  -.026 (-1.06)  -.041 (-1.68)  -.211 (-0.66) 
t - 4  -.004 (-0.16)  -.008 (-0.37)  .093 (0.30) 
t - 5  -.042 (-1.81)  -.033 (-1.46)  .013 (0.04) 
t - 6  .029 (1.11)  -.003 (-0.13)  .013 (0.04) 
t - 7  -.017 (-0.76)  -.008 (-0.34)  -.055 (-0.19) 
t - 8  -.007 (-0.28)  -.015 (-0.69)  .154 (0.43) 
t - 9  -.005 (-0.22)  .020 (0.88)  -.081 (-0.22) 
t - 10  .007 (0.35)  -.017 (-0.81)  .185 (0.69) 
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3.5.4 Liquidity and Time Controls 

Recall in our conceptual estimation equation (3) that we are estimating the 

level of momentum as the factor �𝛽 + 𝜆𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−1�.  One may be 

concerned that it is not the Residual Gamma that is directly causing momentum, 

but rather a covariate of Residual Gamma. This is dealt with by identifying the 

most likely covariates first and then then adding them as interaction covariates to 

remove omitted variable bias.   

One likely omitted variable is company size.  The numerator of Residual 

Gamma is aggregated gamma over open interest of options, which should scale up 

with the size of the company.   We have already normalized out by volume (see 

subsection A) in our price impact model.  However the relationship between 

volume and market cap may not exactly cancel out.  There may be non-linearities 

in the interaction.  Momentum may simply be expressed differently in larger 

companies than smaller companies.  For that reason, company size represented as 

log market cap would be a key control. 

Similarly, momentum likely would be affected by liquidity.  More liquid 

stocks can be arbitraged more easily, which may reduce momentum effects.  

Likewise a more liquid stock should have less price impact in the first place.  One 

industry standard for measuring liquidity is daily dollar volume, so we use log 

daily dollar volume as a control as well.  This results in the estimation equation:  
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𝑅𝑖,𝑡 = 𝛼 + Σ𝑘=1𝐾 𝑅𝑖,𝑡−𝑘�𝛽1,𝑘 + 𝜆1,𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘

+ 𝛽2,𝑘𝐿𝑜𝑔 𝐷𝑜𝑙𝑙𝑎𝑟 𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡−𝑘 + 𝛽3,𝑘𝐿𝑜𝑔 𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖,𝑡−𝑘�

+ Σ𝑘=1𝐾 �𝛾1,𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘 + 𝛾2,𝑘𝐿𝑜𝑔 𝐷𝑜𝑙𝑙𝑎𝑟 𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡−𝑘

+ 𝛾3,𝑘𝐿𝑜𝑔 𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖,𝑡−𝑘� + 𝜖𝑖,𝑡   (5) 

Comparing Table 3.5 and Table 3.4 shows the results of this regression in 

cumulative 𝜆𝑘 similar to before.  This demonstrates that liquidity and market cap 

effects are not large confounds in our results.   

 We might also be interested in whether the effect might be stronger in 

larger companies.  For one, since Residual Gamma is in logs, a 1% abnormal 

increase is a lot higher for a larger firm than a smaller one.  Also, many market 

anomalies grow substantially stronger with smaller size.  Is this the case for the 

current effect as well?  For that purpose, we run a triple interaction regression 

similar to (5): 

𝑅𝑖,𝑡 = 𝛼 + Σ𝑘=1𝐾 𝑅𝑖,𝑡−𝑘�𝛽1,𝑘 + 𝜆1,𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘

+ 𝜆2,𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘 ⋅ 𝐷𝑒𝑚𝑒𝑎𝑛𝑒𝑑 𝐿𝑜𝑔 𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖,𝑡−𝑘

+ 𝛽2,𝑘𝐷𝑒𝑚𝑒𝑎𝑛𝑒𝑑 𝐿𝑜𝑔 𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖,𝑡−𝑘�

+ Σ𝑘=1𝐾 �𝛾1,𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘

+ 𝛾2,𝑘𝐷𝑒𝑚𝑒𝑎𝑛𝑒𝑑 𝐿𝑜𝑔 𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖,𝑡−𝑘 + 𝛾3,𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘

⋅ 𝐷𝑒𝑚𝑒𝑎𝑛𝑒𝑑 𝐿𝑜𝑔 𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖,𝑡−𝑘� + 𝜖𝑖,𝑡   (5.5) 
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The standard interaction between Residual Gamma and return is given by 

𝜆1,𝑘, but now we have a triple interaction between this term and Demeaned Log 

Market Cap given by 𝜆2,𝑘.  The results of this regression are shown in Table 3.3.  

We see that there is no appreciable interaction between Log Market Cap and the R 

* Residual Gamma term (the third column).  No coefficient out of the ten lags is 

significant at the 5% level.  Thus, the impact of Residual Gamma on momentum 

seems equally strong for large and small equity-dates. 

Another concern we may have is that options behavior may have shifted 

over time.  For one, the number of options has dramatically increased 

exponentially over time (Figure 3.7).  Further, dynamic hedging techniques have 

developed to be more sophisticated and have lower price impact.  The baseline 

momentum in the stock market may have time trends itself.  In fact, it is known 

that for individual stocks at least, there has been an upward trend in volatility until 

1997 (Campbell et al, 2002), which has since reversed, and volatility has impact 

on other market parameters (Campbell and Hentschel 1992).   
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Figure 3.7: Total Gamma Across All Equities over Time. 

Gamma across all options and equities summed for a given date through time.  The sample 
consists of all options in OptionMetrics from the database start date in 1996 until 2013.  Gamma is 
aggregated by taking the sum of open interest for an option contract multiplied by the gamma 
specific to that contract calculated via OptionMetrics using its internal Cox Ross Rubinstein (1979) 
binomial tree model.  A 100 trading-day moving average is given by the dashed black line.   
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To address trend issues, we add two time controls.  The first control, Time 

Serial, is simply an integer number representing the number of trading days from 

the start of the data series in 1996.  To more specifically address the issue of open 

interest increasing over time, we add in a time variable of the log of the total 

amount of open interest over time as well.  This is open interest summed over all 

equities and so it only has a time component to address time effects.  We then 

arrive at the estimation equation:  

𝑅𝑖,𝑡 = 𝛼 + Σ𝑘=1𝐾 𝑅𝑖,𝑡−𝑘�𝛽1,𝑘 + 𝜆1,𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘

+ 𝛽2,𝑘𝐿𝑜𝑔 𝑇𝑜𝑡𝑎𝑙 𝑂𝑝𝑒𝑛 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑡−𝑘 + 𝛽3,𝑘𝑇𝑖𝑚𝑒 𝑆𝑒𝑟𝑖𝑎𝑙𝑡−𝑘�

+ Σ𝑘=1𝐾 �𝛾1,𝑘𝐺𝑖,𝑡−𝑘 + 𝛾2,𝑘𝐿𝑜𝑔 𝑇𝑜𝑡𝑎𝑙 𝑂𝑝𝑒𝑛 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑡−𝑘�

+ 𝛾3−1𝑇𝑖𝑚𝑒 𝑆𝑒𝑟𝑖𝑎𝑙𝑡−1 + 𝜖𝑖,𝑡     (6) 

Table 3.6 presents results from this regression, which is again very similar 

to the baseline Table 3.4 regression (1) both qualitatively and quantitatively.  

Further, combining controls from (5) and (6) and adding other transformations 

(e.g. square log daily volume) produce similar results, the output of which is not 

shown here.   

 Overall the baseline regression equation (4) has shown remarkable 

robustness to factors known to potentially affect momentum and be covariates of 

Residual Gamma.  The controls added in (5) and (6) give strong evidence that it is 

not liquidity or time trend effects driving the main results. 
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Table 3.6: The Impact of Residual Gamma on Momentum with Time Controls. 

OLS regressions of equity-date Returns on: Time Serial is an integer that starts with 1 and is 
incremented by 1 per trading day, and then 10 lags of: Returns (R) expressed as a net fraction; 
Residual Gamma defined in Table 3.2 as the component of total gamma not predictable by price, 
shares outstanding, or volume; Log Total Open Interest is the natural log of the total open interest 
of all options across all stocks on that day; Returns multiplied by Residual Gamma; Returns 
multiplied by Log Total Open Interest, Returns multiplied by Time Serial.  10 lags of Time Serial 
are not taken due to collinearity.  All variables besides Residual Gamma are defined as in 
summary statistic Table 3.1.  Residual Gamma is defined as in Table 3.2.  N = 10,641,326.  R2 
=0.0011.  T-stats are clustered by dates.  Coefficients are multiplied by 100. 
𝑅𝑖,𝑡 = 𝛼 + Σ𝑘=1𝐾 𝑅𝑖,𝑡−𝑘�𝛽1,𝑘 + 𝜆1,𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡−𝑘 + 𝛽2,𝑘𝐿𝑜𝑔 𝑇𝑜𝑡𝑎𝑙 𝑂𝑝𝑒𝑛 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑡−𝑘

+ 𝛽3,𝑘𝑇𝑖𝑚𝑒 𝑆𝑒𝑟𝑖𝑎𝑙𝑡−𝑘� + Σ𝑘=1𝐾 �𝛾1,𝑘𝐺𝑖,𝑡−𝑘 + 𝛾2,𝑘𝐿𝑜𝑔 𝑇𝑜𝑡𝑎𝑙 𝑂𝑝𝑒𝑛 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑡−𝑘�
+ 𝛾3−1𝑇𝑖𝑚𝑒 𝑆𝑒𝑟𝑖𝑎𝑙𝑡−1 + 𝜖𝑖,𝑡   

 
Panel A 

  Return (R)  R * Residual 
Gamma 

 R * Log Total 
Open Interest 

 R * Time Serial  

  100𝛽1,𝑘 𝑡(𝛽1,𝑘)  100𝜆1,𝑘 𝑡(𝜆1,𝑘)  100𝛽2,𝑘 𝑡(𝛽2,𝑘)  100𝛽3,𝑘 𝑡(𝛽3,𝑘)  
Date              
t - 1  -16.337 (-0.36)  0.848 (6.32)  1.156 (0.43)  -0.002 (-1.18) 
t - 2  50.462 (0.95)  0.241 (1.77)  -3.165 (-1.02)  0.003 (1.43) 
t - 3  -47.809 (-1.08)  0.029 (0.24)  2.864 (1.10)  -0.002 (-1.32) 
t - 4  -3.601 (-0.08)  0.109 (0.86)  0.218 (0.08)  0.000 (-0.18) 
t - 5  12.972 (0.26)  0.169 (1.34)  -0.761 (-0.26)  0.000 (-0.04) 
t - 6  5.531 (0.11)  -0.134 (-1.04)  -0.395 (-0.14)  0.000 (0.25) 
t - 7  9.478 (0.19)  0.003 (0.03)  -0.560 (-0.19)  0.000 (0.15) 
t - 8  7.886 (0.18)  -0.086 (-0.73)  -0.498 (-0.19)  0.001 (0.30) 
t - 9  8.044 (0.19)  0.084 (0.74)  -0.471 (-0.19)  0.000 (0.16) 
t - 10  54.994 (1.24)  0.002 (0.02)  -3.304 (-1.27)  0.003 (1.77) 

 
Panel B 

   Residual Gamma  Log Total Open 
Interest 

 Time Serial 

   100𝛾1,𝑘 𝑡(𝛾1,𝑘)  100𝛾2,𝑘 𝑡(𝛾2,𝑘)  100𝛾3,𝑘 𝑡(𝛾3,𝑘) 
Date           
t - 1   -0.077 (-4.48)  -0.091 (-0.22)  0.000 (1.03) 
t - 2   0.031 (1.92)  0.052 (0.1)    
t - 3   0.014 (0.84)  -0.351 (-0.61)    
t - 4   0.005 (0.31)  0.216 (0.41)    
t - 5   -0.011 (-0.67)  0.232 (0.44)    
t - 6   0.028 (1.64)  -0.817 (-1.59)    
t - 7   -0.005 (-0.31)  -0.078 (-0.15)    
t - 8   0.008 (0.48)  0.214 (0.43)    
t - 9   -0.026 (-1.68)  -0.029 (-0.06)    
t - 10   0.015 (1.05)  0.554 (1.55)    
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Table 3.7: Using Instrument #1 (Time to Expiration): The Impact of Residual Gamma on 
Momentum. 

IV regressions of equity-date Returns on separate constants for each equity and 10 lags of: Returns 
(R) expressed as a net fraction, with coefficients generated separately for each equity; Residual 
Gamma defined in Table 3.2 as the component of total gamma not predictable by price, shares 
outstanding, or volume; Returns multiplied by Gamma Residual.  Residual Gamma is 
instrumented by the following exogenous variables: indicator variables for each day of the month, 
generated separately for each equity.  Residual Gamma is defined as in Table 3.2.  N = 
10,132,923.  R2 =0.0010.  T-stats are clustered by dates.  The IV estimator is two-stage least-
squares.  Coefficients are multiplied by 100. 

Instruments:  Σk=131 𝑏𝑖,𝑘𝐼(𝐷𝑎𝑦 𝑜𝑓 𝑀𝑜𝑛𝑡ℎ = 𝑘) 
𝑅𝑖,𝑡 = 𝛼𝑖 + Σ𝑘=1𝐾 𝛽𝑖,𝑘𝑟𝑖,𝑡−𝑘 +  Σ𝑘=1𝐾 𝜆𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝐼𝑉,𝑖,𝑡−𝑘𝑅𝑖,𝑡−𝑘

+  Σ𝑘=1𝐾 𝛾𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝐼𝑉,𝑖,𝑡−𝑘 + 𝜖𝑖,𝑡 
 
 

  R * Residual 
Gamma (IV) 

 Residual Gamma 
(IV) 

 Returns (Per 
Equity) 

 Constants 
(Per Equity) 

 

  100𝜆𝑘 𝑡(100𝜆𝑘)  100𝛾𝑘 𝑡(100𝛾   𝛽𝑖,𝑘  𝛼𝑖  
Date        YES  YES  
t - 1  1.299 (6.23)  -0.078 (-4.27)        
t - 2  -0.043 (-0.23)  0.035 (2.02)        
t - 3  -0.072 (-0.39)  0.014 (0.82)        
t - 4  0.122 (0.65)  0.003 (0.19)        
t - 5  0.363 (1.84)  -0.012 (-0.72)        
t - 6  0.184 (0.97)  0.029 (1.57)        
t - 7  -0.213 (-1.07)  -0.013 (-0.82)        
t - 8  -0.052 (-0.27)  0.006 (0.35)        
t - 9  0.008 (0.04)  -0.027 (-1.66)        
t - 10  -0.192 (-1.00)  0.022 (1.47)        
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3.6 Instrumental Regressions 

We move on to identify the causal effects of Residual Gamma on 

momentum in an instrument setting.  We explain three instruments, illustrate their 

first stages, describe the empirical specifications, and finally discuss the results.   

3.6.1 Instrumental Regressions: Time to Expiry 

Residual Gamma may vary endogenously across equities and dates with 

respect to momentum.  Reverse causality could occur in many possible stories.  

One such story could be that expected momentum for a stock affects the cost of 

issuing options.  Thus, stocks with exogenously more momentum might have end 

users who most want to hedge volatility risk, resulting in more options issued and 

more Residual Gamma.  Exogenous factors could affect both momentum and 

Residual Gamma as well.  For example, during earnings announcement season 

end-users might purchase unusually high amounts of options to lever up their 

opinions or insider information.  At the same time, news regarding earnings and 

its impact on the company’s future could be slowly integrating into the market, 

causing momentum (Hong Stein 1999).     

We can bypass these endogeneity issues if can find exogenous variation of 

Residual Gamma.  The exogenous sources of variation that we will present will be 

a large portion of this paper’s contribution.  All three instruments will exploit the 

various idiosyncratic institutional structure of options issuances. 
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The first instrument we use is the monthly expiration and roll-off of 

options.  This expiration causes a monthly cycle in options outstanding as end-

users put on orders throughout the month, and then at one single instant, a 

significant fraction of options expire.  Generally the roll-off date is around the 

18th of each month.  Figure 3.1 shows the cyclical nature of Residual Gamma 

through the month.  The options expiration dates are not lined up with the start of 

months, earnings releases, or other natural cycles.  Therefore, options expiration 

provides a potential instrument for Residual Gamma.   

The empirical exogenous instruments we are using for the first stage 

regression is: 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡 =   Σk=131 𝑏𝑖,𝑘𝐼(𝐷𝑎𝑦 𝑜𝑓 𝑀𝑜𝑛𝑡ℎ = 𝑘)    (7) 

 

In other words, for each equity we run dummies for each day of month.  This 

creates 31 dummies (no constant) that fully capture any variation in that equity’s 

Residual Gamma as part of the monthly cycle.  As can be observed in Figure 3.1, 

the growth in Residual Gamma seems linear over the month, with a strong drop 

within the last two days of the expiration cycle. 

The second stage is the direct instrumental analogue of (4): 

𝑅𝑖,𝑡 = 𝛼𝑖 + Σ𝑘=1𝐾 𝛽𝑖,𝑘𝑟𝑖,𝑡−𝑘 +  Σ𝑘=1𝐾 𝜆𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝐼𝑉,𝑖,𝑡−𝑘𝑅𝑖,𝑡−𝑘

+  Σ𝑘=1𝐾 𝛾𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝐼𝑉,𝑖,𝑡−𝑘 + 𝜖𝑖,𝑡     (8) 
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Note that the estimated 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝐼𝑉,𝑖,𝑡−𝑘 has cross sectional variation, 

but within a given stock only cyclic variation over time.  There is no quarterly 

variation or time trends.  Identification is purely off of the monthly expiration 

cycle. 

 The output of the regression is given in Table 3.7.  We see good agreement 

with the general price path 𝜆𝑘 in this regression and the baseline OLS regression 

in Table 3.4.  Namely, the cumulative coefficient magnitudes are nearly the same.  

This validates our baseline regression. 

  

3.6.2 Instrumental Regressions: Options Issuance and Past Price 

The second instrument we exploit is the fact that options tend to be struck 

around current stock prices, and options purchasers have lag in rebalancing the 

strikes of options when the stock price moves.  As an illustration, Figure 3.2 shows 

a hypothetical Residual Gamma as a function of the underlying stock price if the 

underlying stock price has been more or less around 100 in the past month.  The 

underlying principle behind the illustration is that the price of the stock being 

around 100 results in most options being struck around this price. 

Figure 3.3 demonstrates this phenomenon empirically, plotting the 

Residual Gamma against the price move the last 20 trading days.  When large 

movements are seen, the shift away from past prices reduces Residual Gamma.  
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Figure 3.5 shows suggestive evidence of tapering of options away from current 

prices as well. 

One possible objection is that using price movements has confounds with 

volatility.  If a stock experiences a sharp drop, volatility will increase, market 

makers may sell due to risk limits, mechanically reducing Residual Gamma.  This 

can be ruled out via two methods.  First, we can control for volatility, which we 

do in our empirical specification.  The shape of Figure 3.3 is maintained even with 

volatility controls.  Second, if there is a volatility story, one would expect that 

downward movement of prices increases volatility more than upward movement 

of prices, leading to asymmetry (Chacko Viceira 2005).  Note however that Figure 

3.3 is symmetrical suggesting against the volatility story, but in line with the 

theory of options clustering around old prices.  

By using a simple volatility control, we ensure that we are comparing 

between stocks with the same day-to-day volatility.  One stock by chance just 

happens to have a long string of negative moves, and another has a 50%-50% 

balance of negative and positive moves. 

The fact that end-users do not immediate rebalance strikes has foundations 

in much of financial economics and behavioral economics of defaults (Beshears et 

al 2009, Carroll et al 2009, Choi et al 2003; 2004, Kamenica 2012, Thaler and 

Sunstein 2008). 

Since options are struck around past prices, if current equity prices are 

around past prices, Residual Gamma will be higher than otherwise.  For example, 
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if over the course of two months, the price of Exxon Mobile (XOM) stock goes 

from 100 to 90 and then to 80, the Residual Gamma will be lower than if XOM 

goes from 100 to 90 and then to 100.  This past-price-level dependency of 

residual gamma provides our second instrument to identify the effect of residual 

gamma on momentum. 

The empirical specification we will use in our first stage IV regression for 

this instrument will be:  

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝑖,𝑡 =  𝑏𝑖�𝐿𝑎𝑠𝑡 20 𝐷𝑎𝑦 𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑡� + 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + 𝜖𝑖,𝑡       (9) 

 

�𝐿𝑎𝑠𝑡 20 𝐷𝑎𝑦 𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑡� specifies the absolute value of the stocks return for the 

past 20 calendar days.  The absolute value is used instead of a squared value due 

to descriptive data suggesting that the relationship is not quadratic, such as seen in 

Figure 3.3.   

The second stage is similar to (8) but with 𝐿𝑎𝑠𝑡 20 𝐷𝑎𝑦 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡 

placed in as a volatility control – since we expect the instrument 

�𝐿𝑎𝑠𝑡 20 𝐷𝑎𝑦 𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑡� to have omitted variable effects through volatility.  

𝐿𝑎𝑠𝑡 20 𝐷𝑎𝑦 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡 refers to the volatility of the stock in the last 20 day 

calendar days expressed in the square root of variance.  The second stage is: 
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𝑅𝑖,𝑡 = 𝛼𝑖 + Σ𝑘=1𝐾 𝑅𝑖,𝑡−𝑘�𝛽𝑖,𝑘 + 𝜆𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝐼𝑉,𝑖,𝑡−𝑘

+ 𝛿𝑘𝐿𝑎𝑠𝑡 20 𝐷𝑎𝑦 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦20,𝑖,𝑡�

+  Σ𝑘=1𝐾 �𝛾1,𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝐼𝑉,𝑖,𝑡−𝑘

+ 𝛾2,𝑘𝐿𝑎𝑠𝑡 20 𝐷𝑎𝑦 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦20,𝑖,𝑡� + 𝜖𝑖,𝑡  (10) 

 

The results are presented in Table 3.8, which again is qualitatively and 

quantitatively similar to our baseline Table 3.4.   
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Table 3.8: Using Instrument #2 (Past Price Path): The Impact of Residual Gamma on 
Momentum. 

IV regressions of equity-date Returns on separate constants for each equity and 10 lags of: Returns 
(R) express as a net fraction, with separate coefficients for each equity; Residual Gamma defined 
in Table 3.2 as the component of total gamma not predictable by price, shares outstanding, or 
volume; Last 20 Day Volatility calculated as the square root of the sum of the last 20 days of 
returns; Returns multiplied by Residual Gamma; Returns multiplied by Last 20 Day Volatility.   
Residual Gamma is instrumented by the following exogenous variables: the sum of the last 20 
days of returns, generated separately for each equity.  All variables besides Residual Gamma are 
defined as in summary statistic Table 3.1.  Residual Gamma is defined as in Table 3.2.  N = 
10,351,259.  R2 =0.0012.  T-stats are clustered by dates.  The IV estimator is two-stage least-
squares.  Coefficients are multiplied by 100.  Controls for returns per equity and constants per 
equity are included in the results shown below even though they are not explicitly shown. 

𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠: 𝑏𝑖�𝐿𝑎𝑠𝑡 20 𝐷𝑎𝑦 𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑡� 
𝑅𝑖,𝑡 = 𝛼𝑖 + Σ𝑘=1𝐾 𝑅𝑖,𝑡−𝑘(𝛽𝑖,𝑘 + 𝜆𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝐼𝑉,𝑖,𝑡−𝑘 + 𝛿𝑘𝐿𝑎𝑠𝑡 20 𝐷𝑎𝑦 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦20,𝑖,𝑡)

+  Σ𝑘=1𝐾 (𝛾1,𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝐼𝑉,𝑖,𝑡−𝑘 + 𝛾2,𝑘𝐿𝑎𝑠𝑡 20 𝐷𝑎𝑦 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦20,𝑖,𝑡)
+ 𝜖𝑖,𝑡 

 
 

 R * Residual 
Gamma 

 R * Last 20 Day 
Volatility 

 Residual 
Gamma 

 Last 20 Day 
Volatility 

 100𝜆𝑘 𝑡(𝜆𝑘)  100𝛿𝑘 𝑡(𝛿2,𝑘)  100𝛾1,𝑘 𝑡(𝛾1,𝑘)  100𝛾2,𝑘 𝑡(𝛾2,𝑘) 
Date            
t - 1 1.630 (5.90)  1.049 (0.28)  -0.077 (-4.13)  -0.021 (-0.02) 
t - 2 0.175 (0.56)  -10.881 (-2.62)  0.036 (2.10)  0.026 (0.02) 
t - 3 -0.296 (-1.14)  -1.568 (-0.43)  0.011 (0.65)  0.499 (0.49) 
t - 4 0.177 (0.58)  -5.003 (-1.24)  0.008 (0.50)  1.128 (1.17) 
t - 5 0.531 (1.79)  -6.155 (-1.56)  -0.003 (-0.20)  -1.746 (-1.93) 
t - 6 0.174 (0.60)  -0.444 (-0.12)  0.023 (1.32)  -0.206 (-0.23) 
t - 7 0.025 (0.08)  -0.965 (-0.27)  -0.017 (-1.00)  -0.254 (-0.26) 
t - 8 -0.003 (-0.01)  -2.154 (-0.65)  0.004 (0.22)  1.072 (1.06) 
t - 9 -0.010 (-0.03)  0.088 (0.03)  -0.024 (-1.49)  -1.147 (-1.17) 
t - 10 -0.246 (-0.88)  0.415 (0.13)  0.018 (1.20)  0.809 (1.05) 
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3.6.3 Instrumental Regressions: Options Issuance and Round Numbers 

Finally, we use a third instrument, the round number clustering of option 

strikes.  Option exchanges only issue options at prices that are round (e.g. 40, 50, 

60, etc).  Further, the more round a price is, the more market makers and end 

users will coordinate to issue at that strike and increase liquidity.  Even though 

strikes exist at both 50 and 45, the strike at 50 will be a stronger coordination 

point and see more options issued.  This instrument is particularly clean.  There 

are relatively few a priori reasons to believe that stocks should otherwise behave 

differently around round numbers.  There are however some previous research of 

round number effects: Harris (1991) models round numbers as simplifying 

negotiations; Donaldson and Kim (1993) show some market actors attach special 

meaning to the DJIA exceeding multiples of 100 inducing non-continuity; 

Christie and Schultz (1994) famously uncovered that market makers collude by 

coordinating on round prices.  None of these effects seem like they would add an 

obvious confound to our IV analysis.  As an institutional artifact there are few 

reasons to believe in serious fundamental reasons round prices should otherwise 

be special.   

The issuance of options at round numbers causes essentially exogenous 

variation in Residual Gamma.   In the few days before options expiration, if the 

stock’s price is in line with a round number (e.g. 50), then Residual Gamma will 

be much higher than if the stock’s price is not round (e.g. 53).  For an illustration, 

Figure 3.4 shows a hypothetical example one day before all options expiration in 
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which all options are issued at the round numbers ending in 0.  Residual Gamma 

would cluster around these values.  Figure 3.5 shows an empirical example of 

option strikes clustering at round numbers, with more clustering near numbers 

that are more round. 

Whether the stock price hits a round number is essentially exogenous.  

Only a very weak version of the random walk model needs to hold for this 

variation to be both random and unpredictable. 

To develop our first stage for the instrument, we need to have a measure 

for how round a price is.  A few issues come to play here.  First is institutional 

convention for what counts as a round price.  We would like to identify prices that 

1) the exchange has issued strikes at and 2) actually trade with high volume and 

open interest.  We could dive into first-level options level data to see for each 

equity exactly what the strike grid looks like every day.  This level of analysis 

would be complex if it is to be complete.  We would find that closeness to the 

nearest $10 matters, but for some stocks, so does closeness to the nearest $5 or 

$2.5, albeit less.  Sometimes this can depend on time of month too or the year of 

the observation.  The complexity would inhibit an easy interpretation and 

cleanness of the analysis.   

Instead we opt for a simple and robust measure of roundness.  We first 

normalize prices to have two digits before the decimal point: so for example $4.33, 

$43.30 and $433.02 all map to $43.30.  Then we look at the distance of this 

normalized price to the nearest $10, $5, $2.5, $1, $.50, and $.25.  These divisions 
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of tenths and halves tend to be empirically the round prices around which options 

are struck.  We run an empirical regression for each equity on how much 

roundness to each of the six increments matter.   In particular, we regress Residual 

Gamma on instruments below: 

Residual Gammai,t

=   𝑏𝑖,1𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑃𝑟𝑖𝑐𝑒 𝑡𝑜 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 10

+ 𝑏𝑖,2𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑃𝑟𝑖𝑐𝑒 𝑡𝑜 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 5

+ 𝑏𝑖,3𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑃𝑟𝑖𝑐𝑒 𝑡𝑜 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 2.5

+ 𝑏𝑖,4𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑃𝑟𝑖𝑐𝑒 𝑡𝑜 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 1

+ 𝑏𝑖,5𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑃𝑟𝑖𝑐𝑒 𝑡𝑜 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 0.5

+ 𝑏𝑖,6𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑃𝑟𝑖𝑐𝑒 𝑡𝑜 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 .25 + 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠

+ 𝜖𝑖,𝑡 

The advantage of this empirical method is that we do not need to take a stance on 

how much each level of roundness matters – this is estimated by the model.   

 By way of example, if AAPL has a price around $500, we would 

normalize its price by dividing by 10 to get its prices fluctuating around $50.  

Then, we observe how much Residual Gamma goes up when AAPL price is near 

round $10s ($40,$50,$60), and similarly for $5 ($45, $50, $55), and $2.5 

($47.5,$50,$52.5), and soforth,  and estimate an empirically determined model for 

that as our instrument for exogenous Residual Gamma.   

 This measure of roundness, while not perfect, is easy to understand.  

Further, it is less likely that this instrument is weak due to its empirical estimation.  
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The second stage is again the standard equation below.  Results are presented in 

Table 3.9  

 

𝑅𝑖,𝑡 = 𝛼𝑖 + Σ𝑘=1𝐾 𝛽𝑖,𝑘𝑟𝑖,𝑡−𝑘 +  Σ𝑘=1𝐾 𝜆𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝐼𝑉,𝑖,𝑡−𝑘𝑅𝑖,𝑡−𝑘

+  Σ𝑘=1𝐾 𝛾𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝐼𝑉,𝑖,𝑡−𝑘 + 𝜖𝑖,𝑡 
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Table 3.9: Using Instrument #3 (Distance to Round Numbers): The Impact of Residual 
Gamma on Momentum. 

IV regressions of equity-date Returns on separate constants for each equity and 10 lags of: Returns 
(R) express as a net fraction, with separate coefficients for each equity; Residual Gamma defined 
in Table 3.2 as the component of total gamma not predictable by price, shares outstanding, or 
volume; Returns multiplied by Residual Gamma; Returns multiplied by Last 20 Day Volatility.   
Residual Gamma is instrumented by the following exogenous variable: first the Price of an equity-
date is multiplied or divided by 10 to form a Normalized Price that has exactly two digits before 
the decimal point; then 6 variables are generated by taking the distance of this Normalized Price to 
the nearest multiple of 10, 5, 2.5, 1, .5, and .25 respectively.  All variables besides Residual 
Gamma are defined as in summary statistic Table 3.1.  Residual Gamma is defined as in Table 
3.2.  N = 10,545,064.  R2 =0.0009.  T-stats are clustered by dates.  The IV estimator is two-stage 
least-squares.  Coefficients are multiplied by 100. 

Instruments:  𝑏𝑖,1𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑃𝑟𝑖𝑐𝑒 𝑡𝑜 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 10
+ 𝑏𝑖,2𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑃𝑟𝑖𝑐𝑒 𝑡𝑜 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 5
+ 𝑏𝑖,3𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑃𝑟𝑖𝑐𝑒 𝑡𝑜 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 2.5
+ 𝑏𝑖,4𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑃𝑟𝑖𝑐𝑒 𝑡𝑜 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 1
+ 𝑏𝑖,5𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑃𝑟𝑖𝑐𝑒 𝑡𝑜 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 0.5
+ 𝑏𝑖,6𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑃𝑟𝑖𝑐𝑒 𝑡𝑜 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 .25 

 
𝑅𝑖,𝑡 = 𝛼𝑖 + Σ𝑘=1𝐾 𝛽𝑖,𝑘𝑟𝑖,𝑡−𝑘 +  Σ𝑘=1𝐾 𝜆𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝐼𝑉,𝑖,𝑡−𝑘𝑅𝑖,𝑡−𝑘

+  Σ𝑘=1𝐾 𝛾𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑎𝑚𝑚𝑎𝐼𝑉,𝑖,𝑡−𝑘 + 𝜖𝑖,𝑡 
 
 

  R * Residual 
Gamma (IV) 

 Residual Gamma 
(IV) 

 Returns (R 
Per Equity) 

 Constants (Per 
Equity) 

 

  100𝜆𝑘 𝑡(100𝜆𝑘)  100𝛾𝑘 𝑡(100𝛾)𝑘  𝛽𝑖,𝑘  𝛼𝑖  
Date        YES  YES  
t - 1  1.342 (6.61)  -0.078 (-4.27)        
t - 2  -0.154 (-0.83)  0.034 (2.00)        
t - 3  -0.134 (-0.70)  0.014 (0.82)        
t - 4  -0.036 (-0.19)  0.003 (0.18)        
t - 5  0.312 (1.66)  -0.012 (-0.71)        
t - 6  0.197 (1.05)  0.029 (1.58)        
t - 7  -0.190 (-1.00)  -0.013 (-0.81)        
t - 8  -0.127 (-0.68)  0.006 (0.35)        
t - 9  0.005 (0.03)  -0.027 (-1.65)        
t - 10  -0.182 (-0.95)  0.022 (1.48)        
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3.6.4 Interpretation 

In our analysis above, we first ran a baseline (OLS) regression of the 

impact of Residual Gamma on momentum.  We then controlled for possible 

confounds by adding covariates.  Then we moved on to identify the causal effects 

of Residual Gamma on momentum in an instrument setting using three 

instruments: time to expiry, past price paths, and round numbers. 

All the different variations of analysis above resulted in the quantitatively 

and qualitatively similar impacts of Residual Gamma on momentum.  This is 

particularly substantial because the driving forces behind the regressions above 

vary widely.  For example, time and liquidity effects that make the OLS 

regression problematic should not be an issue for the time-to-expiration 

instrument.  Similarly, monthly cycle variations that may pose problems for time-

to-expiration should not affect whether prices are round or not.  But regardless of 

how the effect is generated or cut, the effect still remains the same.  This provides 

strong evidence that the Residual Gamma and hence hedging feedback demand of 

options does indeed cause extra momentum. 

3.7 Extensions 

3.7.1 In what other ways are options destabilizing? 

 We have measured destabilization in this paper through momentum, but 

under a purely rational expectations world, one might expect that prices would be 

impounded not after a few days, but on the very day of the stock move.  Cheng 
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and Madhaven (2009) capture this intuition by looking at price movements until 

3:00PM, and then designate the period between 3:00PM and 4:00PM as the 

momentum period.  Taken to the extreme, the price should actually move 

contemporaneously.  In a purely rational Kyle (1985) model, market makers 

should anticipate the hedging and simply reduce liquidity to compensate. 

 These already provide two alternate measures of destabilization: volatility 

as measured by variance of future returns, and liquidity as measured by price 

impact or bid-ask spread.  Other measures of stock destabilizing should exist as 

well. 

 

3.7.2 Why do end-users purchase options? 

In general equilibrium it would be useful to have an explanation of why 

end users purchase options in the first place, which gives non-linear exposure to 

the underlying equity.  One theory perhaps could be that options mechanically 

bundle leverage and concavity together.  End-users purchase options for the 

leverage factor, and purchase along with that concavity, an unintended add on.  

End-users do not pay attention every period, which both explains why end-users 

do not simply create their own options through BSM, and also why they do not 

rebalance away their concavity when prices change.   

 

3.7.3 What relationship does this have with time-varying returns? 
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Another theory for the purchase of options can reflect the inherent 

preference by end-users or end users to hold more equities when the price is 

higher, and less when the price is lower.  Numerous studies show that equity 

returns are time-varying, and in particular households hold less risky assets in bad 

times driving up returns (Zhang 2013).  Could it be possible that investor 

heterogeneity creates a class of agents that prefer to take risk in good states of the 

world only?  If so, then options seem like the optimal instrument with which to 

take on the risk.  In that case, options can be seen as more than a simple dynamic 

hedging instrument, but an indicator of who and to what extent different agents 

hold risk in different states of the world. 

Also, to the extent that bad fundamental news can cause feedback selling, 

then perhaps this can be one channel through which bad cashflow news induces 

bad discount rate news, in the Campbell Shiller (1988) decomposition sense.   

3.8 Conclusion 

This paper presents empirical evidence to show that the options create 

hedging feedback demand.  This hedging feedback demand, measured empirically 

as Residual Gamma in our paper, causes market makers to purchase stocks 

exactly after prices rise, and sell stocks exactly after prices fall.  In a frictional 

world, this should cause destabilization through momentum. 

The paper exhibits this momentum effect.  The effect is large in magnitude, 

with a one standard deviation increase in Residual Gamma causing 1.5% extra 
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momentum in stocks.  The momentum occurs within one to four days and does 

not dissipate for a significant period of time, at least 10 days.   

This effect on stock prices is robust to liquidity controls, market cap 

controls, open interest controls, and time trend controls.  Instruments including 

option expiration cycle, past price effects, and round price effects are also used to 

identify the destabilization.  The remarkable robustness of the results gives strong 

evidence that Residual Gamma indeed increases stock momentum.  This feedback 

of options shows that derivative structure does indeed have effect on stock prices.   
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Table 4.1: Summary Statistics. 

The summary statistics below covers all 243 quarters from the beginning of the Federal Reserve 
Flow of Funds series in 1951 to 2012.  All data on sectors and their holdings are collected from 
the Federal Reserve Flow of Funds: Household equities is the series on households and nonprofit 
organizations, corporate equities, asset (FL153064105.Q); Household Equity Mutual Funds is the 
series on households and nonprofit organizations, mutual fund shares, asset (FL153064205.Q); 
Household Credit Markets is the series on households and nonprofit organizations, total currency 
and deposits including money market fund shares, asset (FL154000025.Q); Household Deposits is 
the series on households and nonprofit organizations, credit market instruments, assets 
(FL154004005.Q).  
 
Household risky ratio is calculated as the sum of the first two series above divided by the sum of 
the second two series.  Total risky ratio is calculated as the analogously except for the series 
corresponding to all sectors.  Change in household risky ratio is the current period household risky 
ratio minus a one quarter lag.  Log household risky ratio is the natural log of household risky ratio.  
Log total risky ratio is the natural log of the total risky ratio.   
 
In future tables, R denotes the excess return calculated as the difference between the value-
weighted CRSP minus the one-month Treasury bill rate from Ibbotson’s in percentage points.  S 
denotes the equity share in new issues as defined in Baker Wurgler (2000). CAPE denotes the ten 
year cyclically adjusted price to earnings ratio, defined as in Campbell Shiller (1988);  Term 
Spread denotes the yield premium of ten year (from Robert Shiller’s website) over one-month 
treasury bill rates.  CAY is the consumption wealth ratio proxy defined by Lettau Ludvigson 
(2001).  Risky valuation is the projection of CAPE on the household risky ratio.  Risky Issuance is 
the residual from this projection.   
 1951-2012  1951-1981  1982-2012 
Variable Mean SD  Mean SD  Mean SD 
                                                             Panel A: Federal Reserve Flow of Funds Data Series 
Household Equities ($trillions) 4.289 5.356  .567 .258  8.009 5.445 
Household Equity Mutual Funds 
($tn) 

2.441 3.443  .104 .090  4.776 3.579 

Household Credit Market 
($trillions) 

1.437 1.593  .214 .099  2.525 1.459 

Household Deposits ($trillions) 1.552 1.592  .226 .117  2.646 1.461 
                                                             Panel B: Other Primary Data Series 
Excess Return R (%) 1.829 8.399  1.652 8.138  2.001 8.676 
Lettau-Ludvigson CAY .000 0.017  -0.004 0.01  0.004 0.021 
Term Spread 2.275 1.231  1.794 0.941  2.743 1.302 
Baker-Wurgler Equity Share of 
Issuance 0.186 0.095  0.224 0.082  0.143 0.090 
Campbell-Shiller CAPE 18.887 7.534  15.735 4.597  21.963 8.525 
                                                             Panel C: Derived Data Series 
Household risky ratio 2.509 0.815  2.540 .761  2.470 .866 
Change in Household risky ratio 0.007 0.240  0.001 0.239  0.012 0.243 
Log Household risky ratio 0.869 0.321  0.888 0.305  0.850 0.337 
Total risky ratio 0.501 0.162  0.492 0.141  0.509 0.181 
Log Total risky ratio -0.747 0.340  -0.754 0.311  -0.740 0.367 
Risky Valuation -0.747 0.301  -0.865 0.243  -0.632 0.310 
Risky Issuance .000 0.157  0.111 0.096  -0.108 0.126 
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Table 4.2: Values of Percentiles of the Household risky ratio. 

The table displays values of select percentiles of the household risky ratio variable.  The 
household risky ratio is the ratio of household high risk over household low risk assets as reported 
by the Federal Reserve Flow of Funds data.  Percentiles are selected to be approximately 1/6 of 
the distribution.   95% confident intervals are given by the Thiel-Sen method. 
 
 

Percentile Value 95% Conf Interval 
17% 1.685 (1.62 , 1.77) 
33% 1.996 (1.87 , 2.09) 
50% 2.304 (2.20 , 2.52) 
67% 2.866 (2.73 , 3.03) 
83% 3.352 (3.23 , 3.55) 

 

 

  



195 

 

 

 

 

References 

Alissa, W. (2009). Boards' response to shareholders' dissatisfaction: the case of 
shareholders' say on pay in the UK. Available at SSRN 1412880. 

 
Amin,  K., J.D. Coval, and H. N. Seyhun. (2004): Index Option Prices and Stock 

Market Momentum.  Journal of Business77:835-74. 
 
Asness, Clifford, Tobias Moskowitz and Lasse Pedersen (2008), “ Value and 

Momentum Everywhere,” working paper. 
 
Bainbridge, S. (2008). Remarks on Say on Pay: An unjustified incursion on 

director authority. Working Paper. 
 
Baker, G. P., Jensen, M. C., & Murphy, K. J. (1988). Compensation and 

incentives: Practice vs. theory. The journal of Finance, 43(3), 593-616. 
 
Baker, M., Greenwood, R., & Wurgler, J. (2003). The maturity of debt issues and 

predictable variation in bond returns. Journal of Financial 
Economics, 70(2), 261-291. 

 
Baker, Malcolm, and J. Stein (2004): “Market Liquidity as a Sentiment Indicator,” 

Journal of Financial Markets 7 (3): 271-299. 
 
Baker, M., & Wurgler, J. (2000). The equity share in new issues and aggregate 

stock returns. The Journal of Finance, 55(5), 2219-2257. 
 
Baker, M., & Wurgler, J. (2006). Investor Sentiment and the Cross‐Section of 

Stock Returns. The Journal of Finance, 61(4), 1645-1680. 
 

http://pages.stern.nyu.edu/~lpederse/papers/ValMomEverywhere.pdf
http://pages.stern.nyu.edu/~lpederse/papers/ValMomEverywhere.pdf


196 

Balsam, S., & Yin, J. (2012). The Impact of Say-on-Pay on Executive 
Compensation. Available at SSRN 2026121. 

 
Bates, D.S. (2003): “Empirical Option Pricing: A Retrospection,”  Journal of 

Econometrics, 116, 387-404. 
 
Baumol, W. J. (1959). Business Behaviour. Value and Growth, New York. 
 
Bebchuk, L. A. (2007). The myth of the shareholder franchise. Virginia Law 

Review, 675-732. 
 
Bebchuk, L. A., & Fried, J. M. (2004). Pay without performance (Vol. 278). 

Cambridge, MA: Harvard University Press. 
 
Bebchuk, L. A., Fried, J. M., & Walker, D. I. (2002). Managerial power and rent 

extraction in the design of executive compensation (No. w9068). National 
Bureau of Economic Research. 

 
Beshears, J., J. J. Choi, D. Laibson, B.C. Madrian (2009), “The Importance of 

Default Options for Retirement Savings Outcomes,” Social Security 
Policy in a Changing Environment, 167-195. 

 
Bertrand, M., & Mullainathan, S. (2001). Are CEOs rewarded for luck? The ones 

without principals are. The Quarterly Journal of Economics, 116(3), 901-
932. 

 
Black F, M Scholes (1973)  “The pricing of options and corporate liabilities” – The 

Journal of Political Economy,  81, 637-654. 
 
Bondarenko, O. (2003) “Why Are Put Options So Expensive?”  Working Paper, 

University of Illinois at Chicago.  
 
Boudoukh, J., Richardson, M., & Whitelaw, R. F. (2008). The myth of long-

horizon predictability. Review of Financial Studies, 21(4), 1577-1605. 
 
Brainard, W. C., & Tobin, J. (1968). Pitfalls in financial model building. The 

American Economic Review, 58(2), 99-122. 
 
Brealey, R. A., Myers, S. C., & Allen, F. (2006). Corporate finance (Vol. 8). 

McGraw-Hill/Irwin. 
 



197 

Cai, J., & Walkling, R. (2009). Shareholders' Say on Pay: Does it Create 
Value?. Journal of Financial and Quantitative Analysis (JFQA), 
Forthcoming, 2008-06. 

 
Calvet, L. E., Campbell, J. Y., & Sodini, P. (2006). Down or out: Assessing the 

welfare costs of household investment mistakes (No. w12030). National 
Bureau of Economic Research. 

 
Campbell, J. Y. (1987). Stock returns and the term structure. Journal of financial 

economics, 18(2), 373-399. 
 
Campbell, J. Y., & Cochrane, J. H. (1999). By Force of Habit: A Consumption-

Based Explanation of Aggregate Stock Market Behavior. The Journal of 
Political Economy, 107(2), 205-251. 

 
Campbell John Y. and L Hentschel (1992): “No News is Good News, An 

Asymmetric Model of Changing Volatility in Stock Returns,” Journal of 
Financial Economics, 31 (3): 281-318. 

 
Campbell John Y., M. Lettau, B.G. Malkiel, Y. Xu, “Have Individual Stocks 

Become More Volatile? An Empirical Exploration of Idiosyncratic Risk,”  
Journal of Finance, 56 (1): 1-43. 

 
Campbell John Y., AWC Lo, AC MacKinlay (1997): The Econometrics of 

Financial Markets : Princeton University Press. 
 
Campbell, J. Y., & Shiller, R. J. (1988). The dividend-price ratio and expectations 

of future dividends and discount factors. Review of financial studies, 1(3), 
195-228. 

 
Campbell, J. Y., & Shiller, R. J. (1988). Stock prices, earnings, and expected 

dividends. The Journal of Finance, 43(3), 661-676. 
 
Campbell, J. Y., & Thompson, S. B. (2008). Predicting excess stock returns out of 

sample: Can anything beat the historical average?. Review of Financial 
Studies, 21(4), 1509-1531. 

 
Campbell, J. Y., & Yogo, M. (2005). Implementing the econometric methods in 

“Efficient tests of stock return predictability”. Unpublished working paper. 
University of Pennsylvania. 

 
Campbell, J. Y., & Yogo, M. (2006). Efficient tests of stock return 

predictability.Journal of financial economics, 81(1), 27-60. 



198 

 
Carroll, G.D., J.J. Choi, D. Laibson, B.C. Madrian, and A. Metrick (2009): The 

Quarterly Journal of Economics 124(4):1639-1674. 
 
Chacko, G., & Viceira, L. M. (2005). Dynamic consumption and portfolio choice 

with stochastic volatility in incomplete markets. Review of Financial 
Studies, 18(4), 1369-1402. 

 
Cheng, Minder and Madhaven, Ananth, The Dynamics of Leveraged and Inverse-

Exchange Traded Funds (November 4, 2009). Journal of Investment 
Management, Winter 2009.  

 
Choi, J.J., D. Laibson, B.C. Madrian, and A. Metrick  (2004): “For Better or for 

Worse: Default Effects and 401(k) Savings Behavior,” Perspective on the 
Economics of Aging. 

 
Choi, J.J., D. Laibson, B.C. Madrian, A. Metrick  (2003): “Optimal Defaults,” 

American Economic Review, Papers and Proceedings 93,2:180-5. 
 
Christie, W. G., & Schultz, P. H. (1994). Why do NASDAQ Market Makers 

Avoid Odd‐Eighth Quotes?. The Journal of Finance, 49(5), 1813-1840. 
 
Cochrane, J. H. (2008). The dog that did not bark: A defense of return 

predictability. Review of Financial Studies, 21(4), 1533-1575. 
 
Cochrane, J. H., & Piazzesi, M. (2005). Bond risk premia. The American 

economic review, 95(1), 138-160. 
 
Conyon, M., & Sadler, G. (2010). Shareholder voting and directors' remuneration 

report legislation: say on pay in the UK. Corporate Governance: An 
International Review, 18(4), 296-312. 

 
Core, J. E., Guay, W., & Larcker, D. F. (2008). The power of the pen and 

executive compensation. Journal of Financial Economics, 88(1), 1-25. 
 
Core, J. E., Holthausen, R. W., & Larcker, D. F. (1999). Corporate governance, 

chief executive officer compensation, and firm performance. Journal of 
financial economics, 51(3), 371-406. 

 
Coval, J. D., and T. Shumway. (2001): “Expected Option Returns,”  Journal of 

Finance 56:983-1009. 
 



199 

Cox, J.C., S.A. Ross, M. Rubinstein (1979): “Option Pricing: A Simplified 
Approach,”  Journal of Financial Economics, 7 (3): 229-263. 

 
 
Cuñat, V., Gine, M., & Guadalupe, M. (2012a). Say Pays! Shareholder Voice and 

Firm Performance. OECD ELSA Seminars Series. 
 
Cuñat, V., Gine, M., & Guadalupe, M. (2012b). The vote is cast: the effect of 

corporate governance on shareholder value. The Journal of Finance, 67(5), 
1943-1977. 

 
DeAngelo, H., & DeAngelo, L. (1991). Union negotiations and corporate policy: 

A study of labor concessions in the domestic steel industry during the 
1980s.Journal of Financial Economics, 30(1), 3-43. 

 
Donaldson, R. G., & Kim, H. Y. (1993). Price barriers in the Dow Jones industrial 

average. Journal of Financial and Quantitative Analysis, 28(3). 
 
Driessen, J., and P. Maenhout. (2007): “An Empirical Portfolio Persepctive on 

Option Pricing Anomalies,”  Review of Finance  11:561-603. 
 
Ertimur, Y., Ferri, F., & Maber, D. A. (2012). Reputation penalties for poor 

monitoring of executive pay: Evidence from option backdating. Journal of 
Financial Economics, 104(1), 118-144. 

 
Fama, E. F. (1980). Agency Problems and the Theory of the Firm. The Journal of 

Political Economy, 288-307. 
 
Fama, E. F., & French, K. R. (1988). Permanent and temporary components of 

stock prices. The Journal of Political Economy, 246-273. 
 
Fama, E. F., & MacBeth, J. D. (1973). Risk, return, and equilibrium: Empirical 

tests. The Journal of Political Economy, 607-636. 
 
Fama, E. F., & Schwert, G. W. (1977). Asset returns and inflation. Journal of 

financial economics, 5(2), 115-146. 
 
Ferraris, A. (2008) “Equity Market Impact Models,” Deutsche Bank Working 

Paper: Sifterverband fuer die Deutsche Wirtschaft. 
 
Ferreira, F., & Gyourko, J. (2009). Do political parties matter? Evidence from US 

cities. The Quarterly Journal of Economics, 124(1), 399-422. 
 



200 

Ferri, F., & Maber, D. A. (2013). Say on pay votes and CEO compensation: 
Evidence from the UK. Review of Finance, 17(2), 527-563. 

 
Fuster, A., Laibson, D., & Mendel, B. (2010). Natural expectations and 

macroeconomic fluctuations. The Journal of Economic Perspectives, 24(4), 
67-84. 

 
Froot, K. A., & Perold, A. F. (1995). New trading practices and short‐run 

market efficiency. Journal of Futures Markets, 15(7), 731-765. 
 
Gabaix, X., A. Krishnamurthy, and O. Vigneron, (2007): “An Empirical Portfolio 

Perspective on Option Pricing Anomalies.”  Review of Finance  11:561-
603. 

 
Gabaix, X., & Landier, A. (2008). Why has CEO pay increased so much?. The 

Quarterly Journal of Economics, 123(1), 49-100. 
 
Garleanu, Nicolae, Lasse Pedersen and Allen Poteshman (2009), “Demand-Based 

Option Pricing,” Review of Financial Studies, forthcoming. 
 
Gordon, M. J. (1962). The investment, financing, and valuation of the corporation. 

Greenwood Press. 
 
Greenwood, Robin. (2005): “Short and Long Term Demand Curves for Stocks: 

Theory and Evidence on the Dynamics of Arbitrage,”  Journal of 
Financial Economics 75:607-49. 

 
Greenwood, Robin, Samuel Hanson, and Jeremy C. Stein. (2010): “A Gap-Filling 

Theory of Corporate Debt Maturity Choice,” Journal of Finance, 65 (3): 
953-1028. 

 
Greenwood, R., & Shleifer, A. (2013). Expectations of returns and expected 

returns (No. w18686). National Bureau of Economic Research. 
 
Greenwood, R., & Vayanos, D. (2010). Price pressure in the government bond 

market. The American Economic Review, 100(2), 585-590. 
 
Laibson, D. I., Repetto, A., Tobacman, J., Hall, R. E., Gale, W. G., & Akerlof, G. 

A. (1998). Self-control and saving for retirement. Brookings Papers on 
Economic Activity, 1998(1), 91-196. 

 

http://pages.stern.nyu.edu/~lpederse/papers/DBOP.pdf
http://pages.stern.nyu.edu/~lpederse/papers/DBOP.pdf


201 

Hahn, J., Todd, P., & Van der Klaauw, W. (2001). Identification and estimation of 
treatment effects with a regression‐discontinuity 
design. Econometrica,69(1), 201-209. 

 
Hall, B. J., & Murphy, K. J. (2003). The trouble with stock options (No. w9784). 

National Bureau of Economic Research. 
 
Harri, A., & Brorsen, B.W. (2009).  The Overlapping Data Problem. Quantitative 

and Qualitative Analysis in Social Sciences, 2009(3),78-115. 
 
Harris, L. (1991). Stock price clustering and discreteness. Review of Financial 

Studies, 4(3), 389-415. 
 
Hickok, Robert L. and Rainville, Gay P. (2013).  Round Two of Shareholder Say-

on-Pay Litigation.  The Legal Intelligencer. June 4, 2013. 
 
 
Hjalmarsson, E. (2006). On the predictability of global stock returns. rapport nr.: 

Working Papers in Economics, (161). 
 
Hölmstrom, B. (1979). Moral hazard and observability. The Bell Journal of 

Economics, 74-91. 
 
Hölmstrom, B., & Kaplan, S. N. (2001). Corporate Governance and Merger 

Activity in the US: Making Sense of the 1980s and 1990s (No. w8220). 
National Bureau of Economic Research. 

 
Hölmstrom, B., & Kaplan, S. N. (2003). The state of US corporate governance: 

what's right and what's wrong?. Journal of Applied Corporate 
Finance, 15(3), 8-20. 

 
Hölmstrom, B., & Milgrom, P. (1987). Aggregation and linearity in the provision 

of intertemporal incentives. Econometrica: Journal of the Econometric 
Society, 303-328. 

 
Hong, H., & Stein, J. C. (1999). A unified theory of underreaction, momentum 

trading, and overreaction in asset markets. The Journal of Finance, 54(6), 
2143-2184. 

 
Imbens, G. W., & Angrist, J. D. (1994). Identification and estimation of local 

average treatment effects. Econometrica, 62(2), 467-475. 
 



202 

Imbens, G. W., & Kalyanaraman, K. (2012). Optimal bandwidth choice for the 
regression discontinuity estimator. The Review of Economic Studies, 79(3), 
933-959. 

 
Imbens, G. W., & Lemieux, T. (2008). Regression discontinuity designs: A guide 

to practice. Journal of Econometrics, 142(2), 615-635. 
 
Jackwerth, J. (2000): “Recovering risk aversion from option prices and realized 

returns,”  Review of Financial Studies, 13, 433-451. 
 
Jegadeesh Narasimhan and Titman, Sheridan , Momentum (October 23, 2001). 

University Of Illinois Working Paper.  
 
Jensen, M. C., & Meckling, W. H. (1976). Theory of the firm: Managerial 

behavior, agency costs and ownership structure. Journal of financial 
economics, 3(4), 305-360. 

 
Jensen, M.C., Murphy, K., & Wruck, E. (2004). Remuneration: Where we've been, 

how we got to here, what are the problems, and how to fix them. 
 
Joskow, P. L., Rose, N. L., & Wolfram, C. D. (1996). Political constraints on 

executive compensation: Evidence from the electric utility industry. The 
RAND Journal of Economics, 165-182. 

 
Kamenica, E. “Behavioral Economics and the Psychology of Incentives,” Annual 

Review of Economics (4): 427-52. 
 
Kaplan, S. N. (2008). Are US CEOs Overpaid?. The Academy of Management 

Perspectives, 22(2), 5-20. 
 
Keim, D. B., & Stambaugh, R. F. (1986). Predicting returns in the stock and bond 

markets. Journal of financial Economics, 17(2), 357-390. 
 
Kendall, M. G. (1954). Note on bias in the estimation of 

autocorrelation.Biometrika, 41(3-4), 403-404. 
 
Kothari, S. P., & Shanken, J. (1997). Book-to-market, dividend yield, and 

expected market returns: A time-series analysis. Journal of Financial 
Economics, 44(2), 169-203. 

 
Kuhnen, C., & Zwiebel, J. (2008). Executive pay, hidden compensation and 

managerial entrenchment. Rock Center for Corporate Governance 
Working Paper, (16). 



203 

 
Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica: 

Journal of the Econometric Society, 1315-1335. 
 
Lamont, O. A., & Thaler, R. H. (2003). Anomalies: The law of one price in 

financial markets. The Journal of Economic Perspectives, 17(4), 191-202. 
 
Lee, D. S., & Lemieux, T. (2010). Regression Discontinuity Designs in 

Economics. Journal of Economic Literature, 48, 281-355. 
 
Lee, D. S., Moretti, E., & Butler, M. J. (2004). Do voters affect or elect policies? 

Evidence from the US House. The Quarterly Journal of 
Economics, 119(3), 807-859. 

 
Lettau, M., & Ludvigson, S. (2001). Consumption, aggregate wealth, and 

expected stock returns. the Journal of Finance, 56(3), 815-849. 
 
Lewellen, J. (2004). Predicting returns with financial ratios. Journal of Financial 

Economics, 74(2), 209-235. 
 
Lewellen, W. G., & Huntsman, B. (1970). Managerial pay and corporate 

performance. The American Economic Review, 60(4), 710-720. 
 
Longstaff, F. A. (1995): “Option Pricing and the Martingale Restriction,”  Review 

of Financial Studies 8:1091-124. 
 
McInish, T. H., & Wood, R. A. (1992). An analysis of intraday patterns in bid/ask 

spreads for NYSE stocks. The Journal of Finance, 47(2), 753-764. 
 
Merton, R. (1973): “The Theory of Rational Option Pricing,” Bell Journal of 

Economics and Management Science 4:141-83. 
 
Murphy, K.J. (1997). Executive compensation and the Modern Industrial 

Revolution.  International Journal of Industrial Organization, 15(4), 417-
425. 

 
Murphy, K. J. (1999). Executive compensation. Handbook of labor economics,3, 

2485-2563. 
 
Nelson, C. R., & Kim, M. J. (1993). Predictable stock returns: The role of small 

sample bias. The Journal of Finance, 48(2), 641-661. 
 



204 

Newey, W. K. (1993). 16 Efficient estimation of models with conditional moment 
restrictions. Handbook of statistics, 11, 419-454. 

 
Newey, W. K., & West, K. D. (1986). A simple, positive semi-definite, 

heteroskedasticity and autocorrelationconsistent covariance matrix. 
 
Nichols, A. (2007). Causal inference with observational data. Stata Journal,7(4), 

507. 
 
Pástor, Ľ., & Stambaugh, R. F. (2009). Predictive systems: Living with imperfect 

predictors. The Journal of Finance, 64(4), 1583-1628. 
 
Porter, J. (2003). Estimation in the regression discontinuity model. Unpublished 

Manuscript, Department of Economics, University of Wisconsin at 
Madison, 5-19. 

 
Poteshman, A. M. (2001): “Underreaction, Overreaction, and Increasing 

Misreaction to Information in the Options Market,” Journal of Finance 
56:851-76. 

 
Rehavi, M. M. (2007). Sex and politics: Do female legislators affect state 

spending. Unpublished manuscript, University of Michigan. 
 
Roberts, D. R. (1956). A general theory of executive compensation based on 

statistically tested propositions. The Quarterly Journal of 
Economics, 70(2), 270-294. 

 
Rubinstein, M. (1994). “Implied Binomial Trees,” Journal of Finance 41:579-90. 
 
Shleifer, A. (1986): “Do Demand Curves for Stocks Slope Down?” Journal of 

Finance 41:579-90. 
 
Shleifer, A. (2003). Inefficient markets: An introduction to behavioral finance. 

OUP Oxford. 
 
Solow, R.M. (1956). A Contribution to the Theory of Economic Growth.  The 

Quarterly Journal of Economics, 70(1), 65-94. 
 
Stambaugh, R. F. (1999). Predictive regressions. Journal of Financial 

Economics, 54(3), 375-421. 
 
Stein, J. (1989): “Overreactions in the Options Market,”  Journal of Finance 

44:1011-23. 



205 

 
Thaler R. and C. Sunstein (2008). Nudge: Improving Decisions About Health, 

Wealth, and Happiness . 
 
Thistlethwaite, D. L., & Campbell, D. T. (1960). Regression-discontinuity 

analysis: An alternative to the ex post facto experiment. Journal of 
Educational psychology, 51(6), 309. 

 
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and 

a direct test for heteroskedasticity. Econometrica: Journal of the 
Econometric Society, 817-838. 

 
Wurgler, J., and E. V. Zhuravskaya. (2002): “Does Arbitrage Flatten Demand 

Curves for Stocks?”  Journal of Business 75:583-608 
 
Valkanov, R. (2003). Long-horizon regressions: Theoretical results and 

applications. Journal of Financial Economics, 68(2), 201-232. 
 
Van der Klaauw, W. (2002). Estimating the Effect of Financial Aid Offers on 

CollegeEnrollment: A Regression–Discontinuity Approach*. International 
Economic Review, 43(4), 1249-1287. 

 
Welch, I., & Goyal, A. (2008). A comprehensive look at the empirical 

performance of equity premium prediction. Review of Financial 
Studies, 21(4), 1455-1508. 

 
Yermack, D. (1997). Good timing: CEO stock option awards and company news 

announcements. The Journal of Finance, 52(2), 449-476. 
 
Zhang, Fan A., (2013): “Do Options Impact the Stock Market?” Harvard 

University Working Paper. 
 
Zhang, Fan A., (2013): “Household risky ratio and the Equity Premium,” Harvard 

University Working Paper. 
 


